S3C80F9BXX-LR [SAMSUNG]

Microcontroller, 8-Bit, FLASH, SAM87RC CPU, 8MHz, CMOS, PQCC48;
S3C80F9BXX-LR
型号: S3C80F9BXX-LR
厂家: SAMSUNG    SAMSUNG
描述:

Microcontroller, 8-Bit, FLASH, SAM87RC CPU, 8MHz, CMOS, PQCC48

微控制器
文件: 总289页 (文件大小:3763K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
S3C80F9B/C80G9B  
8-BIT CMOS  
MICROCONTROLLERS  
USER'S MANUAL  
Revision 1  
Important Notice  
The information in this publication has been carefully  
"Typical" parameters can and do vary in different  
applications. All operating parameters, including  
"Typicals" must be validated for each customer  
application by the customer's technical experts.  
checked and is believed to be entirely accurate at  
the time of publication. Samsung assumes no  
responsibility, however, for possible errors or  
omissions, or for any consequences resulting from  
the use of the information contained herein.  
Samsung products are not designed, intended, or  
authorized for use as components in systems  
intended for surgical implant into the body, for other  
applications intended to support or sustain life, or for  
any other application in which the failure of the  
Samsung product could create a situation where  
personal injury or death may occur.  
Samsung reserves the right to make changes in its  
products or product specifications with the intent to  
improve function or design at any time and without  
notice and is not required to update this  
documentation to reflect such changes.  
This publication does not convey to a purchaser of  
semiconductor devices described herein any license  
under the patent rights of Samsung or others.  
Should the Buyer purchase or use a Samsung  
product for any such unintended or unauthorized  
application, the Buyer shall indemnify and hold  
Samsung and its officers, employees, subsidiaries,  
affiliates, and distributors harmless against all  
claims, costs, damages, expenses, and reasonable  
attorney fees arising out of, either directly or  
indirectly, any claim of personal injury or death that  
may be associated with such unintended or  
unauthorized use, even if such claim alleges that  
Samsung was negligent regarding the design or  
manufacture of said product.  
Samsung makes no warranty, representation, or  
guarantee regarding the suitability of its products for  
any particular purpose, nor does Samsung assume  
any liability arising out of the application or use of  
any product or circuit and specifically disclaims any  
and all liability, including without limitation any  
consequential or incidental damages.  
S3C80F9B/C80G9B 8-Bit CMOS Microcontrollers  
User's Manual, Revision 1  
Publication Number: 21-S3C-80F9B/C80G9B–092005  
© 2005 Samsung Electronics  
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in  
any form or by any means, electric or mechanical, by photocopying, recording, or otherwise, without the prior  
written consent of Samsung Electronics.  
Samsung Electronics' microcontroller business has been awarded full ISO-14001  
certification (BSI Certificate No. FM24653). All semiconductor products are designed and  
manufactured in accordance with the highest quality standards and objectives.  
Samsung Electronics Co., Ltd.  
San #24 Nongseo-Dong, Giheung-Gu  
Yongin-City, Gyungi-Do, Korea  
C.P.O. Box #37, Suwon 446-711  
TEL: (82)-(31) 209-5238  
FAX: (82)-(31) 209-6494  
Home-Page URL:  
Http://www.samsungsemi.com  
Printed in the Republic of Korea  
Preface  
The S3C80F9B/C80G9B Microcontroller User's Manual is designed for application designers and programmers  
who are using S3C80F9B/C80G9B microcontroller for application development. It is organized in two main parts:  
Part I Programming Model  
Part II Hardware Descriptions  
Part I contains software-related information to familiarize you with the microcontroller's architecture, programming  
model, instruction set, and interrupt structure. It has six chapters:  
Chapter 1  
Chapter 2  
Chapter 3  
Product Overview  
Address Spaces  
Addressing Modes  
Chapter 4  
Chapter 5  
Chapter 6  
Control Registers  
Interrupt Structure  
Instruction Set  
Chapter 1, "Product Overview," is a high-level introduction to S3C80F9B/C80G9B with general product  
descriptions, as well as detailed information about individual pin characteristics and pin circuit types.  
Chapter 2, "Address Spaces," describes program and data memory spaces, the internal register file, and register  
addressing. Chapter 2 also describes working register addressing, as well as system stack and user-defined  
stack operations.  
Chapter 3, "Addressing Modes," contains detailed descriptions of the addressing modes that are supported by the  
S3C8-series CPU.  
Chapter 4, "Control Registers," contains overview tables for all mapped system and peripheral control register  
values, as well as detailed one-page descriptions in a standardized format. You can use these easy-to-read,  
alphabetically organized, register descriptions as a quick-reference source when writing programs.  
Chapter 5, "Interrupt Structure," describes the S3C80F9B/C80G9B interrupt structure in detail and further  
prepares you for additional information presented in the individual hardware module descriptions in Part II.  
Chapter 6, "Instruction Set," describes the features and conventions of the instruction set used for all S3C8-series  
microcontrollers. Several summary tables are presented for orientation and reference. Detailed descriptions of  
each instruction are presented in a standard format. Each instruction description includes one or more practical  
examples of how to use the instruction when writing an application program.  
