KBC00B7A0M-D405 [SAMSUNG]

Memory Circuit, Flash+PSRAM+SRAM, Hybrid, PBGA111;
KBC00B7A0M-D405
型号: KBC00B7A0M-D405
厂家: SAMSUNG    SAMSUNG
描述:

Memory Circuit, Flash+PSRAM+SRAM, Hybrid, PBGA111

静态存储器 内存集成电路
文件: 总46页 (文件大小:692K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Preliminary  
MCP MEMORY  
KBC00B7A0M  
Document Title  
Multi-Chip Package MEMORY  
256M Bit (16Mx16) Nand Flash Memory / 64M Bit (4Mx16) UtRAM / 64M Bit (4Mx16) UtRAM / 8M Bit (512Kx16) SRAM  
Revision History  
Revision No. History  
Draft Date  
Remark  
0.0  
Initial draft.  
May 19, 2003  
Preliminary  
0.1  
Revised(SRAM)  
June 27, 2003  
Preliminary  
- Changed Speed Bins from 70ns to 55ns.  
- Added ISB1(Typ) 5.0mA in DC AND OPERATING CHARACTERISTIC.  
- Changed Output load from CL=100pF+1TTL to CL=30pF+1TTL in AC  
OPERATING CONDITIONS.  
- Added IDR(Typ) 1.0mA in DATA RETENTION CHARACTERISTICS.  
- Changed ball name from Vccqs to Vccs in Pin Configuration.  
0.11  
1.0  
Revised  
- Added Package D :FBGA(L/F)  
July 11, 2003  
Preliminary  
Finalized  
September 25, 2003 Final  
<UtRAM>  
- Changed tPC from Max 25ns to Min 25ns in the AC Characteristics.  
<NAND>  
- Corrected the FLASH READ1 OPERATION(READ ONE PAGE) timing  
in Page 19.  
Note : For more detailed features and specifications including FAQ, please refer to Samsung’s web site.  
http://samsungelectronics.com/semiconductors/products/products_index.html  
The attached datasheets are prepared and approved by SAMSUNG Electronics. SAMSUNG Electronics CO., LTD. reserve the right  
to change the specifications. SAMSUNG Electronics will evaluate and reply to your requests and questions about device. If you have  
any questions, please contact the SAMSUNG branch office near you.  
Revision 1.0  
September 2003  
- 1 -  
Preliminary  
MCP MEMORY  
KBC00B7A0M  
Multi-Chip Package MEMORY  
256M Bit (16Mx16) Nand Flash Memory / 64M Bit (4Mx16) UtRAM / 64M Bit (4Mx16) UtRAM / 8M Bit (512Kx16) SRAM  
FEATURES  
<Common>  
<UtRAM(each device)>  
· Operating Temperature : -25°C ~ 85°C  
· Package : 111 - ball FBGA Type - 11 x 11mm, 0.8 mm pitch  
· Power Supply Voltage: 2.7~3.1V  
· Organization: 4M x16 bit  
· Three State Outputs  
· Compatible with Low Power SRAM  
· Support 4 page mode (Read only)  
· Deep Power Down: Memory cell data hold invalid  
<NAND Flash>  
· Supply Voltage : 2.7~3.6V  
· Organization  
- Memory Cell Array : (16M + 512K)bit x 16bit  
- Data Register : (256 + 8)bit x16bit  
· Automatic Program and Erase  
- Page Program : (256 + 8)Word  
- Block Erase : (8K + 256)Word  
· Page Read Operation  
<SRAM>  
· Process Technology: Full CMOS  
· Organization: 512K x16  
· Power Supply Voltage: 2.7~3.3V  
· Low Data Retention Voltage: 1.5V(Min)  
· Three State Outputs  
- Page Size : (256 + 8)Byte  
- Random Access  
: 10ms(Max.)  
- Serial Page Access : 50ns(Min.)  
· Fast Write Cycle Time  
- Program time : 200ms(Typ.)  
- Block Erase Time : 2ms(Typ.)  
· Command/Address/Data Multiplexed I/O Port  
· Hardware Data Protection  
- Program/Erase Lockout During Power Transitions  
· Reliable CMOS Floating-Gate Technology  
- Endurance  
: 100K Program/Erase Cycles  
- Data Retention : 10 Years  
· Command Register Operation  
· Intelligent Copy-Back  
· Unique ID for Copyright Protection  
· Power-On Auto-Read Operation  
· Safe Lock Mechanism  
GENERAL DESCRIPTION  
The KBC00B7A0M is a Multi Chip Package Memory which combines 256Mbit Nand Flash and two 64Mbit Unit Transistor CMOS  
RAM and 8Mbit SRAM.  
256Mbit NAND Flash memory is organized as 16M x16 bit and 64Mbit UtRAM is organized as 4M x16 bit and 8Mbit SRAM is orga-  
nized as 512K x16 bit.  
In 256Mb NAND Flash, a program operation can be performed in typical 200ms on a 264-word page and an erase operation can be  
performed in typical 2ms on a 8K-word block. Data in the page can be read out at 50ns cycle time per word. The DQ pins serve as  
the ports for address and data input/output as well as command input. The on-chip write control automates all program and erase  
functions including pulse repetition, where required, and internal verification and margining of data. Even the write-intensive systems  
can take advantage of the FLASH¢s extended reliability of 100K program/erase cycles by providing ECC(Error Correcting Code) with  
real time mapping-out algorithm. These algorithms have been implemented in many mass storage applications.  
The 64Mbit UtRAM is fabricated by SAMSUNG¢s advanced CMOS technology using one transistor memory cell. The device support  
page mode operation. The device also supports deep power down mode for low standby current.  
The 8Mbit SRAM is fabricated by SAMSUNG¢s advanced full CMOS process technology. The device supports low data retention volt-  
age for battery back-up operation with low data retention current.  
The KBC00B7A0M is suitable for use in data memory of mobile communication system to reduce not only mount area but also power  
consumption.  
This device is available in 111-ball FBGA Type.  
SAMSUNG ELECTRONICS CO., LTD. reserves the right to change products and specifications without notice.  
Revision 1.0  
September 2003  
- 2 -  
Preliminary  
MCP MEMORY  
KBC00B7A0M  
PIN CONFIGURATION  
1
2
3
4
5
6
7
8
9
10  
11  
12  
A
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
B
C
D
E
F
DNU  
DNU  
A1  
A2  
A3  
A4  
A7  
A6  
A19  
LB  
Vccu  
Vccs  
UB  
WE  
A20  
A21  
ZZ1  
WPF  
CLE  
R/B  
A8  
A9  
A12  
A13  
A14  
A15  
ALE  
Vss  
Vss  
A5  
A17  
A18  
NC  
A10  
A11  
REF  
CEF  
WEF  
NC  
ZZ2  
DQ1F  
DQ5F  
CS2s  
DQ8F  
DQ11F  
NC  
DQ9F  
DQ0F  
DQ3F DQ10F DQ2F  
G
H
J
DQ4F DQ12F  
VccF  
DQ13F DQ6F DQ14F CSu2  
VccF  
A16  
DQ7  
DQ15  
Vss  
DQ7F DQ15F  
DQ0  
DQ8  
DQ1  
DQ9  
DQ2  
DQ3  
DQ10  
DQ11  
Vccs  
Vccu  
DQ5  
NC  
K
L
Vss  
CS1s  
Vss  
A0  
CSu1  
OE  
DQ13  
DQ6  
DQ14  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
Vccs  
Vccqu  
DQ4  
DQ12  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
M
N
111-FBGA: Top View (Ball Down)  
Revision 1.0  
September 2003  
- 3 -  
Preliminary  
MCP MEMORY  
KBC00B7A0M  
PIN DESCRIPTION  
Ball Name  
Description  
Ball Name  
R/B  
Description  
A0 to A18  
Address Input Balls (UtRAM,SRAM)  
Address Input Balls (UtRAM)  
Ready/Busy (Flash Memory)  
A19 to A21  
ZZ1  
Deep Power Down (UtRAM1)  
Deep Power Down (UtRAM2)  
Chip Enable (Flash Memory)  
Chip Select (UtRAM1)  
DQ0F to DQ15F Data Input/Output Balls (Flash Memory)  
DQ0 to DQ15 Data Input/Output Balls (UtRAM, SRAM)  
ZZ2  
CEF  
WPF  
VCCF  
Vccu  
Vccs  
Vccqu  
Vss  
Write Protection (Flash Memory)  
Power Supply (Flash Memory)  
Power Supply (UtRAM)  
CSu1  
CSu2  
CS1s  
CS2s  
WEF  
WE  
Chip Select (UtRAM2)  
Chip Select (SRAM)  
Power Supply (SRAM)  
Chip Select (SRAM)  
Data Out Power (UtRAM)  
Write Enable (Flash Memory)  
Write Enable (UtRAM, SRAM)  
Output Enable (UtRAM, SRAM)  
Read Enable (Flash Memory)  
No Connection  
Ground (Common)  
UB  
Upper Byte Enable (UtRAM, SRAM)  
Lower Byte Enable (UtRAM, SRAM)  
Address Latch Enable (Flash Memory)  
Command Latch Enable (Flash Memory)  
OE  
LB  
REF  
ALE  
CLE  
NC  
DNU  
Do Not Use  
ORDERING INFORMATION  
K B C 00 B 7 A 0 M - x 405  
Access Time  
405 : NAND Flash : 50ns  
UtRAM : 70ns  
Samsung  
MCP(4 Chip) Memory  
UtRAM : 70ns  
SRAM : 55ns  
Device Type  
NAND Flash+UtRAM+UtRAM  
+SRAM  
Package  
F : FBGA D : FBGA(L/F)  
NOR Flash Density , Vcc , Org.  
00 : NONE  
Version  
M : 1st Generation  
NAND Flash Density , Vcc , Org.  
B : 256Mbit, 3.0V, x16  
SDRAM Density , Vcc , Org.  
0 : NONE  
UtRAM Density , Vcc , Org.  
7 : 64Mbit + 64Mbit, 3.0V, x16(Page)  
SRAM Density , Vcc , Org.  
A : 8Mbit, 3.0V, x16  
Revision 1.0  
September 2003  
- 4 -  
Preliminary  
MCP MEMORY  
KBC00B7A0M  
Figure 1. FUNCTIONAL BLOCK DIAGRAM  
VccF Vss  
WPF  
CEF  
R/B  
CLE  
ALE  
256M bit  
Flash Memory  
DQ0F to DQ15F  
REF  
WEF  
Vccu  
Vss  
Vccqu  
Address(A0 to A18)  
Address(A19 to A21)  
OE  
64M bit  
UtRAM  
DQ0 to DQ15  
DQ0 to DQ15  
DQ0 to DQ15  
WE  
UB  
LB  
CSu1  
ZZ1  
Vccu  
Vss  
Vccqu  
64M bit  
UtRAM  
DQ0 to DQ15  
CSu2  
ZZ2  
Vccs  
Vss  
8M bit  
SRAM  
CS1s  
CS2s  
Revision 1.0  
September 2003  
- 5 -  
Preliminary  
MCP MEMORY  
KBC00B7A0M  
256M Bit(16Mx16)  
NAND Flash Memory  
Revision 1.0  
September 2003  
- 6 -  
Preliminary  
MCP MEMORY  
KBC00B7A0M  
