S3C7515XX-AT [SAMSUNG]

暂无描述;
S3C7515XX-AT
型号: S3C7515XX-AT
厂家: SAMSUNG    SAMSUNG
描述:

暂无描述

微控制器
文件: 总42页 (文件大小:287K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRODUCT OVERVIEW  
S3C7515/P7515  
1
PRODUCT OVERVIEW  
OVERVIEW  
The S3C7515/P7515 single-chip CMOS microcontroller has been designed for high-performance using  
Samsung's newest 4-bit CPU core, SAM47 (Samsung Arrangeable Microcontrollers). The S3P7515 is a  
microcontroller which has 16-kbyte one-time-programmable EPROM but its functions are same to S3C7515.  
With its DTMF generator, 8-bit serial I/O interface, and versatile 8-bit timer/counters, the S3C7515/P7515 offers  
an excellent design solution for a wide variety of telecommunication applications.  
Up to 55 pins of the 64-pin SDIP or QFP package can be dedicated to I/O. Seven vectored interrupts provide fast  
response to internal and external events. In addition, the S3C7515/P7515's advanced CMOS technology  
provides for low power consumption and a wide operating voltage range.  
DEVELOPMENT SUPPORT0  
The Samsung Microcontroller Development System, SMDS, provides you with a complete PC-based develop-  
ment environment for S3C7-series microcontrollers that is powerful, reliable, and portable. In addition to its  
window-based program development structure, the SMDS tool set includes versatile debugging, trace, instruction  
timing, and performance measurement applications. The Samsung Generalized Assembler (SAMA) has been  
designed specifically for the SMDS environment and accepts assembly language sources in a variety of  
microprocessor formats. SAMA generates industry-standard hex files that also contain program control data for  
SMDS compatibility.  
S MSUNG  
ELECTRONICS  
1–2  
S3C7515/P7515  
PRODUCT OVERVIEW  
FEATURES SUMMARY  
Memory  
Bit Sequential Carrier  
— Supports 8-bit serial data transfer in arbitrary  
format  
— 512 ´ 4-bit RAM  
— 16,384 ´ 8-bit ROM  
Interrupts  
55 I/O Pins  
— 3 external interrupt vectors  
— 4 internal interrupt vectors  
— 2 quasi-interrupts  
— Input only: 4 pins  
— I/O: 43 pins  
— N-channel open-drain I/O: 8 pins  
Power-Down Modes  
Memory-Mapped I/O Structure  
— Idle: Only CPU clock stops  
— Stop: System clock stops  
— Data memory bank 15  
DTMF Generator  
Oscillation Sources  
— 16 dual-tone frequencies for tone dialing  
— Crystal, ceramic for main system clock  
— Crystal oscillator for subsystem clock  
8-bit Basic Timer  
— 4 interval timer functions  
— Main system clock frequency: 3.579545 MHz  
(typical)  
Two 8-bit Timer/Counters  
— Subsystem clock frequency: 32.768 kHz (typical)  
— CPU clock divider circuit (by 4, 8, or 64)  
— Programmable interval timer  
— External event counter function  
Instruction Execution Times  
— 0.67, 1.33, 10.7 ms at 6.0 MHz  
— 1.12, 2.23, 17.88 µs at 3.579545 MHz  
— 122 µs at 32.768 kHz  
— Timer/counters clock outputs to TCLO0 and  
TCLO1 pins  
External clock signal divider  
Serial I/O interface clock generator  
Watch Timer  
Operating Temperature  
— Time interval generation: 0.5 s, 3.9 ms at 32.768  
kHz  
°
°
— – 40 C to 85 C  
— 4 frequency outputs to the BUZ pin  
Operating Voltage Range  
8-bit Serial I/O Interface  
— 2.0 V to 5.5 V  
— 8-bit transmit/receive mode  
— 8-bit receive mode  
Package Types  
— 64 SDIP, 64 QFP  
— LSB-first or MSB-first transmission selectable  
1-3  
PRODUCT OVERVIEW  
S3C7515/P7515  
FUNCTION OVERVIEW  
SAM47 CPU  
All S3C7-series microcontrollers have the advanced SAM47 CPU core. The SAM47 CPU can directly address up  
to 32 K bytes of program memory. The arithmetic logic unit (ALU) performs 4-bit addition, subtraction, logical,  
and shift-and-rotate operations in one instruction cycle and most 8-bit arithmetic and logical operations in two  
cycles.  
CPU REGISTERS  
Program Counter  
A 14-bit program counter (PC) stores addresses for instruction fetches during program execution. Usually, the PC  
is incremented by the number of bytes of the fetched instruction. The one instruction fetch that does not  
increment the PC is the 1-byte REF instruction which references instructions stored in a look-up table in the  
ROM. Whenever a reset operation or an interrupt occurs, bits PC13 through PC0 are set to the vector address.  
Stack Pointer  
An 8-bit stack pointer (SP) stores addresses for stack operations. The stack area is located in general-purpose  
data memory bank 0. The SP is 8-bit read/writeable and SP bit 0 must always be logic zero.  
During an interrupt or a subroutine call, the PC value and the PSW are written to the stack area. When the  
service routine has completed, the values referenced by the stack pointer are restored. Then, the next instruction  
is executed.  
The stack pointer can access the stack despite data memory access enable flag status. Since the reset value of  
the stack pointer is not defined in firmware, you use program code to initialize the stack pointer to 00H. This sets  
the first register of the stack area to data memory location 0FFH.  
PROGRAM MEMORY  
In its standard configuration, the 16,384 ´ 8-bit ROM is divided into four areas:  
— 16-byte area for vector addresses  
— 16-byte general-purpose area (0010–001FH)  
— 96-byte instruction reference area  
— 16,256-byte area for general-purpose program memory  
The vector address area is used mostly during reset operations and interrupts. These 16 bytes can alternately be  
used as general-purpose ROM.  
The REF instruction references 2 x 1-byte or 2-byte instructions stored in reference area locations 0020H–  
007FH. REF can also reference three-byte instructions such as JP or CALL. So that a REF instruction can  
reference these instructions, however, the JP or CALL must be shortened to a 2-byte format. To do this, JP or  
CALL is written to the reference area with the format TJP or TCALL instead of the normal instruction name.  
Unused locations in the REF instruction look-up area can be allocated to general-purpose use.  
1-4  
S3C7515/P7515  
PRODUCT OVERVIEW  
DATA MEMORY  
Overview  
The 512 ´ 4 bit data memory has four areas:  
— 32 ´ 4-bit working register area  
