KM736V799H-57 [SAMSUNG]

Cache SRAM, 128KX36, 3.3ns, CMOS, PBGA119, BGA-119;
KM736V799H-57
型号: KM736V799H-57
厂家: SAMSUNG    SAMSUNG
描述:

Cache SRAM, 128KX36, 3.3ns, CMOS, PBGA119, BGA-119

静态存储器
文件: 总17页 (文件大小:467K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
KM736V799  
128Kx36 Synchronous SRAM  
Document Title  
128Kx36-Bit Synchronous Pipelined Burst SRAM  
Revision History  
Remark  
Rev. No  
History  
Draft Date  
Preliminary  
Preliminary  
0.0  
0.1  
Initial draft  
April . 14. 1998  
April . 20. 1998  
Change Undershoot spec  
from -3.0V(pulse width£20ns) to -2.0V(pulse width£tCYC/2)  
Add Overshoot spec 4.6V(pulse width£tCYC/2)  
Change VIH max from 5.5V to VDD+0.5V  
Preliminary  
Preliminary  
0.2  
Change tCD from 3.2ns to 3.1ns at bin -50.  
Change tOE from 3.2ns to 3.1ns at bin -50.  
Change setup from 1.5ns to 1.4ns at bin -50.  
Change tCYC from 5.5ns to 5.4ns at bin -55.  
May . 23. 1998  
May . 25. 1998  
0.3  
Change tCD from 3.5ns to 3.1ns at bin -55.  
Change tOE from 3.5ns to 3.1ns at bin -55.  
Change setup from 1.5ns to 1.4ns at bin -55.  
.
Preliminary  
Preliminary  
0.4  
Add tCYC 175Mhz.  
Change ISB2 from 20mA to 30mA.  
May . 30. 1998  
June. 08. 1998  
0.5  
Modify DC characteristics( Input Leakage Current test Conditions)  
form VDD=VSS to VDD to Max.  
Final  
Final  
Final  
Fianl  
1.0  
2.0  
3.0  
4.0  
Final Release.  
June. 15 . 1998  
July. 10 . 1998  
Dec. 02. 1998  
Mar. 04. 1999  
Add tCYC 225Mhz.  
Add VDDQ Supply voltage( 2.5V )  
Change tCD , tOE from 3.1ns to 2.8ns at bin -44.  
Change tHZC max , tHZOE max from 3.0ns to 2.8ns at bin -44.  
Final  
Final  
Final  
5.0  
6.0  
7.0  
Add tCYC 250Mhz.  
April. 10. 1999  
May. 03. 1999  
May. 10. 1999  
Change tAH, tSH, tDH, tWH, tADVH, tCSH from 0.5ns to 0.4ns at bin -40.  
1. Change tAS, tSS, tDS, tWS, tADVS, tCSS from 1.4ns to 1.2ns at bin -44.  
2. Change tAH, tSH, tDH, tWH, tADVH, tCSH from 0.5ns to 0.4ns at bin -44.  
3. Change tAS, tSS, tDS, tWS, tADVS, tCSS from 1.2ns to 0.8ns at bin -40.  
4. Change tAH, tSH, tDH, tWH, tADVH, tCSH from 0.4ns to 0.3ns at bin -40.  
Final  
8.0  
1. Change ISB value from 120mA to 130mA at -57  
June. 24. 1999  
The attached data sheets are prepared and approved by SAMSUNG Electronics. SAMSUNG Electronics CO., LTD. reserve the right to change the  
specifications. SAMSUNG Electronics will evaluate and reply to your requests and questions on the parameters of this device. If you have any ques-  
tions, please contact the SAMSUNG branch office near your office, call or contact Headquarters.  
- 1 -  
June 1999  
Rev 8.0  
KM736V799  
128Kx36 Synchronous SRAM  
128Kx36-Bit Synchronous Pipelined Burst SRAM  
FEATURES  
GENERAL DESCRIPTION  
• Synchronous Operation.  
• 2 Stage Pipelined operation with 4 Burst.  
• On-Chip Address Counter.  
The KM736V799 is a 4,718,592-bit Synchronous Static Ran-  
dom Access Memory designed for high performance second  
level cache of Pentium and Power PC based System.  
It is organized as 128K words of 36bits and integrates address  
and control registers, a 2-bit burst address counter and added  
some new functions for high performance cache RAM applica-  
tions; GW, BW, LBO, ZZ. Write cycles are internally self-timed  
and synchronous.  
• Self-Timed Write Cycle.  
• On-Chip Address and Control Registers.  
• VDD= 3.3V+0.165V/-0.165V Power Supply.  
• VDDQ Supply Voltage 3.3V+0.165V/-0.165V for 3.3V I/O  
or 2.5V+0.4V/-0.125V for 2.5V I/O.  
• 5V Tolerant Inputs Except I/O Pins.  
• Byte Writable Function.  