A basic familiarity with the information in Part I will help you to understand the hardware module descriptions in  
Part II. If you are not yet familiar with the S3C8-series microcontroller family and are reading this manual for the  
first time, we recommend that you first read Chapters 1–3 carefully. Then, briefly look over the detailed  
information in Chapters 4, 5, and 6. Later, you can reference the information in Part I as necessary.  
Part II "hardware Descriptions," has detailed information about specific hardware components of the  
S3C80F9B/C80G9B microcontroller. Also included in Part II are electrical, mechanical, OTP, and development  
tools data. It has ten chapters:  
Chapter 7  
Chapter 8  
Chapter 9  
Chapter 10  
Chapter 11  
Clock Circuits  
Chapter 12  
Chapter 13  
Chapter 14  
Chapter 15  
Chapter 16  
Timer 1  
Counter A  
Electrical Data 1  
Electrical Data 2  
Mechanical Data  
RESET and Power-Down 1  
RESET and Power-Down 2  
I/O Ports  
Basic Timer and Timer 0  
Two order forms are included at the back of this manual to facilitate customer order for S3C80F9B/C80G9B  
microcontrollers: the Mask ROM Order Form, and the Mask Option Selection Form. You can photocopy these  
forms, fill them out, and then forward them to your local Samsung Sales Representative.  
S3C80F9B/C80G9B  
iii  
Table of Contents  
Part I — Programming Model  
Chapter 1  
Product Overview  
S3C8-Series Microcontrollers .......................................................................................................................1-1  
S3C80F9B/C80G9B Microcontroller.............................................................................................................1-1  
Features........................................................................................................................................................1-2  
Block Diagram...............................................................................................................................................1-3  
Pin Assignments ...........................................................................................................................................1-4  
Pin Circuits....................................................................................................................................................1-11  
Chapter 2  
Address Spaces  
Overview .......................................................................................................................................................2-1  
Program Memory ..........................................................................................................................................2-2  
Register Page Pointer (PP)..................................................................................................................2-5  
Register Set 1.......................................................................................................................................2-6  
Register Set 2.......................................................................................................................................2-6  
Prime Register Space ..........................................................................................................................2-7  
Working Registers................................................................................................................................2-8  
Using the Register Pointers..................................................................................................................2-9  
Register Addressing......................................................................................................................................2-11  
Common Working Register Area (C0H–CFH) .....................................................................................2-13  
4-Bit Working Register Addressing ......................................................................................................2-14  
8-Bit Working Register Addressing ......................................................................................................2-16  
System and User Stacks...............................................................................................................................2-18  
Chapter 3  
Addressing Modes  
Overview .......................................................................................................................................................3-1  
Register Addressing Mode (R).............................................................................................................3-2  
Indirect Register Addressing Mode (IR)...............................................................................................3-3  
Indexed Addressing Mode (X)..............................................................................................................3-7  
Direct Address Mode (DA) ...................................................................................................................3-10  
Indirect Address Mode (IA)...................................................................................................................3-12  
Relative Address Mode (RA)................................................................................................................3-13  
Immediate Mode (IM) ...........................................................................................................................3-14  
Chapter 4  
Control Registers  
Overview .......................................................................................................................................................4-1  
S3C80F9B/C80G9B  
v
Table of Contents (Continued)  
Chapter 5  
Interrupt Structure  
Overview........................................................................................................................................................5-1  
Interrupt Types......................................................................................................................................5-2  
Interrupt Vector Addresses...................................................................................................................5-5  
Enable/Disable Interrupt Instructions (EI, DI).......................................................................................5-7  
System-Level Interrupt Control Registers ............................................................................................5-7  
Interrupt Processing Control Points......................................................................................................5-8  
Peripheral Interrupt Control Registers..................................................................................................5-9  
System Mode Register (SYM)..............................................................................................................5-10  
Interrupt Mask Register (IMR) ..............................................................................................................5-11  
Interrupt Priority Register (IPR) ............................................................................................................5-12  
Interrupt Request Register (IRQ)..........................................................................................................5-14  
Interrupt Pending Function Types ........................................................................................................5-15  
Interrupt Source Polling Sequence.......................................................................................................5-16  
Interrupt Service Routines....................................................................................................................5-16  
Generating Interrupt Vector Addresses................................................................................................5-17  
Nesting of Vectored Interrupts..............................................................................................................5-17  
Instruction Pointer (IP)..........................................................................................................................5-17  
Fast Interrupt Processing .....................................................................................................................5-17  
Chapter 6  
Instruction Set  
Overview........................................................................................................................................................6-1  
Flags Register (FLAGS) .......................................................................................................................6-6  