— 224 ´ 4-bit general-purpose area in bank 0 which is also used as the stack area  
— 256 ´ 4-bit general-purpose area in bank 1  
— 128 ´ 4-bit area in bank 15 for memory-mapped I/O addresses  
The data memory area is also organized as three memory banks — bank 0, bank 1, and bank 15. You use the  
select memory bank instruction (SMB) to select one of the banks as working data memory.  
Data stored in RAM locations are 1-, 4-, and 8-bit addressable. After a hardware reset, data memory initialization  
values must be defined by program code.  
Data Memory Addressing Modes  
The enable memory bank (EMB) flag controls the addressing mode for data memory banks 0, 1, or 15. When the  
EMB flag is logic zero, only locations 00H–7FH of bank 0 and bank 15 can be accessed. When the EMB flag is  
set to logic one, all three data memory banks can be accessed based on the current SMB value.  
Working Registers  
The RAM's working register area in data memory bank 0 is also divided into four register banks. Each register  
bank has eight 4-bit registers. Paired 4-bit registers are 8-bit addressable.  
Register A can be used as a 4-bit accumulator and double register EA as an 8-bit extended accumulator; double  
registers WX, WL, and HL are used as address pointers for indirect addressing.  
To limit the possibility of data corruption due to incorrect register addressing, it is advisable to use bank 0 for  
main programs and banks 1, 2, and 3 for interrupt service routines.  
Bit Sequential Carrier  
The bit sequential carrier (BSC) mapped in data memory bank 15 is a 8-bit general register that you can  
manipulate using 1-, 4-, and 8-bit RAM control instructions.  
Using the BSC register, addresses and bit locations can be specified sequentially using 1-bit indirect addressing  
instructions. In this way, a program can generate 8-bit data output by moving the bit location sequentially,  
incrementing or decrementing the value of the L register. You can also use direct addressing to manipulate data  
in the BSC.  
1-5  
PRODUCT OVERVIEW  
S3C7515/P7515  
CONTROL REGISTERS  
Program Status Word  
The 8-bit program status word (PSW) controls ALU operations and instruction execution sequencing. It is also  
used to restore a program's execution environment when an interrupt has been serviced. Program instructions  
can always address the PSW regardless of the current value of data memory access enable flags.  
Before an interrupt is processed, the PSW is pushed onto the stack in data memory bank 0. When the routine is  
completed, PSW values are restored.  
IS1  
C
IS0  
EMB  
SC1  
ERB  
SC0  
SC2  
Interrupt status flags (IS1, IS0), the enable memory bank and enable register bank flags (EMB, ERB), and the  
carry flag (C) are 1- and 4-bit read/write or 8-bit read-only addressable. Skip condition flags (SC0–SC2) can be  
addressed using 8-bit read instructions only.  
Select Bank (SB) Register  
Two 4-bit locations called the SB register store address values used to access specific memory and register  
banks: the select memory bank register, SMB, and the select register bank register, SRB.  
'SMB n' instructions select a data memory bank (0, 1, or 15) and store the upper four bits of the 12-bit data  
memory address in the SMB register. The 'SRB n' instruction is used to select register bank 0, 1, 2, or 3, and to  
store the address data in the SRB.  
The instructions 'PUSH SB' and 'POP SB' move SMB and SRB values to and from the stack for interrupts and  
subroutines.  
CLOCK CIRCUITS  
Main system and subsystem oscillation circuits generate the internal clock signals for the CPU and peripheral  
hardware. The main system clock can use a crystal, ceramic, or RC oscillation source, or an externally-generated  
clock signal. The subsystem clock requires either a crystal oscillator or an external clock source.  
Bit settings in the 4-bit power control and system clock mode registers select the oscillation source, the CPU  
clock, and the clock used during power-down mode. The internal system clock signal (fxx) can be divided inter-  
nally to produce three CPU clock frequencies — fxx/4, fxx/8, or fxx/64.  
INTERRUPTS  
Interrupt requests may be generated internally by on-chip processes (INTB, INTT0, INTT1, and INTS) or  
externally by peripheral devices (INT0, INT1, and INT4). There are two quasi-interrupts: INT2 and INTW.  
INT2/KS0–KS7 detects rising/falling edges of incoming signals and INTW detects time intervals of 0.5 seconds  
or 3.91 milliseconds at the watch timer clock frequency of 32.768 kHz. The following components support  
interrupt processing:  
— Interrupt enable flags  
— Interrupt request flags  
— Interrupt priority registers  
— Power-down termination circuit  
1-6  
S3C7515/P7515  
POWER-DOWN  
PRODUCT OVERVIEW  
To reduce power consumption, there are two power-down modes: idle and stop. The IDLE instruction initiates idle  
mode and the STOP instruction initiates stop mode.  
In idle mode, only the CPU clock stops while peripherals and the oscillation source continue to operate normally.  
Stop mode effects only the main system clock — a subsystem clock, if used, continues oscillating. In stop mode,  
main system clock oscillation stops completely, halting all operations except for a few basic peripheral functions.  
RESET or an interrupt (with the exceptions of INT0) can be used to terminate either idle or stop mode.  
RESET  
When a RESET signal occurs during normal operation or during power-down mode, the CPU enters idle mode  
when the reset operation is initiated. When the standard oscillation stabilization interval (36.6 ms at 3.579545  
MHz) has elapsed, normal CPU operation resumes.  
I/O PORTS  
The S3C7515/P7515 has 14 I/O ports. Pin addresses for all I/O ports are mapped in bank 15 of the RAM. There  
are 4 input pins, 43 configurable I/O pins, and 8 n-channel open-drain I/O pins, for a total of 55 I/O pins. The  
contents of I/O port pin latches can be read, written, or tested at the corresponding address using bit  
manipulation instructions.  
TIMERS and TIMER/COUNTERS  
The timer function has four main components: an 8-bit basic interval timer, two 8-bit timer/counters, and a watch  
