KBF080800M-D4080 [SAMSUNG]

Memory Circuit, 8MX16, CMOS, PBGA115, 8 X 12 MM, 1.40 MM HEIGHT, 0.80 MM PITCH, LEAD FREE, FBGA-115;
KBF080800M-D4080
型号: KBF080800M-D4080
厂家: SAMSUNG    SAMSUNG
描述:

Memory Circuit, 8MX16, CMOS, PBGA115, 8 X 12 MM, 1.40 MM HEIGHT, 0.80 MM PITCH, LEAD FREE, FBGA-115

内存集成电路
文件: 总72页 (文件大小:1387K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Preliminary  
KBF0x0800M  
MCP MEMORY  
Document Title  
Multi-Chip Package MEMORY  
128M Bit(8Mx16) Synchronous Burst , Multi Bank NOR Flash *2 / 64M Bit(4Mx16) Synchronous Burst UtRAM *2  
Revision History  
Revision No. History  
Draft Date  
Remark  
0.0  
Initial Draft  
November 18, 2003 Preliminary  
(128M NOR Flash M-die_rev0.7)  
(64M UtRAM B-die_rev0.6)  
Note : For more detailed features and specifications including FAQ, please refer to Samsung’s web site.  
http://samsungelectronics.com/semiconductors/products/products_index.html  
The attached datasheets are prepared and approved by SAMSUNG Electronics. SAMSUNG Electronics CO., LTD. reserve the right  
to change the specifications. SAMSUNG Electronics will evaluate and reply to your requests and questions about device. If you have  
any questions, please contact the SAMSUNG branch office near you.  
1
Revision 0.0  
November 2003  
Preliminary  
KBF0x0800M  
MCP MEMORY  
Multi-Chip Package MEMORY  
128M Bit(8Mx16) Synchronous Burst , Multi Bank NOR Flash *2 / 64M Bit(4Mx16) Synchronous Burst UtRAM *2  
FEATURES  
<Common>  
<UtRAM(for each device)>  
· Process Technology: CMOS  
· Organization: 4M x16 bit  
· Power Supply Voltage: VCC 2.5~2.7V  
· Operating Temperature : -25°C ~ 85°C  
· Package : 115Ball FBGA Type - 8.0mm x 12.0mm  
0.8mm ball pitch  
VCCQ 1.7~2.0V  
1.4mm (Max.) Thickness  
<NOR Flash(for each device)>  
· Single Voltage, 1.7V to 1.9V for Read and Write operations  
· Organization  
· Three State Outputs  
· Compatible with Low Power SRAM  
· Supports MRS (Mode Register Set)  
· Supports Asynchronous Read/Write Operation in Asynchronous  
mode  
· Supports Synchronous Burst Read and Asynchronous Write  
Operation in Synchronous mode  
- 8,388,608 x 16 bit ( Word Mode Only)  
· Read While Program/Erase Operation  
· Multiple Bank Architecture  
- 16 Banks (8Mb Partition)  
· Synchronous Burst Read Operation  
· Read Access Time (@ CL=30pF)  
- Asynchronous Random Access Time :  
88.5ns (54MHz) / 70ns (66MHz)  
- Synchronous Random Access Time :  
88.5ns (54MHz) / 71ns (66MHz)  
- Burst Access Time :  
- Supports 4 word / 8 word / 16 word Burst Read mode  
- Supports Linear Burst type & Interleave Burst type  
- Latency support : 3, 4, 5, 6 (depends on clock frequency)  
· Max. Burst Clock Frequency : 54MHz  
14.5ns (54MHz) / 11ns (66MHz)  
· Burst Length :  
- Continuous Linear Burst  
- Linear Burst : 8-word & 16-word with No-wrap & Wrap  
· Block Architecture  
GENERAL DESCRIPTION  
The KBF0x0800M is a Multi Chip Package Memory which com-  
bines two 128Mbit Synchronous Burst Multi Bank NOR Flash  
Memory and two 64Mbit Synchronous Burst UtRAM.  
128Mbit Synchronous Burst Multi Bank NOR Flash Memory is  
organized as 8M x16 bits and 64Mbit Synchronous Burst UtRAM  
is organized as 4M x16 bits.  
- Eight 4Kword blocks and two hundreds fifty-five 32Kword  
blocks  
- Bank 0 contains eight 4 Kword blocks and fifteen 32Kword  
blocks  
In 128Mbit Synchronous Burst Multi Bank NOR Flash Memory,  
the memory architecture of the device is designed to divide its  
memory arrays into 263 blocks with independent hardware pro-  
tection. This block architecture provides highly flexible erase and  
program capability. The NOR Flash consists of sixteen banks.  
This device is capable of reading data from one bank while pro-  
gramming or erasing in the other bank.  
- Bank 1 ~ Bank 15 contain two hundred forty 32Kword blocks  
· Reduce program time using the VPP  
· Power Consumption (Typical value, CL=30pF)  
- Burst Access Current : 25mA  
- Program/Erase Current : 15mA  
- Read While Program/Erase Current : 35mA  
- Standby Mode/Auto Sleep Mode : 5uA  
· Block Protection/Unprotection  
- Using the software command sequence  
- Last two boot blocks are protected by WP=VIL  
- All blocks are protected by VPP=VIL  
· Handshaking Feature  
Regarding read access time, at 54MHz, the device provides a  
burst access of 14.5ns with initial access times of 88.5ns at 30pF.  
At 66MHz, the device provides a burst access of 11ns with initial  
access times of 71ns at 30pF. The device performs a program  
operation in units of 16 bits (Word) and erases in units of a block.  
Single or multiple blocks can be erased. The block erase opera-  
tion is completed within typically 0.7 sec. The device requires  
15mA as program/erase current in the extended temperature  
ranges.  
- Provides host system with minimum latency by monitoring  
RDY  
· Erase Suspend/Resume  
· Program Suspend/Resume  
· Unlock Bypass Program/Erase  
· Hardware Reset (RESET)  
· Data Polling and Toggle Bits  
- Provides a software method of detecting the status of program  
or erase completion  
· Endurance  
100K Program/Erase Cycles Minimum  
· Data Retention : 10 years  
· Support Common Flash Memory Interface  
· Low Vcc Write Inhibit  
In 64Mbit Synchronous Burst UtRAM, The device supports  
DPD(Deep Power Down) mode for power saving. DPD mode is  
controlled by MRS pin. The device supports MRS(Mode Register  
Set) and synchronous burst read mode.  
The KBF0x0800M is suitable for use in data memory of mobile  
communication system to reduce not only mount area but also  
power consumption. This device is available in 115-ball FBGA  
Type.  
SAMSUNG ELECTRONICS CO., LTD. reserves the right to change products and specifications without notice.  
2
Revision 0.0  
November 2003  
Preliminary  
KBF0x0800M  
MCP MEMORY  
PIN CONFIGURATION  
1
2
3
4
5
6
7
8
9
10  
DNU  
DNU  
DNU  
DNU  
ADVf  
WP1  
A3  
DNU  
DNU  
DNU  
DNU  
A
B
C
D
E
F
WP2  
A7  
CLKf  
LB  
NC  
Vpp  
Vccu  
WE  
ADVu  
A8  
CLKu  
A11  
NC  
NC  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
A6  
UB  
RESET  
RDY  
NC  
MRS  
A20  
NC  
A19  
A9  
A12  
A15  
A21  
A22  
A16  
NC  
A2  
A5  
A18  
A17  
DQ1  
DQ9  
DQ10  
DQ2  
Vss  
A13  
A1  
A4  
A10  
DQ6  
DQ13  
DQ12  
DQ5  
NC  
A14  
G
H
J
A0  
Vss  
OE  
DQ0  
DQ8  
NC  
Vccu  
DQ3  
Vccf  
NC  
NC  
CEf1  
CSu  
CEf2  
NC  
DQ4  
Vccqu  
NC  
DQ15  
DQ7  
DQ14  
NC  
Vss  
NC  
K
L
DQ11  
Vccf  
NC  
NC  
M
N
P
DNU  
DNU  
DNU  
DNU  
115-FBGA: Top View (Ball Down)  
3
Revision 0.0  
November 2003  
Preliminary  
KBF0x0800M  
MCP MEMORY  
PIN DESCRIPTION  
Ball Name  
Description  
Ball Name  
RDY  
ADVf  
ADVu  
MRS  
LB  
Description  
A0 to A22  
DQ0 to DQ15  
CEf1 , CEf2  
CSu  
Address Input Balls (Common)  
Data Input/Output Balls (Common)  
Chip Enable (Flash1, Flash2)  
Chip Select (UtRAM)  
Ready Output (Flash Memory)  
Address Input Valid (Flash Memory)  
Address Input Valid (UtRAM)  
Mode Register Set (UtRAM)  
Lower Byte Enable (UtRAM)  
Upper Byte Enable (UtRAM)  
Power Supply (Flash Memory)  
Power Supply (UtRAM)  
Data Out Power (UtRAM)  
Ground (Common)  
OE  
Output Enable (Common)  
Hardware Reset (Flash Memory)  
Accelerates Programming (Flash Memory)  
Write Enable (Common)  
RESET  
VPP  
UB  
Vccf  
WE  
Vccu  
Vccqu  
Vss  
WP1  
Write Protection (Flash1)  
Write Protection (Flash2)  
Clock (Flash Memory)  
WP2  
CLKf  
NC  
No Connection  
CLKu  
Clock (UtRAM)  
DNU  
Do Not Use  
ORDERING INFORMATION  
K B F 0x 0 8 0 0 M - D 408  
Samsung  
MCP(4 Chip) Memory  
Access Time  
408 : 18.5ns, 18.5ns, 18.5ns, 18.5ns  
Device Type  
NOR Flash + NOR Flash  
Package  
D : FBGA(Lead Free)  
+ UtRAM + UtRAM  
NOR Flash Density , Vcc , Org.  
: 128Mbit + 128Mbit, Vcc=1.8V,  
x16(Burst)  
: Bank Size(Boot Block)  
08 : 16M, 16Bank(Bottom)  
09 : 16M, 16Bank(TOP)  
Version  
M : 1st Generation  
SDRAM Density , Vcc , Org.  
NAND Flash Density , Vcc , Org.  
0 : NONE  
0 : NONE  
UtRAM Density , Vcc/Vccq , Org.  
8 : 64Mbit + 64Mbit, 2.6V/1.8V, x16, Burst  
SRAM Density , Vcc , Org.  
0 : NONE  
4
Revision 0.0  
November 2003  
Preliminary  
KBF0x0800M  
MCP MEMORY  
Figure 1. FUNCTIONAL BLOCK DIAGRAM  
Vccf  
Vss  
Address(A0 to A22)  
OE  
WE  
CEF1  
RESET  
Vpp  
DQ0 to DQ15  
128M bit  
Flash Memory  
WP1  
CLKF  
RDY  
ADVF  
Vccf  
Vss  
DQ0 to DQ15  
128M bit  
Flash Memory  
WP2  
CEF2  
Vccu  
Vccqu Vss  
DQ0 to DQ15  
CSu  
UB  
64M bit  
UtRAM  
DQ0 to DQ15  
LB  
CLKu  
ADVu  
MRS  
Vccu Vccqu  
Vss  
DQ0 to DQ15  
64M bit  
UtRAM  
5
Revision 0.0  
November 2003  
Preliminary  
KBF0x0800M  
MCP MEMORY  
128M Bit(8Mx16)  
Synchronous Burst, Multi Bank NOR Flash M-die  
For Each Device  
6
Revision 0.0  
November 2003  
Preliminary  
KBF0x0800M  
MCP MEMORY  
Table 1. PRODUCT LINE-UP  
Synchronous/Burst  
7B  
(54MHz) (66MHz)  
Asynchronous  
7C  
7B  
7C  
Speed Option  
Speed Option  
(54MHz) (66MHz)  
Max. Initial Access Time (tIAA, ns)  
Max. Burst Access Time (tBA, ns)  
Max. OE Access Time (tOE, ns)  
88.5  
14.5  
20  
71  
11  
20  
Max Access Time (tAA, ns)  
88.5  
14.5  
20  
70  
70  
20  
VCC=1.7V-1.9V  
Max CE Access Time (tCE, ns)  
Max OE Access Time (tOE, ns)  
Table 2. NOR Flash DEVICE BANK DIVISIONS  
Bank 0  
Bank 1 ~ Bank 15  
Mbit  
Block Sizes  
Mbit  
Block Sizes  
Eight 4Kwords,  
Fifteen 32Kwords  
Two hundred  
forty 32Kwords  
8 Mbit  
120 Mbit  
7
Revision 0.0  
November 2003  
Preliminary  
KBF0x0800M  
MCP MEMORY  
Table 3-1. Top Boot Block Address Table  
Bank  
Block  
BA262  
BA261  
Block Size  
4 Kwords  
4 Kwords  
(x16) Address Range  
7FF000h-7FFFFFh  
7FE000h-7FEFFFh  
4 Kwords  
4 Kwords  
4 Kwords  
4 Kwords  
BA260  
BA259  
BA258  
7FD000h-7FDFFFh  
7FC000h-7FCFFFh  
7FB000h-7FBFFFh  
BA257  
BA256  
BA255  
BA254  
BA253  
BA252  
BA251  
BA250  
BA249  
BA248  
BA247  
BA246  
BA245  
BA244  
BA243  
BA242  
BA241  
BA240  
BA239  
BA238  
BA237  
BA236  
BA235  
BA234  
BA233  
BA232  
BA231  
BA230  
BA229  
BA228  
BA227  
BA226  
BA225  
BA224  
BA223  
BA222  
BA221  
BA220  
BA219  
7FA000h-7FAFFFh  
7F9000h-7F9FFFh  
7F8000h-7F8FFFh  
7F0000h-7F7FFFh  
7E8000h-7EFFFFh  
7E0000h-7E7FFFh  
7D8000h-7DFFFFh  
7D0000h-7D7FFFh  
7C8000h-7CFFFFh  
7C0000h-7C7FFFh  
7B8000h-7BFFFFh  
7B0000h-7B7FFFh  
7A8000h-7AFFFFh  
7A0000h-7A7FFFh  
798000h-79FFFFh  
790000h-797FFFh  
788000h-78FFFFh  
780000h-787FFFh  
778000h-77FFFFh  
770000h-777FFFh  
768000h-76FFFFh  
760000h-767FFFh  
758000h-75FFFFh  
750000h-757FFFh  
748000h-74FFFFh  
740000h-747FFFh  
738000h-73FFFFh  
730000h-737FFFh  
728000h-72FFFFh  
720000h-727FFFh  
718000h-71FFFFh  
710000h-717FFFh  
708000h-70FFFFh  
700000h-707FFFh  
6F8000h-6FFFFFh  
6F0000h-6F7FFFh  
6E8000h-6EFFFFh  
6E0000h-6E7FFFh  
6D8000h-6DFFFFh  
4 Kwords  
4 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
Bank 0  
Bank 1  
Bank 2  
8
Revision 0.0  
November 2003  
Preliminary  
KBF0x0800M  
MCP MEMORY  
Table 3-1. Top Boot Block Address Table  
Bank  
Block  
BA218  
BA217  
BA216  
BA215  
BA214  
BA213  
BA212  
BA211  
BA210  
BA209  
BA208  
BA207  
BA206  
BA205  
BA204  
BA203  
BA202  
BA201  
BA200  
BA199  
BA198  
BA197  
BA196  
BA195  
BA194  
BA193  
BA192  
BA191  
BA190  
BA189  
BA188  
BA187  
BA186  
BA185  
BA184  
BA183  
BA182  
BA181  
BA180  
BA179  
BA178  
BA177  
BA176  
BA175  
Block Size  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
(x16) Address Range  
6D0000h-6D7FFFh  
6C8000h-6CFFFFh  
6C0000h-6C7FFFh  
6B8000h-6BFFFFh  
6B0000h-6B7FFFh  
6A8000h-6AFFFFh  
6A0000h-6A7FFFh  
698000h-69FFFFh  
690000h-697FFFh  
688000h-68FFFFh  
680000h-687FFFh  
678000h-67FFFFh  
670000h-677FFFh  
668000h-66FFFFh  
660000h-667FFFh  
658000h-65FFFFh  
650000h-657FFFh  
648000h-64FFFFh  
640000h-647FFFh  
638000h-63FFFFh  
630000h-637FFFh  
628000h-62FFFFh  
620000h-627FFFh  
618000h-61FFFFh  
610000h-617FFFh  
608000h-60FFFFh  
600000h-607FFFh  
5F8000h-5FFFFFh  
5F0000h-5F7FFFh  
5E8000h-5EFFFFh  
5E0000h-5E7FFFh  
5D8000h-5DFFFFh  
5D0000h-5D7FFFh  
5C8000h-5CFFFFh  
5C0000h-5C7FFFh  
5B8000h-5BFFFFh  
5B0000h-5B7FFFh  
5A8000h-5AFFFFh  
5A0000h-5A7FFFh  
598000h-59FFFFh  
590000h-597FFFh  
588000h-58FFFFh  
580000h-587FFFh  
578000h-57FFFFh  
Bank 2  
Bank 3  
Bank 4  
Bank 5  
9
Revision 0.0  
November 2003  
Preliminary  
KBF0x0800M  
MCP MEMORY  
Table 3-1. Top Boot Block Address Table  
Bank  
Block  
BA174  
BA173  
BA172  
BA171  
BA170  
BA169  
BA168  
BA167  
BA166  
BA165  
BA164  
BA163  
BA162  
BA161  
BA160  
BA159  
BA158  
BA157  
BA156  
BA155  
BA154  
BA153  
BA152  
BA151  
BA150  
BA149  
BA148  
BA147  
BA146  
BA145  
BA144  
BA143  
BA142  
BA141  
BA140  
BA139  
BA138  
BA137  
BA136  
BA135  
BA134  
BA133  
BA132  
BA131  
BA130  
Block Size  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
(x16) Address Range  
570000h-577FFFh  
568000h-56FFFFh  
560000h-567FFFh  
558000h-55FFFFh  
550000h-557FFFh  
548000h-54FFFFh  
540000h-547FFFh  
538000h-53FFFFh  
530000h-537FFFh  
528000h-52FFFFh  
520000h-527FFFh  
518000h-51FFFFh  
510000h-517FFFh  
508000h-50FFFFh  
500000h-507FFFh  
4F8000h-4FFFFFh  
4F0000h-4F7FFFh  
4E8000h-4EFFFFh  
4E0000h-4E7FFFh  
4D8000h-4DFFFFh  
4D0000h-4D7FFFh  
4C8000h-4CFFFFh  
4C0000h-4C7FFFh  
4B8000h-4BFFFFh  
4B0000h-4B7FFFh  
4A8000h-4AFFFFh  
4A0000h-4A7FFFh  
498000h-49FFFFh  
490000h-497FFFh  
488000h-48FFFFh  
480000h-487FFFh  
478000h-47FFFFh  
470000h-477FFFh  
468000h-46FFFFh  
460000h-467FFFh  
458000h-45FFFFh  
450000h-457FFFh  
448000h-44FFFFh  
440000h-447FFFh  
438000h-43FFFFh  
430000h-437FFFh  
428000h-42FFFFh  
420000h-427FFFh  
418000h-41FFFFh  
410000h-417FFFh  
Bank 5  
Bank 6  
Bank 7  
10  
Revision 0.0  
November 2003  
Preliminary  
KBF0x0800M  
MCP MEMORY  
Table 3-1. Top Boot Block Address Table  
Bank  
Block  
BA129  
BA128  
BA127  
BA126  
BA125  
BA124  
BA123  
BA122  
BA121  
BA120  
BA119  
BA118  
BA117  
BA116  
BA115  
BA114  
BA113  
BA112  
BA111  
BA110  
BA109  
BA108  
BA107  
BA106  
BA105  
BA104  
BA103  
BA102  
BA101  
BA100  
BA99  
Block Size  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
(x16) Address Range  
408000h-40FFFFh  
400000h-407FFFh  
3F8000h-3FFFFFh  
3F0000h-3F7FFFh  
3E8000h-3EFFFFh  
3E0000h-3E7FFFh  
3D8000h-3DFFFFh  
3D0000h-3D7FFFh  
3C8000h-3CFFFFh  
3C0000h-3C7FFFh  
3B8000h-3BFFFFh  
3B0000h-3B7FFFh  
3A8000h-3AFFFFh  
3A0000h-3A7FFFh  
398000h-39FFFFh  
390000h-397FFFh  
388000h-38FFFFh  
380000h-387FFFh  
378000h-37FFFFh  
370000h-377FFFh  
368000h-36FFFFh  
360000h-367FFFh  
358000h-35FFFFh  
350000h-357FFFh  
348000h-34FFFFh  
340000h-347FFFh  
338000h-33FFFFh  
330000h-337FFFh  
328000h-32FFFFh  
320000h-327FFFh  
318000h-31FFFFh  
310000h-317FFFh  
308000h-30FFFFh  
300000h-307FFFh  
2F8000h-2FFFFFh  
2F0000h-2F7FFFh  
2E8000h-2EFFFFh  
2E0000h-2E7FFFh  
2D8000h-2DFFFFh  
2D0000h-2D7FFFh  
2C8000h-2CFFFFh  
2C0000h-2C7FFFh  
2B8000h-2BFFFFh  
2B0000h-2B7FFFh  
2A8000h-2AFFFFh  
Bank 7  
Bank 8  
Bank 9  
BA98  
BA97  
BA96  
BA95  
BA94  
BA93  
BA92  
BA91  
Bank 10  
BA90  
BA89  
BA88  
BA87  
BA86  
BA85  
11  
Revision 0.0  
November 2003  
Preliminary  
KBF0x0800M  
MCP MEMORY  
Table 3-1. Top Boot Block Address Table  
Bank  
Block  
BA84  
BA83  
BA82  
BA81  
BA80  
BA79  
BA78  
BA77  
BA76  
BA75  
BA74  
BA73  
BA72  
BA71  
BA70  
BA69  
BA68  
BA67  
BA66  
BA65  
BA64  
BA63  
BA62  
BA61  
BA60  
BA59  
BA58  
BA57  
BA56  
BA55  
BA54  
BA53  
BA52  
BA51  
BA50  
BA49  
BA48  
BA47  
BA46  
BA45  
BA44  
BA43  
BA42  
BA41  
BA40  
Block Size  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
(x16) Address Range  
2A0000h-2A7FFFh  
298000h-29FFFFh  
290000h-297FFFh  
288000h-28FFFFh  
280000h-287FFFh  
278000h-27FFFFh  
270000h-277FFFh  
268000h-26FFFFh  
260000h-267FFFh  
258000h-25FFFFh  
250000h-257FFFh  
248000h-24FFFFh  
240000h-247FFFh  
238000h-23FFFFh  
230000h-237FFFh  
228000h-22FFFFh  
220000h-227FFFh  
218000h-21FFFFh  
210000h-217FFFh  
208000h-20FFFFh  
200000h-207FFFh  
1F8000h-1FFFFFh  
1F0000h-1F7FFFh  
1E8000h-1EFFFFh  
1E0000h-1E7FFFh  
1D8000h-1DFFFFh  
1D0000h-1D7FFFh  
1C8000h-1CFFFFh  
1C0000h-1C7FFFh  
1B8000h-1BFFFFh  
1B0000h-1B7FFFh  
1A8000h-1AFFFFh  
1A0000h-1A7FFFh  
198000h-19FFFFh  
190000h-197FFFh  
188000h-18FFFFh  
180000h-187FFFh  
178000h-17FFFFh  
170000h-177FFFh  
168000h-16FFFFh  
160000h-167FFFh  
158000h-15FFFFh  
150000h-157FFFh  
148000h-14FFFFh  
140000h-147FFFh  
Bank 10  
Bank 11  
Bank 12  
Bank 13  
12  
Revision 0.0  
November 2003  
Preliminary  
KBF0x0800M  
MCP MEMORY  
Table 3-1. Top Boot Block Address Table  
Bank  
Block  
BA39  
BA38  
BA37  
BA36  
BA35  
BA34  
BA33  
BA32  
BA31  
BA30  
BA29  
BA28  
BA27  
BA26  
BA25  
BA24  
BA23  
BA22  
BA21  
BA20  
BA19  
BA18  
BA17  
BA16  
BA15  
BA14  
BA13  
BA12  
BA11  
BA10  
BA9  
Block Size  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
(x16) Address Range  
138000h-13FFFFh  
130000h-137FFFh  
128000h-12FFFFh  
120000h-127FFFh  
118000h-11FFFFh  
110000h-117FFFh  
108000h-10FFFFh  
100000h-107FFFh  
0F8000h-0FFFFFh  
0F0000h-0F7FFFh  
0E8000h-0EFFFFh  
0E0000h-0E7FFFh  
0D8000h-0DFFFFh  
0D0000h-0D7FFFh  
0C8000h-0CFFFFh  
0C0000h-0C7FFFh  
0B8000h-0BFFFFh  
0B0000h-0B7FFFh  
0A8000h-0AFFFFh  
0A0000h-0A7FFFh  
098000h-09FFFFh  
090000h-097FFFh  
088000h-08FFFFh  
080000h-087FFFh  
078000h-07FFFFh  
070000h-077FFFh  
068000h-06FFFFh  