Figure 2. NAND Flash (X16) ARRAY ORGANIZATION  
1 Block =32 Pages  
= (8K + 256) Word  
1 Page = 264 Word  
1 Block = 264 Word x 32 Pages  
= (8K + 256) Word  
1 Device = 264Words x 32Pages x 2048 Blocks  
= 264 Mbits  
64K Pages  
(=2,048 Blocks)  
Page Register  
(=256 Words)  
16 bit  
256Word  
8 Word  
8 Word  
I/O 0 ~ I/O 15  
Page Register  
256 Word  
I/O 0  
A0  
I/O 1  
A1  
I/O 2  
A2  
I/O 3  
I/O 4  
A4  
I/O 5  
A5  
I/O 6  
A6  
I/O 7  
A7  
I/O8 to 15  
1st Cycle  
2nd Cycle  
3rd Cycle  
A3  
L*  
L*  
L*  
Column Address  
Row Address  
(Page Address)  
A9  
A10  
A18  
A11  
A19  
A12  
A20  
A13  
A21  
A14  
A22  
A15  
A23  
A16  
A24  
A17  
NOTE : Column Address : Starting Address of the Register.  
* L must be set to "Low".  
Revision 1.0  
September 2003  
- 7 -  
Preliminary  
MCP MEMORY  
KBC00B7A0M  
PRODUCT INTRODUCTION  
The device is a 264Mbit(276,824,064 bit) memory organized as 65,536 rows(pages) 264columns. Spare eight columns are located  
from column address of 256~263. A 264-word data register is connected to memory cell arrays accommodating data transfer  
between the I/O buffers and memory during page read and page program operations. The memory array is made up of 16 cells that  
are serially connected to form a NAND structure. Each of the 16 cells resides in a different page. A block consists of two NAND  
structures. A NAND structure consists of 16 cells. Total 16896 NAND cells reside in a block. The array organization is shown in Fig-  
ure 2. The program and read operations are executed on a page basis, while the erase operation is executed on a block basis. The  
memory array consists of 2048 separately erasable 8K-Word blocks. It indicates that the bit by bit erase operation is prohibited on  
the device.  
The device has addresses multiplexed into 8 I/Os(X16 device case : lower 8 I/Os). Device allows sixteen bit wide data transport into  
and out of page registers. This scheme dramatically reduces pin counts while providing high performance and allows systems  
upgrades to future densities by maintaining consistency in system board design. Command, address and data are all written through  
I/O¢s by bringing WE to low while CE is low. Data is latched on the rising edge of WE. Command Latch Enable(CLE) and Address  
Latch Enable(ALE) are used to multiplex command and address respectively, via the I/O pins. Some commands require one bus  
cycle. For example, Reset command, Read command, Status Read command, etc require just one cycle bus. Some other com-  
mands like Page Program and Copy-back Program and Block Erase, require two cycles: one cycle for setup and the other cycle for  
execution. The 16M-word physical space requires 24 addresses, thereby requiring three cycles for word-level addressing: column  
address, low row address and high row address, in that order. Page Read and Page Program need the same three address cycles  
following the required command input. In Block Erase operation, however, only the two row address cycles are used. Device opera-  
tions are selected by writing specific commands into the command register. Table 1 defines the specific commands of the device.  
The device includes one block sized OTP(One Time Programmable), which can be used to increase system security or to provide  
identification capabilities. Detailed information can be obtained by contact with Samsung.  
Table 1. COMMAND SETS  
Function  
1st. Cycle  
00h  
2nd. Cycle  
Acceptable Command during Busy  
Read 1  
Read 2  
Read ID  
Reset  
-
50h  
-
90h  
-
FFh  
80h  
-
10h  
8Ah  
-
O
Page Program  
Copy-Back Program  
Lock  
00h  
2Ah  
23h  
Unlock  
24h  
-
Lock-tight  
2Ch  
7Ah  
60h  
Read Block Lock Status  
Block Erase  
Read Status  
-
D0h  
-
70h  
O
Caution : Any undefined command inputs are prohibited except for above command set of Table 1.  
Revision 1.0  
September 2003  
- 8 -  
Preliminary  
MCP MEMORY  
KBC00B7A0M  
ABSOLUTE MAXIMUM RATINGS  
Parameter  
Symbol  
VIN/OUT  
VCC  
Rating  
-0.6 to + 4.6  
-0.6 to + 4.6  
-0.6 to + 4.6  
-40 to +125  
-65 to +150  
5
Unit  
Voltage on any pin relative to VSS  
V
VCCQ  
TBIAS  
TSTG  
Temperature Under Bias  
Storage Temperature  
Short Circuit Current  
NOTE :  
°C  
°C  
Ios  
mA  
1. Minimum DC voltage is -0.6V on input/output pins. During transitions, this level may undershoot to -2.0V for periods <30ns.  
Maximum DC voltage on input/output pins is VCC,+0.3V which, during transitions, may overshoot to VCC+2.0V for periods <20ns.  
2. Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions  
as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect reliability.  
RECOMMENDED OPERATING CONDITIONS  
(Voltage reference to GND, TA=-40 to 85°C)  
Parameter  
Supply Voltage  
Symbol  
VCC  
Min  
2.7  
2.7  
0
Typ.  
3.3  
3.3  
0
Max  
3.6  
3.6  
0
Unit  
V
Supply Voltage  
Supply Voltage  
VCCQ  
VSS  
V
V
DC AND OPERATING CHARACTERISTICS(Recommended operating conditions otherwise noted.)  
Parameter  
Symbol  
Test Conditions  
tRC=50ns, CE=VIL  
IOUT=0mA  
Min  
Typ  
Max  
Unit  
Sequential Read  
ICC1  
-
10  
20  
Operating  
Current  
Program  
Erase  
ICC2  
ICC3  
ISB1  
ISB2  
ILI  
-
-
-
10  
10  
-
25  
mA  
-
-
25  
Stand-by Current(TTL)  
Stand-by Current(CMOS)  
Input Leakage Current  
Output Leakage Current  
CE=VIH, WP=0V/VCC  
CE=VCC-0.2, WP=0V/VCC  
VIN=0 to Vcc(max)  
VOUT=0 to Vcc(max)  
I/O pins  
1
-
10  
-
50  
-
±10  
mA  
ILO  
-
-
±10  
2.0  
2.0  
-0.3  
2.4  
-
-
VCCQ+0.3  
Input High Voltage  
VIH  
Except I/O pins  
-
-
VCC+0.3  
Input Low Voltage, All inputs  
Output High Voltage Level  
Output Low Voltage Level  
Output Low Current(R/B)  
VIL  
VOH  
-
0.8  
-
V
IOH=-400mA  
-
VOL  
IOL=2.1mA  
-
0.4  
-
IOL(R/B)  
VOL=0.4V  
8
10  
mA  
Revision 1.0  
September 2003  
- 9 -  
Preliminary  
MCP MEMORY  
KBC00B7A0M  
VALID BLOCK  
Parameter  
Symbol  
Min  
Typ.  
Max  
2048  
Unit  
Valid Block Number  
NVB  
2013  
-
Blocks  
NOTE :  
1. The device may include invalid blocks when first shipped. Additional invalid blocks may develop while being used. The number of valid blocks is pre-  
sented with both cases of invalid blocks considered. Invalid blocks are defined as blocks that contain one or more bad bits. Do not erase or program  
factory-marked bad blocks. Refer to the attached technical notes for a appropriate management of invalid blocks.  
2. The 1st block, which is placed on 00h block address, is fully guaranteed to be a valid block, does not require Error Correction.  
3. Minimum 1004 valid blocks are guaranteed for each contiguous 128Mb memory space.  
AC TEST CONDITION  
(TA=-40 to 85°C, Vcc=2.7V~3.6V unless otherwise noted)  
Parameter  
NAND Flash  
0.4V to 2.4V  
Input Pulse Levels  
Input Rise and Fall Times  
5ns  
Input and Output Timing Levels  
Output Load (VccQ:3.0V +/-10%)  
Output Load (VccQ:3.3V +/-10%)  
1.5V  
1 TTL GATE and CL=50pF  
1 TTL GATE and CL=100pF  
CAPACITANCE(TA=25°C, VCC=3.3V, f=1.0MHz)  
Item  
Symbol  
Test Condition  
Min  
Max  
10  
Unit  
pF  
Input/Output Capacitance  
Input Capacitance  
CI/O  
VIL=0V  
-
-
CIN  
VIN=0V  
10  
pF  
NOTE : Capacitance is periodically sampled and not 100% tested.  
MODE SELECTION  
CLE  
H
L
ALE  
L
CE  
L
WE  
RE  
H
PRE  
X
WP  
X
Mode  
Command Input  
Read Mode  
Write Mode  
H
L
H
X
X
Address Input(3clock)  
Command Input  
H
L
L
L
H
X
H
H
H
X
H
L
H
X
Address Input(3clock)  
L
L
L
H
X
Data Input  
Data Output  
L
L
L
H
X
X
X
X
X
X
X
X
X
X
H
X
X
X
X
X
H
H
L
During Program(Busy)  
During Erase(Busy)  
Write Protect  
X
X
X
X(1)  
X
X
X
(2)  
(2)  
X
Stand-by  
0V/VCC 0V/VCC  
NOTE : 1. X can be VIL or VIH.  
2. WP should be biased to CMOS high or CMOS low for standby.  
Program/Erase Characteristics  
Parameter  
Symbol  
Min  
Typ  
Max  
500  
10  
2
Unit  
Program Time  
tPROG  
tLBSY  
-
-
-
-
-
200  
ms  
ms  
Dummy Busy Time for the Lock or Lock-tight Block  
5
-
Main Array  
cycles  
cycles  
ms  
Number of Partial Program Cycles  
in the Same Page  
Nop  
Spare Array  
-
3
Block Erase Time  
tBERS  
2
3
Revision 1.0  
September 2003  
- 10 -  
Preliminary  
MCP MEMORY  
KBC00B7A0M  
AC Timing Characteristics for Command / Address / Data Input  
Parameter  
Symbol  
tCLS  
tCLH  
tCS  
Min  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CLE Set-up Time  
CLE Hold Time  
CE Setup Time  
CE Hold Time  
0
-
