M471B2874DZ1-CG8 [SAMSUNG]

DDR DRAM Module, 128MX64, CMOS, ROHS COMPLIANT, SO-DIMM-204;
M471B2874DZ1-CG8
型号: M471B2874DZ1-CG8
厂家: SAMSUNG    SAMSUNG
描述:

DDR DRAM Module, 128MX64, CMOS, ROHS COMPLIANT, SO-DIMM-204

动态存储器 双倍数据速率 内存集成电路
文件: 总31页 (文件大小:523K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Unbuffered SoDIMM  
DDR3 SDRAM  
DDR3 SDRAM Specification  
204pin Unbuffered SODIMM based on 1Gb D-die  
64-bit Non-ECC  
(RoHS compliant)  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN RELATION TO SAMSUNG PRODUCTS,  
AND IS SUBJECT TO CHANGE WITHOUT NOTICE.  
NOTHING IN THIS DOCUMENT SHALL BE CONSTRUED AS GRANTING ANY LICENSE,  
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE,  
TO ANY INTELLECTUAL PROPERTY RIGHTS IN SAMSUNG PRODUCTS OR TECHNOLOGY. ALL  
INFORMATION IN THIS DOCUMENT IS PROVIDED  
ON AS "AS IS" BASIS WITHOUT GUARANTEE OR WARRANTY OF ANY KIND.  
1. For updates or additional information about Samsung products, contact your nearest Samsung office.  
2. Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar applications  
where Product failure could result in loss of life or personal or physical harm, or any military or defense application, or any gov-  
ernmental procurement to which special terms or provisions may apply.  
* Samsung Electronics reserves the right to change products or specification without notice.  
1 of 31  
Rev. 0.5 November 2007  
Unbuffered SoDIMM  
DDR3 SDRAM  
Table Contents  
1.0 DDR3 Unbuffered SoDIMM Ordering Information ......................................................................4  
2.0 Key Features .................................................................................................................................4  
3.0 Address Configuration .................................................................................................................4  
4.0 x64 DIMM Pin Configurations (Front side/Back side) ...............................................................5  
5.0 Pin Description .............................................................................................................................6  
6.0 ON DIMM Thermal Sensor ............................................................................................................6  
7.0 Input/Output Functional Description ..........................................................................................7  
8.0 Functional Block Diagram: .......................................................................................................... 8  
8.1 512MB, 64Mx64 Module(Populated as 1 rank of x16 DDR3 SDRAMs) ..................................................8  
8.2 1GB, 128Mx64 Module(Populated as 2 rank of x16 DDR3 SDRAMs).................................................... 9  
8.3 2GB, 256Mx64 Module(Populated as 2 rank of x8 DDR3 SDRAMs) ....................................................10  
9.0 Absolute Maximum Ratings .......................................................................................................11  
9.1 Absolute Maximum DC Ratings ...................................................................................................11  
9.2 DRAM Component Operating Temperature Range .........................................................................11  
10.0 AC & DC Operating Conditions ...............................................................................................11  
10.1 Recommended DC Operating Conditions (SSTL - 15) ..................................................................11  
11.0 AC & DC Input Measurement Levels .......................................................................................12  
11.1 AC and DC Logic input levels for single-ended signals ...............................................................12  
11.2 Differential swing requirement for differntial signals ..................................................................13  
11.2.1 Single-ended requirements for differential signals ..............................................................14  
11.3 AC and DC logic input levels for Differential Signals ...................................................................15  
11.4 Differential Input Cross Point Voltage .......................................................................................15  
11.5 Slew rate definition for Single Ended Input Signals .....................................................................16  
11.5.1 Input Slew Rate for Input Setup Time (tIS) and Data Setup Time (tDS) ...................................16  
11.5.2 Input Slew Rate for Input Hold Time (tIH) and Data Hold Time (tDH) ......................................16  
11.6 Slew rate definition for Differential Input Signals ........................................................................16  
12.0 AC and DC Output Measurement Levels ................................................................................17  
12.1 Single Ended AC and DC Output Levels ....................................................................................17  
12.2 Differential AC and DC Output Levels .......................................................................................17  
12.3.Single Ended Output Slew Rate ................................................................................................18  
12.4 Differential Output Slew Rate ...................................................................................................18  
13.0 IDD specification........................................................................................................................19  
13.1 IDD specification ....................................................................................................................20  
14.0 Input/Output Capacitance ........................................................................................................21  
14.1. 1Rx16 512MB SoDIMM ............................................................................................................21  
14.2. 2Rx16 1GB SoDIMM ...............................................................................................................21  
14.3. 2Rx8 2GB SoDIMM .................................................................................................................21  
15.0 Electrical Characteristics and AC timing ...............................................................................22  
15.1 Refresh Parameters by Device Density ......................................................................................22  
15.2 DDR3 SDRAM tRCD, tRP and tRC .............................................................................................22  
15.3 Timing parameters for DDR3-800, DDR3-1066 and DDR3-1333 ......................................................24  
16.0 Physical Dimensions : .............................................................................................................29  
16.1 64Mbx16 based 64Mx64 Module(1 Rank) ...................................................................................29  
16.2 64Mbx16 based 128Mx64 Module(2 Ranks) ...............................................................................30  
16.3 128Mbx8 based 256Mx64 Module(2 Ranks) ...............................................................................31  
2 of 31  
Rev. 0.5 November 2007  
Unbuffered SoDIMM  
DDR3 SDRAM  
Revision History  
Revision  
Month  
Year  
History  
0.5  
November  
2007  
- First release  
3 of 31  
Rev. 0.5 November 2007  
Unbuffered SoDIMM  
DDR3 SDRAM  
1.0 DDR3 Unbuffered SoDIMM Ordering Information  
Number of  
Height  
Part Number  
Density  
Organization  
Component Composition  
Rank  
M471B6474DZ1-CF7/F8/G8/H9  
M471B2874DZ1-CF7/F8/G8/H9  
M471B5673DZ1-CF7/F8/G8/H9  
* ## : F7 / F8 / G8 / H9  
512MB  
1GB  
2GB  
64Mx64  
128Mx64  
256Mx64  
64Mx16(K4B1G1646D-HC##)*4  
64Mx16(K4B1G1646D-HC##)*8  
128Mx8(K4B1G0846D-HC##)*16  
1
2
2
30mm  
30mm  
30mm  
2.0 Key Features  
DDR3-800  
DDR3-1066  
DDR3-1333  
Speed  
Unit  
6-6-6  
2.5  
6
7-7-7  
8-8-8  
9-9-9  
1.5  
tCK(min)  
CAS Latency  
tRCD(min)  
tRP(min)  
1.875  
ns  
tCK  
ns  
7
8
9
15  
13.125  
13.125  
37.5  
15  
13.5  
13.5  
36  
15  
15  
ns  
tRAS(min)  
tRC(min)  
37.5  
52.5  
37.5  
52.5  
ns  
50.625  
49.5  
ns  
JEDEC standard 1.5V ± 0.075V Power Supply  
VDDQ = 1.5V ± 0.075V  
400 MHz fCK for 800Mb/sec/pin, 533MHz fCK for 1066Mb/sec/pin, 667MHz fCK for 1333Mb/sec/pin  
8 independent internal bank  
Programmable CAS Latency: 6,7,8,9  
Programmable Additive Latency(Posted CAS) : 0, CL - 2, or CL - 1 clock  
Programmable CAS Write Latency(CWL) = 5(DDR3-800), 6(DDR3-1066), 7(DDR3-1333)  
8-bit pre-fetch  
Burst Length: 8 (Interleave without any limit, sequential with starting address “000” only), 4 with tCCD = 4 which does not allow seamless read or  
write [either On the fly using A12 or MRS]  
Bi-directional Differential Data Strobe  
Internal(self) calibration : Internal self calibration through ZQ pin (RZQ : 240 ohm ± 1%)  
On Die Termination using ODT pin  
Average Refresh Period 7.8us at lower then TCASE 85°C, 3.9us at 85°C < TCASE 95°C  
Asynchronous Reset  
3.0 Address Configuration  
Organization  
Row Address  
A0-A12  
Column Address  
A0-A9  
Bank Address  
BA0-BA2  
Auto Precharge  
A10/AP  
64x16(1Gb) based Module  
128x8(1Gb) based Module  
A0-A13  
A0-A9  
BA0-BA2  
A10/AP  
4 of 31  
Rev. 0.5 November 2007  
Unbuffered SoDIMM  
DDR3 SDRAM  
4.0 x64 DIMM Pin Configurations (Front side/Back side)  
Pin  
Front  
Pin  
Back  
Pin  
Front  
Pin  
Back  
Pin  
139  
141  
143  
145  
147  
149  
Front  
Pin  
140  
142  
144  
146  
148  
Back  
DQ38  
DQ39  
V
V
V
V
V
1
2
71  
72  
REFDQ  
SS  
SS  
SS  
SS  
V
3
4
DQ4  
DQ5  
KEY  
DQ34  
DQ35  
SS  
V
5
DQ0  
DQ1  
6
73  
75  
77  
CKE0  
74  
76  
78  
CKE1  
SS  
V
V
V
V
7
8
DQ44  
DQ45  
SS  
DD  
DD  
SS  
3
V
9
10  
DQS0  
DQS0  
NC  
DQ40  
DQ41  
A15  
SS  
3
V
11  
13  
15  
17  
19  
21  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
47  
49  
50  
53  
55  
57  
59  
61  
63  
65  
67  
69  
DM0  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
32  
34  
36  
38  
40  
42  
44  
46  
48  
50  
52  
54  
56  
58  
60  
62  
64  
66  
