M391B5673DZ1-CF8 [SAMSUNG]

DDR DRAM Module, 256MX72, 0.3ns, CMOS, ROHS COMPLIANT, DIMM-240;
M391B5673DZ1-CF8
型号: M391B5673DZ1-CF8
厂家: SAMSUNG    SAMSUNG
描述:

DDR DRAM Module, 256MX72, 0.3ns, CMOS, ROHS COMPLIANT, DIMM-240

动态存储器 双倍数据速率
文件: 总50页 (文件大小:986K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DDR3 SDRAM  
Unbuffered DIMM  
DDR3 SDRAM Specification  
240pin Unbuffered DIMM based on 1Gb D-die  
64/72-bit Non-ECC/ECC  
82/100FBGA with Lead-Free  
(RoHS compliant)  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN RELATION TO SAMSUNG PRODUCTS,  
AND IS SUBJECT TO CHANGE WITHOUT NOTICE. NOTHING IN THIS DOCUMENT SHALL BE  
CONSTRUED AS GRANTING ANY LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHER-  
WISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IN SAMSUNG PRODUCTS OR TECHNOL-  
OGY. ALL INFORMATION IN THIS DOCUMENT IS PROVIDED ON AS "AS IS" BASIS WITHOUT  
GUARANTEE OR WARRANTY OF ANY KIND.  
1. For updates or additional information about Samsung products, contact your nearest Samsung office.  
2. Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar  
applications where Product failure could result in loss of life or personal or physical harm, or any military or  
defense application, or any governmental procurement to which special terms or provisions may apply.  
* Samsung Electronics reserves the right to change products or specification without notice.  
1 of 50  
Rev. 1.23 July 2009  
DDR3 SDRAM  
Unbuffered DIMM  
Table Contents  
1.0 DDR3 Registered DIMM Ordering Information ...........................................................................5  
2.0 Key Features .................................................................................................................................5  
3.0 Address Configuration .................................................................................................................5  
4.0 x64 DIMM Pin Configurations (Front side/Back Side) ...............................................................6  
5.0 x72 DIMM Pin Configurations (Front side/Back side) ...............................................................7  
6.0 Pin Description .............................................................................................................................8  
7.0 SPD and Thermal Sensor for ECC UDIMMs ...............................................................................8  
8.0 Input/Output Functional Description ..........................................................................................9  
8.1 Address Mirroring Feature ...........................................................................................................10  
8.1.1 DRAM Pin Wiring Mirroring ...................................................................................................10  
9.0 Function Block Diagram: ...........................................................................................................11  
9.1 512MB, 64Mx64 Module (Populated as 1 rank of x16 DDR3 SDRAMs) ................................................11  
9.2 1GB, 128Mx64 Module (Populated as 1 rank of x8 DDR3 SDRAMs) ...................................................12  
9.3 1GB, 128Mx72 ECC Module (Populated as 1 rank of x8 DDR3 SDRAMs) ............................................13  
9.4 2GB, 256Mx64 Module (Populated as 2 ranks of x8 DDR3 SDRAMs) .................................................14  
9.5 2GB, 256Mx72 ECC Module (Populated as 2 ranks of x8 DDR3 SDRAMs) ..........................................15  
10.0 Absolute Maximum Ratings .....................................................................................................16  
10.1 Absolute Maximum DC Ratings ..................................................................................................16  
10.2 DRAM Component Operating Temperature Range ........................................................................16  
11.0 AC & DC Operating Conditions ...............................................................................................16  
11.1 Recommended DC Operating Conditions (SSTL - 15) ....................................................................16  
12.0 AC & DC Input Measurement Levels .......................................................................................17  
12.1 AC & DC Logic Input Levels for Single-ended Signals ...................................................................17  
12.2 V  
Tolerances .......................................................................................................................18  
REF  
12.3 AC & DC Logic Input Levels for Differential Signals ......................................................................19  
12.3.1 Differential Signals Definition ..............................................................................................19  
12.3.2 Differential Swing Requirement for Clock (CK - CK) and Strobe (DQS - DQS) ............................19  
12.3.3 Single-ended Requirements for Differential Signals ...............................................................20  
12.3.4 Differential Input Cross Point Voltage ...................................................................................21  
12.4 Slew Rate Definition for Single-ended Input Signals ......................................................................21  
12.5 Slew Rate Definition for Differential Input Signals .........................................................................21  
13.0 AC & DC Output Measurement Levels ....................................................................................22  
13.1 Single-ended AC & DC Output Levels ..........................................................................................22  
13.2 Differential AC & DC Output Levels .............................................................................................22  
13.3 Single-ended Output Slew Rate ..................................................................................................22  
13.4 DIfferential Output Slew Rate ....................................................................................................23  
2 of 50  
Rev. 1.23 July 2009  
DDR3 SDRAM  
Unbuffered DIMM  
14.0 IDD Specification Definition .....................................................................................................24  
14.1 IDD SPEC Table ........................................................................................................................26  
15.0 Input/Output Capacitance ........................................................................................................29  
15.1 Non ECC UDIMM ......................................................................................................................29  
15.2 ECC UDIMM .............................................................................................................................29  
16.0 Electrical Characteristics and AC timing ...............................................................................30  
16.1 Refresh Parameters by Device Density ........................................................................................30  
16.2 Speed Bins and CL, tRCD, tRP, tRC and tRAS for Corresponding Bin .............................................30  
16.3 Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin ..............................................30  
16.3.1 Speed Bin Table Notes .......................................................................................................31  
17.0 Timing Parameters by Speed Grade .......................................................................................32  
17.1 Jitter Notes ..............................................................................................................................35  
17.2 Timing Parameter Notes ............................................................................................................36  
17.3 Address / Command Setup, Hold and Derating .............................................................................37  
17.4 Data Setup, Hold and Slew Rate Derating: ...................................................................................43  
18.0 Physical Dimensions ................................................................................................................48  
18.1 64Mbx16 based 64Mx64 Module (1 Rank) .....................................................................................48  
18.2 128Mbx8 based 128Mx64/x72 Module (1 Rank) .............................................................................49  
18.3 128Mbx8 based 256Mx64/x72 Module (2 Ranks) ............................................................................50  
3 of 50  
Rev. 1.23 July 2009  
DDR3 SDRAM  
Unbuffered DIMM  
Revision History  
Revision  
Month  
Year  
History  
1.0  
April  
2008  
- First release  
- Change Current SPEC.  
- Corrected Typo.  
- Changed AC parameters to support binning down backward compatibility  
(1333 Mbps 9-9-9 to 1066Mbps 7-7-7)  
1.1  
1.2  
August  
2008  
2008  
October  
1.21  
1.22  
1.23  
January  
February  
July  
2009  
2009  
2009  
- Corrected Module Physical Dimensions.  
- Added Tolerances to Physical Dimensions  
- Corrected Typo.  
4 of 50  
Rev. 1.23 July 2009  
DDR3 SDRAM  
Unbuffered DIMM  
1.0 DDR3 Registered DIMM Ordering Information  
Number of  
Height  
Part Number  
Density  
Organization  
Component Composition  
Rank  
M378B6474DZ1-CF8/H9  
M378B2873DZ1-CF8/H9  
M391B2873DZ1-CF8/H9  
M378B5673DZ1-CF8/H9  
M391B5673DZ1-CF8/H9  
512MB  
1GB  
1GB  
2GB  
2GB  
64Mx64  
128Mx64  
128Mx72  
256Mx64  
256Mx72  
64Mx16(K4B1G1646D-HC##)*4  
128Mx8(K4B1G0846D-HC##)*8  
128Mx8(K4B1G0846D-HC##)*9  
128Mx8(K4B1G0846D-HC##)*16  
128Mx8(K4B1G0846D-HC##)*18  
1
1
1
2
2
30mm  
30mm  
30mm  
30mm  
30mm  
Note :  
- "##" - F8/H9  
- F8 - 1066Mbps 7-7-7 & H9 - 1333Mbps 9-9-9  
2.0 Key Features  
DDR3-1066  
DDR3-1333  
9-9-9  
1.5  
Speed  
Unit  
7-7-7  
1.875  
7
tCK(min)  
CAS Latency  
tRCD(min)  
tRP(min)  
ns  
tCK  
ns  
9
13.125  
13.125  
37.5  
13.5  
13.5  
36  
ns  
tRAS(min)  
tRC(min)  
ns  
50.625  
49.5  
ns  
JEDEC standard 1.5V ± 0.075V Power Supply  
DDQ = 1.5V ± 0.075V  
533MHz fCK for 1066Mb/sec/pin, 667MHz fCK for 1333Mb/sec/pin  
V
8 independent internal bank  
Programmable CAS Latency: 6,7,8,9,10  
Programmable Additive Latency(Posted CAS) : 0, CL - 2, or CL - 1 clock  
Programmable CAS Write Latency(CWL) = 6(DDR3-1066) and 7(DDR3-1333)  
8-bit pre-fetch  
Burst Length: 8 (Interleave without any limit, sequential with starting address “000” only), 4 with tCCD = 4 which does not allow seamless read or  
write [either On the fly using A12 or MRS]  
Bi-directional Differential Data Strobe  
Internal(self) calibration : Internal self calibration through ZQ pin (RZQ : 240 ohm ± 1%)  
On Die Termination using ODT pin  
Average Refresh Period 7.8us at lower then TCASE 85°C, 3.9us at 85°C < TCASE 95°C  
Asynchronous Reset  
3.0 Address Configuration  
Organization  
Row Address  
A0-A13  
Column Address  
A0-A9  
Bank Address  
BA0-BA2  
Auto Precharge  
A10/AP  
128x8(1Gb) based Module  
64x16(1Gb) based Module  
A0-A12  
A0-A9  
BA0-BA2  
A10/AP  
5 of 50  
Rev. 1.23 July 2009  
DDR3 SDRAM  
Unbuffered DIMM  
4.0 x64 DIMM Pin Configurations (Front side/Back Side)  
Pin  
1
Front  
VREFDQ  
VSS  
Pin  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
Back  
Pin  
42  
43  
44  
45  
46  
47  
48  
Front  
NC  
Pin  
162  
163  
164  
165  
166  
167  
168  
Back  
NC  
Pin  
82  
Front  
DQ33  
VSS  
Pin  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
223  
224  
Back  
VSS  
VSS  
VSS  
2
DQ4  
DQ5  
VSS  
NC  
83  
DM4  
NC  
VSS  
3
DQ0  
DQ1  
VSS  
NC  
NC  
VSS  
84  
DQS4  
DQS4  
VSS  
VSS  
4
NC  
NC  
VSS  
NC  
85  
5
DM0  
NC  
86  
DQ38  
DQ39  
VSS  
NC (TEST)3  
Reset  
6
DQS0  
DQS0  
VSS  
87  
DQ34  
DQ35  
VSS  
VSS  
DQ6  
DQ7  
VSS  
7
88  
8
KEY  
89  
DQ44  
DQ45  
VSS  
CKE1,NC1  
VDD  
NC  
9
DQ2  
DQ3  
VSS  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
90  
DQ40  
DQ41  
VSS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
CKE0  
VDD  
BA2  
NC  
91  
DQ12  
DQ13  
VSS  
NC  
NC  
92  
DM5  
NC  
DQ8  
DQ9  
VSS  
93  
DQS5  
DQS5  
VSS  
VDD  
VSS  
94  
VDD  
A11  
A7  
DM1  
NC  
A12/BC  
A9  
95  
DQ46  
DQ47  
VSS  
DQS1  
DQS1  
VSS  
96  
DQ42  
DQ43  
VSS  
VSS  
VDD  
97  
VDD  
A5  
DQ14  
DQ15  
VSS  
A8  
A6  
98  
DQ52  
DQ53  
VSS  
DQ10  
DQ11  
VSS  
99  
DQ48  
DQ49  
VSS  
VDD  
A4  
100  
101  
102  
103  
104  
VDD  
DQ20  
DQ21  
VSS  
A3  
A1  
DM6  
NC  
DQ16  
DQ17  
VSS  
A2  
DQS6  
DQS6  
VSS  
VDD  
VDD  
VSS  
CK1,NC2  
VDD  
DM2  
NC  
DQ54  
DQ55  
VSS  
CK1,NC2  
VDD  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
DQS2  
DQS2  
VSS  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
CK0  
CK0  
VDD  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
DQ50  
DQ51  
VSS  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
VSS  
VDD  
DQ22  
DQ23  
VSS  
DQ60  
DQ61  
VSS  
VREFCA  
DQ18  
DQ19  
VSS  
NC  
A0  
DQ56  
DQ57  
VSS  
NC  
VDD  
VDD  
DQ28  
DQ29  
VSS  
DM7  
NC  
DQ24  
DQ25  
VSS  
A10/AP  
BA0  
BA1  
VDD  
DQS7  
DQS7  
VSS  
VSS  
VDD  
DM3  
NC  
RAS  
S0  
DQ62  
DQ63  
VSS  
DQS3  
DQS3  
VSS  
WE  
DQ58  
DQ59  
VSS  
VSS  
VDD  
CAS  
VDD  
VDDSPD  
DQ30  
DQ31  
VSS  
ODT0  
A13  
S1, NC1  
DQ26  
DQ27  
VSS  
SA0  
SA1  
SDA  
VSS  
VTT  
ODT1, NC1  
VDD  
VDD  
37  
38  
39  
40  
41  
157  
158  
159  
160  
161  
77  
78  
79  
80  
81  
197  
198  
199  
200  
201  
118  
119  
120  
SCL  
SA2  
VTT  
238  
239  
240  
NC  
NC  
VSS  
NC  
VSS  
NC  
NC  
VSS  
NC  
VSS  
DQ36  
DQ37  
NC  
DQ32  
NC = No Connect; NF = No Function; NU = Not Usable; RFU = Reserved Future Use  
1. S1, ODT1, CKE1: Used for dual-rank UDIMMs; NC on single-rank UDIMMs  
2. CK1,NC2 and CK1,NC2 : Used for dual-rank UDIMMs; not used on single-rank UDIMMs, but terminated  
3. TEST (pin 167) used by memory bus analysis tools (unused on memory DIMMs)  
SAMSUNG ELECTRONICS CO., Ltd. reserves the right to change products and specifications without notice.  
6 of 50  
Rev. 1.23 July 2009  
DDR3 SDRAM  
Unbuffered DIMM  
5.0 x72 DIMM Pin Configurations (Front side/Back side)  
Pin  
1
Front  
VREFDQ  
VSS  
Pin  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
Back  
Pin  
42  
43  
44  
45  
46  
47  
48  
Front  
NC  
Pin  
162  
163  
164  
165  
166  
167  
168  
Back  
NC  
Pin  
82  
Front  
DQ33  
VSS  
Pin  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
223  
224  
Back  
VSS  
VSS  
VSS  
2
DQ4  
DQ5  
VSS  
NC  
83  
DM4  
NC  
VSS  
3
DQ0  
DQ1  
VSS  
CB6  
CB7  
VSS  
84  
DQS4  
DQS4  
VSS  
VSS  
4
CB2  
CB3  
VSS  
NC  
85  
5
DM0  
NC  
86  
DQ38  
DQ39  
VSS  
NC (TEST)3  
Reset  
6
DQS0  
DQS0  
VSS  
87  
DQ34  
DQ35  
VSS  
VSS  
DQ6  
DQ7  
VSS  
7
88  
8
KEY  
89  
DQ44  
DQ45  
VSS  
CKE1,NC1  
VDD  
NC  
9
DQ2  
DQ3  
VSS  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
90  
DQ40  
DQ41  
VSS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
CKE0  
VDD  
BA2  
NC  
91  
DQ12  
DQ13  
VSS  
NC  
NC  
92  
DM5  
NC  
DQ8  
DQ9  
VSS  
93  
DQS5  
DQS5  
VSS  
VDD  
VSS  
94  
VDD  
