KS57C0002IS [SAMSUNG]

暂无描述;
KS57C0002IS
型号: KS57C0002IS
厂家: SAMSUNG    SAMSUNG
描述:

暂无描述

微控制器
文件: 总59页 (文件大小:496K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
KS57C0002/0004  
S MSUNG  
4-BIT CMOS Microcontroller  
Product Specification  
OVERVIEW  
The KS57C0002/0004 single-chip CMOS microcontroller is designed for high-performance using Samsung's  
newest 4-bit CPU core. With a four-channel comparator, eight LED direct drive pins, serial I/O interface, and a  
versatile  
8-bit timer/countkxcellent design solution for a variety of general-purpose applications.  
Up to 24 pins of the 30-pin SDIP package can be dedicated to I/O. Five vectored interrupts provide fast response  
to internal and external events. In addition, the KS57C0002/0004's advanced CMOS technology ensures low  
power consumption and a wide operating voltage range.  
FEATURES  
Memory  
Stop mode (system clock  
stops)  
Watch Timer  
256 × 4-bit data memory  
(KS57C0002)  
Interval generation: 0.5 s,  
3.9ms at 32768 Hz  
Oscillation Sources  
512 × 4-bit data memory  
(KS57C0004)  
Four frequency outputs to the  
BUZ pin  
Crystal, ceramic, or RC for  
system clock (RC is only for  
the KS57C0002)  
2048 × 8-bit program memory  
(KS57C0002)  
8-Bit Serial I/O Interface  
4096 × 8-bit program memory  
(KS57C0004)  
Crystal, ceramic: 4.19 MHz  
(typical)  
8-bit transmit/receive mode  
8-bit receive-only mode  
RC: 1 MHz  
24 I/O Pins  
LSB-first or MSB-first  
transmission selectable  
CPU clock divider circuit  
(by 4, 8, or 64)  
I/O: 18 pins, including 8 high-  
current pins  
Internal or external clock  
source  
Input only: 6 pins  
Instruction Execution Times  
0.95, 1.91, 15.3 µs at 4.19  
MHz  
Comparator  
Bit Sequential Carrier  
4-channel mode with internal  
Support for 16-bit serial data  
transfer in arbitrary format  
reference (4-bit resolution)  
and 16-step variable  
reference voltage  
Operating Temperature  
°
°
– 40 C to 85 C  
Operating Voltage Range  
2.7 V to 6.0 V  
Package Type  
30 SDIP, 32 SOP  
Interrupts  
3-channel mode with external  
reference  
Two external interrupt vectors  
Three internal interrupt  
vectors  
150 mV resolution (minimum)  
8-Bit Basic Timer  
Programmable interval timer  
8-Bit Timer/Counter  
Two quasi-interrupts  
Memory-Mapped I/O Structure  
Data memory bank 15  
Power-Down Modes  
Programmable interval timer  
External event counter  
function  
Idle mode (only CPU clock  
stops)  
Timer/counter clock output to  
TCLO0 pin  
2–1  
KS57C0002 /0004 MICROCONTROLLER  
PRODUCT SPECIFICATION  
BASIC  
TIMER  
WATCH  
TIMER  
RESET  
Xin  
Xout  
8-BIT  
TIMER/  
P0.0 / SCK  
I/O PORT 0  
COUNTER  
P0.1 / SO  
P0.2 / SI  
INTERRUPT  
CONTROL  
BLOCK  
STACK  
POINTER  
CLOCK  
P3.0 / TCL0  
P3.1 / TCLO0  
P3.2 / CLO  
SERIAL  
I/O  
PORT  
I/O PORT 3  
PROGRAM  
COUNTER  
INTERNAL  
INTERRUPTS  
INPUT  
PORT 1  
P1.0 / INT0  
P1.1 / INT1  
PROGRAM  
STATUS  
WORD  
I/O PORT 4  
I/O PORT 5  
P4.0–P4.3  
P5.0–P5.3  
INSTRUCTION  
DECODER  
P2.0 / CIN0  
P2.1 / CIN1  
P2.2 / CIN2  
P2.3 / CIN3  
INPUT  
PORT 2  
ARITHMETIC  
LOGIC UNIT  
P6.0 / KS0  
P6.1 / KS1  
P6.2 / KS2  
P6.3 / BUZ  
FLAGS  
I/O PORT 6  
COMPARATOR  
2 K/ 4 K  
BYTE  
256 / 512  
x 4-BIT  
PROGRAM  
MEMORY  
DATA  
MEMORY  
a
Figure 1. KS57C0002/0004 Block Diagram  
P0.0 / SCK  
1
30  
29  
28  
27  
26  
25  
24  
P0.0/SCK  
P0.1/SO  
P0.2/SI  
1
32  
31  
30  
29  
28  
27  
VDD  
VDD  
A
P0.1 / SO  
P0.2 / SI  
2
2
P6.3/BUZ  
P6.2/KS2  
P6.1/KS1  
P6.0/KS0  
P5.3  
P6.3 / BUZ  
P6.2 / KS2  
P6.1 / KS1  
P6.0 / KS0  
P5.3  
3
3
P1.0 / INT0  
P1.1 / INT1  
P2.0 / CIN0  
P2.1 / CIN1  
P2.2 / CIN2  
P2.3 / CIN3  
P3.0 / TCL0  
4
P1.0/INT0  
NC  
4
5
5
6
P1.1/INT1  
P2.0/CIN0  
P2.1/CIN1  
P2.2/CIN2  
P2.3/CIN3  
P3.0/TCL0  
P3.1/TCLO0  
P3.2/CLO  
RESET  
6
7
KS57C0002/04 26  
7
P5.2  
KS57C0002/04  
P5.2  
8
(Top View) 23  
8
25  
P5.1  
P5.1  
(Top View)  
9
22  
21  
20  
19  
18  
17  
16  
9
24  
23  
22  
21  
20  
19  
18  
17  
P5.0  
P5.0  
10  
11  
12  
13  
14  
15  
10  
11  
12  
13  
14  
15  
16  
P4.3  
P4.3  
P3.1 / TCLO0  
P3.2 / CLO  
RESET  
P4.2  
P4.2  
NC  
P4.1  
P4.1  
P4.0  
TEST  
P4.0  
Xout  
VSS  
TEST  
Xout  
Xin  
VSS  
Xin  
30 SDIP  
32 SOP  
Figure 2. KS57C0002/0004 Pin Assignments (32 SOP, 30 SDIP)  
S MSUNG  
ELECTRONICS  
September 1996  
2–2  
PRODUCT SPECIFICATION  
KS57C0002 /0004 MICROCONTROLLER  
Table 1. KS57C0002/0004 Pin Descriptions  
Pin Name  
P0.0  
P0.1  
P0.2  
Pin Type  
Description  
Number  
Share Pin  
I/O  
3-bit I/O port. 1-bit or 3-bit read/write and test is  
possible. Pull-up resistors are assignable to input pins  
by software and are automatically disabled for output  
pins. Pins are individually configurable as input or  
output.  
1
2
3
SCK  
SO  
SI  
P1.0  
P1.1  
I
2-bit input port. 1-bit or 2-bit read and test is possible.  
Pull-up resistors are assignable by software.  
4
5
INT0  
INT1  
P2.0–P2.3  
I
4-bit input port. 1-bit or 4-bit read and test is possible.  
Same as port 0  
6–9  
CIN0–CIN3  
P3.0  
P3.1  
P3.2  
I/O  
10  
11  
12  
TCL0  
TCLO0  
CLO  
P4.0–P4.3  
P5.0–P5.3  
I/O  
I/O  
4-bit I/O ports.  
18–21  
22–25  
1-, 4-, or 8-bit read/write and test is possible.  
Pins are individually configurable as input or output.  
Ports can be configurable as n-channel open-drain by  
mask option (maximum 9V).  
P6.0  
P6.1  
P6.2  
P6.3  
4-bit I/O port.  
26  
27  
28  
29  
KS0  
KS1  
KS2  
BUZ  
1-bit or 4-bit read/write and test is possible.  
Pull-up resistors are assignable to input pins by  
software and are automatically disabled for output  
pins. Pins individually configurable as input or output.  
INT0  
I
I
I
External interrupts with rising/falling edge detection  
External interrupts with rising/falling edge detection  
4
5
P1.0  
P1.1  
INT1  
CIN0–CIN3  
4-channel comparator input.  
6–9  
P2.0–P2.3  
CIN0–CIN2: comparator input only.  
CIN3: comparator input or external reference input  
SCK  
SO  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Serial interface clock signal  
Serial data output  
1
2
P0.0  
P0.1  
P0.2  
P3.0  
P3.1  
P3.2  
P6.3  
SI  
Serial data input  
3
TCL0  
TCLO0  
CLO  
BUZ  
External clock input for timer/counter  
Timer/counter clock output  
CPU clock output  
10  
11  
12  
29  
2 kHz, 4 kHz, 8 kHz, or 16 kHz frequency output at  
4.19 MHz for buzzer sound  
KS0–KS2  
I/O  
I
Quasi-interrupt input with falling edge detection  
26–28  
30  
P6.0–P6.2  
V
V
Main power supply  
Ground  
DD  
SS  
15  
RESET  
TEST  
Reset signal  
13  
I
Test signal input (must be connected to V  
)
14  
SS  
X , X  
in out  
Crystal, ceramic, or RC oscillator signal for system  
clock  
16, 17  
S MSUNG  
ELECTRONICS  
2–3  
September 1996  
KS57C0002 /0004 MICROCONTROLLER  
PRODUCT SPECIFICATION  
Table 2. Supplemental KS57C0002/0004 Pin Data  
Pin Numbers  
1, 2, 3  
Pin Names  
P0.0–P0.2  
Share Pins  
I/O Type  
Reset Value  
Input  
Input  
Input  
Input  
Circuit Type  
SCK, SO, SI  
I/O  
I
5
3
4, 5  
P1.0, P1.1  
P2.0–P2.3  
P3.0–P3.2  
RESET  
INT0, INT1  
6–9  
CIN0–CIN3  
I
6, 8 *  
5
10–12  
13  
TCL0, TCLO0, CLO  
I/O  
I
9
14  
TEST  
I
7
15  
V
I/O  
I/O  
I/O  
SS  
16, 17  
18–21  
22–25  
26–29  
Xin, Xout  
P4.0–P4.3  
P5.0–P5.3  
P6.0–P6.3  
Input  
Input  
Input  
7
KS0, KS1, KS2,  
BUZ  
5
30  
V
DD  
*
I/O circuit type 8 is for P2.3 only.  
S MSUNG  
ELECTRONICS  
September 1996  
2–4  
PRODUCT SPECIFICATION  
KS57C0002 /0004 MICROCONTROLLER  
VDD  
VDD  
P-CHANNEL  
OUT  
P-CHANNEL  
N-CHANNEL  
DATA  
IN  
N-CHANNEL  
OUTPUT  
DISABLE  
Figure 6. Pin Circuit Type 4  
Figure 3. Pin Circuit Type 1  
VDD  
PULL-UP  
RESISTOR  
RESISTOR  
ENABLE  
P-CHANNEL  
I/O  
IN  
DATA  
CIRCUIT  
TYPE 4  
SCHMITT TRIGGER  
OUTPUT  
DISABLE  
CIRCUIT TYPE 2  
Figure 7. Pin Circuit Type 5  
Figure 4. Pin Circuit Type 2  
VDD  
PULL-UP  
RESISTOR  
DIGITAL INPUT  
RESISTOR  
ENABLE  
P-CHANNEL  
IN  
ANALOG INPUT  
SCHMITT TRIGGER  
Figure 5. Pin Circuit Type 3  
Figure 8. Pin Circuit Type 6  
S MSUNG  
ELECTRONICS  
2–5  
September 1996  
KS57C0002 /0004 MICROCONTROLLER  
PRODUCT SPECIFICATION  
VDD  
DIGITAL INPUT  
ANALOG INPUT  
EXTERNAL VREF  
P-CHANNEL  
DATA  
(MASK  
OPTION)  
N-CHANNEL  
OUTPUT  
DISABLE  
MAXIMUM INPUT VOLTAGE: 9 V  
Figure 10. Pin Circuit Type 8  
Figure 9. Pin Circuit Type 7  
VDD  
IN  
Schmitt Trigger Input  
Figure 11. Pin Circuit Type 9  
S MSUNG  
ELECTRONICS  
September 1996  
2–6  
PRODUCT SPECIFICATION  
KS57C0002 /0004 MICROCONTROLLER  
PROGRAM MEMORY (ROM)  
— 16-byte general-purpose area  
— 16-byte area for vector addresses  
— 96-byte instruction reference area  
ROM maps for KS57C0002/0004 devices are mask  
programmable at the factory. In their standard  
configuration, the device's 2048 × 8-bit (KS57C0002),  
or 4096 × 8-bit (KS57C0004) program memory has  
four areas that are directly addressable by the  
program counter ( PC):  
— 1920-byte (KS57C0002), 3968-byte (KS57C0004)  
general-purpose area  
0000H  
VECTOR  
ADDRESS AREA  
7
6
5
4
3
2
1
0
000FH  
0010H  
RESET  
INTB  
INT0  
0000H  
0002H  
0004H  
0006H  
0008H  
000AH  
GENERAL-PURPOSE  
AREA  
001FH  
0020H  
INSTRUCTION  
REFERENCE AREA  
007FH  
0080H  
INT1  
GENERAL-PURPOSE  
INTS  
INTT0  
KS57C0002  
07FFH  
AREA 1  
0800H  
0FFFH  
KS57C0004  
GENERAL-PURPOSE  
AREA 2  
Figure 12. ROM Map  
Figure 13. Vector Address Map  
— 256×4 -bit general-purpose area in bank1  
DATA MEMORY (RAM)  
(KS57C0004 only)  
In its standard configuration, the 256× 4 -bit  
(KS57C0002), or the 512 ×4-bit (KS57C0004) data  
memory has four areas:  
— 128× 4-bit area in bank 15 for memory-mapped  
I/O addresses  
I/O MAP FOR HARDWARE REGISTERS  
— 32 ×4-bit working registers  
Table 3 contains detailed information about I/O  
mapping for peripheral hardware in bank 15 (register  
locations F80H–FFFH).  
— 224× 4-bit general-purpose area in bank0 which  
is also used as the stack area  
S MSUNG  
ELECTRONICS  
2–7  
September 1996  
KS57C0002 /0004 MICROCONTROLLER  
PRODUCT SPECIFICATION  
DA  
DA.b  
ADDRESSING  
MODE  
@HL  
@H + DA.b  
@WX  
@WL  
mema.b memb.@L  
RAM  
AREAS  
EMB = 0 EMB = 1  
EMB = 0  
EMB = 1  
X
X
X
000H  
WORKING  
REGISTERS  
01FH  
020H  
SMB = 0  
SMB = 0  
BANK 0  
(GENERAL  
REGISTERS  
AND STACK)  
07FH  
080H  
0FFH  
100H  
BANK 1  
KS57C0004  
ONLY  
SMB = 1  
SMB = 1  
(GENERAL  
REGISTERS)  
1FFH  
F80H  
FB0H  
BANK 15  
FBFH  
FC0H  
(PERIPHERAL  
HARDWARE  
REGISTERS)  
SMB = 15  
SMB = 15  
FF0H  
FFFH  
NOTES: 1. 'X' means don't care.  