68  
70  
79  
81  
BA2  
80  
82  
150  
152  
154  
156  
158  
160  
162  
164  
166  
168  
170  
172  
174  
176  
178  
180  
182  
184  
186  
188  
190  
192  
194  
196  
198  
200  
202  
204  
A14  
SS  
V
V
V
V
V
151  
153  
155  
157  
159  
161  
163  
165  
167  
169  
171  
173  
175  
177  
179  
181  
183  
185  
187  
189  
191  
193  
195  
197  
199  
201  
203  
DQS5  
DQS5  
SS  
SS  
DD  
DD  
SS  
DQ2  
DQ3  
DQ6  
DQ7  
83  
A12/BC  
A9  
84  
A11  
A7  
DM5  
V
V
85  
86  
SS  
SS  
V
V
V
V
87  
88  
DQ42  
DQ43  
DQ46  
DQ47  
SS  
SS  
DD  
DD  
DQ8  
DQ9  
DQ12  
DQ13  
89  
A8  
A5  
90  
A6  
A4  
V
V
91  
92  
SS  
SS  
V
V
V
V
93  
94  
DQ48  
DQ49  
DQ52  
DQ53  
SS  
SS  
DD  
DD  
DQS1  
DQS1  
DM1  
95  
A3  
A1  
96  
A2  
A0  
V
V
RESET  
97  
98  
SS  
SS  
V
V
V
V
DQS6  
DQS6  
DM6  
99  
100  
102  
104  
106  
108  
110  
112  
114  
116  
118  
120  
122  
124  
126  
128  
130  
132  
134  
136  
138  
SS  
SS  
DD  
DD  
V
DQ10  
DQ11  
DQ14  
DQ15  
101  
103  
105  
107  
109  
111  
113  
115  
117  
119  
CK0  
CK0  
CK1  
CK1  
SS  
V
DQ54  
DQ55  
SS  
V
V
V
V
DQ50  
DQ51  
SS  
SS  
DD  
DD  
V
DQ16  
DQ17  
DQ20  
DQ21  
A10/AP  
BA0  
BA1  
RAS  
SS  
V
DQ60  
DQ61  
SS  
V
V
V
V
DQ56  
DQ57  
SS  
SS  
DD  
DD  
V
DQS2  
DQS2  
DM2  
WE  
S0  
SS  
V
V
CAS  
ODT0  
DQS7  
DQS7  
SS  
SS  
V
V
V
DQ22  
DQ23  
DM7  
SS  
DD  
DD  
3
V
V
DQ18  
DQ19  
ODT1  
NC  
A13  
SS  
SS  
V
121  
123  
125  
127  
129  
131  
133  
135  
137  
S1  
DQ58  
DQ59  
DQ62  
DQ63  
SS  
V
V
V
DQ28  
DQ29  
SS  
DD  
DD  
V
CA  
V
V
DQ24  
DQ25  
TEST  
REF  
V
SS  
SS  
V
V
SA0  
EVENT  
SDA  
SS  
SS  
SS  
V
V
DQS3  
DQS3  
DQ32  
DQ33  
DQ36  
DQ37  
SS  
DDSPD  
SA1  
DM3  
SCL  
V
V
V
V
V
tt  
V
tt  
SS  
SS  
SS  
SS  
DQ26  
DQ27  
DQ30  
DQ31  
DQS4  
DQS4  
DM4  
V
SS  
Note :  
1. NC = No Connect, NU = Not Useable, RFU = Reserved Future Use  
2. TEST(pin 125) is reserved for bus analysis probes and is NC on normal memory modules.  
3. This address might be connected to NC balls of the DRAMs (depending on density); either way they will be connected to the termination resistor.  
SAMSUNG ELECTRONICS CO., Ltd. reserves the right to change products and specifications without notice.  
5 of 31  
Rev. 0.5 November 2007  
Unbuffered SoDIMM  
DDR3 SDRAM  
5.0 Pin Description  
Pin Name  
Description  
Number Pin Name  
Description  
Number  
CK0, CK1  
Clock Inputs, positive line  
2
DQ0-DQ63  
Data Input/Output  
64  
Data Masks/ Data strobes,  
Termination data strobes  
CK0, CK1  
Clock Inputs, negative line  
2
DM0-DM7  
8
CKE0, CKE1 Clock Enables  
2
1
1
DQS0-DQS7 Data strobes  
8
8
1
RAS  
CAS  
Row Address Strobe  
DQS0-DQS7 Data strobes complement  
Column Address Strobe  
RESET  
TEST  
EVENT  
VDD  
Reset Pin  
Logic Analyzer specific test pin (No connect  
on SODIMM)  
WE  
Write Enable  
1
2
1
1
S0, S1  
Chip Selects  
Temperature event pin  
Core and I/O Power  
Ground  
A0-A9, A11,  
A13-A15  
Address Inputs  
14  
1
18  
52  
VSS  
A10/AP  
A12/BC  
BA0-BA2  
Address Input/Autoprecharge  
VREFDQ  
VREFCA  
VDDSPD  
Address Input/Burst chop  
1
Input/Output Reference  
2
SDRAM Bank Addresses  
3
SPD and Temp sensor Power  
1
VTT  
ODT0, ODT1 On-die termination control  
2
1
1
2
Termination Voltage  
Reserved for future use  
Total  
2
2
SCL  
SDA  
Serial Presence Detect (SPD) Clock Input  
NC  
SPD Data Input/Output  
SPD Address  
204  
SA0-SA1  
*The VDD and VDDQ pins are tied common to a single power-plane on these desigus.  
6.0 ON DIMM Thermal Sensor  
EVENT  
VDDSPD  
SCL  
SDA  
VDDSPD  
EVENT  
SCL  
SA0  
SA1  
SA2  
VSS  
SA0  
SA1  
SPD with  
Integrated  
TS  
SDA  
VSS  
Temperature Sensor Characteristics  
Temperature Sensor Accuracy  
Grade  
Range  
Units  
Notes  
Min.  
Typ.  
+/- 1.0  
+/- 2.0  
+/- 3.0  
0.25  
Max.  
75 < Ta < 95  
40 < Ta < 125  
-20 < Ta < 125  
+/- 2.0  
+/- 3.0  
+/- 4.0  
C
°C  
Resolution  
°C /LSB  
6 of 31  
Rev. 0.5 November 2007  
Unbuffered SoDIMM  
DDR3 SDRAM  
7.0 Input/Output Functional Description  
Symbol  
Type  
Function  
The system clock inputs. All address and command lines are sampled on the cross point of the  
rising edge of CK and falling edge of CK. A Delay Locked Loop (DLL) circuit is driven from the  
clock inputs and output timing for read operations is synchronized to the input clock.  
CK0-CK1  
CK0-CK1  
Input  
Activates the DDR3 SDRAM CK signal when high and deactivates the CK signal when low. By deactivating the clocks,  
CKE low initiates the Power Down mode or the Self Refresh mode.  
CKE0-CKE1  
S0-S1  
Input  
Input  
Enables the associated DDR3 SDRAM command decoder when low and disables the command  
decoder when high. When the command decoder is disabled, new commands are ignored but previous operations  
continue. Rank 0 is selected by S0; Rank 1 is selected by S1.  
When sampled at the cross point of the rising edge of CK and falling edge of CK, signals CAS, RAS, and WE define  
the operation to be executed by the SDRAM.  
RAS, CAS, WE  
BA0-BA2  
Input  
Input  
Input  
Selects which DDR3 SDRAM internal bank of eight is activated.  
Asserts on-die termination for DQ, DM, DQS, and DQS signals if enabled via the DDR3  
SDRAM mode register.  
ODT0-ODT1  
During a Bank Activate command cycle, defines the row address when sampled at the cross  
point of the rising edge of CK and falling edge of CK. During a Read or Write command cycle,  
defines the column address when sampled at the cross point of the rising edge of CK and falling  
edge of CK. In addition to the column address, AP is used to invoke autoprecharge operation  
at the end of the burst read or write cycle. If AP is high, autoprecharge is selected and  
BA0-BAn defines the bank to be precharged. If AP is low, autoprecharge is disabled. During a  
Precharge command cycle, AP is used in conjunction with BA0-BAn to control which bank(s) to  
precharge. If AP is high, all banks will be precharged regardless of the state of BA0-BAn  
inputs. If AP is low, then BA0-BAn are used to define which bank to precharge.  
A0-A9,  
A10/AP,  
A11  
A12/BC  
A13-A15  
Input  
A12(BC) is sampled during READ and WRITE commands to determine if burst chop (on-thefly)  
will be performed (HIGH, no burst chop; LOW, burst chopped)  
DQ0-DQ63  
DM0-DM7  
I/O  
Data Input/Output pins.  
The data write masks, associated with one data byte. In Write mode, DM operates as a byte  
mask by allowing input data to be written if it is low but blocks the write operation if it is high. In  
Read mode, DM lines have no effect.  
Input  
The data strobes, associated with one data byte, sourced with data transfers. In Write mode,  
the data strobe is sourced by the controller and is centered in the data window. In Read mode,  
the data strobe is sourced by the DDR3 SDRAMs and is sent at the leading edge of the data  
window. DQS signals are complements, and timing is relative to the crosspoint of respective  
DQS and DQS.  
DQS0-DQS7  
DQS0-DQS7  
I/O  
VDD,VDDSPD,  
VSS  
Supply  
Supply  
Power supplies for core, I/O, Serial Presence Detect, Temp sensor, and ground for the module.  
Reference voltage for SSTL15 inputs.  
VREFDQ,  
VREFCA  
This is a bidirectional pin used to transfer data into or out of the SPD EEPROM and Temp sensor. A resistor must be  
connected from the SDA bus line to VDDSPD on the system planar to  
act as a pull up.  
SDA  
I/O  
SCL  
SA0-SA1  
TEST  
Input  
Input  
I/O  
This signal is used to clock data into and out of the SPD EEPROM and Temp sensor.  
Address pins used to select the Serial Presence Detect and Temp sensor base address.  
The TEST pin is reserved for bus analysis tools and is not connected on normal memory modules  
The EVENT pin is reserved for use to flag critical module temperature. A resistor may be connected from EVENT bus  
line to VDDSPD on the system planar to act as a pullup.  
Wire-OR  
Out  
EVENT  
RESET  
Input  
RESET In Active Low This signal resets the DDR3 SDRAM  
7 of 31  
Rev. 0.5 November 2007  
Unbuffered SoDIMM  
DDR3 SDRAM  
8.0 Functional Block Diagram:  
8.1 512MB, 64Mx64 Module(Populated as 1 rank of x16 DDR3 SDRAMs)  
SCL  
SA0  
SA1  
SCL  
A0  
240Ω  
DQS0  
DQS0  
DM0  
LDQS  
LDQS  
LDM  
± 1%  
Temp Sensor  
(with SPD)  
EVENT  
SDA  
ZQ  
A1  
The SPD may be  
DQ[0:7]  
DQS1  
DQS1  
DM1  
DQ[0:7]  
UDQS  
UDQS  
UDM  
A2  
integrated with the Temp  
Sensor or may be  
D0  
EVENT  
a separate component.  
DQ[8:15]  
DQ[8:15]  
V
V
tt  
tt  
V
SPD  
SPD/TS  
DD  
240Ω  
DQS2  
DQS2  
LDQS  
LDQS  
LDM  
± 1%  
V
V
CA  
D0 - D3  
REF  
ZQ  
DM2  
DQ  
D0 - D3  
REF  
DQ[16:23]  
DQS3  
DQ[0:7]  
UDQS  
UDQS  
UDM  
D1  
V
D0 - D3  
DD  
DQS3  
V
D0 - D3, SPD, Temp sensor  
D0 - D3  
DM3  
SS  
DQ[8:15]  
DQ[24:31]  
CK0  
CK0  
CK1  
CK1  
ODT1  
S1  
D0 - D3  
Terminated near  
card edge  
NC  
240Ω  
DQS4  
DQS4  
LDQS  
LDQS  
LDM  
± 1%  
ZQ  
DM4  
NC  
DQ[32:39]  
DQS5  
DQ[0:7]  
UDQS  
UDQS  
UDM  
Temp sensor  
D0 - D3  
EVENT  
RESET  
D2  
DQS5  
DM5  
DQ[8:15]  
DQ[40:47]  
D0  
D1  
D2  
D3  
240Ω  
DQS6  
DQS6  
LDQS  
LDQS  
LDM  
± 1%  
ZQ  
DM6  
DQ[48:55]  
DQS7  
DQ[0:7]  
UDQS  
UDQS  
UDM  
D3  
Address and Controllines  
DQS7  
DM7  
DQ[8:15]  
DQ[56:63]  
Note :  
1. DQ wiring may differ from that shown  
however ,DQ, DM, DQS and DQS  
relationships are maintained as shown  
Vtt  
Vtt  
Rank0  
V
DD  
8 of 31  
Rev. 0.5 November 2007  
Unbuffered SoDIMM  
DDR3 SDRAM  
8.2 1GB, 128Mx64 Module(Populated as 2 rank of x16 DDR3 SDRAMs)  
SCL  
SA0  
SA1  
SCL  
A0  
240Ω  
240Ω  
DQS0  
DQS0  
DM0  
LDQS  
LDQS  
LDM  
LDQS  
LDQS  
LDM  
± 1%  
± 1%  
Temp Sensor  
(with SPD)  
EVENT  
SDA  
ZQ  
ZQ  
A1  
The SPD may be  
DQ[0:7]  
DQS1  
DQS1  
DM1  
DQ[0:7]  
UDQS  
UDQS  
UDM  
DQ[0:7]  
UDQS  
UDQS  
UDM  
A2  
integrated with the Temp  
Sensor or may be  
D0  
D4  
EVENT  
a separate component.  
DQ[8:15]  
DQ[8:15]  
DQ[8:15]  
240Ω  
240Ω  
DQS2  
DQS2  
LDQS  
LDQS  
LDM  
LDQS  
LDQS  
LDM  
± 1%  
± 1%  
ZQ  
ZQ  
DM2  
DQ[16:23]  
DQS3  
DQ[0:7]  
DQ[0:7]  
UDQS  
UDQS  
UDM  
UDQS  
UDQS  
UDM  
D1  
D5  
V
V
tt  
DQS3  
tt  
DM3  
V
V
SPD  
CA  
SPD/TS  
D0 - D7  
D0 - D7  
D0 - D7  
DD  
DQ[8:15]  
DQ[8:15]  
DQ[24:31]  
V
REF  
DQ  
REF  
V
DD  
V
D0 - D7, SPD, Temp sensor  