060000h-067FFFh  
058000h-05FFFFh  
050000h-057FFFh  
048000h-04FFFFh  
040000h-047FFFh  
038000h-03FFFFh  
030000h-037FFFh  
028000h-02FFFFh  
020000h-027FFFh  
018000h-01FFFFh  
010000h-017FFFh  
008000h-00FFFFh  
000000h-007FFFh  
Bank 13  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
Bank 14  
BA8  
Bank 15  
BA7  
BA6  
BA5  
BA4  
BA3  
BA2  
BA1  
BA0  
13  
Revision 0.0  
November 2003  
Preliminary  
KBF0x0800M  
MCP MEMORY  
Table 3-2. Bottom Boot Block Address Table  
Bank  
Block  
BA262  
BA261  
BA260  
BA259  
BA258  
BA257  
BA256  
BA255  
BA254  
BA253  
BA252  
BA251  
BA250  
BA249  
BA248  
BA247  
BA246  
BA245  
BA244  
BA243  
BA242  
BA241  
BA240  
BA239  
BA238  
BA237  
BA236  
BA235  
BA234  
BA233  
BA232  
BA231  
BA230  
BA229  
BA228  
BA227  
BA226  
Block Size  
(x16) Address Range  
7F8000h-7FFFFFh  
7F0000h-7F7FFFh  
7E8000h-7EFFFFh  
7E0000h-7E7FFFh  
7D8000h-7DFFFFh  
7D0000h-7D7FFFh  
7C8000h-7CFFFFh  
7C0000h-7C7FFFh  
7B8000h-7BFFFFh  
7B0000h-7B7FFFh  
7A8000h-7AFFFFh  
7A0000h-7A7FFFh  
798000h-79FFFFh  
790000h-797FFFh  
788000h-78FFFFh  
780000h-787FFFh  
778000h-77FFFFh  
770000h-777FFFh  
768000h-76FFFFh  
760000h-767FFFh  
758000h-75FFFFh  
750000h-757FFFh  
748000h-74FFFFh  
740000h-747FFFh  
738000h-73FFFFh  
730000h-737FFFh  
728000h-72FFFFh  
720000h-727FFFh  
718000h-71FFFFh  
710000h-717FFFh  
708000h-70FFFFh  
700000h-707FFFh  
6F8000h-6FFFFFh  
6F0000h-6F7FFFh  
6E8000h-6EFFFFh  
6E0000h-6E7FFFh  
6D8000h-6DFFFFh  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
Bank 15  
Bank 14  
Bank 13  
14  
Revision 0.0  
November 2003  
Preliminary  
KBF0x0800M  
MCP MEMORY  
Table 3-2. Bottom Boot Block Address Table  
Bank  
Block  
BA225  
BA224  
BA223  
BA222  
BA221  
BA220  
BA219  
BA218  
BA217  
BA216  
BA215  
BA214  
BA213  
BA212  
BA211  
BA210  
BA209  
BA208  
BA207  
BA206  
BA205  
BA204  
BA203  
BA202  
BA201  
BA200  
BA199  
BA198  
BA197  
BA196  
BA195  
BA194  
BA193  
BA192  
BA191  
BA190  
BA189  
BA188  
BA187  
BA186  
BA185  
BA184  
BA183  
Block Size  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
(x16) Address Range  
6D0000h-6D7FFFh  
6C8000h-6CFFFFh  
6C0000h-6C7FFFh  
6B8000h-6BFFFFh  
6B0000h-6B7FFFh  
6A8000h-6AFFFFh  
6A0000h-6A7FFFh  
698000h-69FFFFh  
690000h-697FFFh  
688000h-68FFFFh  
680000h-687FFFh  
678000h-67FFFFh  
670000h-677FFFh  
668000h-66FFFFh  
660000h-667FFFh  
658000h-65FFFFh  
650000h-657FFFh  
648000h-64FFFFh  
640000h-647FFFh  
638000h-63FFFFh  
630000h-637FFFh  
628000h-62FFFFh  
620000h-627FFFh  
618000h-61FFFFh  
610000h-617FFFh  
608000h-60FFFFh  
600000h-607FFFh  
5F8000h-5FFFFFh  
5F0000h-5F7FFFh  
5E8000h-5EFFFFh  
5E0000h-5E7FFFh  
5D8000h-5DFFFFh  
5D0000h-5D7FFFh  
5C8000h-5CFFFFh  
5C0000h-5C7FFFh  
5B8000h-5BFFFFh  
5B0000h-5B7FFFh  
5A8000h-5AFFFFh  
5A0000h-5A7FFFh  
598000h-59FFFFh  
590000h-597FFFh  
588000h-58FFFFh  
580000h-587FFFh  
Bank 13  
Bank 12  
Bank 11  
15  
Revision 0.0  
November 2003  
Preliminary  
KBF0x0800M  
MCP MEMORY  
Table 3-2. Bottom Boot Block Address Table  
Bank  
Block  
BA182  
BA181  
BA180  
BA179  
BA178  
BA177  
BA176  
BA175  
BA174  
BA173  
BA172  
BA171  
BA170  
BA169  
BA168  
BA167  
BA166  
BA165  
BA164  
BA163  
BA162  
BA161  
BA160  
BA159  
BA158  
BA157  
BA156  
BA155  
BA154  
BA153  
BA152  
BA151  
BA150  
BA149  
BA148  
BA147  
BA146  
BA145  
BA144  
BA143  
BA142  
BA141  
BA140  
BA139  
BA138  
BA137  
Block Size  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
(x16) Address Range  
578000h-57FFFFh  
570000h-577FFFh  
568000h-56FFFFh  
560000h-567FFFh  
558000h-55FFFFh  
550000h-557FFFh  
548000h-54FFFFh  
540000h-547FFFh  
538000h-53FFFFh  
530000h-537FFFh  
528000h-52FFFFh  
520000h-527FFFh  
518000h-51FFFFh  
510000h-517FFFh  
508000h-50FFFFh  
500000h-507FFFh  
4F8000h-4FFFFFh  
4F0000h-4F7FFFh  
4E8000h-4EFFFFh  
4E0000h-4E7FFFh  
4D8000h-4DFFFFh  
4D0000h-4D7FFFh  
4C8000h-4CFFFFh  
4C0000h-4C7FFFh  
4B8000h-4BFFFFh  
4B0000h-4B7FFFh  
4A8000h-4AFFFFh  
4A0000h-4A7FFFh  
498000h-49FFFFh  
490000h-497FFFh  
488000h-48FFFFh  
480000h-487FFFh  
478000h-47FFFFh  
470000h-477FFFh  
468000h-46FFFFh  
460000h-467FFFh  
458000h-45FFFFh  
450000h-457FFFh  
448000h-44FFFFh  
440000h-447FFFh  
438000h-43FFFFh  
430000h-437FFFh  
428000h-42FFFFh  
420000h-427FFFh  
418000h-41FFFFh  
410000h-417FFFh  
Bank 10  
Bank 9  
Bank 8  
16  
Revision 0.0  
November 2003  
Preliminary  
KBF0x0800M  
MCP MEMORY  
Table 3-2. Bottom Boot Block Address Table  
Bank  
Block  
BA136  
BA135  
BA134  
BA133  
BA132  
BA131  
BA130  
BA129  
BA128  
BA127  
BA126  
BA125  
BA124  
BA123  
BA122  
BA121  
BA120  
BA119  
BA118  
BA117  
BA116  
BA115  
BA114  
BA113  
BA112  
BA111  
BA110  
BA109  
BA108  
BA107  
BA106  
BA105  
BA104  
BA103  
BA102  
BA101  
BA100  
BA99  
Block Size  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
(x16) Address Range  
408000h-40FFFFh  
400000h-407FFFh  
3F8000h-3FFFFFh  
3F0000h-3F7FFFh  
3E8000h-3EFFFFh  
3E0000h-3E7FFFh  
3D8000h-3DFFFFh  
3D0000h-3D7FFFh  
3C8000h-3CFFFFh  
3C0000h-3C7FFFh  
3B8000h-3BFFFFh  
3B0000h-3B7FFFh  
3A8000h-3AFFFFh  
3A0000h-3A7FFFh  
398000h-39FFFFh  
390000h-397FFFh  
388000h-38FFFFh  
380000h-387FFFh  
378000h-37FFFFh  
370000h-377FFFh  
368000h-36FFFFh  
360000h-367FFFh  
358000h-35FFFFh  
350000h-357FFFh  
348000h-34FFFFh  
340000h-347FFFh  
338000h-33FFFFh  
330000h-337FFFh  
328000h-32FFFFh  
320000h-327FFFh  
318000h-31FFFFh  
310000h-317FFFh  
308000h-30FFFFh  
300000h-307FFFh  
2F8000h-2FFFFFh  
2F0000h-2F7FFFh  
2E8000h-2EFFFFh  
2E0000h-2E7FFFh  
2D8000h-2DFFFFh  
2D0000h-2D7FFFh  
2C8000h-2CFFFFh  
2C0000h-2C7FFFh  
2B8000h-2BFFFFh  
2B0000h-2B7FFFh  
2A8000h-2AFFFFh  
Bank 8  
Bank 7  
Bank 6  
BA98  
Bank 5  
BA97  
BA96  
BA95  
BA94  
BA93  
BA92  
17  
Revision 0.0  
November 2003  
Preliminary  
KBF0x0800M  
MCP MEMORY  
Table 3-2. Bottom Boot Block Address Table  
Bank  
Block  
BA91  
BA90  
BA89  
BA88  
BA87  
BA86  
BA85  
BA84  
BA83  
BA82  
BA81  
BA80  
BA79  
BA78  
BA77  
BA76  
BA75  
BA74  
BA73  
BA72  
BA71  
BA70  
BA69  
BA68  
BA67  
BA66  
BA65  
BA64  
BA63  
BA62  
BA61  
BA60  
BA59  
BA58  
BA57  
BA56  
BA55  
BA54  
BA53  
BA52  
BA51  
BA50  
BA49  
BA48  
BA47  
Block Size  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
(x16) Address Range  
2A0000h-2A7FFFh  
298000h-29FFFFh  
290000h-297FFFh  
288000h-28FFFFh  
280000h-287FFFh  
278000h-27FFFFh  
270000h-277FFFh  
268000h-26FFFFh  
260000h-267FFFh  
258000h-25FFFFh  
250000h-257FFFh  
248000h-24FFFFh  
240000h-247FFFh  
238000h-23FFFFh  
230000h-237FFFh  
228000h-22FFFFh  
220000h-227FFFh  
218000h-21FFFFh  
210000h-217FFFh  
208000h-20FFFFh  
200000h-207FFFh  
1F8000h-1FFFFFh  
1F0000h-1F7FFFh  
1E8000h-1EFFFFh  
1E0000h-1E7FFFh  
1D8000h-1DFFFFh  
1D0000h-1D7FFFh  
1C8000h-1CFFFFh  
1C0000h-1C7FFFh  
1B8000h-1BFFFFh  
1B0000h-1B7FFFh  
1A8000h-1AFFFFh  
1A0000h-1A7FFFh  
198000h-19FFFFh  
190000h-197FFFh  
188000h-18FFFFh  
180000h-187FFFh  
178000h-17FFFFh  
170000h-177FFFh  
168000h-16FFFFh  
160000h-167FFFh  
158000h-15FFFFh  
150000h-157FFFh  
148000h-14FFFFh  
140000h-147FFFh  
Bank 5  
Bank 4  
Bank 3  
Bank 2  
18  
Revision 0.0  
November 2003  
Preliminary  
KBF0x0800M  
MCP MEMORY  
Table 3-2. Bottom Boot Block Address Table  
Bank  
Block  
BA46  
BA45  
BA44  
BA43  
BA42  
BA41  
BA40  
BA39  
BA38  
BA37  
BA36  
BA35  
BA34  
BA33  
BA32  
BA31  
BA30  
BA29  
BA28  
BA27  
BA26  
BA25  
BA24  
BA23  
BA22  
BA21  
BA20  
BA19  
BA18  
BA17  
BA16  
BA15  
BA14  
BA13  
BA12  
BA11  
BA10  
BA9  
Block Size  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
(x16) Address Range  
138000h-13FFFFh  
130000h-137FFFh  
128000h-12FFFFh  
120000h-127FFFh  
118000h-11FFFFh  
110000h-117FFFh  
108000h-10FFFFh  
100000h-107FFFh  
0F8000h-0FFFFFh  
0F0000h-0F7FFFh  
0E8000h-0EFFFFh  
0E0000h-0E7FFFh  
0D8000h-0DFFFFh  
0D0000h-0D7FFFh  
0C8000h-0CFFFFh  
0C0000h-0C7FFFh  
0B8000h-0BFFFFh  
0B0000h-0B7FFFh  
0A8000h-0AFFFFh  
0A0000h-0A7FFFh  
098000h-09FFFFh  
090000h-097FFFh  
088000h-08FFFFh  
080000h-087FFFh  
078000h-07FFFFh  
070000h-077FFFh  
068000h-06FFFFh  
060000h-067FFFh  
058000h-05FFFFh  
050000h-057FFFh  
048000h-04FFFFh  
040000h-047FFFh  
038000h-03FFFFh  
030000h-037FFFh  
028000h-02FFFFh  
020000h-027FFFh  
018000h-01FFFFh  
010000h-017FFFh  
008000h-00FFFFh  
007000h-007FFFh  
006000h-006FFFh  
005000h-005FFFh  
004000h-004FFFh  
003000h-003FFFh  
002000h-002FFFh  
001000h-001FFFh  
000000h-000FFFh  
Bank 2  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
4 Kwords  
Bank 1  
Bank 0  
BA8  
BA7  
BA6  
4 Kwords  
BA5  
4 Kwords  
BA4  
4 Kwords  
BA3  
4 Kwords  
BA2  
4 Kwords  
BA1  
4 Kwords  
BA0  
4 Kwords  
19  
Revision 0.0  
November 2003  
Preliminary  
KBF0x0800M  
MCP MEMORY  
PRODUCT INTRODUCTION  
The device is an 128Mbit (134,217,728 bits) NOR-type Burst Flash memory. The device features 1.8V single voltage power supply  
operating within the range of 1.7V to 1.9V. The device is programmed by using the Channel Hot Electron (CHE) injection mechanism  
which is used to program EPROMs. The device is erased electrically by using Fowler-Nordheim tunneling mechanism. To provide  
highly flexible erase and program capability, the device adapts a block memory architecture that divides its memory array into 263  
blocks (32-Kword x 255 , 4-Kword x 8, ). Programming is done in units of 16 bits (Word). All bits of data in one or multiple blocks can  
be erased when the device executes the erase operation. To prevent the device from accidental erasing or over-writing the pro-  
grammed data, 263 memory blocks can be hardware protected. Regarding read access time, at 54MHz, the device provides a burst  
access of 14.5ns with initial access times of 88.5ns at 30pF. At 66MHz, the device provides a burst access of 11ns with initial access  
times of 71ns at 30pF. The command set of device is compatible with standard Flash devices. The device uses Chip Enable (CE),  
Write Enable (WE), Address Valid(AVD) and Output Enable (OE) to control asynchronous read and write operation. For burst opera-  
tions, the device additionally requires Ready (RDY) and Clock (CLK). Device operations are executed by selective command codes.  
The command codes to be combined with addresses and data are sequentially written to the command registers using microproces-  
sor write timing. The command codes serve as inputs to an internal state machine which controls the program/erase circuitry. Reg-  
ister contents also internally latch addresses and data necessary to execute the program and erase operations. The device is  
implemented with Internal Program/Erase Routines to execute the program/erase operations. The Internal Program/Erase Routines  
are invoked by program/erase command sequences. The Internal Program Routine automatically programs and verifies data at  
specified addresses. The Internal Erase Routine automatically pre-programs the memory cell which is not programmed and then  
executes the erase operation. The device has means to indicate the status of completion of program/erase operations. The status  
can be indicated via Data polling of DQ7, or the Toggle bit (DQ6). Once the operations have been completed, the device automati-  
cally resets itself to the read mode. The device requires only 25 mA as burst and asynchronous mode read current and 15 mA for  
program/erase operations.  
Table 4. Device Bus Operations  
Operation  
CE  
OE  
WE  
A0-22  
DQ0-15  
RESET  
CLK  
AVD  
Asynchronous Read Operation  
L
L
H
Add In  
I/O  
H
L
X
Write  
L
H
X
L
H
X
X
H
L
Add In  
I/O  
High-Z  
High-Z  
X
H
H
L
L
X
X
X
X
X
Standby  
X
X
H
H
X
X
H
X
Hardware Reset  
Load Initial Burst Address  
X
Add In  
X
H
H
H
L
Burst  
DOUT  
Burst Read Operation  
L
H
X
X
Terminate Burst Read Cycle  
H
X
L
X
X
H
X
High-Z  
High-Z  
I/O  
X
X
Terminate Burst Read Cycle via RESET  
X
Terminate Current Burst Read Cycle and Start  
New Burst Read Cycle  
Add In  
H
Note : L=VIL (Low), H=VIH (High), X=Don’t Care.  
20  
Revision 0.0  
November 2003  
Preliminary  
KBF0x0800M  
MCP MEMORY  
COMMAND DEFINITIONS  
The device operates by selecting and executing its operational modes. Each operational mode has its own command set. In order to  
select a certain mode, a proper command with specific address and data sequences must be written into the command register. Writ-  
ing incorrect information which include address and data or writing an improper command will reset the device to the read mode. The  
defined valid register command sequences are stated in Table 5.  
Table 5. Command Sequences  
Command Definitions  
Cycle  
1st Cycle 2nd Cycle 3rd Cycle  
4th Cycle  
5th Cycle 6th Cycle  
Add  
Data  
Add  
Data  
Add  
Data  
Add  
Data  
Add  
Data  
Add  
Data  
Add  
Data  
Add  
Data  
Add  
Data  
Add  
Data  
Add  
Data  
Add  
Data  
Add  
Data  
Add  
Data  
Add  
Data  
Add  
Data  
Add  
Data  
Add  
Data  
RA  
RD  
Asynchronous Read  
1
XXXH  
F0H  
Reset(Note 5)  
1
4
4
4
4
4
3
2
2
2
2
6
6
1
1
1
1
555H  
AAH  
2AAH  
55H  
(DA)555H  
90H  
(DA)X00H  
ECH  
Autoselect  
Manufacturer ID(Note 6)  
555H  
AAH  
2AAH  
55H  
(DA)555H  
90H  
(DA)X01H  
Note6  
Autoselect  
Device ID(Note 6)  
555H  
AAH  
2AAH  
55H  
(BA)555H  
90H  
(BA)X02H  
00H/01H  
(DA)X03H  
0H/1H  
Autoselect  
Block Protection Verify(Note 7)  
555H  
AAH  
2AAH  
55H  
(DA)555H  
90H  
Autoselect  
Handshaking(Note 6, 8)  
555H  
AAH  
2AAH  
55H  
555H  
PA  
Program  
A0H  
PD  
555H  
AAH  
2AAH  
55H  
555H  
Unlock Bypass  
20H  
XXX  
PA  
Unlock Bypass Program(Note 9)  
Unlock Bypass Block Erase(Note 9)  
Unlock Bypass Chip Erase(Note 9)  
Unlock Bypass Reset  
Chip Erase  
A0H  
PD  
XXX  
BA  
80H  
30H  
XXXH  
80H  
XXXH  
10H  
XXXH  
90H  
XXXH  
00H  
555H  
AAH  
2AAH  
55H  
555H  
80H  
555H  
AAH  
555H  
AAH  
2AAH  
55H  
555H  
10H  
BA  
555H  
AAH  
2AAH  
55H  
555H  
80H  
2AAH  
55H  
Block Erase  
30H  
(DA)XXXH  
B0H  
Erase Suspend (Note 10)  
Erase Resume (Note 11)  
Program Suspend (Note12)  
Program Resume (Note11)  
(DA)XXXH  
30H  
(DA)XXXH  
B0H  
(DA)XXXH  
30H  
21  
Revision 0.0  
November 2003  
Preliminary  
KBF0x0800M  
MCP MEMORY  
Table 5. Command Sequences (Continued)  
Command Definitions  
Cycle  
1st Cycle 2nd Cycle 3rd Cycle 4th Cycle 5th Cycle 6th Cycle  
Add  
Block Protection/Unprotection (Note 13)  
Data  
XXX  
60H  
XXX  
60H  
ABP  
60H  
3
Add  
(DA)X55H  
98H  
CFI Query (Note 14)  
Data  
1
3
Add  
Set Burst Mode Configuration Register (Note 15)  
Data  
555H  
2AAH  
55H  
(CR)555H  
C0H  
AAH  
Notes:  
1. RA : Read Address , PA : Program Address, RD : Read Data, PD : Program Data , BA : Block Address (A22 ~ A12)  
DA : Bank Address (A22 ~ A19) , ABP : Address of the block to be protected or unprotected, CR : Configuration Register Setting  
2. The 4th cycle data of autoselect mode and RD are output data. The others are input data.  
3. Data bits DQ15–DQ8 are don’t care in command sequences, except for RD, PD and Device ID.  
4. Unless otherwise noted, address bits A22–A11 are don’t cares.  
5. The reset command is required to return to read mode.  
If a bank entered the autoselect mode during the erase suspend mode, writing the reset command returns that bank to the erase suspend mode.  
If a bank entered the autoselect mode during the program suspend mode, writing the reset command returns that bank to the program suspend mode.  
If DQ5 goes high during the program or erase operation, writing the reset command returns that bank to read mode or erase suspend mode if that  
bank was in erase suspend mode.  
6. The 3rd and 4th cycle bank address of autoselect mode must be same.  
Device ID Data : "22F4H" for Top Boot Block Device, "22F5H" for Bottom Boot Block Device  
7. 00H for an unprotected block and 01H for a protected block.  
8. 0H for handshaking, 1H for non-handshaking  
9. The unlock bypass command sequence is required prior to this command sequence.  
10. The system may read and program in non-erasing blocks when in the erase suspend mode.  
The system may enter the autoselect mode when in the erase suspend mode.  
The erase suspend command is valid only during a block erase operation, and requires the bank address.  
11. The erase/program resume command is valid only during the erase/program suspend mode, and requires the bank address.  
12. This mode is used only to enable Data Read by suspending the Program operation.  
13. Set ABP(Address of the block to be protected or unprotected) as either A6 = VIH, A1 = VIH and A0 = VIL for unprotected or A6 = VIL, A1 = VIH  
and A0 = VIL for protected.  
14. Command is valid when the device is in Read mode or Autoselect mode.  
15. See "Set Burst Mode Configuration Register" for details.  
22  
Revision 0.0  
November 2003  
Preliminary  
KBF0x0800M  
MCP MEMORY  
DEVICE OPERATION  
To write a command or command sequence (which includes programming data to the device and erasing blocks of memory), the  
system must drive CLK, WE and CE to VIL and OE to VIH when providing address or data. The device provide the unlock bypass  
mode to save its program time for program operation. Unlike the standard program command sequence which is comprised of four  
bus cycles, only two program cycles are required to program a word in the unlock bypass mode. One block, multiple blocks, or the  