-
10  
0
.-  
-
tCH  
10  
25 (1)  
0
WE Pulse Width  
ALE Setup Time  
ALE Hold Time  
Data Setup Time  
Data Hold Time  
Write Cycle Time  
tWP  
-
tALS  
tALH  
tDS  
-
10  
20  
10  
45  
15  
-
-
tDH  
-
tWC  
-
WE High Hold Time  
tWH  
-
NOTE :  
1. If tCS is set less than 10ns, tWP must be minimum 35ns, otherwise, tWP may be minimum 25ns.  
AC Characteristics for Operation  
Parameter  
Symbol  
tR  
Min  
-
Max  
Unit  
ms  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
Data Transfer from Cell to Register  
10  
ALE to RE Delay  
tAR  
10  
10  
20  
25  
-
-
CLE to RE Delay  
tCLR  
tRR  
-
-
Ready to RE Low  
RE Pulse Width  
tRP  
-
WE High to Busy  
tWB  
100  
-
Read Cycle Time  
tRC  
50  
-
CE Access Time  
tCEA  
tREA  
tRHZ  
tCHZ  
tOH  
45  
30  
30  
20  
-
RE Access Time  
-
RE High to Output Hi-Z  
CE High to Output Hi-Z  
RE or CE High to Output hold  
RE High Hold Time  
-
-
15  
15  
0
tREH  
tIR  
-
Output Hi-Z to RE Low  
WE High to RE Low  
-
tWHR1  
tWHR2  
tRST  
60  
100  
-
-
WE High to RE Low in Block Lcok Mode  
Device Resetting Time(Read/Program/Erase)  
-
5/10/500(1)  
NOTE :  
1. If reset command(FFh) is written at Ready state, the device goes into Busy for maximum 5us.  
2. To break the sequential read cycle, CE must be held high for longer time than tCEH.  
3. The time to Ready depends on the value of the pull-up resistor tied R/B pin.  
Revision 1.0  
September 2003  
- 11 -  
Preliminary  
MCP MEMORY  
KBC00B7A0M  
NAND Flash Technical Notes  
Invalid Block(s)  
Invalid blocks are defined as blocks that contain one or more invalid bits whose reliability is not guaranteed by Samsung. The infor-  
mation regarding the invalid block(s) is so called as the invalid block information. Devices with invalid block(s) have the same quality  
level as devices with all valid blocks and have the same AC and DC characteristics. An invalid block(s) does not affect the perfor-  
mance of valid block(s) because it is isolated from the bit line and the common source line by a select transistor. The system design  
must be able to mask out the invalid block(s) via address mapping. The 1st block, which is placed on 00h block address, is fully guar-  
anteed to be a valid block, does not require Error Correction.  
Identifying Invalid Block(s)  
All device locations are erased(FFh) except locations where the invalid block(s) information is written prior to shipping. The invalid  
block(s) status is defined by the 1st word in the spare area. Samsung makes sure that either the 1st or 2nd page of every invalid  
block has non-FFFFh data at the column address of 256 and 261. Since the invalid block information is also erasable in most cases,  
it is impossible to recover the information once it has been erased. Therefore, the system must be able to recognize the invalid  
block(s) based on the original invalid block information and create the invalid block table via the following suggested flow chart(Fig-  
ure 3). Any intentional erasure of the original invalid block information is prohibited.  
Start  
Set Block Address = 0  
Increment Block Address  
Check "FFh" at the column address  
256 and 261(X16 device)  
of the 1st and 2nd page in the block  
*
No  
Create (or update)  
Invalid Block(s) Table  
Check "FFh" ?  
Yes  
No  
Last Block ?  
Yes  
End  
Figure 3. Flow chart to create invalid block table.  
Revision 1.0  
September 2003  
- 12 -  
Preliminary  
MCP MEMORY  
KBC00B7A0M  
NAND Flash Technical Notes (Continued)  
Error in write or read operation  
Within its life time, the additional invalid blocks may develop with NAND Flash memory. Refer to the qualification report for the actual  
data.The following possible failure modes should be considered to implement a highly reliable system. In the case of status read fail-  
ure after erase or program, block replacement should be done. Because program status fail during a page program does not affect  
the data of the other pages in the same block, block replacement can be executed with a page-sized buffer by finding an erased  
empty block and reprogramming the current target data and copying the rest of the replaced block. To improve the efficiency of  
memory space, it is recommended that the read or verification failure due to single bit error be reclaimed by ECC without any block  
replacement. The said additional block failure rate does not include those reclaimed blocks.  
Failure Mode  
Detection and Countermeasure sequence  
Erase Failure  
Status Read after Erase --> Block Replacement  
Status Read after Program --> Block Replacement  
Read back ( Verify after Program) --> Block Replacement  
or ECC Correction  
Write  
Read  
Program Failure  
Single Bit Failure  
Verify ECC -> ECC Correction  
: Error Correcting Code --> Hamming Code etc.  
Example) 1bit correction & 2bit detection  
ECC  
Program Flow Chart  
If ECC is used, this verification  
operation is not needed.  
Start  
Write 80h  
Write 00h  
Write Address  
Wait for tR Time  
Write Address  
Write Data  
Write 10h  
*
No  
Program Error  
Verify Data  
Read Status Register  
Yes  
Program Completed  
No  
I/O 6 = 1 ?  
or R/B = 1 ?  
: If program operation results in an error, map out  
the block including the page in error and copy the  
target data to another block.  
*
Yes  
*
No  
Program Error  
I/O 0 = 0 ?  
Yes  
Revision 1.0  
September 2003  
- 13 -  
Preliminary  
MCP MEMORY  
KBC00B7A0M  
NAND Flash Technical Notes (Continued)  
Erase Flow Chart  
Read Flow Chart  
Start  
Start  
Write 60h  
Write 00h  
Write Block Address  
Write Address  
Read Data  
Write D0h  
Read Status Register  
ECC Generation  
No  
No  
I/O 6 = 1 ?  
or R/B = 1 ?  
Reclaim the Error  
Verify ECC  
Yes  
Yes  
*
No  
Page Read Completed  
Erase Error  
I/O 0 = 0 ?  
Yes  
Erase Completed  
: If erase operation results in an error, map out  
the failing block and replace it with another block.  
*
Block Replacement  
Block A  
1st  
2
{
(n-1)th  
nth  
an error occurs.  
(page)  
Buffer memory of the controller.  
Block B  
1st  
1
{
(n-1)th  
nth  
(page)  
* Step1  
When an error happens in the nth page of the Block ’A’ during erase or program operation.  
* Step2  
Copy the nth page data of the Block ’A’ in the buffer memory to the nth page of another free block. (Block ’B’)  
* Step3  
Then, copy the data in the 1st ~ (n-1)th page to the same location of the Block ’B’.  
* Step4  
Do not further erase Block ’A’ by creating an ’invalid Block’ table or other appropriate scheme.  
Revision 1.0  
September 2003  
- 14 -  
Preliminary  
MCP MEMORY  
KBC00B7A0M  
Pointer Operation  
Samsung NAND Flash has two address pointer commands as a substitute for the most significant column address. ’00h’ command  
sets the pointer to ’A’ area(0~255word), and ’50h’ command sets the pointer to ’B’ area(256~263word). With these commands, the  
starting column address can be set to any of a whole page(0~263word). ’00h’ or ’50h’ is sustained until another address pointer com-  
mand is inputted. To program data starting from ’A’ or ’B’ area, ’00h’ or ’50h’ command must be inputted before ’80h’ command is  
written. A complete read operation prior to ’80h’ command is not necessary.  
"A" area  
"B" area  
(00h plane)  
(50h plane)  
256 Word  
8 Word  
Table 3. Destination of the pointer  
Command  
Pointer position  
Area  
00h  
50h  
0 ~ 255 word  
256 ~ 263 word  
main array(A)  
spare array(B)  
"A"  
"B"  
Internal  
Page Register  
Pointer select  
command  
(00h, 50h)  
Pointer  
Figure 5. Block Diagram of Pointer Operation  
(1) Command input sequence for programming ’A’ area  
The address pointer is set to ’A’ area(0~255), and sustained  
Address / Data input  
Address / Data input  
00h  
80h  
10h  
00h  
80h  
10h  
’A’,’B’ area can be programmed.  
’00h’ command can be omitted.  
It depends on how many data are inputted.  
(2) Command input sequence for programming ’B’ area  
The address pointer is set to ’B’ area(256~263), and sustained  
Address / Data input  
Address / Data input  
80h 10h  
50h  
80h  
10h  
50h  
Only ’B’ area can be programmed.  
’50h’ command can be omitted.  
Revision 1.0  
September 2003  
- 15 -  
Preliminary  
MCP MEMORY  
KBC00B7A0M  
System Interface Using CE don’t-care.  
For an easier system interface, CE may be inactive during the data-loading or sequential data-reading as shown below. The internal  
