KS0123 [SAMSUNG]

DIGITAL VIDEO ENCODER; 数字视频编码器
KS0123
型号: KS0123
厂家: SAMSUNG    SAMSUNG
描述:

DIGITAL VIDEO ENCODER
数字视频编码器

编码器
文件: 总44页 (文件大小:454K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
KS0123 Data Sheet  
MULTIMEDIA VIDEO  
DIGITAL VIDEO ENCODER  
The KS0123 multi-standard video encoder converts CCIR  
656 8-bit multiplexed digital component video into analog  
baseband signals. It outputs composite video (CVBS) and  
S-Video simultaneously at three analog output pins.  
44 PLCC  
The encoder implements Macrovision revision 6.0 anti-  
taping scheme. Additionally, it contains a color subcarrier  
genlock to support analog/digital video splicing.  
The video outputs conform to either SMPTE 170M (NTSC)  
or CCIR 624 (PAL) standards.  
ORDERING INFORMATION  
FEATURES  
Device  
Package  
44 PLCC  
Temperature Range  
0°~+70°C  
• Macrovision revision 6.0 anti-taping support  
• 8-bit parallel CCIR 656 CbYCr input format  
KS0123  
• Synchronizes to CCIR 656 AVE time reference codes  
for horizontal and vertical timing generation inslave  
mode operation  
• 27 MHz DAC conversion rate  
• Triple 10-bit DAC’s for simultaneous S-video  
and composite output  
• 2 -wire serial host interface  
• 8 general purpose I/O pins  
• JTAG test interface  
• Generates HSYN and FIELD signals inmaster mode  
operation  
• Programmable subcarrier frequency, SCH phase,  
and synchronous field display to support MPEG II  
picture-coding-extension  
• Optional subcarrier genlock to analog f  
refer-  
• Single 5 V supply with power down mode  
• 44-pin PLCC package  
sc_ref  
ence  
• 650 kHz or 1.3 MHz chrominance bandwidth selec-  
tion  
• Support NTSC, PAL, PAL-M and PAL-N  
Application  
• Settop Box Video Encoding  
• MPEG Playback  
• Multimedia  
• Switchable pedestal with gain compensation  
• Selectable 37 nsec YC delay pre-compensation  
• Video outputs meet SMPTE 170M or CCIR 624 spec  
BLOCK DIAGRAM  
LPF  
PXCK  
B-Y  
R-Y  
10-bit  
DAC  
C
Chroma  
Modulator  
Interpolator  
4:2:2/4:4:4  
Demux  
and  
PD[7:0]  
Sync  
INT  
extract  
10-bit  
DAC  
LPF  
Y
Y
Sync  
HSYN  
FIELD  
& Blank  
insert  
10-bit  
DAC  
Video  
Timing  
Gen  
CVBS  
+
SDA  
SCL  
SA1  
SA2  
Subcarrier  
Synthesizer  
Analog  
Interface  
D/A  
Ref.  
Genlock  
JTAG  
RESET  
CSync  
Clamp  
Genlock  
Interface  
General purpose  
I/O  
Modified on May/04/2000  
PAGE 1 OF 44  
MULTIMEDIA VIDEO  
KS0123 Data Sheet  
PIN ASSIGNMENT - 44 PLCC  
39 38 37 36 35 34 33 32 31 30 29  
PD5 40  
PD4 41  
PD3 42  
PD2 43  
PD1 44  
28 RREF  
27 VREF  
26 VDDA  
25 PXCK  
24 VSS  
23 VDD  
22 RESET  
21 TCK  
20 TMS  
19 TDI  
VDD  
VSS  
PD0  
SA2  
SA1  
SDA  
1
2
3
4
5
6
KS0123  
18 TDO  
7
8
9
10 11 12 13 14 15 16 17  
TYPICAL APPLICATION  
The Encoder is shown in a typical settop box application.  
MPEG  
CHANNEL  
ENCODER  
KS0123  
VIDEO  
DECODER  
DECODER  
TV Monitor  
Figure 1. Typical Application  
Modified on May/04/2000  
PAGE 2 OF 44  
MULTIMEDIA VIDEO  
KS0123 Data Sheet  
PIN DESCRIPTION  
Pin Name  
CLOCK INPUT  
PXCK  
Pin #  
Type  
Description  
25  
I
I
27 MHz clock input. TTL/CMOS.  
PIXEL DATA PORT  
PD7 - PD0 38-44, 3  
Pixel data inputs. TTL/CMOS.  
GENERAL PURPOSE PORT AND OTHER SIGNALS  
SC_REF  
8
9
I
Subcarrier reference input. TTL.  
D7/PAL_ID  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
General Purpose I/O Port 7 or PAL_ID input. TTL/CMOS.  
General Purpose I/O Port 6 or SC_SYNC input. TTL/CMOS.  
General Purpose I/O Port 5. TTL/CMOS.  
D6/SC_SYNC 10  
D5  
11  
12  
14  
15  
16  
17  
D4  
General Purpose I/O Port 4. TTL/CMOS.  
D3/HSYN  
D2/FIELD  
D1/CLAMP  
D0/CSYN  
General Purpose I/O Port 3 or HSYN output. TTL/CMOS.  
General Purpose I/O Port 2 or FIELD output. TTL/CMOS.  
General Purpose I/O Port 1 or CLAMP output. TTL/CMOS.  
General Purpose I/O Port 0 or CSYN output. TTL/CMOS.  
SERIAL MICROPROCESSOR PORT  
SDA  
6
7
5
4
I/O  
Serial data I/O. Open drain.  
Serial clock input.  
SCL  
I
I
I
SA1  
Slave address select. TTL.  
Slave address select. TTL.  
SA2  
RESET  
RESET  
22  
I
Master reset input. TTL.  
VIDEO OUTPUTS  
CVBS  
30  
32  
35  
O
O
O
Composite video output.  
Luminance output.  
Y
C
Chrominance output.  
DAC REFERENCE AND COMPENSATION  
VREF  
27  
33  
28  
I/O  
I/O  
I/O  
Voltage reference I/O. Connect a 0.1 mF capacitor to VSSA.  
Compensation capacitor. Connect a 0.1 mF capacitor to VDDA.  
Current setting resistor.  
BYPASS  
RREF  
Modified on May/04/2000  
PAGE 3 OF 44  
MULTIMEDIA VIDEO  
KS0123 Data Sheet  
PIN DESCRIPTION (Continued)  
Pin Name  
JTAG PORT  
TDI  
Pin #  
Type  
Description  
19  
20  
21  
18  
I
I
Data input port. TTL.  
Scan select input. TTL.  
Scan clock input. TTL.  
Data output port. CMOS.  
TMS  
TCK  
I
TDO  
O
POWER  
VDD  
1,23,37  
26,34  
+5V  
+5V  
Digital power supply.  
Analog power supply.  
VDDA  
GROUND  
VSS  
2,13,24,36  
29,31  
0V  
0V  
Digital ground.  
Analog ground.  
VSSA  
Modified on May/04/2000  
PAGE 4 OF 44  
MULTIMEDIA VIDEO  
KS0123 Data Sheet  
PIN CROSS REFERENCE  
Numerical Order by Pin Number  
Pin #  
Name  
VDD  
Pin #  
12  
Name  
D4  
Pin #  
23  
Name  
VDD  
Pin #  
Name  
VDDA  
C
1
2
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
VSS  
13  
VSS  
24  
VSS  
3
PD0  
14  
D3/HSYN  
D2/FIELD  
D1  
25  
PXCK  
VDDA  
VREF  
RREF  
VSSA  
CVBS  
VSSA  
Y
VSS  
VDD  
PD7  
PD6  
PD5  
PD4  
PD3  
PD2  
PD1  
4
SA2  
15  
26  
5
SA1  
16  
27  
6
SDA  
17  
D0  
28  
7
SCL  
18  
TD0  
29  
8
SC_REF  
D7/PAL_ID  
D6/SC_SYNC  
D5  
19  
TD1  
30  
9
20  
TMS  
31  
10  
11  
21  
TCK  
32  
22  
RESET  
33  
BYPASS  
Alphabetical Order by Pin Name  
Name  
BYPASS  
C
Pin #  
33  
35  
30  
17  
16  
15  
14  
12  
11  
10  
9
Name  
PD0  
Pin #  
Name  
Pin #  
Name  
VDD  
VDDA  
VDDA  
VREF  
VSS  
Pin #  
3
SA1  
SA2  
5
6
37  
26  
34  
27  
2
PD1  
44  
43  
42  
41  
40  
39  
38  
25  
22  
28  
CVBS  
PD2  
SCL  
7
D0  
PD3  
SC_REF  
SDA  
TCK  
8
D1  
PD4  
6
D2/FIELD  
D3/HSYN  
D4  
PD5  
21  
19  
18  
20  
1
VSS  
13  
24  
36  
29  
31  
32  
PD6  
TDI  
VSS  
PD7  
TDO  
TMS  
VDD  
VDD  
VSS  
D5  
PXCK  
RESET  
RREF  
VSSA  
VSSA  
Y
D6/SC_SYNC  
D7/PAL_ID  
23  
Modified on May/04/2000  
PAGE 5 OF 44  
MULTIMEDIA VIDEO  
KS0123 Data Sheet  
GENERAL DESCRIPTION  
The encoder accepts 27 MHz 8-bit multiplexed digital component video in CCIR 656 CbYCr format at the Pixel  
Data (PD) port. The pixel data are demultiplexed into luminance and chrominance components for interpolation  
and low pass filtering to reduce cross luma/chroma interference. The filtered chrominance signals are modulated  
onto a color subcarrier and added to the processed luminance components to form the composite video (CVBS).  
The digital CVBS and S-Video signals are interpolated to 27 MHz rate and then converted to analog forms by 3 10-  
bit D/A converters.  
Anti-taping pulses, synch signals and color burst are generated internally. The rise and fall times of those pulses  
are controlled to reduce ringing. The shaped signals are inserted into the video stream controlled by the timing  
generator.  
The encoder also contains a color subcarrier PLL, which when enabled will frequency and phase lock the color  
subcarrier to an external analog fsc or 4 x fsc reference. The SCH phase can be adjusted to compensate for  
additional external phase delay.  
VIDEO DATA INPUT  
VIDEO OUTPUTS  
PD[7:0]  
CVBS  
Y
PXCK  
C
HSYN  
FIELD  
DIGITAL  
VIDEO  
ANALOG INTERFACE  
VREF  
BYPASS  
RREF  
SDA  
SCL  
SA1  
SA2  
HOST  
INTERFACE  
ENCODER  
RESET  
JTAG TEST INTERFACE  
GENERAL PURPOSE  
TDI  
TMS  
PORT  
D[7:0]  
TCK  
TDO  
SC_REF  
SC_SYNC  
PAL_ID  
GENLOCK  
INPUT  
Figure 2. Logic Diagram  
Modified on May/04/2000  
PAGE 6 OF 44  
MULTIMEDIA VIDEO  
KS0123 Data Sheet  
DIGITAL VIDEO INPUT FORMAT  
Video data enters the encoder on pins PD[7:0]. The encoder accepts and processes digital video data in  
accordance with CCIR 656and CCIR 601standards. The input data are 8 bit multiplexed CbYCr component video,  
encoded in the 4:2:2 format. The input bit stream may contain End of Active Video (EAV) and Horizontal Ancillary  
Control (HANC) codes. The relationships of the digital video with analog timing are show in Figure 3.  
CCIR 656 Timing Relationship Between Video Data and The Analog Sync Waveform  
The digital active line begins at 244 words (in the 525-line standard) or at 264 words (in the 625-line standard) after  
the leading edge of the analog line synchronization pulse, this time being specified between half-amplitude points.  