timer. The 8-bit basic timer generates interrupt requests at precise intervals, based on the selected CPU clock  
frequency.  
The programmable 8-bit timer/counters are used for external event counting, generation of arbitrary clock  
frequencies for output, and dividing external clock signals. The 8-bit timer/counter 0 generates a clock signal  
(SCK) for the serial I/O interface.  
The watch timer has an 8-bit watch timer mode register, a clock selector, and a frequency divider circuit. Its  
functions include real-time and watch-time measurement, and frequency outputs for buzzer sound.  
SERIAL I/O INTERFACE  
The serial I/O interface supports the transmission or reception of 8-bit serial data with an external device. The  
serial interface has the following functional components:  
— 8-bit mode register  
— Clock selector circuit  
— 8-bit buffer register  
— 3-bit serial clock counter  
The serial I/O circuit can be set either to transmit-and-receive or to receive-only mode. MSB-first or LSB-first  
transmission is also selectable. The serial interface operates with an internal or an external clock source, or using  
the clock signal generated by the 8-bit timer/counter 0. To modify transmission frequency, the appropriate bits in  
the serial I/O mode register (SMOD) must be manipulated.  
1-7  
PRODUCT OVERVIEW  
S3C7515/P7515  
BLOCK DIAGRAM  
BASIC  
TIMER  
WATCH  
TIMER  
Xin  
Xout  
INT0, INT1, INT2, INT4  
XTin XTout  
RESET  
8-BIT  
TIMER/  
COUNTER 0  
P0.0 /  
SCK  
I/O PORT 0  
P0.1 / SO  
P0.2 / SI  
INTERRUPT  
CONTROL  
BLOCK  
STACK  
POINTER  
P0.3 / BTCO  
CLOCK  
8-BIT  
TIMER/  
COUNTER 1  
SERIAL I/O  
PORT  
P1.0 / INT0  
P1.1 / INT1  
P1.2 / INT2  
P1.3 / INT4  
PROGRAM  
COUNTER  
P6.0–P6.3 /  
KS0–KS3  
I/O PORT 6  
I/O PORT 7  
INTERNAL  
INTERRUPTS  
INPUT  
PORT 1  
P7.0–P7.3 /  
KS4–KS7  
P2.0 / TCLO0  
P2.1 / TCLO1  
P2.2 / CLO  
PROGRAM  
INSTRUCTION DECODER  
STATUS WORD  
I/O PORT 2  
I/O PORT 3  
P8.0–P8.3  
P9.0–P9.3  
I/O PORT 8  
I/O PORT 9  
P2.3 / BUZ  
ARITHMETIC  
AND  
P3.0 / TCL0  
P3.1 / TCL1  
P3.2  
FLAGS  
LOGIC UNIT  
P10.0–P10.3  
P11.0–P11.3  
I/O PORT 10  
I/O PORT 11  
P3.3  
I/O PORT 4  
I/O PORT 5  
P4.0–P4.3  
P5.0–P5.3  
P12.0–P12.3  
P13.0–P13.2  
I/O PORT 12  
I/O PORT 13  
512 x 4-BIT  
DATA  
16 K BYTE  
PROGRAM  
MEMORY  
DTMF  
GENERATOR  
DTMF  
MEMORY  
Figure 1-1. S3C7515/P7515 Simplified Block Diagram  
1-8  
S3C7515/P7515  
PRODUCT OVERVIEW  
PIN ASSIGNMENTS  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
P1.3 / INT4  
P1.2 / INT2  
P1.1 / INT1  
P1.0 / INT0  
P13.2  
1
2
3
4
5
6
7
8
VSS  
P9.0  
P9.1  
P9.2  
P9.3  
P8.0  
P8.1  
P8.2  
P13.1  
P13.0  
P2.3 / BUZ  
P2.2 / CLO  
P2.1 / TCLO1  
P2.0 / TCLO0  
P0.3 / BTCO  
P0.2 / SI  
9
P8.3  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
P7.0 / KS4  
P7.1 / KS5  
P7.2 / KS6  
P7.3 / KS7  
P6.0 / KS0  
P6.1 / KS1  
P6.2 / KS2  
P6.3 / KS3  
XTout  
XTin  
Xin  
Xout  
RESET  
P5.0  
P5.1  
P5.2  
P5.3  
P4.0  
P4.1  
P4.2  
P4.3  
P3.0 / TCL0  
P3.1 / TCL1  
P0.1 / SO  
P0.0 /  
SCK  
P10.3  
P10.2  
P10.1  
P10.0  
P11.3  
P11.2  
P11.1  
P11.0  
P12.3  
P12.2  
P12.1  
P12.0  
P3.3  
P3.2  
TEST  
DTMF  
VDD  
Figure 1-2. 64-SDIP Pin Assignment Diagrams  
1-9  
PRODUCT OVERVIEW  
S3C7515/P7515  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
P8.0  
P9.3  
P9.2  
P9.1  
P9.0  
VSS  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
P5.3  
P4.0  
P4.1  
P4.2  
P4.3  
S3C7515  
P3.0 / TCL0  
P3.1 / TCL1  
VDD  
DTMF  
TEST  
P3.2  
P1.3 / INT4  
P1.2 / INT2  
P1.1 / INT1  
P1.0 / INT0  
P13.2  
(64-QFP-1420F)  
P13.1  
P13.0  
P3.3  
P12.0  
Figure 1-2. 64-QFP Pin Assignment Diagrams (Continued)  
1-10  
S3C7515/P7515  
PRODUCT OVERVIEW  
PIN DESCRIPTIONS  
Table 1-1. S3C7515/P7515 Pin Descriptions  
Description  
Pin Name  
Pin Type  
Number  
Share Pin  
P0.0  
P0.1  
P0.2  
P0.3  
I/O  
4-bit I/O port.  
15 (8)  
14 (7)  
13 (6)  
12 (5)  
SCK  
SO  
SI  
1-bit or 4-bit read/write and test is possible.  
Individual pins are software configurable as input or  
output.  
4-bit pull-up resistors are software assignable; pull-up  
resistors are automatically disabled for output pins.  
BTCO  
P1.0  
P1.1  
P1.2  
P1.3  
I
4-bit input port.  
1 (61)  
2 (60)  
3 (59)  
4 (58)  
INT0  
INT1  
INT2  
INT4  
1-bit and 4-bit read and test is possible.  
4-bit pull-up resistors are assignable by software to  
pins P1.0, P1.1, P1.2 and P1.3.  
P2.0  
P2.1  
P2.2  
P2.3  
I/O  
I/O  
I/O  
Same as port 0.  
Same as port 0.  
11 (4)  
10 (3)  
9 (2)  
TCLO0  
TCLO1  
CLO  
8 (1)  
BUZ  
P3.0  
P3.1  
P3.2  
P3.3  
34 (27)  
33 (26)  
29 (22)  
28 (21)  
TCL0  
TCL1  
P4.0–P4.3  
4-bit I/O ports.  
38–35  
(31–28)  
42–39  
N-channel open-drain output up to 9 volts.  
1-bit and 4-bit read/write and test is possible.  
Ports 4 and 5 can be paired to support 8-bit data  
transfer.  
P5.0–P5.3  
(35–32)  
8-bit unit pull-up resistors are assignable by mask  
option.  
P6.0–P6.3  
P7.0–P7.3  
I/O  
4-bit I/O ports.  
51–48  
(44–41)  
55–52  
KS0–KS3  
KS4–KS7  
1-bit or 4-bit read/write and test is possible.  
Port 6 pins are individually software configurable as  
input or output.  
(48–45)  
4-bit pull-up resistors are software assignable; pull-up  
resistors are automatically disabled for output pins  
(port 6 only). Ports 6 and 7 can be paired to enable  
8-bit data transfer.  
P8.0–P8.3  
P9.0–P9.3  
I/O  
I/O  
Same as port 0.  
59–56  
(52–49)  
4-bit I/O port.  
63–60  
1-bit or 4-bit read/write and test is possible.  
4-bit pull-up resistors are software assignable; pull-up  
resistors are automatically disabled for output pins.  
(56–53)  
*
Parentheses indicate pin number for 64 QFP package.  
1-11  
PRODUCT OVERVIEW  
S3C7515/P7515  
Table 1-1. S3C7515/P7515 Pin Descriptions (Continued)  
Description  
Pin Name  
Pin Type  
Number  
Share Pin  
P10.0–P10.3  
I/O  
Same as port 9.  
Ports 10 and 11 can be paired to support 8-bit data  
transfer.  
19–16  
(12–9)  
23–20  
P11.0–P11.3  
P12.0–P12.3  
(16–13)  
I/O  
4-bit I/O port.  
27–24  
1-bit or 4-bit read/write and test is possible.  
Individual pins are software configurable as input or  