264word page registers are utilized as seperate buffers for this operation and the system design gets more flexible. In addition, for  
voice or audio applications which use slow cycle time on the order of u-seconds, de-activating CE during the data-loading and read-  
ing would provide significant savings in power consumption.  
Figure 6. Program Operation with CE don’t-care.  
CLE  
CE don’t-care  
CE  
WE  
ALE  
I/Ox  
80h  
Start Add.(3Cycle)  
Data Input  
Data Input  
10h  
tCS  
tCH  
tCEA  
CE  
RE  
CE  
tREA  
tWP  
tOH  
WE  
I/O0~15  
out  
Figure 7. Read Operation with CE don’t-care.  
CLE  
CE  
CE don’t-care  
RE  
ALE  
tR  
R/B  
WE  
I/Ox  
Data Output(sequential)  
00h  
Start Add.(3Cycle)  
Revision 1.0  
September 2003  
- 16 -  
Preliminary  
MCP MEMORY  
KBC00B7A0M  
I/O  
I/Ox  
I/O 0 ~ I/O 151)  
DATA  
Device  
Data In/Out  
~264word  
NAND Flash  
NOTE: 1. I/O8~15 must be set to "0" during command or address input.  
2. I/O8~15 are used only for data bus.  
* Command Latch Cycle  
CLE  
tCLH  
tCH  
tCLS  
tCS  
CE  
tWP  
WE  
tALS  
tALH  
ALE  
tDH  
tDS  
Command  
I/Ox  
* Address Latch Cycle  
tCLS  
CLE  
tCS  
tWC  
tWC  
CE  
tCH  
tWP  
tWP  
tWP  
WE  
tWH  
tALH  
tALS  
tWH  
tALH  
tALS  
tALH  
tALS  
ALE  
I/Ox  
tDH  
tDH  
tDH  
tDS  
tDS  
tDS  
A9~A16  
A17~A24  
AO~A7  
Revision 1.0  
September 2003  
- 17 -  
Preliminary  
MCP MEMORY  
KBC00B7A0M  
* Input Data Latch Cycle  
tCLH  
CLE  
CE  
tCH  
tWC  
tALS  
ALE  
tWP  
tWP  
tWP  
WE  
tWH  
tDH  
tDH  
tDH  
tDS  
tDS  
tDS  
I/Ox  
DIN 0  
DIN 1  
DIN n  
* Sequential Out Cycle after Read(CLE=L, WE=H, ALE=L)  
tRC  
CE  
tCHZ*  
tOH  
tREH  
tREA  
tREA  
tREA  
tRP  
RE  
tRHZ*  
tRHZ*  
tOH  
I/Ox  
Dout  
Dout  
Dout  
tRR  
R/B  
NOTES : Transition is measured ±200mV from steady state voltage with load.  
This parameter is sampled and not 100% tested.  
Revision 1.0  
September 2003  
- 18 -  
Preliminary  
MCP MEMORY  
KBC00B7A0M  
* Status Read Cycle  
tCLR  
CLE  
CE  
tCLS  
tCS  
tCLH  
tCH  
tWP  
WE  
tCEA  
tCHZ  
tOH  
tWHR1  
RE  
tRHZ  
tOH  
tDH  
tREA  
tDS  
tIR  
Status Output  
I/Ox  
70h  
FLASH READ1 OPERATION(READ ONE PAGE)  
CLE  
CE  
tCHZ  
tOH  
tWC  
WE  
tWB  
tAR  
ALE  
tRHZ  
tOH  
tRC  
tR  
RE  
N Address  
tRR  
00h  
A0 ~ A7  
A9 ~ A16 A17 ~ A23  
Dout N  
Dout N+1  
Dout N+2 Dout N+3  
Dout 263  
DQ0~15  
R/B  
Column  
Address  
Page(Row)  
Address  
Busy  
Revision 1.0  
September 2003  
- 19 -  
Preliminary  
MCP MEMORY  
KBC00B7A0M  
READ1 OPERATION (INTERCEPTED BY CE)  
CLE  
CE  
WE  
tWB  
tCHZ  
tOH  
tAR  
ALE  
tR  
tRC  
RE  
N Address  
tRR  
Read  
CMD  
Dout N+2  
Dout N+3  
Dout N  
Dout N+1  
Row Add1 Row Add2  
I/Ox  
Col. Add  
Page(Row)  
Address  
Column  
Address  
Busy  
R/B  
READ2 OPERATION (READ ONE PAGE)  
CLE  
CE  
WE  
ALE  
RE  
tR  
tWB  
tAR  
tRR  
Dout  
Dout  
n+M  
I/Ox  
R/B  
50h  
Row Add1 Row Add2  
Dout n+m  
n+M+1  
Col. Add  
Selected  
Row  
M Address  
A0~A2 are Valid Address & A3~A7 are "L"  
m
n
n = 256, m = 8  
Start  
address M  
Revision 1.0  
September 2003  
- 20 -  
Preliminary  
MCP MEMORY  
KBC00B7A0M  
COPY-BACK PROGRAM OPERATION  
CLE  
CE  
tWC  
WE  
tWB  
tWB  
tPROG  
ALE  
tR  
RE  
I/Ox  
Row Add1 Row Add2  
8Ah  
00h  
Col. Add  
A0~A7 A9~A16 A17~A24  
70h  
I/O0  
Program  
Command  
Column  
Address  
Column  
Address  
Read Status  
Command  
Page(Row)  
Address  
Page(Row)  
Address  
R/B  
I/O0=0 Successful Program  
I/O0=1 Error in Program  
Busy  
Busy  
BLOCK ERASE OPERATION (ERASE ONE BLOCK)  
CLE  
CE  
tWC  
WE  
tBERS  
tWB  
ALE  
RE  
I/Ox  
A9~A16  
A17~A24  
60h  
DOh  
70h  
I/O 0  
Page(Row)  
Address  
Busy  
R/B  
I/O0=0 Successful Erase  
Read Status I/O0=1 Error in Erase  
Command  
Auto Block Erase  
Setup Command  
Erase Command  
Revision 1.0  
September 2003  
- 21 -  
Preliminary  
MCP MEMORY  
KBC00B7A0M  
MANUFACTURE & DEVICE ID READ OPERATION  
CLE  
CE  
WE  
ALE  
tAR  
RE  
tREA  
I/Ox  
90h  
00h  
ECh  
XX55h  
Device Code  
Read ID Command  
Address. 1cycle  
Maker Code  
Revision 1.0  
September 2003  
- 22 -  
Preliminary  
MCP MEMORY  
KBC00B7A0M  
DEVICE OPERATION  
PAGE READ  
Upon initial device power up, the device defaults to Read1 mode. This operation is also initiated by writing 00h to the command reg-  
ister along with three address cycles. Once the command is latched, it does not need to be written for the following page read opera-  
tion. Two types of operations are available : random read, serial page read.  
The random read mode is enabled when the page address is changed. The 264 words of data within the selected page are trans-  
ferred to the data registers in less than 10ms(tR). The system controller can detect the completion of this data transfer(tR) by analyz-  
ing the output of R/B pin. Once the data in a page is loaded into the registers, they may be read out in 50ns cycle time by sequentially  
pulsing RE. High to low transitions of the RE clock output the data starting from the selected column address up to the last column  
address[column 255 /263 depending on the state of GND input pin.  
The way the Read1 and Read2 commands work is like a pointer set to either the main area or the spare area. The spare area of  
256~263 words may be selectively accessed by writing the Read2 command with GND input pin low. Addresses A0~A2 set the start-  
ing address of the spare area while addresses A3~A7 must be "L" in X16 device case. The Read1 command is needed to move the  
pointer back to the main area. Figures 8,9 show typical sequence and timings for each read operation.  
Figure8. Read1 Operation  
CLE  
CE  
WE  
ALE  
tR  
R/B  
RE  
I/Ox  
Start Add.(3Cycle)  
A0 ~ A7 & A9 ~ A24  
00h  
Data Output(Sequential)  
(00h Command)  
Main array  
(01h Command)  
1st half array 2st half array  
Data Field  
Spare Field  
Data Field  
Spare Field  
Revision 1.0  
September 2003  
- 23 -  
Preliminary  
MCP MEMORY  
KBC00B7A0M  
Figure 9. Read2 Operation  
CLE  
CE  
WE  
ALE  
R/B  
RE  
tR  
Start Add.(3Cycle)  
I/Ox  
50h  
Data Output(Sequential)  
Spare Field  
A0 ~ A2 & A9 ~ A24  
Main array  
A3 ~ A7 are "L"  
Data Field  
Spare Field  
Revision 1.0  
September 2003  
- 24 -  
Preliminary  
MCP MEMORY  
KBC00B7A0M  
PAGE PROGRAM  
The device is programmed basically on a page basis, but it does allow multiple partial page programing of a byte/word or consecutive  
bytes/words up to 264, in a single page program cycle. The number of consecutive partial page programming operation within the  
same page without an intervening erase operation should not exceed 2 for main array and 3 for spare array. The addressing may be  
done in any random order in a block. A page program cycle consists of a serial data loading period in which up to 264 words of data  
may be loaded into the page register, followed by a non-volatile programming period where the loaded data is programmed into the  
appropriate cell. About the pointer operation, please refer to the attached technical notes.  
The serial data loading period begins by inputting the Serial Data Input command(80h), followed by the three cycle address input and  
then serial data loading. The words other than those to be programmed do not need to be loaded.The Page Program confirm com-  
mand(10h) initiates the programming process. Writing 10h alone without previously entering the serial data will not initiate the pro-  
gramming process. The internal write controller automatically executes the algorithms and timings necessary for program and verify,  
thereby freeing the system controller for other tasks. Once the program process starts, the Read Status Register command may be  
entered, with RE and CE low, to read the status register. The system controller can detect the completion of a program cycle by  
monitoring the R/B output, or the Status bit(I/O 6) of the Status Register. Only the Read Status command and Reset command are  
valid while programming is in progress. When the Page Program is complete, the Write Status Bit(I/O 0) may be checked(Figure 10).  
The internal write verify detects only errors for "1"s that are not successfully programmed to "0"s. The command register remains in  
Read Status command mode until another valid command is written to the command register.  
Figure 10. Program Operation  