Flag Descriptions..................................................................................................................................6-7  
Instruction Set Notation ........................................................................................................................6-8  
Condition Codes ...................................................................................................................................6-12  
Instruction Descriptions ........................................................................................................................6-13  
Chapter 7  
Clock Circuit  
Overview........................................................................................................................................................7-1  
System Clock Circuit.............................................................................................................................7-1  
Clock Status During Power-Down Modes ............................................................................................7-2  
System Clock Control Register (CLKCON)..........................................................................................7-3  
vi  
S3C80F9B/C80G9B  
Table of Contents (Continued)  
Chapter 8  
RESET and Power-Down 1 (S3C80F9B)  
System Reset................................................................................................................................................8-1  
Overview...............................................................................................................................................8-1  
System Reset by LVD Circuit...............................................................................................................8-2  
System Reset by nReset Pin.............................................................................................................8-2  
Watch-Dog Timer Reset.......................................................................................................................8-2  
System Reset Operation ......................................................................................................................8-3  
Hardware Reset Values .......................................................................................................................8-4  
Power-Down Modes......................................................................................................................................8-6  
Back-up Mode ......................................................................................................................................8-6  
IDLE Mode............................................................................................................................................8-9  
Recommendation for Unusued Pins ....................................................................................................8-10  
Summary Table of Back-up Mode, Stop Mode, and, Reset Status .....................................................8-11  
Chapter 9  
RESET and Power-Down 2 (S3C80G9B)  
System Reset................................................................................................................................................9-1  
Overview...................................................................................................................................................9-1  
System Reset by LVD Circuit ...................................................................................................................9-2  
System Reset by Reset Pin ...................................................................................................................9-2  
Watch-Dog Timer Reset...........................................................................................................................9-2  
Internal Power-on Reset...........................................................................................................................9-3  
System Reset Operation...........................................................................................................................9-6  
Hardware Reset Values............................................................................................................................9-7  
Power-Down Modes......................................................................................................................................9-9  
Back-Up Mode..........................................................................................................................................9-9  
Stop Mode.................................................................................................................................................9-11  
Sources to Release Stop Mode................................................................................................................9-12  
Idle Mode ..................................................................................................................................................9-13  
Recommendation for Unusued Pins.........................................................................................................9-14  
Summary Table of Back-Up Mode, Stop Mode, and Reset Status..........................................................9-15  
Chapter 10  
I/O Ports  
Overview .......................................................................................................................................................10-1  
Port Data Registers..............................................................................................................................10-5  
Pull-Up Resistor Enable Registers.......................................................................................................10-6  
S3C80F9B/C80G9B  
vii  
Table of Contents (Continued)  
Basic Timer and Timer 0  
Chapter 11  
Module Overview...........................................................................................................................................11-1  
Basic Timer (BT)...................................................................................................................................11-1  
Timer 0..................................................................................................................................................11-1  
Basic Timer Control Register (BTCON) ...............................................................................................11-2  
Basic Timer Function Description.........................................................................................................11-3  
Timer 0 Control Register (T0CON).......................................................................................................11-3  
Timer 0 Function Description................................................................................................................11-5  
Chapter 12  
Timer 1  
Overview........................................................................................................................................................12-1  
Timer 1 Overflow Interrupt....................................................................................................................12-2  
Timer 1 Capture Interrupt .....................................................................................................................12-2  
Timer 1 Match Interrupt ........................................................................................................................12-3  
Timer 1 Control Register (T1CON).......................................................................................................12-5  
Chapter 13  
Counter A  
Overview........................................................................................................................................................13-1  
Counter A Control Register (CACON)..................................................................................................13-3  
Counter A Pulse Width Calculations.....................................................................................................13-4  
Chapter 14  
Electrical Data 1 (S3C80F9B)  
Overview........................................................................................................................................................14-1  
Chapter 15  
Electrical Data 2 (S3C80G9B)  
Overview........................................................................................................................................................15-1  
Chapter 16  
Mechanical Data  