D0 - D3  
SS  
240Ω  
240Ω  
DQS4  
DQS4  
LDQS  
LDQS  
LDM  
LDQS  
LDQS  
LDM  
CK0  
CK1  
CK0  
CK1  
± 1%  
± 1%  
ZQ  
ZQ  
DM4  
D4 - D7  
DQ[32:39]  
DQS5  
DQ[0:7]  
DQ[0:7]  
UDQS  
UDQS  
UDM  
D0 - D3  
UDQS  
UDQS  
UDM  
D2  
D6  
DQS5  
D4 - D7  
DM5  
DQ[8:15]  
DQ[8:15]  
Temp Sensor  
D0 - D7  
DQ[40:47]  
EVENT  
RESET  
240Ω  
240Ω  
DQS6  
DQS6  
LDQS  
LDQS  
LDM  
LDQS  
LDQS  
LDM  
± 1%  
± 1%  
ZQ  
ZQ  
DM6  
DQ[48:55]  
DQS7  
DQ[0:7]  
DQ[0:7]  
UDQS  
UDQS  
UDM  
UDQS  
UDQS  
UDM  
D3  
D7  
DQS7  
D4  
D0  
D5  
D6  
D2  
D7  
V4  
DM7  
V1  
V1  
V2  
V2  
V3  
DQ[8:15]  
DQ[8:15]  
DQ[56:63]  
Rank0  
Rank1  
V3  
V4  
D3  
D1  
Vtt  
Vtt  
Vtt  
V
V
DD  
DD  
Address and Controllines  
Note :  
1. DQ wiring may differ from that shown  
however ,DQ, DM, DQS and DQS  
relationships are maintained as shown  
9 of 31  
Rev. 0.5 November 2007  
Unbuffered SoDIMM  
DDR3 SDRAM  
8.3 2GB, 256Mx64 Module(Populated as 2 rank of x8 DDR3 SDRAMs)  
V
V
DD  
DD  
Vtt  
Vtt  
240Ω  
240Ω  
240Ω  
240Ω  
DQS3  
DQS3  
DQS4  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
± 1%  
± 1%  
± 1%  
± 1%  
DQS4  
ZQ  
ZQ  
ZQ  
ZQ  
DM3  
DM4  
DQ[0:7]  
DQ[0:7]  
DQ[0:7]  
DQ[0:7]  
DQ[24:31]  
DQ[32:39]  
D11  
D3  
D11  
D3  
240Ω  
240Ω  
240Ω  
240Ω  
DQS1  
DQS1  
DQS6  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
± 1%  
± 1%  
± 1%  
± 1%  
DQS6  
ZQ  
ZQ  
ZQ  
ZQ  
DM1  
DM6  
DQ[0:7]  
DQ[0:7]  
DQ[0:7]  
DQ[0:7]  
DQ[8:15]  
DQ[48:55]  
D1  
D9  
D1  
D9  
240Ω  
240Ω  
240Ω  
240Ω  
DQS0  
DQS0  
DM0  
DQS7  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
± 1%  
± 1%  
± 1%  
± 1%  
DQS7  
ZQ  
ZQ  
Rank0  
Rank1  
ZQ  
ZQ  
DM7  
DQ[0:7]  
DQ[0:7]  
DQ[0:7]  
DQ[0:7]  
DQ[0:7]  
DQ[56:63]  
D0  
D8  
D0  
D8  
240Ω  
240Ω  
240Ω  
240Ω  
DQS2  
DQS2  
DQS5  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
± 1%  
± 1%  
± 1%  
± 1%  
DQS5  
ZQ  
ZQ  
ZQ  
ZQ  
D10  
DM2  
DM5  
DQ[0:7]  
DQ[0:7]  
DQ[0:7]  
DQ[0:7]  
DQ[16:23]  
DQ[40:47]  
D2  
D10  
D2  
V2  
V1  
V1  
V8  
D9  
V3  
D3  
D12  
D5  
D6  
V7  
V9  
V5  
V
V
tt  
tt  
V
SPD  
CA  
SPD/TS  
D0 - D15  
D0 - D15  
D0 - D15  
D8  
D10  
D7  
DD  
V4  
V4  
V6  
V6  
V
V
REF  
DQ  
REF  
SCL  
SA0  
SA1  
SCL  
Temp Sensor  
A0  
A1  
A2  
SDA  
V
D0  
D2  
D13  
D4  
D15  
DD  
(with SPD)  
EVENT  
V5  
tt  
The SPD may be  
V
D0 - D15, SPD, Temp sensor  
D0 - D7  
SS  
V3  
D1  
V7  
D14  
V
V1  
integrated with the Temp  
Sensor or may be  
CK0  
CK1  
CK0  
CK1  
D11  
EVENT  
a separate component.  
V2  
V9  
V8  
D8 - D15  
D0 - D7  
D8 - D15  
Address and Controllines  
Temp Sensor  
D0 - D7  
EVENT  
RESET  
Note :  
1. DQ wiring may differ from that shown  
however ,DQ, DM, DQS and DQS  
relationships are maintained as shown  
10 of 31  
Rev. 0.5 November 2007  
Unbuffered SoDIMM  
DDR3 SDRAM  
9.0 Absolute Maximum Ratings  
9.1 Absolute Maximum DC Ratings  
Symbol  
VDD  
Parameter  
Rating  
Units  
Notes  
1,3  
1,3  
1
Voltage on VDD pin relative to Vss  
Voltage on VDDQ pin relative to Vss  
Voltage on any pin relative to Vss  
-0.4 V ~ 1.975 V  
-0.4 V ~ 1.975 V  
-0.4 V ~ 1.975 V  
V
V
V
VDDQ  
VIN, VOUT  
TSTG  
Storage Temperature  
-55 to +100  
°C  
1, 2  
Note :  
1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and  
functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
Exposure to absolute maximum rating conditions for extended periods may affect reliability.  
2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2  
standard.  
3. VDD and VDDQ must be within 300mV of each other at all times;and VREF must be not greater than 0.6XVDDQ, When VDD and VDDQ are less than  
500mV; VREF may be equal to or less than 300mV.  
9.2 DRAM Component Operating Temperature Range  
Symbol  
Parameter  
Normal Operating Temperature Range  
rating  
0 to 85  
85 to 95  
Unit  
°C  
Notes  
1,2  
TOPER  
Extended Temperature Range (Optional)  
°C  
1,3  
Note :  
1. Operating Temperature TOPER is the case surface temperature on the center/top side of the DRAM. For measurement conditions, please refer to the  
JEDEC document JESD51-2.  
2. The Normal Temperature Range specifies the temperatures where all DRAM specifications will be supported. During operation, the DRAM case tem-  
perature must be maintained between 0-85°C under all operating conditions  
3. Some applications require operation of the Extended Temperature Range between 85°C and 95°C case temperature. Full specifications are guaran-  
teed in this range, but the following additional conditions apply:  
a) Refresh commands must be doubled in frequency, therefore reducing the Refresh interval tREFI to 3.9us. It is also possible to specify a component  
with 1X refresh (tREFI to 7.8us) in the Extended Temperature Range. Please refer to supplier data sheet and/or the DIMM SPD for option availability.  
b) If Self-Refresh operation is required in the Extended Temperature Range, then it is mandatory to either use the Manual Self-Refresh mode with  
Extended Temperature Range capability (MR2 A6 = 0b and MR2 A7 = 1b) or enable the optional Auto Self-Refresh mode (MR2 A6 = 1b and MR2 A7 =  
0b). Please refer to the supplier data sheet and/or the DIMM SPD for Auto Self-Refresh option availability, Extended Temperature Range support and  
tREFI requirements in the Extended Temperature Range.  
10.0 AC & DC Operating Conditions  
10.1 Recommended DC Operating Conditions (SSTL - 15)  
Rating  
Typ.  
1.5  
Symbol  
Parameter  
Units  
Notes  
Min.  
1.425  
1.425  
Max.  
1.575  
1.575  
VDD  
Supply Voltage  
Supply Voltage for Output  
V
V
1,2  
1,2  
VDDQ  
1.5  
Note :  
1. Under all conditions VDDQ must be less than or equal to VDD.  
2. VDDQ tracks with VDD. AC parameters are measured with VDD and VDDQ tied together.  
11 of 31  
Rev. 0.5 November 2007  
Unbuffered SoDIMM  
DDR3 SDRAM  
11.0 AC & DC Input Measurement Levels  
11.1 AC and DC Logic input levels for single-ended signals  
DDR3-800/1066/1333  
Symbol  
Parameter  
Unit  
Notes  
Min.  
VREF + 100  
Max.  
VDD  
VIH(DC)  
VIL(DC)  
dc input logic high  
mV  
mV  
mV  
1
1
dc input logic low  
ac input logic high  
VSS  
VREF - 100  
-
V
IH(AC)  
VREF + 175  
1,2  
VIL(AC)  
ac input logic low  
-
VREF - 175  
0.51*VDDQ  
0.51*VDDQ  
mV  
V
1,2  
3,4  
3,4  
VREFDQ(DC)  
VREFCA(DC)  
I/O Reference Voltage(DQ)  
I/O Reference Voltage(CMD/ADD)  
0.49*VDDQ  
0.49*VDDQ  
V
Single Ended AC and DC input levels  
Note :  
1. For DQ and DM, VREF = VREFDQ . For input only pins except RESET, or VREF = VREFCA  
2. See "Overshoot and Undershoot specifications" on component datasheet  
3. The ac peak noise on VREF may not allow VREF to deviate from VREF(DC) by more than ± 1% VDD (for reference : approx. ± 15mV)  
4. For reference : approx. VDD/2 ± 15mV  
5. Single ended swing requirement for DQS - DQS is 350 mV(peak to peak). Differential swing requirement for DQS - DQS is 700 mV(peak to peak).  
The dc-tolerance limits and ac-noise limits for the reference voltages VREFCA and VREFDQ are illustrate in Figure 1. It shows a valid reference voltage  
VREF(t) as a function of time. (VREF stands for VREFCA and VREFDQ likewise).  
VREF(DC) is the linear average of VREF(t) over a very long period of time (e.g. 1 sec). This average has to meet the min/max requiremts in above  
table. Furthermore VREF(t) may temporarily deviate from VREF(DC) by no more than ± 1% VDD.  
voltage  
VDD  
V
(t)  
Ref  
V
ac-noise  
Ref  
V
(DC)max  
Ref  
V
(DC)  
Ref  
VDD/2  
V
(DC)min  
Ref  
VSS  
time  
Illustration of VREF(DC) tolerance and VREF ac-noise limits  
The voltage levels for setup and hold time measurements VIH(AC), VIH(DC), VIL(AC) and VIL(DC) are dependent on VRef.  
"VRef" shall be understood as VRef(DC), as defined in above Figure.  
This clarifies, that dc-variations of VRef affect the absolute voltage a signal has to reach to achieve a valid high or low level and therefore the time to  
which setup and hold is measured. System timing and voltage budgets need to account for VRef(DC) deviations from the optimum position within the  
data-eye of the input signals.  
This also clarifies that the DRAM setup/hold specification and derating values need to include time and voltage associated with VRef ac-noise. Timing  
and voltage effects due to ac-noise on VRef up to the specified limit (+/-1% of VDD) are included in DRAM timings and their associated deratings.  
12 of 31  
Rev. 0.5 November 2007  
Unbuffered SoDIMM  
DDR3 SDRAM  
11.2 Differential swing requirement for differntial signals  
Definition of differntial ac-swing and "time above ac level tDVAC  
tDVAC  
VIHdiff(ac) min  
VIHdiff min  
VIHdiff(dc) min  
0.0  
CK - CK  
DQS - DQS  
VILdiff(dc) max  
VILdiff max  
VILdiff(ac) max  
differential  
voltage  
time  
half cycle  
tDVAC  
time  
Differential swing requirement for clock (CK - CK) and strobe (DQS - DQS)  
DDR3-800 / 1066 / 1333  
Symbol  
Parameter  
unit  
Note  
min  
+0.2  
max  
VIHdiff  
VILdiff  
differential input high  
differential input low  
note 3  
V
V
V
V
1
1
2
2
note 3  
-0.2  
VIHdiff(ac)  
VILdiff(ac)  
differential input high ac  
differential input low ac  
2 x (VIH(ac)-Vref)  
note 3  
note 3  
2 x (Vref - VIL(ac))  
Notes:  
1. used to define a differential signal slew-rate.  
2. for CK - CK use VIH/VIL(ac) of ADD/CMD and VREFCA; for DQS - DQS, DQSL - DQSL, DQSU - DQSU use VIH/VIL(ac) of DQs and VREFDQ; if a  
reduced ac-high or ac-low level is used for a signal group, then the reduced level applies also here.  
3. these values are not defined, however they single-ended signals CK, CK, DQS, DQS, DQSL, DQSL, DQSU, DQSU need to be within the respective  
limits (VIH(dc) max, VIL(dc)min) for single-ended signals as well as the limitations for overshoot and undershoot.  
Allowed time before ringback (tDVAC) for CLK - CLK and DQS - DQS.  
tDVAC [ps] @ |VIH/Ldiff(ac)| = 350mV  
tDVAC [ps] @ |VIH/Ldiff(ac)| = 300mV  
Slew Rate [V/ns]  
min  
75  
57  
50  
38  
34  
29  
22  
13  
0
max  
min  
175  
170  
167  
163  
162  
161  
159  
155  
150  
150  
max  
> 4.0  
4.0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
3.0  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
< 1.0  
0
13 of 31  
Rev. 0.5 November 2007  
Unbuffered SoDIMM  
DDR3 SDRAM  