tPROG  
R/B  
I/Ox  
Pass  
80h  
Address & Data Input  
I/O0  
Fail  
10h  
70h  
COPY-BACK PROGRAM  
The copy-back program is configured to quickly and efficiently rewrite data stored in one page within the array to another page within  
the same array without utilizing an external memory. Since the time-consuming sequently-reading and its re-loading cycles are  
removed, the system performance is improved. The benefit is especially obvious when a portion of a block is updated and the rest of  
the block also need to be copied to the newly assigned free block. The operation for performing a copy-back is a sequential execu-  
tion of page-read without burst-reading cycle and copying-program with the address of destination page. A normal read operation  
with "00h" command with the address of the source page moves the whole 264words data into the internal buffer. As soon as the  
Flash returns to Ready state, copy-back programming command "8Ah" may be given with three address cycles of target page fol-  
lowed. The data stored in the internal buffer is then programmed directly into the memory cells of the destination page. Once the  
Copy-Back Program is finished, any additional partial page programming into the copied pages is prohibited before erase. Since the  
memory array is internally partitioned into two different planes, copy-back program is allowed only within the same memory plane.  
Thus, A14, the plane address, of source and destination page address must be the same.  
Figure 11. Copy-Back Program Operation  
tR  
tPROG  
R/B  
I/Ox  
Add.(3Cycles)  
Pass  
00h  
Add.(3Cycles)  
I/O0  
Fail  
8Ah  
70h  
Source Address  
Destination Address  
Revision 1.0  
September 2003  
- 25 -  
Preliminary  
MCP MEMORY  
KBC00B7A0M  
BLOCK ERASE  
The Erase operation is done on a block basis. Block address loading is accomplished in two cycles initiated by an Erase Setup com-  
mand(60h). Only address A14 to A24 is valid while A9 to A13 is ignored. The Erase Confirm command(D0h) following the block  
address loading initiates the internal erasing process. This two-step sequence of setup followed by execution command ensures that  
memory contents are not accidentally erased due to external noise conditions.  
At the rising edge of WE after the erase confirm command input, the internal write controller handles erase and erase-verify. When  
the erase operation is completed, the Write Status Bit(I/O 0) may be checked. Figure 12 details the sequence.  
Figure 12. Block Erase Operation  
tBERS  
R/B  
Pass  
60h  
I/O0  
Fail  
I/Ox  
70h  
Address Input(2Cycle)  
Block Add. : A9 ~ A24  
D0h  
READ STATUS  
The device contains a Status Register which may be read to find out whether program or erase operation is completed, and whether  
the program or erase operation is completed successfully. After writing 70h command to the command register, a read cycle outputs  
the content of the Status Register to the I/O pins on the falling edge of CE or RE, whichever occurs last. This two line control allows  
the system to poll the progress of each device in multiple memory connections even when R/B pins are common-wired. RE or CE  
does not need to be toggled for updated status. Refer to table 4 for specific Status Register definitions. The command register  
remains in Status Read mode until further commands are issued to it. Therefore, if the status register is read during a random read  
cycle, a read command(00h or 50h) should be given before sequential page read cycle.  
Table4. Read Status Register Definition  
I/O #  
Status  
Definition  
"0" : Successful Program / Erase  
I/O 0  
Program / Erase  
"1" : Error in Program / Erase  
I/O 1  
I/O 2  
"0"  
"0"  
"0"  
"0"  
"0"  
Reserved for Future  
Use  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
Device Operation  
Write Protect  
Not use  
"0" : Busy  
"1" : Ready  
"1" : Not Protected  
I/O 7  
"0" : Protected  
Don’t care  
I/O 8~15  
Revision 1.0  
September 2003  
- 26 -  
Preliminary  
MCP MEMORY  
KBC00B7A0M  
READ ID  
The device contains a product identification mode, initiated by writing 90h to the command register, followed by an address input of  
00h. Two read cycles sequentially output the manufacture code(ECh), and the device code respectively. The command register  
remains in Read ID mode until further commands are issued to it. Figure 13 shows the operation sequence.  
Figure 13. Read ID Operation  
CLE  
tCEA  
CE  
WE  
tAR  
ALE  
RE  
tWHR1  
tREA  
I/Ox  
ECh  
XX55  
00h  
90h  
Address. 1cycle  
Maker code  
Device code  
RESET  
The device offers a reset feature, executed by writing FFh to the command register. When the device is in Busy state during random  
read, program or erase mode, the reset operation will abort these operations. The contents of memory cells being altered are no  
longer valid, as the data will be partially programmed or erased. The command register is cleared to wait for the next command, and  
the Status Register is cleared to value C0h when WP is high. Refer to table 5 for device status after reset operation. If the device is  
already in reset state a new reset command will not be accepted by the command register. The R/B pin transitions to low for tRST  
after the Reset command is written. Refer to Figure 14 below.  
Figure 14. RESET Operation  
tRST  
R/B  
I/Ox  
FFh  
Table5. Device Status  
After Power-up  
After Reset  
Operation Mode  
Read 1  
Waiting for next command  
Revision 1.0  
September 2003  
- 27 -  
Preliminary  
MCP MEMORY  
KBC00B7A0M  
Power-On Auto-Read  
The device is designed to offer automatic reading of the first page without command and address input sequence during power-on.  
An internal voltage detector enables auto-page read functions when Vcc reaches about 1.8V. LOCKPRE pin controls activation of  
auto- page read function. Auto-page read function is enabled only when LOCKPRE pin is logic high state. Serial access may be done  
after power-on without latency.  
Figure 16. Power-On Auto-Read  
~ 1.8V  
VCC  
CLE  
CE  
WE  
ALE  
LOCKPRE  
R/B  
tR  
RE  
I/OX  
1st  
2nd  
3rd  
....  
n th  
Revision 1.0  
September 2003  
- 28 -  
Preliminary  
MCP MEMORY  
KBC00B7A0M  
READY/BUSY  
The device has a R/B output that provides a hardware method of indicating the completion of a page program, erase and random  
read completion. The R/B pin is normally high but transitions to low after program or erase command is written to the command reg-  
ister or random read is started after address loading. It returns to high when the internal controller has finished the operation. The pin  
is an open-drain driver thereby allowing two or more R/B outputs to be Or-tied. Because pull-up resistor value is related to tr(R/B)  
and current drain during busy(ibusy) , an appropriate value can be obtained with the following reference chart(Fig 17). Its value can  
be determined by the following guidance.  
Rp  
ibusy  
VCC  
VOL : 0.4V, VOH : 2.4V  
Ready Vcc  
R/B  
VOH  
open drain output  
CL  
VOL  
Busy  
tf  
tr  
GND  
Device  
Fig 17 Rp vs tr ,tf & Rp vs ibusy  
@ Vcc = 3.3V, Ta = 25  
°
C , CL = 100pF  
400  
2.4  
Ibusy  
300n  
3m  
300  
1.2  
200n  
100n  
200  
2m  
1m  
0.8  
tr  
100  
3.6  
0.6  
3.6  
2K  
3.6  
3.6  
tf  
4K  
1K  
3K  
Rp(ohm)  
Rp value guidance  
VCC(Max.) - VOL(Max.)  
3.2V  
8mA + SIL  
Rp(min, 3.3V part) =  
=
IOL + SIL  
where IL is the sum of the input currents of all devices tied to the R/B pin.  
Rp(max) is determined by maximum permissible limit of tr  
Revision 1.0  
September 2003  
- 29 -  
Preliminary  
MCP MEMORY  
KBC00B7A0M  
Data Protection & Power up sequence  
The device is designed to offer protection from any involuntary program/erase during power-transitions. An internal voltage detector  
disables all functions whenever Vcc is below about 2V(3.3V device). WP pin provides hardware protection and is recommended to  
be kept at VIL during power-up and power-down and recovery time of minimum 10ms is required before internal circuit gets ready for  
any command sequences as shown in Figure 18. The two step command sequence for program/erase provides additional software  
protection.  
Figure 18. AC Waveforms for Power Transition  
3.3V device : ~ 2.5V  
3.3V device : ~ 2.5V  
VCC  
High  
WP  
WE  
10ms  
Revision 1.0  
September 2003  
- 30 -  
Preliminary  