2. Blank columns indicate RAM areas that are not addressable, given the addressing method  
and enable memory bank (EMB) flag setting shown in the column headers.  
Figure 14. Data Memory (RAM) Address Structure  
S MSUNG  
ELECTRONICS  
September 1996  
2–8  
PRODUCT SPECIFICATION  
KS57C0002 /0004 MICROCONTROLLER  
Addressing Mode  
Table 3. I/O Map for Memory Bank 15  
Memory Bank 15  
Register  
Address  
F81H–F80H  
F85H  
Name  
R/W  
R/W  
W
1-Bit  
No  
4-Bit  
No  
8-Bit  
Yes  
No  
SP  
Stack Pointer  
BMOD  
BCNT  
WMOD  
TMOD0  
TCNT0  
TREF0  
PSW  
Basic Timer Mode Register  
Basic Timer Counter Register  
Watch Timer Mode Register  
Timer/Counter 0 Mode Register  
Timer/Counter 0 Counter Register  
Timer/Counter 0 Reference Reg  
.3  
Yes  
No  
F87H–F86H  
F89H–F88H  
F91H–F90H  
F95H–F94H  
F97H–F96H  
FB0H  
R
No  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
W
No  
No  
W
.3  
No  
R
No  
No  
W
No  
No  
IS1  
IS0  
EMB  
SC1  
ERB  
SC0  
R/W  
R
Yes  
No  
Yes  
No  
(2)  
FB1H  
SC2  
C
FB2H  
IPR  
SIO Mode Register  
W
IME  
No  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
FB3H  
PCON  
IMOD0  
IMOD1  
IMODK  
Power Control Register  
W
FB4H  
External Interrupt 0 Mode Register  
External Interrupt 1 Mode Register  
External Key Interrupt Mode Reg  
W
No  
FB5H  
W
No  
FB6H  
W
No  
FB8H  
"0"  
"0"  
"0"  
"0"  
IE1  
"0"  
"0"  
"0"  
IEB  
IEW  
IET0  
IES  
IE0  
IRQB  
R/W  
R/W  
Yes  
Yes  
Yes  
FBAH  
IRQW  
FBCH  
"0"  
IRQT0 R/W  
IRQS  
FBDH  
"0"  
FBEH  
IRQ1  
"0"  
IRQ0  
FBFH  
IEK  
IRQK  
FC0H  
BSC0  
BSC1  
Bit Sequential Carrier 0  
Bit Sequential Carrier 1  
Bit Sequential Carrier 2  
Bit Sequential Carrier 3  
Clock Mode Register  
R/W  
Yes  
Yes  
Yes  
FC1H  
FC2H  
BSC2  
FC3H  
BSC3  
FD0H  
CLMOD  
CMPREG  
CMOD  
PUMOD  
SMOD  
P2MOD  
SBUF  
W
R
No  
No  
No  
No  
.3  
Yes  
Yes  
No  
No  
No  
FD4H  
Comparison Result Register  
Comparator Mode Register  
Pull-up Mode Register  
SIO Mode Register  
FD7H–FD6H  
FDDH–FDCH  
FE1H–FE0H  
FE2H  
R/W  
W
Yes  
Yes  
Yes  
No  
No  
W
No  
Port 2 Mode Register  
SIO Buffer Register  
W
No  
No  
No  
Yes  
No  
FE5H–FE4H  
FE9H–FE8H  
FEBH–FEAH  
R/W  
W
Yes  
Yes  
PMG1  
Port Mode Group 1  
No  
PMG2  
Port Mode Group 2  
S MSUNG  
ELECTRONICS  
2–9  
September 1996  
KS57C0002 /0004 MICROCONTROLLER  
PRODUCT SPECIFICATION  
Addressing Mode  
Table 3. I/O Map for Memory Bank 15 (Concluded)  
Memory Bank 15  
Address  
FEDH–FECH  
FF0H  
Register  
PMG3  
P0  
Name  
Port Mode Group 3  
Port 0  
R/W  
W
1-Bit  
No  
4-Bit  
No  
8-Bit  
Yes  
No  
R/W  
R
Yes  
Yes  
FF1H  
P1  
Port 1  
No  
FF2H  
P2  
Port 2  
R
No  
FF3H  
P3  
Port 3  
R/W  
R/W  
R/W  
R/W  
No  
FF4H  
P4  
Port 4  
Yes  
FF5H  
P5  
Port 5  
FF6H  
P6  
Port 6  
No  
NOTES:  
1. Bit 0 in the WMOD register must be set to "0".  
2. The carry flag can be read or written by specific bit manipulation instructions only.  
S MSUNG  
ELECTRONICS  
September 1996  
2–10  
PRODUCT SPECIFICATION  
KS57C0002 /0004 MICROCONTROLLER  
incrementing or decrementing the value of the L  
register.  
BIT SEQUENTIAL CARRIER (BSC)  
The bit sequential carrier (BSC) is a 16-bit general  
register that is mapped in data memory bank 15.  
Using the BSC, you can specify sequential addresses  
and bit locations using 1-bit indirect addressing  
(memb.@L).  
For 8-bit manipulations, the 4-bit register names  
BSC0 and BSC2 must be specified and the upper and  
lower 8 bits manipulated separately. If the values of  
the L register are 0H at BSC0.@L, the address and bit  
location assignment is FC0H.0. If the L register  
content is FH at BSC0.@L, the address and bit  
location assignment is FC3H.3.  
BSC bit addressing is independent of the current EMB  
value. In this way, programs can process 16-bit data  
by moving the bit location sequentially and then  
Table 4. BSC Register Organization  
Name  
BSC0  
BSC1  
BSC2  
BSC3  
Address  
FC0H  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BSC0.3  
BSC1.3  
BSC2.3  
BSC3.3  
BSC0.2  
BSC1.2  
BSC2.2  
BSC3.2  
BSC0.1  
BSC1.1  
BSC2.1  
BSC3.1  
BSC0.0  
BSC1.0  
BSC2.0  
BSC3.0  
FC1H  
FC2H  
FC3H  
PROGRAMMING TIP — Using the BSC Register to Output 16-Bit Data  
To use the bit sequential carrier (BSC) register to output 16-bit data (5937H) to the P3.0 pin:  
BITS  
SMB  
LD  
LD  
LD  
LD  
SMB  
LD  
EMB  
15  
EA,#37H  
BSC0,EA  
EA,#59H  
BSC2,EA  
0
;
;
;
;
BSC0 A, BSC1 E  
BSC2 A, BSC3 E  
L,#0H  
;
;
;
AGN LDB  
C,BSC0.@L  
LDB  
INCS  
JR  
P3.0,C  
L
AGN  
P3.0 C  
RET  
S MSUNG  
ELECTRONICS  
2–11  
September 1996  
KS57C0002 /0004 MICROCONTROLLER  
PRODUCT SPECIFICATION  
INTERRUPTS  
The KS57C0002/0004 microcontroller has two external interrupts, three internal interrupts, and two quasi-  
interrupts. Table 5 shows the conditions for each interrupt generation. The request flags that actually generate  
these interrupts are cleared by hardware when the service routine is vectored. However, the quasi-interrupt's  
request flags must be cleared by software.  
IMOD1  
IMOD0  
IEW  
IET0  
IES  
IE1  
IE0  
IEK  
IEB  
INTB  
IRQB  
IRQ0  
IRQ1  
IRQS  
IRQT0  
IRQW  
IRQK  
INT0  
INT1  
#
@
@
INTS  
INTT0  
INTW  
INTK (KS0–KS2)  
IMODK  
POWER-DOWN  
MODE  
RELEASE SIGNAL  
IME  
IPR  
INTERRUPT CONTROL UNIT  
IS1 IS0  
VECTOR INTERRUPT  
GENERATOR  
# = Noise filtering circuit  
@ = Edge detection circuit  
Figure 15. Interrupt Control Circuit Diagram  
S MSUNG  
ELECTRONICS  
September 1996  
2–12  
PRODUCT SPECIFICATION  
KS57C0002 /0004 MICROCONTROLLER  
Table 5. Interrupt Request Flag Conditions and Priorities  
Interrupt  
Source  
Internal /  
External  
Condition for IRQx Flag Setting  
Interrupt  
Priority  
Request Flag  
Name  
INTB  
INT0  
INT1  
INTS  
I
E
E
I
Reference time interval signal from basic timer  
Rising or falling edge detected at INT0 pin  
Rising or falling edge detected at INT1 pin  
1
2
3
4
IRQB  
IRQ0  
IRQ1  
IRQS  
Completion signal for serial transmit-and-receive  
or receive-only operation  
INTT0  
I
Signals for TCNT0 and TREF0 registers match  
5
IRQT0  
IRQK  
INTK *  
E
Falling edge is detected at any of the KS0–KS2  
pins  
INTW *  
I
Time interval of 0.5 s or 3.19 ms  
IRQW  
*
The INTK and INTW are quasi-interrupts and INTK are used only for testing incoming signals.  
INTERRUPT ENABLE FLAGS (IEx)  
INTERRUPT PRIORITY  
IEx flags, when set to "1", enable specific interrupt  
requests to be serviced. When the interrupt request  
flag is set to "1", an interrupt will not be serviced until  
its corresponding IEx flag is also enabled. The IPR  
register contains a global disable bit, IME, which  
disables all interrupt at once.  
Each interrupt source can also be individually  
programmed to high levels by modifying the IPR  
register. When IS1 = 0 and IS0 = 1, a low-priority  
interrupt can itself be interrupted by a high-priority  
interrupt, but not by another low-priority interrupt.  
If you clear the interrupt status flags (IS1 and IS0) to  
"0" in a interrupt service routine, a high-priority  
interrupt can be interrupted by low-priority interrupt  
(multi-level interrupt). Before the IPR can be modified  
by 4-bit write instructions, all interrupts must first be  
disabled by a DI instruction.  
Table 6. Interrupt Enable and Request Flag  
Address  
FB8H  
Bit 3  
Bit 2  
Bit 1  
IEB  
IEW  
0
Bit 0  
IRQB  
IRQW  
0
0
0
0
FBAH  
FBBH  
FBCH  
FBDH  
FBEH  
FBFH  
0
When all interrupts are low priority (the lower three  
bits of the IPR register are "0"), the interrupt  
requested first will have high priority. Therefore, the  
first-requested interrupt cannot be superseded by any  
other interrupt.  
0
0
0
0
0
IET0  
IES  
IE0  
IEK  
IRQT0  
IRQS  
IRQ0  
IRQK  
0
IE1  
0
IRQ1  
0
If two or more interrupt requests are received  
simultaneously, the priority level is determined  
according to the standard interrupt priorities, where  
the default priority is assigned by hardware when the  
lower three IPR bits = "0".  
NOTES:  
1. IEx refers to all interrupt enable flags.  
2. IRQx refers to all interrupt request flags.  
3. IEx = "0" is interrupt disable mode.  
4. IEx = "1" is interrupt enable mode.  
S MSUNG  
ELECTRONICS  
2–13  
September 1996  
KS57C0002 /0004 MICROCONTROLLER  
PRODUCT SPECIFICATION  
In this case, the higher-priority interrupt request is  
serviced and the other interrupt is inhibited. Then,  
when the high-priority interrupt is returned from its  
service routine by an IRET instruction, the inhibited  
service routine is started.  
EXTERNAL INTERRUPTS  
The external interrupt mode registers (IMOD0 and  
IMOD1) are used to control the triggering edge of the  
input signal at the INT0 and INT1 pins, respectively.  
When a sampling clock rate of fx/64 is used for INT0,  
an interrupt request flag must be cleared before 16  
machine cycles have elapsed. Since the INT0 pin has  
a clock-driven noise filtering circuit built into it, please  
take the following precautions when you use it:  
Table 7. Interrupt Priority Register Settings  
IPR.2 IPR.1 IPR.0 Result of IPR Bit Setting  
0
0
0
Process all interrupt  
requests at low priority.  
— To trigger an interrupt, the input signal width at  
INT0 must be at least two times wider than the  
pulse width of the clock selected by IMOD0. This  
is true even when the INT0 pin is used for  
general-purpose input.  
0
0
0
1
1
0
1
1
0
0
1
0
1
0
1
INTB  
INT0  
INT1  
INTS  
INTT0  
— Since the INT0 input sampling clock does not  
operate during Stop or Idle mode, you cannot use  
INT0 to release power-down mode.  
When modifying the IMOD0 and IMOD1 registers, it is  
possible to accidentally set an interrupt request flag.  
Table 8. Default Priorities  
Source  
INTB  
Default Priority  
To avoid unwanted interrupts, take these precautions  
when writing your programs:  
1
2
3
4
5
INT0  
1. Disable all interrupts with a DI instruction.  
2. Modify the IMOD0 or IMOD1 register.  
3. Clear all relevant interrupt request flags.  
INT1  
INTS  
INTT0  
4. Enable the interrupt by setting the appropriate IEx  
flag.  
5. Enable all interrupts with an EI instructions.  
Table 9. IMOD0 and IMOD1 Register Organization (4-Bit W)  
IMOD0.3  
0
IMOD0.1  
IMOD0.0  
Effect of IMOD0 Settings  
Select CPU clock for sampling  
0
1
Select fx/64 sampling clock  
Rising edge detection  
0
0
0
0
0
0
1
1
0
1
0
1
Falling edge detection  
Both rising and falling edge detection  
IRQ0 flag cannot be set to "1"  
0
0
0
0
0
0
0
0
0
IMOD1.0  
Effect of IMOD1 Settings  
Rising edge detection  
0
1
Falling edge detection  
S MSUNG  
ELECTRONICS  