Overview........................................................................................................................................................16-1  
viii  
S3C80F9B/C80G9B  
List of Figures  
Figure  
Title  
Page  
Number  
Number  
1-1  
1-2  
1-3  
1-4  
1-5  
1-6  
1-7  
1-8  
Block Diagram............................................................................................................1-3  
Pin Assignment Diagram (42-Pin SDIP Package) .....................................................1-4  
Pin Assignment Diagram (44-Pin QFP Package) ......................................................1-5  
S3C80F9B Pin Assignment (48-pin ELP) ..................................................................1-6  
Pin Assignment Diagram (32-Pin SOP Package)......................................................1-7  
S3C80G9 Pin Assignment Diagram (28-Pin SOP Package).....................................1-7  
Pin Circuit Type 1 (Port 0 and Port2) .........................................................................1-11  
Pin Circuit Type 2 (Port 1)..........................................................................................1-12  
Pin Circuit Type 3 (P3.0) ............................................................................................1-13  
Pin Circuit Type 4 (P3.1) Circuit.................................................................................1-14  
Pin Circuit Type 5 (P3.2, P3.3)...................................................................................1-14  
Pin Circuit Type 6 (P3.4, P3.5)...................................................................................1-15  
Pin Circuit Type 7 (Port 4)..........................................................................................1-15  
Pin Circuit Type 8 (nRESET) .....................................................................................1-15  
1-9  
1-10  
1-11  
1-12  
1-13  
1-14  
2-1  
2-2  
2-3  
2-4  
2-5  
2-6  
2-7  
2-8  
Program Memory Address Space..............................................................................2-2  
Internal Register File Organization.............................................................................2-4  
Register Page Pointer (PP)........................................................................................2-5  
Set 1, Set 2, and Prime Area Register Map...............................................................2-7  
8-Byte Working Register Areas (Slices).....................................................................2-8  
Contiguous 16-Byte Working Register Block.............................................................2-9  
Non-Contiguous 16-Byte Working Register Block.....................................................2-10  
16-Bit Register Pair ....................................................................................................2-11  
Register File Addressing............................................................................................2-12  
Common Working Register Area ...............................................................................2-13  
4-Bit Working Register Addressing............................................................................2-15  
4-Bit Working Register Addressing Example.............................................................2-15  
8-Bit Working Register Addressing............................................................................2-16  
8-Bit Working Register Addressing Example.............................................................2-17  
Stack Operations........................................................................................................2-18  
2-9  
2-10  
2-11  
2-12  
2-13  
2-14  
2-15  
3-1  
3-2  
3-3  
3-4  
3-5  
3-6  
3-7  
3-8  
Register Addressing...................................................................................................3-2  
Working Register Addressing.....................................................................................3-2  
Indirect Register Addressing to Register File.............................................................3-3  
Indirect Register Addressing to Program Memory.....................................................3-4  
Indirect Working Register Addressing to Register File ..............................................3-5  
Indirect Working Register Addressing to Program or Data Memory..........................3-6  
Indexed Addressing to Register File ..........................................................................3-7  
Indexed Addressing to Program or Data Memory with Short Offset..........................3-8  
Indexed Addressing to Program or Data Memory......................................................3-9  
Direct Addressing for Load Instructions.....................................................................3-10  
Direct Addressing for Call and Jump Instructions......................................................3-11  
Indirect Addressing.....................................................................................................3-12  
Relative Addressing ...................................................................................................3-13  
Immediate Addressing................................................................................................3-14  
3-9  
3-10  
3-11  
3-12  
3-13  
3-14  
4-1  
Register Description Format ......................................................................................4-4  
S3C80F9B/C80G9B  
ix  
List of Figures (Continued)  
Figure  
Title  
Page  
Number  
Number  
5-1  
5-2  
5-3  
5-4  
5-5  
5-6  
5-7  
5-8  
5-9  
S3C8-Series Interrupt Types......................................................................................5-2  
S3C80F9B/C80G9B Interrupt Structure.....................................................................5-4  
ROM Vector Address Area.........................................................................................5-5  
Interrupt Function Diagram.........................................................................................5-8  
System Mode Register (SYM)....................................................................................5-10  
Interrupt Mask Register (IMR) ....................................................................................5-11  
Interrupt Request Priority Groups...............................................................................5-12  
Interrupt Priority Register (IPR) ..................................................................................5-13  
Interrupt Request Register (IRQ) ...............................................................................5-14  
6-1  
System Flags Register (FLAGS) ................................................................................6-6  
7-1  
7-2  
7-3  
7-4  
Main Oscillator Circuit (External Crystal or Ceramic Resonator) ............................7-1  
External Clock Circuit .................................................................................................7-1  
System Clock Circuit Diagram....................................................................................7-2  
System Clock Control Register (CLKCON)................................................................7-3  
8-1  
8-2  
8-3  
Reset block diagram...................................................................................................8-1  
Block diagram for Back-up mode ...............................................................................8-6  
Timing diagram for Back-up mode input and release by LVD....................................8-6  
9-1  
9-2  
9-3  
9-4  
9-5  
9-6  
Reset block diagram For the S3C80G9B...................................................................9-2  
Power-on reset Circuit................................................................................................9-3  
Timing Diagram for Power-on Reset Circuit...............................................................9-3  
Reset Timing Diagram for the S3C80G9B in STOP mode ........................................9-5  
Block diagram for Back-up mode in the S3C80G9B..................................................9-9  
Timing Diagram For Back-Up Mode Input And Release by LVD...............................9-10  
10-1  
10-2  
S3C80F9B/C80G9B I/O Port Data Register Format..................................................10-5  
Pull-up Resistor Enable Registers (Ports 0 and 2 only).............................................10-6  
11-1  
11-2  
11-3  
11-4  
11-5  
11-6  
Basic Timer Control Register (BTCON) .....................................................................11-2  