Analog line blanking  
O
O
TV line  
64us (625)  
H
H
63.5us (525)  
16T (625)  
8T (525)  
20T (625)  
10T (525)  
24T (625)  
32T (525)  
Video data block  
1448T  
S
A
V
E
A
V
Multiplexed video data  
E
A
V
HANC  
HANC  
C Y C Y C Y...  
B
R
B
4T  
4T  
Digital line blanking  
Digital active line  
1440T  
288T (625)  
276T (525)  
Digital line  
1728T (625)  
1716T (525)  
T: clock period 37ns nom.  
SAV: start of active video timing ref. code  
EAV: end of active video timing ref. code  
HANC: horizontal ancillary data  
Figure 3. 656 Data Format and Timing Relationship  
Modified on May/04/2000  
PAGE 7 OF 44  
MULTIMEDIA VIDEO  
KS0123 Data Sheet  
Timing Reference Codes  
Each video line can have two timing reference codes, one at the beginning of the data block (start of active video  
SAV) and one at the end (end of active video EAV) as shown in Figure 3. Each timing reference code consists of a  
four byte sequence in the form FF, 00, 00 and XX as shown in Table 1. The first three words are fixed, the fourth  
byte contains field and line blanking information.  
Table 1: Video Timing Reference Codes  
Bit # 7(MSB)  
6
1
0
0
F
5
1
0
0
V
4
1
0
0
H
3
1
0
0
2
1
0
0
1
1
0
0
0(LSB)  
HEX  
FF  
First  
Second  
Third  
1
0
0
1
1
0
0
00  
00  
Fourth  
Notes:  
P
P
P
P
0
XX  
3
2
1
F = 0 during field 1  
1 during field 2  
V = 0 elsewhere  
1 during field blanking  
H = 0 in SAV  
1 in EAV  
P - - P : Protection bits (not used by the encoder)  
3
0
The encoder decodes the video timing reference code that indicates the end of active video (EAV). The EAV code  
shall contain the F (field) and V (blanking) bits as specified in CCIR 656. This information applies to the following  
video line. The encoder ignores the start of active video (SAV) timing code.  
The encoder uses the F bit for synchronization purposes. The transition of F bit is used to indicate the start of a  
new field. The polarity is also used to indicate odd and even. Additional field information is supplied by the ancillary  
data.  
The V bit is not used for synchronization. A V of ‘1’ indicates line blanking. Certain lines and half lines are blanked  
regardless of the state of the V bit. In general if the V bit is high, then the encoder blanks the line (Figure 10 and  
Figure 11).  
Modified on May/04/2000  
PAGE 8 OF 44  
MULTIMEDIA VIDEO  
KS0123 Data Sheet  
Horizontal Ancillary Data Sequence (HANC)  
The ancillary data contains additional timing information about the following video line. Table 2 shows the  
sequence of the ancillary data. The HANC data, if present, should immediately follow the EAV code. The encoder  
decodes the ancillary data if the ancillary data type code (TT) matches the data ID code stored in the internal  
ANCDID register (index 07h).  
The LSB of the ancillary data is a parity bit. The video encoder assumes that the data is error free and always  
ignores this bit.  
Table 2: Ancillary Data Sequence  
Word ID  
ANC(2)  
ANC(1)  
ANC(0)  
TT  
Description  
B7  
0
B6  
0
B5  
0
B4  
0
B3  
0
B2  
0
B1  
0
B0  
0
Ancillary Data  
Header  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Data Type  
Reserved  
TT6  
(R)  
(R)  
(R)  
TT5  
(R)  
(R)  
(R)  
TT4  
(R)  
(R)  
(R)  
TT3  
(R)  
(R)  
SVF/  
TT2  
(R)  
(R)  
F2  
TT1  
(R)  
(R)  
F1  
TT0  
(R)  
(R)  
F0  
P
P
P
P
FIELD Field number and  
synchronous  
video flag  
PH(1)  
PH(0)  
Subcarrier  
Instantaneous  
Phase  
PHV  
PH6  
PH12  
PH5  
PH11  
PH4  
PH10  
PH3  
PH9  
PH2  
PH8  
PH1  
PH7  
PH0  
P
P
FR(4)  
FR(3)  
FR(2)  
FR(1)  
FR(0)  
Subcarrier  
Frequency  
FRV  
FR27  
FR20  
FR13  
FR6  
(R)  
(R)  
FR31  
FR24  
FR17  
FR10  
FR3  
FR30  
FR23  
FR16  
FR9  
FR29  
FR22  
FR15  
FR8  
FR28  
FR21  
FR14  
FR7  
P
P
P
P
P
FR26  
FR19  
FR12  
FR5  
FR25  
FR18  
FR11  
FR4  
FR2  
FR1  
FR0  
Note: 1. P = odd parity bit  
2. R = reserved bit; ignored by video encoder  
The ancillary data header(ANC) consists of three bytes which indicate the start of the ancillary data. This is in  
accordance with CCIR 656.  
The data type code is used to specify the ancillary data type. The encoder compares this value with the value  
programmed into the ANCDID register. If the two match, the encoder will process the ancillary data, otherwise the  
encoder will ignore the ancillary data.  
The field numberbits are used by the encoder to program the field counter. The field number will be loaded to the  
counter if SVF/ is low and the ancillary timing reference enable (ATMEN) bit is ‘1’.  
Modified on May/04/2000  
PAGE 9 OF 44  
MULTIMEDIA VIDEO  
KS0123 Data Sheet  
The subcarrier instantaneous phaseis a 13-bit integer which defines the phase of the reference subcarrier at the  
synch tip. The subcarrier frequency synthesizer phase will be reset to this number at the synch tip when both  
HANC datum PHV and control register APHEN are ‘1’s.  
Table 3:Definition of Subcarrier Instantaneous Phase  
subcarrier phase #  
phase value  
0
1
([3600 / 8192]) 0  
*
([3600 / 8192]) 1  
*
...  
...  
8191  
([3600 / 8192]) 8191  
*
The MPEG II system allows the 27 MHz clock frequency to vary to prevent the input buffer from overflow or  
underflow. When this happens the color subcarrier frequency will shift if the addend of numerical oscillator is not  
adjusted accordingly. If control register bit AFREN is ‘1’ the subcarrier synthersizer will select the latched HANC’s  
subcarrier frequencydata (FR) as the addend instead of the programmable register (0x8-0xb) (Figure 6). The FR  
is latched if HANC datum FRV = ‘1’. and the HANC control register’s AFREN bit is set. The FR’s value should be  
calculated using the equation  
Fsc  
æ 32  
FR = NINT 2  
ö
----------  
·
è
ø
Ck  
where Fsc is the desired color subcarrier frequency,  
Ck is the clock frequency,  
and NINT is the nearest integer.  
Modified on May/04/2000  
PAGE 10 OF 44  
MULTIMEDIA VIDEO  
KS0123 Data Sheet  
VIDEO ENCODING  
The incoming digital video are gain and offset adjusted according to the output format, NTSC or PAL, controlled by  
the format register. Both the luminance and chrominance are band limited and interpolated to 27 MHz sampling  
rate for digital to analog conversion. The NTSC output can be selected to include a 7.5 IRE pedestal. The user can  
also select either 650 kHz or 1.35 MHz chrominance bandwidth. The U and V components have equal  
bandwidth.  
Luminance Filter  
The luminance signal is band-limited to 6 MHz. The filter is implemented with a 15 tap linear phase FIR filter. Figure  
4 shows the frequency responses.  
0
0
-5  
-0.2  
-10  
-0.4  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-0.6  
-0.8  
-1  
-1.2  
-1.4  
-1.6  
-1.8  
-2  
0
2
4
6
8
10  
12  
0
1
2
3
Mhz  
4
5
6
Mhz  
Figure 4. Luminance Filter Frequency Response  
Modified on May/04/2000  
PAGE 11 OF 44  
MULTIMEDIA VIDEO  
KS0123 Data Sheet  
Chrominance Filter  
Figure 6 shows the chrominance frequency response for different bandwidth selections.  
0
0
-5  
-5  
-10  
-15  
-20  
-25  
-10  
-15  
-20  
-25  
0
0.5  
1
1.5  
2
2.5  
0
0.5  
1
1.5  
2
2.5  
Mhz  
3
3.5  
4
4.5  
5
Mhz  
CHRBW = ‘1’  
CHRBW = ‘0’  
Figure 5. Chrominance Filter Frequency Response  
Modified on May/04/2000  
PAGE 12 OF 44  
MULTIMEDIA VIDEO  
KS0123 Data Sheet  
COLOR SUBCARRIER GENERATION  
The chrominance signals are modulated onto a subcarrier. The nominal subcarrier frequency is determined by 4  
registers (08h - 0Bh). The subcarrier generation also contains Subcarrier Horizontal Synch Phase, SCH, offset  
control (Reg 0Ch - 0Dh), and genlock functions to support digital/analog video multiplexing.  
PH  
FR  
Figure 6. Fsc Synthersizer  
The color subcarrier synthesizer can operate in 3 modes: (a) free running mode, (b) HANC genlock mode, and (c)  
analog genlock mode.  
(a). In the free running modethe color subcarrier frequency is programmed via the host interface. The 4 field or 8  
field SCH phase are maintained. The nominal frequency register values for different video standards are listed in  
Table 4.  
Table 4: Register Values for Subcarrier Frequencies  
Frequency Register  
Subcarrier  
Standard  
Frequency(MHz)  
FREQD FREQC FREQB FREQA  
NTSC  
PAL-B,G,H,I  
PAL-M  
3.57954545  
4.43361875  
3.57561189  
3.58205625  
43  
54  
43  
43  
E0  
13  
F8  
15  
DF  
28  
3E  
96  
CD  
ED  
C7  
8D  
PAL-N  
(b). In the HANC genlock modethe subcarrier frequency, FR, and instantaneous phase, PH, information are sent  
to the encoder via the HANC data. The frequency and phase values are updated during the synch tip.  