A11  
A7  
DM1  
NC  
A12/BC  
A9  
95  
DQ46  
DQ47  
VSS  
DQS1  
DQS1  
VSS  
96  
DQ42  
DQ43  
VSS  
VSS  
VDD  
97  
VDD  
A5  
DQ14  
DQ15  
VSS  
A8  
A6  
98  
DQ52  
DQ53  
VSS  
DQ10  
DQ11  
VSS  
99  
DQ48  
DQ49  
VSS  
VDD  
A4  
100  
101  
102  
103  
104  
VDD  
DQ20  
DQ21  
VSS  
A3  
A1  
DM6  
NC  
DQ16  
DQ17  
VSS  
A2  
DQS6  
DQS6  
VSS  
VDD  
VDD  
VSS  
CK1,NC2  
VDD  
DM2  
NC  
DQ54  
DQ55  
VSS  
CK1,NC2  
VDD  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
DQS2  
DQS2  
VSS  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
CK0  
CK0  
VDD  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
DQ50  
DQ51  
VSS  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
VSS  
VDD  
DQ22  
DQ23  
VSS  
DQ60  
DQ61  
VSS  
VREFCA  
DQ18  
DQ19  
VSS  
EVENT  
A0  
DQ56  
DQ57  
VSS  
NC  
VDD  
VDD  
DQ28  
DQ29  
VSS  
DM7  
NC  
DQ24  
DQ25  
VSS  
A10/AP  
BA0  
BA1  
VDD  
DQS7  
DQS7  
VSS  
VSS  
VDD  
DM3  
NC  
RAS  
S0  
DQ62  
DQ63  
VSS  
DQS3  
DQS3  
VSS  
WE  
DQ58  
DQ59  
VSS  
VSS  
VDD  
CAS  
VDD  
VDDSPD  
DQ30  
DQ31  
VSS  
ODT0  
A13  
S1, NC1  
DQ26  
DQ27  
VSS  
SA0  
SA1  
SDA  
VSS  
VTT  
ODT1, NC1  
VDD  
VDD  
37  
38  
39  
40  
41  
157  
158  
159  
160  
161  
77  
78  
79  
80  
81  
197  
198  
199  
200  
201  
118  
119  
120  
SCL  
SA2  
VTT  
238  
239  
240  
CB4  
CB5  
VSS  
NC  
VSS  
CB0  
CB1  
VSS  
NC  
VSS  
DQ36  
DQ37  
DM8  
DQ32  
NC = No Connect; NF = No Function; NU = Not Usable; RFU = Reserved Future Use  
1. S1, ODT1, CKE1: Used for dual-rank UDIMMs; NC on single-rank UDIMMs  
2. CK1,NC2 and CK1,NC2 : Used for dual-rank UDIMMs; not used on single-rank UDIMMs, but terminated  
3. TEST (pin 167) used by memory bus analysis tools (unused on memory DIMMs)  
SAMSUNG ELECTRONICS CO., Ltd. reserves the right to change products and specifications without notice.  
7 of 50  
Rev. 1.23 July 2009  
DDR3 SDRAM  
Unbuffered DIMM  
6.0 Pin Description  
Pin Name  
A0-A13  
BA0-BA2  
RAS  
Description  
Pin Name  
SCL  
Description  
I2C serial bus clock for EEPROM  
I2C serial bus data line for EEPROM  
I2C serial address select for EEPROM  
SDRAM address bus  
SDRAM bank select  
SDA  
SDRAM row address strobe  
SDRAM column address strobe  
SDRAM write enable  
SA0-SA2  
VDD  
*
CAS  
SDRAM core power supply  
VDDQ  
*
WE  
SDRAM I/O Driver power supply  
SDRAM I/O reference supply  
VREFDQ  
VREFCA  
VSS  
S0, S1  
CKE0,CKE1  
DIMM Rank Select Lines  
SDRAM clock enable lines  
SDRAM command/address reference supply  
Power supply return (ground)  
ODT0, ODT1 On-die termination control lines  
VDDSPD  
NC  
DQ0 - DQ63  
CB0 - CB7  
DIMM memory data bus  
DIMM ECC check bits  
Serial EEPROM positive power supply  
Spare Pins(no connect)  
SDRAM data strobes  
Used by memory bus analysis tools  
(unused on memory DIMMs)  
DQS0 - DQS8  
DQS0-DQS8  
DM0-DM8  
TEST  
RESET  
EVENT  
VTT  
(positive line of differential pair)  
SDRAM differential data strobes  
(negative line of differential pair)  
Set DRAMs Known State  
SDRAM data masks/high data strobes  
(x8-based x72 DIMMs)  
Reserved for optional temperature-sensing hardware  
SDRAM I/O termination supply  
Reserved for future use  
SDRAM clocks  
(positive line of differential pair)  
CK0, CK1  
SDRAM clocks  
(negative line of differential pair)  
CK0, CK1  
RFU  
*The V and V  
pins are tied common to a single power-plane on these designs.  
DDQ  
DD  
7.0 SPD and Thermal Sensor for ECC UDIMMs  
On DIMM thermal sensor will provide DRAM temperature readout through a integrated thermal sensor.  
SCL  
SDA  
EVENT  
WP/EVENT  
SA0  
R1  
0 Ω  
SA1  
SA1  
SA2  
SA2  
R2  
0 Ω  
SA0  
Note :  
1. Raw Cards D (1Rx8 ECC) and E (2Rx8 ECC) support a thermal sensor.  
2. When the SPD and the thermal sensor are placed on the module, R1 is placed but R2 is not.  
When only the SPD is placed on the module, R2 is placed but R1 is not.  
Temperature Sensor Characteristics  
Temperature Sensor Accuracy  
Grade  
Range  
Units  
Notes  
Min.  
Typ.  
+/- 0.5  
+/- 1.0  
+/- 2.0  
0.25  
Max.  
75 < Ta < 95  
40 < Ta < 125  
-20 < Ta < 125  
-
-
-
+/- 1.0  
+/- 2.0  
+/- 3.0  
-
-
-
-
B
°C  
Resolution  
°C /LSB  
8 of 50  
Rev. 1.23 July 2009  
DDR3 SDRAM  
Unbuffered DIMM  
8.0 Input/Output Functional Description  
Symbol  
Type  
Function  
CK and CK are differential clock inputs. All the DDR3 SDRAM addr/cntl inputs are sampled on the crossing of positive  
edge of CK and negative edge of CK. Output (read) data is reference to the crossing of CK and CK (Both directions of  
crossing)  
CK0-CK1  
CK0-CK1  
SSTL  
Activates the SDRAM CK signal when high and deactivates the CK signal when low. By deactivating the clocks, CKE low  
initiates the Power Down mode, or the Self-Refresh mode  
CKE0-CKE1  
SSTL  
SSTL  
Enables the associated SDRAM command decoder when low and disables the command decoder when high. When the  
command decoder is disabled, new command are ignored but previous operations continue. This signal provides for  
external rank selection on systems with multiple ranks.  
S0-S1  
RAS, CAS, WE  
ODT0-ODT1  
SSTL  
SSTL  
RAS, CAS, and WE (ALONG WITH S) define the command being entered.  
When high, termination resistance is enabled for all DQ, DQS, DQS and DM pins, assuming the function is enabled in  
the Extended Mode Register Set (EMRS).  
VREFDQ  
VREFCA  
Supply Reference voltage for SSTL 15 I/O inputs.  
Supply Reference voltage for SSTL 15 command/address inputs.  
Power supply for the DDR3 SDRAM output buffers to provide improved noise immunity. For all current DDR3 unbuffered  
DIMM designs, VDDQ shares the same power plane as VDD pins.  
VDDQ  
Supply  
BA0-BA2  
SSTL  
Selects which SDRAM bank of eight is activated.  
During a Bank Activate command cycle, Address input defines the row address (RA0-RA13)  
During a Read or Write command cycle, Address input defines the column address, In addition to the column address,  
AP is used to invoke autoprecharge operation at the end of the burst read or write cycle. If AP is high, autoprecharge is  
selected and BA0, BA1, BA2 defines the bank to be precharged. If AP is low, autoprecharge is disabled. During a pre-  
charge command cycle, AP is used in conjunction with BA0, BA1, BA2 to control which bank(s) to precharge. If AP is  
high, all banks will be precharged regardless of the state of BA0, BA1 or BA2. If AP is low, BA0, BA1 and BA2 are used  
to define which bank to precharge. A12(BC) is sampled during READ and WRITE commands to determine if burst chop  
(on-the-fly) will be performed (HIGH, no burst chop; Low, burst chopped).  
A0-A13  
SSTL  
DQ0-DQ63  
CB0-CB7  
SSTL  
SSTL  
Data and Check Bit Input/Output pins.  
DM is an input mask signal for write data. Input data is masked when DM is sampled High coincident with that input data  
during a write access. DM is sampled on both edges of DQS. Although DM pins are input only, the DM loading matches  
the DQ and DQS loading.  
DM0-DM8  
Power and ground for DDR3 SDRAM input buffers, and core logic. VDD and VDDQ pins are tied to VDD/VDDQ planes on  
these modules.  
V
DD,VSS  
Supply  
DQS0-DQS8  
DQS0-DQS8  
Data strobe for input and output data. For raw cards using x16 organized DRAMs, Pins DQ0-7 are associated with the  
LDQS and LDQS pins and Pins DQ8-15 are associated with UDQS and UDQS pins.  
SSTL  
These signals and tied at the system planar to either VSS or VDDSPD to configure the serial SPD EERPOM address  
range.  
SA0-SA2  
SDA  
-
-
-
This bidirectional pin is used to transfer data into or out of the SPD EEPROM. An external resistor may be connected  
from the SDA bus line to VDDSPD to act as a pull-up on the system board.  
This signal is used to clock data into and out of the SPD EEPROM. An external resistor may be connected from the SCL  
bus time to VDDSPD to act as a pull-up on the system board.  
SCL  
Power supply for SPD EEPROM. This supply is separate from the VDD/VDDQ power plane. EEPROM supply is operable  
from 3.0V to 3.6V.  
VDDSPD  
Supply  
-
RESET  
EVENT  
The RESET pin is connected to the RESET pin on each DRAM. When low, all DRAMs are set to a know state.  
This signal indicates that a thermal event has been detected in the thermal sensing device. The system should guaran-  
tee the electrical level requirement is met for the EVENT pin on TS/SPD part  
Output  
9 of 50  
Rev. 1.23 July 2009  
DDR3 SDRAM  
Unbuffered DIMM  
8.1 Address Mirroring Feature  
There is a via grid located under the DRAMs for wiring the CA signals (address, bank address, command, and control lines) to the DRAM pins. The length  
of the traces from the vias to the DRAMs places limitations on the bandwidth of the module. The shorter these traces, the higher the bandwidth. To extend  
the bandwidth of the CA bus for DDR3 modules, a scheme was defined to reduce the length of these traces.  
The pins on the DRAM are defined in a manner that allows for these short trace lengths. The CA bus pins in Columns 2 and 8, ignoring the mechanical  
support pins, do not have any special functions (secondary functions). This allows the most flexibility with these pins. These are address pins A3, A4, A5,  
A6, A7, A8 and bank address pins BA0 and BA1. Refer to Table . Rank 0 DRAM pins are wired straight, with no mismatch between the connector pin  
assignment and the DRAM pin assignment. Some of the Rank 1 DRAM pins are cross wired as defined in the table. Pins not listed in the table are wired  
straight.  
8.1.1 DRAM Pin Wiring Mirroring  
DRAM Pin  
Connector Pin  
Rank 0  
A3  
Rank 1  
A4  
A3  
A4  
A4  
A3  
A5  
A5  
A6  
A6  
A6  
A5  
A7  
A7  
A8  
A8  
A8  
A7  
BA0  
BA1  
BA0  
BA1  
BA1  
BA0  
Figure 1 illustrates the wiring in both the mirrored and non-mirrored case. The lengths of the traces to the DRAM pins, is obviously shorter. The via grid is smaller as well.  
Figure 1 - Wiring Differences for Mirrored and Non-Mirrored Addresses  
Since the cross-wired pins have no secondary functions, there is no problem in normal operation. Any data written is read the same way. There are limi-  
tations however. When writing to the internal registers with a "load mode" operation, the specific address is required. This requires the controller to know  
if the rank is mirrored or not. This requires a few rules. Mirroring is done on 2 rank modules and can only be done on the second rank. There is not a  
requirement that the second rank be mirrored. There is a bit assignment in the SPD that indicates whether the module has been designed with the mir-  
rored feature or not. See the DDR3 UDIMM SPD specification for these details. The controller must read the SPD and have the capability of de-mirroring  
the address when accessing the second rank.  
10 of 50  
Rev. 1.23 July 2009  
DDR3 SDRAM  
Unbuffered DIMM  
9.0 Function Block Diagram:  
9.1 512MB, 64Mx64 Module (Populated as 1 rank of x16 DDR3 SDRAMs)  
S0  
LDQS  
LDQS  
LDM  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
LDQS  
LDQS  
LDM  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
DQS0  
DQS0  
DM0  
DQS4  
DQS4  
DM4  
CS  
CS  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
DQ32  
DQ33  
DQ34  
DQ35  
DQ36  
DQ37  
DQ38  
DQ39  
D0  
D0  
UDQS  
UDQS  
UDM  
UDQS  
UDQS  
UDM  
DQS1  
DQS1  
DM1  
DQS5  
DQS5  
DM5  
DQ8  
DQ40  
DQ41  
DQ42  
DQ43  
DQ44  
DQ45  
DQ46  
DQ47  
I/O 8  
I/O 8  
DQ9  
I/O 9  
I/O 9  
DQ10  
DQ11  
DQ12  
DQ13  
DQ14  
DQ15  
I/O 10  
I/O 11  
I/O 12  
I/O 13  
I/O 14  
I/O 15  
I/O 10  
I/O 11  
I/O 12  
I/O 13  
I/O 14  
I/O 15  
ZQ  
ZQ  
LDQS  
LDQS  
LDM  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
LDQS  
LDQS  
LDM  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
DQS2  
DQS2  
DM2  
DQS6  
DQS6  
DM6  
CS  
CS  
DQ16  
DQ17  
DQ18  
DQ19  
DQ20  
DQ21  
DQ22  
DQ23  
DQ48  
DQ49  
DQ50  
DQ51  
DQ52  
DQ53  
DQ54  
DQ55  
D1  
D1  
UDQS  
UDQS  
UDM  
UDQS  
UDQS  
UDM  
DQS3  
DQS3  
DM3  
DQS3  
DQS3  
DM3  
DQ24  
DQ25  
DQ26  
DQ27  
DQ28  
DQ29  
DQ30  
DQ31  
DQ56  
DQ57  
DQ58  
DQ59  
DQ60  
DQ61  
DQ62  
DQ63  
I/O 8  
I/O 8  
I/O 9  
I/O 9  
I/O 10  
I/O 11  
I/O 12  
I/O 13  
I/O 14  
I/O 15  
I/O 10  
I/O 11  
I/O 12  
I/O 13  
I/O 14  
I/O 15  
ZQ  
ZQ  
Serial PD  
SCL  
SDA  
WP  
A0  
A1  
A2  
SA0 SA1 SA2  
Note :  
V
BA0 - BA2  
A0 - A14  
RAS  
BA0-BA2 : SDRAMs D0 - D3  
A0-A14 : SDRAMs D0 - D3  
RAS : SDRAMs D0 - D3  
CAS : SDRAMs D0 - D3  
CKE : SDRAMs D0 - D3  
WE : SDRAMs D0 - D3  
ODT : SDRAMs D0 - D3  
CK : SDRAMs D0 - D3  
CK : SDRAMs D0 - D3  
RESET : SDRAMs D0 - D3  
DDSPD  
SPD  
V
/V  
D0 - D3  
D0 - D3  
D0 - D3  
D0 - D3  
DD DDQ  
1. DQ-to-I/O wiring is shown as recommended but may be  
changed.  
V
REFDQ  
2. DQ/DQS/DQS/ODT/DM/CKE/S relationships must be  
maintained as shown.  
CAS  
V
SS  
3. DQ, DM, DQS/DQS resistors: Refer to associated  
topology diagram.  
CKE0  
WE  
V
REFCA  
4. Refer to the appropriate clock wiring topology under the  
DIMM wiring details section of this document.  
5. The pair CK1 and CK1 is terminated in 7.5but is not  
used on the module.  
ODT0  
CK0  
6. A15 is not routed on the module.  
7. For each DRAM, a unique ZQ resistor is connected to  
ground. The ZQ resistor is 240 ± 1%  
8. One SPD exists per module.  
CK0  
RESET  
11 of 50  
Rev. 1.23 July 2009  
DDR3 SDRAM  
Unbuffered DIMM  
9.2 1GB, 128Mx64 Module (Populated as 1 rank of x8 DDR3 SDRAMs)  
S0  
DQS0  
DQS0  
DM0  
DQS4  
DQS4  
DM4  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
DQ32  
DQ33  
DQ34  
DQ35  
DQ36  
DQ37  
DQ38  
DQ39  
I/O 0  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
D0  
D4  
ZQ  
ZQ  
DQS1  
DQS1  
DM1  
DQS5  
DQS5  
DM5  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DQ8  
DQ40  
DQ41  
DQ42  
DQ43  
DQ44  
DQ45  
DQ46  
DQ47  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
DQ9  
D1  
D5  
DQ10  
DQ11  
DQ12  
DQ13  
DQ14  
DQ15  
ZQ  
ZQ  
DQS2  
DQS2  
DM2  
DQS6  
DQS6  
DM6  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DQ16  
DQ17  
DQ18  
DQ19  
DQ20  
DQ21  
DQ22  
DQ23  
DQ48  
DQ49  
DQ50  
DQ51  
DQ52  
DQ53  
DQ54  
DQ55  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
D2  
D6  
ZQ  
ZQ  
DQS3  
DQS3  
DM3  
DQS7  
DQS7  
DM7  
DM  
NU/ CS DQS DQS  
DM  
CS DQS DQS  
DQ24  
DQ25  
DQ26  
DQ27  
DQ28  
DQ29  
DQ30  
DQ31  
DQ56  
DQ57  
DQ58  
DQ59  
DQ60  
DQ61  
DQ62  
DQ63  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
D3  
D7  
ZQ  
ZQ  
Serial PD  
SCL  
SDA  
WP  
A0  
Note :  
BA0 - BA2  
A0 - A13  
RAS  
BA0-BA2 : SDRAMs D0 - D7  
A0-A13 : SDRAMs D0 - D7  
RAS : SDRAMs D0 - D7  
CAS : SDRAMs D0 - D7  
CKE : SDRAMs D0 - D7  
WE : SDRAMs D0 - D7  
ODT : SDRAMs D0 - D7  
CK : SDRAMs D0 - D7  
A1  
SA0 SA1  
A2  
1. DQ-to-I/O wiring is shown as recommended but may be  
changed.  
SA2  
2. DQ/DQS/DQS/ODT/DM/CKE/S relationships must be  
maintained as shown.  
CAS  
V
3. DQ, DM, DQS/DQS resistors: Refer to associated  
topology diagram.  
DDSPD  
SPD  
CKE0  
WE  
V
/V  
D0 - D7  
D0 - D7  
D0 - D7  
D0 - D7  
DD DDQ  
4. Refer to the appropriate clock wiring topology under the  
DIMM wiring details section of this document.  
5. Refer to section 7.1 of this document for details on  
address mirroring.  
V
REFDQ  
ODT0  
CK0  
V
SS  
6. For each DRAM, a unique ZQ resistor is connected to  
ground. The ZQ resistor is 240 Ohm +/- 1%  