11.2.1 Single-ended requirements for differential signals  
Each individual component of a differential signal (CK, DQS, DQSL, DQSU, CK, DQS, DQSL, or DQSU) has also to comply with certain  
requirements for single-ended signals.  
CK and CK have to approximately reach VSEHmin / VSELmax (approximately equal to the ac-levels ( VIH(ac) / VIL(ac) ) for ADD/CMD  
signals) in every half-cycle.  
DQS, DQSL, DQSU, DQS, DQSL have to reach VSEHmin / VSELmax (approximately the ac-levels ( VIH(ac) / VIL(ac) ) for DQ signals)  
in every half-cycle preceeding and following a valid transition.  
Note that the applicable ac-levels for ADD/CMD and DQ’s might be different per speed-bin etc. E.g. if VIH150(ac)/VIL150(ac) is used for  
ADD/CMD signals, then these ac-levels apply also for the single-ended signals CK and CK  
VDD or VDDQ  
VSEH min  
VSEH  
VDD/2 or VDDQ/2  
CK or DQS  
VSEL max  
VSEL  
VSS or VSSQ  
time  
Single-ended requirement for differential signals.  
Note that while ADD/CMD and DQ signal requirements are with respect to Vref, the single-ended components of differential signals have  
a requirement with respect to VDD/2; this is nominally the same. The transition of single-ended signals through the ac-levels is used to  
measure setup time. For single-ended components of differential signals the requirement to reach VSELmax, VSEHmin has no bearing  
on timing, but adds a restriction on the common mode charateristics of these signals.  
Each single ended levels for CK, DQS, DQSL, DQSU, CK, DQS, DQSL or DQSU  
DDR3-800/1066/1333  
Symbol  
VSEH  
VSEL  
Parameter  
Unit  
Notes  
Min  
VIH(ac)-VREFDQ+VDDQ/2  
VIH(ac)-VREFCA+VDDQ/2  
Note3  
Max  
Note3  
Note3  
Single-ended high-level for strobes  
Single-ended high-level for CK, CK  
Single-ended low-level for strobes  
Single-ended low-level for CK, CK  
V
V
V
V
1, 2  
1, 2  
1, 2  
1, 2  
VIL(ac)+VREFDQ-VDDQ/2  
VIL(ac)+VREFCA-VDDQ/2  
Note3  
Notes:  
1. for CK, CK use VIH/VIL(ac) of ADD/CMD; for strobes (DQS, DQS, DQSL, DQSL, DQSU, DQSU) use VIH/VIL(ac) of DQs.  
2. VIH(ac)/VIL(ac) for DQs is based on VREFDQ; VIH(ac)/VIL(ac) for ADD/CMD is based on VREFCA; if a reduced ac-high or ac-low level is used for a  
signal group, then the reduced level applies also here  
3. these values are not defined, however they single-ended signals CK, CK, DQS, DQS, DQSL, DQSL, DQSU, DQSU need to be within the respective  
limits (VIH(dc) max, VIL(dc)min) for single-ended signals as well as the limitations for overshoot and undershoot.  
14 of 31  
Rev. 0.5 November 2007  
Unbuffered SoDIMM  
DDR3 SDRAM  
11.3 AC and DC logic input levels for Differential Signals  
Differential DC and AC input levels  
DDR3-800/1066/1333  
Symbol  
Parameter  
Unit  
Notes  
Min  
+ 200  
-
Max  
-
- 200  
VIHdiff  
VILdiff  
Differential input logic high  
Differential input logic low  
mV  
1
Note :  
1. Refer to "Overshoot and Undershoot specifications" on component datasheet  
11.4 Differential Input Cross Point Voltage  
To guarantee tight setup and hold times as well as output skew parameters with respect to clock and strobe, each cross point voltage of differential input  
signals (CK, CK and DQS, DQS) must meet the requirements in below table. The differential input cross point voltage VIX is measured from the actual  
cross point of true and complement signal to the midlevel between of VDD and VSS.  
VDD  
CK, DQS  
VIX  
VDD/2  
VIX  
VIX  
CK, DQS  
VSS  
Vix Definition  
Cross point voltage for differential input signals (CK, DQS)  
DDR3-800/1066/1333  
Symbol  
Parameter  
Unit  
Notes  
Min  
Max  
150  
175  
150  
-150  
-175  
-150  
mV  
mV  
mV  
VIX  
VIX  
Differential input Cross point voltage relative to VDD/2 for CK/CK  
Differential input Cross point voltage relative to VDD/2 for DQS/DQS  
1
Note 1: Extended range for Vix is only allowed for clock and if single-ended clock input signals CK and CK are monotonic, have a single-ended swing  
VSEL/VSEH of at least VDD/2 +/-250 mV and if the differential slew rate of CK-CK is larger than 3 V/ns.  
15 of 31  
Rev. 0.5 November 2007  
Unbuffered SoDIMM  
DDR3 SDRAM  
11.5 Slew rate definition for Single Ended Input Signals  
11.5.1 Input Slew Rate for Input Setup Time (tIS) and Data Setup Time (tDS)  
Setup (tIS and tDS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VRef and the first crossing of  
VIH(AC)min. Setup (tIS and tDS) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of VRef and the first crossing  
of VIL(AC)max.  
11.5.2 Input Slew Rate for Input Hold Time (tIH) and Data Hold Time (tDH)  
Hold nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VIL(DC)max and the first crossing of VRef. Hold (tIH &  
tDH) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of VIH(DC)min and the first crossing of VRef  
Measured  
From  
Description  
Defined by  
Applicable for  
To  
Vih(AC)min-Vref  
Delta TRS  
Vref-Vil(AC)max  
Delta TFS  
Vref-Vil(DC)max  
Delta TFH  
Vih(DC)min-Vref  
Delta TRH  
Input slew rate for rising edge  
Input slew rate for falling edge  
Input slew rate for rising edge  
Input slew rate for falling edge  
Vref  
Vref  
Vih(AC)min  
Setup  
(tIS,tDS)  
Vil(AC)max  
Vref  
Vil(DC)max  
Vih(DC)min  
Hold  
(tIH,tDH)  
Vref  
Single Ended Input Slew Rate definition  
Notes: This nominal slew rate applies for linear signal waveforms.  
V
V
V
V
V
V
V
V
DDQ  
IH(ac)  
IH(dc)  
REF  
DDQ  
IH(ac)  
IH(dc)  
REF  
V
V
V
V
V
V
min  
min  
min  
min  
V
V
SWING(MAX)  
SWING(MAX)  
max  
max  
max  
max  
IL(dc)  
IL(ac)  
SSQ  
IL(dc)  
IL(ac)  
SSQ  
delta TRS  
delta TFS  
delta TFH  
delta TRH  
< Figure : Input slew rate for setup>  
< Figure : Input slew rate for Hold>  
Input Nominal Slew Rate definition for Singel ended Signals  
11.6 Slew rate definition for Differential Input Signals  
Measured  
From  
Description  
Defined by  
To  
VIHdiffmin - VILdiffmax  
Delta TRdiff  
VIHdiffmin - VILdiffmax  
Delta TFdiff  
Differential input slew rate for rising edge (CK-  
VILdiffmax  
VIHdiffmin  
VIHdiffmin  
CK and DQS-DQS)  
Differential input slew rate for falling edge (CK-  
CK and DQS-DQS)  
VILdiffmax  
Differential input slew rate definition  
Note : The differential signal (i.e. CK - CK and DQS - DQS) must be linear between these thresholds  
VIHdiffmin  
V
REF  
VILdiffmax  
delta TFdiff  
delta TRdiff  
Differential Input Slew Rate definition for DQS, DQS and CK, CK  
16 of 31  
Rev. 0.5 November 2007  
Unbuffered SoDIMM  
DDR3 SDRAM  
12.0 AC and DC Output Measurement Levels  
12.1 Single Ended AC and DC Output Levels  
Single Ended AC and DC output levels  
Symbol Parameter  
DDR3-800/1066/1333  
Units  
Notes  
VOH(DC) DC output high measurement level (for IV curve linearity)  
0.8 x VDDQ  
V
VOM(DC) DC output mid measurement level (for IV curve linearity)  
VOL(DC) DC output low measurement level (for IV curve linearity)  
VOH(AC) AC output high measurement level (for output SR)  
VOL(AC) AC output low measurement level (for output SR)  
0.5 x VDDQ  
0.2 x VDDQ  
V
V
V
V
VTT + 0.1 x VDDQ  
VTT - 0.1 x VDDQ  
1
1
Note :  
1. The swing of +/-0.1xVDDQ is based on approximately 50% of the static single ended output high or low swing with a driver impedance of 34ohms and  
an effective test load of 25ohms to VTT=VDDQ/2.  
12.2 Differential AC and DC Output Levels  
Differential AC and DC output levels  
Symbol Parameter  
VOHdiff(AC) AC differential output high measurement level (for output SR)  
VOLdiff(DC) AC differential output low measurement level (for output SR)  
DDR3-800/1066/1333  
+0.2 x VDDQ  
Units  
V
V
Notes  
1
1
-0.2 x VDDQ  
Note :  
1. The swing of +/-0.2xVDDQ is based on approximately 50% of the static singel ended output high or low swing with a driver impedance of 34ohms and  
an effective test load of 25ohms to VTT=VDDQ/2 at each of the differential outputs  
17 of 31  
Rev. 0.5 November 2007  
Unbuffered SoDIMM  
DDR3 SDRAM  
12.3.Single Ended Output Slew Rate  
With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOL(AC) and VOH(AC)  
for single ended signals as shown in below Table and figure.  
Single Ended Output slew rate definition  
Measured  
Description  
Defined by  
From  
To  
VOH(AC)-VOL(AC)  
Delta TRse  
Single ended output slew rate for rising edge  
VOL(AC)  
VOH(AC)  
VOH(AC)-VOL(AC)  
Delta TFse  
Single ended output slew rate for falling edge  
VOH(AC)  
VOL(AC)  
Single Ended Output slew rate  
DDR3-800  
DDR3-1066  
DDR3-1333  
Parameter  
Symbol  
SRQse  
Units  
Min  
2.5  
Max  
Min  
2.5  
Max  
Min  
Max  
Single ended output slew rate  
5
5
2.5  
5
V/ns  
Note : Output slew rate is verified by design and characterization, and may not be subject to production test.  
For Ron=RZQ/7 setting  
V
V
DDQ  
OH(AC)  
V
REF  
V
V
OL(AC)  
SSQ  
delta TFS  
delta TRS  
Single Ended Output Slew Rate definition  
12.4 Differential Output Slew Rate  
With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOLdiff(AC) and  
VOHdiff(AC) for differential signals as shown in below Table and figure.  
Differential Output slew rate definition  
Measured  
Description  
Defined by  
From  
To  
VOHdiff(AC)-VOLdiff(AC)  
Delta TRdiff  
Differential output slew rate for rising edge  
Differential output slew rate for falling edge  
Differential Output slew rate  
VOLdiff(AC)  
VOHdiff(AC)  
VOHdiff(AC)-VOLdiff(AC)  
Delta TFdiff  
VOHdiff(AC)  
VOLdiff(AC)  
DDR3-800  
Max  
10  
DDR3-1066  
DDR3-1333  
Parameter  
Symbol  
SRQse  
Units  
Min  
5
Min  
Max  
Min  
Max  
10  
Single ended output slew rate  
5
10  
5
V/ns  
Note : Output slew rate is verified by design and characterization, and may not be subject to production test.  
For Ron=RZQ/7 setting  
V
V
DDQ  
OHdiff(AC)  
V
REF  
V
V
OLdiff(AC)  
SSQ  
delta TFdiff  
delta TRdiff  
Differential Output Slew Rate definition  
18 of 31  
Rev. 0.5 November 2007  
Unbuffered SoDIMM  
DDR3 SDRAM  
13.0 IDD specification  
(IDD values are for full operating range of Voltage and Temperature)  
Symbol  
Conditions  
Operating one bank active-precharge current;  
CK = CK(IDD), RC = RC(IDD), RAS = RASmin(IDD);  
CKE is HIGH, CS is HIGH between valid commands;  
Max  
Units  
Notes  
t
t
t
t
t
t
IDD0  
TBD  
mA  
Address bus inputs are SWITCHING; Data bus inputs are SWITCHING  
Operating one bank active-read-precharge current;  