(c). If analog genlock modeis selected the subcarrier synthesizer is locked to an external reference signal, fsc or  
4 fsc. An external PAL_ID signal is required to control the PAL phase alternation. The PLL has 2 kHz pull in range.  
Analog Genlock Circuit  
The analog genlock circuit will lock the frequency and phase of the subcarrier synthesizer to an external reference  
signal. To activate the genlock circuit, first program the nominal FREQD-A value then set GENEN = 1.The external  
Modified on May/04/2000  
PAGE 13 OF 44  
MULTIMEDIA VIDEO  
KS0123 Data Sheet  
reference signal is applied to the SC_REF input pin. The frequency of this squarewave is either Fsc or 4*Fsc  
(program the 4FSCS bit accordingly). When using a 4*Fsc input, the SC_SYNC resets the internal divider’s phase  
to the 0 count state as shown in Figure 7. The SCHM and SCHL registers can be programmed to compensate for  
the propagation delay from the phase detector input to the DAC output.  
1/(4 *SC_REF)  
t
SC_REF(== 4fsc)  
PWH;SC_REF  
t
SU;SC_SYNC  
t
HD;SC_SYNC  
SC_SYNC  
internal divided by 4 counter output  
Figure 7. SC_REF and SC_SYNC Input Timing  
PAL_ID Input  
The PAL_ID input is used by the analog genlock circuit to control the PAL chroma V-axis inversion. PAL_ID is only  
recognized when GENEN = 1 and the video format is PAL. PAL_ID is low for lines where the color burst phase is  
o
o
135 , and high for lines where the color burst phase is -135 . PAL_ID is sampled and its value is used on the  
following line. The PAL_ID should be valid during the time interval corresponding to video samples 1440 to 1449.  
See Figure 8 for the PAL_ID timing requirement.  
Pixel Data Input (PD[7:0])  
Sample number  
1442 1443 1444 1445 1446 1447 1448 1449  
1439 1440 1441  
1450  
$00 $00 $XX  
Y 719 $FF  
Ancillary Data...  
EAV Sequence  
t
DUR;PAL_ID  
PAL_ID Stable  
D7 Input (PAL_ID)  
Figure 8.PAL_ID Input Timing  
Modified on May/04/2000  
PAGE 14 OF 44  
MULTIMEDIA VIDEO  
KS0123 Data Sheet  
SC_SYNC and PAL_ID Pins  
The SC_SYNC and PAL_ID inputs are shared with the D6 and D7 general purpose I/O pins respectively. To  
configure D6 as the SC_SYNC input, the register value of [DDR6, GENEN, 4FSCS] must be set to [0, 1, 1]. To  
activate the PAL_ID input, the register value of [DDR7, GENEN, FORMAT] must be set to [0, 1, 01] or [0, 1, 10].  
SCH Phase Control  
The video encoder maintains a constant 4-field (NTSC) or 8-field (PAL) sub-carrier/horizontal synch phase  
relationship in the free running mode by resetting the subcarrier synthesizer every 8 fields. In all mode of  
operations the SCH phase can be adjusted via SCHM and SCHB registers to compensate external phase delay.  
VIDEO TIMING GENERATION  
The decoder can operate either in master mode or slave mode. In the salve mode, the encoder extracts the  
horizontal and vertical sync timing, blanking, and field count information from the timing reference codes (EAV) in  
the pixel data stream. Additional timing data may be extracted from horizontal ancillary (HANC) data. The ancillary  
data definition is shown in Table 2.  
In the master mode, the encoder generates horizontal synch (HSYN) and field (FIELD) signals. The FIELD signal  
is high for the even field period. To enable the master mode the direction register DDR3 and DDR2 must be set to  
‘1’s and the reserved register 0x83 must be set to 0x18.  
Figure 9. Master Mode Video Interface Timing  
Modified on May/04/2000  
PAGE 15 OF 44  
MULTIMEDIA VIDEO  
KS0123 Data Sheet  
Analog Fields 1&3  
(blanked, V=X)  
F=0  
V=0 (active video) or  
V=1 (blanked)  
Digital Fields 1&3  
524  
525  
10  
11-19 20  
21  
22  
1
2
3
4
5
6
7
8
9
COMP SYNC  
VVSYNC\  
Analog  
Fields 2&4  
V=0 (active video) or  
V=1 (blanked)  
F=1  
Digital Fields 2&4  
(blanked,  
V=X)  
274-  
281 282  
273  
262  
263  
283  
284  
264 265 266 267 268 269 270 271 272  
COMP SYNC  
VVSYNC\  
Figure 10.NTSC Vertical Interval  
Modified on May/04/2000  
PAGE 16 OF 44  
MULTIMEDIA VIDEO  
KS0123 Data Sheet  
V=0 (active video) or  
V=1 (blanked)  
(blanked,  
V=X)  
F=0  
Analog and digital  
Fields 1,3,5 & 7  
623  
6
7
8-22  
23  
24  
25  
621 622  
624 625  
1
2
3
4
5
COMP SYNC  
VVSYNC\  
F=1  
(blanked,  
V=X)  
V=0 (active video) or  
V=1 (blanked)  
Digital Fields 2,4,6 & 8  
Analog Fields 2,4,6 & 8  
322-  
320 321 334  
319  
336  
309 310  
335  
311 312 313 314 315 316 317 318  
COMP SYNC  
VVSYNC\  
Figure 11.PAL-B, G, H, I, N Vertical Interval  
Modified on May/04/2000  
PAGE 17 OF 44  
MULTIMEDIA VIDEO  
KS0123 Data Sheet  
Internal Test Ramp Signal Generation  
The modulated ramp test signal is enabled through the host interface by setting the RAMPEN bit high. Additionally  
the PDEN must be set to zero to disable the pedestal and reserved registers 0x10 and 0x11 be set to ‘0’s as well.  
The ramp signal can be used for differential gain and phase measurements. The luminance component ramps  
from blanking level (0 IRE) to maximum white (100 IRE). The chroma has 40 IRE constant amplitude.  
Macrovision Anti-taping  
The Macrovision anti-taping revision 6 for PPV application is implemented. For more information please contact  
Samsung LA Design Center.  
Power on Reset  
The reset line is an active low signal that is used to initialize the device. Setting RESET low sets all internal state  
machines and control registers to their initial conditions, disables all digital and analog outputs (high impedance),  
and places the encoder in a power-down mode.  
The reserved register (0x10 - 0x1f) must be set to zero manually for proper operation.  
Modified on May/04/2000  
PAGE 18 OF 44  
MULTIMEDIA VIDEO  
KS0123 Data Sheet  
General Purpose I/O Port and Other Signals  
Pins D7 through D0 form a general purpose I/O port where some pins have a dual function. The list below indicates  
the pin functionality. The directions of the I/Os are controlled by the DDR register.  
Table 5:General Purpose I/O Functions  
Pin  
Function  
D7 / PAL_ID  
General purpose I/O port; also used as the PAL_ID (PAL phase identification) signal  
input in the analog genlock mode. (see page 15)  
D6 / SC_SYNC General purpose I/O port; also used as the SC_SYNC (subcarrier sync) signal  
input.(see page 15)  
D5 - D4  
General purpose I/O ports only.  
D3/HSYN  
General purpose I/O port in slave mode. HSYN output in Master mode.(see  
page 15)  
D2/FIELD  
General purpose I/O port in slave mode. FIELD output in Master mode.(see  
page 15)  
D1/CLAMP  
D0/CSYN  
General purpose I/O port; also used as the CLAMP (clamp gate) output signal.  
General purpose I/O port; also used as the CSYN (composite sync) output signal.  
The CSYN (composite sync) output is shared with D0 pin, and is programmed with the DDR0 and CSDIS control  
bits as shown below.  
Table 6: Control of Pin D0/CSYN  
DDR0 CSDIS  
Effect of a GPP0 write on  
D0/CSYN  
GPP0 read value  
Configuration  
reg.  
reg.  
0
X
Logic state applied to D0  
not defined  
no effect  
general purpose input  
general purpose output  
CSYN output  
1
1
outputs GPP0 logic state  
no effect  
1
0
not defined  
The CLAMP output is shared with D1 pin, and is programmed with the DDR1 and CLMDIS control bits as shown  
below.  
Table 7: Control of Pin D1/CLAMP  
DDR1 CLMDIS  
Effect of a GPP1 write on  
D1/CLAMP  
GPP1 read value  
Configuration  
reg  
reg  
0
X
Logic state applied to D1  
not defined  
no effect  
general purpose input  
general purpose output  
CLAMP output  
1
1
outputs GPP1 logic state  
no effect  
1
0
not defined  
Modified on May/04/2000  
PAGE 19 OF 44  
MULTIMEDIA VIDEO  
KS0123 Data Sheet  
D/A Converters  
The analog outputs of the encoder come from the three 10-bit D/A converters, operating at a 27 MHz clock rate.  
The outputs can drive standard video levels into a 75 or 37.5 ohm load. An internal voltage reference can be used  
to provide reference current for the three D/A converters. For accurate video levels, an external fixed or variable  
voltage reference source can be used. The video signal levels from the encoder may be adjusted to overcome the  
insertion loss of analog low-pass output filters by varying RREF or VREF  
.
There are three analog video outputs, one composite, one luminance, and one chrominance. The composite and  
S-video DACs can be disabled independently to save power.  
The components required for the DAC voltage and current reference is shown below. The 787 ohm resistor should  
be used for single end 75 ohm termination while the 394 ohm resistor for double end 75 ohm termination.  