entire device can be erased. Table 3 indicates the address space that each block occupies. The device’s address space is divided  
into sixteen banks: Bank 0 contains the boot/parameter blocks, and the other banks(from Bank 1 to 15) consist of uniform blocks. A  
“bank address” is the address bits required to uniquely select a bank. Similarly, a “block address” is the address bits required to  
uniquely select a block. ICC2 in the DC Characteristics table represents the active current specification for the write mode. The AC  
Characteristics section contains timing specification tables and timing diagrams for write operations.  
Read Mode  
The device automatically enters to asynchronous read mode after device power-up. No commands are required to retrieve data in  
asynchronous mode. After completing an Internal Program/Erase Routine, each bank is ready to read array data. The reset com-  
mand is required to return a bank to the read(or erase-suspend-read)mode if DQ5 goes high during an active program/erase opera-  
tion, or if the bank is in the autoselect mode.  
The synchronous(burst) mode will automatically be enabled on the first rising edge on the CLK input while AVD is held low. That  
means device enters burst read mode from asynchronous read mode to burst read mode using CLK and AVD signal. When the burst  
read is finished(or terminated), the device return to asynchronous read mode automatically.  
Asynchronous Read Mode  
For the asynchronous read mode a valid address should be asserted on A0-A22, while driving AVD and CE to VIL. WE should  
remain at VIH . The data will appear on DQ0-DQ15. Since the memory array is divided into sixteen banks, each bank remains  
enabled for read access until the command register contents are altered.  
Address access time (tAA) is equal to the delay from valid addresses to valid output data. The chip enable access time(tCE) is the  
delay from the falling edge of CE to valid data at the outputs. The output enable access time(tOE) is the delay from the falling edge of  
OE to valid data at the output. To prevent the memory content from spurious altering during power transition, the initial state machine  
is set for reading array data upon device power-up, or after a hardware reset.  
Synchronous (Burst) Read Mode  
The device is capable of continuous linear burst operation and linear burst operation of a preset length. For the burst mode, the sys-  
tem should determine how many clock cycles are desired for the initial word(tIACC) of each burst access and what mode of burst  
operation is desired using "Burst Mode Configuration Register" command sequences. See "Set Burst Mode Configuration" for further  
details. The status data also can be read during burst read mode by using AVD signal with a bank address. To initiate the synchro-  
nous read again, a new address and AVD pulse is needed after the host has completed status reads or the device has completed  
the program or erase operation.  
Continuous Linear Burst Read  
The synchronous(burst) mode will automatically be enabled on the first rising edge on the CLK input while AVD is held low. Note that  
the device is enabled for asynchronous mode when it first powers up. The initial word is output tIAA after the rising edge of the first  
CLK cycle. Subsequent words are output tBA after the rising edge of each successive clock cycle, which automatically increments the  
internal address counter. Note that the device has internal address boundary that occurs every 16 words. When the device is cross-  
ing the first word boundary, additional clock cycles are needed before data appears for the next address. The number of addtional  
clock cycle can varies from zero to three cycles, and the exact number of additional clock cycle depends on the starting address of  
burst read.(Refer to Figure 13) The RDY output indicates this condition to the system by pulsing low. The device will continue to out-  
put sequential burst data, wrapping around to address 000000h after it reaches the highest addressable memory location until the  
system asserts CE high, RESET low or AVD low in conjunction with a new address.(See Table 4.) The reset command does not ter-  
minate the burst read operation.  
If the host system crosses the bank boundary while reading in burst mode, and the accessed bank is not programming or erasing, a  
additional clock cycles are needed as previously mentioned. If the host system crosses the bank boundary while the accessed bank  
is programming or erasing, that is busy bank, the synchronous read will be terminated.  
23  
Revision 0.0  
November 2003  
Preliminary  
KBF0x0800M  
MCP MEMORY  
8-,16-Word Linear Burst Read  
As well as the Continuous Linear Burst Mode, there are two(8 & 16 word) linear wrap & no-wrap mode, in which a fixed number of  
words are read from consecutive addresses. In these modes, the addresses for burst read are determined by the group within which  
the starting address falls. The groups are sized according to the number of words read in a single burst sequence for a given  
mode.(See Table. 6)  
Table 6. Burst Address Groups(Wrap mode only)  
Burst Mode  
8 word  
Group Size  
8 words  
Group Address Ranges  
0-7h, 8-Fh, 10-17h, ....  
0-Fh, 10-1Fh, 20-2Fh, ....  
16 word  
16words  
As an example:  
In wrap mode case, if the starting address in the 8-word mode is 2h, the address range to be read would be 0-7h, and the wrap burst  
sequence would be 2-3-4-5-6-7-0-1h. The burst sequence begins with the starting address written to the device, but wraps back to  
the first address in the selected group. In a similar manner, 16-word wrap mode begin their burst sequence on the starting address  
written to the device, and then wrap back to the first address in the selected address group.  
In no-wrap mode case, if the starting address in the 8-word mode is 2h, the no-wrap burst sequence would be 2-3-4-5-6-7-8-9h. The  
burst sequence begins with the starting address written to the device, and continue to the 8th address from starting address. In a  
similar manner, 16-word no-wrap mode begin their burst sequence on the starting address written to the device, and continue to the  
16th address from starting address. Also, when the address cross the word boundary in no-wrap mode, same number of additional  
clock cycles as continuous linear mode is needed.  
Programmable Wait State  
The programmable wait state feature indicates to the device the number of additional clock cycles that must elapse after AVD is  
driven active for burst read mode. Upon power up, the number of total initial access cycles defaults to seven.  
Handshaking  
The handshaking feature allows the host system to simply monitor the RDY signal from the device to determine when the initial word  
of burst data is ready to be read. To set the number of initial cycle for optimal burst mode, the host should use the programmable wait  
state configuration.(See "Set Burst Mode Configuration Register" for details.) The rising edge of RDY after OE goes low indicates  
the initial word of valid burst data. Using the autoselect command sequence the handshaking feature may be verified in the device.  
Set Burst Mode Configuration Register  
The device uses a configuration register to set the various burst parameters : the number of initial cycles for burst and burst read  
mode. The burst mode configuration register must be set before the device enter burst mode.  
The burst mode configuration register is loaded with a three-cycle command sequences. On the third cycle, the data should be C0h,  
address bits A11-A0 should be 555h, and address bits A18-A12 set the code to be latched. The device will power up or after a hard-  
ware reset with the default setting.  
Table 7. Burst Mode Configuration Register Table  
Address Bit  
Function  
Settings(Binary)  
1 = RDY active one clock cycle before data  
0 = RDY active with data(default)  
A18  
RDY Active  
A17  
A16  
000 = Continuous(default)  
001 = 8-word linear with wrap  
010 = 16-word linear with wrap  
011 = 8-word linear with no-wrap  
100 = 16-word linear with no-wrap  
101 ~ 111 = Reserve  
Burst Read Mode  
A15  
A14  
A13  
000 = Data is valid on the 4th active CLK edge after AVD transition to VIH  
001 = Data is valid on the 5th active CLK edge after AVD transition to VIH  
010 = Data is valid on the 6th active CLK edge after AVD transition to VIH  
011 = Data is valid on the 7th active CLK edge after AVD transition to VIH (default)  
Programmable Wait State  
100 = Reserve  
101 = Reserve  
110 = Reserve  
111 = Reserve  
A12  
Programmable Wait State Configuration  
This feature informs the device of the number of clock cycles that must elapse after AVD# is driven active before data will be avail-  
able. This value is determined by the input frequency of the device. Address bits A14-A12 determine the setting. (See Burst Mode  
Configuration Register Table)  
24  
Revision 0.0  
November 2003  
Preliminary  
KBF0x0800M  
MCP MEMORY  
The Programmable wait state setting instructs the device to set a particular number of clock cycles for the initial access in burst  
mode. Note that hardware reset will set the wait state to the default setting, that is 7 initial cycles.  
Burst Read Mode Setting  
The device supports five different burst read modes : continuous linear mode, 8 and 16 word linear burst modes with wrap and 8 and  
16 word linear burst modes with no-wrap.  
RDY Configuration  
By default, the RDY pin will be high whenever there is valid data on the output. The device can be set so that RDY goes active one  
data cycle before active data. Address bit A18 determine this setting. Note that RDY always go high with valid data in case of word  
boundary crossing.  
Table 8. Burst Address Sequences  
Burst Address Sequence(Decimal)  
Start  
Addr.  
Continuous Burst  
0-1-2-3-4-5-6...  
1-2-3-4-5-6-7...  
2-3-4-5-6-7-8...  
8-word Burst  
0-1-2-3-4-5-6-7  
1-2-3-4-5-6-7-0  
2-3-4-5-6-7-0-1  
16-word Burst  
0
1
2
0-1-2-3-4-....-13-14-15  
1-2-3-4-5-....-14-15-0  
2-3-4-5-6-....-15-0-1  
Wrap  
.
.
.
.
.
.
.
.
0
1
2
0-1-2-3-4-5-6...  
1-2-3-4-5-6-7...  
2-3-4-5-6-7-8...  
0-1-2-3-4-5-6-7  
1-2-3-4-5-6-7-8  
2-3-4-5-6-7-8-9  
0-1-2-3-4-....-13-14-15  
1-2-3-4-5-....-14-15-16  
2-3-4-5-6-....-15-16-17  
No-wrap  
.
.
.
.
.
.
.
.
Autoselect Mode  
By writing the autoselect command sequences to the system, the device enters the autoselect mode. This mode can be read only by  
asynchronous read mode. The system can then read autoselect codes from the internal register(which is separate from the memory  
array). Standard asynchronous read cycle timings apply in this mode. The device offers the Autoselect mode to identify manufacturer  
and device type by reading a binary code. In addition, this mode allows the host system to verify the block protection or unprotection.  
Table 5 shows the address and data requirements. The autoselect command sequence may be written to an address within a bank  
that is in the read mode, erase-suspend-read mode or program-suspend-read mode. The autoselect command may not be written  
while the device is actively programming or erasing in the device. The autoselect command sequence is initiated by first writing two  
unlock cycles. This is followed by a third write cycle that contains the address and the autoselect command. Note that the block  
address is needed for the verification of block protection. The system may read at any address within the same bank any number of  
times without initiating another autoselect command sequence. And the burst read should be prohibited during Autoselect Mode. To  
terminate the autoselect operation, write Reset command(F0H) into the command register.  
Table 9. Autoselct Mode Description  
Description  
Manufacturer ID  
Address  
(DA) + 00H  
(DA) + 01H  
(BA) + 02H  
(DA) + 03H  
Read Data  
ECH  
Device ID  
22F4H(Top Boot Block), 22F5H(Bottom Boot Block)  
01H (protected), 00H (unprotected)  
Block Protection/Unprotection  
Die revision ID & Handshaking  
0H : handshaking, 1H : non-handshaking  
Standby Mode  
When the CE and RESET inputs are both held at VCC ± 0.2V or the system is not reading or writing, the device enters Stand-by mode  
to minimize the power consumption. In this mode, the device outputs are placed in the high impedence state, independent of the OE  
input. When the device is in either of these standby modes, the device requires standard access time (tCE ) for read access before it  
is ready to read data. If the device is deselected during erasure or programming, the device draws active current until the operation is  
completed. ICC5 in the DC Characteristics table represents the standby current specification.  
Automatic Sleep Mode  
The device features Automatic Sleep Mode to minimize the device power consumption during both asynchronous and burst mode.  
When addresses remain stable for tAA+60ns, the device automatically enables this mode. The automatic sleep mode is independent  
of the CE, WE, and OE control signals. In a sleep mode, output data is latched and always available to the system. When addresses  
are changed, the device provides new data without wait time. Automatic sleep mode current is equal to standby mode current.  
25  
Revision 0.0  
November 2003  
Preliminary  
KBF0x0800M  
MCP MEMORY  
Output Disable Mode  
When the OE input is at VIH , output from the device is disabled. The outputs are placed in the high impedance state.  
Block Protection & Unprotection  
To protect the block from accidental writes, the block protection/unprotection command sequence is used. On power up, all blocks in  
the device are protected. To unprotect a block, the system must write the block protection/unprotection command sequence. The first  
two cycles are written: addresses are don’t care and data is 60h. Using the third cycle, the block address (ABP) and command (60h)  
is written, while specifying with addresses A6, A1 and A0 whether that block should be protected (A6 = VIL, A1 = VIH, A0 = VIL) or  
unprotected (A6 = VIH, A1 = VIH, A0 = VIL). After the third cycle, the system can continue to protect or unprotect additional cycles, or  
exit the sequence by writing F0h (reset command).  
The device offers three types of data protection at the block level:  
· The block protection/unprotection command sequence disables or re-enables both program and erase operations in any block.  
· When WP is at VIL, the two outermost blocks are protected.  
· When VPP is at VIL, all blocks are protected.  
Note that user never float the Vpp and WP, that is, Vpp is always connected with VIH, VIL or VID and WP is VIH or VIL.  
Hardware Reset  
The device features a hardware method of resetting the device by the RESET input. When the RESET pin is held low(VIL) for at least  
a period of tRP, the device immediately terminates any operation in progress, tristates all outputs, and ignores all read/write com-  
mands for the duration of the RESET pulse. The device also resets the internal state machine to asynchronous read mode. To  
ensure data integrity, the interrupted operation should be reinitiated once the device is ready to accept another command sequence.  
As previously noted, when RESET is held at VSS ± 0.2V, the device enters standby mode. The RESET pin may be tied to the system  
reset pin. If a system reset occurs during the Internal Program or Erase Routine, the device will be automatically reset to the asyn-  
chronous read mode; this will enable the systems microprocessor to read the boot-up firmware from the Flash memory. If RESET is  
asserted during a program or erase operation, the device requires a time of tREADY (during Internal Routines) before the device is  
ready to read data again. If RESET is asserted when a program or erase operation is not executing, the reset operation is completed  
within a time of tREADY (not during Internal Routines). tRH is needed to read data after RESET returns to VIH. Refer to the AC Char-  
acteristics tables for RESET parameters and to Figure 6 for the timing diagram.  
Software Reset  
The reset command provides that the bank is reseted to read mode, erase-suspend-read mode or program-suspend-read mode. The  
addresses are in Don’t Care state. The reset command may be written between the sequence cycles in an erase command  
sequence before erasing begins, or in an program command sequence before programming begins. If the device begins erasure or  
programming, the reset command is ignored until the operation is completed. If the program command sequence is written to a bank  
that is in the Erase Suspend mode, writing the reset command returns that bank to the erase-suspend-read mode. The reset com-  
mand valid between the sequence cycles in an autoselect command sequence. In an autoselect mode, the reset command must be  
written to return to the read mode. If a bank entered the autoselect mode while in the Erase Suspend mode, writing the reset com-  
mand returns that bank to the erase-suspend-read mode. Also, if a bank entered the autoselect mode while in the Program Suspend  
mode, writing the reset command returns that bank to the program-suspend-read mode. If DQ5 goes high during a program or erase  