• Global Write Enable Controls a full bus-width write.  
• Power Down State via ZZ Signal.  
• LBO Pin allows a choice of either a interleaved burst or a lin-  
ear burst.  
• Three Chip Enables for simple depth expansion with No Data  
Contention ; 2cycle Enable, 1cycle Disable.  
• Asynchronous Output Enable Control.  
• ADSP, ADSC, ADV Burst Control Pins.  
• TTL-Level Three-State Output.  
Full bus-width write is done by GW, and each byte write is per-  
formed by the combination of WEx and BW when GW is high.  
And with CS1 high, ADSP is blocked to control signals.  
Burst cycle can be initiated with either the address status pro-  
cessor(ADSP) or address status cache controller(ADSC)  
inputs. Subsequent burst addresses are generated internally in  
the system¢s burst sequence and are controlled by the burst  
address advance(ADV) input.  
LBO pin is DC operated and determines burst sequence(linear  
or interleaved).  
• 100-TQFP-1420A / 119BGA(7x17 Ball Grid Array Package)  
ZZ pin controls Power Down State and reduces Stand-by cur-  
rent regardless of CLK.  
The KM736V799 is fabricated using SAMSUNG¢s high perfor-  
mance CMOS technology and is available in a 100pin TQFP  
and 119BGA package. Multiple power and ground pins are uti-  
lized to minimize ground bounce.  
FAST ACCESS TIMES  
Symbol -40 -44 -50 -55 -57 Unit  
PARAMETER  
Cycle Time  
Clock Access Time  
4.0 4.4 5.0 5.4 5.7  
2.5 2.8 3.1 3.1 3.3  
2.8 2.8 3.1 3.1 3.3  
tCYC  
tCD  
ns  
ns  
ns  
Output Enable Access Time tOE  
LOGIC BLOCK DIAGRAM  
CLK  
LBO  
128Kx36  
BURST CONTROL  
LOGIC  
BURST  
MEMORY  
ADDRESS  
COUNTER  
ADV  
ADSC  
A¢0~A¢1  
ARRAY  
A0~A1  
A2~A16  
ADDRESS  
REGISTER  
A0~A16  
ADSP  
DATA-IN  
REGISTER  
CS  
CS  
CS  
1
2
2
GW  
BW  
WEa  
WEb  
WEc  
WEd  
OUTPUT  
REGISTER  
CONTROL  
LOGIC  
BUFFER  
OE  
ZZ  
DQa  
0 ~ DQd7  
DQPa ~ DQPd  
- 2 -  
June 1999  
Rev 8.0  
KM736V799  
128Kx36 Synchronous SRAM  
PIN CONFIGURATION(TOP VIEW)  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DQPb  
DQb7  
DQb6  
VDDQ  
VSSQ  
DQb5  
DQb4  
DQb3  
DQb2  
VSSQ  
VDDQ  
DQb1  
DQb0  
VSS  
DQPc  
DQc0  
DQc1  
VDDQ  
VSSQ  
DQc2  
DQc3  
DQc4  
DQc5  
VSSQ  
VDDQ  
DQc6  
DQc7  
N.C.  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
100 Pin  
TQFP  
(20mm x 14mm)  
N.C.  
VDD  
ZZ  
VDD  
N.C.  
VSS  
DQd0  
DQd1  
VDDQ  
VSSQ  
DQd2  
DQd3  
DQd4  
DQd5  
VSSQ  
VDDQ  
DQd6  
DQd7  
DQPd  
DQa7  
DQa6  
VDDQ  
VSSQ  
DQa5  
DQa4  
DQa3  
DQa2  
VSSQ  
VDDQ  
DQa1  
DQa0  
DQPa  
PIN NAME  
SYMBOL  
PIN NAME  
TQFP PIN NO.  
SYMBOL  
PIN NAME  
TQFP PIN NO.  
A0 - A16  
Address Inputs  
32,33,34,35,36,37  
44,45,46,47,48,49  
50,81,82,99,100  
83  
VDD  
VSS  
Power Supply(+3.3V)  
Ground  
15,41,65,91  
17,40,67,90  
ADV  
ADSP  
ADSC  
CLK  
CS1  
Burst Address Advance  
Address Status Processor 84  
Address Status Controller 85  
No Connect  
14,16,38,39,42,43,66  
N.C.  
Data Inputs/Outputs  
52,53,56,57,58,59,62,63  
68,69,72,73,74,75,78,79  
2,3,6,7,8,9,12,13  
18,19,22,23,24,25,28,29  
51,80,1,30  
DQa0~a7  
DQb0~b7  
DQc0~c7  
DQd0~d7  
DQPa~Pd  
Clock  
89  
98  
97  
92  
Chip Select  
Chip Select  
Chip Select  
CS2  
CS2  
WEx(x=a,b,c,d) Byte Write Inputs  
93,94,95,96  
OE  
Output Enable  
86  
88  
87  
64  
31  
Output Power Supply  
(2.5V or 3.3V)  
Output Ground  
4,11,20,27,54,61,70,77  
5,10,21,26,55,60,71,76  
VDDQ  
VSSQ  
GW  
BW  
ZZ  
Global Write Enable  
Byte Write Enable  
Power Down Input  
Burst Mode Control  
LBO  
- 3 -  
June 1999  