output.  
(20–17)  
4-bit pull-down resistors are software assignable;  
pull-down resistors are automatically disabled for  
output pins.  
P13.0–P13.2  
DTMF  
I/O  
3-bit I/O port; characteristics are same as port 9.  
7–5  
(64–62)  
O
DTMF output.  
31 (24)  
15 (8)  
I/O  
Serial I/O interface clock signal  
P0.0  
SCK  
SO  
I/O  
I/O  
I/O  
I
Serial data output  
Serial data input  
14 (7)  
13 (6)  
12 (5)  
P0.1  
P0.2  
SI  
BTCO  
INT0, INT1  
Basic timer clock output  
P0.3  
External interrupts. The triggering edge for INT0 and  
INT1 is selectable. INT0 is synchronized to system  
clock.  
4, 3  
(61, 60)  
P1.0, P1.1  
INT2  
INT4  
I
I
Quasi-interrupt with detection of rising edges  
2 (59)  
1 (58)  
P1.2  
P1.3  
External interrupt with detection of rising and falling  
edges.  
TCLO0  
TCLO1  
CLO  
I/O  
I/O  
I/O  
I/O  
Timer/counter 0 clock output  
Timer/counter 1 clock output  
Clock output  
11 (4)  
10 (3)  
9 (2)  
P2.0  
P2.1  
P2.2  
P2.3  
BUZ  
2 kHz, 4 kHz, 8 kHz, or 16 kHz frequency output at  
the watch timer clock frequency of 32.768 kHz for  
buzzer sound  
8 (1)  
TCL0  
TCL1  
I/O  
I/O  
I/O  
External clock input for timer/counter 0  
External clock input for timer/counter 1  
Quasi-interrupt inputs with falling edge detection  
34 (27)  
33 (26)  
P3.0  
P3.1  
KS0–KS3  
51–48  
(44–41)  
55–52  
P6.0–P6.3  
KS4–KS7  
P7.0–P7.3  
(48–45)  
*
Parentheses indicate pin number for 64 QFP package.  
1-12  
S3C7515/P7515  
PRODUCT OVERVIEW  
Table 1-1. S3C7515/P7515 Pin Descriptions (Concluded)  
Pin Type Description  
Pin Name  
Number  
Share Pin  
VDD  
I
Power supply  
Ground  
32 (25)  
64 (57)  
43 (36)  
VSS  
Reset signal  
RESET  
XIN, XOUT  
Crystal, ceramic, or R/C oscillator signal for main  
system clock. (For external clock input, use XIN and  
45, 44  
(38, 37)  
input XIN's reverse phase to XOUT  
)
XTIN, XTOUT  
Crystal oscillator signal for subsystem clock. (For  
external clock input, use XTIN and input XTIN's  
46, 47  
(39, 40)  
reverse phase to XTOUT  
)
NC  
No connection (must be connected to VSS  
)
30 (23)  
*
Parentheses indicate pin number for 64 QFP package.  
1-13  
PRODUCT OVERVIEW  
S3C7515/P7515  
Table 1-2. Overview of S3C7515/P7515 Pin Data  
Pin Names  
Share Pins  
I/O Type  
Reset Value  
Circuit Type  
P0.0–P0.3  
I/O  
Input  
D-4  
SCK, SO, SI, BTCO  
P1.0–P1.3  
INT0, INT1, INT2,  
INT4  
I
Input  
A-3  
P2.0–P2.3  
TCLO0, TCLO1, CLO,  
BUZ  
I/O  
Input  
D-2  
P3.0–P3.1  
P3.2–P3.3  
TCL0, TCL1  
I/O  
I/O  
I/O  
Input  
Input  
D-4  
D-2  
E-6  
(NOTE)  
P4.0–P4.3  
P5.0–P5.3  
I/O  
D-4  
P6.0–P6.3  
P7.0–P7.3  
KS0–KS3  
KS4–KS7  
Input  
P8.0–P8.3  
P9.0–P9.3  
I/O  
I/O  
I/O  
D-2  
D-2  
D-2  
Input  
Input  
Input  
P10.0–P10.3  
P11.0–P11.3  
P12.0–P12.3  
P13.0–P13.2  
DTMF  
I/O  
I/O  
O
D-6  
D-2  
G-6  
Input  
Input  
High impedence  
XIN, XOUT  
XTIN, XTOUT  
I
B
RESET  
NC  
VDD, VSS  
NOTE: When pull-up resistors are provided: High level  
When pull-up resistors are not provided: High impedence  
1-14  
S3C7515/P7515  
PRODUCT OVERVIEW  
PIN CIRCUIT DIAGRAMS  
VDD  
VDD  
PULL-UP  
RESISTOR  
P-CHANNEL  
IN  
IN  
-
N CHANNEL  
SCHMITT TRIGGER  
Figure 1-3. Pin Circuit Type A  
Figure 1-5. Pin Circuit Type B  
VDD  
PULL-UP  
RESISTOR  
IN  
PULL-UP RESISTOR  
ENABLE  
P-CHANNEL  
SCHMITT TRIGGER  
IN  
SCHMITT TRIGGER  
Figure 1-6. Pin Circuit Type B-4  
Figure 1-4. Pin Circuit Type A-3  
1-15  
PRODUCT OVERVIEW  
S3C7515/P7515  
V
DD  
V
DD  
PULL-UP  
ENABLE  
P-CHANNEL  
P-CHANNEL  
I/O  
DATA  
OUT  
DATA  
CIRCUIT  
TYPE C  
OUTPUT  
DISABLE  
N-CHANNEL  
OUTPUT  
DISABLE  
SCHMITT TRIGER  
Figure 1-7. Pin Circuit Type C  
Figure 1-9. Pin Circuit Type D-4  
V
DD  
DATA  
CIRCUIT  
I/O  
TYPE C  
OUTPUT  
DISABLE  
PULL-UP  
ENABLE  
P-CHANNEL  
I/O  
PULL-DOWN  
ENABLE  
DATA  
N-CHANNEL  
CIRCUIT  
TYPE C  
OUTPUT  
DISABLE  
Figure 1-8. Pin Circuit Type D-2  
Figure 1-10. Pin Circuit Type D-6  
1-16  
S3C7515/P7515  
PRODUCT OVERVIEW  
V
DD  
PULL-UP  
RESISTOR  
(MASK OPTION)  
DATA  
I/O  
N-CHANNEL  
OUTPUT  
DISABLE  
Figure 1-11. Pin Circuit Type E-6  
-
DTMF OUT  
+
OUTPUT  
DISABLE  
Figure 1-12. Pin Circuit Type G-2  
1-17  
S3C7515/P7515  
ELECTRICAL DATA  
14 ELECTRICAL DATA  
In this section, information on S3C7515 electrical characteristics is presented as tables and graphics. The  
information is arranged in the following order:  
Standard Electrical Characteristics  
— Absolute maximum ratings  
— D.C. electrical characteristics  
— System clock oscillator characteristics  
— I/O capacitance  
— A.C. electrical characteristics  
— Operating voltage range  
Miscellaneous Timing Waveforms  
— A.C timing measurement point  
— Clock timing measurement at X and X  
in  
out  
— TCL timing  
— Input timing for RESET  
— Input timing for external interrupts  
— Serial data transfer timing  
Stop Mode Characteristics and Timing Waveforms  
— RAM data retention supply voltage in stop mode  
— Stop mode release timing when initiated by RESET  
— Stop mode release timing when initiated by an interrupt request  
14-1  
ELECTRICAL DATA  
S3C7515/P7515  
Table 14-1. Absolute Maximum Ratings  
°
(T = 25 C)  
A
Parameter  
Symbol  
Conditions  
Rating  
Units  
Supply Voltage  
Input Voltage  
VDD  
VI1  
-0.3 to 6.5  
V
All I/O ports  
- 0.3 to VDD + 0.3  
- 0.3 to VDD + 0.3  
- 15  
V
V
Output Voltage  
Output Current High  
VO  
IOH  
One I/O port active  
mA  
All I/O ports active  
One I/O port active  
- 30  
Output Current Low  
IOL  
+ 30 (Peak value)  
mA  
+ 15 *  
All I/O ports, total  
+ 100 (Peak value)  
+ 60 *  
Operating Temperature  
Storage Temperature  
TA  
- 40 to + 85  
°
°
C
Tstg  
- 65 to + 150  
C
* The values for Output Current Low ( I ) are calculated as Peak Value ´  
Duty .  
OL  
Table 14-2. D.C. Electrical Characteristics  
°
°
(T = – 40 C to + 85 C, V  
= 2.0 V to 5.5 V)  
DD  
A
Parameter  
Symbol  
Conditions  
All input pins except those specified  
below for V  
Min  
Typ  
Max  
Units  
V
0.7 V  
V
Input High  
Voltage  
V
IH1  
DD  
DD  
V
-
IH2  
IH4  
V
0.8 V  
0.7 V  
V
Ports 0, 1, 3, 6, 7, and RESET  
IH2  
DD  
DD  