MCP MEMORY  
KBC00B7A0M  
64M Bit(4Mx16)  
Page Mode UtRAM  
For Each Device  
Revision 1.0  
September 2003  
- 31 -  
Preliminary  
MCP MEMORY  
KBC00B7A0M  
POWER UP SEQUENCE  
1. Apply power.  
2. Maintain stable power(Vcc min.=2.7V) for a minimum 200ms with CS and ZZ high.  
TIMING WAVEFORM OF POWER UP  
VCC(Min)  
VCC  
Min. 0ns  
ZZ  
Min. 200ms  
CS  
Power Up Mode  
Normal Operation  
(POWER UP)  
1. After VCC reaches VCC(Min.), wait 200ms with CS and ZZ high. Then you get into the normal operation.  
FUNCTIONAL DESCRIPTION  
CS  
H
X1)  
L
ZZ  
H
L
OE  
X1)  
X1)  
X1)  
H
WE  
X1)  
X1)  
X1)  
H
LB  
X1)  
X1)  
H
UB  
X1)  
X1)  
H
DQ0~7  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
Dout  
DQ8~15  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
Dout  
Mode  
Power  
Deselected  
Deselected  
Standby  
Deep Power Down  
Standby  
Active  
H
H
H
H
H
H
H
H
H
Deselected  
X1)  
L
L
L
Output Disabled  
Output Disabled  
Lower Byte Read  
Upper Byte Read  
Word Read  
X1)  
L
L
H
H
Active  
L
L
H
H
Active  
L
L
H
H
L
High-Z  
Dout  
Active  
L
L
H
L
L
Dout  
Active  
X1)  
X1)  
X1)  
L
L
L
H
Din  
High-Z  
Din  
Lower Byte Write  
Upper Byte Write  
Word Write  
Active  
L
L
H
L
High-Z  
Din  
Active  
L
L
L
L
Din  
Active  
1. X means don¢t care.(Must be low or high state)  
Revision 1.0  
September 2003  
- 32 -  
Preliminary  
MCP MEMORY  
KBC00B7A0M  
ABSOLUTE MAXIMUM RATINGS1)  
Item  
Voltage on any pin relative to Vss  
Voltage on Vcc supply relative to Vss  
Power Dissipation  
Symbol  
VIN, VOUT  
VCC  
Ratings  
Unit  
V
-0.2 to VCC+0.3V  
-0.2 to 3.6V  
1.0  
V
PD  
W
Storage temperature  
TSTG  
-65 to 150  
-25 to 85  
°C  
°C  
Operating Temperature  
TA  
1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation should be  
restricted to be used under recommended operating condition. Exposure to absolute maximum rating conditions longer than 1 second may affect reli-  
ability.  
STANDBY MODE STATE MACHINES  
CS=VIL, UB or/and LB=VIL  
Standby  
ZZ=VIH  
Mode  
CS=VIH and ZZ=VIH  
Initial State  
(Wait 200ms)  
CS=VIH  
ZZ=VIH  
Power On  
Active  
ZZ=VIL  
ZZ=VIL  
Deep Power  
Down Mode  
CS=VIH, ZZ=VIH  
STANDBY MODE CHARACTERISTIC  
Power Mode  
Standby  
Memory Cell Data  
Standby Current(mA)  
Wait Time(ms)  
Valid  
150  
20  
0
Deep Power Down  
Invaild  
200  
Revision 1.0  
September 2003  
- 33 -  
Preliminary  
MCP MEMORY  
KBC00B7A0M  
RECOMMENDED DC OPERATING CONDITIONS1)  
Item  
Symbol  
Vcc  
Min  
2.7  
0
Typ  
Max  
3.1  
Unit  
V
Supply voltage  
Ground  
2.9  
Vss  
0
-
0
V
Vcc+0.22)  
0.6  
Input high voltage  
Input low voltage  
VIH  
2.2  
-0.23)  
V
VIL  
-
V
1. TA=-25 to 85°C, otherwise specified.  
2. Overshoot: Vcc+1.0V in case of pulse width £20ns.  
3. Undershoot: -1.0V in case of pulse width £20ns.  
4. Overshoot and undershoot are sampled, not 100% tested.  
CAPACITANCE1)(f=1MHz, TA=25°C)  
Item  
Input capacitance  
Symbol  
CIN  
Test Condition  
Min  
Max  
8
Unit  
pF  
VIN=0V  
VIO=0V  
-
-
Input/Output capacitance  
CIO  
10  
pF  
1. Capacitance is sampled, not 100% tested.  
DC AND OPERATING CHARACTERISTICS  
Typ1)  
Symbol  
ILI  
Item  
Test Conditions  
Min  
Max  
1
Unit  
Input leakage current  
Output leakage current  
VIN=Vss to Vcc  
-1  
-1  
-
-
mA  
mA  
ILO  
CS=VIH, ZZ=VIH, OE=VIH or WE=VIL, VIO=Vss to Vcc  
1
Cycle time=1ms, 100% duty, IIO=0mA, CS£0.2V,  
ZZ³ Vcc-0.2V, VIN£0.2V or VIN³ VCC-0.2V  
ICC1  
-
-
15  
mA  
Average operating current  
Cycle time=tRC+3tPC, IIO=0mA, 100% duty, CS=VIL, ZZ=VIH,  
VIN=VIL or VIH  
ICC2  
-
-
45  
mA  
Output low voltage  
Output high voltage  
Standby Current(CMOS)  
Deep Power Down  
VOL  
VOH  
ISB1  
ISBD  
IOL=2.1mA  
-
2.4  
-
-
-
-
-
0.4  
-
V
V
IOH=-1.0mA  
CS³ Vcc-0.2V, ZZ³ Vcc-0.2V, Other inputs=Vss to Vcc  
ZZ£0.2V, Other inputs=Vss to Vcc  
150  
20  
mA  
mA  
-
1. Typical values are tested at VCC=2.9V, TA=25°C and not guaranteed.  
Revision 1.0  
September 2003  
- 34 -  
Preliminary  
MCP MEMORY  
KBC00B7A0M  
AC OPERATING CONDITIONS  
TEST CONDITIONS(Test Load and Test Input/Output Reference)  
Input pulse level: 0.4 to 2.2V  
Input rising and falling time: 5ns  
Input and output reference voltage: 1.5V  
Output load: CL=50pF  
AC CHARACTERISTICS(Vcc=2.7~3.1V, TA=-25 to 85°C)  
Speed Bins  
70ns  
Parameter List  
Symbol  
Units  
Min  
70  
-
Max  
Read Cycle Time  
tRC  
tAA  
-
70  
70  
35  
70  
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address Access Time  
Chip Select to Output  
tCO  
tOE  
tBA  
-
Output Enable to Valid Output  
UB, LB Access Time  
-
-
Chip Select to Low-Z Output  
UB, LB Enable to Low-Z Output  
Output Enable to Low-Z Output  
Chip Disable to High-Z Output  
UB, LB Disable to High-Z Output  
Output Disable to High-Z Output  
Output Hold from Address Change  
Page Cycle  
tLZ  
10  
10  
5
tBLZ  
tOLZ  
tHZ  
-
Read  
-
0
25  
25  
25  
-
tBHZ  
tOHZ  
tOH  
tPC  
0
0
5
25  
-
-
Page Access Time  
tPA  
20  
-
Write Cycle Time  
tWC  
tCW  
tAS  
70  
60  
0
Chip Select to End of Write  
Address Set-up Time  
-
-
Address Valid to End of Write  
UB, LB Valid to End of Write  
Write Pulse Width  
tAW  
tBW  
tWP  
tWR  
tWHZ  
tDW  
tDH  
tOW  
60  
60  
551)  
0
-
-
Write  
-
Write Recovery Time  
-
Write to Output High-Z  
0
25  
-
Data to Write Time Overlap  
Data Hold from Write Time  
End Write to Output Low-Z  
30  
0
-
5
-
1. tWP(min)=70ns for continuous write operation over 50 times.  
Revision 1.0  
September 2003  
- 35 -  
Preliminary  
MCP MEMORY  
KBC00B7A0M  
TIMING DIAGRAMS  
TIMING WAVEFORM OF READ CYCLE(1)(Address Controlled, CS=OE=VIL, ZZ=WE=VIH, UB or/and LB=VIL)  
tRC  
Address  
tAA  
tOH  
Data Out  
Data Valid  
Previous Data Valid  
TIMING WAVEFORM OF READ CYCLE(2)(ZZ=WE=VIH)  
tRC  
Address  
tAA  
tOH  
tCO  
CS  
tHZ  
tBA  
UB, LB  
tBHZ  
tOE  
OE  
tOLZ  
tBLZ  
tLZ  
tOHZ  
High-Z  
Data out  
Data Valid  
TIMING WAVEFORM OF PAGE CYCLE(READ ONLY)  
Valid  
Address  
A21~A2  
Valid  
Valid  
Valid  
Valid  
Address  
A1~A0  
Address Address Address  
tPC  
tAA  
CS  
tCO  
OE  
tPA  
tOHZ  
tOE  
High Z  
Data  
Valid  
Data  
Valid  
Data  
Valid  
Data  
Valid  
Data out  
(READ CYCLE)  
1. tHZ and tOHZ are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage  
levels.  
2. At any given temperature and voltage condition, tHZ(Max.) is less than tLZ(Min.) both for a given device and from device to device  
interconnection.  
3. tOE(max) is met only when OE becomes enabled after tAA(max).  
4. If invalid address signals shorter than min. tRC are continuously repeated for over 4us, the device needs a normal read timing(tRC) or  
needs to sustain standby state for min. tRC at least once in every 4us.  
Revision 1.0  
September 2003  
- 36 -  
Preliminary  
MCP MEMORY  
KBC00B7A0M  
TIMING WAVEFORM OF WRITE CYCLE(1)(WE Controlled, ZZ=VIH)  
tWC  
Address  
tWR(4)  
tCW(2)  
CS  
tAW  
tBW  
UB, LB  
tWP(1)  
WE  
tAS(3)  
tDW  
tDH  
High-Z  
High-Z  
Data in  
Data Valid  
tWHZ  
tOW  
Data Undefined  
Data out  
TIMING WAVEFORM OF WRITE CYCLE(2)(CS Controlled, ZZ=VIH)  
tWC  
Address  
CS  
tCW(2)  
tAS(3)  
tWR(4)  
tAW  
tBW  
UB, LB  
tWP(1)  
WE  
tDW  
tDH  
Data Valid  
Data in  
High-Z  
Data out  
High-Z  
Revision 1.0  
September 2003  
- 37 -  
Preliminary  
MCP MEMORY  
KBC00B7A0M  
TIMING WAVEFORM OF WRITE CYCLE(3)(UB, LB Controlled, ZZ=VIH)  
tWC  
Address  
tWR(4)  
tCW(2)  
CS  
tAW  
tBW  
UB, LB  
tAS(3)  
tWP(1)  
WE  
tDH  
tDW  
Data in  
Data Valid  
High-Z  
Data out  
High-Z  
(WRITE CYCLE)  
1. A write occurs during the overlap(tWP) of low CS and low WE. A write begins when CS goes low and WE goes low with asserting UB  
or LB for single byte operation or simultaneously asserting UB and LB for double byte operation. A write ends at the earliest transition  
when CS goes high and WE goes high. The tWP is measured from the beginning of write to the end of write.  
2. tCW is measured from the CS going low to the end of write.  
3. tAS is measured from the address valid to the beginning of write.  
4. tWR is measured from the end of write to the address change. tWR is applied in case a write ends with CS or WE going high.  
TIMING WAVEFORM OF DEEP POWER DOWN MODE ENTRY AND EXIT  
200ms  
0.5ms  
ZZ  
Wake up  
Normal Operation  
Suspend  
Normal Operation  
MODE  
Deep Power Down Mode  
CS  
(DEEP POWER DOWN MODE)  