IOUT = 0mA; BL = 8, CL = CL(IDD), AL = 0; CK = CK(IDD), RC = RC (IDD), RAS = RASmin(IDD),  
t
t
t
t
t
t
IDD1  
TBD  
mA  
t
t
RCD = RCD(IDD); CKE is HIGH, CS is HIGH between valid commands;  
Address bus inputs are SWITCHING; Data pattern is same as IDD4W  
Precharge power-down current;  
t
IDD2P  
IDD2Q  
IDD2N  
IDD3P  
t
TBD  
TBD  
TBD  
TBD  
mA  
mA  
mA  
mA  
All banks idle; CK = CK(IDD); CKE is LOW;  
Other control and address bus inputs are STABLE; Data bus inputs are FLOATING  
Precharge quiet standby current;  
t
t
All banks idle; CK = CK(IDD); CKE is HIGH, CS is HIGH;  
Other control and address bus inputs are STABLE; Data bus inputs are FLOATING  
Precharge standby current;  
t
t
All banks idle; CK = CK(IDD); CKE is HIGH, CS is HIGH;  
Other control and address bus inputs are SWITCHING; Data bus inputs are SWITCHING  
Active power-down current;  
t
t
All banks open; CK = CK(IDD); CKE is LOW; Other control and address bus inputs are STABLE; Data  
bus inputs are FLOATING  
Active standby current;  
All banks open; CK = CK(IDD), RAS = RASmax(IDD), RP = RP(IDD);  
CKE is HIGH, CS is HIGH between valid commands;  
t
t
t
t
t
t
IDD3N  
IDD4W  
IDD4R  
TBD  
TBD  
TBD  
mA  
mA  
mA  
Other control and address bus inputs are SWITCHING; Data bus inputs are SWITCHING  
Operating burst write current;  
All banks open, Continuous burst writes; BL = 8, CL = CL(IDD), AL = 0; CK = CK(IDD), RAS = RAS-  
t
t
t
t
t
t
max(IDD), RP = RP(IDD); CKE is HIGH, CS is HIGH between valid commands; Address bus inputs  
are SWITCHING;Data bus inputs are SWITCHING  
Operating burst read current;  
All banks open, Continuous burst reads, IOUT = 0mA; BL = 8, CL = CL(IDD), AL = 0; CK = CK(IDD),  
t
t
t
t
t
t
RAS = RASmax(IDD), RP = RP(IDD); CKE is HIGH, CS is HIGH between valid commands; Address  
bus inputs are SWITCHING; Data pattern is same as IDD4W  
Burst refresh current;  
CK = CK(IDD); Refresh command at every RFC(IDD) interval;  
t
t
t
IDD5B  
IDD6  
TBD  
TBD  
TBD  
mA  
mA  
mA  
CKE is HIGH, CS is HIGH between valid commands;  
Other control and address bus inputs are SWITCHING; Data bus inputs are SWITCHING  
Self refresh current;  
CK and CK at 0V; CKE 0.2V;  
Other control and address bus inputs are FLOATING; Data bus inputs are FLOATING  
Extended Temperature Range Self-Refresh Current;  
CK and CK at 0V; CKE 0.2V;  
Other control and address inputs are FLOATING; Data Bus inputs are FLOATING, PASR disabled,  
Applicable for MR2 setting A6=0 and A7=1  
IDD6ET  
Operating bank interleave read current;  
All bank interleaving reads, IOUT = 0mA; BL = 8, CL = CL(IDD), AL = RCD(IDD)-1* CK(IDD); CK =  
t
t
t
IDD7  
t
t
t
t
t
t
t
TBD  
mA  
CK(IDD), RC = RC(IDD), RRD = RRD(IDD), RCD = 1* CK(IDD);  
CKE is HIGH, CS is HIGH between valid commands;  
Address bus inputs are STABLE during DESELECTs; Data pattern is same as IDD4R;  
19 of 31  
Rev. 0.5 November 2007  
Unbuffered SoDIMM  
DDR3 SDRAM  
13.1 IDD specification  
M471B6474DZ1 : 512MB (64Mx64) Module  
F7  
F8  
G8  
H9  
Symbol  
Units  
Notes  
(DDR3 - 800 @ CL = 6)  
(DDR3 - 1066 @ CL = 7)  
(DDR3 - 1066 @ CL = 8)  
(DDR3 - 1333 @ CL = 9)  
IDD0  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
IDD1  
IDD2P  
IDD2Q  
IDD2N  
IDD3P  
IDD3N  
IDD4W  
IDD4R  
IDD5B  
IDD6  
IDD6ET  
IDD6TC  
IDD7  
M471B2874DZ1 : 1GB (128Mx64) Module  
F7  
F8  
G8  
H9  
Symbol  
Units  
Notes  
(DDR3 - 800 @ CL = 6)  
(DDR3 - 1066 @ CL = 7)  
(DDR3 - 1066 @ CL = 8)  
(DDR3 - 1333 @ CL = 9)  
IDD0  
IDD1  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
IDD2P  
IDD2Q  
IDD2N  
IDD3P  
IDD3N  
IDD4W  
IDD4R  
IDD5B  
IDD6  
IDD6ET  
IDD6TC  
IDD7  
M471B5673DZ1 : 2GB (256Mx64) Module  
F7  
F8  
G8  
H9  
Symbol  
Units  
Notes  
(DDR3 - 800 @ CL = 6)  
(DDR3 - 1066 @ CL = 7)  
(DDR3 - 1066 @ CL = 8)  
(DDR3 - 1333 @ CL = 9)  
IDD0  
IDD1  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
IDD2P  
IDD2Q  
IDD2N  
IDD3P  
IDD3N  
IDD4W  
IDD4R  
IDD5B  
IDD6  
IDD6ET  
IDD6TC  
IDD7  
20 of 31  
Rev. 0.5 November 2007  
Unbuffered SoDIMM  
DDR3 SDRAM  
14.0 Input/Output Capacitance  
14.1. 1Rx16 512MB SoDIMM  
M471B6474DZ1  
DDR3-1066  
DDR3-800  
Min  
Parameter  
Symbol  
Units  
Notes  
Notes  
Notes  
Max  
Min  
Max  
Input/output capacitance  
(DQ, DM, DQS, DQS, TDQS, TDQS)  
CIO  
-
-
TBD  
-
-
TBD  
pF  
pF  
Input capacitance  
(CK and CK)  
CCK  
TBD  
TBD  
Input capacitance  
(All other input-only pins)  
CI  
-
-
TBD  
TBD  
-
-
TBD  
TBD  
pF  
pF  
Input/output capacitance of ZQ pin  
CZQ  
14.2. 2Rx16 1GB SoDIMM  
M471B2874DZ1  
DDR3-1066  
DDR3-800  
Min  
Parameter  
Symbol  
Units  
Max  
Min  
Max  
Input/output capacitance  
(DQ, DM, DQS, DQS, TDQS, TDQS)  
CIO  
-
TBD  
-
TBD  
pF  
pF  
Input capacitance  
(CK and CK)  
CCK  
-
TBD  
-
TBD  
Input capacitance  
(All other input-only pins)  
CI  
-
-
TBD  
TBD  
-
-
TBD  
TBD  
pF  
pF  
Input/output capacitance of ZQ pin  
CZQ  
14.3. 2Rx8 2GB SoDIMM  
M471B5673DZ1  
DDR3-1066  
DDR3-800  
Min  
Parameter  
Symbol  
Units  
Max  
Min  
Max  
Input/output capacitance  
CIO  
-
TBD  
-
TBD  
pF  
pF  
(DQ, DM, DQS, DQS, TDQS, TDQS)  
Input capacitance  
(CK and CK)  
CCK  
-
TBD  
-
TBD  
Input capacitance  
CI  
-
-
TBD  
TBD  
-
-
TBD  
TBD  
pF  
pF  
(All other input-only pins)  
Input/output capacitance of ZQ pin  
CZQ  
21 of 31  
Rev. 0.5 November 2007  
Unbuffered SoDIMM  
DDR3 SDRAM  
15.0 Electrical Characteristics and AC timing  
(0 °C<TCASE 95 °C, VDDQ = 1.5V ± 0.075V; VDD = 1.5V ± 0.075V)  
15.1 Refresh Parameters by Device Density  
Parameter  
All Bank Refresh to active/refresh cmd time  
Symbol  
tRFC  
512Mb  
90  
1Gb  
110  
7.8  
2Gb  
160  
7.8  
4Gb  
300  
7.8  
8Gb  
350  
7.8  
Units  
ns  
0 °C TCASE 85°C  
7.8  
µs  
Average periodic refresh interval  
tREFI  
85 °C < TCASE 95°C  
3.9  
3.9  
3.9  
3.9  
3.9  
µs  
15.2 DDR3 SDRAM tRCD, tRP and tRC  
Speed  
Bin (CL - tRCD - tRP)  
Parameter  
CL  
DDR3-800  
DDR3-1066  
DDR3-1333  
Units  
Note  
6-6-6  
min  
6
7-7-7  
min  
7
8-8-8  
min  
8
9-9-9  
min  
9
tCK  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tRCD  
15  
13.13  
13.13  
37.5  
50.63  
7.5  
15  
13.5  
13.5  
36  
tRP  
15  
15  
tRAS  
37.5  
52.5  
10  
37.5  
52.5  
7.5  
10  
tRC  
49.5  
6
tRRD [1KB]  
tRRD [2KB]  
tFAW [1KB]  
tFAW [2KB]  
10  
10  
7.5  
30  
40  
37.5  
50  
37.5  
50  
50  
45  
DDR3-800 Speed Bins  
Speed  
DDR3-800  
6 - 6 - 6  
CL-nRCD-nRP  
Units  
Note  
Parameter  
Symbol  
tAA  
tRCD  
tRP  
tRC  
tRAS  
tCK(AVG)  
tCK(AVG)  
min  
15  
15  
15  
52.5  
37.5  
max  
20  
-
-
Intermal read command to first data  
ACT to internal read or write delay time  
PRE command period  
ACT to ACT or REF command period  
ACT to PRE command period  
CL = 5 / CWL = 5  
ns  
ns  
ns  
ns  
ns  
-
9*tREFI  
Reserved  
9)  
ns  
ns  
1)2)3)4)  
1)2)3)  
CL = 6 / CWL = 5  
2.5  
3.3  
Supported CL Settings  
Supported CWL Settings  
6
5
nCK  
nCK  
22 of 31  
Rev. 0.5 November 2007  
Unbuffered SoDIMM  
DDR3 SDRAM  
DDR3-1066 Speed Bins  
Speed  
CL-nRCD-nRP  
DDR3-1066  
7 - 7 - 7  
DDR3-1066  
8 - 8 - 8  
Units  
Note  
Parameter  
Symbol  
tAA  
tRCD  
tRP  
tRC  
min  
max  
20  
-
-
-
min  
15  
15  
15  
52.5  
37.5  
2.5  
max  
20  
-
-
-
Intermal read command to first data  
ACT to internal read or write delay time  
PRE command period  
ACT to ACT or REF command period  
ACT to PRE command period  
13.125  
13.125  
13.125  
50.625  
37.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tRAS  
9*tREFI  
3.3  
9*tREFI  
3.3  
8
CWL = 5  
CWL = 6  
CWL = 5  
CWL = 6  
CWL = 5  
CWL = 6  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
2.5  
1,2,3,6  
1,2,3,4  
4
1,2,3,4  
4
CL = 6  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
CL = 7  
1.875  
1.875  
<2.5  
<2.5  
Reserved  
ns  
ns  
CL = 8  
1.875  
<2.5  
1,2,3  
Supported CL Settings  
Supported CWL Settings  
6,7,8  
5,6  
6,8  
5,6  
nCK  
nCK  
DDR3-1333 Speed Bins  
Speed  
DDR3-1333  
9 -9 - 9  
CL-nRCD-nRP  
Units  
Note  
Parameter  
Intermal read command to first data  
ACT to internal read or write delay time  
PRE command period  
ACT to ACT or REF command period  
ACT to PRE command period  
Symbol  
tAA  
tRCD  
tRP  
tRC  
min  
13.5  
13.5  
13.5  
49.5  
36  
max  
20  
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
nCK  
nCK  
-
tRAS  
9*tREFI  
3.3  
8
1,2,3,7  
1,2,3,4,7  
4
CWL = 5  
CWL = 6  
CWL = 7  
CWL = 5  
CWL = 6  
CWL = 7  
CWL = 5  
CWL = 6  
CWL = 7  
CWL = 5,6  
CWL = 7  
CWL = 5,6  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
2.5  
CL = 6  
CL = 7  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
4
1,2,3,4,7  
1,2,3,4,  
4
1,2,3,7  
1,2,3,4,  
4
1,2,3,4  
4
1,2,3  
5
CL = 8  
CL = 9  
CL = 10  
1.875  
<2.5  
Reserved  
Reserved  
1.5  
1.5  
<1.875  
<1.875  
Reserved  
CWL = 7  
tCK(AVG)  
(Optional)  
6,8,9  
5,6,7  
Supported CL Settings  
Supported CWL Settings  
NOTES:  
Absolute Specification (TOPER;VDDQ=VDD=1.5V +/- 0.075V);  
1. The CL setting and CWL setting result in tCK(AVG).MIN and tCK(AVG).MAX requirements. When making a selection of tCK(AVG), both need to be ful-  
filed: Requirements from CL setting as well as requirements from CWL setting.  
2. tCK(AVG).MIN limits: Since CAS Latency is not purely analog - data and strobe output are synchronized by the DLL - all possible intermediate frequen-  
cies may not be guaranteed. An application should use the next smaller JEDEC standard tCK(AVG) value (2.5, 1.875, 1.5, or 1.25 ns) when calculat-  
ing CL [nCK] = tAA [ns] / tCK(AVG) [ns], rounding up to the next ’Supported CL’.  
3. tCK(AVG).MAX limits: Calculate tCK(AVG) = tAA.MAX / CLSELECTED and round the resulting tCK(AVG) down to the next valid speed bin limit (i.e.  
3.3ns or 2.5ns or 1.875 ns or 1.25 ns). This result is tCK(AVG).MAX corresponding to CLSELECTED.  
4. ’Reserved’ settings are not allowed. User must program a different value.  
5. ’Optional’ settings allow certain devices in the industry to support this setting, however, it is not a mandatory feature.  
6. Any DDR3-1066 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but  
verified by Design/Characterization.  
7. Any DDR3-1333 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but  
verified by Design/Characterization.  
8. tREFI depends on TOPER  