September 1996  
2–14  
PRODUCT SPECIFICATION  
KS57C0002 /0004 MICROCONTROLLER  
EXTERNAL KEY INTERRUPT MODE REGISTER  
The external key interrupt (INTK) mode register, IMODK, is used to select KS pins as interrupt input pins. When a  
falling edge is detected at one of the KS0–KS2 pins, the IRQK flag is set to "1". This generates an interrupt  
request and a release signal for power-down mode. To generate a key interrupt on a falling signal edge at KS0–  
KS2, all of the KS0–KS2 pins must be configured to input mode.  
If one or more of the pins which are configured as key Interrupt (KS0–KS2) are in Low input or Low output state,  
the key Interrupt can not be occurred.  
Table 10. IMODK Register Bit Settings (4-Bit W)  
0
0
0
0
0
0
0
0
0
IMODK.2  
IMODK.1  
IMODK.0  
Effect of IMODK Settings  
Disable key interrupt  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Select falling edge at KS0  
Select falling edge at KS1  
Select falling edge at KS0–KS1  
Select falling edge at KS2  
Select falling edge at KS0, KS2  
Select falling edge at KS1–KS2  
Select falling edge at KS0–KS2  
KS2  
KS1  
KS0  
FALLING  
EDGE  
DETECTION  
CIRCUIT  
IMODK  
IRQK  
NOTE: To generate a key interrupt on a falling edge at KS0–KS2, all KS0–KS2 pins must be  
configured to input mode.  
Figure 15-1. Circuit diagram for KS0-KS2 Pins  
S MSUNG  
ELECTRONICS  
2–15  
September 1996  
KS57C0002 /0004 MICROCONTROLLER  
PRODUCT SPECIFICATION  
OSCILLATOR CIRCUITS  
The KS57C0002/0004 system clock circuit is shown in Figure 16 below. By manipulating bits 1 and 0 of the  
PCON register, the system clock frequency can be divided by 4, 8, or 64.  
SYSTEM  
OSCILLATOR  
CIRCUIT  
fx  
Xin  
Xout  
WATCH TIMER  
BASIC TIMER  
TIMER/COUNTER 0  
CLOCK OUTPUT CIRCIT  
COMPARATOR  
FREQUENCY  
DIVIDING  
CIRCUIT  
OSCILLATOR  
STOP  
1/2  
1/16  
CPU  
CLOCK  
SELECTOR  
1/4  
CPU STOP SIGNAL  
( IDLE MODE)  
PCON.0  
PCON.1  
PCON.2  
PCON.3  
IDLE  
WAIT RELEASE SIGNAL  
OSCILLATOR  
CONTROL  
CIRCUIT  
INTERNAL RESET SIGNAL  
STOP  
POWER-DOWN RELEASE SIGNAL  
PCON.3,2 CLEAR  
Figure 16. Clock Circuit Diagram  
S MSUNG  
ELECTRONICS  
September 1996  
2–16  
PRODUCT SPECIFICATION  
KS57C0002 /0004 MICROCONTROLLER  
Xin  
Xin  
Xin  
R
Xout  
Xout  
Xout  
Figure 17. Crystal/Ceramic  
Oscillator  
Figure 18. External Clock  
Figure 19. RC Oscillator (only  
for the KS57C0002)  
POWER CONTROL REGISTER (PCON)  
The power control register, PCON, is used to select the CPU clock frequency and to control CPU operating and  
power-down modes. PCON bits 3 and 2 are controlled by the STOP and IDLE instructions, which engage the  
Stop and Idle power-down modes, respectively. Using these instructions, you can initiate a power-down mode at  
any time, regardless of the current value of the enable memory bank flag (EMB).  
Table 11. Power Control Register (PCON) Organization (4-Bit W)  
PCON Bit Settings  
Resulting CPU Operating Mode  
PCON.3  
PCON.2  
0
0
1
0
1
0
Normal CPU operating mode  
Idle power-down mode  
Stop power-down mode  
PCON Bit Settings  
Resulting CPU Clock Frequency  
PCON.1  
PCON.0  
0
1
1
0
0
1
fx/64  
fx/8  
fx/4  
PROGRAMMING TIP — Setting the CPU Clock  
To set the CPU clock to 0.95 µs at 4.19 MHz:  
BITS  
SMB  
LD  
EMB  
15  
A,#3H  
PCON,A  
LD  
S MSUNG  
ELECTRONICS  
2–17  
September 1996  
KS57C0002 /0004 MICROCONTROLLER  
INSTRUCTION CYCLE TIMES  
PRODUCT SPECIFICATION  
The unit of time that equals one machine cycle varies depending on how the oscillator clock signal is divided.  
Table 12. Instruction Cycle Times for CPU Clock Rates  
Selected  
CPU Clock  
Resulting Frequency  
Oscillation  
Source  
Cycle Time (µs)  
fx/64  
fx/8  
65.5 kHz  
524.0 kHz  
1.05 MHz  
15.3  
1.91  
0.95  
fx = 4.19 MHz  
fx/4  
CLOCK OUTPUT CIRCUIT  
The clock output circuit outputs clock pulses to the CLO pin. The clock output mode register, CLMOD, is used to  
enable or disable clock output to the CLO pin and to select the CPU clock source and frequency. To output a  
frequency, the clock output pin CLO/P3.2 must be set to output mode and the pin's latch must be cleared to "0".  
Bit 2 in the CLMOD register must always be "0".  
Table 13. Clock Output Mode Register (CLMOD) Organization  
CLMOD Bit Settings  
Resulting Clock Output  
CLMOD.1  
CLMOD.0  
Clock Source  
Frequency  
1.05 MHz, 524 kHz, 65.5 kHz  
524 kHz  
0
0
1
1
0
1
0
1
CPU clock (fx/4, fx/8, fx/64)  
fx/8  
fx/16  
fx/64  
262 kHz  
65.5 kHz  
CLMOD.3  
Result of CLMOD.3 Setting  
0
1
Clock output is disabled  
Clock output is enabled  
NOTE: Frequencies assume that fx = 4.19 MHz.  
CLMOD.3  
CLO  
CLMOD.2  
4
CLMOD.1  
CLOCK  
P3.2 OUTPUT LATCH  
PM3.2  
SELECTOR  
CLMOD.0  
CLOCKS  
(fx/8, fx/16, fx/64, CPU clock)  
Figure 20. CLO Output Pin Circuit Diagram  
S MSUNG  
ELECTRONICS  
September 1996  
2–18  
PRODUCT SPECIFICATION  
KS57C0002 /0004 MICROCONTROLLER  
PROGRAMMING TIP — CPU Clock Output to the CLO Pin  
To output the CPU clock to the CLO pin:  
BITS  
SMB  
LD  
LD  
BITR  
LD  
EMB  
15  
EA,#40H  
PMG1,EA  
P3.2  
A,#9H  
CLMOD,A  
;
Or BITR EMB  
;
;
P3.2 Output mode  
Clear P3.2 output latch  
LD  
POWER-DOWN  
In Stop mode, system clock oscillation is halted  
(assuming it is currently operating), and peripheral  
hardware components are powered-down. The effect  
of Stop mode on specific peripheral hardware  
components — CPU, basic timer, serial I/O, timer/  
counters 0, and watch timer — and on external  
interrupt requests, is detailed in Table 14.  
The KS57C0002/0004 microcontroller has two power-  
down modes to reduce power consumption: Idle and  
Stop. In Idle mode, the CPU clock stops while  
peripherals and the oscillator continue to operate  
normally.  
Table 14. Hardware Operation During Power-Down Modes  
Operation  
Clock oscillator  
Stop Mode (STOP)  
Idle Mode (IDLE)  
System clock oscillation stops  
CPU clock oscillation stops (system clock  
oscillation continues)  
Basic timer  
Basic timer stops  
Basic timer operates (with IRQB set at  
each reference interval)  
Serial interface  
Timer/counter 0  
Operates only if external SCK input is  
selected as the serial I/O clock  
Operates if a clock other than the CPU  
clock is selected as the serial I/O clock  
Operates only if TCL0 is selected as the Timer/counter 0 operates  
counter clock  
Comparator  
Comparator operation is stopped  
Watch timer operation is stopped  
Comparator operates  
Watch timer operates  
Watch timer  
External interrupts  
INT1 and INTK are acknowledged; INT0 INT1 and INTK are acknowledged;  
is not serviced  
INT0 is not serviced  
CPU  
All CPU operations are disabled  
All CPU operations are disabled  
Power-down mode  
release signal  
Interrupt request signals (except INT0)  
are enabled by an interrupt enable flag or are enabled by an interrupt enable flag or  
by RESET input by RESET input  
Interrupt request signals (except INT0)  
S MSUNG  
ELECTRONICS  
2–19  
September 1996  
KS57C0002 /0004 MICROCONTROLLER  
PRODUCT SPECIFICATION  
RECOMMENDED CONNECTIONS FOR UNUSED PINS  
To reduce overall power consumption, please configure unused pins according to the guidelines described in  
Table 15.  
Table 15. Unused Pin Connections for Reduced Power Consumption  
Pin/Share Pin Names  
P0.0 / SCK  
Recommended Connection  
Input mode: Connect to V  
DD  
P0.1 / SO  
P0.2 / SI  
Output mode: Do not connect  
P1.0 / INT0 – P1.1 / INT1  
Connect to V  
Connect to V  
DD  
DD  
P2.0 / CIN0  
P2.1 / CIN1  
P2.2 / CIN2  
P2.3 / CIN3  
P3.0 / TCLO0  
P3.1 / TCLO1  
P3.2 / CLO  
Input mode: Connect to V  
DD  
Output mode: Do not connect  
P3.3 / BUZ  
P4.0–P4.3, P5.0–P5.3  
P6.0 / KS0 – P6.3 / BUZ  
TEST  
Connect to V  
SS  
RESET  
Table 16 provides detailed information about hardware register values after a RESET occurs during power-down  
mode or during normal operation.  
RESET  
Table 16. Hardware Register Values After  
RESET  
Power-Down Mode  
RESET  
Occurs During  
Normal Operation  
Hardware Component  
or Subcomponent  
If  
Occurs During  
If  
Program counter (PC)  
Lower three bits of address 0000H Lower three bits of address 0000H  
are transferred to PC10–8, and the are transferred to PC10–8, and the  
contents of 0001H to PC7–0.  
contents of 0001H to PC7–0.  
Program Status Word (PSW):  
Carry flag (C)  
Retained  
Undefined  
Skip flag (SC0–SC2)  
0
0
0
0
Interrupt status flags (IS0, IS1)  
Bank enable flags (EMB, ERB)  
Bit 6 of address 0000H in program Bit 6 of address 0000H in program  
memory is transferred to the ERB memory is transferred to the ERB  
flag, and bit 7 of the address to the flag, and bit 7 of the address to the  
EMB flag.  
EMB flag.  
Stack pointer (SP)  
Undefined  
Undefined  
S MSUNG  
ELECTRONICS  
September 1996  
2–20  
PRODUCT SPECIFICATION  
KS57C0002 /0004 MICROCONTROLLER  
RESET  
Table 16. Hardware Register Values After  
(Continued)  
RESET  
Power-Down Mode  
RESET  
Occurs During  
Normal Operation  
Hardware Component  
or Subcomponent  
If  
Occurs During  
If  
Data Memory (RAM):  
General registers E, A, L, H, X, W, Z,  
Y
Values retained  
Undefined  
(Note 1)  
General-purpose registers  
Undefined  
Values retained  
Bank selection registers (SMB, SRB)  
BSC register (BSC0–BSC3)  
0, 0  
0
0, 0  
0
Clocks:  
Power control register (PCON)  
0
0
0
0
Clock output mode register (CLMOD)  
Interrupts:  
Interrupt request flags (IRQx)  
Interrupt enable flags (IEx)  
Interrupt priority flag (IPR)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Interrupt master enable flag (IME)  
INT0 mode register (IMOD0)  
INT1 mode register (IMOD1)  
INTK mode register (IMODK)  
I/O Ports:  
Output buffers  
Off  
0
Off  
0
Output latches  
Port mode flags (PM)  
0
0
Pull-up resistor mode reg (PUMOD)  
Port 2 mode register (PWMOD)  
0
0
0
0
Basic Timer:  
Count register (BCNT)  
Mode register (BMOD)  
Undefined  
0
Undefined  
0
Timer/Counter 0:  
Count registers (TCNT0)  
Reference registers (TREF0)  
Mode registers (TMOD0)  
Output enable flags (TOE0)  
0
0
FFH, FFFFH  
FFH, FFFFH  
0
0
0
0
Note1: The values of the 0F8H-0FDH are not retained when a RESET signal is input.  
S MSUNG  
ELECTRONICS  
2–21  
September 1996  
KS57C0002 /0004 MICROCONTROLLER  
Table 16. Hardware Register Values After  
PRODUCT SPECIFICATION  
RESET  
(Continued)  
RESET  
Power-Down Mode  
RESET  
Occurs During  
Normal Operation  
Hardware Component  
or Subcomponent  
If  
Occurs During  
If  
Watch Timer:  
Watch timer mode register (WMOD)  
Comparator  
0
0
Comparator mode register (CMOD)  
Comparison result register  
0
0
Undefined  