Rev 8.0  
KM736V799  
128Kx36 Synchronous SRAM  
119BGA PACKAGE PIN CONFIGURATIONS(TOP VIEW)  
KM736V799(128Kx36)  
1
2
3
4
ADSP  
ADSC  
VDD  
NC  
5
6
7
A
B
C
D
E
F
VDDQ  
NC  
A13  
A10  
A9  
A7  
A4  
VDDQ  
NC  
CS2  
A8  
CS2  
NC  
A12  
A11  
VSS  
VSS  
VSS  
WEc  
VSS  
NC  
A6  
A5  
NC  
DQc7  
DQc5  
VDDQ  
DQc2  
DQc0  
VDDQ  
DQd0  
DQd2  
VDDQ  
DQd5  
DQd7  
NC  
DQPc  
DQc6  
DQc4  
DQc3  
DQc1  
VDD  
VSS  
VSS  
VSS  
WEb  
VSS  
NC  
VSS  
WEa  
VSS  
VSS  
VSS  
NC  
A3  
DQPb  
DQb6  
DQb4  
DQb3  
DQb1  
VDD  
DQb7  
DQb5  
VDDQ  
DQb2  
DQb0  
VDDQ  
DQa0  
DQa2  
VDDQ  
DQa5  
DQa7  
NC  
CS1  
OE  
G
H
J
ADV  
GW  
VDD  
CLK  
NC  
K
L
DQd1  
DQd3  
DQd4  
DQd6  
DQPd  
A15  
VSS  
WEd  
VSS  
VSS  
VSS  
LBO  
A14  
NC  
DQa1  
DQa3  
DQa4  
DQa6  
DQPa  
A2  
M
N
P
R
T
BW  
A1  
A0  
VDD  
A16  
NC  
NC  
NC  
ZZ  
U
VDDQ  
NC  
NC  
NC  
NC  
VDDQ  
PIN NAME  
SYMBOL  
PIN NAME  
Address Inputs  
BGA PIN NO.  
SYMBOL  
PIN NAME  
BGA PIN NO.  
A0 - A16  
4P,4N,6R,5T,6A,6C VDD  
5C,5A,5B,3B,3A,3C VSS  
2C,2A,3T,2R,4T  
Power Supply(+3.3V) 4C,2J,4J,6J,4R  
Ground  
3D,5D,3E,5E,3F,5F,3H,5H  
3K,5K,3M,5M,3N,5N,3P,5P  
1B,7B,1C,7C,4D,3J,5J,4L  
1R,5R,7R,1T,2T,6T,2U,3U  
4U,5U,6U  
7K,6K,7L,6L,6M,6N,7N,7P  
7H,6H,7G,6G,6F,7E,6E,7D  
1H,2H,1G,2G,2F,1E,2E,1D  
1K,2K,1L,2L,2M,1N,2N,1P  
6P,6D,2D,2P  
ADV  
Burst Address Advance  
Address Status Processor 4A  
Address Status Controller  
Clock  
Chip Select  
Chip Select  
Chip Select  
Byte Write Inputs  
4G  
N.C.  
No Connect  
ADSP  
ADSC  
CLK  
CS1  
CS2  
CS2  
WEx  
(x=a,b,c,d)  
4B  
4K  
4E  
2B  
DQa0~a7  
DQb0~b7  
DQc0~c7  
DQd0~d7  
DQPa~Pd  
VDDQ  
Data Inputs/Outputs  
6B  
5L,5G,3G,3L  
Output Power Supply 1A,7A,1F,7F,1J,7J,1M,7M  
(2.5V or 3.3V) 1U,7U  
OE  
Output Enable  
4F  
4H  
4M  
7T  
3R  
GW  
BW  
ZZ  
Global Write Enable  
Byte Write Enable  
Power Down Input  
Burst Mode Control  
LBO  
- 4 -  
June 1999  
Rev 8.0  
KM736V799  
128Kx36 Synchronous SRAM  
FUNCTION DESCRIPTION  
The KM736V799 is a synchronous SRAM designed to support the burst address accessing sequence of the P6 and Power PC based  
microprocessor. All inputs (with the exception of OE, LBO and ZZ) are sampled on rising clock edges. The start and duration of the  
burst access is controlled by ADSC, ADSP and ADV and chip select pins.  
The accesses are enabled with the chip select signals and output enabled signals. Wait states are inserted into the access with  
ADV.  
When ZZ is pulled high, the SRAM will enter a Power Down State. At this time, internal state of the SRAM is preserved. When ZZ  
returns to low, the SRAM normally operates after 2cycles of wake up time. ZZ pin is pulled down internally.  
Read cycles are initiated with ADSP(regardless of WEx and ADSC)using the new external address clocked into the on-chip address  
register whenever ADSP is sampled low, the chip selects are sampled active, and the output buffer is enabled with OE. In read oper-  
ation the data of cell array accessed by the current address, registered in the Data-out registers by the positive edge of CLK, are car-  
ried to the Data-out buffer by the next positive edge of CLK. The data, registered in the Data-out buffer, are projected to the output  
pins. ADV is ignored on the clock edge that samples ADSP asserted, but is sampled on the subsequent clock edges. The address  
increases internally for the next access of the burst when WEx are sampled High and ADV is sampled low. And ADSP is blocked to  