V
V
Ports 4 and 5 with pull-up resistors  
assigned  
IH3  
DD  
DD  
0.7 V  
V
Ports 4 and 5 are open-drain  
DD  
DD  
V
X
,X  
V
0.1  
-
V
and XT  
IH4  
IN OUT  
IN  
DD  
DD  
V
0.3 V  
Input Low  
Voltage  
All input pins except those specified  
below for V  
V
IL1  
DD  
V
-
IL2  
IL3  
V
0.2 V  
DD  
Ports 0, 1, 3, 6, 7, and RESET  
X ,X  
IN OUT  
IL2  
V
0.1  
and XT  
IN  
IL3  
14-2  
S3C7515/P7515  
ELECTRICAL DATA  
Table 14-2. D.C. Electrical Characteristics (Continued)  
°
°
(T = – 40 C to + 85 C, VDD = 2.0 V to 5.5 V)  
A
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Units  
V
I
= - 1 mA Ports except 1,4 and 5  
OH  
VDD 1.0  
-
Output High  
Voltage  
V
OH  
V
V
= 4.5 V to 5.5 V  
DD  
= 15 mA Ports 4,5 only  
Output Low  
Voltage  
2
V
OL1  
I
OL  
V
= 2.0 to 5.5 V I = 1.6mA  
0.4  
2
V
V
DD  
OL  
V
V = 4.5 V to 5.5 V  
DD  
OL2  
I
= 4mA all out Ports except ports 4,5  
OL  
V
= 2.0 to 5.5 V I = 1.6mA  
0.4  
3
V
DD  
OL  
I
V = V  
I
Input High  
Leakage  
Current  
mA  
LIH1  
DD  
All input pins except those specified  
below for I  
LIH2  
I
V = V  
DD  
20  
- 3  
LIH2  
I
X
X
,
and XT  
IN  
IN OUT  
I
V = 0 V  
I
Input Low  
Leakage  
Current  
mA  
mA  
LIL1  
All input pins except below and RESET  
I
V = 0 V  
I
- 20  
3
LIL2  
X
X
,
and XT  
IN  
IN OUT  
I
V = V  
O DD  
Output High  
Leakage  
Current  
LOH  
All output pins  
V = 0 V  
O
I
Output Low  
Leakage  
Current  
- 3  
LOL  
All output pins  
R
V
DD  
= 5 V ; V = 0 V  
Pull-Up  
25  
47  
100  
I
kW  
L1  
Resistor  
except RESET and P4.5  
= 3 V  
V
50  
15  
95  
47  
200  
70  
DD  
R
V =V -2V, V =5V  
O DD DD  
L2  
Ports 4 and 5 only  
V
=3V  
10  
100  
200  
25  
45  
220  
450  
47  
60  
DD  
R
400  
800  
100  
V
V
= 5 V ; V = 0 V; RESET  
L3  
I
DD  
DD  
= 3 V  
R
V
= 5 V ; V = V ; Port 12  
Pull-Down  
Resistor  
I
L4  
DD  
DD  
DD  
V
= 3 V  
50  
95  
200  
14-3  
ELECTRICAL DATA  
S3C7515/P7515  
Table 14-2. D.C. Electrical Characteristics (Concluded)  
°
°
(T = – 40 C to + 85 C, V  
= 2.0 V to 5.5 V)  
DD  
A
Parameter  
Symbol  
Conditions  
Run mode; VDD=5.0V± 10%  
Min  
Typ  
Max  
Units  
Supply  
I
2.2  
5.0  
mA  
DD1  
(1)  
(DTMF ON) 3.58MHz Crystal oscillator;  
Current  
C1=C2=22pF  
V
= 3 V ± 10%  
1.2  
3.9  
3.0  
8.0  
DD  
I
6.0 MHz  
Run mode; VDD=5.0V± 10%  
DD2  
(
Crystal oscillator; C1=C2=22pF  
3.58 MHz  
6.0 MHz  
2.0  
1.8  
4.0  
4.0  
DTMF OFF)  
V
DD  
= 3 V ± 10%  
3.58 MHz  
6.0 MHz  
3.58 MHz  
6.0 MHz  
3.58 MHz  
0.8  
1.3  
0.6  
0.5  
0.4  
15.3  
2.3  
2.5  
1.8  
1.5  
1.0  
30  
I
Idle mode; V  
= 5 V ± 10%  
DD  
DD3  
V
DD  
= 3 V ± 10%  
I
I
I
Run mode; VDD=3.0V± 10%  
32 kHz Crystal oscillator  
mA  
DD4  
DD5  
DD6  
6.4  
15  
Idle mode; VDD=3.0V± 10%  
32 kHz Crystal oscillator  
2.5  
0.5  
-14  
5
3
Stop mode; VDD=5.0V± 10%  
VDD=3.0V± 10%  
Row Tone  
Level  
VROW  
DbCR  
THD  
VDD = 5 V ± 10%  
VDD = 3 V ± 10%  
VDD = 2 V  
-16  
1
-11  
dBV  
dB  
%
RL = 5kW  
Ratio of  
Column to  
Row Tone  
VDD = 5 V ± 10%  
VDD = 3 V ± 10%  
VDD = 2 V  
2
3
5
RL = 5kW  
Distortion  
VDD = 5 V ± 10%  
VDD = 3 V ± 10%  
VDD = 2 V  
(Dual tone)  
RL = 5kW, 1MHz band  
NOTES:  
1. D.C. electrical values for Supply Current (I  
to I  
) do not include current drawn through internal pull-up resistors.  
DD3  
DD1  
2. For D.C. electrical values, the power control register (PCON) must be set to 0011B.  
14-4  
S3C7515/P7515  
ELECTRICAL DATA  
Table 14-3. Main System Clock Oscillator Characteristics  
°
°
(T = – 40 C + 85 C, V  
= 2.0 V to 5.5 V)  
DD  
A
Oscillato  
r
Clock  
Configuration  
Parameter  
Test Condition  
Min  
Typ  
Max Units  
Ceramic  
Oscillator  
Oscillation frequency  
(1)  
VDD = 2.7 V to 5.5 V  
0.4  
6.0  
MHz  
Xin Xout  
C1  
C2  
VDD = 2.0 V to 5.5 V  
VDD = 3V  
0.4  
4.2  
4
(2)  
ms  
Stabilization time  
Crystal  
Oscillator  
Oscillation frequency  
(1)  
VDD = 2.7 V to 5.5V  
0.4  
6.0  
MHz  
Xin  
Xout  
C1  
C2  
VDD = 2.0 V to 5.5V  
VDD = 3 V  
0.4  
4.2  
10  
(2)  
ms  
Stabilization time  
(1)  
External  
Clock  
Xin  
Xout  
VDD = 2.7 V to 5.5V  
0.4  
6.0  
MHz  
X input frequency  
in  
VDD = 2.0 V to 5.5V  
0.4  
4.2  
X input high and low  
in  
83.3  
1250  
ns  
level width (t , t  
)
XH XL  
NOTES:  
1. Oscillation frequency and Xin input frequency data are for oscillator characteristics only.  
2. Stabilization time is the interval required for oscillating stabilization after a power-on occurs, or when stop mode is  
terminated.  
14-5  
ELECTRICAL DATA  
S3C7515/P7515  
Table 14-4. Subsystem Clock Oscillator Characteristics  
°
°
(T = – 40 C + 85 C, V  
= 2.0 V to 5.5 V)  
DD  
A
Oscillator  
Clock  
Parameter  
Test Condition  
Min  
Typ  
Max  
Units  
Configuration  
Crystal  
Oscillator  
XTin XTout  
Oscillation frequency  
(1)  
32  
32.768  
35  
kHz  
C1  
C2  
(2)  
VDD =2.7V to 5.5V  
VDD =2.0V to 5.5V  
1.0  
2
s
s
Stabilization time  
10  
External  
Clock  
XT input frequency  
in  
32  
100  
kHz  
XTin XTout  
(1)  
XT input high and  
in  
5
15  
µs  
low level width (t  
,
XH  
t
)
XL  
NOTES:  
1. Oscillation frequency and XTin input frequency data are for oscillator characteristics only.  
2. Stabilization time is the interval required for oscillating stabilization after a power-on occurs or when stop mode is  
terminated.  
Table 14-5. Input/Output Capacitance  
°
(T = 25 C, V  
= 0 V )  
DD  
A
Parameter  
Input  
Capacitance  
Symbol  
Condition  
Min  
Typ  
Max  
Units  
CIN  
f = 1 MHz; Unmeasured pins  
are returned to VSS  
15  
pF  
Output  
Capacitance  
COUT  
CIO  
15  
15  
pF  
pF  
I/O Capacitance  
14-6  
S3C7515/P7515  
ELECTRICAL DATA  
Table 14-6. A.C. Electrical Characteristics  
°
°
(T = – 40 C to + 85 C, V  
= 2.0 V to 5.5 V)  
A
DD  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Units  
Instruction Cycle  
Time  
t
VDD = 2.7 V to 5.5 V  
0.67  
64  
µs  
CY  
(1)  
VDD = 2.0 V to 5.5 V  
VDD = 2.7 V to 5.5 V  
0.95  
0
TCL0, TCL1 Input  
Frequency  
f
f
1.5  
MHz  
TI0, TI1  
VDD = 2.0 V to 5.5 V  
VDD = 2.7 V to 5.5 V  
1
MHz  
µs  
TCL0, TCL1 Input  
High, Low Width  
t
t
, t  
TIH0 TIL0  
, t  
TIH1 TIL1  
0.48  