Undefined  
Serial I/O Interface:  
SIO mode register (SMOD)  
SIO interface buffer (SBUF)  
0
0
Values retained  
Undefined  
PORT MODE FLAGS (PM FLAGS)  
I/O PORTS  
Port mode flags (PM) are used to configure I/O ports  
0 and 3–6 to input or output mode. It does this by  
setting or clearing the corresponding I/O buffer. If a  
PM bit is "0", the corresponding I/O pin is set to input  
mode. If the PM bit is "1", the corresponding pin is set  
to output mode.  
The KS57C0002/0004 has two input ports and five I/O  
ports. There are total of 6 input pins and 18  
configurable I/O pins, including 8 high-current I/O  
pins. This gives a total number of 24 I/O pins.  
Table 17. Port Mode Flag Map  
PM Group ID  
Address  
FE8H  
Bit 3  
"0"  
Bit 2  
PM0.2  
PM3.2  
PM4.2  
"0"  
Bit 1  
PM0.1  
PM3.1  
PM4.1  
"0"  
Bit 0  
PM0.0  
PM3.0  
PM4.0  
"0"  
PMG1  
FE9H  
"0"  
PMG2  
PMG3  
FEAH  
FEBH  
FECH  
FEDH  
PM4.3  
"0"  
PM5.3  
PM6.3  
PM5.2  
PM6.2  
PM5.1  
PM6.1  
PM5.0  
PM6.0  
S MSUNG  
ELECTRONICS  
September 1996  
2–22  
PRODUCT SPECIFICATION  
KS57C0002 /0004 MICROCONTROLLER  
PROGRAMMING TIP — Configuring I/O Ports as Input or Output  
Configure P0.0 and P3.0 as an output port and the other ports as input ports:  
BITS  
SMB  
LD  
LD  
LD  
LD  
LD  
LD  
EMB  
15  
EA,#11H  
PMG1,EA  
EA,#00H  
PMG2,EA  
EA,#00H  
PMG3,EA  
;
;
;
P0.0 and P3.0 Output  
P4 Input  
P5, P6 Input  
PORT 2 MODE REGISTER (P2MOD)  
PULL-UP RESISTOR MODE REGISTER (PUMOD)  
P2MOD register settings determine if port 2 is used  
either for analog input or for digital input.  
The pull-up resistor mode register, PUMOD, is used  
to assign internal pull-up resistors to specific I/O ports.  
When a configurable I/O port pin is used as an output  
pin, its assigned pull-up resistor is automatically  
disabled, even though the pin's pull-up is enabled by a  
corresponding PUMOD bit setting.  
FE2H  
4-Bit W  
P2MOD.3  
P2MOD.2  
P2MOD.1  
P2MOD.0  
When bit = "1", a pull-up resistor is assigned to the  
corresponding I/O port: PUMOD.3 for port 3,  
PUMOD.6 for port 6, and so on.  
When a P2MOD bit is set to "1", the corresponding pin  
is configured as a digital input pin. When set to "0",  
configured as an analog input pin: P2MOD.0 for P2.0,  
P2MOD.1 for P2.1, P2MOD.2 for P2.2, and P2MOD.3  
for P2.3.  
Table 18. Pull-Up Resistor Mode Register (PUMOD) Organization (8-Bit W)  
Address  
FDCH  
Bit 3  
PUMOD.3  
"0"  
Bit 2  
"0"  
Bit 1  
PUMOD.1  
"0"  
Bit 0  
PUMOD.0  
"0"  
FDDH  
PUMOD.6  
PROGRAMMING TIP — Enabling and Disabling I/O Port Pull-Up Resistors  
P6 enable pull-up resistors, P0, P1, and P3 disable pull-up resistors.  
BITS  
SMB  
LD  
EMB  
15  
EA,#40H  
PUMOD,EA  
LD  
;
P6 enable  
S MSUNG  
ELECTRONICS  
2–23  
September 1996  
KS57C0002 /0004 MICROCONTROLLER  
PORT 0 CIRCUIT DIAGRAM  
PRODUCT SPECIFICATION  
SCK  
SMOD.1  
SO  
P0.0  
LATCH  
P0.1  
LATCH  
P0.2  
LATCH  
SMOD.7  
SMOD.6  
SMOD.5  
V
DD  
SCK  
SI  
PUMOD.0  
PM0.2  
PM0.1  
PM0.0  
P0.0 / SCK  
P0.1 / SO  
P0.2 / SI  
When a port pin acts as an output, its pull-up resistor is automatically disabled, even  
though the port's pull-up resistor is enabled by bit settings to the pull-up resistor  
mode register (PUMOD).  
NOTE:  
Figure 21. I/O Port 0 Circuit Diagram  
S MSUNG  
ELECTRONICS  
September 1996  
2–24  
PRODUCT SPECIFICATION  
PORT 1 CIRCUIT DIAGRAM  
KS57C0002 /0004 MICROCONTROLLER  
VDD  
VDD  
INT0  
INT1  
PUMOD.1  
IMOD0  
N/R  
Circuit  
P1.0 / INT0  
P1.1 / INT1  
N/R = Noise reduction  
Figure 22. Input Port 1 Circuit Diagram  
PORT 2 CIRCUIT DIAGRAM  
P2.0 / CIN0  
DIGITAL INPUT  
ANALOG INPUT  
DIGITAL INPUT  
P2.1 / CIN1  
P2.2 / CIN2  
P2.3 / CIN3  
ANALOG INPUT  
DIGITAL INPUT  
ANALOG INPUT  
DIGITAL INPUT  
ANALOG INPUT  
EXTERNAL REFERENCE  
Figure 23. Port 2 Circuit Diagram  
S MSUNG  
ELECTRONICS  
2–25  
September 1996  
KS57C0002 /0004 MICROCONTROLLER  
PORT 3 CIRCUIT DIAGRAM  
PRODUCT SPECIFICATION  
V
DD  
PUMOD.3  
TC0 CLOCK OUTPUT  
CLOCK OUTPUT  
PM3.2  
PM3.1  
PM3.0  
P3.0 / TCL0  
P3.1 / TCLO0  
P3.2 / CLO  
OUTPUT  
LATCH  
1, 4  
M
U
X
1, 4  
TCL0  
NOTE: When a port pin acts as an output, its pull-up resistor is automatically disabled, even  
though the port's pull-up resistor is enabled by bit settings to the pull-up resistor  
mode register (PUMOD).  
Figure 24. Port 3 Circuit Diagram  
S MSUNG  
ELECTRONICS  
September 1996  
2–26  
PRODUCT SPECIFICATION  
KS57C0002 /0004 MICROCONTROLLER  
PORTS 4 AND 5 CIRCUIT DIAGRAM  
x = 4, 5  
b = 0, 1, 2, 3  
V
DD  
PMx.b  
8
P-CH  
MASK OPTION  
OUTPUT  
LATCH  
Px.b  
1, 4, 8  
N-CH  
M
U
X
VSS  
Figure 25. Circuit Diagram for Ports 4 and 5  
S MSUNG  
ELECTRONICS  
2–27  
September 1996  
KS57C0002 /0004 MICROCONTROLLER  
PORT 6 CIRCUIT DIAGRAM  
PRODUCT SPECIFICATION  
V
DD  
PUMOD.6  
PM6.3  
PM6.2  
PM6.1  
PM6.0  
P6.0 / KS0  
P6.1 / KS1  
P6.2 / KS2  
P6.3 / BUZ  
OUTPUT  
LATCH  
1, 4  
M
U
X
1, 4  
NOTE: When a port pin acts as an output, its pull-up resistor is automatically disabled, eve  
though the port's pull-up resistor is enabled by bit settings to the pull-up resistor  
mode register (PUMOD).  
Figure 26. Port 6 Circuit Diagram  
S MSUNG  
ELECTRONICS  
September 1996  
2–28  
PRODUCT SPECIFICATION  
KS57C0002 /0004 MICROCONTROLLER  
incrementing as it counts BT clocks until an overflow  
occurs. An overflow causes the BT interrupt request  
flag (IRQB) to be set to "1" to signal that the  
designated time interval has elapsed. An interrupt  
request is then generated, BCNT is cleared to "0", and  
counting continues from 00H.  
BASIC TIMER (BT)  
The basic timer generates interrupt requests atprecise  
intervals. You can use the basic timer as a "watchdog"  
timer for monitoring system events or use BT output  
to stabilize clock oscillation when Stop mode is  
released by an interrupt and following RESET.  
Oscillation Stabilization Interval Control  
Interval Timer Function  
Setting bits 2–0 of the BMOD register determines the  
time interval (also referred to as 'wait time') required to  
stabilize clock signal oscillation when power-down  
mode is released by an interrupt. When a RESET  
signal is generated, the standard stabilization interval  
for system clock oscillation following a RESET is  
31.3ms at 4.19 MHz.  
The measurement of elapsed time intervals is the  
basic timer's primary function. The standard interval is  
256 BT clock pulses. To restart the basic timer, set  
bit 3 of the mode register BMOD to "1". The 8-bit  
counter register, BCNT, is incremented each time a  
clock signal is detected that corresponds to the  
frequency selected by BMOD. BCNT continues  
"CLEAR" SIGNAL  
CLEAR  
IRQB  
CLEAR  
BCNT  
BITS  
INSTRUCTION  
BMOD.3  
INTERRUPT  
REQUEST  
OVERFLOW  
CLOCK  
BMOD.2  
BMOD.1  
BMOD.0  
BCNT  
IRQB  
4
SELECTOR  
1-BIT R/W  
8
CPU CLOCK  
START SIGNAL  
(POWER-DOWN RELEASE)  
CLOCK INPUT  
Figure 27. Basic Timer Circuit Diagram  
S MSUNG  
ELECTRONICS  
2–29  
September 1996  
KS57C0002 /0004 MICROCONTROLLER  
BASIC TIMER MODE REGISTER (BMOD)  
PRODUCT SPECIFICATION  
BMOD.3, is used to restart the basic timer. When  
BMOD.3 is set to "1", the contents of the BT counter  
register (BCNT) and the BT interrupt request flag  
(IRQB) are both cleared to "0", and timer operation is  
restarted.  
The basic timer mode register, BMOD, is used to  
select input frequency and oscillation stabilization  
time. The most significant bit of the BMOD register,  
Table 19. Basic Timer Mode Register (BMOD) Organization (4-Bit W)  
BMOD.3  
Basic Timer Enable/Disable Control Bit  
Start basic timer; clear IRQB, BCNT, and BMOD.3 to "0".  
1
BMOD.2  
BMOD.1  
BMOD.0  
Basic Timer Input Clock  
Oscillation Stabilization  
12  
20  
0
0
1
1
0
1
0
1
0
1
1
1
fx/2 (1.02 kHz)  
2
/fx (250 ms)  
/fx (31.3 ms)  
/fx (7.82 ms)  
/fx (1.95 ms)  
9
17  
15  
13  
fx/2 (8.18 kHz)  
2
2
2
7
fx/2 (32.7 kHz)  
5
fx/2 (131 kHz)  
NOTES:  
1. Clock frequencies and stabilization intervals assume a system oscillator clock frequency (fx) of 4.19 MHz.  
2. fx = system clock frequency.  
3. Oscillation stabilization time is the time required to stabilize clock signal oscillation after Stop mode is released.  
4. The standard stabilization time for system clock oscillation following a RESET is 31.3 ms at 4.19 MHz.  
5. BMOD.3 is bit addressable.  
BASIC TIMER COUNTER (BCNT)  
NOTE  
Always execute a BCNT read operation  
twice to eliminate the possibility of  
reading unstable data while the counter  
is incrementing. If, after two consecutive  
reads, the BCNT values match, you can  
select the latter value as valid data. Until  
the results of the consecutive reads  
match, however, the read operation  
must be repeated until the validation  
condition is met.  
BCNT is an 8-bit counter register for the basic timer.  
When BCNT has incremented to hexadecimal 'FFH', it  
is cleared to '00H' and an overflow is generated. The  
overflow causes the interrupt request flag, IRQB, to  
be set to "1". When the interrupt request is generated,  
BCNT immediately resumes counting incoming clock  
signals.  
S MSUNG  
ELECTRONICS  
September 1996  
2–30  
PRODUCT SPECIFICATION  
KS57C0002 /0004 MICROCONTROLLER  
PROGRAMMING TIP — Using the Basic Timer  
1. To read the basic timer count register (BCNT):  
BITS  
SMB  
LD  
LD  
LD  
CPSE  
JR  
EMB  
15  
EA,BCNT  
YZ,EA  
EA,BCNT  
EA,YZ  
BCNTR  
BCNTR  
2. When Stop mode is released by an interrupt, set the oscillation stabilization interval to 31.3 ms:  
BITS  
SMB  
LD  
EMB  
15  
A,#0BH  
BMOD,A  
LD  
;
;
Wait time is 31.3 ms  
Set stop power-down mode  
STOP  
NOP  
NOP  
NOP  
NORMAL  
OPERATING MODE  
NORMAL  
OPERATING MODE  
STOP MODE  
IDLE MODE  
(31.3 ms)  
CPU  
OPERATION  
STOP  
INSTRUCTION  
STOP MODE IS  
RELEASED BY  
INTERRUPT  
3. To set the basic timer interrupt interval time to 1.95 ms (at 4.19 MHz):  
BITS  
SMB  
LD  
EMB  
15  
A,#0FH  
BMOD,A  
LD  
EI  
BITS  
IEB  
;
Basic timer interrupt enable flag is set to "1"  
4. Clear BCNT and the IRQB flag and restart the basic timer:  
BITS  
SMB  
BITS  
EMB  
15  
BMOD.3  
S MSUNG  
ELECTRONICS  
2–31  
September 1996  
KS57C0002 /0004 MICROCONTROLLER  
PRODUCT SPECIFICATION  
Timer/counter 0 can supply a clock signal to the clock  
selector circuit of the serial I/O interface for data  
shifter and clock counter operations. (These internal  
SIO operations are controlled in turn by the SIO mode  
register, SMOD). This clock generation function lets  
you adjust data transmission rates across the serial  
interface.  
8-BIT TIMER/COUNTER 0 (TC0)  