control signals by disabling CS1.  
All byte write is done by GW(regaedless of BW and WEx.), and each byte write is performed by the combination of BW and WEx  
when GW is high.  
Write cycles are performed by disabling the output buffers with OE and asserting WEx. WEx are ignored on the clock edge that sam-  
ples ADSP low, but are sampled on the subsequent clock edges. The output buffers are disabled when WEx are sampled  
Low(regaedless of OE). Data is clocked into the data input register when WEx sampled Low. The address increases internally to the  
next address of burst, if both WEx and ADV are sampled Low. Individual byte write cycles are performed by any one or more byte  
write enable signals(WEa, WEb, WEc or WEd) sampled low. The WEa control DQa0 ~ DQa7 and DQPa, WEb controls DQb0 ~ DQb7  
and DQPb, WEc controls DQc0 ~ DQc7 and DQPc, and WEd control DQd0 ~ DQd7 and DQPd. Read or write cycle may also be initi-  
ated with ADSC, instead of ADSP. The differences between cycles initiated with ADSC and ADSP as are follows;  
ADSP must be sampled high when ADSC is sampled low to initiate a cycle with ADSC.  
WEx are sampled on the same clock edge that sampled ADSC low(and ADSP high).  
Addresses are generated for the burst access as shown below, The starting point of the burst sequence is provided by the external  
address. The burst address counter wraps around to its initial state upon completion. The burst sequence is determined by the state  
of the LBO pin. When this pin is Low, linear burst sequence is selected. When this pin is High, Interleaved burst sequence is  
selected.  
BURST SEQUENCE TABLE  
(Interleaved Burst)  
Case 4  
Case 1  
Case 2  
Case 3  
LBO PIN  
HIGH  
First Address  
A1  
A0  
A1  
A0  
A1  
A0  
A1  
A0  
0
0
1
1
0
1
0
1
0
0
1
1
1
0
1
0
1
1
0
0
0
1
0
1
1
1
0
0
1
0
1
0
Fourth Address  
BQ TABLE  
(Linear Burst)  
Case 1  
Case 2  
Case 3  
Case 4  
LBO PIN  
LOW  
First Address  
A1  
A0  
A1  
A0  
A1  
A0  
A1  
A0  
0
0
1
1
0
1
0
1
0
1
1
0
1
0
1
0
1
1
0
0
0
1
0
1
1
0
0
1
1
0
1
0
Fourth Address  
Note : 1. LBO pin must be tied to High or Low, and Floating State must not be allowed.  
- 5 -  
June 1999  
Rev 8.0  
KM736V799  
128Kx36 Synchronous SRAM  
TRUTH TABLES  
SYNCHRONOUS TRUTH TABLE  
CS1  
H
L
CS2  
X
L
CS2 ADSP ADSC ADV WRITE CLK  
ADDRESS ACCESSED  
OPERATION  
Not Selected  
X
X
H
X
H
L
X
L
L
X
X
L
X
X
X
X
X
X
X
X
L
X
X
X
X
X
X
L
N/A  
N/A  
Not Selected  
L
X
L
L
N/A  
Not Selected  
L
X
X
L
N/A  
Not Selected  
L
X
H
H
H
X
X
X
X
X
X
X
X
L
N/A  
Not Selected  
L
X
L
External Address  
External Address  
External Address  
Next Address  
Next Address  
Next Address  
Next Address  
Current Address  
Current Address  
Current Address  
Current Address  
Begin Burst Read Cycle  
Begin Burst Write Cycle  
Begin Burst Read Cycle  
Continue Burst Read Cycle  
Continue Burst Read Cycle  
Continue Burst Write Cycle  
Continue Burst Write Cycle  
Suspend Burst Read Cycle  
Suspend Burst Read Cycle  
Suspend Burst Write Cycle  
Suspend Burst Write Cycle  
L
L
H
H
H
X
H
X
H
X
H
X
L
L
L
H
H
H
L
X
H
X
H
X
H
X
H
X
X
X
X
X
X
X
X
H
H
H
H
H
H
H
H
L
L
L
L
H
H
H
H
H
H
L
L
Notes : 1. X means "Don¢t Care".  
2. The rising edge of clock is symbolized by .  
3. WRITE = L means Write operation in WRITE TRUTH TABLE.  
WRITE = H means Read operation in WRITE TRUTH TABLE.  
4. Operation finally depends on status of asynchronous input pins(ZZ and OE).  
WRITE TRUTH TABLE  
GW  
H
BW  
H
L
WEa  
X
WEb  
X
WEc  
X
WEd  
X
OPERATION  
READ  
H
H
H
H
H
READ  
H
L
L
H
H
H