VDD  
0.1mF  
Vref  
COMP  
VREF  
+
_
0.1mF  
IREF  
787  
(394)  
Figure 12. Voltage and Current Reference Components  
Two reconstruction filters are suggested for the output of the D/A converters. The one shown in Figure 13 is  
designed to be a single 75 ohm load to the D/A output; while the one shown in Figure 14 is for the double ended  
termination.  
10pF 1%  
Video Op Amp  
5.6 mH 5%  
(Av = 2)  
DAC  
Output  
75  
Output  
+
_
180pF  
1%  
100  
1%  
100pF  
1%  
301  
1%  
1K  
1K  
75  
Figure 13.Reconstruction Filter for Single Ended Termination  
Modified on May/04/2000  
PAGE 20 OF 44  
MULTIMEDIA VIDEO  
KS0123 Data Sheet  
2.0mH  
1.3mH  
75W  
75W  
100pF  
300pF  
100pF  
Figure 14.Reconstruction Filter for Double Ended Termination  
Modified on May/04/2000  
PAGE 21 OF 44  
MULTIMEDIA VIDEO  
KS0123 Data Sheet  
Serial Host Interface  
The internal control registers of the encoder are read and written via a two wire serial port. The two wire port  
consists of a serial I/O data line (SDA) and a clock (SCL) input. Each of the SDA and SCL line is connected to  
+VDD with a pull-up resistor. The data on the SDA line must be stable when the clock (SCL) is high. Data can only  
change while SCL is low. Transitions on SDA while SCL is high indicate start (high to low transition) and stop (low  
to high) conditions. When both lines are high, the bus is considered to be free.  
Communication consists of five parts: the START signal, slave address transmission, (register address  
transmission), data transfer, and the STOP signal. When the bus is free, a master initiates communication by  
sending a start signal (high to low of SDA while SCL is high). The first byte transferred after the start signal is a  
seven bit long slave address followed by the eighth R/W bit. The R/W bit indicates the direction of data transfer  
(high = read). If the slave address matches that of the encoder (set with pins SA1 and SA2), the encoder will  
acknowledge by pulling SDA low during the 9th clock. The bytes following the slave address are the data to or from  
the encoder. Each byte is 8 bits long with the MSB transferred first. Each byte is followed by an acknowledge by  
the receiving device by pulling the SDA line low during the 9th clock. A stop signal is created when the master  
sends a low to high on the SDA line with SCL high. Figure 15 shows the data transfer and acknowledge on the  
serial bus.  
SDA  
acknowledgment  
MSB  
1
acknowledgment  
signal from receiver  
signal from receiver  
clock line held low while  
interrupts are serviced  
byte complete,  
interrupt in receiver  
SCL  
2
7
8
9
ACK  
1
2
3 8  
9
ACK  
S
P
START CONDITION  
STOP CONDITION  
SERIAL DATA TRANSFER  
Data output  
by transmitter  
not acknowledge  
Data output  
by receiver  
acknowledge  
8
SCL from  
master  
1
9
2
S
clock pulse for  
acknowledgment  
START CONDITION  
ACKNOWLEDGE ON THE SERIAL BUS  
Figure 15. Serial Bus Timing  
Modified on May/04/2000  
PAGE 22 OF 44  
MULTIMEDIA VIDEO  
KS0123 Data Sheet  
The master must specify a base address (BAR) when it accesses the encoders registers. The base address is  
written to the encoder following the slave address when the R/W bit is low. For encoder register writes, data bytes  
are sent to the control registers starting with the register selected by the BAR and incremented by one address for  
each additional data byte transferred (auto increment). To read data from the encoder control registers, two data  
transfer operations are required. The first one writes the BAR (R/W = 0) and the second one is to read the data (R/  
W = 1). Figure 16 explains the data transfer operations.  
Write to Control Registers  
Read from Control Registers  
START signal  
START signal  
Slave address (R/W = 0)  
Base address (BAR)  
Data transfer (master to  
encoder, one or more bytes)  
STOP signal  
Slave address (R/W = 0)  
Base address (BAR)  
STOP signal  
START signal  
Slave address (R/W = 1)  
Data transfer (encoder to  
master, one or more bytes)  
STOP signal  
Figure 16. Typical Write and Read Operations  
Two address select pins are used to select one of four slave addresses, the slave address is seven bits long. Refer  
to Table 8 for the possible slave addresses.  
Table 8: Serial Port Slave Addresses  
A1  
(SA2)  
A0  
(SA1)  
A6  
A5  
A4  
A3  
A2  
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
The serial port timing parameters are shown below, refer to the timing tables at the end of this data sheet for the  
values.  
Modified on May/04/2000  
PAGE 23 OF 44  
MULTIMEDIA VIDEO  
KS0123 Data Sheet  
REPEATED  
START  
STOP START  
STOP  
SDA  
t
BUF  
t
F
t
HD;STA  
t
t
SU;STO  
LOW  
t
R
t
HIGH  
SCL  
t
HD;STA  
t
SU;STA  
t
t
SU;DAT  
HD;DAT  
Figure 17.Serial Port Timing Parameters  
JTAG Test Interface  
The encoder includes a 4-line JTAG test interface port (as modified herein), providing access to all digital input/  
output data pins except the JTAG test port pins, analog pins, power and ground. This is provided to facilitate  
component and board-level testing. Table 9 shows the sequence of the test registers. The register number  
indicates the order in which the register data is loaded and read. The scan is 23 registers long.  
The test data input (TDI) and test mode select (TMS) inputs are referred to the rising edge of the test clock (TCK)  
input. The test data output (TDO) is referred to the falling edge of TCK.  
Table 9: JTAG Sequence List  
JTAG Reg  
Pin  
RESET  
PXCK  
PD7  
JTAG Reg  
Pin  
PD1  
JTAG Reg  
Pin  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
1
2
3
4
5
6
7
8
9
17  
18  
19  
20  
21  
22  
23  
10  
11  
12  
13  
14  
15  
16  
PD0  
SA2  
PD6  
SA1  
PD5  
SDA  
SCL  
PD4  
PD3  
SC_REF  
D7  
PD2  
Modified on May/04/2000  
PAGE 24 OF 44  
MULTIMEDIA VIDEO  
KS0123 Data Sheet  
The JTAG test port timing is shown below, refer to the timing tables at the end of this data sheet for the values.  
t
t
PWHTCK  
PWLTCK  
TCK  
t
t
HTP  
STP  
TDI  
TMS  
t
DOTP  
t
HOTP  
TDO  
Figure 18.JTAG Test Port Timing  
Modified on May/04/2000  
PAGE 25 OF 44  
MULTIMEDIA VIDEO  
KS0123 Data Sheet  
CONTROL REGISTERS  
The encoder is controlled by a set of registers which allow adjustment of its operating parameters. The registers  
are written to and read from via the serial bus interface. Unless otherwise specified, all registers are read/write  
registers. The suffix “h” denotes hex numbers. In the detailed register description, the default value is followed by  
an “*”.  
Table 10:Control Registers  
Index Mnemonic Default  
Description  
Part ID Register C (read only)  
Part ID Register B (read only)  
Part ID Register A (read only)  
Part Revision Number (read only)  
Global Control Register  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10-FFh  
PIDC  
91h  
88h  
79h  
01h  
00h  
00h  
00h  
00h  
43h  
E0h  
F8h  
3Eh  
00h  
00h  
00h  
00h  
PIDB  
PIDA  
REVID  
GCR  
VOCR  
HANC  
ANCDID  
FREQD*  
FREQC*  
FREQB*  
FREQA  
SCHM  
SCHL  
GPP  
Video Output Control Register  
Horizontal Ancillary Data Control Register  
Ancillary Data ID Register  
Subcarrier Frequency Byte 3 (MSBs)  
Subcarrier Frequency Byte 2  
Subcarrier Frequency Byte 1  
Subcarrier Frequency Byte 0 (LSBs)  
Subcarrier Phase Offset MSBs  
Subcarrier Phase Offset LSBs  
General Purpose Port  
DDR  
General Purpose Port Data Direction Control  
Reserved  
* double buffer registers; newly loaded FREQD-B’s values will not take effect until  
FREQA has been updated.  
Modified on May/04/2000  
PAGE 26 OF 44  
MULTIMEDIA VIDEO  
KS0123 Data Sheet  
Part ID Register  
Index  
00h  
01h  
02h  
Mnemonic  
PIDC  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
PID23  
PID15  
PID07  
PID22  
PID14  
PID06  
PID21  
PID13  
PID05  
PID20  
PID12  
PID04  
PID19  
PID11  
PID03  
PID18  
PID10  
PID02  
PID17  
PID09  
PID01  
PID16  
PID08  
PID00  
PIDB  
PIDA  
PID[23:00] Chip part ID number. This is a read only set of registers. The numbers contained in the registers  
are:  
PIDA = 79h  
PIDB = 88h  
PIDC = 91h.  
Part Revision ID Number  
Index  
Mnemonic  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
REVID7  
REVID6  
REVID5  
REVID4  
REVID3  
REVID2 REVID1  
REVID0  
03h  
REVID  
REVID  
Chip revision ID number. This read only register is used to indicate the silicon revision level number.  
Modified on May/04/2000  
PAGE 27 OF 44  
MULTIMEDIA VIDEO  
KS0123 Data Sheet  
Global Control Register  
Index  