23 of 31  
Rev. 0.5 November 2007  
Unbuffered SoDIMM  
DDR3 SDRAM  
15.3 Timing parameters for DDR3-800, DDR3-1066 and DDR3-1333  
Timing Parameters by Speed Bin  
Speed  
DDR3-800  
DDR3-1066  
DDR3-1333  
Units  
Note  
Parameter  
Symbol  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
Clock Timing  
Minimum Clock Cycle Time (DLL off mode)  
Average Clock Period  
t
8
-
8
-
8
-
ns  
ps  
6
f
CK(DLL_OFF)  
t
t
See Speed Bins Table  
CK(avg)  
CK(abs)  
CH(avg)  
tCK(avg)min + tCK(avg)max + tCK(avg)min + tCK(avg)max + tCK(avg)min + tCK(avg)max +  
Clock Period  
ps  
tJIT(per)min  
0.47  
tJIT(per)max  
tJIT(per)min  
0.47  
tJIT(per)max  
tJIT(per)min  
0.47  
tJIT(per)max  
Average high pulse width  
t
0.53  
0.53  
100  
90  
0.53  
0.53  
90  
0.53  
0.53  
80  
t
t
f
f
CK(avg)  
Average low pulse width  
t
0.47  
0.47  
0.47  
CL(avg)  
CK(avg)  
ps  
Clock Period Jitter  
tJIT  
-100  
-90  
-80  
(per)  
Clock Period Jitter during DLL locking period  
Cycle to Cycle Period Jitter  
tJIT  
-90  
-80  
80  
-70  
70  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
PS  
(per, lck)  
tJIT  
200  
180  
180  
160  
160  
140  
(cc)  
Cycle to Cycle Period Jitter during DLL locking period  
Cumulative error across 2 cycles  
Cumulative error across 3 cycles  
Cumulative error across 4 cycles  
Cumulative error across 5 cycles  
Cumulative error across 6 cycles  
Cumulative error across 7 cycles  
Cumulative error across 8 cycles  
Cumulative error across 9 cycles  
Cumulative error across 10 cycles  
Cumulative error across 11 cycles  
Cumulative error across 12 cycles  
tJIT  
(cc, lck)  
t
t
t
t
t
t
t
t
- 147  
- 175  
- 194  
- 209  
- 222  
- 232  
- 241  
- 249  
- 257  
- 263  
- 269  
147  
175  
194  
209  
222  
232  
241  
249  
257  
263  
269  
- 132  
- 157  
- 175  
- 188  
- 200  
- 209  
- 217  
- 224  
- 231  
- 237  
- 242  
132  
157  
175  
188  
200  
209  
217  
224  
231  
237  
242  
- 118  
- 140  
- 155  
- 168  
- 177  
- 186  
- 193  
- 200  
- 205  
- 210  
- 215  
118  
140  
155  
168  
177  
186  
193  
200  
205  
210  
215  
ERR(2per)  
ERR(3per)  
ERR(4per)  
ERR(5per)  
ERR(6per)  
ERR(7per)  
ERR(8per)  
ERR(9per)  
t
t
t
ERR(10per)  
ERR(11per)  
ERR(12per)  
tERR(nper)min = (1 + 0.68ln(n))*tJIT(per)min  
tERR(nper)max = (1 = 0.68ln(n))*tJIT(per)max  
Cumulative error across n = 13, 14 ... 49, 50 cycles  
t
PS  
24  
ERR(nper)  
Absolute clock HIGH pulse width  
Absolute clock Low pulse width  
Data Timing  
t
0.43  
0.43  
0.43  
0.43  
0.43  
t
t
25  
26  
CH(abs)  
CK(avg)  
CK(avg)  
t
0.43  
CL(abs)  
DQS,DQS to DQ skew, per group, per access  
DQ output hold time from DQS, DQS  
DQ low-impedance time from CK, CK  
DQ high-impedance time from CK, CK  
t
-
200  
-
-
150  
-
-
125  
-
-
100  
-
DQSQ  
t
0.38  
-800  
-
0.38  
-600  
-
0.38  
-500  
-
0.38  
-450  
-
QH  
t
400  
400  
300  
300  
250  
250  
225  
225  
LZ(DQ)  
t
HZ(DQ)  
Data setup time to DQS, DQS referenced to Vih(ac)Vil(ac)  
levels  
t
75  
25  
TBD  
-
TBD  
TBD  
-
-
DS(base)  
Data hold time to DQS, DQS referenced to Vih(ac)Vil(ac)  
levels  
t
150  
600  
100  
490  
TBD  
400  
-
-
-
-
-
DH(base)  
DQ and DM Input pulse width for each input  
Data Strobe Timing  
t
-
DIPW  
DQS, DQS READ Preamble  
DQS, DQS differential READ Postamble  
DQS, DQS output high time  
t
0.9  
0.3  
-
0.9  
0.3  
-
0.9  
0.3  
0.4  
0.4  
0.9  
0.3  
-
t
t
13, 19, g  
11, 13, b  
13, g  
RPRE  
CK  
CK  
t
NOTE1  
NOTE1  
NOTE1  
RPST  
t
0.38  
0.38  
0.9  
-
-
-
-
0.38  
0.38  
0.9  
-
-
-
-
-
-
-
-
t
t
QSH  
CK(avg)  
CK(avg)  
DQS, DQS output low time  
t
13, g  
QSL  
DQS, DQS WRITE Preamble  
DQS, DQS WRITE Postamble  
t
t
t
WPRE  
CK  
CK  
t
0.3  
0.3  
WPST  
DQS, DQS rising edge output access time from rising CK,  
CK  
t
-400  
-800  
-
400  
400  
400  
-300  
-600  
-
300  
300  
300  
-255  
-500  
-
255  
250  
250  
ps  
ps  
ps  
13,f  
DQSCK  
LZ(DQS)  
HZ(DQS)  
DQS, DQS low-impedance time (Referenced from RL-1)  
t
13,14,f  
12,13,14  
DQS, DQS high-impedance time (Referenced from RL+BL/  
2)  
t
DQS, DQS differential input low pulse width  
t
0.4  
0.4  
0.6  
0.6  
0.25  
-
0.4  
0.4  
0.6  
0.6  
0.25  
-
0.4  
0.4  
0.6  
0.6  
0.25  
-
t
DQSL  
CK  
CK  
DQS, DQS differential input high pulse width  
DQS, DQS rising edge to CK, CK rising edge  
DQS,DQS faling edge setup time to CK, CK rising edge  
DQS,DQS faling edge hold time to CK, CK rising edge  
t
t
DQSH  
t
-0.25  
0.2  
-0.25  
0.2  
-0.25  
0.2  
t
t
t
c
c
c
DQSS  
CK(avg)  
CK(avg)  
CK(avg)  
t
DSS  
DSH  
t
0.2  
-
0.2  
-
0.2  
-
24 of 31  
Rev. 0.5 November 2007  
Unbuffered SoDIMM  
DDR3 SDRAM  
Timing Parameters by Speed Bin (Cont.)  
Speed  
DDR3-800  
DDR3-1066  
DDR3-1333  
Units  
Note  
Parameter  
Symbol  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
Command and Address Timing  
DLL locking time  
t
512  
-
-
512  
-
-
512  
-
-
nCK  
DLLK  
max  
max  
max  
internal READ Command to PRECHARGE Command delay  
t
e
RTP  
(4t ,7.5ns)  
CK  
(4t ,7.5ns)  
CK  
(4t ,7.5ns)  
CK  
Delay from start of internal write transaction to internal read  
command  
max  
max  
max  
t
-
-
-
e,18  
e
WTR  
(4t ,7.5ns)  
CK  
(4t ,7.5ns)  
CK  
(4t ,7.5ns)  
CK  
WRITE recovery time  
t
15  
4
-
-
15  
4
-
-
15  
4
-
-
ns  
WR  
Mode Register Set command cycle time  
t
t
CK(avg)  
MRD  
max  
max  
max  
Mode Register Set command update delay  
t
-
-
-
-
-
-
MOD  
(12t ,15ns)  
CK  
(12t ,15ns)  
CK  
(12t ,15ns)  
CK  
CAS# to CAS# command delay  
t
4
4
4
nCK  
nCK  
nCK  
ns  
CCD  
Auto precharge write recovery + precharge time  
Multi-Purpose Register Recovery Time  
ACTIVE to PRECHARGE command period  
t
WR + roundup (t / t  
)
DAL(min)  
RP CK(AVG)  
t
1
-
1
-
1
-
MPRR  
t
37.5  
max  
70,000  
37.5  
max  
70,000  
36  
70,000  
e
e
RAS  
max  
ACTIVE to ACTIVE command period for 1KB page size  
ACTIVE to ACTIVE command period for 2KB page size  
t
t
-
-
-
-
-
-
RRD  
(4t ,10ns)  
CK  
(4t ,7.5ns)  
CK  
(4t ,6ns)  
CK  
max  
max  
max  
e
RRD  
(4t ,10ns)  
CK  
(4t ,10ns)  
CK  
(4t ,7.5ns)  
CK  
Four activate window for 1KB page size  
Four activate window for 2KB page size  
t
t
40  
50  
-
-
37.5  
50  
-
-
30  
45  
-
-
ns  
ns  
e
e
FAW  
FAW  
Command and Address setup time to CK, CK referenced to  
Vih(ac) / Vil(ac) levels  
t
200  
275  
-
125  
200  
-
65  
140  
-
-
-
ps  
b,16  
b,16  
-
-
-
-
-
-
IS(base)  
Command and Address hold time from CK, CK referenced to  
Vih(ac) / Vil(ac) levels  
t
IH(base)  
Command and Address setup time to CK, CK referenced to  
Vih(ac) / Vil(ac) levels  
t
IS(base)  
65+125  
ps  
ns  
b,16,27  
AC150  
Refresh Timing  
1Gb REFRESH to REFRESH OR REFRESH to ACTIVE  
command interval  
t
110  
-
110  
-
110  
-
RFC  
Average periodic refresh interval (0°C TCASE 85 °C)  
Average periodic refresh interval (85°C TCASE 95 °C)  
Calibration Timing  
t
t
7.8  
3.9  
7.8  
3.9  
7.8  
3.9  
us  
us  
REFI  
REFI  
Power-up and RESET calibration time  
Normal operation Full calibration time  
Normal operation short calibration time  
Reset Timing  
t
512  
256  
64  
-
-
-
512  
256  
64  
-
-
-
512  
256  
64  
-
-
-
t
t
t
ZQinitI  
CK  
CK  
CK  
t
ZQoper  
t
23  
ZQCS  
max(5t , t  
max(5t , t  
max(5t , t  
CK RFC  
CK RFC  
CK RFC  
Exit Reset from CKE HIGH to a valid command  
Self Refresh Timing  
t
-
-
-
XPR  
+ 10ns)  
+ 10ns)  
+ 10ns)  
max(5t ,t  
max(5t ,t  
max(5t ,t  
CK RFC  
CK RFC  
CK RFC  
Exit Self Refresh to commands not requiring a locked DLL  
Exit Self Refresh to commands requiring a locked DLL  
Minimum CKE low width for Self refresh entry to exit timing  
t
-
-
-
-
-
-
-
-
-
XS  
+ 10ns)  
(min)  
+ 10ns)  
(min)  
+ 10ns)  
(min)  
t
t
t
t
t
XSDLL  
DLLK  
DLLK  
DLLK  
CK  
t
(min) +  
CK  
t
(min) +  
CK  
t
(min) +  
CKE  
CKE  
CKE  
t
CKESR  
1t  
1t  
1t  
CK  
Valid Clock Requirement after Self Refresh Entry (SRE)  
Valid Clock Requirement before Self Refresh Exit (SRX)  
t
t
max(5t ,10ns)  
-
-
max(5t ,10ns)  
-
-
max(5t ,10ns)  
-
-
CKSRE  
CKSRX  
CK  
CK  
CK  
max(5t ,10ns)  
CK  
max(5t ,10ns)  
max(5t ,10ns)  
CK  
CK  
25 of 31  
Rev. 0.5 November 2007  
Unbuffered SoDIMM  
DDR3 SDRAM  
Timing Parameters by Speed Bin (Cont.)  
Speed  
DDR3-800  
DDR3-1066  
DDR3-1333  
Units  
Note  
Parameter  
Symbol  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
Power Down Timing  
Exit Power Down with DLL on to any valid command;Exit  
Percharge Power Down with DLL  
max  
max  
max  
t
-
-
-
-
-
-
XP  
(3t ,7.5ns)  
CK  
(3t ,7.5ns)  
CK  
(3t ,6ns)  
CK  
frozen to commands not requiring a locked DLL  
Exit Precharge Power Down with DLL frozen to commands  
requiring a locked DLL  
max  
max  
max  
t
2
XPDLL  
(10t ,24ns)  
CK  
(10t ,24ns)  
CK  
(10t ,24ns)  
CK  
max  
max  
max  
CKE minimum pulse width  
t
-
-
-
-
-
-
CKE  
(3t ,7.5ns)  
CK  
(3t ,5.625ns)  
CK  
(3t ,5.625ns)  
CK  
Command pass disable delay  
t
1
1
1
nCK  
CPDED  
Power Down Entry to Exit Timing  
t
t
(min)  
9*t  
t
(min)  
9*t  
t
(min)  
9*t  
t
CK  
15  
20  
20  
PD  
ACTPDEN  
CKE  
REFI  
CKE  
REFI  
-
CKE  
REFI  
-
Timing of ACT command to Power Down entry  
Timing of PRE command to Power Down entry  
Timing of RD/RDA command to Power Down entry  
t
1
1
-
1
1
1
1
nCK  
nCK  
t
-
-
-
-
-
-
PRPDEN  
RDPDEN  
t
RL + 4 +1  
WL + 4 +(t  
RL + 4 +1  
WL + 4 +(t  
RL + 4 +1  
WL + 4 +(t /  
WR  
Timing of WR command to Power Down entry  
(BL8OTF, BL8MRS, BL4OTF)  
/
/
WR  
WR  
t
-
-
-
-
-
-
-
-
-
-
-
-
nCK  
nCK  
nCK  
nCK  
9
10  
9
WRPDEN  
t
)
t
)
t
)
CK  
CK  
CK  
Timing of WRA command to Power Down entry  
(BL8OTF, BL8MRS, BL4OTF)  
t
WL + 4 +WR +1  
WL + 2 +(t  
WL + 4 +WR +1  
WL + 2 +(t  
WL + 4 +WR +1  
WL + 2 +(t  
WRAPDEN  
Timing of WR command to Power Down entry  
(BL4MRS)  
/
/
/
WR  
WR  
WR  
t
WRPDEN  
t
)
t
)
t
)
CK  
CK  
CK  
Timing of WRA command to Power Down entry  
(BL4MRS)  
t
WL +2 +WR +1  
1
WL +2 +WR +1  
1
WL +2 +WR +1  
1
10  
WRAPDEN  
Timing of REF command to Power Down entry  
Timing of MRS command to Power Down entry  
ODT Timing  
t
-
-
-
-
-
-
20,21  
REFPDEN  
t
t
t
t
t
CK  
MRSPDEN  
MOD(min)  
MOD(min)  
MOD(min)  
ODT high time without write command or with wirte com-  
mand and BC4  
ODTH4  
ODTH8  
4
6
1
-
-
4
6
1
-
-
4