WRITE BYTE a  
WRITE BYTE b  
WRITE BYTE c and d  
WRITE ALL BYTEs  
WRITE ALL BYTEs  
H
L
H
L
H
H
H
L
H
H
L
L
H
L
L
L
L
L
L
X
X
X
X
X
Notes : 1. X means "Don¢t Care".  
2. All inputs in this table must meet setup and hold time around the rising edge of CLK().  
ASYNCHRONOUS TRUTH TABLE  
(See Notes 1 and 2):  
OPERATION  
ZZ  
H
L
OE  
X
I/O STATUS  
High-Z  
Notes  
Sleep Mode  
1. X means "Don¢t Care".  
2. ZZ pin is pulled down internally  
L
DQ  
3. For write cycles that following read cycles, the output buffers must be  
disabled with OE, otherwise data bus contention will occur.  
4. Sleep Mode means power down state of which stand-by current does  
not depend on cycle time.  
5. Deselected means power down state of which stand-by current  
depends on cycle time.  
Read  
L
H
X
High-Z  
Write  
L
Din, High-Z  
High-Z  
Deselected  
L
X
- 6 -  
June 1999  
Rev 8.0  
KM736V799  
128Kx36 Synchronous SRAM  
PASS-THROUGH TRUTH TABLE  
PREVIOUS CYCLE  
PRESENT CYCLE  
NEXT CYCLE  
OPERATION  
WRITE  
OPERATION  
Initiate Read Cycle  
All L Address=An  
CS1  
WRITE OE  
Write Cycle, All bytes  
Read Cycle  
Data=Qn  
L
H
L
Address=An-1, Data=Dn-1  
Data=Qn-1 for all bytes  
Write Cycle, All bytes  
Address=An-1, Data=Dn-1  
No new cycle  
Data=Qn-1 for all bytes  
No carryover from  
previous cycle  
All L  
All L  
H
H
H
H
L
Write Cycle, All bytes  
Address=An-1, Data=Dn-1  
No new cycle  
Data=High-Z  
No carryover from  
previous cycle  
H
Initiate Read Cycle  
One L Address=An  
Data=Qn-1 for one byte  
Write Cycle, One byte  
Address=An-1, Data=Dn-1  
Read Cycle  
Data=Qn  
L
H
H
L
L
Write Cycle, One byte  
Address=An-1, Data=Dn-1  
No new cycle  
Data=Qn-1 for one byte  
No carryover from  
previous cycle  
One L  
H
Notes : 1. This operation makes written data immediately available at output during a read cycle preceded by a write cycle.s  
ABSOLUTE MAXIMUM RATINGS*  
PARAMETER  
Voltage on VDD Supply Relative to VSS  
Voltage on VDDQ Supply Relative to VSS  
Voltage on Input Pin Relative to VSS  
Voltage on I/O Pin Relative to VSS  
Power Dissipation  
SYMBOL  
VDD  
RATING  
-0.3 to 4.6  
VDD  
UNIT  
V
VDDQ  
VIN  
V
-0.3 to 6.0  
-0.3 to VDDQ+0.5  
2.2  
V
VIO  
V
PD  
W
°C  
°C  
°C  
Storage Temperature  
TSTG  
TOPR  
TBIAS  
-65 to 150  
0 to 70  
Operating Temperature  
Storage Temperature Range Under Bias  
-10 to 85  
*Note : Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only  
and functional operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not  
implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.  
OPERATING CONDITIONS at 3.3V I/O (0°C£ TA£70°C)  
PARAMETER  
Supply Voltage  
Ground  
SYMBOL  
VDD  
MIN  
3.135  
3.135  
0
Typ.  
3.3  
3.3  
0
MAX  
3.465  
3.465  
0
UNIT  
V
V
V
VDDQ  
VSS  
OPERATING CONDITIONS at 2.5V I/O(0°C £ TA £ 70°C)  
PARAMETER  
Supply Voltage  
Ground  
SYMBOL  
VDD  
MIN  
3.135  
2.375  
0
Typ.  
3.3  
2.5  
0
Max  
3.465  
2.9  
Unit  
V
VDDQ  
VSS  
V
0
V
CAPACITANCE*(TA=25°C, f=1MHz)  
PARAMETER  
Input Capacitance  
SYMBOL  
TEST CONDITION  
VIN=0V  
MIN  
MAX  
UNIT  
pF  
CIN  
-
-
6
8
Output Capacitance  
COUT  
VOUT=0V  
pF  
*Note : Sampled not 100% tested.  
- 7 -  
June 1999  
Rev 8.0  
KM736V799  
128Kx36 Synchronous SRAM  
DC ELECTRICAL CHARACTERISTICS(TA=0 to 70°C, VDD=3.3V+0.165V/-0.165V)  
PARAMETER  
Input Leakage Current(except ZZ)  
Output Leakage Current  
SYMBOL  
TEST CONDITIONS  
VDD = Max ; VIN=VSS to VDD  
MIN  
MAX  
+2  
UNIT  
mA  
IIL  
-2  
-2  
-
mA  
IOL  
Output Disabled, VOUT=VSS to VDDQ  