Mnemonic  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
4FSCS  
GENEN  
YCDLY  
RMPEN  
YCDIS  
CDIS  
FMT1  
FMT0  
04h  
GCR  
4FSCS  
Subcarrier select.  
1
0
SC_REF frequency equals 4 times color subcarrier frequency.  
SC_REF frequency.*  
GENEN  
Genlock (to external reference) mode enable.  
1
The encoder will lock its internal subcarrier synthesizer to an external reference subcarrier  
input.  
0
Normal operation.*  
YCDLY  
Luma to chroma delay. This may be used to compensate for luma and chroma group delay  
variations of the external analog lowpass filter  
1
0
The luminance signal is delayed by 37 nS relative to the chrominance signal.  
Normal operation.*  
RMPEN  
YCDIS  
CDIS  
Modulated ramp enable.  
1
0
The encoder outputs a modulated ramp for differential phase and gain measurements.  
Normal operation.*  
Y/C output disable.  
1
0
The Y and C outputs are disabled, and in a high impedance state.  
Normal operation.*  
Composite output disable.  
1
0
The CVBS output is disabled, and in a high impedance state.  
Normal operation.*  
FMT  
Video format select. Note: the subcarrier frequency, pedestal level, and chroma bandwidth are  
programmed individually and are independent of the format register.  
00  
01  
10  
11  
NTSC.*  
PAL-B,G,H,I,N(Argentina).  
PAL-M.  
reserved.  
Modified on May/04/2000  
PAGE 28 OF 44  
MULTIMEDIA VIDEO  
KS0123 Data Sheet  
Video Output Control Register  
Index  
Mnemonic  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
CLMDIS CHRBW SYNDIS BURDIS LUMDIS CHRDIS PEDEN  
05h  
VOCR  
CSDIS  
CSDIS  
Composite sync (COMPS) output disable. Control depends on the state of the DDR0 bit. See Table  
6.  
CLMDIS  
CHRBW  
Clamp gating signal (CLAMP) output disable.  
Control depends on the state of the DDR1 bit. See Table 6.  
Chroma bandwidth select.  
1
0
Chrominance bandwidth is 1.3 MHz.  
Chrominance bandwidth is 650 kHz.*  
SYNDIS  
Sync disable. When active, the horizontal and vertical sync pulses are disabled, and the encoder will  
output blanking level during this time. Active video and color burst are not affected.  
1
0
Disable active.  
Normal operation.*  
BURDIS  
LUMDIS  
CHRDIS  
PEDEN  
Chroma burst (color burst) disable. Chroma data at the output is not affected by this register.  
1
0
The chroma reference burst output is disabled.  
Normal operation, burst is enabled.*  
Luminance input disable. Color burst and sync are not affected by this register.  
1
0
Luminance data into the IC are forced to black level.  
Normal operation. Incoming luminance data (Y) is enabled.*  
Chroma input disable. The color burst output is not affected by this register.  
1
0
Chroma data into the IC is suppressed, enabling monochrome operation.  
Normal operation. Incoming chroma (C) data is enabled.*  
Pedestal (setup) enable. When active, a 7.5 IRE (nominal) pedestal is inserted into the output video  
for lines 23-262 and 286-525 only. The gain factors are adjusted to keep chrominance from  
exceeding prescribed levels. Lines 1-22 and 263-285 don’t contain setup. This register is valid for  
NTSC and PAL-M only.  
1
0
Active (use only for NTSC and PAL-M).  
Pedestal (setup) is disabled for all lines. The black and blanking levels are the same.*  
Note: when SYNDIS=BURDIS=LUMDIS=CHRDIS=1, then the encoder outputs fixed DC at the blanking level.  
Modified on May/04/2000  
PAGE 29 OF 44  
MULTIMEDIA VIDEO  
KS0123 Data Sheet  
Horizontal Ancillary Data (HANC) Control Register  
Index  
Mnemonic  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Reserved NOLCK  
FIELD2  
FIELD1  
FIELD0  
AFREN  
APHEN  
ATMEN  
06h  
HANC  
Reserved Reserved. Do Not Use.  
NOLCK Genlock status. Read only. NOLCK is valid only when GENEN = 1.  
1
0
Indicates that lock has not been achieved.  
Indicates that the internal subcarrier synthesizer is locked to the external reference.*  
FIELD2-0 Field identification number Read only. These 3 bits indicate the digital field number.  
000  
001  
010  
011  
100  
101  
110  
111  
Field 1  
Field 2  
Field 3  
Field 4  
Field 5  
Field 6  
Field 7  
Field 8  
AFREN  
APHEN  
ATMEN  
Ancillary frequency data enable. When GLKEN = 1 (genlock to external reference), the encoder may  
assume that AFREN will be set to 0 by the firmware. In this case, the FREQ register value will be  
controlled by the genlocking circuit.  
1
The encoder programs the subcarrier FREQ register from the ancillary data stream  
(depending on the state of the FRV bit).  
0
The FREQ register is programmed through the microprocessor interface.*  
Ancillary phase data enable. When GENEN = 1 (genlock to external reference), the encoder may  
assume that APHEN will be set to 0 by the firmware. In this case, the PHASE register value will be  
controlled by the genlocking circuit.  
1
The encoder programs the subcarrier PHASE register from the ancillary data stream  
(depending on the state of the PHV bit).  
0
A value of 0 is used for the PHASE register.*  
Ancillary timing reference data enable.  
1
The encoder uses the timing reference data contained in the ancillary data stream (FIELD  
and SVF/).  
0
The ancillary timing reference data is ignored.*  
Modified on May/04/2000  
PAGE 30 OF 44  
MULTIMEDIA VIDEO  
KS0123 Data Sheet  
Ancillary Data ID Register  
Index  
Mnemonic  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
ANCD7  
ANCD6  
ANCD5  
ANCD4  
ANCD3  
ANCD2  
ANCD1  
PARITY  
07h  
ANCDID  
ANCD[7:1] The seven bits, ANCD7 through ANCD1, determine the data ID. The encoder uses the data ID to  
determine if the ancillary data it is receiving is meant for the encoder.  
PARITY  
Bit 0 is an odd parity bit for the ancillary data ID byte mentioned above. The encoder does not use  
this bit.  
Subcarrier Frequency Register  
Index  
08h  
09h  
0Ah  
0Bh  
Mnemonic  
FREQD  
FREQC  
FREQB  
FREQA  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
FRQ31  
FRQ23  
FRQ15  
FRQ07  
FRQ30  
FRQ22  
FRQ14  
FRQ06  
FRQ29  
FRQ21  
FRQ13  
FRQ05  
FRQ28  
FRQ20  
FRQ12  
FRQ04  
FRQ27  
FRQ19  
FRQ11  
FRQ03  
FRQ26  
FRQ8  
FRQ25  
FRQ7  
FRQ24  
FRQ16  
FRQ08  
FRQ00  
FRQ10  
FRQ02  
FRQ09  
FRQ01  
FRQ[31:00] These registers hold the 32 bit subcarrier frequency value. The FREQD-B registers are double  
buffered; the newly loaded msb values will not take effect until the lsb (FREQA) has been written.  
Subcarrier Phase Offset Register  
Index  
0Ch  
0Dh  
Mnemonic  
SCHM  
SCHL  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
SCH15  
SCH07  
SCH14  
SCH06  
SPH13  
SCH05  
SCH12  
SCH04  
SCH11  
SCH03  
SCH10  
SCH02  
SCPH9  
SCH01  
SCPH8  
SCH00  
SPH[15:00] These registers hold the static subcarrier phase offset. This is used to adjust the phase of the  
subcarrier relative to the 50% point of the leading edge of hsync (SCH phase). The nominal value  
is 0. This register is used to compensate for delays external to the encoder.  
Modified on May/04/2000  
PAGE 31 OF 44  
MULTIMEDIA VIDEO  
KS0123 Data Sheet  
General Purpose Port  
Index  
Mnemonic  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
GPP7  
GPP6  
GPP5  
GPP4  
GPP3  
GPP2  
GPP1  
GPP0  
0Eh  
GPP  
GPP7 - GPP0  
Registers GPP7 through GPP0 are used to read and write to I/O pins D0 through D7. The  
direction of flow of these pins is set by the data direction register. Note that pins D7, D6,  
D1, and D0 are shared with other signals.  
GPP7 = D7 I/O Pin.  
GPP6 = D6 I/O Pin.  
GPP5 = D5 I/O Pin.  
GPP4 = D4 I/O Pin.  
GPP3 = D3 I/O Pin.  
GPP2 = D2 I/O Pin.  
GPP1 = D1 I/O Pin.  
GPP0 = D0 I/O Pin.  
General Purpose Port Data Direction Control  
Index  
Mnemonic  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
DDR7  
DDR6  
DDR5  
DDR4  
DDR3  
DDR2  
DDR1  
DDR0  
0Fh  
DDR  
DDR7 - DDR0  
Registers DDR7 through DDR0 are used to control the direction of data flow of I/O pins D0  
through D7. Setting DDR(i) (where i = 7 to 0) to a low will make that pin an input. Setting  
DDR(i) high will make that pin an output.  
DDR7 = Data direction control for pin D7.  
DDR6 = Data direction control for pin D6.  
DDR5 = Data direction control for pin D5.  
DDR4 = Data direction control for pin D4.  
DDR3 = Data direction control for pin D3.  
DDR2 = Data direction control for pin D2.  
DDR1 = Data direction control for pin D1.  
DDR0 = Data direction control for pin D0.  
Modified on May/04/2000  
PAGE 32 OF 44  
MULTIMEDIA VIDEO  
KS0123 Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Characteristics  
Symbol  
Min  
-0.5  
Max  
Unit  
V
Supply Voltage (Measured to GND)  
V
+7.0  
DD  
2