7. One SPD exists per module.  
V
REFCA  
12 of 50  
Rev. 1.23 July 2009  
DDR3 SDRAM  
Unbuffered DIMM  
9.3 1GB, 128Mx72 ECC Module (Populated as 1 rank of x8 DDR3 SDRAMs)  
S0  
DQS0  
DQS0  
DM0  
DQS4  
DQS4  
DM4  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
DQ32  
DQ33  
DQ34  
DQ35  
DQ36  
DQ37  
DQ38  
DQ39  
I/O 0  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
D0  
D4  
ZQ  
ZQ  
DQS1  
DQS1  
DM1  
DQS5  
DQS5  
DM5  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DQ8  
DQ40  
DQ41  
DQ42  
DQ43  
DQ44  
DQ45  
DQ46  
DQ47  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
DQ9  
D1  
D5  
DQ10  
DQ11  
DQ12  
DQ13  
DQ14  
DQ15  
ZQ  
ZQ  
DQS2  
DQS2  
DM2  
DQS6  
DQS6  
DM6  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DQ16  
DQ17  
DQ18  
DQ19  
DQ20  
DQ21  
DQ22  
DQ23  
DQ48  
DQ49  
DQ50  
DQ51  
DQ52  
DQ53  
DQ54  
DQ55  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
D2  
D6  
ZQ  
ZQ  
DQS3  
DQS3  
DM3  
DQS7  
DQS7  
DM7  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DQ24  
DQ25  
DQ26  
DQ27  
DQ28  
DQ29  
DQ30  
DQ31  
DQ56  
DQ57  
DQ58  
DQ59  
DQ60  
DQ61  
DQ62  
DQ63  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
D3  
D7  
ZQ  
ZQ  
DQS8  
DQS8  
DM8  
Serial PD  
DM  
CS DQS DQS  
SCL  
EVENT  
SDA  
EVENT  
A0 A1  
CB0  
CB1  
CB2  
CB3  
CB4  
CB5  
CB6  
CB7  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
D8  
A2  
SA0 SA1 SA2  
ZQ  
Note :  
V
BA0 - BA2  
A0 - A15  
RAS  
BA0-BA2 : SDRAMs D0 - D8  
A0-A15 : SDRAMs D0 - D8  
RAS : SDRAMs D0 - D8  
CAS : SDRAMs D0 - D8  
CKE : SDRAMs D0 - D8  
WE : SDRAMs D0 - D8  
ODT : SDRAMs D0 - D8  
CK : SDRAMs D0 - D8  
DDSPD  
/V  
SPD  
V
D0 - D8  
D0 - D8  
D0 - D8  
D0 - D8  
1. DQ-to-I/O wiring is shown as recommended but may be  
changed.  
DD DDQ  
V
REFDQ  
2. DQ/DQS/DQS/ODT/DM/CKE/S relationships must be  
maintained as shown.  
CAS  
V
SS  
3. DQ, CB, DM, DQS/DQS resistors: Refer to associated  
topology diagram.  
CKE0  
WE  
V
REFCA  
4. Refer to the appropriate clock wiring topology under the  
DIMM wiring details section of this document.  
5. For each DRAM, a unique ZQ resistor is connected to  
ground. The ZQ resistor is 240 Ohm +/- 1%  
6. Refer to "SPD and Thermal sensor for ECC UDIMMs"  
for SPD detail.  
ODT0  
CK0  
13 of 50  
Rev. 1.23 July 2009  
DDR3 SDRAM  
Unbuffered DIMM  
9.4 2GB, 256Mx64 Module (Populated as 2 ranks of x8 DDR3 SDRAMs)  
S0  
DQS0  
DQS0  
DM0  
DQS4  
DQS4  
DM4  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
DQ32  
DQ33  
DQ34  
DQ35  
DQ36  
DQ37  
DQ38  
DQ39  
I/O 0  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
D0  
D4  
ZQ  
ZQ  
DQS1  
DQS1  
DM1  
DQS5  
DQS5  
DM5  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DQ8  
DQ40  
DQ41  
DQ42  
DQ43  
DQ44  
DQ45  
DQ46  
DQ47  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
DQ9  
D1  
D5  
DQ10  
DQ11  
DQ12  
DQ13  
DQ14  
DQ15  
ZQ  
ZQ  
DQS2  
DQS2  
DM2  
DQS6  
DQS6  
DM6  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DQ16  
DQ17  
DQ18  
DQ19  
DQ20  
DQ21  
DQ22  
DQ23  
DQ48  
DQ49  
DQ50  
DQ51  
DQ52  
DQ53  
DQ54  
DQ55  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
D2  
D6  
ZQ  
ZQ  
DQS3  
DQS3  
DM3  
DQS7  
DQS7  
DM7  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DQ24  
DQ25  
DQ26  
DQ27  
DQ28  
DQ29  
DQ30  
DQ31  
DQ56  
DQ57  
DQ58  
DQ59  
DQ60  
DQ61  
DQ62  
DQ63  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
D3  
D7  
ZQ  
ZQ  
DQS8  
DQS8  
DM8  
Serial PD  
DM  
CS DQS DQS  
SCL  
EVENT  
SDA  
EVENT  
A0 A1  
CB0  
CB1  
CB2  
CB3  
CB4  
CB5  
CB6  
CB7  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
D8  
A2  
SA0 SA1 SA2  
ZQ  
Note :  
V
BA0 - BA2  
A0 - A15  
RAS  
BA0-BA2 : SDRAMs D0 - D8  
A0-A15 : SDRAMs D0 - D8  
RAS : SDRAMs D0 - D8  
CAS : SDRAMs D0 - D8  
CKE : SDRAMs D0 - D8  
WE : SDRAMs D0 - D8  
ODT : SDRAMs D0 - D8  
CK : SDRAMs D0 - D8  
DDSPD  
/V  
SPD  
V
D0 - D8  
D0 - D8  
D0 - D8  
D0 - D8  
1. DQ-to-I/O wiring is shown as recommended but may be  
changed.  
DD DDQ  
V
REFDQ  
2. DQ/DQS/DQS/ODT/DM/CKE/S relationships must be  
maintained as shown.  
CAS  
V
SS  
3. DQ, CB, DM, DQS/DQS resistors: Refer to associated  
topology diagram.  
CKE0  
WE  
V
REFCA  
4. Refer to the appropriate clock wiring topology under the  
DIMM wiring details section of this document.  
5. For each DRAM, a unique ZQ resistor is connected to  
ground. The ZQ resistor is 240 Ohm +/- 1%  
6. Refer to "SPD and Thermal sensor for ECC UDIMMs"  
for SPD detail.  
ODT0  
CK0  
14 of 50  
Rev. 1.23 July 2009  
DDR3 SDRAM  
Unbuffered DIMM  
9.5 2GB, 256Mx72 ECC Module (Populated as 2 ranks of x8 DDR3 SDRAMs)  
S1  
S0  
DQS0  
DQS0  
DM0  
DQS4  
DQS4  
DM4  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
DQ32  
DQ33  
DQ34  
DQ35  
DQ36  
DQ37  
DQ38  
DQ39  
I/O 0  
I/O 0  
I/O 0  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
D0  
D9  
D4  
D13  
ZQ  
ZQ  
ZQ  
ZQ  
DQS1  
DQS1  
DM1  
DQS5  
DQS5  
DM5  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DQ8  
DQ40  
DQ41  
DQ42  
DQ43  
DQ44  
DQ45  
DQ46  
DQ47  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
DQ9  
D1  
D10  
D5  
D14  
DQ10  
DQ11  
DQ12  
DQ13  
DQ14  
DQ15  
ZQ  
ZQ  
ZQ  
ZQ  
DQS2  
DQS2  
DM2  
DQS6  
DQS6  
DM6  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DQ16  
DQ17  
DQ18  
DQ19  
DQ20  
DQ21  
DQ22  
DQ23  
DQ48  
DQ49  
DQ50  
DQ51  
DQ52  
DQ53  
DQ54  
DQ55  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
D2  
D11  
D6  
D15  
I/O 6  
I/O 7  
I/O 6  
I/O 7  
ZQ  
ZQ  
ZQ  
ZQ  
DQS3  
DQS3  
DM3  
DQS7  
DQS7  
DM7  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DQ24  
DQ25  
DQ26  
DQ27  
DQ28  
DQ29  
DQ30  
DQ31  
DQ56  
DQ57  
DQ58  
DQ59  
DQ60  
DQ61  
DQ62  
DQ63  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
D3  
D12  
D7  
D16  
ZQ  
ZQ  
ZQ  
ZQ  
DQS8  
DQS8  
DM8  
Serial PD  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
SCL  
EVENT  
CB0  
CB1  
CB2  
CB3  
CB4  
CB5  
CB6  
CB7  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
D8  
D17  
SDA  
EVENT  
A0 A1  
A2  
SA0 SA1 SA2  
ZQ  
ZQ  
Note :  
BA0 - BA2  
BA0-BA2 : SDRAMs D0 - D17  
A0-A15 : SDRAMs D0 - D17  
CKE : SDRAMs D9 - D17  
CKE : SDRAMs D0 - D8  
RAS : SDRAMs D0 - D17  
CAS : SDRAMs D0 - D17  
WE : SDRAMs D0 - D17  
ODT : SDRAMs D0 - D8  
ODT : SDRAMs D9 - D17  
CK : SDRAMs D0 - D8  
A0 - A15  
CKE1  
CKE0  
RAS  
1. DQ-to-I/O wiring is shown as recommended but may be  
changed.  
2. DQ/DQS/DQS/ODT/DM/CKE/S relationships must be  
maintained as shown.  
V
DDSPD  
SPD  
V
/V  
D0 - D17  
D0 - D17  
D0 - D17  
D0 - D17  
3. DQ, CB, DM, DQS, DQS resistors: Refer to associated  
topology diagram.  
DD DDQ  
V
REFDQ  
4. Refer to section 7.1 of this document for details on  
address mirroring.  
CAS  
V
SS  
WE  
5. For each DRAM, a unique ZQ resistor is connected to  
ground. The ZQ resistor is 240 Ohm +/- 1%  
6. Refer to "SPD and Thermal sensor for ECC UDIMMs"  
for SPD detail.  
V
REFCA  
ODT0  
ODT1  
CK0  
CK1  
CK : SDRAMs D9 - D17  
15 of 50  
Rev. 1.23 July 2009  
DDR3 SDRAM  
Unbuffered DIMM  
10.0 Absolute Maximum Ratings  
10.1 Absolute Maximum DC Ratings  
Symbol  
Parameter  
Rating  
Units  
Notes  
VDD  
Voltage on VDD pin relative to VSS  
-0.4 V ~ 1.975 V  
V
1,3  
VDDQ  
Voltage on VDDQ pin relative to VSS  
Voltage on any pin relative to VSS  
Storage Temperature  
-0.4 V ~ 1.975 V  
-0.4 V ~ 1.975 V  
-55 to +100  
V
V
1,3  
1
V
IN, VOUT  
TSTG  
Note :  
°C  
1, 2  
1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and  
functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
Exposure to absolute maximum rating conditions for extended periods may affect reliability.  
2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2  
standard.  
3. VDD and VDDQ must be within 300mV of each other at all times;and VREF must be not greater than 0.6 x VDDQ, When VDD and VDDQ are less than  
500mV; VREF may be equal to or less than 300mV.  
10.2 DRAM Component Operating Temperature Range  
Symbol  
Parameter  
rating  
Unit  
Notes  
TOPER  
Operating Temperature Range  
0 to 95  
°C  
1, 2, 3  
Note :  
1. Operating Temperature TOPER is the case surface temperature on the center/top side of the DRAM. For measurement conditions, please refer to the  
JEDEC document JESD51-2.  
2. The Normal Temperature Range specifies the temperatures where all DRAM specifications will be supported. During operation, the DRAM case tem-  
perature must be maintained between 0-85°C under all operating conditions  
3. Some applications require operation of the Extended Temperature Range between 85°C and 95°C case temperature. Full specifications are guaran-  
teed in this range, but the following additional conditions apply:  
a) Refresh commands must be doubled in frequency, therefore reducing the refresh interval tREFI to 3.9us. It is also possible to specify a component  
with 1X refresh (tREFI to 7.8us) in the Extended Temperature Range.  
b) If Self-Refresh operation is required in the Extended Temperature Range, then it is mandatory to either use the Manual Self-Refresh mode with  
Extended Temperature Range capability (MR2 A6 = 0b and MR2 A7 = 1b) or enable the optional Auto Self-Refresh mode  
(MR2 A6 = 1b and MR2 A7 = 0b)  
11.0 AC & DC Operating Conditions  
11.1 Recommended DC Operating Conditions (SSTL - 15)  
Rating  
Typ.  
1.5  
Symbol  
Parameter  
Units  
Notes  
Min.  
1.425  
1.425  
Max.  
1.575  
1.575  
VDD  
Supply Voltage  
Supply Voltage for Output  
V
V
1,2  
1,2  
VDDQ  
1.5  
Note :  
1. Under all conditions VDDQ must be less than or equal to VDD  
2. VDDQ tracks with VDD. AC parameters are measured with VDD and VDDQ tied together.  
.
16 of 50  
Rev. 1.23 July 2009  
DDR3 SDRAM  
Unbuffered DIMM  
12.0 AC & DC Input Measurement Levels  
12.1 AC & DC Logic Input Levels for Single-ended Signals  
Single Ended AC and DC input levels for Command and Address  
DDR3-1066  
DDR3-1333  
Symbol  
Parameter  
Unit Notes  
Max.  
Min.  
Max.  
Min.  
VIH.CA(DC)  
VREF + 100  
VDD  
VREF + 100  
VSS  
VDD  
DC input logic high  
DC input logic low  
AC input logic high  
AC input logic low  
AC input logic high  
AC input logic low  
mV  
mV  
mV  
mV  
mV  
mV  
1
V
IL.CA(DC)  
IH.CA(AC)  
IL.CA(AC)  
IH.CA(AC150)  
IL.CA(AC150)  
VSS  
VREF - 100  
VREF - 100  
1
V
VREF + 175  
VREF + 175  
-
-
1,2  
1,2  
1,2  
1,2  
V
VREF - 175  
VREF - 175  
-
-
-
-
V
VREF+150  
-
-
-
V
VREF-150  
-
Reference Voltage for ADD,  
CMD inputs  
V
REFCA(DC)  
0.49*VDD  
0.51*VDD  
0.49*VDD  
0.51*VDD  
V
3,4  
Note :  
1. For input only pins except RESET, VREF = VREFCA(DC)  
2. See "Overshoot and Undershoot specifications" section.  
3. The AC peak noise on VREF may not allow VREF to deviate from VREF(DC) by more than ± 1% VDD (for reference : approx. ± 15mV)  
4. For reference : approx. VDD/2 ± 15mV  
Single Ended AC and DC input levels for DQ and DM  
DDR3-1066  
DDR3-1333  
Symbol  
Parameter  
Unit Notes  
Min.  
Max.  
Min.  
Max.  
VIH.DQ(DC)  
VREF + 100  
VDD  
VREF + 100  
VDD  
DC input logic high  
DC input logic low  
mV  
mV  
mV  
mV  
V
1
V
IL.DQ(DC)  
IH.DQ(AC)  
IL.DQ(AC)  
VREFDQ(DC)  
Note :  
VSS  
VREF - 100  
VSS  
VREF - 100  
1
V
VREF + 175  
VREF + 150  
AC input logic high  
AC input logic low  
-
-
1,2,5  
1,2,5  
3,4  
V
VREF - 175  
0.51*VDD  
VREF - 150  
0.51*VDD  
-
-
0.49*VDD  
0.49*VDD  
I/O Reference Voltage(DQ)  
1. For input only pins except RESET, VREF = VREFDQ(DC)  
2. See 9.6 "Overshoot and Undershoot specifications" section.  
3. The AC peak noise on VREF may not allow VREF to deviate from VREF(DC) by more than ± 1% VDD (for reference : approx. ± 15mV)  
4. For reference : approx. VDD/2 ± 15mV  
5. Single ended swing requirement for DQS - DQS is 350mV (peak to peak). Differential swing for DQS - DQS is 700mV (peak to peak).  
17 of 50  
Rev. 1.23 July 2009  
DDR3 SDRAM  
Unbuffered DIMM  
12.2 V  
Tolerances  
REF  
The dc-tolerance limits and ac-noise limits for the reference voltages VREFCA and VREFDQ are illustrate in Figure 2. It shows a valid reference voltage  
REF(t) as a function of time. (VREF stands for VREFCA and VREFDQ likewise).  
REF(DC) is the linear average of VREF(t) over a very long period of time (e.g. 1 sec). This average has to meet the min/max requirements of VREF. Fur-  
thermore VREF(t) may temporarily deviate from VREF(DC) by no more than ± 1% VDD  
V
V
.
voltage  
VDD  
VSS  
time  
Figure 2. Illustration of VREF(DC) tolerance and VREF ac-noise limits  
The voltage levels for setup and hold time measurements VIH(AC), VIH(DC), VIL(AC) and VIL(DC) are dependent on VREF  
.
"VREF" shall be understood as VREF(DC), as defined in Figure 2.  
This clarifies, that dc-variations of VREF affect the absolute voltage a signal has to reach to achieve a valid high or low level and therefore the time to  
which setup and hold is measured. System timing and voltage budgets need to account for VREF(DC) deviations from the optimum position within the  
data-eye of the input signals.  
This also clarifies that the DRAM setup/hold specification and derating values need to include time and voltage associated with VREF ac-noise. Timing  
and voltage effects due to ac-noise on VREF up to the specified limit (+/-1% of VDD) are included in DRAM timings and their associated deratings.  
18 of 50  
Rev. 1.23 July 2009  
DDR3 SDRAM  
Unbuffered DIMM  
12.3 AC & DC Logic Input Levels for Differential Signals  
12.3.1 Differential Signals Definition  
tDVAC  
VIH.DIFF.AC.MIN  
VIH.DIFF.MIN  
0.0  
half cycle  
VIL.DIFF.MAX  
VIL.DIFF.AC.MAX  
tDVAC  
time  
Figure 3 : Definition of differential ac-swing and "time above ac level" tDVAC  
12.3.2 Differential Swing Requirement for Clock (CK - CK) and Strobe (DQS - DQS)  
DDR3-1066/1333  
Symbol  
Parameter  
unit  
Note  
min  
+0.2  
max  
note 3  
VIHdiff  
VILdiff  
differential input high  
differential input low  
V
V
V
V
1
1
2
2
note 3  
-0.2  
V
IHdiff(AC)  
ILdiff(AC)  
2 x (VIH(AC)-VREF  
note 3  
)
differential input high ac  
differential input low ac  
note 3  
V
2 x (VREF - VIL(AC))  
Notes:  
1. Used to define a differential signal slew-rate.  
2. for CK - CK use VIH/VIL(AC) of ADD/CMD and VREFCA; for DQS - DQS, DQSL - DQSL, DQSU - DQSU use VIH/VIL(AC) of DQs and VREFDQ; if a  
reduced ac-high or ac-low level is used for a signal group, then the reduced level applies also here.  
3. These values are not defined, however they single-ended signals CK, CK, DQS, DQS, DQSL, DQSL, DQSU, DQSU need to be within the respective  
limits (VIH(DC) max, VIL(DC)min) for single-ended signals as well as the limitations for overshoot and undershoot. Refer to "overshoot and Undersheet  
Specification " on page20.  
Allowed time before ringback (tDVAC) for CLK - CLK and DQS - DQS.  
tDVAC [ps] @ |VIH/Ldiff(AC)| = 350mV  
tDVAC [ps] @ |VIH/Ldiff(AC)| = 300mV  
Slew Rate [V/ns]  
min  
75  
57  
50  
38  
34  
29  
22  
13  
0
max  
min  
175  
170  
167  
163  
162  
161  
159  
155  
150  
150  
max  
> 4.0  
4.0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
3.0  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
< 1.0  
0
19 of 50  
Rev. 1.23 July 2009  
DDR3 SDRAM  
Unbuffered DIMM  
12.3.3 Single-ended Requirements for Differential Signals  