Timer 0 Control Register (T0CON).............................................................................11-4  
Simplified Timer 0 Function Diagram: Interval Timer Mode.......................................11-5  
Simplified Timer 0 Function Diagram: PWM Mode ....................................................11-6  
Simplified Timer 0 Function Diagram: Capture Mode ................................................11-7  
Basic Timer and Timer 0 Block Diagram....................................................................11-8  
12-1  
12-2  
12-3  
12-4  
12-5  
Simplified Timer 1 Function Diagram: Capture Mode ................................................12-2  
Simplified Timer 1 Function Diagram: Interval Timer Mode.......................................12-3  
Timer 1 Block Diagram...............................................................................................12-4  
Timer 1 Control Register (T1CON).............................................................................12-5  
Timer 1 Registers .......................................................................................................12-6  
x
S3C80F9B/C80G9B  
List of Figures (Continued)  
Figure  
Title  
Page  
Number  
Number  
13-1  
13-2  
13-3  
13-4  
Counter A Block Diagram...........................................................................................13-2  
Counter A Control Register (CACON) .......................................................................13-3  
Counter A Registers...................................................................................................13-4  
Counter A Output Flip-Flop Waveforms in Repeat Mode ..........................................13-5  
14-1  
14-2  
14-3  
14-4  
14-5  
14-6  
Stop Mode Release Timing When Initiated by an External Interrupt.........................14-5  
Stop Mode Release Timing When Initiated by a RESET...........................................14-5  
Stop Mode Release Timing When Initiated by a LVD................................................14-6  
Input Timing for External Interrupts (Port 0, P2.3–P2.0)............................................14-7  
Input Timing for RESET .............................................................................................14-7  
Operating Voltage Range of S3C80F9B....................................................................14-9  
15-1  
15-2  
15-3  
15-4  
15-6  
Stop Mode Release Timing When Initiated by an External Interrupt.........................15-5  
Stop Mode Release Timing When Initiated by a RESET...........................................15-5  
Input Timing for External Interrupts (Port 0, P2.3–P2.0)............................................15-7  
Input Timing for RESET .............................................................................................15-7  
Operating Voltage Range of S3C80G9A ...................................................................15-9  
16-1  
16-2  
16-3  
16-4  
16-5  
28-SOP-375 Package Dimensions ............................................................................16-1  
32-Pin SOP Package Dimension ...............................................................................16-2  
42-Pin SDIP Package Dimension ..............................................................................16-3  
44-Pin QFP Package Dimension ...............................................................................16-4  
48-Pin ELP Package Dimension................................................................................16-5  
S3C80F9B/C80G9B  
xi  
List of Tables  
Table  
Title  
Page  
Number  
Number  
1-1  
1-2  
1-3  
Pin Descriptions of 44-QFP and 42-SDIP..................................................................1-8  
Pin Descriptions of 28-SOP and 32-SOP ..................................................................1-9  
Pin Descriptions of 48-ELP ........................................................................................1-10  
2-1  
S3C80F9B/C80G9B Register Type Summary...........................................................2-3  
4-1  
4-2  
Mapped Registers (Set 1) ..........................................................................................4-2  
Each function description and pin assignment of P3CON in 42/44 pin package. .....4-27  
5-1  
5-2  
5-3  
S3C80F9B/C80G9B Interrupt Vectors.......................................................................5-6  
Interrupt Control Register Overview...........................................................................5-7  
Vectored Interrupt Source Control and Data Registers .............................................5-9  
6-1  
6-2  
6-3  
6-4  
6-5  
6-6  
Instruction Group Summary .......................................................................................6-2  
Flag Notation Conventions.........................................................................................6-8  
Instruction Set Symbols..............................................................................................6-8  
Instruction Notation Conventions ...............................................................................6-9  
Opcode Quick Reference...........................................................................................6-10  
Condition Codes.........................................................................................................6-12  
8-1  
8-2  
8-3  
8-4  
Reset Condition..........................................................................................................8-2  
Set 1 Register Values After Reset .............................................................................8-4  
Guideline for Unused Pins to Reduced Power Consumption. ...................................8-10  
Summary of each mode.............................................................................................8-11  
9-1  
9-2  
9-3  
9-4  
9-5  
Reset Condition not in STOP mode...........................................................................9-4  
Reset Condition in STOP mode.................................................................................9-4  
Set 1 Register Values after Reset..............................................................................9-7  
Guideline for Unused Pins to Reduced Power Consumption. ...................................9-14  
Summary of each mode.............................................................................................9-15  
10-1  
10-2  
10-3  
10-4  
10-5  
S3C80F9B/C80G9B Port Configuration Overview (44-QFP/48ELP).........................10-2  
S3C80F9B/C80G9B Port Configuration Overview (42-SDIP) ...................................10-3  
S3C80F9B/C80G9B Port Configuration Overview (32-SOP) ....................................10-4  
S3C80G9B Port Configuration Overview (28-SOP)...................................................10-4  
Port Data Register Summary .....................................................................................10-5  
S3C80F9B/C80G9B  
xiii  
List of Tables (Continued)  
Table  
Title  
Page  
Number  
Number  
14-1  
14-2  
14-3  
14-4  
14-5  
14-6  
14-7  
14-8  
Absolute Maximum Ratings........................................................................................14-2  
D.C. Electrical Characteristics....................................................................................14-2  
Characteristics of Low Voltage Detect circuit.............................................................14-4  
Data Retention Supply Voltage in Stop Mode............................................................14-4  
Input/Output Capacitance...........................................................................................14-6  
A.C. Electrical Characteristics ....................................................................................14-6  
Oscillation Characteristics ..........................................................................................14-8  
Oscillation Stabilization Time......................................................................................14-8  
15-1  
15-2  
15-3  
15-4  
15-5  
15-6  
15-7  
15-8  
Absolute Maximum Ratings........................................................................................15-2  
D.C. Electrical Characteristics....................................................................................15-2  
Characteristics of Low Voltage Detect circuit.............................................................15-4  
Data Retention Supply Voltage in Stop Mode............................................................15-4  
Input/Output Capacitance...........................................................................................15-6  