6
1
-
-
nCK  
nCK  
ns  
ODT high time with Write command and BL8  
Asynchronous RTT tum-on delay (Power-Down with DLL  
frozen)  
t
9
9
9
AONPD  
Asynchronous RTT tum-off delay (Power-Down with DLL  
frozen)  
t
1
9
1
9
1
9
ns  
ps  
AOFPD  
ODT turn-on  
t
-400  
0.3  
0.3  
400  
-300  
0.3  
0.3  
30  
0.7  
0.7  
-250  
0.3  
0.3  
250  
7,f  
8,f  
f
AON  
RTT_NOM and RTT_WR turn-off time from ODTLoff refer-  
ence  
t
0.7  
0.7  
0.7  
0.7  
t
t
AOF  
CK(avg)  
CK(avg)  
RTT dynamic change skew  
t
ADC  
Write Leveling Timing  
First DQS pulse rising edge after tDQSS margining mode is  
programmed  
t
40  
-
40  
-
40  
-
t
t
3
3
WLMRD  
CK  
DQS/DQS delay after tDQS margining mode is programmed  
Setup time for tDQSS latch  
t
25  
325  
325  
0
-
-
25  
245  
245  
0
-
-
25  
195  
195  
0
-
-
WLDQSEN  
CK  
t
ps  
ps  
ns  
ns  
WLS  
WLH  
WLO  
Hold time of tDQSS latch  
t
-
-
-
Write leveling output delay  
t
9
2
9
2
9
2
Write leveling output error  
t
0
0
0
WLOE  
26 of 31  
Rev. 0.5 November 2007  
Unbuffered SoDIMM  
DDR3 SDRAM  
Jitter Notes  
Specific Note a  
Unit ’tCK(avg)’ represents the actual tCK(avg) of the input clock under operation. Unit ’nCK’ represents one clock cycle of the input clock, counting the  
actual clock edges. ex) tMRD =4 [nCK] means; if one Mode Register Set command is registered at Tm, anothe Mode Register Set commdn may be reg-  
istered at Tm+4, even if (Tm+4-Tm) is 4 x tCK(avg) +tERR(4per) min.  
Specific Note b  
These parameters are measured from a command/address signal (CKE, CS, RAS, CAS, WE, ODT, BA0, A0, A1, etc.) transition edge to its respective  
clock signal (CK/CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT(per), tJIT(cc), etc.), as the setup and hold  
are relative to the clock signal crossing that latches the command/address. That is, these parameters should be met whether clock jitter is present or not.  
Specific Note c  
These parameters are measured from a data strobe signal (DQS(L/U), DQS(L/U)) crossing to its respective clock signal (CK, CK) crossing. The spec val-  
ues are not affected by the amount of clock jitter applied (i.e. tJIT(per), tJIT(cc), etc.), as these are relative to the clock signal crossing.  
That is, these parameters should be met whether clock jitter is present or not.  
Specific Note d  
These parameters are measured from a data signal (DM(L/U), DQ(L/U)0, DQ(L/U)1, etc.) transition edge to its respective data strobe signal (DQS(L/U),  
DQS(L/U)) crossing.  
Specific Note e  
For these parameters, the DDR3 SDRAM device supports tnPARAM [nCK] = RU{ tPARAM [ns] / tCK(avg) [ns] }, which is in clock cycles, assuming all  
input clock jitter specifications are satisfied.  
For example, the device will support tnRP = RU{tRP / tCK(avg)}, which is in clock cycles, if all input clock jitter specifications are met. This means: For  
DDR3-800 6-6-6, of which tRP = 15ns, the device will support tnRP = RU{tRP / tCK(avg)} = 6, as long as the input clock jitter specifications are met, i.e.  
Precharge command at Tm and Active command at Tm+6 is valid even if (Tm+6 - Tm) is less than 15ns due to input clock jitter.  
Specific Note f  
When the device is operated with input clock jitter, this parameter needs to be derated by the actual tERR(mper),act of the input clock, where 2 <= m <=  
12. (output deratings are relative to the SDRAM input clock.)  
For example, if the measured jitter into a DDR3-800 SDRAM has tERR(mper),act,min = - 172 ps and tERR(mper),act,max = + 193 ps, then  
tDQSCK,min(derated) = tDQSCK,min - tERR(mper),act,max = - 400 ps - 193 ps = - 593 ps and tDQSCK,max(derated) = tDQSCK,max -  
tERR(mper),act,min = 400 ps + 172 ps = + 572 ps. Similarly, tLZ(DQ) for DDR3-800 derates to tLZ(DQ),min(derated) = - 800 ps - 193 ps = - 993 ps and  
tLZ(DQ),max(derated) = 400 ps + 172 ps = + 572 ps. (Caution on the min/max usage!)  
Note that tERR(mper),act,min is the minimum measured value of tERR(nper) where 2 <= n <= 12, and tERR(mper),act,max is the maximum measured  
value of tERR(nper) where 2 <= n <= 12  
Specific Note g  
When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT(per),act of the input clock. (output deratings are  
relative to the SDRAM input clock.)  
For example, if the measured jitter into a DDR3-800 SDRAM has tCK(avg),act = 2500 ps, tJIT(per),act,min = - 72 ps and tJIT(per),act,max = + 93 ps, then  
tRPRE,min(derated) = tRPRE,min + tJIT(per),act,min = 0.9 x tCK(avg),act + tJIT(per),act,min = 0.9 x 2500 ps - 72 ps = + 2178 ps. Similarly, tQH,min(der-  
ated) = tQH,min + tJIT(per),act,min = 0.38 x tCK(avg),act + tJIT(per),act,min = 0.38 x 2500 ps - 72 ps = + 878 ps. (Caution on the min/max usage!)  
27 of 31  
Rev. 0.5 November 2007  
Unbuffered SoDIMM  
DDR3 SDRAM  
Timing Parameter Notes  
1. Actual value dependant upon measurement level definitions which are TBD.  
2. Commands requiring a locked DLL are: READ (and RAP) and synchronous ODT commands.  
3. The max values are system dependent.  
4. WR as programmed in mode register  
5. Value must be rounded-up to next higher integer value  
6. There is no maximum cycle time limit besides the need to satisfy the refresh interval, tREFI.  
7. For definition of RTT turn-on time tAON see "Device Operation"  
8. For definition of RTT turn-off time tAOF see "Device Operation".  
9. tWR is defined in ns, for calculation of tWRPDEN it is necessary to round up tWR / tCK to the next integer.  
10. WR in clock cycles as programmed in MR0  
11. The maximum postamble is bound by tHZDQS(max)  
12. Output timing deratings are relative to the SDRAM input clock. When the device is operated with input clock jitter, this parameter needs to be derated  
by TBD  
13. Value is only valid for RON34  
14. Single ended signal parameter. Refer to chapter <8, 9> for definition and measurement method.  
15. tREFI depends on TOPER  
16. tIS(base) and tIH(base) values are for 1V/ns CMD/ADD single-ended slew rate and 2V/ns CK, CK differential slew rate, Note for DQ and DM signals,  
VREF(DC) = VrefDQ(DC). FOr input only pins except RESET, VRef(DC)=VRefCA(DC).  
See "Address/ Command Setup, Hold and Derating" on page 52.  
17. tDS(base) and tDH(base) values are for 1V/ns DQ single-ended slew rate and 2V/ns DQS, DQS differential slew rate. Note for DQ and DM signals,  
VREF(DC)= VRefDQ(DC). For input only pins except RESET, VRef(DC)=VRefCA(DC).  
See "Data Setup, Hold and Slew Rate Derating" on page 58.  
18. Start of internal write transaction is definited as follows ;  
For BL8 (fixed by MRS and on-the-fly) : Rising clock edge 4 clock cycles after WL.  
For BC4 (on-the-fly) : Rising clock edge 4 clock cycles after WL  
For BC4 (fixed by MRS) : Rising clock edge 2 clock cycles after WL  
19. The maximum preamble is bound by tLZDQS(max)  
20. CKE is allowed to be registered low while operations such as row activation, precharge, autoprecharge or refresh are in progress, but power-down  
IDD spec will not be applied until finishing those operations.  
21. Altough CKE is allowed to be registered LOW after a REFRESH command once tREFPDEN(min) is satisfied, there are cases where additional time  
such as tXPDLL(min) is also required. See "Device Operation".  
22. Defined between end of MPR read burst and MRS which reloads MPR or disables MPR function.  
23. One ZQCS command can effectively correct a minimum of 0.5 % (ZQCorrection) of RON and RTT impedance error within 64 nCK for all speed bins assuming  
the maximum sensitivities specified in the ’Output Driver Voltage and Temperature Sensitivity’ and ’ODT Voltage and Temperature Sensitivity’ tables. The appropri-  
ate interval between ZQCS commands can be determined from these tables and other application specific parameters. One method for calculating the interval  
between ZQCS commands, given the temperature (Tdriftrate) and voltage (Vdriftrate) drift rates that the SDRAM is subject to in the application, is illustrated. The  
interval could be defined by the following formula:  
ZQCorrection  
(TSens x Tdriftrate) + (VSens x Vdriftrate)  
where TSens = max(dRTTdT, dRONdTM) and VSens = max(dRTTdV, dRONdVM) For example, if TSens = 1.5% /°C, VSens = 0.15% / mV, Tdriftrate = 1°C / sec  
and Vdriftrate = 15 mV / sec, then the interval between ZQCS commands is calculated as:  
0.5  
~
~
= 0.133  
128ms  
(1.5 x 1) + (0.15 x 15)  
24. n = from 13 cycles to 50 cycles. This row defines 38 parameters.  
25. tCH(abs) is the absolute instantaneous clock high pulse width, as measured from one rising edge to the following falling edge.  
26. tCL(abs) is the absolute instantaneous clock low pulse width, as measured from one falling edge to the following rising edge.  
27. The tIS(base) AC150 specifications are adjusted from the tIS(base) specification by adding an additional 100 ps of derating to accommodate for the lower alter-  
nate threshold of 150 mV and another 25 ps to account for the earlier reference point [(175 mv - 150 mV) / 1 V/ns].  
28 of 31  
Rev. 0.5 November 2007  
Unbuffered SoDIMM  
DDR3 SDRAM  
16.0 Physical Dimensions :  
16.1 64Mbx16 based 64Mx64 Module(1 Rank)  
Units : Millimeters  
67.60  
Max 3.8  
1.00 ± 0.10  
3.00  
2X 1.80  
0.10 M C A B  
(OPTIONAL HOLES)  
2X 4.00 ± 0.10  
0.10 M C A B  
0.60  
0.45 ± 0.03  
4.00 ± 0.10  
2.55  
0.25 MAX  
1.00 ± 0.10  
Detail A  
Detail B  
The used device is 64M x16 DDR3 SDRAM, FBGA.  
DDR3 SDRAM Part NO : K4B1G1646D - HC**  
29 of 31  
Rev. 0.5 November 2007  
Unbuffered SoDIMM  
DDR3 SDRAM  
16.2 64Mbx16 based 128Mx64 Module(2 Ranks)  
Units : Millimeters  
67.60  
Max 3.8  
1.00 ± 0.10  
3.00  
2X 1.80  
0.10 M C A B  
(OPTIONAL HOLES)  
2X 4.00 ± 0.10  
0.10 M C A B  
0.60  
0.45 ± 0.03  
4.00 ± 0.10  
2.55  
0.25 MAX  
1.00 ± 0.10  
Detail A  
Detail B  
The used device is 64M x16 DDR3 SDRAM, FBGA.  
DDR3 SDRAM Part NO : K4B1G1646D - HC**  
30 of 31  
Rev. 0.5 November 2007  
Unbuffered SoDIMM  
DDR3 SDRAM  
16.3 128Mbx8 based 256Mx64 Module(2 Ranks)  
Units : Millimeters  
67.60  
Max 3.8  
1.00 ± 0.10  
3.00  
2X 1.80  
0.10 M C A B  
(OPTIONAL HOLES)  
2X 4.00 ± 0.10  
0.10 M C A B  
0.60  
0.45 ± 0.03  
4.00 ± 0.10  
2.55  
0.25 MAX  
1.00 ± 0.10  
Detail A  
Detail B  
The used device is 128M x8 DDR3 SDRAM, FBGA.  
DDR3 SDRAM Part NO : K4B1G0846D - HC**  
31 of 31  
Rev. 0.5 November 2007  