Each individual component of a differential signal (CK, DQS, DQSL, DQSU, CK, DQS, DQSL, or DQSU) has also to comply with certain requirements for  
single-ended signals.  
CK and CK have to approximately reach VSEHmin / VSELmax (approximately equal to the ac-levels ( VIH(AC) / VIL(AC) ) for ADD/CMD signals) in every  
half-cycle.  
DQS, DQSL, DQSU, DQS, DQSL have to reach VSEHmin / VSELmax (approximately the ac-levels ( VIH(AC) / VIL(AC) ) for DQ signals) in every half-cycle  
proceeding and following a valid transition.  
Note that the applicable ac-levels for ADD/CMD and DQ’s might be different per speed-bin etc. E.g. if VIH150(AC)/VIL150(AC) is used for ADD/CMD sig-  
nals, then these ac-levels apply also for the single-ended signals CK and CK .  
VDD or VDDQ  
VSEH min  
VSEH  
VDD/2 or VDDQ/2  
CK or DQS  
VSEL max  
VSEL  
VSS or VSSQ  
time  
Figure 4 : Single-ended requirement for differential signals.  
Note that while ADD/CMD and DQ signal requirements are with respect to VREF, the single-ended components of differential signals have a requirement  
with respect to VDD/2; this is nominally the same. The transition of single-ended signals through the ac-levels is used to measure setup time. For single-  
ended components of differential signals the requirement to reach VSELmax, VSEHmin has no bearing on timing, but adds a restriction on the common  
mode characteristics of these signals.  
Single ended levels for CK, DQS, DQSL, DQSU, CK, DQS, DQSL or DQSU  
DDR3-1066/1333  
Symbol  
Parameter  
Unit  
Notes  
Min  
Max  
Note3  
Note3  
(VDD/2)+0.175  
(VDD/2)+0.175  
Note3  
Single-ended high-level for strobes  
Single-ended high-level for CK, CK  
Single-ended low-level for strobes  
Single-ended low-level for CK, CK  
V
V
V
V
1, 2  
1, 2  
1, 2  
1, 2  
VSEH  
(VDD/2)-0.175  
(VDD/2)-0.175  
VSEL  
Note3  
Notes:  
1. For CK, CK use VIH/VIL(AC) of ADD/CMD; for strobes (DQS, DQS, DQSL, DQSL, DQSU, DQSU) use VIH/VIL(AC) of DQs.  
2. VIH(AC)/VIL(AC) for DQs is based on VREFDQ; VIH(AC)/VIL(AC) for ADD/CMD is based on VREFCA; if a reduced ac-high or ac-low level is used for a  
signal group, then the reduced level applies also here  
3. These values are not defined, however they single-ended signals CK, CK, DQS, DQS, DQSL, DQSL, DQSU, DQSU need to be within the respective  
limits (VIH(DC) max, VIL(DC)min) for single-ended signals as well as the limitations for overshoot and undershoot. Refer to "Overshoot and Undershoot  
Specification"  
20 of 50  
Rev. 1.23 July 2009  
DDR3 SDRAM  
Unbuffered DIMM  
12.3.4 Differential Input Cross Point Voltage  
To guarantee tight setup and hold times as well as output skew parameters with respect to clock and strobe, each cross point voltage of differential input  
signals (CK, CK and DQS, DQS) must meet the requirements in below table. The differential input cross point voltage VIX is measured from the actual  
cross point of true and complement signal to the mid level between of VDD and VSS  
.
VDD  
CK, DQS  
VIX  
VDD/2  
VIX  
VIX  
CK, DQS  
VSS  
Figure 5. VIX Definition  
Cross point voltage for differential input signals (CK, DQS)  
DDR3-1066/1333  
Symbol  
Parameter  
Unit  
Notes  
Min  
-150  
-175  
-150  
Max  
150  
175  
150  
mV  
mV  
mV  
VIX  
VIX  
Differential Input Cross Point Voltage relative to VDD/2 for CK,CK  
1
Differential Input Cross Point Voltage relative to VDD/2 for DQS,DQS  
Note :  
1. Extended range for VIX is only allowed for clock and if single-ended clock input signals CK and CK are monotonic, have a single-ended swing VSEL  
/
V
SEH of at least VDD/2 =/-250 mV, and the differential slew rate of CK-CK is larger than 3 V/ ns. Refer to table 11 on page 17 for VSEL and VSEH standard  
values.  
12.4 Slew Rate Definition for Single-ended Input Signals  
See "Address / Command Setup, Hold and Derating" on page 36 for single-ended slew rate definitions for address and command signals.  
See "Data Setup, Hold and Slew Rate Derating"° on page 42 for single-ended slew rate definitions for data signals.tDH nominal slew rate for a falling sig-  
nal is defined as the slew rate between the last crossing of VIH(DC)min and the first crossing of VREF  
12.5 Slew Rate Definition for Differential Input Signals  
Input slew rate for differential signals (CK, CK and DQS, DQS) are defined and measured as shown in below.  
Differential input slew rate definition  
Measured  
From  
Description  
Defined by  
To  
VIHdiffmin - VILdiffmax  
Delta TRdiff  
VIHdiffmin - VILdiffmax  
VILdiffmax  
VIHdiffmin  
Differential input slew rate for rising edge (CK-CK and DQS-DQS)  
Differential input slew rate for falling edge (CK-CK and DQS-DQS)  
VIHdiffmin  
VILdiffmax  
Delta TFdiff  
V
IHdiffmin  
ILdiffmax  
0
V
delta TFdiff  
delta TRdiff  
Figure 6. Differential Input Slew Rate definition for DQS, DQS and CK, CK  
21 of 50  
Rev. 1.23 July 2009  
DDR3 SDRAM  
Unbuffered DIMM  
13.0 AC & DC Output Measurement Levels  
13.1 Single-ended AC & DC Output Levels  
Single Ended AC and DC output levels  
Symbol Parameter  
DDR3-1066/1333  
Units  
Notes  
VOH(DC) DC output high measurement level (for IV curve linearity)  
0.8 x VDDQ  
V
V
OM(DC) DC output mid measurement level (for IV curve linearity)  
OL(DC) DC output low measurement level (for IV curve linearity)  
OH(AC) AC output high measurement level (for output SR)  
OL(AC) AC output low measurement level (for output SR)  
0.5 x VDDQ  
0.2 x VDDQ  
V
V
V
V
V
V
VTT + 0.1 x VDDQ  
VTT - 0.1 x VDDQ  
1
1
V
Note : 1. The swing of +/-0.1 x VDDQ is based on approximately 50% of the static single ended output high or low swing with a driver impedance of 40Ω  
and an effective test load of 25to VTT=VDDQ/2.  
13.2 Differential AC & DC Output Levels  
Differential AC and DC output levels  
Symbol  
Parameter  
DDR3-1066/1333  
Units  
Notes  
V
OHdiff(AC)  
AC differential output high measurement level (for output SR)  
+0.2 x VDDQ  
V
1
V
OLdiff(DC)  
AC differential output low measurement level (for output SR)  
-0.2 x VDDQ  
V
1
Note : 1. The swing of +/-0.2xVDDQ is based on approximately 50% of the static single ended output high or low swing with a driver impedance of 40Ω  
and an effective test load of 25to VTT=VDDQ/2 at each of the differential outputs.  
13.3 Single-ended Output Slew Rate  
With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOL(AC) and VOH(AC)  
for single ended signals as shown in below.  
Single Ended Output slew rate definition  
Measured  
Description  
Defined by  
From  
To  
VOH(AC)-VOL(AC)  
Delta TRse  
VOL(AC)  
VOH(AC)  
Single ended output slew rate for rising edge  
Single ended output slew rate for falling edge  
VOH(AC)-VOL(AC)  
Delta TFse  
VOH(AC)  
VOL(AC)  
Note : Output slew rate is verified by design and characterization, and may not be subject to production test.  
Single Ended Output slew rate  
DDR3-1066  
DDR3-1333  
Parameter  
Symbol  
Units  
Min  
Max  
Min  
Max  
Single ended output slew rate  
Description : SR : Slew Rate  
SRQse  
2.5  
5
2.5  
5
V/ns  
Q : Query Output (like in DQ, which stands for Data-in, Query-Output  
se : Singe-ended Signals  
For Ron = RZQ/7 setting  
V
OH(AC)  
V
V
TT  
OL(AC)  
delta TFse  
delta TRse  
Figure 7. Single Ended Output Slew Rate definition  
22 of 50  
Rev. 1.23 July 2009  
DDR3 SDRAM  
Unbuffered DIMM  
13.4 DIfferential Output Slew Rate  
With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOLdiff(AC) and  
OHdiff(AC) for differential signals as shown in below.  
V
Differential Output slew rate definition  
Description  
Measured  
Defined by  
From  
To  
VOHdiff(AC)-VOLdiff(AC)  
Delta TRdiff  
V
OLdiff(AC)  
VOHdiff(AC)  
Differential output slew rate for rising edge  
Differential output slew rate for falling edge  
VOHdiff(AC)-VOLdiff(AC)  
Delta TFdiff  
V
OHdiff(AC)  
VOLdiff(AC)  
Note : Output slew rate is verified by design and characterization, and may not be subject to production test.  
Differential Output slew rate  
DDR3-1066  
DDR3-1333  
Parameter  
Symbol  
Units  
Min  
Max  
Min  
Max  
Differential output slew rate  
Description : SR : Slew Rate  
SRQse  
5
10  
5
10  
V/ns  
Q : Query Output (like in DQ, which stands for Data-in, Query-Output  
diff : Singe-ended Signals  
V
(AC)  
OHdiff  
V
V
TT  
(AC)  
OLdiff  
delta TFdiff  
delta TRdiff  
Figure 8. Differential Output Slew Rate definition  
23 of 50  
Rev. 1.23 July 2009  
DDR3 SDRAM  
Unbuffered DIMM  
14.0 IDD Specification Definition  
Symbol  
Description  
Operating One Bank Active-Precharge Current  
a)  
CKE: High; External clock: On; tCK, nRC, nRAS, CL: AC Timing Table ; BL: 8 ; AL: 0; CS: High between ACT and PRE; Command, Address, Bank  
IDD0  
Address Inputs: partially toggling ; Data IO: FLOATING; DM:stable at 0; Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2,... ; Output Buffer  
b)  
and RTT: Enabled in Mode Registers ; ODT Signal: stable at 0  
Operating One Bank Active-Read-Precharge Current  
a)  
CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, CL: AC Timing Table ; BL: 8 ; AL: 0; CS: High between ACT, RD and PRE; Command, Address,  
IDD1  
Bank Address Inputs, Data IO: partially toggling ; DM:stable at 0; Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2,... ; Output Buffer and  
b)  
RTT: Enabled in Mode Registers ; ODT Signal: stable at 0;  
Precharge Standby Current  
a)  
IDD2N  
CKE: High; External clock: On; tCK, CL: AC Timing Table ; BL: 8 ; AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: partially toggling ;  
Data IO: FLOATING; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers ; ODT Signal: stable at 0  
b)  
Precharge Standby ODT Current  
a)  
DD2NT  
CKE: High; External clock: On; tCK, CL: AC Timing Table ; BL: 8 ; AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: partially toggling ;  
Data IO: FLOATING;DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers ; ODT Signal: toggling  
b)  
DDQ2NT  
(optional)  
Precharge Standby ODT IDDQ Current  
Same definition like for IDD2NT, however measuring IDDQ current instead of IDD current  
Precharge Power-Down Current Slow Exit  
CKE: Low; External clock: On; tCK, CL: AC Timing Table ; BL: 8 ; AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO:  
a)  
IDD2P0  
b)  
FLOATING; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers ; ODT Signal: stable at 0; Precharge  
c)  
Power Down Mode: Slow Exit  
Precharge Power-Down Current Fast Exit  
CKE: Low; External clock: On; tCK, CL: AC Timing Table ; BL: 8 ; AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data  
a)  
IDD2P1  
IDD2Q  
IDD3N  
IDD3P  
b)  
IO: FLOATING; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers ; ODT Signal: stable at 0; Pecharge  
c)  
Power Down Mode: Fast Exit  
Precharge Quiet Standby Current  
a)  
CKE: High; External clock: On; tCK, CL: AC Timing Table ; BL: 8 ; AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO:  
FLOATING; DM:stable at 0;Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers ; ODT Signal: stable at 0  
b)  
Active Standby Current  
a)  
CKE: High; External clock: On; tCK, CL: AC Timing Table ; BL: 8 ; AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: partially toggling  
according to Table 34 ; Data IO: FLOATING; DM:stable at 0;Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registers ; ODT Sig-  
nal: stable at 0  
b)  
Active Power-Down Current  
a)  
CKE: Low; External clock: On; tCK, CL: AC Timing Table ; BL: 8 ; AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO:  
FLOATING;DM:stable at 0; Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registers ; ODT Signal: stable at 0  
b)  
Operating Burst Read Current  
a)  
CKE: High; External clock: On; tCK, CL: AC Timing Table ; BL: 8 ; AL: 0; CS: High between RD; Command, Address, Bank Address Inputs: partially tog-  
gling ; Data IO: seamless read data burst with different data between one burst and the next one according to Table 36 ; DM:stable at 0; Bank Activity: all  
banks open, RD commands cycling through banks: 0,0,1,1,2,2,... (see Table 7 on page 10); Output Buffer and RTT: Enabled in Mode Registers ; ODT  
Signal: stable at 0  
IDD4R  
b)  
IDDQ4R  
(optional)  
Operating Burst Read IDDQ Current  
Same definition like for IDD4R, however measuring IDDQ current instead of IDD current  
Operating Burst Write Current  
a)  
CKE: High; External clock: On; tCK, CL: AC Timing Table ; BL: 8 ; AL: 0; CS: High between WR; Command, Address, Bank Address Inputs: partially tog-  
gling ; Data IO: seamless write data burst with different data between one burst and the next one ; DM: stable at 0; Bank Activity: all banks open, WR com-  
mands cycling through banks: 0,0,1,1,2,2,... ; Output Buffer and RTT: Enabled in Mode Registers ; ODT Signal: stable at HIGH  
IDD4W  
IDD5B  
IDD6  
b)  
Burst Refresh Current  
a)  
CKE: High; External clock: On; tCK, CL, nRFC: AC Timing Table ; BL: 8 ; AL: 0; CS: High between REF; Command, Address, Bank Address Inputs: par-  
tially toggling according to Table 38 ; Data IO: FLOATING;DM:stable at 0; Bank Activity: REF command every nRFC (see Table 38); Output Buffer and RTT:  
Enabled in Mode Registers ; ODT Signal: stable at 0  
b)  
Self Refresh Current: Normal Temperature Range  
TCASE: 0 - 85°C; Auto Self-Refresh (ASR): Disabled ; Self-Refresh Temperature Range (SRT): Normal ; CKE: Low; External clock: Off; CK and CK:  
LOW; CL: AC Timing Table ; BL: 8 ; AL: 0; CS, Command, Address, Bank Address, Data IO: FLOATING;DM:stable at 0; Bank Activity: Self-Refresh opera-  
tion; Output Buffer and RTT: Enabled in Mode Registers ; ODT Signal: FLOATING  
d)  
e)  
a)  
b)  
24 of 50  
Rev. 1.23 July 2009  
DDR3 SDRAM  
Unbuffered DIMM  
Symbol  
Description  
f)  
Self-Refresh Current: Extended Temperature Range (optional)  
d)  
e)  
TCASE: 0 - 95°C; Auto Self-Refresh (ASR): Disabled ; Self-Refresh Temperature Range (SRT): Extended ; CKE: Low; External clock: Off; CK and CK:  
LOW; CL: AC Timing Table ; BL: 8 ; AL: 0; CS, Command, Address, Bank Address, Data IO: FLOATING;DM:stable at 0; Bank Activity: Extended Tempera-  
ture Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers ; ODT Signal: FLOATING  
IDD6ET  
a)  
b)  
f)  
Auto Self-Refresh Current (optional)  
d)  
e)  
TCASE: 0 - 95°C; Auto Self-Refresh (ASR): Enabled ; Self-Refresh Temperature Range (SRT): Normal ; CKE: Low; External clock: Off; CK and CK:  
IDD6TC  
IDD7  
a)  
LOW; CL: AC Timing Table ; BL: 8 ; AL: 0; CS, Command, Address, Bank Address, Data IO: FLOATING; DM:stable at 0; Bank Activity: Auto  
Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers ; ODT Signal: FLOATING  
b)  
Operating Bank Interleave Read Current  
a)  
CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, nRRD, nFAW, CL: AC Timing Table; BL: 8 ; AL: CL-1; CS: High between ACT and RDA; Com-  
mand, Address, Bank Address Inputs: partially toggling ; Data IO: read data bursts with different data between one burst and the next one ; DM:stable at 0;  
Bank Activity: two times interleaved cycling through banks (0, 1, ...7) with different addressing, see Table 39 ; Output Buffer and RTT: Enabled in Mode Reg-  
b)  
isters ; ODT Signal: stable at 0  
a) Burst Length: BL8 fixed by MRS: set MR0 A[1,0]=00B  
b) Output Buffer Enable: set MR1 A[12] = 0B; set MR1 A[5,1] = 01B; RTT_Nom enable: set MR1 A[9,6,2] = 011B; RTT_Wr enable: set MR2 A[10,9] = 10B  