1. When you toggle ZZ pin low, the device gets into the Deep Power Down mode after 0.5ms suspend period.  
2. To return to normal operation, the device needs Wake Up period.  
3. Wake Up sequence is just the same as Power Up sequence.  
Revision 1.0  
September 2003  
- 38 -  
Preliminary  
MCP MEMORY  
KBC00B7A0M  
8M Bit(512Kx16) SRAM  
Revision 1.0  
September 2003  
- 39 -  
Preliminary  
MCP MEMORY  
KBC00B7A0M  
FUNCTIONAL DESCRIPTION  
CS1  
H
X1)  
X1)  
L
CS2  
X1)  
L
OE  
X1)  
X1)  
X1)  
H
WE  
X1)  
X1)  
X1)  
H
LB  
X1)  
X1)  
H
UB  
X1)  
X1)  
H
DQ0~7  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
Dout  
DQ8~15  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
Dout  
Mode  
Power  
Deselected  
Deselected  
Standby  
Standby  
Standby  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
X1)  
H
Deselected  
X1)  
L
L
Output Disabled  
Output Disabled  
Lower Byte Read  
Upper Byte Read  
Word Read  
X1)  
L
L
H
H
H
L
H
L
H
H
L
H
L
H
H
L
High-Z  
Dout  
L
H
L
H
L
L
Dout  
X1)  
X1)  
X1)  
L
H
L
L
H
Din  
High-Z  
Din  
Lower Byte Write  
Upper Byte Write  
Word Write  
L
H
L
H
L
High-Z  
Din  
L
H
L
L
L
Din  
1. X means don¢t care. (Must be low or high state)  
ABSOLUTE MAXIMUM RATINGS1)  
Item  
Voltage on any pin relative to Vss  
Voltage on Vcc supply relative to Vss  
Power Dissipation  
Symbol  
VIN, VOUT  
VCC  
Ratings  
-0.2 to VCC+0.3V(Max. 3.6V)  
-0.2 to 3.6  
Unit  
V
V
PD  
1.0  
W
Storage temperature  
TSTG  
-65 to 150  
°C  
°C  
Operating Temperature  
TA  
-25 to 85  
1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation should be  
restricted to be used under recommended operating condition. Exposure to absolute maximum rating conditions over 1 second may affect reliability.  
Revision 1.0  
September 2003  
- 40 -  
Preliminary  
MCP MEMORY  
KBC00B7A0M  
RECOMMENDED DC OPERATING CONDITIONS1)  
Item  
Symbol  
Vcc  
Min  
2.7  
0
Typ  
Max  
3.3  
0
Unit  
V
Supply voltage  
Ground  
3.0  
Vss  
0
-
V
Vcc+0.22)  
0.6  
Input high voltage  
Input low voltage  
Note:  
VIH  
2.2  
V
-0.23)  
VIL  
-
V
1. TA=-25 to 85°C, otherwise specified.  
2. Overshoot: VCC+2.0V in case of pulse width £20ns.  
3. Undershoot: -2.0V in case of pulse width £20ns.  
4. Overshoot and undershoot are sampled, not 100% tested.  
CAPACITANCE1) (f=1MHz, TA=25°C)  
Item  
Input capacitance  
Symbol  
CIN  
Test Condition  
VIN=0V  
Min  
Max  
8
Unit  
pF  
-
-
Input/Output capacitance  
CIO  
VIO=0V  
10  
pF  
1. Capacitance is sampled, not 100% tested.  
DC AND OPERATING CHARACTERISTIC  
Typ1)  
Item  
Symbol  
Test Conditions  
Min  
Max  
Unit  
Input leakage current  
ILI  
VIN=Vss to Vcc  
-1  
-
1
1
mA  
CS1=VIH or CS2=VIL or OE=VIH or WE=VIL or  
LB=UB=VIH, VIO=Vss to Vcc  
Output leakage current  
ILO  
-1  
-
-
-
mA  
mA  
mA  
Cycle time=1ms, 100%duty, IIO=0mA, CS1£0.2V,  
LB£0.2V or/and UB£0.2V, CS2³ Vcc-0.2V, VIN£0.2V or  
VIN³ VCC-0.2V  
ICC1  
ICC2  
-
5
Average operating current  
Cycle time=Min, IIO=0mA, 100% duty, CS1=VIL,  
CS2=VIH, LB=VIL or/and UB=VIL, VIN=VIL or VIH  
55ns  
-
30  
Output low voltage  
Output high voltage  
VOL  
VOH  
IOL = 2.1mA  
-
-
-
0.4  
-
V
V
IOH = -1.0mA  
2.4  
Other input =0~Vcc  
Standby Current(CMOS)  
ISB1  
1) CS1³ Vcc-0.2V, CS2³ Vcc-0.2V(CS1 controlled) or  
2) 0V£CS2£0.2V(CS2 controlled)  
-
5.0  
25  
mA  
1. Typical values are measured at VCC=3.0V, TA=25°C and not 100% tested.  
Revision 1.0  
September 2003  
- 41 -  
Preliminary  
MCP MEMORY  
KBC00B7A0M  
3)  
VTM  
AC OPERATING CONDITIONS  
TEST CONDITIONS(Test Load and Input/Output Reference)  
Input pulse level: 0.4 to 2.2V  
2)  
R1  
Input rising and falling time: 5ns  
Input and output reference voltage: 1.5V  
Output load(see right): CL=30pF+1TTL  
1)  
2)  
CL  
R2  
1. Including scope and jig capacitance  
2. R1=3070W, R2=3150W  
3. VTM =2.8V  
AC CHARACTERISTICS (Vcc=2.7~3.3V, TA=-25 to 85°C)  
Speed Bins  
55ns  
Parameter List  
Symbol  
Units  
Min  
55  
-
Max  
Read Cycle Time  
tRC  
tAA  
-
55  
55  
25  
55  
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address Access Time  
Chip Select to Output  
Output Enable to Valid Output  
UB, LB Access Time  
tCO  
tOE  
-
-
tBA  
-
Chip Select to Low-Z Output  
Read  
tLZ  
10  
10  
5
UB, LB Enable to Low-Z Output  
Output Enable to Low-Z Output  
Chip Disable to High-Z Output  
UB, LB Disable to High-Z Output  
Output Disable to High-Z Output  
Output Hold from Address Change  
Write Cycle Time  
tBLZ  
tOLZ  
tHZ  
-
-
0
20  
20  
20  
-
tBHZ  
tOHZ  
tOH  
tWC  
tCW  
tAS  
0
0
10  
55  
45  
0
-
Chip Select to End of Write  
Address Set-up Time  
-
-
Address Valid to End of Write  
UB, LB Valid to End of Write  
tAW  
tBW  
tWP  
tWR  
tWHZ  
tDW  
tDH  
45  
45  
40  
0
-
-
Write  
Write Pulse Width  
-
Write Recovery Time  
-
Write to Output High-Z  
Data to Write Time Overlap  
Data Hold from Write Time  
End Write to Output Low-Z  
0
20  
-
25  
0
-
tOW  
5
-
DATA RETENTION CHARACTERISTICS  
Typ2)  
Item  
Symbol  
Test Condition  
CS1³ Vcc-0.2V1)  
Min  
1.5  
-
Max  
3.3  
15  
-
Unit  
Vcc for data retention  
Data retention current  
Data retention set-up time  
Recovery time  
VDR  
-
1.0  
-
V
Vcc=1.5V, CS1³ Vcc-0.2V1)  
IDR  
mA  
tSDR  
0
See data retention waveform  
ns  
tRDR  
tRC  
-
-
1. 1) CS1³ Vcc-0.2V, CS2³ Vcc-0.2V(CS1 controlled) or  
2) 0£CS2£0.2V(CS2 controlled)  
2. Typical values are measured at TA=25°C and not 100% tested.  
Revision 1.0  
September 2003  
- 42 -  
Preliminary  
MCP MEMORY  
KBC00B7A0M  
TIMING DIAGRAMS  
TIMING WAVEFORM OF READ CYCLE(1) (Address Controlled, CS1=OE=VIL, CS2=WE=VIH, UB or/and LB=VIL)  
tRC  
Address  
tAA  
tOH  
Data Out  
Data Valid  
Previous Data Valid  
TIMING WAVEFORM OF READ CYCLE(2) (WE=VIH)  
tRC  
Address  
tOH  
tAA  
tCO  
CS1  
CS2  
tHZ  
tBA  
UB, LB  
OE  
tBHZ  
tOHZ  
tOE  
tOLZ  
tBLZ  
tLZ  
Data out  
High-Z  
Data Valid  
NOTES (READ CYCLE)  
1. tHZ and tOHZ are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage  
levels.  
2. At any given temperature and voltage condition, tHZ(Max.) is less than tLZ(Min.) both for a given device and from device to device  
interconnection.  
Revision 1.0  
September 2003  
- 43 -  
Preliminary  
MCP MEMORY  
KBC00B7A0M  
TIMING WAVEFORM OF WRITE CYCLE(1) (WE Controlled)  
tWC  
Address  
CS1  
tCW(2)  
tWR(4)  
CS2  
tAW  
tBW  
UB, LB  
tWP(1)  
WE  
tAS(3)  
tDW  
tDH  
High-Z  
High-Z  
Data in  
Data Valid  
tWHZ  
tOW  
Data Undefined  
Data out  
TIMING WAVEFORM OF WRITE CYCLE(2) (CS1 Controlled)  
tWC  
Address  
tAS(3)  
tCW(2)  
tAW  
tWR(4)  
CS1  
CS2  
tBW  
UB, LB  
tWP(1)  
WE  
tDW  
tDH  
Data Valid  
Data in  
Data out  
High-Z  
High-Z  
Revision 1.0  
September 2003  
- 44 -  
Preliminary  
MCP MEMORY  
KBC00B7A0M  
TIMING WAVEFORM OF WRITE CYCLE(3) (UB, LB Controlled)  
tWC  
Address  
CS1  
tCW(2)  
tAW  
tWR(4)  
CS2  
tBW  
UB, LB  
tAS(3)  
tWP(1)  
WE  
tDH  
tDW  
Data in  
Data Valid  
High-Z  
Data out  
High-Z  
NOTES (WRITE CYCLE)  
1. A write occurs during the overlap(tWP) of low CS1 and low WE. A write begins when CS1 goes low and WE goes low with asserting  
UB or LB for single byte operation or simultaneously asserting UB and LB for double byte operation. A write ends at the earliest tran-  
sition when CS1 goes high and WE goes high. The tWP is measured from the beginning of write to the end of write.  
2. tCW is measured from the CS1 going low to the end of write.  
3. tAS is measured from the address valid to the beginning of write.  
4. tWR is measured from the end of write to the address change. tWR is applied in case a write ends with CS1 or WE going high.  
DATA RETENTION WAVE FORM  
CS1 controlled  
Data Retention Mode  
tSDR  
tRDR  
VCC  
2.7V  
2.2V  
VDR  
CS1³ VCC - 0.2V  
CS1  
GND  
CS2 controlled  
Data Retention Mode  
VCC  
2.7V  
CS2  
tSDR  
tRDR  
VDR  
CS2£0.2V  
0.4V  
GND  
Revision 1.0  
September 2003  
- 45 -  
Preliminary  
MCP MEMORY  
KBC00B7A0M  
PACKAGE DIMENSION  
111-Ball FINE PITCH BGA Package (measured in millimeters)  
#A1 INDEX MARK  
A
11.00 ±0.10  
0.80 x 11 = 8.80  
11.00 ±0.10  
(Datum A)  
0.80  
0.10 MAX  
12 11 10  
9 8 7 6 5 4 3 2 1  
B
A
B
C
D
#A1  
(Datum B)  
E
F
G
H
J
K
L
M
N
0.32 ±0.05  
1.30 ±0.10  
4.40  
111 -  
Æ0.45 ±0.05  
Æ
0.20  
M A B  
BOTTOM VIEW  
TOP VIEW  
Revision 1.0  
September 2003  
- 46 -  