Timer/counter 0 (TC0) is used to count system  
'events' by identifying the transition (high-to-low or  
low-to-high) of incoming square wave signals.  
To indicate that an event has occurred, or that a  
specified time interval has elapsed, TC0 generates an  
interrupt request. By counting signal transitions and  
comparing the current counter value with the  
reference register value, TC0 can be used to measure  
specific time intervals.  
CLOCKS  
(fx/2 , fx/2 , fx/2 , fx)  
P3.0  
10  
6
4
TCL0  
8
TCNT0  
8
TMOD0.7  
TMOD0.6  
TMOD0.5  
TMOD0.4  
TMOD0.3  
TMOD0.2  
TMOD0.1  
TMOD0.0  
8-BIT  
COMPARATOR  
TREF0  
CLOCK  
SELECTOR  
8
CLEAR  
CLEAR  
SET  
INVERTED  
CLEAR  
TOL0  
IRQT0  
SERIAL  
I/O  
TCLO0  
PM3.1  
P3.1 LATCH  
TOE0  
Figure 28. TC0 Circuit Diagram  
PROGRAMMABLE TIMER/COUNTER FUNCTION  
The content of TCNT0 is then cleared to 00H, and  
TC0 continues counting.  
Timer/counter 0 can generate interrupt requests at  
various intervals, based on the selected system clock  
frequency. The reference register, TREF0, stores the  
value for the number of clock pulses to be generated  
between interrupt requests. The counter register,  
TCNT0, counts the incoming clock pulses, which are  
compared to the TREF0 value as TCNT0 is  
incremented. When TREF0 = TCNT0, the TC0  
interrupt request flag (IRQT0) is set to "1", the status  
of TOL0 is inverted, and the interrupt is generated.  
EVENT COUNTER FUNCTION  
Timer/counter 0 can be used to monitor or detect  
system 'events' by using the external clock input at  
the TCL0 pin (I/O port 3.0) as the counter source. To  
activate the TC0 event counter function, P3.0/TCL0  
must be set to input mode. With the exception of the  
different TMOD0.4–TMOD0.6 settings, the operation  
sequence for TC's event counter function is identical  
to its programmable timer/counter function.  
S MSUNG  
ELECTRONICS  
September 1996  
2–32  
PRODUCT SPECIFICATION  
KS57C0002 /0004 MICROCONTROLLER  
TC0 CLOCK FREQUENCY OUTPUT  
Using timer/counter, you can output a modifiable clock frequency to the TC0 clock output pin, TCLO0. To enable  
the output to the TCLO0/P3.1, the pin must be set to output mode when the timer output enable flag (TOE0) has  
been enabled.  
PROGRAMMING TIP — TC0 Signal Output to the TCLO0 Pin  
Output a 30 ms pulse width signal to the TCLO0 pin:  
BITS  
SMB  
LD  
LD  
LD  
LD  
LD  
LD  
BITR  
BITS  
EMB  
15  
EA,#79H  
TREF0,EA  
EA,#4CH  
TMOD0,EA  
EA,#20H  
PMG1,EA  
P3.1  
;
;
P3.1 Output mode  
P3.1 clear  
TOE0  
By selecting an external clock source, you can divide the incoming clock signal by the TREF0 value and then  
output this modified clock frequency to the TCLO0 pin.  
PROGRAMMING TIP — External TCL0 Clock Output to the TCLO0 Pin  
Output external TCL0 clock pulse to the TCLO0 pin (divide by four):  
EXTERNAL (TCL0)  
CLOCK PULSE  
TCLO0  
OUTPUT  
PULSE  
BITS  
SMB  
LD  
LD  
LD  
LD  
LD  
LD  
BITR  
BITS  
EMB  
15  
EA,#01H  
TREF0,EA  
EA,#0CH  
TMOD0,EA  
EA,#20H  
PMG1,EA  
P3.1  
;
;
P3.1 Output mode  
P3.1 clear  
TOE0  
S MSUNG  
ELECTRONICS  
2–33  
September 1996  
KS57C0002 /0004 MICROCONTROLLER  
TC0 MODE REGISTER (TMOD0)  
PRODUCT SPECIFICATION  
TMOD0 is the 8-bit mode control register for timer/counter 0. When TMOD0.3 is set to "1", the contents of TCNT0,  
IRQT0, and TOL0 are cleared, counting starts from 00H, and TMOD0.3 is automatically reset to "0" for normal  
TC0 operation. When TC0 operation stops (TMOD0.2 = "0"), the contents of the TC0 counter register, TCNT0, are  
retained until TC0 is re-enabled.  
Table 20. TC0 Mode Register (TMOD0) Organization (8-Bit W)  
Bit Name  
TMOD0.7  
TMOD0.6  
TMOD0.5  
TMOD0.4  
TMOD0.3  
Setting  
Resulting TC0 Function  
MSB value always logic zero  
Address  
0
F91H  
0,1  
1
Specify input clock edge and internal frequency  
Clear TCNT0, IRQT0, and TOL0. Then immediately resume  
counting. (This bit is automatically cleared to "0" when counting  
resumes.)  
TMOD0.2  
0
1
0
0
Disable timer/counter; retain TCNT0 contents  
Enable timer/counter  
F90H  
TMOD0.1  
TMOD0.0  
Value always "0"  
LSB value always "0"  
Table 21. TMOD0.6, TMO0.5, and TMOD0.4 Bit Settings  
TMOD0.6  
TMOD0.5  
TMOD0.4  
Resulting Counter Source and Clock Frequency  
0
0
1
1
1
1
0
0
0
0
1
1
0
1
0
1
0
1
External clock input (TCL0) on rising edges  
External clock input (TCL0) on falling edges  
10  
fx/2  
= 4.09 kHz  
6
fx /2 = 65.5 kHz  
4
fx/2 = 262 kHz  
fx = 4.19 MHz  
NOTE: 'fx' = system clock  
S MSUNG  
ELECTRONICS  
September 1996  
2–34  
PRODUCT SPECIFICATION  
KS57C0002 /0004 MICROCONTROLLER  
PROGRAMMING TIP — Restarting TC0 Counting Operation  
1. Set TC0 timer interval to 4.09 kHz:  
BITS  
SMB  
LD  
EMB  
15  
EA,#4CH  
TMOD0,EA  
LD  
EI  
BITS  
IET0  
2. Clear TCNT0, IRQT0, and TOL0. Then, restart the TC0 counting operation:  
BITS  
SMB  
BITS  
EMB  
15  
TMOD0.3  
TC0 REFERENCE REGISTER (TREF0)  
PROGRAMMING TIP — Setting a TC0 Timer  
Interval  
TREF0 is used to store a reference value to be  
compared to the incrementing TCNT0 register in order  
to identify an elapsed time interval.  
To set a 30 ms timer interval for TC0, given fx =  
4.19MHz, follow these steps.  
Use the following formula to calculate the correct  
value to load to the TREF0 reference register:  
1. Select the timer/counter mode register with a  
maximum setup time of 62.5 ms (assume that the  
TC0 timer interval =  
10  
TC0 counter clock = fx/2 , and TREF0 is FFH):  
1
(TREF0 value + 1) ×  
2. Calculate the TREF0 value:  
TMOD0frequencysetting  
TREF0value+1  
30 ms =  
(assuming a TREF0 value 0)  
4.09kHz  
30ms  
244µs  
TC0 OUTPUT ENABLE FLAG (TOE0)  
TREF0 + 1 =  
= 122.9 = 7AH  
The 1-bit timer/counter 0 output enable flag TOE0  
controls output from TC0 to the TCLO0 pin.  
TREF0 value = 7AH – 1 = 79H  
3. Load the value 79H to the TREF0 register:  
F92H  
0
1-Bit R/W  
0
BITS  
SMB  
LD  
EMB  
15  
EA,#79H  
TREF0,EA  
EA,#4CH  
TMOD0,EA  
TOE0  
0
When you set the TOE0 flag to "1", the contents of  
TOL0 can be output to the TCLO0 pin.  
LD  
LD  
LD  
S MSUNG  
ELECTRONICS  
2–35  
September 1996  
KS57C0002 /0004 MICROCONTROLLER  
PRODUCT SPECIFICATION  
software as soon as a requested interrupt service  
routine has been executed.  
WATCH TIMER  
Watch timer functions include real-time and watch-  
time measurement and interval timing for the system  
clock. It is also used as a clock source for generating  
buzzer output.  
The watch timer can generate a steady 2 kHz, 4 kHz,  
8 kHz, or 16 kHz signal to the BUZ pin. To generate a  
BUZ signal, clear the output latch for I/O port 6.3 to  
"0" and set the port 6.3 output mode flag (PM6.3) to  
output mode.  
To start the watch timer, set bit 2 of the watch timer  
mode register, WMOD.2, to "1". The watch timer  
starts, the interrupt request flag IRQW is automatically  
set to "1", and interrupt requests commence in 0.5-  
second intervals. Because the watch timer functions  
as a quasi-interrupt instead of a vectored interrupt, the  
IRQW flag should be cleared to "0" by program  
By setting WMOD.1 to "1", the watch timer functions  
in high-speed mode, generating an interrupt every  
3.91 ms. High-speed mode is useful for timing events  
during program debugging sequences.  
P6.3 LATCH  
PM6.3  
WMOD.7  
0
BUZ  
WMOD.5  
fx = SYSTEM CLOCK  
fw = WATCH TIMER FREQUENCY  
MUX  
8
WMOD.4  
fw/16 (2 KHz)  
fw/2 (16 kHz)  
0
fw/8  
(4 kHz)  
ENABLE / DISABLE  
fw/4  
(8 kHz)  
WMOD.2  
WMOD.1  
0
SELECTOR  
CIRCUIT  
IRQW  
7
14  
fw/2  
fw/2 (2 Hz)  
FREQUENCY  
DIVIDING  
fw  
CLOCK  
32.768 kHz  
SELECTOR  
CIRCUIT  
fx/128  
GND  
Figure 29. Watch Timer Circuit Diagram  
S MSUNG  
ELECTRONICS  
September 1996  
2–36  
PRODUCT SPECIFICATION  
KS57C0002 /0004 MICROCONTROLLER  
WATCH TIMER MODE REGISTER (WMOD)  
The watch timer mode register WMOD is used to select specific watch timer operations.  
Table 22. Watch Timer Mode Register (WMOD) Organization (8-Bit W)  
Bit Name  
Values  
Function  
Disable buzzer (BUZ) signal output  
Enable buzzer (BUZ) signal output  
Address  
WMOD.7  
0
1
WMOD.6  
"0"  
Always "0"  
WMOD.5 – .4  
0
0
1
0
1
2 kHz buzzer (BUZ) signal output  
4 kHz buzzer (BUZ) signal output  
8 kHz buzzer (BUZ) signal output  
16 kHz buzzer (BUZ) signal output  
Always "0"  
F89H  
0
1
1
WMOD.3  
WMOD.2  
"0"  
0
Disable watch timer; clear frequency dividing circuits  
Enable watch timer  
1
F88H  
WMOD.1  
0
Normal mode; sets IRQW to 0.5 s  
High-speed mode; sets IRQW to 3.91 ms  
Always "0"  
1
WMOD.0  
0
NOTE: System clock frequency (fx) is assumed to be 4.19 MHz.  
PROGRAMMING TIP — Using the Watch Timer  
1. Select a 0.5 second interrupt, and 2 kHz buzzer enable:  
BITS  
SMB  
LD  
LD  
BITR  
LD  
EMB  
15  
EA,#80H  
PMG3,EA  
P6.3  
EA,#84H  
WMOD,EA  
IEW  
;
;
P6.3 Output mode  
Clear P6.3 output latch  
LD  
BITS  
2. Sample real-time clock processing method:  
CLOCK  
BTSTZ  
RET  
IRQW  
;
;
;
0.5 second check  
No, return  
Yes, 0.5 second interrupt generation  
;
Increment HOUR, MINUTE, SECOND  
S MSUNG  
ELECTRONICS  
2–37  
September 1996  
KS57C0002 /0004 MICROCONTROLLER  
PRODUCT SPECIFICATION  
an external reference voltage is input at P2.3, the  
other three pins (P2.0–P2.2) in port 2 are used for  
analog input. Unused port 2 pins must be connected  
COMPARATOR  
Port 2 can be used as a analog input port for the 4-  
channel comparator block. The reference voltage for  
the comparator can be supplied either internally or  
externally at P2.3.  
to V  
.
DD  
When a conversion is completed, the result is saved  
in the comparison result register CMPREG. The initial  
values of the CMPREG are undefined and the  
comparator operation is disabled by a RESET.  
When internal reference voltage is used, four  
channels (P2.0–P2.3) are used for analog inputs and  
the internal reference voltage is varies at 16 levels. If  
P2.0 / CIN0  
P2.1 / CIN1  
P2.2 / CIN2  
M
U
X
COMPARISON  
+
RESULT  
4
REGISTER  
(CMPREG)  
P2.3 / CIN3  
VREF  
(EXTERNAL)  
M
U
X
VDD  
CMOD.7  
CMOD.6  
CMOD.5  
1/2R  
VREF  
(INTERNAL)  
M
U
X
R
R
0
8
CMOD.3  
CMOD.2  
CMOD.1  
CMOD.0  
1/2R  
Figure 30 Comparator Circuit Diagram  
S MSUNG  
ELECTRONICS  
September 1996  
2–38  
PRODUCT SPECIFICATION  
KS57C0002 /0004 MICROCONTROLLER  
COMPARATOR MODE REGISTER (CMOD)  
When CMOD.5 is set to "1":  
— External reference voltage is supplied from  
P2.3/CIN3.  
The comparator mode register (CMOD) is used to set  
the operation mode of the comparator. Based on the  
CMOD.5 bit setting, an internal or an external  