operation, writing the reset command returns the banks to the read mode. (or erase-suspend-read mode if the bank was in Erase  
Suspend)  
Program  
The device can be programmed in units of a word. Programming is writing 0's into the memory array by executing the Internal Pro-  
gram Routine. In order to perform the Internal Program Routine, a four-cycle command sequence is necessary. The first two cycles  
are unlock cycles. The third cycle is assigned for the program setup command. In the last cycle, the address of the memory location  
and the data to be programmed at that location are written. The device automatically generates adequate program pulses and veri-  
fies the programmed cell margin by the Internal Program Routine. During the execution of the Routine, the system is not required to  
provide further controls or timings. During the Internal Program Routine, commands written to the device will be ignored.  
Note that a hardware reset during a program operation will cause data corruption at the corresponding location.  
Accelerated Program Operation  
The device provides accelerated program operations through the Vpp input. Using this mode, faster manufacturing throughput at the  
factory is possible. When VID is asserted on the Vpp input, the device automatically enters the Unlock Bypass mode, temporarily  
unprotects any protected blocks, and uses the higher voltage on the input to reduce the time required for program operations. In  
accelerated program mode, the system would use a two-cycle program command sequence. By removing VID returns the device to  
normal operation mode.  
26  
Revision 0.0  
November 2003  
Preliminary  
KBF0x0800M  
MCP MEMORY  
Unlock Bypass  
The device provides the unlock bypass mode to save its operation time. This mode is possible for program, block erase and chip  
erase operation. There are two methods to enter the unlock bypass mode. The mode is invoked by the unlock bypass command  
sequence or the assertion of VID on VPP pin. Unlike the standard program/erase command sequence that contains four bus cycles,  
the unlock bypass program/erase command sequence comprises only two bus cycles. The unlock bypass mode is engaged by issu-  
ing the unlock bypass command sequence which is comprised of three bus cycles. Writing first two unlock cycles is followed by a  
third cycle containing the unlock bypass command (20H). Once the device is in the unlock bypass mode, the unlock bypass pro-  
gram/erase command sequence is necessary. The unlock bypass program command sequence is comprised of only two bus cycles;  
writing the unlock bypass program command (A0H) is followed by the program address and data. This command sequence is the  
only valid one for programming the device in the unlock bypass mode. Also, The unlock bypass erase command sequence is com-  
prised of two bus cycles; writing the unlock bypass block erase command(80H-30H) or writing the unlock bypass chip erase com-  
mand(80H-10H). This command sequences are the only valid ones for erasing the device in the unlock bypass mode. The unlock  
bypass reset command sequence is the only valid command sequence to exit the unlock bypass mode. The unlock bypass reset  
command sequence consists of two bus cycles. The first cycle must contain the data (90H). The second cycle contains only the data  
(00H). Then, the device returns to the read mode.  
To enter the unlock bypass mode in hardware level, the VID also can be used. By assertion VID on the VPP pin, the device enters the  
unlock bypass mode. Also, the all blocks are temporarily unprotected when the device using the VID for unlock bypass mode. To exit  
the unlock bypass mode, just remove the asserted VID from the VPP pin.(Note that user never float the Vpp, that is, Vpp is always  
connected with VIH, VIL or VID.).  
Chip Erase  
To erase a chip is to write 1¢s into the entire memory array by executing the Internal Erase Routine. The Chip Erase requires six bus  
cycles to write the command sequence. The erase set-up command is written after first two "unlock" cycles. Then, there are two  
more write cycles prior to writing the chip erase command. The Internal Erase Routine automatically pre-programs and verifies the  
entire memory for an all zero data pattern prior to erasing. The automatic erase begins on the rising edge of the last WE pulse in the  
command sequence and terminates when DQ7 is "1". After that the device returns to the read mode.  
Block Erase  
To erase a block is to write 1¢s into the desired memory block by executing the Internal Erase Routine. The Block Erase requires six  
bus cycles to write the command sequence shown in Table 5. After the first two "unlock" cycles, the erase setup command (80H) is  
written at the third cycle. Then there are two more "unlock" cycles followed by the Block Erase command. The Internal Erase Routine  
automatically pre-programs and verifies the entire memory prior to erasing it. Multiple blocks can be erased sequentially by writing  
the sixth bus-cycle. Upon completion of the last cycle for the Block Erase, additional block address and the Block Erase command  
(30H) can be written to perform the Multi-Block Erase. For the Multi-Block Erase, only sixth cycle(block address and 30H) is  
needed.(Similarly, only second cycle is needed in unlock bypass block erase.) An 50us (typical) "time window" is required between  
the Block Erase command writes. The Block Erase command must be written within the 50us "time window", otherwise the Block  
Erase command will be ignored. The 50us "time window" is reset when the falling edge of the WE occurs within the 50us of "time  
window" to latch the Block Erase command. During the 50us of "time window", any command other than the Block Erase or the  
Erase Suspend command written to the device will reset the device to read mode. After the 50 us of "time window", the Block Erase  
command will initiate the Internal Erase Routine to erase the selected blocks. Any Block Erase address and command following the  
exceeded "time window" may or may not be accepted. No other commands will be recognized except the Erase Suspend command  
during Block Erase operation.  
Erase Suspend / Resume  
The Erase Suspend command interrupts the Block Erase to read or program data in a block that is not being erased. Also, it is pos-  
sible to protect or unprotect of the block that is not being erased in erase suspend mode. The Erase Suspend command is only valid  
during the Block Erase operation including the time window of 50 us. The Erase Suspend command is not valid while the Chip Erase  
or the Internal Program Routine sequence is running. When the Erase Suspend command is written during a Block Erase operation,  
the device requires a maximum of 20 us(recovery time) to suspend the erase operation. Therefore  
system must wait for  
20us(recovery time) to read the data from the bank which include the block being erased. Otherwise, system can read the data  
immediately from a bank which don’t include the block being erased without recovery time(max. 20us) after Erase Suspend com-  
mand. And, after the maximum 20us recovery time, the device is availble for programming data in a block that is not being erased.  
But, when the Erase Suspend command is written during the block erase time window (50 us) , the device immediately terminates  
the block erase time window and suspends the erase operation. The system may also write the autoselect command sequence  
when the device is in the Erase Suspend mode. When the Erase Resume command is executed, the Block Erase operation will  
resume. When the Erase Suspend or Erase Resume command is executed, the addresses are in Don't Care state.  
27  
Revision 0.0  
November 2003  
Preliminary  
KBF0x0800M  
MCP MEMORY  
Program Suspend / Resume  
The device provides the Program Suspend/Resume mode. This mode is used to enable Data Read by suspending the Program  
operation. The device accepts a Program Suspend command in Program mode(including Program operations performed during  
Erase Suspend) but other commands are ignored. After input of the Program Suspend command, 2us is needed to enter the Pro-  
gram Suspend Read mode. Therefore system must wait for 2us(recovery time) to read the data from the block being programmed.  
Otherwise, system can read the data immediately from a any block(except for the block being programmed) without recovery time  
after Program Suspend command. Like an Erase Suspend mode, the device can be returned to Program mode by using a Program  
Resume command.  
Read While Write Operation  
The device is capable of reading data from one bank while writing in the other banks. This is so called the Read While Write opera-  
tion. An erase operation may also be suspended to read from or program to another location within the same bank(except the block  
being erased). The Read While Write operation is prohibited during the chip erase operation. Figure 12 shows how read and write  
cycles may be initiated for simultaneous operation with zero latency. Refer to the DC Characteristics table for read-while-write cur-  
rent specifications.  
Low VCC Write Inhibit  
To avoid initiation of a write cycle during Vcc power-up and power-down, a write cycle is locked out for Vcc less than VLKO. If the Vcc  
< VLKO (Lock-Out Voltage), the command register and all internal program/erase circuits are disabled. Under this condition the  
device will reset itself to the read mode.Subsequent writes will be ignored until the Vcc level is greater than VLKO. It is the user’s  
responsibility to ensure that the control pins are logically correct to prevent unintentional writes when Vcc is above VLKO.  
Write Pulse “Glitch” Protection  
Noise pulses of less than 5ns (typical) on OE, CE, AVD or WE do not initiate a write cycle.  
Logical Inhibit  
Write cycles are inhibited by holding any one of OE = VIL , CE = VIH or WE = VIH. To initiate a write cycle, CE and WE must be a log-  
ical zero while OE is a logical one.  
Power-up Protection  
To avoid initiation of a write cycle during VCC power-up, RESET low must be asserted during Power-up. After RESET goes high. the  
device is reset to the read mode.  
28  
Revision 0.0  
November 2003  
Preliminary  
KBF0x0800M  
MCP MEMORY  
FLASH MEMORY STATUS FLAGS  
The device has means to indicate its status of operation in the bank where a program or erase operation is in processes. Address  
must include bank address being executed internal routine operation. The status is indicated by raising the device status flag via cor-  
responding DQ pins. This status read is supported in burst mode and asynchronous mode. The status data can be read during burst  
read mode by using AVD signal with a bank address. That means status read is supported in synchronous mode. If status read is  
performed, the data provided in the burst read is identical to the data in the initial access. To initiate the synchronous read again, a  
new address and AVD pulse is needed after the host has completed status reads or the device has completed the program or erase  
operation. The corresponding DQ pins are DQ7, DQ6, DQ5, DQ3 and DQ2.  
Table 10. Hardware Sequence Flags  
Status  
DQ7  
DQ7  
0
DQ6  
Toggle  
Toggle  
DQ5  
DQ3  
DQ2  
1
Programming  
0
0
0
1
Block Erase or Chip Erase  
Erase Suspend Read  
Toggle  
Erase Suspended  
Block  
Toggle  
(Note 1)  
1
1
Data  
Toggle  
1
0
Data  
0
0
Data  
0
Non-EraseSuspended  
Block  
Erase Suspend Read  
Data  
DQ7  
DQ7  
Data  
Data  
1
In Progress  
Erase Suspend  
Program  
Non-EraseSuspended  
Block  
Program Suspended  
Block  
Toggle  
(Note 1)  
Program Suspend Read  
Program Suspend Read  
0
0
Non- program  
Suspended Block  
Data  
Data  
Data  
Data  
No  
Toggle  
Programming  
DQ7  
0
Toggle  
Toggle  
Toggle  
1
1
1
0
1
0
Exceeded  
Time Limits  
Block Erase or Chip Erase  
Erase Suspend Program  
(Note 2)  
No  
Toggle  
DQ7  
Notes :  
1. DQ2 will toggle when the device performs successive read operations from the erase/program suspended block.  
2. If DQ5 is High (exceeded timing limits), successive reads from a problem block will cause DQ2 to toggle.  
DQ7 : Data Polling  
When an attempt to read the device is made while executing the Internal Program, the complement of the data is written to DQ7 as  
an indication of the Routine in progress. When the Routine is completed an attempt to access to the device will produce the true data  
written to DQ7. When a user attempts to read the block being erased, DQ7 will be low. If the device is placed in the Erase/Program  
Suspend Mode, the status can be detected via the DQ7 pin. If the system tries to read an address which belongs to a block that is  
being erase suspended, DQ7 will be high. And, if the system tries to read an address which belongs to a block that is being program  
suspended, the output will be the true data of DQ7 itself. If a non-erase-suspended or non-program-suspended block address is  
read, the device will produce the true data to DQ7. If an attempt is made to program a protected block, DQ7 outputs complements  
the data for approximately 1ms and the device then returns to the Read Mode without changing data in the block. If an attempt is  
made to erase a protected block, DQ7 outputs complement data in approximately 100us and the device then returns to the Read  
Mode without erasing the data in the block.  
DQ6 : Toggle Bit  
Toggle bit is another option to detect whether an Internal Routine is in progress or completed. Once the device is at a busy state,  
DQ6 will toggle. Toggling DQ6 will stop after the device completes its Internal Routine. If the device is in the Erase/Program Sus-  
pend Mode, an attempt to read an address that belongs to a block that is being erased or programmed will produce a high output of  
DQ6. If an address belongs to a block that is not being erased or programmed, toggling is halted and valid data is produced at DQ6.  
If an attempt is made to program a protected block, DQ6 toggles for approximately 1us and the device then returns to the Read  
Mode without changing the data in the block. If an attempt is made to erase a protected block, DQ6 toggles for approximately 100ms  
and the device then returns to the Read Mode without erasing the data in the block.  
29  
Revision 0.0  
November 2003  
Preliminary  
KBF0x0800M  
MCP MEMORY  
DQ5 : Exceed Timing Limits  
If the Internal Program/Erase Routine extends beyond the timing limits, DQ5 will go High, indicating program/erase failure.  
DQ3 : Block Erase Timer  
The status of the multi-block erase operation can be detected via the DQ3 pin. DQ3 will go High if 50ms of the block erase time win-  
dow expires. In this case, the Internal Erase Routine will initiate the erase operation.Therefore, the device will not accept further write  
commands until the erase operation is completed. DQ3 is Low if the block erase time window is not expired. Within the block erase  
time window, an additional block erase command (30H) can be accepted. To confirm that the block erase command has been  
accepted, the software may check the status of DQ3 following each block erase command.  
DQ2 : Toggle Bit 2  
The device generates a toggling pulse in DQ2 only if an Internal Erase Routine or an Erase/Program Suspend is in progress. When  
the device executes the Internal Erase Routine, DQ2 toggles only if an erasing block is read. Although the Internal Erase Routine is  
in the Exceeded Time Limits, DQ2 toggles only if an erasing block in the Exceeded Time Limits is read. When the device is in the  
Erase/Program Suspend mode, DQ2 toggles only if an address in the erasing or programming block is read. If a non-erasing or non-  
programmed block address is read during the Erase/Program Suspend mode, then DQ2 will produce valid data. DQ2 will go High if  
the user tries to program a non-erase suspend block while the device is in the Erase Suspend mode.  
RDY: Ready  
Normally the RDY signal is used to indicate if new burst data is available at the rising edge of the clock cycle or not. If RDY is low  
state, data is not valid at expected time, and if high state, data is valid. Note that, if CE is low and OE is high, the RDY is high state.  
Start  
Start  
Yes  
No  
DQ7 = Data ?  
No  
DQ6 = Toggle ?  
Yes  
No  
No  
DQ5 = 1 ?  
DQ5 = 1 ?  
Yes  
Yes  
No  
Yes  
DQ6 = Toggle ?  
DQ7 = Data ?  
Yes  
Fail  
No  
Pass  
Pass  
Fail  
Figure 2. Toggle Bit Algorithms  
Figure 1. Data Polling Algorithms  
30  
Revision 0.0  
November 2003  
Preliminary  
KBF0x0800M  
MCP MEMORY  
Commom Flash Memory Interface  
Common Flash Momory Interface is contrived to increase the compatibility of host system software. It provides the specific informa-  
tion of the device, such as memory size and electrical features. Once this information has been obtained, the system software will  
know which command sets to use to enable flash writes, block erases, and control the flash component.  
When the system writes the CFI command(98H) to address 55H , the device enters the CFI mode. And then if the system writes the  
address shown in Table 11, the system can read the CFI data. Query data are always presented on the lowest-order data out-  
puts(DQ0-7) only. In word(x16) mode, the upper data outputs(DQ8-15) is 00h. To terminate this operation, the system must write  