c) Precharge Power Down Mode: set MR0 A12=0B for Slow Exit or MR0 A12=1B for Fast Exit  
d) Auto Self-Refresh (ASR): set MR2 A6 = 0B to disable or 1B to enable feature  
e) Self-Refresh Temperature Range (SRT): set MR2 A7=0B for normal or 1B for extended temperature range  
f) Refer to DRAM supplier data sheet and/or DIMM SPD to determine if optional features or requirements are supported by DDR3 SDRAM device  
g) IDD current measure method and detail patterns are described on DDR3 component datasheet  
25 of 50  
Rev. 1.23 July 2009  
DDR3 SDRAM  
Unbuffered DIMM  
14.1 IDD SPEC Table  
M378B6474DZ1 : 512MB(64Mx64) Module  
F8  
H9  
Symbol  
Unit  
Notes  
(DDR3-1066@CL=7)  
(DDR3-1333@CL=9)  
IDD0  
IDD1  
IDD2P0(slow exit)  
IDD2P1(fast exit)  
IDD2N  
IDD2Q  
IDD3P(fast exit)  
IDD3N  
360  
500  
44  
400  
540  
48  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
180  
220  
220  
180  
240  
920  
940  
840  
40  
200  
240  
240  
200  
260  
1160  
1160  
880  
40  
IDD4R  
IDD4W  
IDD5B  
IDD6  
IDD7  
1240  
1480  
M378B2873DZ1 : 1GB(128Mx64) Module  
F8  
H9  
Symbol  
Unit  
Notes  
(DDR3-1066@CL=7)  
(DDR3-1333@CL=9)  
IDD0  
IDD1  
IDD2P0(slow exit)  
IDD2P1(fast exit)  
IDD2N  
IDD2Q  
IDD3P(fast exit)  
IDD3N  
680  
840  
88  
720  
880  
96  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
360  
440  
440  
360  
480  
1360  
1520  
1680  
80  
400  
480  
480  
400  
520  
1640  
1840  
1760  
80  
IDD4R  
IDD4W  
IDD5B  
IDD6  
IDD7  
2200  
2920  
26 of 50  
Rev. 1.23 July 2009  
DDR3 SDRAM  
Unbuffered DIMM  
M378B5673DZ1: 2GB(256Mx64) Module  
F8  
H9  
Symbol  
Unit  
Notes  
(DDR3-1066@CL=7)  
(DDR3-1333@CL=9)  
IDD0  
IDD1  
IDD2P0(slow exit)  
IDD2P1(fast exit)  
IDD2N  
IDD2Q  
IDD3P(fast exit)  
IDD3N  
1120  
1280  
176  
720  
880  
880  
720  
920  
1800  
1960  
2120  
160  
1200  
1360  
192  
800  
960  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
960  
800  
1000  
2120  
2320  
2240  
160  
IDD4R  
IDD4W  
IDD5B  
IDD6  
IDD7  
2640  
3400  
M391B2873DZ1: 1GB(128Mx72) Module  
F8  
H9  
Symbol  
Unit  
Notes  
(DDR3-1066@CL=7)  
(DDR3-1333@CL=9)  
IDD0  
IDD1  
IDD2P0(slow exit)  
IDD2P1(fast exit)  
IDD2N  
IDD2Q  
IDD3P(fast exit)  
IDD3N  
765  
945  
100  
405  
495  
495  
405  
540  
1530  
1710  
1890  
90  
810  
990  
108  
450  
540  
540  
450  
585  
1845  
2070  
1980  
90  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
IDD4R  
IDD4W  
IDD5B  
IDD6  
IDD7  
2475  
3285  
27 of 50  
Rev. 1.23 July 2009  
DDR3 SDRAM  
Unbuffered DIMM  
M391B5673DZ1 : 2GB(256Mx72) Module  
F8  
H9  
Symbol  
Unit  
Notes  
(DDR3-1066@CL=7)  
(DDR3-1333@CL=9)  
IDD0  
IDD1  
IDD2P0(slow exit)  
IDD2P1(fast exit)  
IDD2N  
IDD2Q  
IDD3P(fast exit)  
IDD3N  
1260  
1440  
200  
810  
990  
1350  
1530  
220  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
900  
1080  
1080  
900  
1125  
2385  
2610  
2520  
180  
990  
810  
1035  
2025  
2205  
2385  
180  
IDD4R  
IDD4W  
IDD5B  
IDD6  
IDD7  
2970  
3825  
28 of 50  
Rev. 1.23 July 2009  
DDR3 SDRAM  
Unbuffered DIMM  
15.0 Input/Output Capacitance  
15.1 Non ECC UDIMM  
M378B6474DZ1  
DDR3-1066 DDR3-1333  
Parameter  
Symbol  
Units  
Notes  
Notes  
Notes  
Min  
Max  
Min  
Max  
Input/output capacitance  
(DQ, DM, DQS, DQS, TDQS, TDQS)  
CIO  
-
TBD  
-
TBD  
pF  
Input capacitance (CK and CK)  
CCK  
CI  
-
-
-
TBD  
TBD  
TBD  
-
-
-
TBD  
TBD  
TBD  
pF  
pF  
pF  
Input capacitance (All other input-only pins)  
Input/output capacitance of ZQ pin  
CZQ  
M378B2873DZ1  
DDR3-1066 DDR3-1333  
Parameter  
Symbol  
Units  
Min  
Max  
Min  
Max  
Input/output capacitance  
(DQ, DM, DQS, DQS, TDQS, TDQS)  
CIO  
-
TBD  
-
TBD  
pF  
Input capacitance (CK and CK)  
CCK  
CI  
-
-
-
TBD  
TBD  
TBD  
-
-
-
TBD  
TBD  
TBD  
pF  
pF  
pF  
Input capacitance (All other input-only pins)  
Input/output capacitance of ZQ pin  
CZQ  
M378B5673DZ1  
DDR3-1066 DDR3-1333  
Parameter  
Symbol  
Units  
Min  
Max  
Min  
Max  
Input/output capacitance  
(DQ, DM, DQS, DQS, TDQS, TDQS)  
CIO  
-
TBD  
-
TBD  
pF  
Input capacitance (CK and CK)  
CCK  
CI  
-
-
-
TBD  
TBD  
TBD  
-
-
-
TBD  
TBD  
TBD  
pF  
pF  
pF  
Input capacitance (All other input-only pins)  
Input/output capacitance of ZQ pin  
CZQ  
15.2 ECC UDIMM  
M391B2873DZ1  
DDR3-1066 DDR3-1333  
Parameter  
Symbol  
Units  
Notes  
Min  
Max  
Min  
Max  
Input/output capacitance  
(DQ, DM, DQS, DQS, TDQS, TDQS)  
CIO  
-
TBD  
-
TBD  
pF  
Input capacitance (CK and CK)  
CCK  
CI  
-
-
-
TBD  
TBD  
TBD  
-
-
-
TBD  
TBD  
TBD  
pF  
pF  
pF  
Input capacitance (All other input-only pins)  
Input/output capacitance of ZQ pin  
CZQ  
M391B5673DZ1  
DDR3-1066 DDR3-1333  
Parameter  
Symbol  
Units  
Notes  
Min  
Max  
Min  
Max  
Input/output capacitance  
(DQ, DM, DQS, DQS, TDQS, TDQS)  
CIO  
-
TBD  
-
TBD  
pF  
Input capacitance (CK and CK)  
CCK  
CI  
-
-
-
TBD  
TBD  
TBD  
-
-
-
TBD  
TBD  
TBD  
pF  
pF  
pF  
Input capacitance (All other input-only pins)  
Input/output capacitance of ZQ pin  
CZQ  
29 of 50  
Rev. 1.23 July 2009  
DDR3 SDRAM  
Unbuffered DIMM  
16.0 Electrical Characteristics and AC timing  
(0 °C<TCASE 95 °C, VDDQ = 1.5V ± 0.075V; VDD = 1.5V ± 0.075V)  
16.1 Refresh Parameters by Device Density  
Parameter  
All Bank Refresh to active/refresh cmd time  
Symbol  
tRFC  
1Gb  
110  
7.8  
2Gb  
160  
7.8  
4Gb  
300  
7.8  
8Gb  
350  
7.8  
Units  
ns  
Note  
0 °C TCASE 85°C  
µs  
Average periodic refresh interval  
tREFI  
85 °C < TCASE 95°C  
3.9  
3.9  
3.9  
3.9  
µs  
1
Note :  
1. Users should refer to the DRAM supplier data sheet and/or the DIMM SPD to determine if DDR3 SDRAM devices support the following options or  
requirements referred to in this material.  
16.2 Speed Bins and CL, tRCD, tRP, tRC and tRAS for Corresponding Bin  
Speed  
DDR3-1066  
7-7-7  
min  
DDR3-1333  
9-9-9  
min  
9
Units  
Note  
Bin (CL - tRCD - tRP)  
Parameter  
CL  
7
tCK  
ns  
ns  
ns  
ns  
ns  
ns  
tRCD  
tRP  
13.13  
13.13  
37.5  
13.5  
13.5  
36  
tRAS  
tRC  
50.63  
7.5  
49.5  
6.0  
tRRD  
tFAW  
37.5  
30  
16.3 Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin  
DDR3 SDRAM Speed Bins include tCK, tRCD, tRP, tRAS and tRC for each corresponding bin.  
DDR3-1066 Speed Bins  
Speed  
CL-nRCD-nRP  
DDR3-1066  
7 - 7 - 7  
Units  
Note  
Parameter  
Symbol  
tAA  
min  
13.125  
13.125  
13.125  
50.625  
37.5  
max  
20  
Internal read command to first data  
ACT to internal read or write delay time  
PRE command period  
ns  
ns  
tRCD  
-
tRP  
-
-
ns  
ACT to ACT or REF command period  
ACT to PRE command period  
tRC  
ns  
tRAS  
9*tREFI  
3.3  
ns  
8
CWL = 5  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
2.5  
ns  
1,2,3,6  
1,2,3,4  
4
CL = 6  
CL = 7  
CL = 8  
CWL = 6  
CWL = 5  
CWL = 6  
CWL = 5  
CWL = 6  
Reserved  
Reserved  
ns  
ns  
1.875  
1.875  
<2.5  
<2.5  
ns  
1,2,3,4  
4
Reserved  
ns  
ns  
1,2,3  
Supported CL Settings  
Supported CWL Settings  
6,7,8  
5,6  
nCK  
nCK  
30 of 50  
Rev. 1.23 July 2009  
DDR3 SDRAM  
Unbuffered DIMM  
DDR3-1333 Speed Bins  
Speed  
CL-nRCD-nRP  
DDR3-1333  
9 -9 - 9  
Units  
Note  
Parameter  
Symbol  
tAA  
min  
max  
20  
Internal read command to first data  
ACT to internal read or write delay time  
PRE command period  
13.5 (13.125)5,9  
13.5 (13.125)5,9  
13.5 (13.125)5,9  
49.5 (49.125)5,9  
36  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tRCD  
-
tRP  
-
-
ACT to ACT or REF command period  
ACT to PRE command period  
tRC  
tRAS  
9*tREFI  
3.3  
8
1,2,3,7  
1,2,3,4,7  
4
CWL = 5  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
2.5  
CL = 6  
CWL = 6  
CWL = 7  
CWL = 5  
Reserved  
Reserved  
Reserved  
4
1.875  
<2.5  
<2.5  
CL = 7  
CWL = 6  
tCK(AVG)  
ns  
1,2,3,4,7  
(Optional) Note 5,9  
Reserved  
CWL = 7  
CWL = 5  
CWL = 6  
CWL = 7  
CWL = 5,6  
CWL = 7  
CWL = 5,6  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
ns  
ns  
1,2,3,4,  
Reserved  
4
1,2,3,7  
1,2,3,4,  
4
CL = 8  
CL = 9  
CL = 10  
1.875  
ns  
Reserved  
Reserved  
ns  
ns  
1.5  
1.5  
<1.875  
<1.875  
ns  
1,2,3,4  
4
Reserved  
ns  
ns  
1,2,3  
5
CWL = 7  
tCK(AVG)  
(Optional)  
6,7,8,9  
5,6,7  
ns  
Supported CL Settings  
Supported CWL Settings  
nCK  
nCK  
16.3.1 Speed Bin Table Notes  
Absolute Specification (TOPER; VDDQ = VDD = 1.5V +/- 0.075 V);  
Note :  
1. The CL setting and CWL setting result in tCK(AVG).MIN and tCK(AVG).MAX requirements. When making a selection of tCK(AVG), both need to be ful-  
filled: Requirements from CL setting as well as requirements from CWL setting.  
2. tCK(AVG).MIN limits: Since CAS Latency is not purely analog - data and strobe output are synchronized by the DLL - all possible intermediate frequen-  
cies may not be guaranteed. An application should use the next smaller JEDEC standard tCK(AVG) value (2.5, 1.875, 1.5, or 1.25 ns) when calculat-  
ing CL [nCK] = tAA [ns] / tCK(AVG) [ns], rounding up to the next "SupportedCL".  
3. tCK(AVG).MAX limits: Calculate tCK(AVG) = tAA.MAX / CL SELECTED and round the resulting tCK(AVG) down to the next valid speed bin (i.e. 3.3ns  
or 2.5ns or 1.875 ns or 1.25 ns). This result is tCK(AVG).MAX corresponding to CL SELECTED.  
4. "Reserved" settings are not allowed. User must program a different value.  
5. "Optional" settings allow certain devices in the industry to support this setting, however, it is not a mandatory feature. Refer to supplier’s data sheet and/  
or the DIMM SPD information if and how this setting is supported.  
6. Any DDR3-1066 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but  
verified by Design/Characterization.  
7. Any DDR3-1333 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but  
verified by Design/Characterization.  
8. Any DDR3-1600 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but  
verified by Design/Characterization.  
9. For devices supporting optional downshift to CL=7 and CL=9, tAA/tRCD/tRP min must be 13.125 ns or lower. SPD settings must be programmed to  
match. For example, DDR3-1333(CL9) devices supporting downshift to DDR3-1066(CL7) should program 13.125 ns in SPD bytes for tAAmin (Byte  
16), tRCDmin (Byte 18), and tRPmin (Byte 20). DDR3-1600(CL11) devices supporting downshift to DDR3-1333(CL9) or DDR3-1066(CL7) should pro-  
gram 13.125 ns in SPD bytes for tAAmin (Byte16), tRCDmin (Byte 18), and tRPmin (Byte 20). Once tRP (Byte 20) is programmed to 13.125ns, tRC-  
min (Byte 21,23) also should be programmed accordingly. For example, 49.125ns (tRASmin + tRPmin=36ns+13.125ns) for DDR3-1333(CL9) and  
48.125ns (tRASmin+tRPmin=35ns+13.125ns) for DDR3-1600(CL11).  
31 of 50  
Rev. 1.23 July 2009  
DDR3 SDRAM  
Unbuffered DIMM  
17.0 Timing Parameters by Speed Grade  
Speed  
DDR3-1066  
DDR3-1333  
Units  
Note  
Parameter  
Symbol  
MIN  
MAX  
MIN  
MAX  
Clock Timing  
tCK(DLL_OF  
F)  
Minimum Clock Cycle Time (DLL off mode)  
8
-
8
-
ns  
6
Average Clock Period  
Clock Period  
tCK(avg)  
tCK(abs)  
See Speed Bins Table  
ps  
ps  
tCK(avg)min +  
tJIT(per)min  
tCK(avg)max +  
tJIT(per)max  
tCK(avg)min +  
tJIT(per)min  
tCK(avg)max +  
tJIT(per)max  
Average high pulse width  
tCH(avg)  
tCL(avg)  
0.47  
0.47  
-90  
0.53  
0.53  
90  
0.47  
0.47  
-80  
0.53  
0.53  
80  
tCK(avg)  
Average low pulse width  
tCK(avg)  
ps  
Clock Period Jitter  
tJIT(per)  
Clock Period Jitter during DLL locking period  
Cycle to Cycle Period Jitter  
tJIT(per, lck)  
tJIT(cc)  
-80  
80  
-70  
70  
ps  
180  
160  
160  
140  
ps  
Cycle to Cycle Period Jitter during DLL locking period  
Cumulative error across 2 cycles  
Cumulative error across 3 cycles  
Cumulative error across 4 cycles  
Cumulative error across 5 cycles  
Cumulative error across 6 cycles  
Cumulative error across 7 cycles  
Cumulative error across 8 cycles  
Cumulative error across 9 cycles  
Cumulative error across 10 cycles  
Cumulative error across 11 cycles  
Cumulative error across 12 cycles  
tJIT(cc, lck)  
tERR(2per)  
tERR(3per)  
tERR(4per)  
tERR(5per)  
tERR(6per)  
tERR(7per)  
tERR(8per)  
tERR(9per)  
tERR(10per)  
tERR(11per)  
tERR(12per)  
ps  
- 132  
- 157  
- 175  
- 188  
- 200  
- 209  
- 217  
- 224  
- 231  
- 237  
- 242  
132  
157  
175  
188  
200  
209  
217  
224  
231  
237  
242  
- 118  
- 140  
- 155  
- 168  
- 177  
- 186  
- 193  
- 200  
- 205  
- 210  
- 215  
118  
140  
155  
168  
177  
186  
193  
200  
205  
210  
215  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
tERR(nper)min = (1 + 0.68ln(n))*tJIT(per)min  
tERR(nper)max = (1 = 0.68ln(n))*tJIT(per)max  
Cumulative error across n = 13, 14 ... 49, 50 cycles  
tERR(nper)  
ps  
24  
Absolute clock HIGH pulse width  
tCH(abs)  
tCL(abs)  
0.43  
0.43  
-
-
0.43  
0.43  
-
-
tCK(avg)  
tCK(avg)  
25  
26  
Absolute clock Low pulse width  
Data Timing  
DQS,DQS to DQ skew, per group, per access  
DQ output hold time from DQS, DQS  
DQ low-impedance time from CK, CK  
DQ high-impedance time from CK, CK  
Data setup time to DQS, DQS referenced to V (AC)V (AC) levels  
tDQSQ  
tQH  
-
150  
-
-
125  
-
ps  
tCK(avg)  
ps  
13  
0.38  
-600  
-
0.38  
-500  
-
13, g  
tLZ(DQ)  
tHZ(DQ)  
tDS(base)  
300  
300  
-
250  
250  
-
13,14, f  
13,14, f  
d, 17  
ps  
25  
30  
ps  
IH  
IL  
Data hold time to DQS, DQS referenced to V (AC)V (AC) levels  
tDH(base)  
tDIPW  
100  
490  
65  
-
ps  
ps  
d, 17  
28  
-
-
IH  
IL  
DQ and DM Input pulse width for each input  
Data Strobe Timing  
400  
-
DQS, DQS READ Preamble  
DQS, DQS differential READ Postamble  
DQS, DQS output high time  
tRPRE  
tRPST  
tQSH  
0.9  
0.3  
Note 19  
0.9  
0.3  
Note 19  
tCK  
tCK  
13, 19, g  
11, 13, b  
13, g  
Note 11  
Note 11  
0.38  
0.38  
0.9  
-
-
0.4  
-
-
tCK(avg)  
tCK(avg)  
tCK  
DQS, DQS output low time  
tQSL  
0.4  
13, g  
DQS, DQS WRITE Preamble  
DQS, DQS WRITE Postamble  
tWPRE  
tWPST  
tDQSCK  
tLZ(DQS)  
tHZ(DQS)  
tDQSL  
tDQSH  
tDQSS  
tDSS  
-
0.9  
-
0.3  
-
0.3  
-
tCK  
DQS, DQS rising edge output access time from rising CK, CK  
DQS, DQS low-impedance time (Referenced from RL-1)  
DQS, DQS high-impedance time (Referenced from RL+BL/2)  
DQS, DQS differential input low pulse width  
-300  
-600  
-
300  
300  
300  
0.55  
0.55  
0.25  
-
-255  
-500  
-
255  
250  
250  
0.55  
0.55  
0.25  
-
ps  
13,f  
13,14,f  
12,13,14  
29, 31  
30, 31  
c
ps  
ps  
0.45  
0.45  
-0.25  
0.2  
0.45  
0.45  
-0.25  
0.2  
tCK  
DQS, DQS differential input high pulse width  
tCK  
DQS, DQS rising edge to CK, CK rising edge  
tCK(avg)  
tCK(avg)  
tCK(avg)  
DQS,DQS falling edge setup time to CK, CK rising edge  
DQS,DQS falling edge hold time to CK, CK rising edge  
c, 32  
tDSH  
0.2  
-
0.2  
-
c, 32  
32 of 50  
Rev. 1.23 July 2009  
DDR3 SDRAM  
Unbuffered DIMM  
Speed  
Parameter  
DDR3-1066  
DDR3-1333  
Units  
Note  
Symbol  
MIN  
MAX  
MIN  
MAX  
Command and Address Timing  
DLL locking time  
tDLLK  
tRTP  
512  
-
-
512  
-
-
nCK  
max  
max  
internal READ Command to PRECHARGE Command delay  
e
(4nCK,7.5ns)  
(4nCK,7.5ns)  
max  
max  
Delay from start of internal write transaction to internal read command  
tWTR  
-
-
e,18  
e
(4nCK,7.5ns)  
(4nCK,7.5ns)  
WRITE recovery time  
tWR  
15  
4
-
-
15  
4
-
-
ns  
Mode Register Set command cycle time  
tMRD  
nCK  
max  
max  
Mode Register Set command update delay  
tMOD  
-
-
-
(12nCK,15ns)  