reference voltage is input for the comparator, as  
follows:  
— P2.0 to P2.2 are used as the analog input pins.  
— The comparator can detect a 150 mV difference  
between the reference voltage and analog input  
voltages.  
When CMOD.5 is "0":  
— A reference voltage is selected by the CMOD.0 to  
CMOD.3 bit settings.  
— Bits 0–2 in the CMPREG register contain the  
results (the content of bit 3 is not used).  
— P2.0 to P2.3 are used as analog input pins.  
Bit 6 in the CMOD register controls conversion time  
while bit 7 enables or disables comparator operation  
to reduce power consumption.  
— The internal digital-to-analog converter generates  
16 reference voltages.  
— The comparator can detect a 150 mV difference  
between the reference voltage and analog input  
voltages.  
— Comparator results are written into 4-bit  
comparison result register (CMPREG).  
CMOD.7 CMOD.6 CMOD.5  
0
CMOD.3 CMOD.2 CMOD.1 CMOD.0 FD6H–FD7H  
Reference voltage (VREF) selection:  
VDD x (n + 0.5)/16, n = 0 to 15  
1: CIN3; external reference, CIN0–2; analog input  
0: Internal reference, CIN0–3; analog input  
1: Conversion time (4 x 24 /fx, 15.2 µs @4.19MHz)  
0: Conversion time (4 x 27 /fx, 121.6 µs @4.19MHz)  
1: Comparator operation enable  
0: Comparator operation disable  
Figure 31. Comparator Mode Register Organization  
PORT 2 MODE REGISTER (P2MOD)  
When a P2MOD bit is set to "1", the corresponding pin  
is configured as a digital input pin. When it is "0", the  
corresponding pin is configured as an analog input:  
P2MOD.0 for P2.0, P2MOD.1 for P2.1, P2MOD.2 for  
P2.2, and P2MOD.3 for P2.3.  
P2MOD register settings determine if port 2 is used  
for analog or digital input.  
FE2H  
4-Bit W  
P2MOD.3 P2MOD.2 P2MOD.1  
P2MOD.0  
S MSUNG  
ELECTRONICS  
2–39  
September 1996  
KS57C0002 /0004 MICROCONTROLLER  
COMPARATOR OPERATION  
PRODUCT SPECIFICATION  
The comparison result is calculated as follows:  
If "1"  
If "0"  
Analog input voltage V  
Analog input voltage V  
+ 150 mV  
– 150 mV  
REF  
REF  
The comparator compares analog voltage input at  
CIN0–CIN3 with an external or internal reference  
voltage (V  
) that is selected by CMOD register.  
REF  
The result is written to the comparison result register  
CMPREG at address FD4H.  
To obtain a comparison result, the data must be read  
out from the CMPREG register after V is updated  
REF  
by changing the CMOD value after a conversion time  
has elapsed.  
ANALOG INPUT  
VOLTAGE (CIN0–3)  
REFERENCE  
VOLTAGE (VREF)  
COMPARISON TIME  
(CMPCLK x 4)  
COMPARATOR CLOCK  
(CMPCLK, fx/16, fx/128)  
COMPARISON  
START  
COMPARISON  
END  
COMPARISON  
RESULT (CMPREG)  
1
1
0
UNKNOWN  
Figure 32. Conversion Characteristics  
PROGRAMMING TIP — Programming the Comparator  
The following program example converts the analog voltage input at CIN0–CIN2 pins into 4-bit digital code.  
BITR  
LD  
LD  
EMB  
A,#0H  
P2MOD,A  
EA,#8XH  
;
;
;
Analog input selection (CIN0–CIN3)  
x = 0–F, comparator enable  
Internal reference, conversion time (121.6 µs)  
LD  
LD  
CMOD,EA  
WAIT LD  
A,#0H  
INCS  
JR  
LD  
LD  
A
WAIT  
A,CMPREG  
P4,A  
;
;
Read the result  
Output the result from port 4  
S MSUNG  
ELECTRONICS  
September 1996  
2–40  
PRODUCT SPECIFICATION  
KS57C0002 /0004 MICROCONTROLLER  
SERIAL I/O INTERFACE  
Using the serial I/O interface, you can exchange 8-bit data with an external device. The serial interface can run off  
an internal or an external clock source, or the TOL0 signal that is generated by the 8-bit timer/counter 0, TC0. If  
you use the TOL0 clock signal, you can modify its frequency to adjust the serial data transmission rate.  
INTERNAL BUS  
8
LSB or MSB first  
SO  
SBUF (8-BIT)  
SI  
CLK  
R
Q
D
SCK  
IRQS  
R
CLK  
TOL0  
CLOCK  
SELECTOR  
Q0 Q1 Q2  
10  
fx/2  
Q
3-BIT COUNTER  
CLK  
S
fx/2  
CLEAR  
SMOD.7 SMOD.6 SMOD.5  
SMOD.3 SMOD.2 SMOD.1 SMOD.0  
8
Figure 33. Serial I/O Interface Circuit Diagram  
S MSUNG  
ELECTRONICS  
2–41  
September 1996  
KS57C0002 /0004 MICROCONTROLLER  
SERIAL I/O MODE REGISTER (SMOD)  
PRODUCT SPECIFICATION  
SERIAL I/O BUFFER REGISTER (SBUF)  
The serial I/O mode register (SMOD) specifies the  
operation mode of the serial interface. SMOD register  
settings enable you to select either MSB-first or LSB-  
first serial transmission, and to operate in transmit-  
and-receive mode or receive-only mode. When  
SMOD.3 is set to "1", the contents of the serial  
interface interrupt request flag, IRQS, and the 3-bit  
serial clock counter are cleared, and SIO operations  
are initiated. When the SIO transmission starts,  
SMOD.3 is cleared to "0".  
When the serial interface operates in transmit-and-  
receive mode (SMOD.1 = "1"), transmit data in the  
SIO buffer register are output to the SO pin at the rate  
of one bit for each falling edge of the SIO clock.  
Receive data is simultaneously input from the SI pin  
to SBUF at the rate of one bit for each rising edge of  
the SIO clock.  
When receive-only mode is used, incoming data is  
input to the SIO buffer at the rate of one bit for each  
rising edge of the SIO clock. SBUF can be read or  
written using 8-bit RAM control instructions.  
Table 23. SIO Mode Register (SMOD) Organization (8-Bit W)  
SMOD.0  
SMOD.1  
SMOD.2  
0
1
0
1
0
Most significant bit (MSB) is transmitted first  
Least significant bit (LSB) is transmitted first  
Receive-only mode; output buffer is off  
Transmit-and-receive mode  
Disable the data shifter and clock counter; retain contents of IRQS flag when serial  
transmission is halted  
1
1
0
Enable the data shifter and clock counter; set IRQS flag to "1" when serial  
transmission is halted  
SMOD.3  
SMOD.4  
Clear IRQS flag and 3-bit clock counter to "0"; initiate transmission and then reset  
this bit to "0"; this bit is also bit-addressable.  
Bit not used; value is always "0"  
SMOD.7  
SMOD.6  
SMOD.5  
Clock Selection  
R/W Status of SBUF  
0
0
0
External clock at SCK pin  
SBUF is enabled when SIO  
operation is halted or when SCK  
goes high.  
0
0
1
0
1
0
1
x
0
Use TOL0 clock from TC0  
CPU clock: fx/4, fx/8, fx/64  
Enable SBUF read/write  
10  
SBUF is enabled when SIO  
operation is halted or when SCK  
goes high.  
4.09 kHz clock: fx/2  
4
1
1
1
262 kHz clock: fx/2  
NOTES:  
1. 'fx' = system clock; 'x' means 'don't care.'  
2. kHz frequency ratings assume a system clock (fx) running at 4.19 MHz.  
3. The SIO clock selector circuit cannot select a fx/24 clock if the CPU clock is fx/64.  
S MSUNG  
ELECTRONICS  
September 1996  
2–42  
PRODUCT SPECIFICATION  
KS57C0002 /0004 MICROCONTROLLER  
SCK  
DI7  
DI6  
DI5  
DI4  
DI3  
DI2  
DI1  
DI0  
SI  
DO7  
DO6  
DO5  
DO4  
DO3  
DO2  
DO1  
DO0  
SO  
IRQS  
TRANSMIT  
COMPLETE  
SET SMOD.3  
Figure 34. SIO Timing in Transmit/Receive Mode  
SCK  
SI  
DI7  
DI6  
DI5  
DI4  
DI3  
DI2  
DI1  
DI0  
HIGH IMPEDANCE  
SO  
IRQS  
TRANSMIT  
COMPLETE  
SET SMOD.3  
Figure 35. SIO Timing in Receive-Only Mode  
S MSUNG  
ELECTRONICS  
2–43  
September 1996  
KS57C0002 /0004 MICROCONTROLLER  
PRODUCT SPECIFICATION  
PROGRAMMING TIP — Setting Transmit/Receive Modes for Serial I/O  
4
1. Transmit the data value 48H through the serial I/O interface using an internal clock frequency of fx/2 and in  
MSB-first mode:  
BITS  
SMB  
LD  
LD  
LD  
LD  
LD  
LD  
EMB  
15  
EA,#03H  
PMG1,EA  
EA,#48H  
SBUF,EA  
EA,#0EEH  
SMOD,EA  
; P0.0 / SCK and P0.1 / SO Output  
;
;
; SIO data transfer  
PROGRAMMING TIP — Setting Transmit/Receive Modes for Serial I/O (Continued)  
SCK / P0.0  
SO / P0.1  
EXTERNAL  
DEVICE  
KS57C0002  
2. Use CPU clock to transfer and receive serial data at high speed:  
BITR  
LD  
LD  
LD  
LD  
LD  
LD  
BITR  
BTSTZ  
JR  
EMB  
EA,#03H  
PMG1,EA  
EA,TDATA  
SBUF,EA  
EA,#4FH  
SMOD,EA  
IES  
; P0.0 / SCK and P0.1 / SO Output, P0.2 / SI Input  
; TDATA address = Bank0(20H–7FH)  
; SIO start  
; SIO Interrupt Enable  
STEST  
IRQS  
STEST  
LD  
LD  
EA,SBUF  
RDATA,EA  
; RDATA address = Bank0 (20H–7FH)  
S MSUNG  
ELECTRONICS  
September 1996  
2–44  
PRODUCT SPECIFICATION  
KS57C0002 /0004 MICROCONTROLLER  
PROGRAMMING TIP — Setting Transmit/Receive Modes for Serial I/O (Continued)  
3. Transmit and receive an internal clock frequency of 4.09 kHz (at 4.19 MHz) in LSB-first mode:  
BITR  
LD  
LD  
LD  
LD  
LD  
LD  
EMB  
EA,#03H  
PMG1,EA  
EA,TDATA  
SBUF,EA  
EA,#8FH  
SMOD,EA  
; P0.0 / SCK and P0.1 / SO Output, P0.2 / SI Input  
; TDATA address = Bank0 (20H–7FH)  
; SIO start  
EI  
BITS  
IES  
; SIO Interrupt Enable  
INTS  
PUSH  
PUSH  
BITR  
LD  
SB  
EA  
EMB  
EA,TDATA  
; Store SMB, SRB  
; Store EA  
; EA Transmit data  
; TDATA address = Bank0 (20H–7FH)  
; Transmit data Receive data  
; RDATA address = Bank0 (20H–7FH)  
; SIO start  
XCH  
LD  
BITS  
POP  
POP  
IRET  
EA,SBUF  
RDATA,EA  
SMOD.3  
EA  
SB  
SCK / P0.0  
EXTERNAL  
DEVICE  
SO / P0.1  
SI / P0.2  
KS57C0002  
S MSUNG  
ELECTRONICS  
2–45  
September 1996  
KS57C0002 /0004 MICROCONTROLLER  
PRODUCT SPECIFICATION  
PROGRAMMING TIP — Setting Transmit/Receive Modes for Serial I/O (Continued)  
4. Transmit and receive an external clock in LSB-first mode:  
BITR  
LD  
LD  
LD  
LD  
LD  
LD  
EMB  
EA,#02H  
PMG1,EA  
EA,TDATA  
SBUF,EA  
EA,#0FH  
SMOD,EA  
; P0.1 / SO Output, P0.0 / SCK and P0.2/SIInput  
; TDATA address = Bank0 (20H–7FH)  
; SIO start  
EI  
BITS  
IES  
; SIO Interrupt Enable  
INTS  
PUSH  
PUSH  
BITR  
LD  
SB  
EA  
EMB  
EA,TDATA  
; Store SMB, SRB  
; Store EA  
; EA Transmit data  
; TDATA address = Bank0 (20H–7FH)  
; Transmit data Receive data  
; RDATA address = Bank0 (20H–7FH)  
; SIO start  
XCH  
LD  
BITS  
POP  
POP  
IRET  
EA,SBUF  
RDATA,EA  
SMOD.3  
EA  
SB  
SCK / P0.0  
EXTERNAL  
DEVICE  
SO / P0.1  
SI / P0.2  
KS57C0002  
S MSUNG  
ELECTRONICS  
September 1996  
2–46  
PRODUCT SPECIFICATION  
KS57C0002 /0004 MICROCONTROLLER  
ELECTRICAL DATA  
Table 24. Absolute Maximum Ratings  
°
(T = 25 C)  
A
Parameter  
Symbol  
Conditions  
Rating  
Units  
Supply Voltage  
Input Voltage  
V
– 0.3 to + 7.0  
V
V
DD  
V
Ports 4, 5  
CMOS push-pull  
Open-drain  
– 0.3 to V  
+ 0.3  
DD  
I1  
– 0.3 to + 9  
V
All I/O ports except 4 and 5  
– 0.3 to V  
+ 0.3  
I2  
O
DD  
Output Voltage  
V
– 0.3 to V  
+ 0.3  
V
DD  
Output Current High  
I
One I/O port active  
All I/O ports active  
Ports 0, 3, and 6  
Ports 4 and 5  
All ports, total  
– 5  
– 15  
5
mA  
OH  
OL  
Output Current Low  
I
mA  
30  
+ 100  
Operating Temperature  
Storage Temperature  
T
– 40 to + 85  
– 65 to + 150  
°
°
A
C
C
T
stg  
Table 25. D.C. Electrical Characteristics  
°