+2  
-40  
-44  
-50  
-55  
-57  
-40  
-44  
-50  
-55  
-57  
570  
520  
480  
450  
430  
160  
150  
140  
130  
130  
-
Device Selected, IOUT=0mA, ZZ£VIL,  
All Inputs=VIL or VIH , Cycle Time ³ cyc Min  
Operating Current  
ICC  
-
mA  
mA  
-
-
-
-
Device deselected, IOUT=0mA,ZZ£VIL,  
f=Max, All Inputs£0.2V or ³ VDD-0.2V  
ISB  
-
-
Standby Current  
-
Device deselected, IOUT=0mA, ZZ£0.2V,  
f = 0, All Inputs=fixed (VDD-0.2V or 0.2V)  
ISB1  
ISB2  
-
-
30  
30  
mA  
mA  
Device deselected, IOUT=0mA, ZZ³ VDD-0.2V,  
f=Max, All Inputs£VIL or ³ VIH  
Output Low Voltage(3.3V I/O)  
Output High Voltage(3.3V I/O)  
Output Low Voltage(2.5V I/O)  
Output High Voltage(2.5V I/O)  
Input Low Voltage(3.3V I/O)  
Input High Voltage(3.3V I/O)  
Input Low Voltage(2.5V I/O)  
Input High Voltage(2.5V I/O)  
VOL  
VOH  
VOL  
VOH  
VIL  
IOL = 8.0mA  
IOH = -4.0mA  
IOL = 1.0mA  
IOH = -1.0mA  
-
0.4  
V
V
V
V
V
V
V
V
2.4  
-
-
0.4  
-
2.0  
-0.5*  
2.0  
-0.3*  
1.7  
0.8  
VIH  
VIL  
VDD+0.5**  
0.7  
VIH  
VDD+0.5**  
*
VIL(Min)=-2.0(Pulse Width £ tCYC/2)  
** VIH(Max)=4.6(Pulse Width £ tCYC/2)  
** In Case of I/O Pins, the Max. VIH=VDDQ+0.5V  
TEST CONDITIONS  
(VDD=3.3V+0.165V/-0.165V,VDDQ=3.3V+0.165/-0.165V or VDD=3.3V+0.165V/-0.165V,VDDQ=2.5V+0.4V/-0.125V, TA=0 to 70°C)  
PARAMETER  
VALUE  
0 to 3V  
0 to 2.5V  
1ns  
Input Pulse Level(for 3.3V I/O)  
Input Pulse Level(for 2.5V I/O)  
Input Rise and Fall Time(Measured at 0.3V and 2.7V for 3.3V I/O)  
Input Rise and Fall Time(Measured at 0.3V and 2.1V for 2.5V I/O)  
Input and Output Timing Reference Levels for 3.3V I/O  
Input and Output Timing Reference Levels for 2.5V I/O  
Output Load  
1ns  
1.5V  
VDDQ/2  
See Fig. 1  
- 8 -  
June 1999  
Rev 8.0  
KM736V799  
128Kx36 Synchronous SRAM  
Output Load(A)  
Output Load(B)  
(for tLZC, tLZOE, tHZOE & tHZC)  
+3.3V for 3.3V I/O  
/+2.5V for 2.5V I/O  
Dout  
RL=50W  
VL=1.5V for 3.3V I/O  
319W / 1667W  
VDDQ/2 for 2.5V I/O  
30pF*  
Dout  
Z0=50W  
353W / 1538W  
5pF*  
* Capacitive Load consists of all components of  
the test environment.  
* Including Scope and Jig Capacitance  
Fig. 1  
AC TIMING CHARACTERISTICS(TA=0 to 70°C, VDD=3.3V+0.165V/-0.165V)  
-40  
-44  
-50  
-55  
-57  
PARAMETER  
SYMBOL  
UNIT  
MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX  
Cycle Time  
tCYC  
tCD  
4.0  
-
-
4.4  
-
-
5.0  
-
-
5.4  
-
-
5.7  
-
-
ns  
ns  
Clock Access Time  
2.5  
2.8  
3.1  
3.1  
3.3  
Output Enable to Data Valid  
tOE  
-
2.8  
-
2.8  
-
3.1  
-
3.1  
-
3.3  
ns  
Clock High to Output Low-Z  
tLZC  
tOH  
0
-
0
-
0
-
0
-
0
-
ns  
Output Hold from Clock High  
Output Enable Low to Output Low-Z  
Output Enable High to Output High-Z  
Clock High to Output High-Z  
Clock High Pulse Width  
1.0  
0
-
1.0  
0
-
1.0  
0
-
1.0  
0
-
1.3  
0
-
ns  
tLZOE  
tHZOE  
tHZC  
tCH  
-
-
-
-
-
ns  
-
2.8  
-
2.8  
-
3.0  
-
3.0  
-
3.0  
ns  
1.0  
1.7  
1.7  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
2
2.5  
-
1.0  
2.0  
2.0  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
2
2.8  
-
1.0  
2.0  
2.0  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
2
3.0  
-
1.0  
2.0  
2.0  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
2
3.0  
-
1.3  
2.0  
2.0  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
2
3.0  
-
ns  
ns  
Clock Low Pulse Width  
tCL  
-
-
-
-
-
ns  
Address Setup to Clock High  
Address Status Setup to Clock High  
Data Setup to Clock High  
tAS  
-
-
-
-
-
ns  
tSS  
-
-
-
-
-
ns  
tDS  
-
-
-
-
-
ns  