VDD = 2.0 V to 5.5 V  
1.8  
t
VDD = 2.7 V to 5.5 V  
800  
ns  
ns  
KCY  
SCK Cycle Time  
External SCK source  
670  
Internal SCK source  
VDD = 2.0 V to 5.5 V  
External SCK source  
3200  
3800  
335  
Internal SCK source  
VDD = 2.7 V to 5.5 V  
External SCK source  
t
, t  
KH KL  
SCK High, Low  
Width  
t
KCY  
250  
Internal SCK source  
VDD = 2.0 V to 5.5 V  
1600  
External SCK source  
t
2150  
KCY  
Internal SCK source  
SI Setup Time to  
t
VDD = 2.7 V to 5.5 V  
100  
ns  
ns  
SIK  
SCK High  
External SCK source  
150  
150  
Internal SCK source  
VDD = 2.0 V to 5.5 V  
External SCK source  
500  
400  
Internal SCK source  
VDD = 2.7 V to 5.5 V  
External SCK source  
SI Hold Time to  
t
KSI  
SCK High  
400  
600  
Internal SCK source  
VDD = 2.0 V to 5.5 V  
External SCK source  
500  
Internal SCK source  
14-7  
ELECTRICAL DATA  
S3C7515/P7515  
Table 14-6. A.C. Electrical Characteristics (Continued)  
°
°
(T = – 40 C to + 85 C, VDD = 2.0 V to 5.5 V)  
A
Parameter  
Symbol  
Conditions  
VDD = 2.7 V to 5.5 V  
External SCK source  
Min  
Typ  
Max  
Units  
(NOTE)  
KSO  
Output Delay for  
300  
ns  
t
SCK to SO  
250  
Internal SCK source  
VDD = 2.0 V to 5.5 V  
External SCK source  
1000  
1000  
Internal SCK source  
10  
Interrupt Input  
High, Low Width  
t
t
,
INT0, INT1, INT2, INT4,  
KS0–KS7  
µs  
µs  
INTH  
INTL  
t
Input  
10  
RSL  
RESET Input Low  
Width  
NOTE: R (1 kW) and C (100 pF) are the load resistance and load capacitance of the SO output line.  
CPU CLOCK  
1.5 MHz  
Main Osc. Freq. (Divided by 4)  
6 MHz  
1.05 MHz  
4.2 MHz  
15.625 kHz  
1
2
3
4
5
6
7
2.7 V  
SUPPLY VOLTAGE (V)  
CPU CLOCK = oscillator frequency x 1/n (n = 4, 8, 64)  
Figure 14-1. Standard Operating Voltage Range  
14-8  
S3C7515/P7515  
ELECTRICAL DATA  
Table 14-7. RAM Data Retention Supply Voltage in Stop Mode  
°
°
(T = – 40 C to + 85 C)  
A
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Data retention supply voltage  
VDDDR  
1.5  
5.5  
V
Data retention supply current  
IDDDR  
VDDDR = 1.5 V  
0.1  
10  
µA  
Release signal set time  
tSREL  
tWAIT  
0
µs  
217 / fx  
Oscillator stabilization wait  
ms  
Released by RESET  
(1)  
time  
(2)  
Released by interrupt  
ms  
NOTES:  
1. During oscillator stabilization wait time, all CPU operations must be stopped to avoid instability during oscillator  
start-up.  
2. Use the basic timer mode register (BMOD) interval timer to delay execution of CPU instructions during the wait time.  
14-9  
ELECTRICAL DATA  
S3C7515/P7515  
TIMING WAVEFORMS  
INTERNAL RESET  
OPERATION  
IDLE MODE  
STOP MODE  
OPERATING  
MODE  
DATA RETENTION MODE  
VDD  
VDDDR  
EXECUTION OF  
STOP INSTRUCTION  
RESET  
tWAIT  
tSREL  
Figure 14-2. Stop Mode Release Timing When Initiated By RESET  
IDLE MODE  
NORMAL  
OPERATING  
MODE  
STOP MODE  
DATA RETENTION MODE  
VDD  
VDDDR  
tSREL  
EXECUTION OF  
STOP INSTRUCTION  
tWAIT  
POWER-DOWN MODE TERMINATING SIGNAL  
(INTERRUPT REQUEST)  
Figure 14-3. Stop Mode Release Timing When Initiated By Interrupt Request  
14-10  
S3C7515/P7515  
ELECTRICAL DATA  
0.8 VDD  
0.2 VDD  
0.8 VDD  
0.2 VDD  
MEASUREMENT  
POINTS  
Figure 14-4. A.C. Timing Measurement Points (Except for X and XT )  
in in  
1 / f  
x
t
t
XH  
XL  
X
in  
V
– 0.1 V  
DD  
0.1 V  
Figure 14-5. Clock Timing Measurement at X (XT  
in in  
)
1 / TI  
f
tTIL  
tTIH  
TCL  
0.8 VDD  
0.2 VDD  
Figure 14-6. TCL0/1 Timing  
14-11  
ELECTRICAL DATA  
S3C7515/P7515  
tRSL  
RESET  
0.2 VDD  
Figure 14-7. Input Timing for RESET Signal  
tINTL  
tINTH  
0.8 VDD  
0.2 VDD  
INT0, 1, 2, 4  
KS0 to KS7  
Figure 14-8. Input Timing for External Interrupts and Quasi-Interrupts  
14-12  
S3C7515/P7515  
ELECTRICAL DATA  
tKCY  
tKL  
tKH  
SCK  
0.8 VDD  
0.2 VDD  
SIK  
t
KSI  
t
0.8 VDD  
0.2 VDD  
SI  
INPUT DATA  
tKSO  
SO  
OUTPUT DATA  
Figure 14-9. Serial Data Transfer Timing  
14-13  
ELECTRICAL DATA  
S3C7515/P7515  
CHARACTERISTIC CURVES  
NOTE  
The characteristic values shown in the following graphs are based on actual test measurements.  
They do not, however, represent guaranteed operating values.  
°
(TA = 25 C)  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.8  
0.6  
(@5.5 V, fx/4)  
IDD 1  
(@5.5 V, fx/64)  
(@3.5 V, fx/4)  
IDD 1  
IDD 1  
(@5.5 V, fx/4)  
IDD 3  
(@3.5 V, fx/4)  
I
DD 3  
0.4  
0.2  
0
1
2
3
4
5
fx (MHz)  
Figure 14-10. I  
VS. Frequency  
DD  
14-14  
S3C7515/P7515  
ELECTRICAL DATA  
(T = 25 °C, fx = 4.2 MHz)  
A
6.0  
5.0  
4.0  
3.0  
2.0  
(Operating mode,  
IDD 1  
DTMF on)  
**  
(Operating  
IDD 2  
mode, DTMF off)  
**  
(Idle mode)  
I
**  
DD 3  
1.2  
1.0  
0.8  
(Operating  
IDD 1  
mode, DTMF on)  
*
0.6  
0.4  
0.2  
(Stop mode)  
(Operating  
I
**  
DD 5  
IDD 2  
mode, DTMF off)  
*
(Idle mode)  
*
IDD 3  
0
3
4
5
6
VDD (V)  
*
fx/64  
**  
fx/4  
Figure 14-11. I  
VS. V  
DD  
DD  
14-15  
ELECTRICAL DATA  
S3C7515/P7515  
°
(TA = 25 C, P0, 2, 3, 6 – 13)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
6.0 V  
4.5 V  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VOL (V)  
Figure 14-12. I  
VS. V (P0, 2, 3, and 6–13)  
OL  
OL  
°
(TA = 25 C, P0, 2, 3, 6 – 13)  
–30  
–25  
–20  
–15  
–10  
–5  
4.5 V  
4.5  
6.0 V  
6.0  
0
1.0  
1.5  
2.0  
0.5  
2.5  
3.0  
VOH(V)  
3.5  
4.0  
5.0  
5.5  
Figure 14-13. I  
VS. V (P0, 2, 3, and 6–13)  
OH  
OH  
14-16  
S3C7515/P7515  
ELECTRICAL DATA  
°
(TA = 25 C, P4, 5)  
100  
90  
6.0 V  
80  
70  
60  
50  
40  
30  
20  
10  
0
4.5 V  
1.0  
1.5  
2.0  
0.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VOL (V)  
Figure 14-14. I  
VS. V (P4 and 5)  
OL  
OL  
(T = 25 °C, V = 5 V)  
A
DD  
4.0  
3.0  
2.0  
1.0  
0.8  
0.4  
0.2  
0
0
10  
50  
100  
200  
300  
400  
500  
600  
700  
800  
900 1000  
Figure 14-16. Frequency VS. Resistor  
14-17  
S3C7515/P7515  
MECHANICAL DATA  
15 MECHANICAL DATA  
This section contains the following information about the device package:  
— Package dimensions in millimeters  
— Pad diagram  
— Pad/pin coordinate data table  
20.00 TYP  
2.45 MAX  
+ 0.1  
0.10  
– 0.05  
14.00 TYP  
19.00 ± 0.3  
64-QFP-1420A  
+ 0.1  
– 0.05  
0.15  
1.00 TYP  
0.40 ± 0.1  
25.00 ± 0.3  