Digital Input Applied Voltage  
V
GND-0.5  
-100  
V
V
+0.5  
DD  
V
I
I
3,4  
Digital Input Forced Current  
A
100  
+0.5  
mA  
V
2
Digital Output Applied Voltage  
V
GND-0.5  
-100  
O
O
DD  
3,4  
Digital Output Forced Current  
A
100  
mA  
sec  
sec  
°C  
°C  
°C  
°C  
°C  
°C  
Digital Short Circuit Duration (single high output to VSS)  
Analog Short Circuit Duration (single output to VSSA)  
Ambient Operating Temperature Range  
Storage Temperature Range  
TD  
TA  
1
SC  
infinite  
+130  
+150  
+150  
+300  
+220  
+150  
SC  
Ta  
-60  
-65  
Tstg  
Tj  
Junction Temperature  
Soldering Temperature (10 sec., 1/4” from pin)  
Vapor Phase Soldering (1 min.)  
Tsol  
Tvsol  
Storage Temperature  
T
-65  
stor  
Notes: 1. Absolute maximum ratings are limiting values applied individually, while all other parameters are within  
specified operating conditions. Functional operation under any of these conditions is NOT implied.  
2. Applied voltage must be current limited to specified range, and measured with respect to VSS.  
3. Forcing voltage must be limited to a specified range.  
4. Current is specified as conventional current, flowing into the device.  
RECOMMENDED OPERATING CONDITIONS  
o
Unless otherwise specified, all specifications shall be met over the operating temperature range (0 to 70 C, case),  
with a digital supply voltage (V ) of 5.00 VDC ± 5% and analog supply voltage (V  
) of 5.00 VDC ± 5%.  
DD  
DDA  
Characteristics  
Supply Voltage  
Ambient Operating Temperature Range  
Symbol  
Min  
4.75  
0
Typ  
Max  
5.25  
70  
Unit  
V
V
5
DD  
Ta  
°C  
Modified on May/04/2000  
PAGE 33 OF 44  
MULTIMEDIA VIDEO  
KS0123 Data Sheet  
DC ELECTRICAL CHARACTERISTICS  
Characteristics  
Symbol  
Min  
Typ  
Max  
Unit  
Total Power Supply Current (Digital Plus  
I
160  
mA  
DD  
1
Analog , F  
= 27 MHz)  
PXCK  
2
Total Power Supply Current (DACs Disabled ,  
= 27 MHz)  
I
110  
mA  
V
DDQ  
F
PXCK  
Digital Input Voltage, Logic HIGH  
TTL Compatible Inputs  
V
V
2.0  
0.7  
V
V
IH  
IH  
DD  
DD  
Digital Input Voltage, Logic HIGH  
Serial Port (SDA, SCL)  
V
Digital Input Voltage, Logic LOW  
TTL Compatible Inputs  
V
V
V
V
0.8  
0.3  
V
IL  
IL  
SS  
SS  
Digital Input Voltage, Logic LOW  
Serial Port (SDA, SCL)  
V
Digital Input Current, Logic HIGH (V = 4.0 V)  
I
10  
-10  
7
mA  
mA  
pF  
V
IN  
IH  
Digital Input Current, Logic LOW (V =0.4 V)  
I
IL  
IN  
Digital Input Capacitance(f=1MHz,V =2.4 V)  
C
IN  
IN  
Digital Output Voltage, Logic HIGH  
V
3.7  
V
DD  
OH  
CMOS Compatible Outputs (I =-1 mA)  
OH  
Digital Output Voltage Logic LOW  
V
V
0.4  
V
V
OL  
SS  
SS  
SS  
CMOS Compatible Outputs (I =4.0 mA)  
OL  
Digital Output Voltage Logic LOW  
V
V
V
0.4  
0.6  
10  
OL1  
OL2  
OZH  
Serial Port (SDA) (I =3.0 mA)  
OL  
Digital Output Voltage Logic LOW  
V
V
Serial Port (SDA) (I =6.0 mA)  
OL  
Hi-Z Leakage Current, HIGH (V =Max,  
I
mA  
mA  
DD  
V =V  
)
IN  
DD  
Hi-Z Leakage Current, LOW (V =Max,  
I
-10  
DD  
OZL  
V =V  
)
IN  
SS  
o
Digital Input Capacitance (T =25 C, F=1 MHz)  
C
8
pF  
pF  
A
I
o
Digital Output Capacitance (T =25 C, F=1  
C
10  
A
O
MHz)  
o
Notes: 1.Maximum I  
and I  
with V = V  
= +5.25 VDC and T = 0 to 70 C. D/A converters loaded with  
DDA A  
DDD  
DDA  
DD  
R = 75 W.  
L
2. I  
when RESET = HIGH, CDIS = YCDIS = HIGH (DACs disabled).  
DDQ  
Modified on May/04/2000  
PAGE 34 OF 44  
MULTIMEDIA VIDEO  
KS0123 Data Sheet  
PIXEL DATA PORT  
Characteristics  
Symbol  
Min  
Typ  
27.0  
13.5  
18.5  
18.5  
Max  
Unit  
Master Clock Rate (PXCK input)  
F
26.9999  
27.0001  
MHz  
PXCK  
Pixel Rate (F  
= F  
/2)  
F
M
pps  
PCK  
PXCK  
PCK  
PWH;PXCK  
PXCK Pulse Width, HIGH  
PXCK Pulse Width, LOW  
T
10  
ns  
T
14.5  
ns  
ns  
ns  
ns  
ns  
PWL;PXCK  
PXCK Rise Time (10% to 90% points)  
PXCK Fall Time (10% to 90% points)  
PD7-0 Setup Time  
T
TBD  
TBD  
RP  
T
FP  
T
T
5
3
SU;PD  
HD;PD  
PD7-0 Hold Time  
Process Delay (from PD input to DAC inputs)  
T
48  
PXCX  
PD  
Periods  
Note: Timing reference points are at the 50% level. Digital C  
< 40 pF.  
LOAD  
Modified on May/04/2000  
PAGE 35 OF 44  
MULTIMEDIA VIDEO  
KS0123 Data Sheet  
SERIAL MICROPROCESSOR PORT  
Characteristics  
Symbol  
Min  
Typ  
Max  
Unit  
kHz  
ms  
SCL Clock Frequency (F  
SCL Clock LOW period  
SCL Clock HIGH period  
= 27.0 MHz)  
F
T
Note 3  
500  
PXCK  
SCL  
1.0  
LOW  
HIGH  
T
0.48  
ms  
SDA & SCL input rise time  
SDA & SCL input fall time  
SDA output fall time from V  
T
T
240  
240  
200  
ns  
R
ns  
F
to V  
;
;
T
ns  
IH MIN  
IL MAX  
OF1  
OF2  
BUF  
bus capacitance = 10 pF to 400 pF.  
Up to 3 mA current at V  
OL1.  
SDA output fall time from V  
to V  
T
200  
ns  
IH MIN  
IL MAX  
bus capacitance = 10 pF to 400 pF.  
Up to 6 mA current at V  
OL2.  
Bus free time between a STOP and START  
condition.  
T
1.0  
ms  
ms  
Hold time for START or repeated START  
condition. After this period, the first clock pulse  
is generated.  
T
0.48  
HD;STA  
Setup time for a repeated START condition.  
Data Setup Time  
T
T
T
T
0.48  
80  
ms  
ns  
SU;STA  
SU;DAT  
HD;DAT  
Data Hold Time  
0
0.72  
400  
ms  
ms  
pF  
Setup Time for a STOP condition  
SDA output load capacitance  
0.48  
SU;STO  
C
B
Note:  
1. All timing values are referred to V  
and V  
levels.  
IH MIN  
IL MAX  
2
2. Timing specifications have been obtained by scaling the Philips I C Fast Mode Bus specs by 80%.  
3. The nominal F to be used by this device is: F = (F /56) = (27.0MHz/56) = 482.143 KHz.  
SCL  
SCL  
PXCK  
Modified on May/04/2000  
PAGE 36 OF 44  
MULTIMEDIA VIDEO  
KS0123 Data Sheet  
JTAG INTERFACE  
Characteristics  
Test Clock (TCK) Rate  
Symbol  
Min  
Typ  
Max  
Unit  
MHz  
ns  
F
10  
TCK  
TCK Pulse Width, LOW  
T
10  
10  
10  
0
PWLTCK  
PWHTCK  
TCK Pulse Width, HIGH  
T
ns  
Test Port Setup Time (TDI, TMS)  
Test Port Hold Time (TDI, TMS)  
Output Delay, TCK to TDO Valid  
Output Hold Time, TCK to TDO Valid  
T
T
ns  
STP  
ns  
HTP  
T
T
30  
ns  
DOTP  
HOTP  
5
ns  
Note: Timing reference points are at the 50% level. Digital C  
< 40 pF.  
LOAD  
MISCELLANEOUS DIGITAL SIGNALS  
Characteristics  
RESET/ Active (LOW) Time  
Symbol  
Min  
Typ  
Max  
Unit  
ms  
ns  
T
1
SR  
SC_SYNC Setup Time  
SC_SYNC Hold Time  
PAL_ID Setup Time  
PAL_ID Hold Time  
PAL_ID Duration  
T
T
10  
0
SU;SC_SYNC  
HD;SC_SYNC  
ns  
T
T
10  
0
ns  
SU;PAL_ID  
HD;PAL_ID  
ns  
T
9
PXCK  
DUR;PAL_ID  
periods  
Note: Timing reference points are at the 50% level. Digital C  
< 40 pF.  
LOAD  
Modified on May/04/2000  
PAGE 37 OF 44  
MULTIMEDIA VIDEO  
KS0123 Data Sheet  
ANALOG (DAC) OUTPUTS  
Characteristics  
Symbol  
RES  
Min  
10  
Typ  
Max  
Unit  
bits  
dB  
DAC Resolution  
Power Supply Rejection Ratio (Full scale  
output) CBYPS = 0.1mF, f = DC to 1MHz, V  
= 100 mVp-p  
PSRR  
TBD  
RIP  
Voltage Reference Output  
VREF Output Impedance  
DAC Gain Factor  
V
1.112  
1000  
10.31  
-5  
1.235  
10.85  
1.359  
V
RO  
Z
W
R
K
11.39  
+5  
DAC  
K
Imbalance Between DACs  
K
%
mA  
W
DAC  
IMBAL  
DAC Reference Current (R  
= Nom.)  
I
1.569  
787  
REF  
REF  
Reference Resistor (V = Nom.)  
R
REF  
RO  
Blanking Level Output Voltage (NTSC and PAL  
modes)  
V
0.300  
V
BLANK  
Video Output Compliance Voltage  
Video Output Resistance  
V
-0.3  
1.6  
V
OC  
R
15  
kW  
pF  
OUT  
OUT  
Video Output Capacitance (I  
MHz)  
=0 mA, f=1  
C
15-25  
OUT  
Total Output Load Resistance  
R
75  
2
W
L
DAC Output Current Risetime (10% to 90% of  
full scale)  
T
ns  
R
DAC Output Current Falltime (90% to 10% of  
full scale)  
T
2
ns  
ns  
F
Analog Output Delay  
T
20  
DOV  
Notes: Timing reference points are at the 50% level. Analog C  
< 10 pF Digital C  
< 40 pF.  
LOAD  
LOAD  
GENLOCK PERFORMANCE  
Parameter  
Locking Range  
SC_REF Duty Cycle  
Lock Time  
Units  
+2 kHz  
50 + 10%  
40 lines maximum  
2 deg. p-p maximum  
Jitter  
Modified on May/04/2000  
PAGE 38 OF 44  
MULTIMEDIA VIDEO  
KS0123 Data Sheet  
Video Performance  
The encoder meets the requirements listed in the table below when configured using the application circuit of  
Figure 14. The test methods and test signals meet the requirements of NTC Report No. 7 or EIA/TIA-250. A  
Tektronix TSG1001 Programmable TV Generator and a Tektronix VM700A Video Measurement Set are used for  
measurement verification.  
VIDEO PERFORMANCE CHARACTERISTICS  
Test Name  
Symbol  
Test Waveform  
Min  
Typ Max  
Unit  
AMPRESP  
Amplitude Response vs.  
Frequency  
Multiburst to 4.2 MHz  
0.25 dBp-p  
Differential Gain  
DG  