Write Setup to Clock High (GW, BW, WEX)  
Address Advance Setup to Clock High  
Chip Select Setup to Clock High  
Address Hold from Clock High  
Address Status Hold from Clock High  
Data Hold from Clock High  
tWS  
-
-
-
-
-
ns  
tADVS  
tCSS  
tAH  
-
-
-
-
-
ns  
-
-
-
-
-
ns  
-
-
-
-
-
ns  
tSH  
-
-
-
-
-
ns  
tDH  
-
-
-
-
-
ns  
Write Hold from Clock High (GW, BW, WEX)  
Address Advance Hold from Clock High  
Chip Select Hold from Clock High  
ZZ High to Power Down  
tWH  
tADVH  
tCSH  
tPDS  
tPUS  
-
-
-
-
-
ns  
-
-
-
-
-
ns  
-
-
-
-
-
ns  
-
-
-
-
-
cycle  
cycle  
ZZ Low to Power Up  
2
-
2
-
2
-
2
-
2
-
Notes : 1. All address inputs must meet the specified setup and hold times for all rising clock edges whenever ADSC  
and/or ADSP is sampled low and CS is sampled low. All other synchronous inputs must meet the specified setup and  
hold times whenever this device is chip selected.  
2. Both chip selects must be active whenever ADSC or ADSP is sampled low in order for the this device to remain enabled.  
3. ADSC or ADSP must not be asserted for at least 2 Clock after leaving ZZ state.  
- 9 -  
June 1999  
Rev 8.0  
KM736V799  
128Kx36 Synchronous SRAM  
- 10 -  
June 1999  
Rev 8.0  
KM736V799  
128Kx36 Synchronous SRAM  
- 11 -  
June 1999  
Rev 8.0  
KM736V799  
128Kx36 Synchronous SRAM  
- 12 -  
June 1999  
Rev 8.0  
KM736V799  
128Kx36 Synchronous SRAM  
- 13 -  
June 1999  
Rev 8.0  
KM736V799  
128Kx36 Synchronous SRAM  
- 14 -  
June 1999  
Rev 8.0  
KM736V799  
128Kx36 Synchronous SRAM  
APPLICATION INFORMATION  
DEPTH EXPANSION  
The Samsung 128Kx36 Synchronous Pipelined Burst SRAM has two additional chip selects for simple depth expansion.  
This permits easy secondary cache upgrades from 128K depth to 256K depth without extra logic.  
I/O[0:71]  
Data  
Address  
A[0:17]  
A[17]  
A[0:16]  
A[17]  
A[0:16]  
Address Data  
CS  
Address Data  
CS  
CLK  
2
2
CS2  
CS2  
64-Bits  
Microprocessor  
CLK  
ADSC  
WEx  
OE  
128Kx36  
SPB  
SRAM  
CLK  
ADSC  
WEx  
OE  
128Kx36  
SPB  
SRAM  
Address  
CLK  
(Bank 1)  
(Bank 0)  
Cache  
Controller  
CS1  
CS1  
ADV ADSP  
ADV ADSP  
ADS  
INTERLEAVE READ TIMING (Refer to non-interleave write timing for interleave write timing)  
(ADSP CONTROLLED , ADSC=HIGH)  
Clock  
tSS  
tSH  
ADSP  
tAS  
tAH  
A2  
A1  
ADDRESS  
[0:n]  
tWS  
tWH  
WRITE  
CS1  
tCSS  
tCSH  
Bank 0 is selected by CS2, and Bank 1 deselected by CS2  
An+1  
ADV  
OE  
Bank 0 is deselected by CS2, and Bank 1 selected by CS2  
tADVS  
tADVH  
tOE  
tHZC  
tLZOE  
Data Out  
(Bank 0)  
Q1-1  
Q1-2  
Q1-3  
Q1-4  
tCD  
tLZC  
Data Out  
(Bank 1)  
Q2-1  
Q2-2  
Q2-3  
Q2-4  
*Notes : n = 14 32K depth  
15 64K depth  
Don¢t Care  
Undefined  
16 128K depth  
17 256K depth  
- 15 -  
June 1999  
Rev 8.0  
KM736V799  
128Kx36 Synchronous SRAM  
PACKAGE DIMENSIONS  
Units ; millimeters/Inches  
100-TQFP-1420A  
22.00 ±0.30  
20.00 ±0.20  
0~8°  
+ 0.10  
- 0.05  
0.127  
16.00 ±0.30  
0.10 MAX  
14.00 ±0.20  
(0.83)  
0.50 ±0.10  
#1  
0.65  
(0.58)  
0.30 ±0.10  
0.10 MAX  
1.40 ±0.10  
1.60 MAX  
0.05 MIN  
0.50 ±0.10  
- 16 -  
June 1999  
Rev 8.0  
KM736V799  
128Kx36 Synchronous SRAM  
119 BGA PACKAGE DIMENSIONS  
1.27  
1.27  
14.00±0.10  
22.00±0.10  
Indicator of  
Ball(1A) Location  
20.50±0.10  
C0.70  
C1.00  
0.750±0.15  
1.50REF  
0.60±0.10  
0.60±0.10  
NOTE :  
1. All Dimensions are in Millimeters.  
2. Solder Ball to PCB Offset : 0.10 MAX.  
3. PCB to Cavity Offset : 0.10 MAX.  
12.50±0.10  
- 17 -  
June 1999  
Rev 8.0  