1.20 ± 0.2  
: Typical dimensions are in millimeters.  
NOTE  
Figure 15-1. 64-QFP-1420A Package Dimensions  
15-1  
MECHANICAL DATA  
S3C7515/P7515  
23.20 ± 0.3  
20.00  
3.00 MAX  
0.15 ± 0.1  
0.15  
64-QFP-1420C  
64  
2.65 ± 0.1  
#1  
1.00  
(1.00)  
+ 0.1  
0.15  
0.40 ± 0.1  
– 0.05  
0.80 ± 0.2  
: Typical dimensions are in millimeters.  
NOTE  
Figure 15-2 64-QFP-1420C Package Dimensions  
15-2  
S3C7515/P7515  
MECHANICAL DATA  
57.80 ± 0.2  
0 ~ 15°  
64-SDIP-750  
19.05 TYP  
17.00 ± 0.2  
1.00 ± 0.1  
+0.1  
– 0.05  
0.25  
5.08 MAX  
3.30 ± 0.3  
0.51 MIN  
1.778 TYP  
0.45 ± 0.1  
NOTE  
: Typical dimensions are in millimeters.  
Figure 15-3. 64-SDIP-750 Package Dimensions  
15-3  
S3C7515/P7515  
S3P7515 OTP  
16 S3P7515 OTP  
OVERVIEW  
The S3P7515 single-chip CMOS microcontroller is the OTP (One Time Programmable) version of the S3C7515  
microcontroller. It has an on-chip OTP ROM instead of masked ROM. The EPROM is accessed by serial data  
format.  
The S3P7515 is fully compatible with the S3C7515, both in function and in pin configuration. Because of its  
simple programming requirements, the S3P7515 is ideal for use as an evaluation chip for the S3C7515.  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
P1.3 / INT4  
P1.2 / INT2  
P1.1 / INT1  
P1.0 / INT0  
P13.2  
VSS / VSS  
P9.0  
P9.1  
P9.2  
P9.3  
P8.0  
P8.1  
P8.2  
P8.3  
P7.0 / KS4  
P7.1 / KS5  
P7.2 / KS6  
P7.3 / KS7  
P6.0 / KS0  
P6.1 / KS1  
P6.2 / KS2  
P6.3 / KS3  
XTout  
1
2
3
4
5
6
7
8
P13.1  
P13.0  
P2.3 / BUZ  
P2.2 / CLO  
P2.1 / TCLO1  
P2.0 / TCLO0  
P0.3 / BTCO  
P0.2 / SI  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
P0.1 / SO  
P0.0 /  
SCK  
P10.3  
P10.2  
P10.1  
P10.0  
P11.3  
P11.2  
P11.1  
P11.0  
P12.3  
P12.2  
P12.1  
P12.0  
XTin  
Xin  
Xout  
/
RESET RESET  
P5.0  
P5.1  
P5.2  
P5.3  
P4.0  
P4.1  
P4.2  
P4.3  
SDAT / P3.3  
SCLK / P3.2  
VPP / TEST  
DTMF  
P3.0 / TCL0  
P3.1 / TCL1  
VDD / VDD  
NOTE: The bolds indicate a OTP pin name.  
Figure 16-1. S3P7515 Pin Assignments (64-SDIP)  
16-1  
S3P7515 OTP  
S3C7515/P7515  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
P8.0  
P9.3  
P9.2  
P9.1  
P9.0  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
P5.3  
P4.0  
P4.1  
P4.2  
P4.3  
VSS / VSS  
P1.3 / INT4  
P1.2 / INT2  
P1.1 / INT1  
P1.0 / INT0  
P13.2  
P3.0 / TCL0  
P3.1 / TCL1  
VDD / VDD  
DTMF  
TEST / VPP  
P3.2 / SCLK  
P3.3 / SDAT  
P12.0  
S3P7515  
(64-QFP-1420F)  
P13.1  
P13.0  
NOTE: The bolds indicate a OTP pin name.  
Figure 16-2. S3P7515 Pin Assignments (64-QFP)  
16-2  
S3C7515/P7515  
S3P7515 OTP  
Table 16-1. Descriptions of Pins Used to Read/Write the EPROM  
During Programming  
Pin Name  
Pin No.  
I/O  
Function  
SDAT  
28 (21)  
I/O  
Serial data pin. Output port when reading and input port when  
writing. Can be assigned as a Input / push-pull output port.  
SCLK  
29 (22)  
30 (23)  
I
I
Serial clock pin. Input only pin.  
Vpp(TEST)  
Power supply pin for EPROM cell writing (indicates that OTP  
enters into the writing mode). When 12.5 V is applied, OTP is  
in writing mode and when 5 V is applied, OTP is in reading  
mode. (Option)  
43 (36)  
I
I
Chip initialization  
RESET  
VDD / VSS  
32 (25) /  
64 (57)  
Logic power supply pin. VDD should be tied to +5 V during  
programming.  
NOTE: Parentheses indicate pin number for 64 QFP package.  
Table 16-2. Comparison of S3P7515 and S3C7515 Features  
Characteristic  
Program Memory  
Operating Voltage (V  
S3P7515  
S3C7515  
2 K byte mask ROM  
2.0 V to 5.5 V  
16 K byte EPROM  
2.0 V to 5.5 V  
)
DD  
OTP Programming Mode  
VDD = 5 V, VPP(TEST)=12.5V  
Pin Configuration  
64SDIP / QFP  
64SDIP / QFP  
EPROM Programmability  
User Program 1 time  
Programmed at the factory  
OPERATING MODE CHARACTERISTICS  
When 12.5 V is supplied to the V (TEST) pin of the S3P7515, the EPROM programming mode is entered. The  
PP  
operating mode (read, write, or read protection) is selected according to the input signals to the pins listed in  
Table 14-3 below.  
Table 16-3. Operating Mode Selection Criteria  
V
DD  
Vpp  
REG/  
Address  
(A15-A0)  
Mode  
R/W  
(TEST)  
MEM  
5 V  
5 V  
0
0
0
1
0000H  
0000H  
0000H  
0E3FH  
1
0
1
0
EPROM read  
12.5V  
12.5V  
12.5V  
EPROM program  
EPROM verify  
EPROM read protection  
NOTE: "0" means Low level; "1" means High level.  
16-3  
S3P7515 OTP  
S3C7515/P7515  
Table 16-4. D.C. Electrical Characteristics  
(T = – 40 C to + 85 C, VDD = 2.0 V to 5.5 V)  
°
°
A
Parameter  
Symbol  
Conditions  
Run mode; VDD =5.0V± 10%  
3.58MHz Crystal oscillator;  
C1=C2=22pF  
Min  
Typ  
Max  
Units  
Supply  
Current  
(1,2)  
I
2.2  
5.0  
mA  
DD1  
(DTMF ON)  
VDD = 3 V ± 10%  
1.2  
3.9  
2.0  
1.8  
3.0  
8.0  
4.0  
4.0  
I
6.0 MHz  
3.58 MHz  
6.0 MHz  
Run mode; VDD =5.0V± 10%  
Crystal oscillator; C1=C2=22pF  
VDD = 3 V ± 10%  
DD2  
(
DTMF OFF)  
3.58 MHz  
6.0 MHz  
0.8  
1.3  
2.3  
2.5  
I
Idle mode; VDD = 5 V ± 10%  
VDD = 3 V ± 10%  
DD3  
3.58 MHz  
6.0 MHz  
0.6  
0.5  
1.8  
1.5  
3.58 MHz  
0.4  
1.0  
30  
I
I
I
15.3  
Run mode; VDD =3.0V± 10%  
32 kHz Crystal oscillator  
mA  
DD4  
DD5  
DD6  
6.4  
15  
Idle mode; VDD =3.0V± 10%  
32 kHz Crystal oscillator  
2.5  
0.5  
5
3
Stop mode; VDD =5.0V± 10%  
VDD=3.0V± 10%  
NOTES:  
1. D.C. electrical values for Supply Current (I  
to I  
) do not include current drawn through internal pull-up resistors.  
DD3  
DD1  
2. For D.C. electrical values, the power control register (PCON) must be set to 0011B.  
16-4  
S3C7515/P7515  
S3P7515 OTP  
CPU CLOCK  
1.5 MHz  
Main Osc. Freq. (Divided by 4)  
6 MHz  
1.05 MHz  
4.2 MHz  
15.625 kHz  
1
2
3
4
5
6
7
2.7 V  
SUPPLY VOLTAGE (V)  
CPU CLOCK = oscillator frequency x 1/n (n = 4, 8, 64)  
Figure 16-3. Standard Operating Voltage Range  
16-5  
S3P7515 OTP  
S3C7515/P7515  
START  
Address= First Location  
V
=5V, V =12.5V  
PP  
DD  
x = 0  
Program One 1ms Pulse  
Increment X  
YES  
x = 10  
NO  
FAIL  
FAIL  
NO  
Verify Byte  
Verify 1 Byte  
Last Address  
Increment Address  
V
= V = 5 V  
PP  
DD  
FAIL  
Compare All Byte  
PASS  
Device Failed  
Device Passed  
Figure 16-4. OTP Programming Algorithm  
16-6  