DP  
Modulated Staircase or Ramp  
(NTC-7 Composite)  
1.5  
% p-p  
Differential Phase  
Modulated Staircase or Ramp  
(NTC-7 Composite)  
1.0 deg p-p  
Chroma Nonlinear Gain  
Distortion  
CNLG  
CNLP  
CLIMD  
CLGI  
Three Level Chroma Signal  
(NTC-7 Combination)  
1.0  
1.0  
IRE  
deg  
IRE  
%
Chroma Nonlinear Phase  
Distortion  
Three Level Chroma Signal  
(NTC-7 Combination)  
Chroma-to-Luma  
Intermodulation  
Three Level Chroma Signal  
(NTC-7 Combination)  
1
Chroma/Luma Gain Equality  
12.5T Modulated Pulse  
(NTC-7 composite)  
97.5  
102.5  
CHRBW = HIGH (1.3 MHz)  
YCDELAY = LOW.  
Chroma/Luma Delay Inequality.  
(Analog filter delay excluded)  
CLDI  
12.5T Modulated Pulse NTC-7  
composite)  
0
5
ns  
CHRBW = HIGH (1.3 MHz)  
YCDELAY = LOW.  
Luma Nonlinear Distortion  
LNLD  
5-Step Unmodulated Staircase  
2.5  
%
1
Noise Level  
NOISE1 100% Unmodulated Ramp  
NOISE2 100% Unmodulated Ramp  
-61 dBrms  
-72 dBrms  
-56 dBrms  
-58 dBrms  
1.5 IREp-p  
0.5 IREp-p  
2
Noise Level  
Chroma AM Noise  
CAMN  
CPMN  
FTWD  
LTWD  
Red Field, 500 kHz BW  
Red Field, 500 kHz BW  
Field Square Wave  
Chroma PM Noise  
Field Time Waveform Distortion  
Line Time Waveform Distortion  
18 mS 100 IRE Bar (NTC-7  
Composite)  
Long Time Waveform Distortion:  
Initial Peak Overshoot  
LOTWD 10% / 90% APL Bounce  
15  
IRE  
Peak Overshoot after 5 seconds  
1.5  
Modified on May/04/2000  
PAGE 39 OF 44  
MULTIMEDIA VIDEO  
KS0123 Data Sheet  
VIDEO PERFORMANCE CHARACTERISTICS  
Test Name  
Symbol  
Test Waveform  
Min  
Typ Max  
Unit  
Short Time Waveform Distortion  
STWD  
100 IRE Step, 125 ns rise time  
(NTC-7 COmposite)  
1
% SD  
Line-by-Line DC Offset  
Dynamic Gain  
LDCOFF 10% / 90% APL Bounce  
DYNG  
-1  
-1  
1
1
IRE  
IRE  
Notes: 1. Noise level is unified weighted, 10 kHz to 5.0 MHz bandwidth, with Tilt Null ON measuring using VM700  
Measure Mode”. A trap at the color burst frequency may be used.  
2. Noise level is unified weighted, 10 kHz to 5.0 MHz bandwidth, measured using VM700 “Auto Mode”.  
Modified on May/04/2000  
PAGE 40 OF 44  
MULTIMEDIA VIDEO  
KS0123 Data Sheet  
KS0123 Design Hints  
Figure 19 describes power supply decoupling. A clean power supply is crucial for proper operation of the device.  
Noise on the power supply lines will couple onto the analog inputs and ultimately result in poor picture quality. The  
digital and analog VDD supplies should be separately decoupled with external filter components. This is achieved  
by using a ferrite bead with a capacitor on either side. In addition to this filter, 0.1mF capacitors should be placed by  
each IC power pin. Additional decoupling can be achieved by placing 0.01mF capacitors in parallel with the 0.1mF  
capacitors. These components should be located close to the ENCODER device. The ENCODER ideally should be  
located near the input power supply and close to the video inputs connectors.  
Board Regulated  
Power  
+5V  
VDD  
0.1mF  
22mF  
22mF  
22mF  
0.1mF  
FERRITE  
ENCODER  
BEADS  
Place 0.1mF caps near  
each IC power pin  
VDDA  
0.1mF  
22mF  
0.1mF  
All Grounds are connected together  
Figure 19. Power Supply Filtering  
A number of different ferrite beads can be used for power supply decoupling. Wire wound ferrite beads are generally  
large, but offer greater current capacity and higher impedance for a given frequency (this depends on the ferrite  
material and number of windings). A larger current capacity is useful for decoupling many components, such as a  
board power supply. Bead on lead and surface mount ferrites do not afford a large impedance to AC, but the  
capacitors on each side of the ferrite should eliminate any excessive digital switching noise. Generally, pick a ferrite  
with the lowest DC resistance and highest impedance to signals centered around 27 MHz. The large capacitor on  
the component side of the ferrite provides low frequency filtering, and acts as a charge reservoir for rapid current  
requirements by the ENCODER. Generally, this is located near the ferrite. Some suggested ferrite beads are:  
• TDK: Wire wound ZBF113T-01; Bead on lead BF45-4001; Surface mount CB50-1206. TDK can be reached at  
(708) 803-6100.  
• Fair-Rite: Wire wound beads Fair-Rite 2943666671; Bead on lead 274300111; SM beads 2743021447. Fair-Rite  
is at (914) 895-2055.  
Applications that reside in noisy environments or utilize a switching power supply should have local power  
regulation. For example, designs for the PC should use the 12 volt power supply and locally regulate the supply to  
5 volts with a linear regulator.  
For decoupling, use high quality RF capacitors. Type COG or NPO should be used. Avoid Z5U capacitors. Surface  
mounting of the filter components is highly recommended. If leaded components are used, keep the leads and  
traces as short as possible.  
Use a multilayer PC board with separate power and ground planes. The surface mount package requires the top  
layer to be a signal layer. The top layer should contain the analog traces, avoid running digital signal traces (clocks  
and data lines) or other high speed lines directly under the device. The ground plane should be placed directly  
Modified on May/04/2000  
PAGE 41 OF 44  
MULTIMEDIA VIDEO  
KS0123 Data Sheet  
below the top signal layer. A low impedance ground path from the device is essential to proper operation and  
isolation. Use one solid ground plane under the ENCODER, do not split the ground plane. The power plane is next  
with additional signal planes following. Surface mount passive components can be placed on the under side  
(solder side) of the final signal plane. Mounting passive components (which could not be located close to the  
ENCODER on the top signal layer) directly under the device should provide superior performance. A four layer PC  
board is sufficient for most applications, but noisy densely populated designs may require more layers.  
The output video connectors should be located close to the ENCODER. Orient the package so that short leads can  
be used. The crystal oscillator components should also be mounted very close to the oscillator pins.  
The edge rates of clocks and other high speed digital signals should be limited to reduce ringing and noise.  
Termination with a small series damping resistor (~15 ohms, depends on trace and board characteristics), located  
at the driving end of a long transmission line, may reduce ringing.  
Modified on May/04/2000  
PAGE 42 OF 44  
MULTIMEDIA VIDEO  
KS0123 Data Sheet  
NOTES:  
Modified on May/04/2000  
PAGE 43 OF 44  
MULTIMEDIA VIDEO  
KS0123 Data Sheet  
SAMSUNG SEMICONDUCTOR SALES OFFICES  
NORTHEAST  
NORTHWEST  
NORTH CENTRAL  
119 Russell Street  
Littleton, MA 01460  
TEL (508) 486-0700  
FAX (508) 486-8209  
3655 North Fist Street  
San Jose, CA 95134-1708  
TEL (408) 954-7000  
300 Park Boulevard  
Suite 210  
Itasca, IL 60143-2636  
TEL (708) 775-1050  
FAX (708) 775-1058  
FAX (408) 954-7883  
SOUTH CENTRAL  
SOUTHEAST  
SOUTHWEST  
15851 Dallas Parkway  
Suite 410  
Dallas, TX 75248-3307  
TEL (214) 770-7970  
FAX (214) 770-7971  
2000 Regency Parkway  
Suite 285  
Cary, NC 27511  
TEL (919) 380-8483  
FAX (919) 380-8492  
16253 Laguna Canyon Road  
Suite 100  
Irvine, CA 92718  
TEL (714)753-7530  
FAX (714) 753-7544  
TECHNICAL SUPPORT HOT LINE  
Phone: (714)-236-9507  
Fax: (714)-236-9664  
E-mail: video@sldc.com  
Circuit diagrams utilizing SAMSUNG and/or SAMSUNG ELECTRONICS products are included as a means of illustrating typical  
semiconductor applications; consequently, complete information sufficient for construction purposes is not necessarily given.  
The information has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for  
inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described herein  
any license under the patent rights of SAMSUNG and/or SAMSUNG ELECTRONICS, or others. SAMSUNG and/or SAMSUNG  
ELECTRONICS, reserve the right to change device specifications.  
LIFE SUPPORT APPLICATIONS  
SAMSUNG and/or SAMSUNG ELECTRONICS products are not designed for use in life support applications, devices, or  
systems where malfunction of a SAMSUNG product can reasonably be expected to result in a personal injury. SAMSUNG and/  
or SAMSUNG ELECTRONICS’ customers using or selling SAMSUNG and/or SAMSUNG ELECTRONICS products for use in  
such applications do so at their own risk and agree to fully indemnify SAMSUNG and/or SAMSUNG ELECTRONICS for any  
damages resulting from such improper use or sale.  
Modified on May/04/2000  
PAGE 44 OF 44  