A.C. Electrical Characteristics ....................................................................................15-6  
Oscillation Characteristics ..........................................................................................15-8  
Oscillation Stabilization Time......................................................................................15-8  
xiv  
S3C80F9B/C80G9B  
List of Programming Tips  
Description  
Chapter 2:  
Page  
Number  
Address Spaces  
Setting the Register Pointers ........................................................................................................................2-9  
Using the RPs to Calculate the Sum of a Series of Registers......................................................................2-10  
Addressing the Common Working Register Area.........................................................................................2-14  
Standard Stack Operations Using PUSH and POP......................................................................................2-19  
Chapter 8:  
RESET and Power-down 1  
To enter STOP mode....................................................................................................................................8-7  
Chapter 9:  
RESET and Power-down 2  
To enter STOP mode....................................................................................................................................9-11  
Chapter 11:  
Basic Timer and Timer 0  
Configuring the Basic Timer..........................................................................................................................11-9  
Programming Timer 0 ...................................................................................................................................11-10  
Chapter 13:  
Counter A  
To generate 38 kHz, 1/3duty signal through P3.1 ........................................................................................13-6  
To generate a one pulse signal through P3.1...............................................................................................13-7  
S3C80F9B/C80G9B  
xv  
List of Register Descriptions  
Register  
Identifier  
Full Register Name  
Page  
Number  
BTCON  
CACON  
CLKCON  
EMT  
FLAGS  
IMR  
IPH  
IPL  
IPR  
IRQ  
P0CONH  
P0CONL  
P0INT  
P0PND  
P0PUR  
P1CONH  
P1CONL  
P2CONH  
P2CONL  
P2INT  
P2PND  
P2PUR  
P3CON  
P4CON  
PP  
Basic Timer Control Register .....................................................................................4-5  
Counter A Control Register........................................................................................4-6  
System Clock Control Register ..................................................................................4-7  
External Memory Timing Register..............................................................................4-8  
System Flags Register ...............................................................................................4-9  
Interrupt Mask Register..............................................................................................4-10  
Instruction Pointer (High Byte) ...................................................................................4-11  
Instruction Pointer (Low Byte)....................................................................................4-11  
Interrupt Priority Register ...........................................................................................4-12  
Interrupt Request Register.........................................................................................4-13  
Port 0 Control Register (High Byte)............................................................................4-14  
Port 0 Control Register (Low Byte) ............................................................................4-15  
Port 0 External Interrupt Enable Register ..................................................................4-16  
Port 0 External Interrupt Pending Register ................................................................4-17  
Port 0 Pull-up Resistor Enable Register ....................................................................4-18  
Port 1 Control Register (High Byte)............................................................................4-19  
Port 1 Control Register (Low Byte) ............................................................................4-20  
Port 2 Control Register (High Byte)............................................................................4-21  
Port 2 Control Register (Low Byte) ............................................................................4-22  
Port 2 External Interrupt Enable Register ..................................................................4-23  
Port 2 External Interrupt Pending Register ................................................................4-24  
Port 2 Pull-up Resistor Enable Register ....................................................................4-25  
Port 3 Control Register...............................................................................................4-26  
Port 4 Control Resistor Enable Register....................................................................4-28  
Register Page Pointer ................................................................................................4-29  
Register Pointer 0.......................................................................................................4-30  
Register Pointer 1 .....................................................................................................4-30  
Stack Pointer (Low Byte)............................................................................................4-31  
Stop Control Register.................................................................................................4-31  
System Mode Register .............................................................................................4-32  
Timer 0 Control Register............................................................................................4-33  
Timer 1 Control Register............................................................................................4-34  
RP0  
RP1  
SPL  
STOPCON  
SYM  
T0CON  
T1CON  
S3C80F9B/C80G9B  
xvii  
List of Instruction Descriptions  
Instruction  
Mnemonic  
Full Register Name  
Page  
Number  
ADC  
ADD  
AND  
BAND  
BCP  
BITC  
BITR  
BITS  
BOR  
BTJRF  
BTJRT  
BXOR  
CALL  
CCF  
CLR  
COM  
CP  
CPIJE  
CPIJNE  
DA  
DEC  
DECW  
DI  
DIV  
DJNZ  
EI  
ENTER  
EXIT  
IDLE  
INC  
INCW  
IRET  
JP  
JR  
Add with carry.............................................................................................................6-14  
Add .............................................................................................................................6-15  
Logical AND ...............................................................................................................6-16  
Bit AND.......................................................................................................................6-17  
Bit Compare ...............................................................................................................6-18  
Bit Complement..........................................................................................................6-19  
Bit Reset.....................................................................................................................6-20  
Bit Set.........................................................................................................................6-21  
Bit OR.........................................................................................................................6-22  
Bit Test, Jump Relative on False ...............................................................................6-23  
Bit Test, Jump Relative on True.................................................................................6-24  
Bit XOR.......................................................................................................................6-25  
Call Procedure............................................................................................................6-26  
Complement Carry Flag .............................................................................................6-27  
Clear...........................................................................................................................6-28  
Complement...............................................................................................................6-29  