相关型号:

S3C7515XX-QT

Microcontroller, 4-Bit, MROM, SAM47 CPU, 6MHz, CMOS, PQFP64, 14 X 20 MM, QFP-64
SAMSUNG

S3C7524

The S3C7524/C7528/C7534/C7538 single-chip CMOS microcontroller has been designed for high-performance using SAM 47
SAMSUNG

S3C7524XX-AQ

Microcontroller, 4-Bit, MROM, SAM47 CPU, 6MHz, CMOS, PDIP42, 0.600 INCH, SDIP-42
SAMSUNG

S3C7528

The S3C7524/C7528/C7534/C7538 single-chip CMOS microcontroller has been designed for high-performance using SAM 47
SAMSUNG

S3C7534

The S3C7524/C7528/C7534/C7538 single-chip CMOS microcontroller has been designed for high-performance using SAM 47
SAMSUNG

S3C7538

The S3C7524/C7528/C7534/C7538 single-chip CMOS microcontroller has been designed for high-performance using SAM 47
SAMSUNG

S3C7538XX-AV

Microcontroller, 4-Bit, MROM, SAM47 CPU, 6MHz, CMOS, PDIP30, 0.400 INCH, SDIP-30
SAMSUNG

S3C7538XX-SO

Microcontroller, 4-Bit, MROM, SAM47 CPU, 6MHz, CMOS, PDSO32, 0.450 INCH, SOP-32
SAMSUNG

S3C7544

Single-chip CMOS microcontroller, 512 x 4-bit RAM, 4096 x 8-bit ROM
SAMSUNG

S3C7544XX-SM

Microcontroller, 4-Bit, MROM, SAM47 CPU, 6MHz, CMOS, PDSO24, 0.375 INCH, SOP-24
SAMSUNG

S3C7559

single-chip CMOS microcontroller
SAMSUNG

S3C7565

single-chip CMOS microcontroller
SAMSUNG