相关型号:

KS0125

Color Signal Encoder, CMOS, PQFP80, 14 X 20 MM, QFP-80
SAMSUNG

KS0127

MULTISTANDARD VIDEO DECODER/SCALER
SAMSUNG

KS0127B

MULTISTANDARD VIDEO DECODER/SCALER
SAMSUNG

KS0143-40

Video Imager, 16-Bit, CMOS, MQFP208, CAVITY-DOWN, MQFP-208
SAMSUNG

KS0143-50

Video Imager, 16-Bit, CMOS, MQFP208, CAVITY-DOWN, MQFP-208
SAMSUNG

KS0143CQ-40

Video Imager, 16-Bit, CMOS, MQFP208, CAVITY-DOWN, MQFP-208
SAMSUNG

KS0143CQ-50

Video Imager, 16-Bit, CMOS, MQFP208, CAVITY-DOWN, MQFP-208
SAMSUNG

KS0144-50

Video Imager, 16-Bit, CMOS, MQFP208, CAVITY-DOWN, MQFP-208
SAMSUNG

KS0144CQ-40

Video Imager, 16-Bit, CMOS, MQFP208, CAVITY-DOWN, MQFP-208
SAMSUNG

KS0144CQ-50

Video Imager, 16-Bit, CMOS, MQFP208, CAVITY-DOWN, MQFP-208
SAMSUNG

KS0152

Micro Peripheral IC
SAMSUNG

KS0152MSSP

Consumer Circuit
SAMSUNG