Compare.....................................................................................................................6-30  
Compare, Increment, and Jump on Equal .................................................................6-31  
Compare, Increment, and Jump on Non-Equal .........................................................6-32  
Decimal Adjust ...........................................................................................................6-33  
Decrement..................................................................................................................6-35  
Decrement Word ........................................................................................................6-36  
Disable Interrupts .......................................................................................................6-37  
Divide (Unsigned).......................................................................................................6-38  
Decrement and Jump if Non-Zero..............................................................................6-39  
Enable Interrupts........................................................................................................6-40  
Enter...........................................................................................................................6-41  
Exit..............................................................................................................................6-42  
Idle Operation.............................................................................................................6-43  
Increment ...................................................................................................................6-44  
Increment Word..........................................................................................................6-45  
Interrupt Return ..........................................................................................................6-46  
Jump...........................................................................................................................6-47  
Jump Relative.............................................................................................................6-48  
Load............................................................................................................................6-49  
Load Bit ......................................................................................................................6-51  
Load Memory .............................................................................................................6-52  
Load Memory and Decrement....................................................................................6-54  
Load Memory and Increment .....................................................................................6-55  
Load Memory with Pre-Decrement ............................................................................6-56  
Load Memory with Pre-Increment..............................................................................6-57  
Load Wore..................................................................................................................6-58  
LD  
LDB  
LDC/LDE  
LDCD/LDED  
LDCI/LDEI  
LDCPD/LDEPD  
LDCPI/LDEPI  
LDW  
S3C80F9B/C80G9B  
xix  
List of Instruction Descriptions (Continued)  
Instruction  
Mnemonic  
Full Register Name  
Page  
Number  
MULT  
NEXT  
NOP  
OR  
POP  
POPUD  
POPUI  
PUSH  
PUSHUD  
PUSHUI  
RCF  
RET  
RL  
RLC  
RR  
RRC  
SB0  
SB1  
SBC  
Multiply (Unsigned).....................................................................................................6-59  
Next.............................................................................................................................6-60  
No Operation ..............................................................................................................6-61  
Logical OR..................................................................................................................6-62  
Pop from Stack ...........................................................................................................6-63  
Pop User Stack (Decrementing).................................................................................6-64  
Pop User Stack (Incrementing) ..................................................................................6-65  
Push to Stack..............................................................................................................6-66  
Push User Stack (Decrementing)...............................................................................6-67  
Push User Stack (Incrementing) ................................................................................6-68  
Reset Carry Flag.........................................................................................................6-69  
Return.........................................................................................................................6-70  
Rotate Left ..................................................................................................................6-71  
Rotate Left Through Carry..........................................................................................6-72  
Rotate Right................................................................................................................6-73  
Rotate Right Through Carry .......................................................................................6-74  
Select Bank 0..............................................................................................................6-75  
Select Bank 1..............................................................................................................6-76  
Subtract with Carry .....................................................................................................6-77  
Set Carry Flag.............................................................................................................6-78  
Shift Right Arithmetic ..................................................................................................6-79  
Set Register Pointer....................................................................................................6-80  
Stop Operation............................................................................................................6-81  
Subtract ......................................................................................................................6-82  
Swap Nibbles..............................................................................................................6-83  
Test Complement under Mask ...................................................................................6-84  
Test under Mask.........................................................................................................6-85  
Wait for Interrupt.........................................................................................................6-86  
Logical Exclusive OR..................................................................................................6-87  
SCF  
SRA  
SRP/SRP0/SRP1  
STOP  
SUB  
SWAP  
TCM  
TM  
WFI  
XOR  
xx  
S3C80F9B/C80G9B  
S3C80F9B/C80G9B  
PRODUCT OVERVIEW  
1
PRODUCT OVERVIEW  
S3C8-SERIES MICROCONTROLLERS  
Samsung's S3C8 series of 8-bit single-chip CMOS microcontrollers offers a fast and efficient CPU, a wide range  
of integrated peripherals, and various mask-programmable ROM sizes. Important CPU features include:  
— Efficient register-oriented architecture  
— Selectable CPU clock sources  
— Idle and Stop power-down mode release by interrupt  
— Built-in basic timer with watchdog function  
A sophisticated interrupt structure recognizes up to eight interrupt levels. Each level can have one or more  
interrupt sources and vectors. Fast interrupt processing (within a minimum six CPU clocks) can be assigned to  
specific interrupt levels.  
S3C80F9B/C80G9B Microcontroller  
The S3C80F9B/C80G9B single-chip CMOS microcontroller is fabricated using a highly advanced CMOS process  
and is based on Samsung's newest CPU architecture.  
The S3C80F9B/C80G9B is the microcontroller which has 32-Kbyte mask-programmable ROM.  
The S3P80F9B/P80G9B is the microcontroller which has 32-Kbyte one-time-programmable EPROM.  
Using a proven modular design approach, Samsung engineers developed S3C80F9B/C80G9B by integrating the  
following peripheral modules with the powerful SAM87 RC core:  
— Internal LVD circuit and 16 bit-programmable pins for external interrupts.  
— One 8-bit basic timer for oscillation stabilization and watchdog function (system reset).  