the reset command.  
Table 11. Common Flash Memory Interface Code  
Addresses  
Description  
Data  
(Word Mode)  
10H  
11H  
12H  
0051H  
0052H  
0059H  
Query Unique ASCII string "QRY"  
13H  
14H  
0002H  
0000H  
Primary OEM Command Set  
15H  
16H  
0040H  
0000H  
Address for Primary Extended Table  
17H  
18H  
0000H  
0000H  
Alternate OEM Command Set (00h = none exists)  
19H  
1AH  
0000H  
0000H  
Address for Alternate OEM Extended Table (00h = none exists)  
Vcc Min. (write/erase)  
D7-D4: volt, D3-D0: 100 millivolt  
1BH  
1CH  
0017H  
0019H  
Vcc Max. (write/erase)  
D7-D4: volt, D3-D0: 100 millivolt  
Vpp(Acceleration Program) Supply Minimum  
00 = Not Supported, D7 - D4 : Volt, D3 - D0 : 100mV  
1DH  
1EH  
0085H  
0095H  
Vpp(Acceleration Program) Supply Maximum  
00 = Not Supported, D7 - D4 : Volt, D3 - D0 : 100mV  
Typical timeout per single word write 2N us  
1FH  
20H  
21H  
22H  
23H  
24H  
25H  
26H  
27H  
0004H  
0000H  
000AH  
0012H  
0005H  
0000H  
0004H  
0000H  
0018H  
Typical timeout for Min. size buffer write 2N us(00H = not supported)  
Typical timeout per individual block erase 2N ms  
Typical timeout for full chip erase 2N ms(00H = not supported)  
Max. timeout for word write 2N times typical  
Max. timeout for buffer write 2N times typical  
Max. timeout per individual block erase 2N times typical  
Max. timeout for full chip erase 2N times typical(00H = not supported)  
Device Size = 2N byte  
28H  
29H  
0000H  
0000H  
Flash Device Interface description  
2AH  
2BH  
0000H  
0000H  
Max. number of byte in multi-byte write = 2N  
Number of Erase Block Regions within device  
2CH  
0002H  
31  
Revision 0.0  
November 2003  
Preliminary  
KBF0x0800M  
MCP MEMORY  
Table 11. Common Flash Memory Interface Code (Continued)  
Description  
Addresses  
(Word Mode)  
Data  
2DH  
2EH  
2FH  
30H  
0007H  
0000H  
0020H  
0000H  
Erase Block Region 1 Information  
Bits 0~15: y+1=block number  
Bits 16~31: block size= z x 256bytes  
31H  
32H  
33H  
34H  
00FEH  
0000H  
0000H  
0001H  
Erase Block Region 2 Information  
Erase Block Region 3 Information  
35H  
36H  
37H  
38H  
0000H  
0000H  
0000H  
0000H  
39H  
3AH  
3BH  
3CH  
0000H  
0000H  
0000H  
0000H  
Erase Block Region 4 Information  
Query-unique ASCII string "PRI"  
40H  
41H  
42H  
0050H  
0052H  
0049H  
Major version number, ASCII  
Minor version number, ASCII  
43H  
44H  
0031H  
0030H  
Address Sensitive Unlock(Bits 1-0)  
0 = Required, 1= Not Required  
Silcon Revision Number(Bits 7-2)  
45H  
0000H  
Erase Suspend  
0 = Not Supported, 1 = To Read Only, 2 = To Read & Write  
46H  
47H  
0002H  
0001H  
Block Protect  
00 = Not Supported, 01 = Supported  
Block Temporary Unprotect 00 = Not Supported, 01 = Supported  
Block Protect/Unprotect scheme 00 = Not Supported, 01 = Supported  
48H  
49H  
0000H  
0001H  
Simultaneous Operation  
00 = Not Supported, 01 = Supported  
4AH  
4BH  
4CH  
0001H  
0001H  
0000H  
Burst Mode Type 00 = Not Supported, 01 = Supported  
Page Mode Type  
00 = Not Supported, 01 = 4 Word Page 02 = 8 Word Page  
Top/Bottom Boot Block Flag  
02H = Bottom Boot Device, 03H = Top Boot Device  
4DH  
0003H  
Max. Operating Clock Frequency (MHz )  
4EH  
4FH  
0042H  
0000H  
RWW(Read While Write) Functionality Restriction (00H = non exists , 01H = exists)  
Handshaking  
00 = Not Supported at both mode, 01 = Supported at Sync. Mode  
10 = Supported at Async. Mode, 11 = Supported at both Mode  
50H  
0001H  
32  
Revision 0.0  
November 2003  
Preliminary  
KBF0x0800M  
MCP MEMORY  
ABSOLUTE MAXIMUM RATINGS  
Parameter  
Symbol  
Rating  
-0.5 to +2.5  
-0.5 to +9.5  
-0.5 to +2.5  
-10 to +125  
-25 to +125  
-65 to +150  
5
Unit  
Vcc  
Vcc  
Voltage on any pin relative to VSS  
V
VPP  
VIN  
All Other Pins  
Commercial  
Extended  
Temperature Under Bias  
Tbias  
°C  
Storage Temperature  
Tstg  
°C  
mA  
°C  
Short Circuit Output Current  
IOS  
TA (Commercial Temp.)  
TA (Extended Temp.)  
0 to +70  
Operating Temperature  
-25 to + 85  
°C  
Notes :  
1. Minimum DC voltage is -0.5V on Input/ Output pins. During transitions, this level may fall to -2.0V for periods <20ns.  
Maximum DC voltage is Vcc+0.6V on input / output pins which, during transitions, may overshoot to Vcc+2.0V for periods <20ns.  
2. Minimum DC input voltage is -0.5V on VPP . During transitions, this level may fall to -2.0V for periods <20ns.  
Maximum DC input voltage is +9.5V on VPP which, during transitions, may overshoot to +12.0V for periods <20ns.  
3. Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions  
detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect reliability.  
RECOMMENDED OPERATING CONDITIONS ( Voltage reference to GND )  
Parameter  
Symbol  
Min  
1.7  
0
Typ.  
1.8  
0
Max  
1.9  
0
Unit  
V
Supply Voltage  
VCC  
Supply Voltage  
VSS  
V
DC CHARACTERISTICS  
Parameter  
Symbol  
ILI  
Test Conditions  
Min  
Typ  
Max  
+ 1.0  
35  
Unit  
Input Leakage Current  
VPP Leakage Current  
Output Leakage Current  
Active Burst Read Current  
VIN=VSS to VCC, VCC=VCCmax  
VCC=VCCmax , VPP=9.5V  
- 1.0  
-
-
mA  
mA  
ILIP  
-
ILO  
VOUT=VSS to VCC, VCC=VCCmax, OE=VIH  
CE=VIL, OE=VIH  
- 1.0  
-
+ 1.0  
30  
mA  
ICCB1  
-
-
-
-
-
-
-
-
25  
25  
3
mA  
mA  
mA  
mA  
mA  
mA  
mA  
10MHz  
30  
Active Asynchronous  
Read Current  
ICC1  
CE=VIL, OE=VIH  
1MHz  
4
Active Write Current (Note 2)  
Read While Write Current  
Accelerated Program Current  
Standby Current  
ICC2  
ICC3  
ICC4  
ICC5  
ICC6  
CE=VIL, OE=VIH, WE=VIL, VPP=VIH  
CE=VIL, OE=VIH  
15  
35  
15  
5
30  
55  
CE=VIL, OE=VIH , VPP=9.5V  
CE= RESET=VCC ± 0.2V  
RESET = VSS ± 0.2V  
30  
30  
Standby Current During Reset  
5
30  
mA  
CE=VSS ± 0.2V, Other Pins=VIL or VIH  
VIL = VSS ± 0.2V, VIH = VCC ± 0.2V  
Automatic Sleep Mode(Note 3)  
ICC7  
-
5
30  
mA  
Input Low Voltage  
VIL  
VIH  
-0.5  
VCC-0.4  
-
-
0.4  
VCC+0.4  
0.1  
V
V
V
V
V
V
Input High Voltage  
-
Output Low Voltage  
VOL  
VOH  
VID  
IOL = 100 mA , VCC=VCCmin  
IOH = -100 mA , VCC=VCCmin  
-
-
Output High Voltage  
VCC-0.1  
8.5  
-
Voltage for Accelerated Program  
Low VCC Lock-out Voltage  
9.0  
-
9.5  
VLKO  
1.0  
1.3  
Notes:  
1. Maximum ICC specifications are tested with VCC = VCCmax.  
2. ICC active while Internal Erase or Internal Program is in progress.  
3. Device enters automatic sleep mode when addresses are stable for tAA + 60ns.  
33  
Revision 0.0  
November 2003  
Preliminary  
KBF0x0800M  
MCP MEMORY  
CAPACITANCE(TA = 25 °C, VCC = 1.8V, f = 1.0MHz)  
Item  
Symbol  
Test Condition  
Min  
Max  
Unit  
pF  
Input Capacitance  
CIN  
VIN=0V  
-
-
-
10  
10  
10  
Output Capacitance  
Control Pin Capacitance  
COUT  
CIN2  
VOUT=0V  
VIN=0V  
pF  
pF  
Note : Capacitance is periodically sampled and not 100% tested.  
AC TEST CONDITION  
Parameter  
Value  
0V to VCC  
5ns  
Input Pulse Levels  
Input Rise and Fall Times  
Input and Output Timing Levels  
Output Load  
VCC/2  
CL = 30pF  
Device  
Under  
Test  
VCC  
Input & Output  
VCC/2  
VCC/2  
Test Point  
* CL = 30pF including scope  
and Jig capacitance  
0V  
Input Pulse and Test Point  
Output Load  
AC CHARACTERISTICS  
Synchronous/Burst Read  
7B  
(54 MHz)  
7C  
(66 MHz)  
Parameter  
Symbol  
Unit  
Min  
Max  
Min  
Max  
Initial Access Time  
tIAA  
tBA  
-
88.5  
-
71  
ns  
ns  
Burst Access Time Valid Clock to Output  
Delay  
-
14.5  
-
11  
AVD Setup Time to CLK  
AVD Hold Time from CLK  
AVD High to OE Low  
tAVDS  
tAVDH  
tAVDO  
tACS  
5
7
0
5
7
4
-
-
5
6
0
5
6
4
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
-
-
-
Address Setup Time to CLK  
Address Hold Time from CLK  
Data Hold Time from Next Clock Cycle  
Output Enable to Data  
-
-
tACH  
tBDH  
tOE  
-
-
-
-
20  
14.5  
20  
15  
-
20  
11  
20  
15  
-
Output Enable to RDY valid  
CE Disable to High Z  
tOER  
tCEZ  
-
-
-
-
OE Disable to High Z  
tOEZ  
-
-
CE Setup Time to CLK  
CLK to RDY Setup Time  
RDY Setup Time to CLK  
CLK High or Low Time  
tCES  
9
-
9
-
tRDYA  
tRDYS  
tCH/L  
tCHCL  
14.5  
-
11  
-
4
4.5  
-
4
3.5  
-
-
-
CLK Fall or Rise Time  
3
3
34  
Revision 0.0  
November 2003  
Preliminary  
KBF0x0800M  
MCP MEMORY  
SWITCHING WAVEFORMS  
5 cycles for initial access shown.  
CR setting : A14=0, A13=0, A12=1  
15.2 ns typ.  
tCES  
tCEZ  
CE  
CLK  
tAVDS  
tAVDH  
AVD  
A0-A22  
tBDH  
tACS  
tBA  
tACH  
Hi-Z  
DQ0-DQ15  
Da  
Da+1 Da+2  
tIAA  
Da+3  
Da+n  
tOEZ  
OE  
tOER  
tRDYS  
Hi-Z  
tRDYA  
Hi-Z  
RDY  
Figure 3. Burst Mode Read (66 MHz)  
Note: In order to avoid a bus conflict the OE signal is enabled on the next rising edge after AVD is going high.  
5 cycles for initial access shown.  
CR setting : A14=0, A13=0, A12=1  
18.5 ns typ.  
tCES  
tCEZ  
CE  
CLK  
tAVDS  
AVD  
A0-A22  
tAVDH  
tBDH  
tACS  
tBA  
tACH  
Hi-Z  
DQ0-DQ15  
Da  
Da+1 Da+2  
tIAA  
Da+3  
Da+n  
tOEZ  
OE  
tOER  
tRDYS  
Hi-Z  
tRDYA  
Hi-Z  
RDY  
Figure 4. Burst Mode Read (54 MHz)  
Note: In order to avoid a bus conflict the OE signal is enabled on the next rising edge after AVD is going high.  
35  
Revision 0.0  
November 2003  
Preliminary  
KBF0x0800M  
MCP MEMORY  
SWITCHING WAVEFORMS  
5 cycles for initial access shown.  
CR setting : A14=0, A13=0, A12=1  
15.2 ns typ.  
tCES  
CE  
CLK  
tAVDS  
tAVDH  
AVD  
A0-A22  
tBDH  
tACS  
tBA  
tACH  
DQ0-DQ15  
tIAA  
D6  
D7  
D0  
D2  
D7  
D1  
D3  
D0  
OE  
tOER  
tRDYS  
Hi-Z  
tRDYA  
RDY  
Figure 5. 8 word Linear Burst Mode with Wrap Around (66 MHz)  
Note: In order to avoid a bus conflict the OE signal is enabled on the next rising edge after AVD is going high.  
5 cycles for initial access shown.  
CR setting : A14=0, A13=0, A12=1  
15.2 ns typ.(66MHz)  
tCES  
CE  
CLK  
tAVDS  
AVD  
A0-A22  
tAVDH  
tBDH  
tACS  
tBA  
tACH  
DQ0-DQ15  
tIAA  
D6  
D7  
D0  
D2  
D7  
D1  
D3  
D0  
OE  
tOER  
tRDYS  
Hi-Z  
tRDYA  
RDY  
Figure 6. 8 word Linear Burst with RDY Set One Cycle Before Data (CR setting : A18=1)  
Note: In order to avoid a bus conflict the OE signal is enabled on the next rising edge after AVD is going high.  
36  
Revision 0.0  
November 2003  
Preliminary  
KBF0x0800M  
MCP MEMORY  
SWITCHING WAVEFORMS  
5 cycles for initial access shown.  
CR setting : A14=0, A13=0, A12=1  
15.2 ns typ(66MHz).  
tCES  
tCEZ  
CE  
CLK  
tAVDS  
tAVDH  
AVD  
A0-A22  
tBDH  
tACS  
tBA  
tACH  
Hi-Z  
DQ0-DQ15  
D6  
D7  
D8  
tIAA  
D9  
D13  
tOEZ  
OE  
tOER  
tRDYS  
Hi-Z  
tRDYA  
Hi-Z  
RDY  
Figure 7. 8 word Linear Burst Mode (No Wrap Case)  
Note: In order to avoid a bus conflict the OE signal is enabled on the next rising edge after AVD is going high.  
37  
Revision 0.0  
November 2003  
Preliminary  
KBF0x0800M  
MCP MEMORY  
AC CHARACTERISTICS  
Asynchronous Read  
7B  
7C  
Parameter  
Symbol  
Unit  
Min  
Max  
88.5  
88.5  
-
Min  
Max  
70  
70  
-
Access Time from CE Low  
Asynchronous Access Time  
AVD Low Time  
tCE  
tAA  
-
-
-
-
ns  
ns  
ns  
ns  
ns  
tAVDP  
tOE  
12  
-
12  
-
Output Enable to Output Valid  
20  
20  
-
Read  
0
-
0
Output Enable Hold  
Time  
tOEH  
tOEZ  
Toggle and  
Data Polling  
10  
-
-
10  
-
-
ns  
ns  
Output Disable to High Z(Note 1)  
15  
15  
Note: 1. Not 100% tested.  
SWITCHING WAVEFORMS  
Asynchronous Mode Read  
VIL  
CLK  
CE  
OE  
tOE  
tOEH  
WE  
tCE  
tOEZ  
DQ0-DQ15  
Valid RD  
tAA  
A0-A22  
VA  
Figure 8. Asynchronous Mode Read  
Note: VA=Valid Read Address, RD=Read Data.  
38  
Revision 0.0  
November 2003  
Preliminary  
KBF0x0800M  
MCP MEMORY  
AC CHARACTERISTICS  
Hardware Reset(RESET)  
Parameter  
All Speed Options  
Symbol  
Unit  
Max  
Min  
RESET Pin Low(During Internal Routines)  
to Read Mode (Note)  
tReady  
tReady  
-
20  
ms  
RESET Pin Low(NOT During Internal Routines)  
to Read Mode (Note)  
-
500  
ns  
RESET Pulse Width  
tRP  
tRH  
200  
200  
20  
-
-
-
ns  
ns  
ms  
Reset High Time Before Read (Note)  
RESET Low to Standby Mode  
tRPD  
Note: Not 100% tested.  
SWITCHING WAVEFORMS  
CE, OE  
RESET  
tRH  
tRP  
tReady  
Reset Timings NOT during Internal Routines  
CE, OE  
RESET  
tReady  
tRP  
Reset Timings during Internal Routines  
Figure 9. Reset Timings  
39  
Revision 0.0  
November 2003  
Preliminary  
KBF0x0800M  
MCP MEMORY  
AC CHARACTERISTICS  
Erase/Program Operation  
7B, 7C  
Parameter  
Symbol  
Unit  
Min  
100  
0
Typ  
Max  
WE Cycle Time(Note 1)  
Address Setup Time(Note 2)  
Address Hold Time(Note 2)  
Data Setup Time  
tWC  
tAS  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
-
tAH  
50  
50  
0
-
tDS  
-
Data Hold Time  
tDH  
-
Read Recovery Time Before Write  
tGHWL  
tCS  
-
0
5
-
CE Setup Time  
CE Hold Time  
tCH  
5
-
WE Pulse Width  
tWP  
80  
30  
0
-
WE Pulse Width High  
tWPH  
tSR/W  
tPGM  
tACCPGM  
tBERS  
tVPP  
tVPS  
tVCS  
-
Latency Between Read and Write Operations  
Word Programming Operation  
Accelerated Programming Operation  
Block Erase Operation (Note 3)  
VPP Rise and Fall Time  
-
-
11.5  
-
7
ms  
-
0.7  
sec  
ns  
ms  
500  
1
-
-
-
VPP Setup Time (During Accelerated Programming)  
VCC Setup Time  
ms  
50  
Notes:  
1. Not 100% tested.  
2. In write timing, addresses are latched on the falling edge of WE.  
3. Not include the preprogramming time.  
FLASH Erase/Program Performance  
Limits  
Typ.  
Parameter  
Unit  
sec  
ms  
Comments  
Min.  
Max.  
14  
32 Kword  
4 Kword  
-
-
-
-
-
-
-
-
0.7  
0.6  
184  
138  
11.5  
7
Block Erase Time  
Chip Erase Time  
12  
Excludes 00h programming prior to  
erasure  
-
Accelerated Chip Erase Time  
Word Programming Time  
-
210  
120  
276  
168  
Accelerated Word Programming Time  
Chip Programming Time  
Excludes system level overhead  
92  
sec  
Accelerated Chip Programming Time  
56  
Minimum 100,000 cycles guaran-  
teed in all Bank  
Erase/Program Endurance (Note 3)  
100,000  
-
-
Cycles  
Notes:  
1. 25°C, VCC = 1.8V, 100,000 cycles, typical pattern.  
2. System-level overhead is defined as the time required to execute the two or four bus cycle command necessary to program each  
word. In the preprogramming step of the Internal Erase Routine, all words are programmed to 00H before erasure.  
3. 100K Program/Erase Cycle in all Bank  
40  
Revision 0.0  
November 2003  
Preliminary  
KBF0x0800M  
MCP MEMORY  
SWITCHING WAVEFORMS  
Program Operations  
Program Command Sequence (last two cycles)  
Read Status Data  
tAS  
tAH  
A0:A22  
555h  
PA  
VA  
VA  
In  
DQ0-DQ15  
Complete  
Progress  
A0h  
PD  
tDS  
tDH  
CE  
OE  
WE  
tCH  
tWP  
tWPH  
tPGM  
tCS  
tWC  
VIL  
tVCS  
CLK  
VCC  
Notes:  
1. PA = Program Address, PD = Program Data, VA = Valid Address for reading status bits.  
2. “In progress” and “complete” refer to status of program operation.  
3. A16–A22 are don’t care during command sequence unlock cycles.  
4. Status reads in this figure is asynchronous read, but status read in synchronous mode is also supported.  
Figure 10. Program Operation Timing  
41  
Revision 0.0  
November 2003  
Preliminary  
KBF0x0800M  
MCP MEMORY  
SWITCHING WAVEFORMS  
Erase Operation  
Erase Command Sequence (last two cycles)  
Read Status Data  
555h for  
chip erase  
tAS  
tAH  
A0:A22  
DQ0-DQ15  
CE  
2AAh  
BA  
VA  
VA  
10h for  
chip erase  
In  
Complete  
Progress  
55h  
30h  
tDS  
tDH  
tCH  
OE  
tWP  
WE  
tWPH  
tBERS  
tCS  
tWC  
VIL  
CLK  
VCC  
tVCS  
Notes:  
1. BA is the block address for Block Erase.  
2. Address bits A16–A22 are don’t cares during unlock cycles in the command sequence.  
3. Status reads in this figure is asynchronous read, but status read in synchronous mode is also supported.  
Figure 11. Chlp/Block Erase Operations  
42  
Revision 0.0  
November 2003  
Preliminary  
KBF0x0800M  
MCP MEMORY  
SWITCHING WAVEFORMS  
Unlock Bypass Program Operations(Accelerated Program)  
CE  
WE  
PA  
A0:A22  
DQ0-DQ15  
Don’t Care  
A0h  
Don’t Care  
PD  
Don’t Care  
OE  
1us  
tVPS  
VID  
tVPP  
VPP  
VIL or VIH  
Unlock Bypass Block Erase Operations  
CE  
WE  
BA  
A0:A22  
555h for  
chip erase  
10h for  
chip erase  
DQ0-DQ15  
OE  
Don’t Care  
80h  
Don’t Care  
30h  
Don’t Care  
1us  
tVPS  
VID  
tVPP  
VPP  
VIL or VIH  
Notes:  
1. VPP can be left high for subsequent programming pulses.  
2. Use setup and hold times from conventional program operations.  
3. Unlock Bypass Program/Erase commands can be used when the VID is applied to Vpp.  
Figure 12. Unlock Bypass Operation Timings  
43  
Revision 0.0  
November 2003  
Preliminary  
KBF0x0800M  
MCP MEMORY  
SWITCHING WAVEFORMS  
Data Polling Operations  
tCES  
CE  
CLK  
tAVDS  
AVD  
tAVDH  
tACS  
A0-A22  
VA  
VA  
tACH  
DQ0-DQ15  
Status Data  
Status Data  
tIAA  
OE  
tRDYS  
Hi-Z  
RDY  
Notes:  
1. VA = Valid Address. When the Internal Routine operation is complete, and Data Polling will output true data.  
Figure 13. Data Polling Timings (During Internal Routine)  
Toggle Bit Operations  
tCES  
CE  
CLK  
tAVDS  
AVD  
tAVDH  
tACS  
A0-A22  
VA  
VA  
tACH  
DQ0-DQ15  
Status Data  
Status Data  
tIAA  
OE  
tRDYS  
Hi-Z  
RDY  
Notes:  
1. VA = Valid Address. When the Internal Routine operation is complete, the toggle bits will stop toggling.  
Figure 14. Toggle Bit Timings(During Internal Routine)  
44  
Revision 0.0  
November 2003  
Preliminary  
KBF0x0800M  
MCP MEMORY  
SWITCHING WAVEFORMS  
Read While Write Operations  
Last Cycle in  
Program or  
Block Erase  