(12nCK,15ns)  
CAS# to CAS# command delay  
tCCD  
tDAL(min)  
tMPRR  
tRAS  
4
-
4
nCK  
nCK  
nCK  
ns  
Auto precharge write recovery + precharge time  
Multi-Purpose Register Recovery Time  
ACTIVE to PRECHARGE command period  
WR + roundup (tRP / tCK(AVG))  
1
-
1
-
22  
e
See " Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin"  
max  
max  
ACTIVE to ACTIVE command period for 1KB page size  
ACTIVE to ACTIVE command period for 2KB page size  
tRRD  
tRRD  
-
-
-
-
e
e
(4nCK,7.5ns)  
(4nCK,6ns)  
max  
max  
(4nCK,10ns)  
(4nCK,7.5ns)  
Four activate window for 1KB page size  
Four activate window for 2KB page size  
tFAW  
tFAW  
37.5  
50  
-
-
-
30  
45  
65  
-
-
-
ns  
ns  
ps  
e
e
Command and Address setup time to CK, CK referenced to V (AC) / V (AC) levels tIS(base)  
125  
b,16  
IH  
IL  
Command and Address hold time from CK, CK referenced to V (AC) / V (AC) lev-  
IH  
IL  
tIH(base)  
200  
140  
-
ps  
b,16  
-
els  
tIS(base)  
AC150  
Command and Address setup time to CK, CK referenced to V (AC) / V (AC) levels  
125 + 150  
780  
65+125  
620  
-
-
ps  
ps  
b,16,27  
28  
-
-
IH  
IL  
Control & Address Input pulse width for each input  
Calibration Timing  
tIPW  
Power-up and RESET calibration time  
Normal operation Full calibration time  
Normal operation short calibration time  
Reset Timing  
tZQinitI  
tZQoper  
tZQCS  
512  
256  
64  
-
-
-
512  
256  
64  
-
-
-
nCK  
nCK  
nCK  
23  
max(5nCK, tRFC +  
10ns)  
max(5nCK, tRFC +  
10ns)  
Exit Reset from CKE HIGH to a valid command  
Self Refresh Timing  
tXPR  
-
-
max(5nCK,tRFC +  
10ns)  
max(5nCK,tRFC +  
10ns)  
Exit Self Refresh to commands not requiring a locked DLL  
tXS  
-
-
Exit Self Refresh to commands requiring a locked DLL  
Minimum CKE low width for Self refresh entry to exit timing  
tXSDLL  
tCKESR  
tDLLK(min)  
-
-
tDLLK(min)  
-
-
nCK  
tCKE(min) + 1tCK  
tCKE(min) + 1tCK  
max(5nCK,  
10ns)  
max(5nCK,  
10ns)  
Valid Clock Requirement after Self Refresh Entry (SRE) or Power-Down Entry (PDE) tCKSRE  
-
-
-
-
Valid Clock Requirement before Self Refresh Exit (SRX) or Power-Down Exit (PDX)  
max(5nCK,  
10ns)  
max(5nCK,  
10ns)  
tCKSRX  
or Reset Exit  
33 of 50  
Rev. 1.23 July 2009  
DDR3 SDRAM  
Unbuffered DIMM  
Speed  
Parameter  
DDR3-1066  
DDR3-1333  
Units  
Note  
Symbol  
MIN  
MAX  
MIN  
MAX  
Power Down Timing  
Exit Power Down with DLL on to any valid command;Exit Precharge Power  
Down with DLL  
max  
max  
tXP  
tXPDLL  
tCKE  
(3nCK,  
7.5ns)  
-
-
-
-
-
-
(3nCK,6ns)  
frozen to commands not requiring a locked DLL  
max  
(10nCK,  
24ns)  
max  
(10nCK,  
24ns)  
Exit Precharge Power Down with DLL frozen to commands requiring a locked  
DLL  
2
max  
max  
CKE minimum pulse width  
(3nCK,  
5.625ns)  
(3nCK,  
5.625ns)  
Command pass disable delay  
tCPDED  
tPD  
1
-
1
-
nCK  
tCK  
Power Down Entry to Exit Timing  
tCKE(min)  
9*tREFI  
tCKE(min)  
9*tREFI  
15  
20  
20  
Timing of ACT command to Power Down entry  
Timing of PRE command to Power Down entry  
Timing of RD/RDA command to Power Down entry  
tACTPDEN  
tPRPDEN  
tRDPDEN  
1
1
-
-
-
1
1
-
-
-
nCK  
nCK  
RL + 4 +1  
RL + 4 +1  
Timing of WR command to Power Down entry  
(BL8OTF, BL8MRS, BL4OTF)  
WL + 4 +(tWR/  
tCK(avg))  
WL + 4 +(tWR/  
tCK(avg))  
tWRPDEN  
tWRAPDEN  
tWRPDEN  
tWRAPDEN  
-
-
-
-
-
-
-
-
nCK  
nCK  
nCK  
nCK  
9
10  
9
Timing of WRA command to Power Down entry  
(BL8OTF, BL8MRS, BL4OTF)  
WL + 4 +WR +1  
WL + 4 +WR +1  
Timing of WR command to Power Down entry  
(BL4MRS)  
WL + 2 +(tWR/  
tCK(avg))  
WL + 2 +(tWR/  
tCK(avg))  
Timing of WRA command to Power Down entry  
(BL4MRS)  
WL +2 +WR +1  
WL +2 +WR +1  
10  
Timing of REF command to Power Down entry  
Timing of MRS command to Power Down entry  
ODT Timing  
tREFPDEN  
tMRSPDEN  
1
-
-
1
-
-
20,21  
tMOD(min)  
tMOD(min)  
ODT high time without write command or with write command and BC4  
ODT high time with Write command and BL8  
Asynchronous RTT turn-on delay (Power-Down with DLL frozen)  
Asynchronous RTT turn-off delay (Power-Down with DLL frozen)  
ODT turn-on  
ODTH4  
ODTH8  
tAONPD  
tAOFPD  
tAON  
4
6
-
4
6
-
nCK  
nCK  
-
-
2
8.5  
8.5  
300  
0.7  
0.7  
2
8.5  
8.5  
250  
0.7  
0.7  
ns  
2
2
ns  
-300  
0.3  
0.3  
-250  
0.3  
0.3  
ps  
7,f  
8,f  
f
RTT_NOM and RTT_WR turn-off time from ODTLoff reference  
RTT dynamic change skew  
tAOF  
tCK(avg)  
tCK(avg)  
tADC  
Write Leveling Timing  
First DQS pulse rising edge after tDQSS margining mode is programmed  
DQS/DQS delay after tDQS margining mode is programmed  
Setup time for tDQSS latch  
tWLMRD  
tWLDQSEN  
tWLS  
40  
25  
-
-
-
40  
25  
-
-
-
tCK  
tCK  
ps  
3
3
245  
195  
Write leveling hold time from rising DQS, DQS crossing to rising CK, CK cross-  
ing  
tWLH  
245  
-
195  
-
ps  
Write leveling output delay  
Write leveling output error  
tWLO  
0
0
9
2
0
0
9
2
ns  
ns  
tWLOE  
34 of 50  
Rev. 1.23 July 2009  
DDR3 SDRAM  
Unbuffered DIMM  
17.1 Jitter Notes  
Specific Note a Unit ’tCK(avg)’ represents the actual tCK(avg) of the input clock under operation. Unit ’nCK’ represents one clock cycle of the input  
clock, counting the actual clock edges.ex) tMRD = 4 [nCK] means; if one Mode Register Set command is registered at Tm, another  
Mode Register Set command may be registered at Tm+4, even if (Tm+4 - Tm) is 4 x tCK(avg) + tERR(4per),min.  
Specific Note b These parameters are measured from a command/address signal (CKE, CS, RAS, CAS, WE, ODT, BA0, A0, A1, etc.) transition edge  
to its respective clock signal (CK/CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT(per),  
tJIT(cc), etc.), as the setup and hold are relative to the clock signal crossing that latches the command/address. That is, these param-  
eters should be met whether clock jitter is present or not.  
Specific Note c These parameters are measured from a data strobe signal (DQS(L/U), DQS(L/U)) crossing to its respective clock signal (CK, CK) cross-  
ing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT(per), tJIT(cc), etc.), as these are relative to the  
clock signal crossing. That is, these parameters should be met whether clock jitter is present or not.  
Specific Note d These parameters are measured from a data signal (DM(L/U), DQ(L/U)0, DQ(L/U)1, etc.) transition edge to its respective data strobe  
signal (DQS(L/U), DQS(L/U)) crossing. Specific Note e For these parameters, the DDR3 SDRAM device supports tnPARAM [nCK] =  
RU{ tPARAM [ns] / tCK(avg) [ns] }, which is in clock cycles, assuming all input clock jitter specifications are satisfied. For example, the  
device will support tnRP = RU{tRP / tCK(avg)}, which is in clock cycles, if all input clock jitter specifications are met. This means: For  
DDR3-800 6-6-6, of which tRP = 15ns, the device will support tnRP = RU{tRP / tCK(avg)} = 6, as long as the input clock jitter specifi-  
cations are met, i.e. Precharge command at Tm and Active command at Tm+6 is valid even if (Tm+6 - Tm) is less than 15ns due to  
input clock jitter.  
Specific Note f When the device is operated with input clock jitter, this parameter needs to be derated by the actual tERR(mper),act of the input clock,  
where 2 <= m <= 12. (output deratings are relative to the SDRAM input clock.)  
For example, if the measured jitter into a DDR3-800 SDRAM has tERR(mper),act,min = - 172 ps and tERR(mper),act,max = + 193 ps,  
then tDQSCK,min(derated) = tDQSCK,min - tERR(mper),act,max = - 400 ps - 193 ps = - 593 ps and tDQSCK,max(derated) =  
tDQSCK,max - tERR(mper),act,min = 400 ps + 172 ps = + 572 ps. Similarly, tLZ(DQ) for DDR3-800 derates to tLZ(DQ),min(derated) =  
- 800 ps - 193 ps = - 993 ps and tLZ(DQ),max(derated) = 400 ps + 172 ps = + 572 ps. (Caution on the min/max usage!)  
Note that tERR(mper),act,min is the minimum measured value of tERR(nper) where 2 <= n <=  
12, and tERR(mper),act,max is the maximum measured value of tERR(nper) where 2 <= n <= 12.  
Specific Note g When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT(per),act of the input clock. (out-  
put deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR3-800 SDRAM has tCK(avg),act =  
2500 ps, tJIT(per),act,min = - 72 ps and tJIT(per),act,max = + 93 ps, then tRPRE,min(derated) = tRPRE,min + tJIT(per),act,min = 0.9  
x tCK(avg),act + tJIT(per),act,min = 0.9 x 2500 ps - 72 ps = + 2178 ps. Similarly, tQH,min(derated) = tQH,min + tJIT(per),act,min =  
0.38 x tCK(avg),act + tJIT(per),act,min = 0.38 x 2500 ps - 72 ps = + 878 ps. (Caution on the min/max usage!)  
35 of 50  
Rev. 1.23 July 2009  
DDR3 SDRAM  
Unbuffered DIMM  
17.2 Timing Parameter Notes  
1. Actual value dependant upon measurement level definitions which are TBD.  
2. Commands requiring a locked DLL are: READ (and RAP) and synchronous ODT commands.  
3. The max values are system dependent.  
4. WR as programmed in mode register  
5. Value must be rounded-up to next higher integer value  
6. There is no maximum cycle time limit besides the need to satisfy the refresh interval, tREFI.  
7. For definition of RTT turn-on time tAON see "Device Operation"  
8. For definition of RTT turn-off time tAOF see "Device Operation".  
9. tWR is defined in ns, for calculation of tWRPDEN it is necessary to round up tWR / tCK to the next integer.  
10. WR in clock cycles as programmed in MR0  
11. The maximum read postamble is bound by tDQSCK(min) plus tQSH(min) on the left side and tHZ(DQS)max on the right side. See Device Operation Datasheet  
12. Output timing deratings are relative to the SDRAM input clock. When the device is operated with input clock jitter, this parameter needs to be derated  
by TBD  
13. Value is valid for RON34  
14. Single ended signal parameter.  
15. tREFI depends on T  
OPER  
16. tIS(base) and tIH(base) values are for 1V/ns CMD/ADD single-ended slew rate and 2V/ns CK, CK differential slew rate, Note for DQ and DM signals,  
V
(DC) = V DQ(DC). FOr input only pins except RESET, V (DC)=V CA(DC).  
REF  
REF  
REF  
REF  
See "Address/ Command Setup, Hold and Derating"  
17. tDS(base) and tDH(base) values are for 1V/ns DQ single-ended slew rate and 2V/ns DQS, DQS differential slew rate. Note for DQ and DM signals,  
V
(DC)= V  
DQ(DC). For input only pins except RESET, V  
(DC)=V  
CA(DC).  
REF  
REF  
REF  
REF  
See "Data Setup, Hold and Slew Rate Derating".  
18. Start of internal write transaction is defined as follows ;  
For BL8 (fixed by MRS and on-the-fly) : Rising clock edge 4 clock cycles after WL.  
For BC4 (on-the-fly) : Rising clock edge 4 clock cycles after WL  
For BC4 (fixed by MRS) : Rising clock edge 2 clock cycles after WL  
19. The maximum read preamble is bound by tLZDQS(min) on the left side and tDQSCK(max) on the right side. See "Device Operation"  
20. CKE is allowed to be registered low while operations such as row activation, precharge, autoprecharge or refresh are in progress, but power-down  
IDD spec will not be applied until finishing those operations.  
21. Although CKE is allowed to be registered LOW after a REFRESH command once tREFPDEN(min) is satisfied, there are cases where additional time  
such as tXPDLL(min) is also required. See "Device Operation".  
22. Defined between end of MPR read burst and MRS which reloads MPR or disables MPR function.  
23. One ZQCS command can effectively correct a minimum of 0.5 % (ZQCorrection) of RON and RTT impedance error within 64 nCK for all speed bins assuming  
the maximum sensitivities specified in the ’Output Driver Voltage and Temperature Sensitivity’ and ’ODT Voltage and Temperature Sensitivity’ tables. The  
appropriate interval between ZQCS commands can be determined from these tables and other application specific parameters.  
One method for calculating the interval between ZQCS commands, given the temperature (Tdriftrate) and voltage (Vdriftrate) drift rates that the SDRAM is sub-  
ject to in the application, is illustrated. The interval could be defined by the following formula:  
ZQCorrection  
(TSens x Tdriftrate) + (VSens x Vdriftrate)  
where TSens = max(dRTTdT, dRONdTM) and VSens = max(dRTTdV, dRONdVM) define the SDRAM temperature and voltage sensitivities.  
For example, if TSens = 1.5% /°C, VSens = 0.15% / mV, Tdriftrate = 1°C / sec and Vdriftrate = 15 mV / sec, then the interval between ZQCS commands is calcu-  
lated as:  
0.5  
~
~
= 0.133  
128ms  
(1.5 x 1) + (0.15 x 15)  
24. n = from 13 cycles to 50 cycles. This row defines 38 parameters.  
25. tCH(abs) is the absolute instantaneous clock high pulse width, as measured from one rising edge to the following falling edge.  
26. tCL(abs) is the absolute instantaneous clock low pulse width, as measured from one falling edge to the following rising edge.  
27. The tIS(base) AC150 specifications are adjusted from the tIS(base) specification by adding an additional 100 ps of derating to accommodate for the lower alter-  
nate threshold of 150 mV and another 25 ps to account for the earlier reference point [(175 mv - 150 mV) / 1 V/ns].  
28. Pulse width of a input signal is defined as the width between the first crossing of V  
(DC) and the consecutive crossing of V  
(DC)  
REF  
REF  
29. tDQSL describes the instantaneous differential input low pulse width on DQS-DQS, as measured from one falling edge to the next consecutive rising edge.  
30. tDQSH describes the instantaneous differential input high pulse width on DQS-DQS, as measured from one rising edge to the next consecutive falling edge.  
31. tDQSH, act + tDQSL, act = 1 tCK, act ; with tXYZ, act being the actual measured value of the respective timing parameter in the application.  
32. tDSH, act + tDSS, act = 1 tCK, act ; with tXYZ, act being the actual measured value of the respective timing parameter in the application.  
36 of 50  
Rev. 1.23 July 2009  
DDR3 SDRAM  
Unbuffered DIMM  
17.3 Address / Command Setup, Hold and Derating  
For all input signals the total tIS (setup time) and tIH (hold time) required is calculated by adding the data sheet tIS(base) and tIH(base) value to the tIS  
and tIH derating value respectively.  
Example: tIS (total setup time) = tIS(base) + tIS Setup (tIS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of  
V
REF(DC) and the first crossing of VIH(AC)min. Setup (tIS) nominal slew rate for a falling signal is defined as  
the slew rate between the last crossing of VREF(DC) and the first crossing of VIL(AC)max. If the actual signal is always earlier than the nominal slew rate  
line between shaded ’VREF(DC) to ac region’, use nominal slew rate for derating value. If the actual signal is later than the nominal slew rate line any-  
where between shaded ’VREF(DC) to ac region’, the slew rate of a tangent line to the actual signal from the ac level to dc level is used for derating value.  
Hold (tIH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VIL(DC)max and the first crossing of VREF(DC).  
Hold (tIH) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of VIH(DC)min and the first crossing of VREF(DC). If  
the actual signal is always later than the nominal slew rate line between shaded ’dc to VREF(DC) region’, use nominal slew rate for derating value (see  
Figure 9). If the actual signal is earlier than the nominal slew rate line anywhere between shaded ’dc to VREF(DC) region’, the slew rate of a tangent line  
to the actual signal from the dc level to VREF(DC) level is used for derating value.  