°
(T = – 40 C to + 85 C, V  
= 2.7 V to 6.0 V)  
A
DD  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Units  
Input High  
Voltage  
V
Ports 4 and 5  
0.7V  
V
V
IH1  
DD  
DD  
V
V
Ports 0, 1, 2, 3, 6, and RESET  
0.8V  
V
V
IH2  
IH3  
DD  
DD  
DD  
X
and X  
V
– 0.5  
DD  
in  
out  
Input Low  
Voltage  
V
Ports 4 and 5  
0.3V  
V
V
IL1  
DD  
V
V
V
Ports 0, 1, 2, 3, 6, and RESET  
0.2V  
*
IL2  
IL3  
OH  
DD  
X
V
and X  
out  
in  
Output High  
Voltage  
= 4.5 V to 6.0 V  
V
V
– 1.0  
– 2.0  
DD  
DD  
DD  
I
= – 1 mA  
OH  
Ports 0, 3, 4, 5, 6  
V
= 4.5 V to 6.0 V  
DD  
I
= – 3.0 mA  
OH  
Ports 0, 3, 4, 5, 6  
*
The value is 0.2V at KS57C0002 or 0.4V at KS57C0004.  
S MSUNG  
ELECTRONICS  
2–47  
September 1996  
KS57C0002 /0004 MICROCONTROLLER  
PRODUCT SPECIFICATION  
Table 25. D.C. Electrical Characteristics (Continued)  
°
°
(T = – 40 C to + 85 C, V  
= 2.7 V to 6.0 V)  
A
DD  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Units  
Output Low  
Voltage  
V
V
= 4.5 V to 6.0 V  
DD  
0.4  
2
V
OL  
I
= 15 mA  
OL  
Ports 4 and 5 only  
V
= 4.5 V to 6.0 V  
= 1.6 mA  
0.4  
2
DD  
I
OL  
Ports 0, 3, 6 only  
V
= 4.5 V to 6.0 V  
= 4.0 mA  
DD  
I
OL  
Ports 0, 3, 6 only  
Input High  
Leakage  
Current  
I
V
= V  
3
µA  
LIH1  
IN  
DD  
All input pins except X and X  
in  
out  
I
I
V
X
= V  
DD  
20  
10  
LIH2  
LIH3  
IN  
in  
and X  
out  
V
= 9 V  
IN  
Ports 4 and 5 are open-drain  
Input Low  
Leakage  
Current  
I
V
= 0 V  
– 3  
µA  
µA  
LIL1  
LIL2  
IN  
All input pins except X , X  
in out and  
RESET  
I
V
X
= 0 V  
– 20  
3
IN  
in  
and X  
out  
Output High  
Leakage  
Current  
I
I
V
= V  
DD  
LOH1  
LOH2  
O
All output pins except for port 4  
and port 5  
V
= 9 V  
10  
O
Ports 4 and 5 are open-drain  
Output Low  
Leakage  
Current  
I
V
= 0 V  
– 3  
µA  
LOL  
O
R
V
= 0 V; V  
DD  
= 5 V ± 10%  
= 3 V ± 10%  
= 5 V ± 10%  
= 3 V ± 10%  
15  
30  
40  
80  
KΩ  
Pull-Up  
Resistor  
L1  
L2  
IN  
Port 0, 1, 3, 6  
V
= 0 V; V  
200  
400  
800  
IN  
DD  
Port 0, 1, 3, 6  
R
V
= 0 V; V  
100  
200  
230  
490  
KΩ  
IN  
DD  
RESET  
V
= 0 V; V  
IN  
DD  
RESET  
S MSUNG  
ELECTRONICS  
September 1996  
2–48  
PRODUCT SPECIFICATION  
KS57C0002 /0004 MICROCONTROLLER  
Table 25. D.C. Electrical Characteristics (Concluded)  
°
°
(T = – 40 C to + 85 C, V  
= 2.7 V to 6.0 V)  
A
DD  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Units  
(2)  
Supply  
Current  
I
2.5  
8
mA  
V
= 5 V ± 10%  
DD1  
DD  
(1)  
4.19 MHz crystal oscillator  
C1 = C2 = 22 pF  
(3)  
0.62  
1.2  
1.2  
1.8  
1.0  
V
= 3 V ± 10%  
DD  
4.19 MHz crystal oscillator  
C1 = C2 = 22 pF  
I
I
Idle mode; V  
= 5 V ± 10%  
DD  
4.19 MHz crystal oscillator  
mA  
DD2  
DD3  
C1 = C2 = 22 pF  
Idle mode; V  
= 3 V ± 10%  
0.58  
DD  
4.19 MHz crystal oscillator  
C1 = C2 = 22 pF  
Stop mode  
0.5  
0.3  
5
3
µA  
V
= 5 V ± 10%  
DD  
Stop mode  
= 3 V ± 10%  
V
DD  
NOTES:  
1. The currents in the following circuits are not included; on-chip pull-up resistors, output port drive currents and comparator.  
2. For high-speed controller operation, set the PCON register to 0011B.  
3. For low-speed controller operation, set the PCON register to 0000B.  
CPU CLOCK  
1.0475 MHz  
1.00 MHz  
750 kHz  
500 kHz  
250 kHz  
15.6 kHz  
1
2
3
4
5
6
7
SUPPLY VOLTAGE (V)  
CPU CLOCK = 1/n x oscillator frequency (n = 4, 8, 64)  
Figure 36. Standard Operating Voltage Range  
S MSUNG  
ELECTRONICS  
2–49  
September 1996  
KS57C0002 /0004 MICROCONTROLLER  
Table 26. Oscillator Characteristics  
PRODUCT SPECIFICATION  
°
°
(T = – 40 C to + 85 C, V  
= 5 V)  
A
DD  
Oscillator  
Clock  
Configuration  
Parameter  
Test Condition  
Min  
Typ  
Max Units  
(1)  
Ceramic  
Oscillator  
0.4  
4.5  
MHz  
Xin  
Xout  
Oscillation frequency  
C1  
C2  
(2)  
After V  
reaches  
4
ms  
Stabilization time  
DD  
the minimum level of  
its variable range  
(1)  
Crystal  
Oscillator  
0.4  
4.19  
4.5  
MHz  
Xin  
Xout  
Oscillation frequency  
C1  
C2  
(2)  
V
V
= 2.7 V to 4.5 V  
= 4.5 V to 6.0 V  
30  
10  
ms  
ms  
Stabilization time  
DD  
DD  
(1)  
External  
Clock  
0.4  
4.5  
MHz  
Xin  
Xout  
Xin input frequency  
Xin input high and low  
level width (t , t  
100  
0.4  
150  
2
ns  
)
XH XL  
RC  
Oscillator  
(3)  
Oscillation frequency  
limitation  
V
= 5 V  
MHz  
Xin  
Xout  
DD  
R
NOTES:  
1. Oscillation frequency and Xin input frequency data are for oscillator characteristics only.  
2. Stabilization time is the interval required for oscillator stabilization after a reset or termination of Stop mode.  
3. RC is only for the KS57C0002.  
S MSUNG  
ELECTRONICS  
September 1996  
2–50  
PRODUCT SPECIFICATION  
KS57C0002 /0004 MICROCONTROLLER  
Table 27. Input/Output Capacitance  
°
(T = 25 C, V  
= 0 V )  
A
DD  
Parameter  
Input  
Capacitance  
Symbol  
Condition  
Min  
Typ  
Max  
Units  
C
f = 1 MHz; Unmeasured pins  
15  
pF  
IN  
are returned to V  
SS  
Output  
Capacitance  
C
15  
15  
pF  
pF  
OUT  
I/O Capacitance  
C
IO  
Table 28. Comparator Electrical Characteristics  
°
°
(T = – 40 C to + 85 C, V  
A
= 4.0 V to 6.0 V, V  
= 0 V)  
SS  
DD  
Parameter  
Symbol  
Condition  
Min  
0
Typ  
Max  
Units  
Input Voltage Range  
V
V
V
V
DD  
DD  
Reference Voltage  
Range  
V
0
REF  
Input Voltage Accuracy  
V
±150  
mV  
CIN  
Input Leakage Current  
I
I
– 3  
3
µA  
CIN, REF  
Table 29. A.C. Electrical Characteristics  
°
°
(T = – 40 C to + 85 C, V  
= 2.7 V to 6.0 V)  
A
DD  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Units  
Instruction Cycle  
Time  
t
V
= 4.5 V to 6.0 V  
0.95  
64  
µs  
CY  
DD  
V
V
= 2.7 V to 4.5 V  
= 4.5 V to 6.0 V  
3.8  
0
DD  
DD  
TCL0 Input  
Frequency  
f
1
MHz  
TI  
V
V
= 2.7 V to 4.5 V  
= 4.5 V to 6.0 V  
275  
kHz  
DD  
DD  
TCL0 Input High,  
Low Width  
t
, t  
0.48  
µs  
TIH TIL  
V
V
V
V
V
= 2.7 V to 4.5 V  
1.8  
DD  
DD  
DD  
DD  
DD  
SCK Cycle Time  
t
= 4.5 V to 6.0 V; Input  
= 4.5 V to 6.0 V; Output  
= 2.7 V to 4.5 V; Input  
= 2.7 V to 4.5 V; Output  
800  
ns  
KCY  
1600  
3200  
3800  
S MSUNG  
ELECTRONICS  
2–51  
September 1996  
KS57C0002 /0004 MICROCONTROLLER  
PRODUCT SPECIFICATION  
Table 29. A.C. Electrical Characteristics (Continued)  
°
°
(T = – 40 C to + 85 C, V  
= 2.7 V to 6.0 V)  
A
DD  
Parameter  
Symbol  
, t  
Conditions  
Min  
Typ  
Max  
Units  
SCK High, Low  
Width  
t
V
V
= 4.5 V to 6.0 V; Input  
400  
ns  
KH KL  
DD  
DD  
= 4.5 V to 6.0 V; Output  
t
/2 –  
KCY  
50  
V
V
= 2.7 V to 4.5 V; Input  
= 2.7 V to 4.5 V; Output  
1600  
DD  
DD  
t
KCY/2 –  
150  
SI Setup Time to  
SCK High  
t
t
Input  
100  
ns  
ns  
ns  
SIK  
KSI  
Output  
Input  
150  
400  
SI Hold Time to  
SCK High  
Output  
400  
Output Delay for  
SCK to SO  
t
V
= 4.5 V to 6.0 V; Input  
300  
KSO  
DD  
V
V
V
= 4.5 V to 6.0 V; Output  
= 2.7 V to 4.5 V; Input  
= 2.7 V to 4.5 V; Output  
250  
1000  
1000  
DD  
DD  
DD  
*
Interrupt Input  
High, Low Width  
t
, t  
INT0  
µs  
µs  
INTH INTL  
INT0, INT1, KS0–KS2  
Input  
10  
10  
RESET Input Low  
Width  
t
RSL  
*
The minimum value for INT0 is based on a clock of 2t  
or 128/fx as assigned by the IMOD0 register setting.  
CY  
0.8 VDD  
0.8 VDD  
MEASUREMENT  
POINTS  
0.2 VDD  
0.2 VDD  
Figure 37. A.C. Timing Measurement Points (Except for X )  
in  
S MSUNG  
ELECTRONICS  
September 1996  
2–52  
PRODUCT SPECIFICATION  
KS57C0002 /0004 MICROCONTROLLER  
Table 30. RAM Data Retention Supply Voltage in Stop Mode  
°
°
(T = – 40 C to + 85 C)  
A
Parameter  
Symbol  
Condition  
Min  
Typ  
Max  
Units  
Data Retention  
Supply Voltage  
V
2.0  
6.0  
V
DDDR  
Data Retention  
Supply Current  
I
0
0.1  
10  
µA  
ms  
ms  
ms  
DDDR  
Release Signal Set  
Time  
t
17  
SREL  
WAIT  
Oscillation  
Stabilization Time  
t
When released by RESET  
When released by interrupt  
2
/fx  
(1)  
(2)  
NOTES:  
1. During oscillation stabilization time, CPU operation must be stopped to avoid instability during oscillator startup.  
2. The basic timer causes a delay of 217/fx after a reset.  
INTERNAL RESET  
OPERATION  
IDLE MODE  
OPERATING  
STOP MODE  
DATA RETENTION MODE  
MODE  
VDD  
VDDDR  
EXECUTION OF  
STOP INSTRUCTION  
RESET  
tWAIT  
tSREL  
RESET  
Figure 38. Stop Mode Release Timing When Initiated By  
IDLE MODE  
NORMAL  
OPERATING  
MODE  
STOP MODE  
DATA RETENTION MODE  
VDD  
VDDDR  
tSREL  
EXECUTION OF  
STOP INSTRUCTION  
tWAIT  
POWER-DOWN MODE TERMINATING SIGNAL  
(INTERRUPT REQUEST)  
Figure 39. Stop Mode Release Timing When Initiated By Interrupt Request  
S MSUNG  
ELECTRONICS  
2–53  
September 1996  
KS57C0002 /0004 MICROCONTROLLER  
PRODUCT SPECIFICATION  
1 / fx  
tXL  
tXH  
Xin  
VDD – 0.5 V  
0.4 V  
Figure 40 Clock Timing Measurement at X  
in  
1 / fTI  
tTIL  
tTIH  
0.8 VDD  
0.2 VDD  
TCL0  
Figure 41. TCL0 Timing  
tRSL  
RESET  
0.2 VDD  
RESET  
Figure 42. Input Timing for  
Signal  
tINTL  
tINTH  
INT0, 1  
KS0 to KS2  
0.8 VDD  
0.2 VDD  
Figure 43. Input Timing for External Interrupts  
S MSUNG  
ELECTRONICS  
September 1996  
2–54  
PRODUCT SPECIFICATION  
KS57C0002 /0004 MICROCONTROLLER  
tCKY  
tKL  
tKH  
0.8 VDD  
0.2 VDD  
SCK  
tSIK  
tKSI  
0.8 VDD  
0.2 VDD  
SI  
INPUT DATA  
tKSO  
SO  
OUTPUT DATA  
Figure 44. Serial Data Transfer Timing  
S MSUNG  
ELECTRONICS  
2–55  
September 1996  
KS57C0002 /0004 MICROCONTROLLER  
PRODUCT SPECIFICATION  
CHARACTERISTIC CURVES  
NOTE  
The characteristic values shown in the following graphs are based on actual test measurements.  
They do not, however, represent guaranteed operating values.  
IDD1 vs. FREQUENCY (CPU CLOCK = fx/4, fx = 1, 2, 4.2 MHz)  
4
3.5  
VDD = 5.5 V  
3
2.5  
2
1.5  
1
VDD = 3.3 V  
0.5  
0
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
FREQUENCY (MHz)  
Figure 45. Frequency VS. I  
DD1  
IDD2 vs. FREQUENCY (CPU CLOCK = fx/4, fx/64, fx = 4.2 MHz)  
1.5  
VDD = 5.5 V  
1
0.5  
VDD = 3.3 V  
0
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
FREQUENCY (MHz)  
Figure 46. Frequency VS. I  
DD2  
S MSUNG  
ELECTRONICS  
September 1996  
2–56  
PRODUCT SPECIFICATION  
KS57C0002 /0004 MICROCONTROLLER  
IDD1 vs. VDD (CPU CLOCK = fx/4, fx/64, fx = 4.2 MHz)  
4
3.5  
3
fx/4  
2.5  
2
fx/64  
1.5  
1
0.5  
0
3.0  
4.0  
5.0  
6.0  
7.0  
POWER SUPPLY VOLTAGE VDD (V)  
Figure 47. V  
VS. I  
DD1  
DD  
S MSUNG  
ELECTRONICS  
2–57  
September 1996  
KS57C0002 /0004 MICROCONTROLLER  
PRODUCT SPECIFICATION  
NOTES  
S MSUNG  
ELECTRONICS  
September 1996  
2–58  
PRODUCT SPECIFICATION  
KS57C0002 /0004 MICROCONTROLLER  
NOTES  
S MSUNG  
ELECTRONICS  
2–59  
September 1996  