Begin another  
Program or Erase  
Command Sequences  
Read status in same bank  
and/or array data from other bank  
Command Sequence  
tWC  
tRC  
tRC  
tWC  
CE  
OE  
tOE  
tOEH  
tGHWL  
WE  
tWPH  
tWP  
tDS  
tAA  
tDH  
tOEH  
RD  
DQ0-DQ15  
A0-A22  
PD/30h  
RD  
AAh  
tSR/W  
PA/BA  
RA  
RA  
555h  
Figure 15. Read While Write Operation  
Note:  
Breakpoints in waveforms indicate that system may alternately read array data from the “non-busy bank” and checking the status of the program or  
erase operation in the “busy” bank.  
45  
Revision 0.0  
November 2003  
Preliminary  
KBF0x0800M  
MCP MEMORY  
Crossing of First Word Boundary in Burst Read Mode  
The additional clock insertion for word boundary is needed only at the first crossing of word boundary. This means that no  
addtional clock cycle is needed from 2nd word boundary crossing to the end of continuous burst read. Also, the number of addtional  
clock cycle for the first word boundary can varies from zero to three cycles, and the exact number of additional clock cycle depends  
on the starting address of burst read.  
The rule to determine the additional clock cycle is as follows. All addresses can be divided into 4 groups. The applied rule is "The res-  
idue obtained when the address is divided by 4" or "two LSB bits of address". Using this rule, all address can be divided by 4 different  
groups as shown in below table. For simplicity of terminology, "4N" stands for the address of which the residue is "0"(or the two LSB  
bits are "00") and "4N+1" for the address of which the residue is "1"(or the two LSB bits are "01"), etc.  
The additional clock cycles for first word boundary crossing are zero, one, two or three when the burst read start from "4N" address,  
"4N+1" address, "4N+2" address or "4N+3" address respectively.  
Starting Address vs. Additional Clock Cycles for first word boundary  
Srarting Address Group  
for Burst Read  
Additional Clock Cycles for  
First Word Boundary Crossing  
The Residue of (Address/4)  
LSB Bits of Address  
4N  
0
1
2
3
00  
01  
10  
11  
0 cycle  
1 cycle  
4N+1  
4N+2  
4N+3  
2 cycles  
3 cycles  
Case 1 : Start from "4N" address group  
5 cycle for initial access shown.(54MHz case)  
A0-A22  
C
D
E
10  
11  
12  
13  
Data Bus  
F
CLK  
AVD  
C
D
11  
12  
13  
14  
F
10  
E
No Additional Cycle for First Word Boundary  
CE  
OE  
tCEZ  
tOEZ  
tOER  
RDY  
Notes:  
1. Address boundry occurs every 16 words beginning at address 00000FH , 00001FH , 00002FH , etc.  
2. Address 000000H is also a boundry crossing.  
3. No additional clock cycles are needed except for 1st boundary crossing.  
Figure 16. Crossing of first word boundary in burst read mode.  
46  
Revision 0.0  
November 2003  
Preliminary  
KBF0x0800M  
MCP MEMORY  
Case2 : Start from "4N+1" address group  
5 cycle for initial access shown.(54MHz case)  
A0-A22  
Data Bus  
D
E
F
10  
11  
12  
13  
CLK  
AVD  
D
E
11  
12  
13  
14  
F
10  
Additional 1 Cycle for First Word Boundary  
CE  
OE  
tCEZ  
tOEZ  
tOER  
RDY  
Case 3 : Start from "4N+2" address group  
5 cycle for initial access shown.(54MHz case)  
A0-A22  
Data Bus  
E
F
10  
11  
12  
13  
CLK  
AVD  
E
F
11  
12  
13  
14  
10  
Additional 2 Cycle for First Word Boundary  
CE  
OE  
tCEZ  
tOEZ  
tOER  
RDY  
Notes:  
1. Address boundry occurs every 16 words beginning at address 00000FH , 00001FH , 00002FH , etc.  
2. Address 000000H is also a boundry crossing.  
3. No additional clock cycles are needed except for 1st boundary crossing.  
Figure 16. Crossing of first word boundary in burst read mode.  
47  
Revision 0.0  
November 2003  
Preliminary  
KBF0x0800M  
MCP MEMORY  
Case4 : Start from "4N+3" address group  
5 cycle for initial access shown.(54MHz case)  
A0-A22  
Data Bus  
F
10  
1
12  
13  
CLK  
AVD  
F
10  
11  
12  
13  
14  
Additional 3 Cycle for First Word Boundary  
CE  
OE  
tCEZ  
tOEZ  
tOER  
RDY  
Notes:  
1. Address boundry occurs every 16 words beginning at address 00000FH , 00001FH , 00002FH , etc.  
2. Address 000000H is also a boundry crossing.  
3. No additional clock cycles are needed except for 1st boundary crossing.  
Figure 16. Crossing of first word boundary in burst read mode.  
48  
Revision 0.0  
November 2003  
Preliminary  
KBF0x0800M  
MCP MEMORY  
64Mb(4Mbx16) x 2  
Synchronous Burst UtRAM B-die  
49  
Revision 0.0  
November 2003  
Preliminary  
KBF0x0800M  
MCP MEMORY  
POWER UP SEQUENCE  
1. Apply power.  
2. Maintain stable power(Vcc min.=2.5V) for a minimum 200ms with CS and MRS high.  
TIMING WAVEFORM OF POWER UP  
200ms  
VCC(Min)  
VCC  
VCCQ(Min)  
VCCQ  
Min. 0ns  
MRS  
Min. 200ms  
Min. 0ns  
CS  
Power Up Mode  
Normal Operation  
(POWER UP)  
1. After VCC reaches VCC(Min.), wait 200ms with CS and MRS high. Then the device gets into the normal operation.  
50  
Revision 0.0  
November 2003  
Preliminary  
KBF0x0800M  
MCP MEMORY  
FUNCTIONAL DESCRIPTION for ASYNCHRONOUS MODE(A15=0)  
CS  
H
H
L
MRS  
H
OE  
X1)  
X1)  
H
WE  
X1)  
X1)  
H
LB  
X1)  
X1)  
X1)  
H
UB  
X1)  
X1)  
X1)  
H
DQ0~7  
High-Z  
High-Z  
High-Z  
High-Z  
Dout  
DQ8~15  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
Dout  
Mode  
Power  
Deselected  
Deselected  
Standby  
DPD  
L
H
Output Disabled  
Output Disabled  
Lower Byte Read  
Upper Byte Read  
Word Read  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
X1)  
L
X1)  
H
L
H
L
H
L
H
L
H
L
H
H
L
High-Z  
Dout  
L
H
L
H
L
L
Dout  
L
H
H
L
L
H
Din  
High-Z  
Din  
Lower Byte Write  
Upper Byte Write  
Word Write  
L
H
H
L
H
L
High-Z  
Din  
L
H
H
L
L
L
Din  
X1)  
X1)  
High-Z  
High-Z  
L
L
H
L
Mode Register Set  
1. X must be low or high state.  
2. In asynchronous mode, Clock and ADV are ignored.  
FUNCTIONAL DESCRIPTION for SYNCHRONOUS MODE(A15=1)  
CS  
H
H
L
MRS  
H
OE  
X1)  
X1)  
H
WE  
X1)  
X1)  
H
LB  
X1)  
X1)  
X1)  
H
UB  
X1)  
X1)  
X1)  
H
DQ0~7  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
Dout  
DQ8~15  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
Dout  
CLK  
X2)  
ADV  
X2)  
X2)  
H
Mode  
Power  
Standby  
DPD  
Deselected  
X2)  
L
Deselected  
X2)  
H
Output Disabled  
Output Disabled  
Read Add. Input Load  
Lower Byte Read  
Upper Byte Read  
Word Read  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
X1)  
X1)  
L
X1)  
H
X2)  
L
H
H
X1)  
L
X1)  
H
L
H
L
H
H
H
H
L
H
L
H
H
L
High-Z  
Dout  
L
H
L
H
L
L
Dout  
H
X2)  
X2)  
X2)  
X2)  
L
H
H
L
L
H
Din  
High-Z  
Din  
Lor  
Lor  
L or  
L
Lower Byte Write  
Upper Byte Write  
Word Write  
L
H
H
L
H
L
High-Z  
Din  
L
H
H
L
L
L
Din  
X1)  
X1)  
L
L
H
L
High-Z  
High-Z  
Mode Register Set  
1. X must be low or high state.  
2. X means "Don’t care"(can be low, high or toggling).  
51  
Revision 0.0  
November 2003  
Preliminary  
KBF0x0800M  
MCP MEMORY  
ABSOLUTE MAXIMUM RATINGS1)  
Item  
Voltage on any pin relative to Vss  
Power supply voltage relative to Vss  
Output power supply voltage relative to Vss  
Power Dissipation  
Symbol  
VIN, VOUT  
VDD  
Ratings  
Unit  
-0.2 to VDD+0.3V  
-0.2 to 3.0V  
-0.2 to 2.5V  
1.0  
V
V
V
VDDQ  
PD  
W
°C  
°C  
Storage temperature  
TSTG  
TA  
-65 to 150  
-25 to 85  
Operating Temperature  
1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation should be  
restricted to be used under recommended operating condition. Exposure to absolute maximum rating conditions longer than 1 second may affect reli-  
ability.  
STANDBY MODE STATE MACHINES  
CS=VIL, UB or LB=VIL  
WE=VIL, MRS=VIL  
CS=VIH  
MRS=VIH  
CS=VIL, UB or LB=VIL  
MRS=VIH  
Initial State  
(Wait 200ms)  
Standby  
Mode  
DPD  
Mode  
Power On  
MRS Setting  
Active  
MRS=VIL  
CS=VIH  
MRS=VIH  
NOTE : Default mode after power up is Asynchronous mode and DPD enable. But this default mode is not 100% guaranteed so MRS  
setting sequence is highly recommended after power up or after getting out of DPD mode.  
If Synchronous operation is needed, set A15=1. For more detail, please refer to the Mode Register Set(See Page 54).  
Once the device gets out of DPD mode, all the register settings are initialized into the default mode.  
For entry to DPD mode, drive MRS pin into VIL for over 0.5us(suspend period) during standby mode after MRS setting has  
been completed(A4=0). To get out of the DPD mode, drive MRS pin into VIH with wake up sequence(See Page 69).  
52  
Revision 0.0  
November 2003  
Preliminary  
KBF0x0800M  
MCP MEMORY  
RECOMMENDED DC OPERATING CONDITIONS1)  
Item  
Symbol  
VCC  
Min  
2.5  
1.7  
0
Typ  
2.6  
1.85  
0
Max  
Unit  
V
Power supply voltage  
I/O power supply voltage  
Ground  
2.7  
VCCQ  
Vss  
2.0  
V
0
V
VDDQ+0.22)  
0.4  
Input high voltage  
Input low voltage  
VIH  
1.5  
-0.23)  
-
V
VIL  
-
V
1. TA=-25 to 85°C, otherwise specified.  
2. Overshoot: VCC+1.0V in case of pulse width £20ns.  
3. Undershoot: -1.0V in case of pulse width £20ns.  
4. Overshoot and undershoot are sampled, not 100% tested.  
CAPACITANCE1)(f=1MHz, TA=25°C)  
Item  
Input capacitance  
Symbol  
CIN  
Test Condition  
Min  
Max  
16  
Unit  
pF  
VIN=0V  
VIO=0V  
-
-
Input/Output capacitance  
CIO  
20  
pF  
1. Capacitance is sampled, not 100% tested.  
DC AND OPERATING CHARACTERISTICS  
Symbol  
ILI  
Item  
Test Conditions  
Min  
Max  
2
Unit  
Typ  
Input leakage current  
Output leakage current  
VIN=Vss to VCCQ  
-2  
-2  
-
-
mA  
mA  
ILO  
CS=VIH, MRS=VIH, OE=VIH or WE=VIL, VIO=Vss to VCCQ  
2
Cycle time=Min, IIO=0mA, 100% duty, CS=VIL, MRS=VIH,  
VIN=VIL or VIH  
Average operating current  
ICC2  
-
-
45  
mA  
Output low voltage  
Output high voltage  
Standby Current(CMOS)  
Deep Power Down  
VOL  
VOH  
ISB1  
ISBD  
IOL=0.1mA  
-
1.4  
-
-
-
-
-
0.2  
-
V
V
IOH=-0.1mA  
CS³ VCCQ-0.2V, MRS³ VCCQ-0.2V, Other inputs=Vss to VCCQ  
MRS£0.2V, CS³ VCCQ-0.2V, Other inputs=Vss to VCCQ  
350  
50  
mA  
mA  
-
53  
Revision 0.0  
November 2003  
Preliminary  
KBF0x0800M  
MCP MEMORY  
DEVICE OPERATION  
The device has several modes : Synchronous Burst Read mode, Asynchronous Write mode, Standby mode and Deep Power  
Down(DPD) mode.  
Deep Power Down(DPD) mode is defined through Mode Register Set(MRS) option. Mode Register Set(MRS) option also defines  
Burst Length, Burst Type and First Access Latency Count at Synchronous Burst Read mode.  
To set Mode Register, the system must drive CS, ADV, WE and MRS to VIL and drive OE to VIH during valid address. To get into the  
Standby mode, the system must drive CS to VIH. To get into the Deep Power Down(DPD) mode, the system must drive CS to CMOS  
VIH(VCC-0.2V) and MRS to CMOS VIL(0.2V).  
Mode Register Set (MRS)  
The mode register stores the data for controlling the various operation modes of UtRAM. It programs Deep Power Down(DPD) mode,  
Burst Length, Burst Type, First Access Latency Count and various vendor specific options to make UtRAM useful for a variety of differ-  
ent applications. The default values of mode register are defined, therefore unless user specifies the specific modes, the device runs  
at default modes. If user wants to set modes other than default modes, user should write specific mode value on mode register after  
power up. The mode register is written by driving CS, ADV, WE and MRS to VIL and driving OE to VIH during valid address. The mode  
register is divided into various fields depending on the fields of functions. The Deep Power Down(DPD) field uses A4, Burst Length  
field uses A6~A7, Burst Type uses A8 and First Access Latency Count uses A9~A11. Refer to the Table below for detailed Mode Reg-  
ister Setting.  
Mode Register Setting according to field of function  
Address  
Function  
An~A16  
A15  
A14~A12  
A11~A9  
A8  
A7~A6  
A5  
A4  
RFU  
MS  
RFU  
Latency  
BT  
BL  
RFU  
DPD  
NOTE : RFU(Reserved for Future Use), BT(Burst Type), BL(Burst Length), DPD(Deep Power Down), MS(Mode Select)  
Mode Select  
Async./Sync.  
First Access Latency Count  
Burst Type  
Type  
Burst Length  
A9)  
0
A15  
0
A11  
0
A10  
0
Latency  
A8  
0
A7  
0
A6  
0
Length  
Async. Mode  
Reserved  
Linear  
4
1
Sync. Mode  
0
0
1
3
1
Interleave  
0
1
8
16  
0
1
0
4
1
0
0
1
1
5
1
1
Reserved  
1
0
0
6
1
0
1
Reserved  
Reserved  
Reserved  
1
1
0
1
1
1
Deep power Down  
A4  
DPD  
0
1
DPD Enable  
DPD Disable  
NOTE : Default mode(when user does not write any specific value to the mode register) is Async. mode and DPD enable.  
Even though the device used to work in the sync. mode, once the device gets out of DPD mode, all the register settings are  
initialized into the default mode.But this default mode is not 100% guaranteed so MRS setting sequence is highly recom-  
mended after power up or after getting out of DPD mode.  
54  
Revision 0.0  
November 2003  
Preliminary  
KBF0x0800M  
MCP MEMORY  
Asynchronous Read Operation  
Asynchronous read operation starts when CS, OE and UB or LB are driven to VIL under the valid address.(MRS and WE should be  
driven to VIH during asynchronous read operation)  
Asynchronous Write Operation  
Asynchronous write operation starts when CS, WE and UB or LB are driven to VIL under the valid address.(MRS and OE should be  
driven to VIH during write operation.)  
Asynchronous Write Operation in Synchronous Mode  
A write operation starts when CS, WE and UB & LB are driven to VIL under the valid address. Clock input does not have any affect to  
the write operation.(MRS and OE should be driven to VIH during write operation. ADV can be toggling for address latch or can be  
driven to VIL)  
Synchronous Burst Read Operation  
The device supports Linear Synchronous Burst Read mode and Interleave Synchronous Burst Read mode.  
For the optimized Burst Mode to each system, the system should determine how many clock cycles are desirable for the initial word of  
each burst access(First Access Latency Count), how many words the device outputs at an access(Burst Length) and which type of  
burst operation(Burst Type : Linear or Interleave) is desired.(See Table "Mode Register Set")  
Clock(CLK)  
The clock input is used as the reference for synchronous burst read operation of UtRAM. Synchronous burst read operation is syn-  
chronized to the rising edge of the clock. The clock transitions must swing between VIL and VIH.  
First Access Latency Count  
The First Access Latency Count configuration tells the device how many clocks must elapse from ADV de-assertion(VIH) before the  
first data word should be driven onto its data pins. This value depends on the input clock frequency.  
The supported Latency Count is as follows.  
Latency Count support : 3, 4, 5, 6  
Clock Frequency  
Latency Count  
Upto 54MHz  
Upto 40MHz  
4, 5, 6  
3, 4, 5, 6  
First Access Latency Configuration  
T
Clock  
ADV  
Address  
Latency 3  
Data out  
DQ1  
DQ2  
DQ1  
DQ3  
DQ2  
DQ1  
DQ4  
DQ3  
DQ2  
DQ1  
DQ5  
DQ6  
DQ5  
DQ4  
DQ3  
DQ7  
DQ6  
DQ5  
DQ4  
DQ8  
DQ7  
DQ6  
DQ5  
DQ9  
DQ8  
DQ7  
DQ6  
Latency 4  
DQ4  
DQ3  
DQ2  
Data out  
Latency 5  
Data out  
Latency 6  
Data out  
NOTE : Other First Access Latency Configuration settings are reserved.  
Only one rising edge of the clock is allowed during ADV low pulse  
55  
Revision 0.0  
November 2003  
Preliminary  
KBF0x0800M  
MCP MEMORY  
Burst Sequence  
Start  
Burst Address Sequence  
8 word Burst  
4 word Burst  
16 word Burst  
Address  
Linear  
0-1-2-3  
1-2-3-0  
2-3-0-1  
3-0-1-2  
Interleave  
0-1-2-3  
1-0-3-2  
2-3-0-1  
3-2-1-0  
Linear  
Interleave  
Linear  
Interleave  
0-1-2-3-4...14-15  
1-0-3-2-5...15-14  
2-3-0-1-6...12-13  
3-2-1-0-7...13-12  
4-5-6-7-0...10-11  
5-4-7-6-1...11-10  
6-7-4-5-2...8-9  
7-6-5-4-3...9-8  
~
0
1
0-1-2-3-4-5-6-7  
1-2-3-4-5-6-7-0  
2-3-4-5-6-7-0-1  
3-4-5-6-7-0-1-2  
4-5-6-7-0-1-2-3  
5-6-7-0-1-2-3-4  
6-7-0-1-2-3-4-5  
7-0-1-2-3-4-5-6  
0-1-2-3-4-5-6-7  
1-0-3-2-5-4-7-6  
2-3-0-1-6-7-4-5  
3-2-1-0-7-6-5-4  
4-5-6-7-0-1-2-3  
5-4-7-6-1-0-3-2  
6-7-4-5-2-3-0-1  
7-6-5-4-3-2-1-0  
0-1-2-3-4...14-15  
1-2-3-4...14-15-0  
2-3-4...14-15-0-1  
3-4-5...15-0-1-2  
4-5-6...15-0-1-2-3  
5-6...15-0-1-2-3-4  
6-7...15-0-1-2-3-4-5  
7-8...15-0-1...5-6  
~
2
3
4
5
6
7
~
14  
15  
14-15-0-1...12-13  
15-0-1...12-13-14  
14-15-12-13-10...0-1  
15-14-13-12-11...1-0  
Burst Stop  
Burst stop is used when the system wants to stop burst operation on special purpose. If driving CS to VIH during burst read operation,  
then burst operation will be stopped. During burst read operation, the new burst operation by ADV can not be issued. The new burst  
operation can be issued only after the previous burst operation is finished.  
56  
Revision 0.0  
November 2003  
Preliminary  
KBF0x0800M  
MCP MEMORY  
AC OPERATING CONDITIONS  
TEST CONDITIONS(Test Load and Test Input/Output Reference)  
Input pulse level: 0.2 to VCCQ-0.2V  
Input rising and falling time: 3ns  
Input and output reference voltage: 0.5 x VCCQ  
Output load: CL=50pF  
ASYNCHRONOUS AC CHARACTERISTICS (VCC=2.5~2.7V, VCCQ=1.7~2.0V, TA=-25 to 85°C)  
Speed  
Parameter List  
Symbol  
Units  
Min  
Max  
Read Cycle Time  
tRC  
tAA  
85  
-
-
85  
85  
40  
40  
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address Access Time  
Chip Select to Output  
tCO  
tOE  
-
Output Enable to Valid Output  
UB, LB Access Time  
-
tBA  
-
Async.  
Read  
Chip Select to Low-Z Output  
UB, LB Enable to Low-Z Output  
Output Enable to Low-Z Output  
Chip Disable to High-Z Output  
UB, LB Disable to High-Z Output  