For a valid transition the input signal has to remain above/below VIH/IL(AC) for some time tVAC.  
Although for slow slew rates the total setup time might be negative (i.e. a valid input signal will not have reached VIH/IL(AC) at the time of the rising clock  
transition) a valid input signal is still required to complete the transition and reach VIH/IL(AC).  
For slew rates in between the values listed in Table below, the derating values may obtained by linear interpolation.  
These values are typically not subject to production test. They are verified by design and characterization.  
ADD/CMD Setup and Hold Base-Values for 1V/ns  
[ps]  
tIS(base)  
DDR3-1066  
125  
DDR3-1333  
65  
reference  
VIH/L(AC)  
VIH/L(DC)  
VIH/L(AC)  
tIH(base)  
200  
140  
tIS(base)-AC150  
125 + 150  
65+125  
Note : AC/DC referenced for 1V/ns DQ-slew rate and 2V/ns DQS slew rate  
Note : The tIS(base)-AC150 specifications are further adjusted to add an additional 100ps of derating to accommodate for the lower alternate thresh-old  
of 150mV and another 25ps to account for the earlier reference point [(175mv-150mV)/1 V/ns].  
Derating values DDR3-1066/1333 tIS/tIH-ac/dc based  
tIS, tIH Derating [ps] AC/DC based  
AC175 Threshold -> VIH(AC) = VREF(DC) + 175mV, VIL(AC) = VREF(DC) - 175mV  
CLK,CLK Differential Slew Rate  
4.0 V/ns  
3.0 V/ns  
2.0 V/ns  
1.8 V/ns  
1.6 V/ns  
1.4V/ns  
1.2V/ns  
tIS  
1.0V/ns  
tIS  
tIH  
50  
tIS  
tIH  
50  
tIS  
tIH  
50  
tIS  
tIH  
58  
42  
8
tIS  
tIH  
66  
50  
16  
12  
6
tIS  
tIH  
74  
58  
24  
20  
14  
8
tIH  
84  
68  
34  
30  
24  
18  
8
tIS  
tIH  
100  
84  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
88  
59  
0
88  
59  
0
88  
59  
0
96  
67  
8
104  
75  
16  
14  
10  
5
112  
83  
24  
20  
13  
13  
7
120  
91  
32  
30  
26  
21  
15  
-2  
128  
99  
40  
38  
34  
29  
23  
5
34  
34  
34  
0
0
0
50  
CMD/  
ADD  
Slew  
rate  
-2  
-4  
-2  
-4  
-2  
-4  
6
4
46  
-6  
-10  
-16  
-26  
-40  
-60  
-6  
-10  
-16  
-26  
-40  
-60  
-6  
-10  
-16  
-26  
-40  
-60  
2
-2  
40  
-11  
-17  
-35  
-62  
-11  
-17  
-35  
-62  
-11  
-17  
-35  
-62  
-3  
-9  
-27  
-54  
-8  
0
34  
V/ns  
-18  
-32  
-52  
-1  
-10  
-24  
-44  
-2  
24  
-19  
-46  
-11  
-38  
-16  
-36  
-6  
10  
-30  
-26  
-22  
-10  
37 of 50  
Rev. 1.23 July 2009  
DDR3 SDRAM  
Unbuffered DIMM  
Derating values DDR3-1333/1600 tIS/tIH-ac/dc based - Alternate AC150 Threshold  
tIS, tIH Derating [ps] AC/DC based  
Alternate AC150 Threshold -> VIH(AC) = VREF(DC) + 150mV, VIL(AC) = VREF(DC) - 150mV  
CLK,CLK Differential Slew Rate  
1.8 V/ns 1.6 V/ns  
4.0 V/ns  
3.0 V/ns  
2.0 V/ns  
1.4V/ns  
1.2V/ns  
tIS  
1.0V/ns  
tIS  
tIH  
50  
tIS  
tIH  
50  
tIS  
tIH  
50  
tIS  
tIH  
58  
42  
8
tIS  
tIH  
66  
50  
16  
12  
6
tIS  
tIH  
74  
58  
24  
20  
14  
8
tIH  
84  
68  
34  
30  
24  
18  
8
tIS  
tIH  
100  
84  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
75  
50  
0
75  
50  
0
75  
50  
0
83  
58  
8
91  
66  
16  
16  
16  
16  
15  
6
99  
74  
24  
24  
24  
24  
23  
14  
-1  
107  
82  
32  
32  
32  
32  
31  
22  
7
115  
90  
40  
40  
40  
40  
39  
30  
15  
34  
34  
34  
0
0
0
50  
CMD/  
ADD  
Slew  
rate  
0
-4  
0
-4  
0
-4  
8
4
46  
0
-10  
-16  
-26  
-40  
-60  
0
-10  
-16  
-26  
-40  
-60  
0
-10  
-16  
-26  
-40  
-60  
8
-2  
40  
0
0
0
8
-8  
0
34  
V/ns  
-1  
-10  
-25  
-1  
-10  
-25  
-1  
-10  
-25  
7
-18  
-32  
-52  
-10  
-24  
-44  
-2  
24  
-2  
-17  
-16  
-36  
-6  
10  
-9  
-26  
-10  
Required time tVAC above VIH(AC) {blow VIL(AC)} for valid transition  
tVAC @175mV [ps]  
Slew Rate[V/ns]  
tVAC @150mV [ps]  
min  
max  
min  
175  
170  
167  
163  
162  
161  
159  
155  
150  
150  
max  
>2.0  
2.0  
75  
57  
50  
38  
34  
29  
22  
13  
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
< 0.5  
0
38 of 50  
Rev. 1.23 July 2009  
DDR3 SDRAM  
Unbuffered DIMM  
Note :Clock and Strobe are drawn on a different time scale.  
CK  
tIH  
tIH  
tIS  
tIS  
CK  
DQS  
DQS  
tDH  
tDH  
tDS  
tDS  
VDDQ  
tVAC  
VIH(AC) min  
VREF to ac  
region  
VIH(DC) min  
nominal  
slew rate  
VREF(DC)  
nominal slew  
rate  
VIL(DC) max  
VREF to ac  
region  
VIL(AC) max  
VSS  
tVAC  
Delta TF  
Delta TR  
Setup Slew Rate  
Rising Signal  
V
IH(AC)min - VREF(DC)  
Delta TR  
V
REF(DC) - VIL(AC)max  
Delta TF  
Setup Slew Rate  
=
=
Falling Signal  
Figure 9 - Illustration of nominal slew rate and tVAC for setup time tDS (for DQ with respect to strobe) and tIS  
(for ADD/CMD with respect to clock).  
39 of 50  
Rev. 1.23 July 2009  
DDR3 SDRAM  
Unbuffered DIMM  
Note :Clock and Strobe are drawn on a different time scale.  
CK  
tIH  
tIH  
tIS  
tIS  
CK  
DQS  
DQS  
tDH  
tDH  
tDS  
tDS  
VDDQ  
VIH(AC) min  
VIH(DC) min  
dc to VREF  
region  
nominal  
slew rate  
VREF(DC)  
nominal  
dc to VREF  
region  
dc to VREF  
region  
slew rate  
VIL(DC) max  
VIL(AC) max  
VSS  
Delta TF  
Delta TR  
Hold Slew Rate  
Hold Slew Rate  
Rising Signal  
V
REF(DC) - VIL(DC)max  
Delta TR  
V
IH(DC)min - VREF(DC)  
Delta TF  
=
=
Falling Signal  
Figure 10 - Illustration of nominal slew rate for hold time tDH (for DQ with respect to strobe) and tIH  
(for ADD/CMD with respect to clock).  
40 of 50  
Rev. 1.23 July 2009  
DDR3 SDRAM  
Unbuffered DIMM  
Note :Clock and Strobe are drawn on a different time scale.  
CK  
tIH  
tIH  
tIS  
tIS  
CK  
DQS  
DQS  
tDH  
tDH  
tDS  
tDS  
VDDQ  
tVAC  
nominal  
line  
VIH(AC) min  
V
REF to ac  
region  
V
IH(DC) min  
tangent  
line  
VREF(DC)  
tangent  
line  
VIL(DC) max  
VIL(AC) max  
VREF to ac  
region  
nominal  
line  
Delta TR  
VSS  
tangent line[VIH(AC)min - VREF(DC)]  
Delta TR  
Setup Slew Rate  
=
Rising Signal  
Delta TF  
Setup Slew Rate tangent line[VREF(DC) - VIL(AC)max]  
=
Falling Signal  
Delta TF  
Figure 11. Illustration of tangent line for setup time tDS (for DQ with respect to strobe) and tIS  
(for ADD/CMD with respect to clock)  
41 of 50  
Rev. 1.23 July 2009  
DDR3 SDRAM  
Unbuffered DIMM  
Note :Clock and Strobe are drawn on a different time scale.  
CK  
tIH  
tIH  
tIS  
tIS  
CK  
DQS  
DQS  
tDH  
tDH  
tDS  
tDS  
VDDQ  
VIH(AC) min  
nominal  
line  
V
IH(DC) min  
dc to VREF  
region  
tangent  
line  
VREF(DC)  
tangent  
line  
dc to VREF  
region  
nominal  
line  
VIL(DC) max  
VIL(AC) max  
VSS  
Delta TF  
Delta TR  
tangent line [ VREF(DC) - VIL(DC)max ]  
Delta TR  
Hold Slew Rate  
=
Rising Signal  
tangent line [ VIH(DC)min - VREF(DC) ]  
Delta TF  
Hold Slew Rate  
=
Falling Signal  
Figure 12 - Illustration of tangent line for hold time tDH (for DQ with respect to strobe) and tIH  
(for ADD/CMD with respect to clock)  
42 of 50  
Rev. 1.23 July 2009  
DDR3 SDRAM  
Unbuffered DIMM  
17.4 Data Setup, Hold and Slew Rate Derating:  
For all input signals the total tDS (setup time) and tDH (hold time) required is calculated by adding the data sheet tDS(base) and tDH(base) value to the ∆  
tDS and tDH derating value respectively. Example: tDS (total setup time) = tDS(base) + tDS.  
Setup (tDS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VREF(DC) and the first crossing of VIH(AC)min.  
Setup (tDS) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of VREF(DC) and the first crossing of VIL(AC)max. If  
the actual signal is always earlier than the nominal slew rate line between shaded ’VREF(DC) to ac region’, use nominal slew rate for derating value. If the  
actual signal is later than the nominal slew rate line anywhere  
between shaded ’VREF(DC) to ac region’, the slew rate of a tangent line to the actual signal from the ac level to dc level is used for derating value.  
Hold (tDH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VIL(DC)max and the first crossing of VREF(DC).  
Hold (tDH) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of VIH(DC)min and the first crossing of VREF(DC). If  
the actual signal is always later than the nominal slew rate line between shaded ’dc level to VREF(DC) region’, use nominal slew rate for derating value. If  
the actual signal is earlier than the nominal slew rate line anywhere between shaded ’dc to VREF(DC) region’, the slew rate of a tangent line to the actual  
signal from the dc level to VREF(DC) level is used for derating value.  
For a valid transition the input signal has to remain above/below VIH/IL(AC) for some time tVAC.  
Although for slow slew rates the total setup time might be negative (i.e. a valid input signal will not have reached VIH/IL(AC) at the time of the rising clock  
transition) a valid input signal is still required to complete the transition and reach VIH/IL(AC).  
For slew rates in between the values listed in the tables the derating values may obtained by linear interpolation.  
These values are typically not subject to production test. They are verified by design and characterization  
Data Setup and Hold Base-Value  
[ps]  
tDS(base)  
tDH(base)  
DDR3-1066  
DDR3-1333  
reference  
VIH/L(AC)  
VIH/L(DC)  
25  
30  
65  
100  
Note : AC/DC referenced for 1V/ns DQ-slew rate and 2 V/ns DQS slew rate)  
Derating values DDR3-1066/1333 tIS/tIH-ac/dc based  
tDS, tDH Derating [ps] AC/DC baseda  
DQS,DQS Differential Slew Rate  
1.8 V/ns 1.6 V/ns  
4.0 V/ns  
3.0 V/ns  
2.0 V/ns  
1.4V/ns  
1.2V/ns  
1.0V/ns  
tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
88  
59  
0
-
50  
34  
0
-
88  
59  
0
-2  
-
50  
34  
0
-4  
-
88  
59  
0
50  
34  
0
-
67  
8
6
2
-3  
-
-
42  
8
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
16  
14  
10  
5
16  
12  
6
-
-
-
-
DDR3 DQ  
-2  
-6  
-
-4  
-10  
-
4
22  
18  
13  
7
20  
14  
8
-
-
-
-
-
-
-
Slew  
-
-
-2  
-8  
-
26  
21  
15  
-2  
-30  
-
24  
18  
8
800/ rate  
1066 V/ns  
-
-
-
-
0
29  
23  
6
34  
24  
10  
-10  
-
-
-
-
-
-
-
-1  
-
-10  
-
-2  
-16  
-
-
-
-
-
-
-
-
-
-11  
-
-6  
-26  
-
-
-
-
-
-
-
-
-
-
-
-
-22  
-
75  
50  
0
-
50  
34  
0
-
75  
50  
0
0
-
50  
34  
0
-4  
-
75  
50  
0
50  
34  
0
-
-
-
-
-
58  
8
8
8
8
-
42  
8
-
-
-
-
-
-
-
-
16  
16  
16  
16  
15  
-
16  
12  
6
-
-
-
-
-
-
-
DDR3 DQ  
0
-4  
-10  
-
4
24  
24  
24  
23  
14  
-
20  
14  
8
-2  
-16  
-
-
-
-
-
Slew  
-
-
0
-2  
-8  
-
32  
32  
31  
22  
7
24  
18  
8
-6  
-26  
-
-
1333/ rate  
1600 V/ns  
-
-
-
-
-
0
40  
39  
30  
15  
34  
24  
10  
-10  
-
-
-
-
-
-
-10  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Note : a. Cell contents shaded in red are defined as ’not supported’.  
Required time tVAC above VIH(AC) {blow VIL(AC)} for valid transition  
tVAC[ps] DDR3-1066  
tVAC[ps] DDR3-1333  
Slew Rate[V/ns]  
min  
75  
57  
50  
38  
34  
29  
22  
13  
0
max  
min  
max  
>2.0  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
<0.5  
-
-
-
-
-
-
-
-
-
-
175  
170  
167  
163  
162  
161  
159  
155  
155  
150  
-
-
-
-
-
-
-
-
-
-
0
43 of 50  
Rev. 1.23 July 2009  
DDR3 SDRAM  
Unbuffered DIMM  
Note :Clock and Strobe are drawn on a different time scale.  
CK  
tIH  
tIH  
tIS  
tIS  
CK  
DQS  
DQS  
tDH  
tDH  
tDS  
tDS  
VDDQ  
tVAC  
VIH(AC) min  
VREF to ac  
region  
VIH(DC) min  
nominal  
slew rate  
VREF(DC)  
nominal slew  
rate  
VIL(DC) max  
VREF to ac  
region  
VIL(AC) max  
VSS  
tVAC  
Delta TF  
Delta TR  
Setup Slew Rate VIH(AC)min - VREF(DC)  
V
REF(DC) - VIL(AC)max  
Delta TF  
Setup Slew Rate  
=
=
Rising Signal  
Delta TR  
Falling Signal  
Figure 13 - Illustration of nominal slew rate and tVAC for setup time tDS (for DQ with respect to strobe) and tIS  
(for ADD/CMD with respect to clock).  
44 of 50  
Rev. 1.23 July 2009  
DDR3 SDRAM  
Unbuffered DIMM  
Note :Clock and Strobe are drawn on a different time scale.  
CK  
tIH  
tIH  
tIS  
tIS  
CK  
DQS  
DQS  
tDH  
tDH  
tDS  
tDS  
VDDQ  
VIH(AC) min  
V
IH(DC) min  
dc to VREF  
region  
nominal  
slew rate  
VREF(DC)  
nominal  
dc to VREF  
region  
dc to VREF  
region  
slew rate  
VIL(DC) max  
VIL(AC) max  
VSS  
Delta TF  
Delta TR  
V
REF(DC) - VIL(DC)max  
Delta TR  
VIH(DC)min - VREF(DC)  
Delta TF  
Hold Slew Rate  
Rising Signal  
Hold Slew Rate  
Falling Signal  
=
=
Figure 14 - Illustration of nominal slew rate for hold time tDH (for DQ with respect to strobe) and tIH  
(for ADD/CMD with respect to clock).  
45 of 50  
Rev. 1.23 July 2009  
DDR3 SDRAM  
Unbuffered DIMM  
Note :Clock and Strobe are drawn on a different time scale.  
CK  
tIH  
tIH  
tIS  
tIS  
CK  
DQS  
DQS  
tDH  
tDH  
tDS  
tDS  
VDDQ  
tVAC  
nominal  
line  
VIH(AC) min  
V
REF to ac  
region  
V
IH(DC) min  
tangent  
line  
VREF(DC)  
tangent  
line  
VIL(DC) max  
VIL(AC) max  
VREF to ac  
region  
nominal  
line  
Delta TR  
VSS  
tangent line[VIH(AC)min - VREF(DC)]  
Delta TR  
Setup Slew Rate  
=
Rising Signal  
Delta TF  
tangent line[VREF(DC) - VIL(AC)max]  
Delta TF  
Setup Slew Rate  
=
Falling Signal  
Figure 15 - Illustration of tangent line for setup time tDS (for DQ with respect to strobe) and tIS  
(for ADD/CMD with respect to clock)  
46 of 50  
Rev. 1.23 July 2009  
DDR3 SDRAM  
Unbuffered DIMM  
Note :Clock and Strobe are drawn on a different time scale.  
CK  
tIH  
tIH  
tIS  
tIS  
CK  
DQS  
DQS  
tDH  
tDH  
tDS  
tDS  
VDDQ  
VIH(AC) min  
nominal  
line  
V
IH(DC) min  
dc to VREF  
region  
tangent  
line  
VREF(DC)  
tangent  
line  
dc to VREF  
region  
nominal  
line  
VIL(DC) max  
VIL(AC) max  
VSS  
Delta TF  
Delta TR  
tangent line [ VREF(DC) - VIL(DC)max ]  
Delta TR  
Hold Slew Rate  
=
Rising Signal  
tangent line [ VIH(DC)min - VREF(DC) ]  
Delta TF  
Hold Slew Rate  
=
Falling Signal  
Figure 16 - Illustration of tangent line for hold time tDH (for DQ with respect to strobe) and tIH  
(for ADD/CMD with respect to clock)  
47 of 50  
Rev. 1.23 July 2009  
DDR3 SDRAM  
Unbuffered DIMM  
18.0 Physical Dimensions  
18.1 64Mbx16 based 64Mx64 Module (1 Rank)  
Units : Millimeters  
133.35 ± 0.15  
128.95  
SPD  
(2)  
2.50  
54.675  
A
B
47.00  
71.00  
Max 4.00  
1.270 ± 0.10  
5.00  
2x 2.10 ± 0.15  
0.80 ± 0.05  
0.2 ± 0.15  
3.80  
1.50±0.10  
1.00  
2.50  
Detail A  
Detail B  
The used device is 64M x16 DDR3 SDRAM, FBGA.  
DDR3 SDRAM Part NO : K4B1G1646D-HC∗∗  
* Note : Tolerances on all dimensions ±0.15 unless otherwise specified.  
48 of 50  
Rev. 1.23 July 2009  
DDR3 SDRAM  
Unbuffered DIMM  
18.2 128Mbx8 based 128Mx64/x72 Module (1 Rank)  
Units : Millimeters  
133.35 ± 0.15  
128.95  
N/A  
(for x64)  
SPD  
ECC  
(for x72)  
(2)  
2.50  
54.675  
A
B
47.00  
71.00  
Max 4.00  
1.270 ± 0.10  
5.00  
2x 2.10 ± 0.15  
0.80 ± 0.05  
0.2 ± 0.15  
3.80  
1.50±0.10  
1.00  
2.50  
Detail A  
Detail B  
The used device is 128M x8 DDR3 SDRAM, FBGA.  
DDR3 SDRAM Part NO : K4B1G0846D-HC∗∗  
* Note : Tolerances on all dimensions ±0.15 unless otherwise specified.  
49 of 50  
Rev. 1.23 July 2009  
DDR3 SDRAM  
Unbuffered DIMM  
18.3 128Mbx8 based 256Mx64/x72 Module (2 Ranks)  
Units : Millimeters  
133.35 ± 0.15  
128.95  
N/A  
(for x64)  
SPD  
ECC  
(for x72)  
(2)  
2.50  
54.675  
A
B
Max 4.00  
47.00  
71.00  
N/A  
(for x64)  
ECC  
(for x72)  
1.270 ± 0.10  
5.00  
2x 2.10 ± 0.15  
0.80 ± 0.05  
0.2 ± 0.15  
3.80  
1.50±0.10  
1.00  
2.50  
Detail A  
Detail B  
The used device is 128M x8 DDR3 SDRAM, FBGA.  
DDR3 SDRAM Part NO : K4B1G0846D-HC∗∗  
* Note : Tolerances on all dimensions ±0.15 unless otherwise specified.  
50 of 50  
Rev. 1.23 July 2009  