相关型号:

M471B2874DZ1-CH9

DDR DRAM Module, 128MX64, CMOS, ROHS COMPLIANT, SO-DIMM-204
SAMSUNG

M471B2874EH1

DDR3 SDRAM Memory
SAMSUNG

M471B2874EH1-CF8

DDR DRAM Module, 128MX64, CMOS, HALOGEN FREE AND ROHS COMPLIANT, SODIMM-204
SAMSUNG

M471B2874EH1-CH9

DDR DRAM Module, 128MX64, CMOS, HALOGEN FREE AND ROHS COMPLIANT, SODIMM-204
SAMSUNG

M471B5173QH0-YK0

DDR DRAM Module, 512MX64, CMOS, HALOGEN FREE AND ROHS COMPLIANT, SODIMM-204
SAMSUNG

M471B5273BH1

DDR3 SDRAM Memory
SAMSUNG

M471B5273CH0

DDR3 SDRAM Memory
SAMSUNG

M471B5273CH0-CK0

DDR DRAM Module, 256MX8, 0.225ns, CMOS, HALOGEN FREE AND ROHS COMPLIANT, SODIMM-204
SAMSUNG

M471B5273DH0-CF8

DDR DRAM Module, 512MX64, 0.3ns, CMOS, SODIMM-204
SAMSUNG

M471B5273DH0-CH9

DDR DRAM Module, 512MX64, 0.255ns, CMOS, SODIMM-204
SAMSUNG

M471B5273DH0-CK0

DDR DRAM Module, 512MX64, 0.225ns, CMOS, SODIMM-204
SAMSUNG

M471B5273DH0-CMA

DDR DRAM Module, 512MX64, 0.195ns, CMOS, SODIMM-204
SAMSUNG