Output Disable to High-Z Output  
Output Hold  
tLZ  
10  
10  
5
tBLZ  
tOLZ  
tHZ  
-
-
0
25  
25  
25  
-
tBHZ  
tOHZ  
tOH  
tWC  
tCW  
tAS  
0
0
10  
85  
70  
0
Write Cycle Time  
-
Chip Select to End of Write  
Address Set-up Time to Beginning of Write  
Address Valid to End of Write  
UB, LB Valid to End of Write  
Write Pulse Width  
-
-
tAW  
tBW  
tWP  
tWR  
tDW  
tDH  
70  
70  
601)  
0
-
Async.  
Write  
-
-
Write Recovery Time  
-
Data to Write Time Overlap  
Data Hold from Write Time  
MRS Enable to Register Write Start  
Register Write Recovery Time  
End of Write to MRS Disable  
35  
0
-
-
tMW  
tRWR  
tWU  
0
500  
-
MRS  
5
0
-
1. tWP(min)=85ns for continuous write operation over 50 times.  
57  
Revision 0.0  
November 2003  
Preliminary  
KBF0x0800M  
MCP MEMORY  
ASYNCHRONOUS READ TIMING WAVEFORM  
TIMING WAVEFORM OF ASYNCHRONOUS READ CYCLE(1)(Address Controlled, CS=OE=VIL, MRS=WE=VIH, UB or LB=VIL)  
tRC  
Address  
tAA  
tOH  
Data Out  
Data Valid  
Previous Data Valid  
TIMING WAVEFORM OF ASYNCHRONOUS READ CYCLE(2)(MRS=WE=VIH)  
tRC  
Address  
tAA  
tOH  
tCO  
CS  
tHZ  
tBA  
UB, LB  
tBHZ  
tOE  
OE  
tOLZ  
tBLZ  
tLZ  
tOHZ  
High-Z  
Data out  
Data Valid  
(ASYNCHRONOUS READ CYCLE)  
1. tHZ and tOHZ are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage  
levels.  
2. At any given temperature and voltage condition, tHZ(Max.) is less than tLZ(Min.) both for a given device and from device to device  
interconnection.  
3. tOE(max) is met only when OE becomes enabled after tAA(max).  
4. If invalid address signals shorter than min. tRC are continuously repeated for over 4us, the device needs a normal read timing(tRC) or  
needs to sustain standby state for min. tRC at least once in every 4us.  
5. In asynchronous mode, Clock and ADV are ignored.  
58  
Revision 0.0  
November 2003  
Preliminary  
KBF0x0800M  
MCP MEMORY  
ASYNCHRONOUS WRITE TIMING WAVEFORM  
TIMING WAVEFORM OF WRITE CYCLE(1)(MRS=VIH, OE=VIH, WE Controlled)  
tWC  
Address  
tWR(4)  
tCW(2)  
CS  
tAW  
tBW  
UB, LB  
tWP(1)  
WE  
tAS(3)  
tDW  
tDH  
High-Z  
High-Z  
High-Z  
Data in  
Data Valid  
Data out  
High-Z  
TIMING WAVEFORM OF WRITE CYCLE(2)(MRS=VIH, OE=VIH, UB & LB Controlled)  
tWC  
Address  
tWR(4)  
tCW(2)  
CS  
tAW  
tBW  
UB, LB  
tAS(3)  
tWP(1)  
WE  
tDH  
tDW  
Data in  
Data Valid  
High-Z  
Data out  
High-Z  
(WRITE CYCLE)  
1. A write occurs during the overlap(tWP) of low CS and low WE. A write begins when CS goes low and WE goes low with asserting UB  
or LB for single byte operation or simultaneously asserting UB and LB for double byte operation. A write ends at the earliest transition  
when CS goes high and WE goes high. The tWP is measured from the beginning of write to the end of write.  
2. tCW is measured from the CS going low to the end of write.  
3. tAS is measured from the address valid to the beginning of write.  
4. tWR is measured from the end of write to the address change. tWR is applied in case a write ends with CS or WE going high.  
5. In asynchronous mode, Clock and ADV are ignored.  
59  
Revision 0.0  
November 2003  
Preliminary  
KBF0x0800M  
MCP MEMORY  
AC OPERATING CONDITIONS  
TEST CONDITIONS(Test Load and Test Input/Output Reference)  
Input pulse level: 0.2 to VCCQ-0.2V  
Input rising and falling time: 3ns  
Input and output reference voltage: 0.5 x VCCQ  
Output load: CL=50pF  
SYNCHRONOUS AC CHARACTERISTICS (VCC=2.5~2.7V, VCCQ=1.7~2.0V, TA=-25 to 85°C, Maximum Main  
Clock Frequency=54MHz)  
Speed  
Parameter List  
Symbol  
Units  
Min  
18.5  
0
Max  
Clock Cycle Time  
T
200  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Clock  
Clock  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
-
Address Set-up Time to ADV Falling  
Address Hold Time from ADV Rising  
ADV Setup Time  
tAS(R)  
tAH(R)  
tADVS  
tADVH  
tCSS(R)  
tCSLH  
tCSHP  
tADHP  
tBEL  
-
7
-
7
-
ADV Hold Time  
7
-
CS Setup Time to Clock Rising  
CS Low Hold Time from Clock  
CS High Pulse Width  
7
-
10  
5
-
Sync.  
Burst  
Read  
-
ADV High Pulse Width  
5
-
UB, LB Valid to End of Latency  
Output Enable to End of Latency  
UB, LB Valid to Low-Z Output  
Output Enable to Low-Z Output  
Latency Clock Rising Edge to Data Output  
Output Hold  
1
-
tOEL  
1
-
tBLZ  
10  
5
-
tOLZ  
-
tCD  
-
12  
tOH  
3
-
Output High-Z  
tHZ  
-
10  
2)  
Write Cycle Time  
85  
0
-
tWC  
Address Set-up Time to ADV Falling  
Address Hold Time from ADV Rising  
CS Setup Time to ADV Rising  
Address Set-up Time to Beginning of Write  
Write Recovery Time  
tAS(W)  
tAH(W)  
tCSS(W)  
tAS  
-
7
-
10  
0
-
-
tWR  
0
-
Async.  
Write  
Burst Read End Clock to Next ADV Falling  
Chip Select to End of Write  
Address Valid to End of Write  
UB, LB Valid to End of Write  
Write Pulse Width  
tBEWA  
tCW  
3
-
70  
70  
70  
601)  
5 ns  
35  
0
-
tAW  
-
tBW  
-
tWP  
-
WE High Pulse Width  
tWHP  
tDW  
Latency-1 clock  
Data to Write Time Overlap  
Data Hold from Write Time  
MRS Enable to Register Write Start  
Register Write Recovery Time  
End of Write to MRS Disable  
-
ns  
ns  
ns  
ns  
ns  
tDH  
-
tMW  
0
500  
MRS  
tRWR  
tWU  
5
-
-
0
1. tWP(min)=85ns for continuous write operation over 50 times.  
2. In ADDRESS LATCH TYPE WRITE TIMING, tWC is same as tAW.  
60  
Revision 0.0  
November 2003  
Preliminary  
KBF0x0800M  
MCP MEMORY  
SYNCHRONOUS BURST READ TIMING WAVEFORM  
TIMING WAVEFORM OF BURST READ CYCLE(1) [Latency=5, Burst Length=4](WE=VIH, MRS=VIH)  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
T
CLK  
tADVH  
tADVS  
tADVH  
tADVS  
ADV  
tAH(R)  
tAH(R)  
tAS(R)  
tAS(R)  
Address  
CS  
Valid  
Don’t Care  
Valid  
tCSS(R)  
tCSS(R)  
tBEL  
LB, UB  
OE  
tBLZ  
tOEL  
tOLZ  
Latency 5  
Latency 5  
tCD  
tOH  
tHZ  
Data  
Undefined DQ0 DQ1 DQ2 DQ3  
(SYNCHRONOUS BURST READ CYCLE)  
1. Only one rising edge of the clock is allowed during ADV low pulse.  
2. The new burst operation can be issued only after the previous burst operation is finished.  
TIMING WAVEFORM OF BURST READ CYCLE(2) [Latency=5, Burst Length=4](WE=VIH, MRS=VIH)  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
T
CLK  
tADVH  
tADVS  
ADV  
tAH(R)  
tAS(R)  
Address  
CS  
Valid  
Don’t Care  
tCSS(R)  
tBEL  
LB, UB  
OE  
tBLZ  
tOEL  
tOLZ  
Latency 5  
tCD  
tOH  
Data  
Undefined DQ0 DQ1 DQ2 DQ3  
(SYNCHRONOUS BURST READ CYCLE)  
1.Only one rising edge of the clock is allowed during ADV low pulse.  
61  
Revision 0.0  
November 2003  
Preliminary  
KBF0x0800M  
MCP MEMORY  
BURST STOP TIMING WAVEFORM  
TIMING WAVEFORM OF BURST STOP by CS [Latency=5, Burst Length=4](WE=VIH, MRS=VIH)  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
T
CLK  
tADVH  
tADVS  
ADV  
Address  
CS  
tAH(R)  
tAS(R)  
Valid  
Valid  
tCSS(R)  
tCSHP  
tCSLH  
tBEL  
LB, UB  
OE  
tBLZ  
tOEL  
tOLZ  
Latency 5  
tOH  
tHZ  
tCD  
Data  
Undefined DQ0  
DQ1  
(SYNCHRONOUS BURST STOP)  
1. Only one rising edge of the clock is allowed during ADV low pulse.  
62  
Revision 0.0  
November 2003  
Preliminary  
KBF0x0800M  
MCP MEMORY  
ASYNCHRONOUS WRITE TIMING WAVEFORM in SYNCHRONOUS MODE  
TIMING WAVEFORM OF WRITE CYCLE(Address Latch Type)(MRS=VIH, OE=VIH, WE Controlled)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
CLK  
ADV  
tAS(W)  
tAH(W)  
Address  
Valid  
tCSS(W)  
tAW(2), tCW(3)  
tBW(4)  
CS  
UB, LB  
tWP(1)  
WE  
tAS  
tDW  
tDH  
Data in  
Data Valid  
Read Latency 5  
Read Latency - 1 Clock  
High-Z  
Data out  
High-Z  
TIMING WAVEFORM OF WRITE CYCLE(Address Latch Type)(MRS=VIH, OE=VIH, UB & LB Controlled)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
CLK  
ADV  
tAS(W)  
tAH(W)  
Address  
Valid  
tCSS(W)  
tAW(2), tCW(3)  
CS  
tBW(4)  
UB, LB  
WE  
tAS  
tWP(1)  
tDW  
tDH  
Data in  
Data Valid  
Read Latency 5  
Read Latency - 1 Clock  
High-Z  
High-Z  
Data out  
(ADDRESS LATCH TYPE WRITE CYCLE)  
1. A write occurs during the overlap(tWP) of low CS and low WE. A write begins when CS goes low and WE goes low with asserting UB  
or LB for single byte operation or simultaneously asserting UB and LB for double byte operation. A write ends at the earliest transition  
when CS goes high and WE goes high. The tWP is measured from the beginning of write to the end of write.  
2. tAW is measured from the address valid to the end of write. In this address latch type write timing, tWC is same as tAW.  
3. tCW is measured from the CS going low to the end of write.  
4. tBW is measured from the UB and LB going low to the end of write.  
5. Clock input does not have any affect to the write operation if WE is driven to low before Read Latency-1 clock. Read Latency-1 clock  
in write timing is just a reference to WE low going for proper write operation.  
63  
Revision 0.0  
November 2003  
Preliminary  
KBF0x0800M  
MCP MEMORY  
ASYNCHRONOUS WRITE TIMING WAVEFORM in SYNCHRONOUS MODE  
TIMING WAVEFORM OF WRITE CYCLE(Low ADV Type)(MRS=VIH, OE=VIH, WE Controlled)  
0
1
2
3
4
5
6
7
8
9
CLK  
ADV  
tWC  
Address  
tWR(4)  
tCW(2)  
CS  
tAW  
tBW  
UB, LB  
tWP(1)  
WE  
tAS(3)  
tDH  
tDW  
Data in  
Data Valid  
Read Latency 5  
Read Latency - 1 Clock  
High-Z  
Data out  
High-Z  
TIMING WAVEFORM OF WRITE CYCLE(Low ADV Type)(MRS=VIH, OE=VIH, UB & LB Controlled)  
0
1
2
3
4
5
6
7
8
9
CLK  
ADV  
tWC  
Address  
tWR(4)  
tCW(2)  
CS  
tAW  
tBW  
UB, LB  
tAS(3)  
tWP(1)  
WE  
tDH  
tDW  
Data Valid  
Data in  
Read Latency 5  
Read Latency - 1 Clock  
High-Z  
Data out  
High-Z  
(LOW ADV TYPE WRITE CYCLE)  
1. A write occurs during the overlap(tWP) of low CS and low WE. A write begins when CS goes low and WE goes low with asserting UB  
or LB for single byte operation or simultaneously asserting UB and LB for double byte operation. A write ends at the earliest transition  
when CS goes high and WE goes high. The tWP is measured from the beginning of write to the end of write.  
2. tCW is measured from the CS going low to the end of write.  
3. tAS is measured from the address valid to the beginning of write.  
4. tWR is measured from the end of write to the address change. tWR is applied in case a write ends with CS or WE going high.  
5. Clock input does not have any affect to the write operation if WE is driven to low before Read Latency-1 clock. Read Latency-1 clock  
in write timing is just a reference to WE low going for proper write operation.  
64  
Revision 0.0  
November 2003  
Preliminary  
KBF0x0800M  
MCP MEMORY  
ASYNCHRONOUS WRITE TIMING WAVEFORM in SYNCHRONOUS MODE  
TIMING WAVEFORM OF CONTINUOUS WRITE CYCLE(Low ADV Type)(MRS=VIH, OE=VIH, WE Controlled)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
CLK  
ADV  
tWC  
tWC  
Address  
tWR  
tWR  
tCW  
tCW  
CS  
tAW  
tBW  
tAW  
tBW  
UB, LB  
tWP  
tWP  
tWHP  
WE  
tAS  
tAS  
tDH  
tDH  
tDW  
tDW  
Data Valid  
Data in  
Data Valid  
High-Z  
Data out  
High-Z  
(LOW ADV TYPE CONTINUOUS WRITE CYCLE)  
1. A write occurs during the overlap(tWP) of low CS and low WE. A write begins when CS goes low and WE goes low with asserting UB  
or LB for single byte operation or simultaneously asserting UB and LB for double byte operation. A write ends at the earliest transition  
when CS goes high and WE goes high. The tWP is measured from the beginning of write to the end of write.  
2. tCW is measured from the CS going low to the end of write.  
3. tAS is measured from the address valid to the beginning of write.  
4. tWR is measured from the end of write to the address change. tWR is applied in case a write ends with CS or WE going high.  
5. Clock input does not have any affect to the continuous write operation if tWHP is shorter than (Read Latency - 1) clock duration.  
6. tWP(min)=85ns for continuous write operation over 50 times.  
65  
Revision 0.0  
November 2003  
Preliminary  
KBF0x0800M  
MCP MEMORY  
SYNCH. BURST READ to ASYNCH. WRITE(Address Latch Type) TIMING WAVEFORM  
[Latency=5, Burst Length=4](MRS=VIH)  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
21  
T
CLK  
tADVH  
tADVS  
ADV  
tBEWA  
tAH(W)  
tAS(W)  
tAH(R)  
tAS(R)  
Address  
CS  
Valid  
Valid  
tAW  
tCSS(R)  
tCSS(W)  
tCW  
tWP  
WE  
OE  
tAS  
tOEL  
tBEL  
tBW  
LB, UB  
Data in  
Data out  
tDH  
tDW  
Data Valid  
Latency 5  
High-Z  
tCD  
tOH  
DQ0 DQ1 DQ2 DQ3  
tHZ  
High-Z  
Read Latency-1 Clock  
(SYNCHRONOUS BURST READ CYCLE)  
1. Only one rising edge of the clock is allowed during ADV low pulse.  
2. The next operation can be issued only after the previous burst operation is finished.  
(ADDRESS LATCH TYPE ASYNCHRONOUS WRITE CYCLE - WE controlled)  
1. Clock input does not have any affect to the write operation if WE is driven to low before Read Latency-1 clock. Read Latency-1 clock  
in write timing is just a reference to WE low going for proper write operation.  
66  
Revision 0.0  
November 2003  
Preliminary  
KBF0x0800M  
MCP MEMORY  
SYNCH. BURST READ to ASYNCH. WRITE(Low ADV Type) TIMING WAVEFORM  
[Latency=5, Burst Length=4](MRS=VIH)  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
21  
T
CLK  
tADVH  
tADVS  
ADV  
tBEWA  
tAH(R)  
tAS(R)  
Address  
CS  
Valid  
Don’t Care  
Valid Address  
tWR  
tAW  
tCW  
tCSS(R)  
tWP  
WE  
OE  
tAS  
tOEL  
tBEL  
tBW  
LB, UB  
Data in  
Data out  
tDH  
tDW  
Data Valid  
Latency 5  
High-Z  
tCD  
tOH  
DQ0 DQ1 DQ2 DQ3  
tHZ  
High-Z  
Read Latency-1 Clock  
(SYNCHRONOUS BURST READ CYCLE)  
1. Only one rising edge of the clock is allowed during ADV low pulse.  
2. The next operation can be issued only after the previous burst operation is finished.  
(LOW ADV TYPE ASYNCHRONOUS WRITE CYCLE - WE controlled)  
1. Clock input does not have any affect to the write operation if WE is driven to low before Read Latency-1 clock. Read Latency-1 clock  
in write timing is just a reference to WE low going for proper write operation.  
67  
Revision 0.0  
November 2003  
Preliminary  
KBF0x0800M  
MCP MEMORY  
ASYNCH. WRITE(Address Latch Type) to SYNCH. BURST READ TIMING WAVEFORM  
[Latency=5, Burst Length=4](MRS=VIH)  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
T
0
CLK  
tADVH  
tAH(R)  
tADVS  
ADV  
tAH(W)  
tAS(W)  
tAS(R)  
Address  
CS  
Don’t Care  
tAW  
tCW  
Valid  
Valid  
Don’t Care  
tCSS(W)  
tCSS(R)  
tWP  
WE  
OE  
tAS  
tOEL  
tBW  
tBEL  
LB, UB  
Data in  
Data out  
tDH  
tDW  
Data Valid  
Latency 5  
tCD  
tOH  
tHZ  
High-Z  
Read Latency-1 Clock  
DQ0 DQ1 DQ2 DQ3  
(SYNCHRONOUS BURST READ CYCLE)  
1. Only one rising edge of the clock is allowed during ADV low pulse.  
2. The next operation can be issued only after the previous burst operation is finished.  
(ADDRESS LATCH TYPE ASYNCHRONOUS WRITE CYCLE - WE controlled)  
1. Clock input does not have any affect to the write operation if WE is driven to low before Read Latency-1 clock. Read Latency-1 clock  
in write timing is just a reference to WE low going for proper write operation.  
68  
Revision 0.0  
November 2003  
Preliminary  
KBF0x0800M  
MCP MEMORY  
ASYNCH. WRITE(Low ADV Type) to SYNCH. BURST READ TIMING WAVEFORM  
[Latency=5, Burst Length=4](MRS=VIH)  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
T
0
CLK  
tADVH  
tAH(R)  
tADtHAPDVS  
ADV  
tAS(R)  
tWC  
Address  
CS  
Valid  
Valid  
Don’t Care  
tAW  
tCW  
tWR  
tCSS(R)  
tWP  
WE  
OE  
tAS  
tOEL  
tBEL  
tBW  
LB, UB  
Data in  
Data out  
tDH  
tDW  
Data Valid  
Latency 5  
tCD  
tOH  
tHZ  
High-Z  
Read Latency-1 Clock  
DQ0 DQ1 DQ2 DQ3  
(SYNCHRONOUS BURST READ CYCLE)  
1. Only one rising edge of the clock is allowed during ADV low pulse.  
2. The next operation can be issued only after the previous burst operation is finished.  
(LOW ADV TYPE ASYNCHRONOUS WRITE CYCLE - WE controlled)  
1. Clock input does not have any affect to the write operation if WE is driven to low before Read Latency-1 clock. Read Latency-1 clock  
in write timing is just a reference to WE low going for proper write operation.  
69  
Revision 0.0  
November 2003  
Preliminary  
KBF0x0800M  
MCP MEMORY  
TIMING WAVEFORM OF MRS MODE SETTING(OE=VIH)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
CLK  
ADV  
tWC  
Address  
tRWR  
tCW  
tAW  
CS  
tBW  
UB, LB  
tWP  
WE  
tAS  
tWU  
tMW  
MRS  
Register Update Complete  
Register Write Complete  
Register Write Start  
(MRS SETTING TIMING)  
1. Clock input does not have any affect to the register write operation.  
70  
Revision 0.0  
November 2003  
Preliminary  
KBF0x0800M  
MCP MEMORY  
TIMING WAVEFORM OF DEEP POWER DOWN MODE ENTRY AND EXIT  
200ms  
0.5ms  
MRS  
Wake up  
Suspend  
Normal Operation  
Normal Operation  
MODE  
CS  
Deep Power Down Mode  
(DEEP POWER DOWN MODE)  
1. When MRS pin is driven to low under the standby state, the device gets into the Deep Power Down mode after 0.5ms suspend period.  
2. In this case, the stanby state is achieved by toggling CS pin high.  
3. To return to normal operation, the device needs Wake Up period.  
4. Wake Up sequence is just the same as Power Up sequence.  
71  
Revision 0.0  
November 2003  
Preliminary  
KBF0x0800M  
MCP MEMORY  
PACKAGE DIMENSION  
115-Ball FINE PITCH BGA Package (measured in millimeters)  
#A1 INDEX MARK  
8.00±0.10  
0.10 MAX  
A
8.00±0.10  
0.80x9=7.20  
(Datum A)  
B
10  
9
8
7
6
5
4
3
2 1  
A
B
C
D
E
F
0.80  
#A1  
(Datum B)  
G
H
J
K
L
M
N
P
3.60  
0.32±0.05  
1.30±0.10  
115-  
Æ
0.45±0.05  
BOTTOM VIEW  
TOP VIEW  
Æ
0.20  
M A B  
72  
Revision 0.0  
November 2003  