相关型号:

M391B5673DZ1-H9

DDR DRAM Module, 256MX8, CMOS, ROHS COMPLIANT, DIMM-240
SAMSUNG

M391B5673EH1

DDR3 SDRAM Memory
SAMSUNG

M391B5673EH1-CF8

DDR DRAM Module, 256MX72, 0.3ns, CMOS, HALOGEN FREE AND ROHS COMPLIANT, UBDIMM-240
SAMSUNG

M391B5673EH1-CK0

DDR DRAM Module, 256MX72, 0.225ns, CMOS, HALOGEN FREE AND ROHS COMPLIANT, UBDIMM-240
SAMSUNG

M391B5673FH0

DDR3 SDRAM Memory
SAMSUNG

M391B5673FH0-CF8

DDR DRAM Module, 256MX72, 20ns, CMOS, HALOGEN FREE AND ROHS COMPLIANT, DIMM-240
SAMSUNG

M391B5673FH0-CH9

DDR DRAM Module, 256MX72, 20ns, CMOS, HALOGEN FREE AND ROHS COMPLIANT, DIMM-240
SAMSUNG

M391B5673FH0-CK0

DDR DRAM Module, 256MX72, 20ns, CMOS, HALOGEN FREE AND ROHS COMPLIANT, DIMM-240
SAMSUNG

M391B5673FH0-YK0

DDR DRAM Module, 256MX72, 0.225ns, CMOS, HALOGEN FREE AND ROHS COMPLIANT, UBDIMM-240
SAMSUNG

M391B5673GB0

240pin Unbuffered DIMM based on 1Gb G-die
SAMSUNG

M391B5673GB0-CH9

DDR DRAM Module, 256MX72, 0.255ns, CMOS, HALOGEN FREE AND ROHS COMPLIANT, UDIMM-240
SAMSUNG

M391B5673GB0-CK0

DDR DRAM Module, 256MX72, 0.225ns, CMOS, HALOGEN FREE AND ROHS COMPLIANT, UDIMM-240
SAMSUNG