相关型号:

KBC00B7A0M-F405

Memory Circuit, Flash+PSRAM+SRAM, Hybrid, PBGA111
SAMSUNG

KBC1100

MOBILE KBC WITH SUPER I/O, SFI, ADC AND DAC WITH SMSC SENTINELALERT
SMSC

KBC1100-RD

MOBILE KBC WITH SUPER I/O, SFI, ADC AND DAC WITH SMSC SENTINELALERT
SMSC

KBC1100-RT

MOBILE KBC WITH SUPER I/O, SFI, ADC AND DAC WITH SMSC SENTINELALERT
SMSC

KBC1100L

MOBILE KBC WITH SFI ADC AND DAC WITH SMSC SENTINELALERT
SMSC

KBC1100L-PE

MOBILE KBC WITH SFI ADC AND DAC WITH SMSC SENTINELALERT
SMSC

KBC1100L-PU

Micro Peripheral IC
SMSC

KBC1102

LEGACY FREE MOBILE KBC WITH SFI, ADC AND DAC WITH SMSC SENTINELALERT
SMSC

KBC1122

MOBILE KBC WITH SUPER I/O, SFI, ADC AND DAC WITH SMSC SENTINELALERT
SMSC

KBC1122-AJZS

MOBILE KBC WITH SUPER I/O, SFI, ADC AND DAC WITH SMSC SENTINELALERT
SMSC

KBC1122P

MOBILE KBC WITH SUPER I/O, SFI, ADC AND DAC WITH SMSC SENTINELALERT
SMSC

KBC1122P-AJZS

MOBILE KBC WITH SUPER I/O, SFI, ADC AND DAC WITH SMSC SENTINELALERT
SMSC