相关型号:

KBF090800M-D4080

Memory Circuit, 8MX16, CMOS, PBGA115, 8 X 12 MM, 1.40 MM HEIGHT, 0.80 MM PITCH, LEAD FREE, FBGA-115
SAMSUNG

KBF100SRW

SINGLE COLOR LED ARRAY, SUPER BRIGHT RED, 19.05 mm, ROHS COMPLIANT PACKAGE-16
KINGBRIGHT

KBF201

Glass Passivated Single In-Line Bridge Rectifiers
GOOD-ARK

KBF201U

Glass Passivated Single In-Line Bridge Rectifiers
GOOD-ARK

KBF201V

Glass Passivated Single In-Line Bridge Rectifiers
GOOD-ARK

KBF202

Glass Passivated Single In-Line Bridge Rectifiers
GOOD-ARK

KBF202U

Glass Passivated Single In-Line Bridge Rectifiers
GOOD-ARK

KBF202V

Glass Passivated Single In-Line Bridge Rectifiers
GOOD-ARK

KBF204

Glass Passivated Single In-Line Bridge Rectifiers
GOOD-ARK

KBF204U

Glass Passivated Single In-Line Bridge Rectifiers
GOOD-ARK

KBF204V

Glass Passivated Single In-Line Bridge Rectifiers
GOOD-ARK

KBF206

Glass Passivated Single In-Line Bridge Rectifiers
GOOD-ARK