相关型号:

KS57C0002N-XX

Microcontroller, 4-Bit, MROM, SAM4 CPU, 0.263MHz, CMOS, PDIP30
SAMSUNG

KS57C0002P-XX

Microcontroller, 4-Bit, MROM, CMOS, PDIP30, SDIP-30
SAMSUNG

KS57C0002S

Microcontroller, 4-Bit, MROM, SAM4 CPU, 1.05MHz, CMOS, PDSO32
SAMSUNG

KS57C0002S-XX

Microcontroller, 4-Bit, MROM, SAM4 CPU, 0.263MHz, CMOS, PDSO32
SAMSUNG

KS57C0004

4-BIT CMOS Microcontroller
SAMSUNG

KS57C0004ID

Microcontroller, 4-Bit, MROM, CMOS, PDSO32, 0.450 INCH, SOP-32
SAMSUNG

KS57C0004IS

Microcontroller, 4-Bit, MROM, CMOS, PDIP30, 0.400 INCH, SDIP-30
SAMSUNG

KS57C0104IFP

Microcontroller, 4-Bit, MROM, CMOS, PQFP44, 10 X 10 MM, QFP-44
SAMSUNG

KS57C0104IS

Microcontroller, 4-Bit, MROM, CMOS, PDIP42, 0.600 INCH, SDIP-42
SAMSUNG

KS57C0104Q

Microcontroller, 4-Bit, MROM, SAM4 CPU, 1.05MHz, CMOS, PQFP44
SAMSUNG

KS57C0108IFP

Microcontroller, 4-Bit, MROM, CMOS, PQFP44, 10 X 10 MM, QFP-44
SAMSUNG

KS57C0108IS

Microcontroller, 4-Bit, MROM, CMOS, PDIP42, 0.600 INCH, SDIP-42
SAMSUNG