相关型号:

KM736V799T-44

Cache SRAM, 128KX36, 2.8ns, CMOS, PQFP100, 20 X 14 MM, TQFP-100
SAMSUNG

KM736V799T-55

Cache SRAM, 128KX36, 3.1ns, CMOS, PQFP100, 20 X 14 MM, TQFP-100
SAMSUNG

KM736V799T-57

Cache SRAM, 128KX36, 3.3ns, CMOS, PQFP100, 20 X 14 MM, TQFP-100
SAMSUNG

KM736V7P-44

Standard SRAM, 128KX36, 3.1ns, CMOS
SAMSUNG

KM736V7P-50

Standard SRAM, 128KX36, 3.1ns, CMOS
SAMSUNG

KM736V847H-10

ZBT SRAM, 256KX36, 10ns, CMOS, PBGA119, BGA-119
SAMSUNG

KM736V847T-10

ZBT SRAM, 256KX36, 10ns, CMOS, PQFP100, 14 X 20 MM, TQFP-100
SAMSUNG

KM736V847T-70000

ZBT SRAM, 256KX36, 8ns, CMOS, PQFP100, 14 X 20 MM, TQFP-100
SAMSUNG

KM736V847T-80000

ZBT SRAM, 256KX36, 8.5ns, CMOS, PQFP100, 14 X 20 MM, TQFP-100
SAMSUNG

KM736V847T-9

ZBT SRAM, 256KX36, 9ns, CMOS, PQFP100, 14 X 20 MM, TQFP-100
SAMSUNG

KM736V847T-9T

ZBT SRAM, 256KX36, 9ns, CMOS, PQFP100, 14 X 20 MM, TQFP-100
SAMSUNG

KM736V849-10

ZBT SRAM, 256KX36, 5ns, CMOS, PQFP100, 20 X 14 MM, TQFP-100
SAMSUNG