— One 8-bit timer/counter and one 16-bit timer/counter with selectable operating modes.  
— One 8-bit counter with auto-reload function and one-shot or repeat control.  
The S3C80F9B/C80G9B is a versatile general-purpose microcontroller which is especially suitable for use as  
remote transmitter controller. It is currently available in a 28-pin SOP (Only for S3C80G9B), 32-pin SOP, 42-pin  
SDIP and 44-pin QFP, 48-ELP (Only for S3C80F9B) package.  
1-1  
PRODUCT OVERVIEW  
S3C80F9B/C80G9B  
FEATURES  
CPU  
Carrier Frequency Generator  
SAM87RC CPU core  
One 8-bit counter with auto-reload function and  
one-shot or repeat control (Counter A)  
Memory  
Back-up mode  
32-Kbyte internal ROM (S3C80F9B/C80G9B)  
: 0000H–7FFFH  
When VDD is lower than VLVD, the chip enters  
Back-up mode to block oscillation and reduce  
the current consumption.  
Data memory: 272-byte RAM (318 register)  
In S3C80G9B, this function is disabled when  
operating state is “STOP mode”.  
Instruction Set  
78 instructions  
When nRESET pin is lower than Input Low  
Voltage (VIL), the chip enters Back-up mode to  
IDLE and STOP instructions added for power-  
down modes  
block oscillation and reduce the current  
consumption.  
Instruction Execution Time  
500 ns at 8-MHz fOSC (minimum)  
Low Voltage Detect Circuit  
Low voltage detect to get into Back-up mode.  
Interrupts  
Low level detect voltage  
S3C80F9B: 2.20 V (Typ) ± 200mV  
S3CC80G9B: 1.90 V (Typ) ± 200mV  
22 interrupt sources with 16 vector and 7 level.  
I/O Ports  
Operating Temperature Range  
Three 8-bit I/O ports (P0–P2), one 8-bit output  
port(P4) and 6-bit port (P3) for a total of 38 bit-  
programmable pins.(44-QFP,48-ELP)  
°
°
–25 C to + 85 C  
Three 8-bit I/O ports (P0–P2), one 8-bit output  
port(P4) and 4-bit port (P3) for a total of 36 bit-  
programmable pins.(42-SDIP)  
Operating Voltage Range  
1.7V to 3.6V at 4 MHz fOSC (S3C80G9B)  
2.0V to 5.0V at 8 MHz fOSC (S3C80F9B)  
Three 8-bit I/O ports (P0–P2) and one 2-bit I/O  
port (P3) for a total of 26-bit programmable pins.  
(32-SOP)  
Package Type  
48-pin ELP-0707(Only for S3C80F9B)  
Timers and Timer/Counters  
44-pin QFP-1010B  
42-pin SDIP  
One programmable 8-bit basic timer (BT) for  
oscillation stabilization control or watchdog timer  
(software reset) function  
32-pin SOP  
One 8-bit timer/counter (Timer 0) with three  
operating modes; Interval mode, Capture and  
PWM mode.  
28-pin SOP (Only for S3C80G9B)  
One 16-bit timer/counter (Timer1) with two  
operating modes; Interval mode and Capture.  
1-2  
S3C80F9B/C80G9B  
PRODUCT OVERVIEW  
BLOCK DIAGRAM  
P0.0-0.3 (INT0-INT3)  
P0.4-P0.7 (INT4)  
P1.0-P1.7  
Port 1  
TEST  
LVD  
Port 0  
VDD  
nRESET  
MAIN  
OSC  
XIN  
P2.0-2.3 (INT5-INT8)  
P2.4-2.7 (INT9)  
Port 2  
Port 3  
Port 4  
XOUT  
I/O Port and Interrupt  
Control  
8-Bit  
Basic  
Timer  
P3.0-T0PWM/  
T0CAP/(T1CAP)  
P3.1-REM/(T0CK)  
P3.2/(T0CK)  
P3.3/(T1CAP)  
P3.4-3.5  
8-Bit  
Timer/  
Counter  
SAM87RC  
CPU  
16-Bit  
Timer/  
Counter  
P4.0-4.7  
317-Bytes  
Register  
File  
32K-Bytes  
ROM  
Carrier  
Registor  
(Counter A)  
Figure 1-1. Block Diagram  
1-3  
PRODUCT OVERVIEW  
S3C80F9B/C80G9B  
PIN ASSIGNMENTS  
P4.3  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
P4.2  
P4.1  
P4.0  
1
2
3
4
5
6
7
8
P0.7/INT4  
P0.6/INT4  
P0.5/INT4  
P0.4/INT4  
P0.3/INT3  
P0.2/INT2  
P0.1/INT1  
P0.0/INT0  
P4.4  
P4.5  
P4.6  
P1.7  
P1.6  
P1.5  
P1.4  
P1.3  
P1.2  
P1.1  
P4.7  
P3.3/T1CAP  
P2.0/INT5  
P2.1/INT6  
P2.2/INT7  
P2.3/INT8  
P2.4/INT9  
P3.0/T0PWM/T0CAP/SDAT  
9
S3C80F9B/C80G9B  
R3.1/REM/SCLK  
VDD  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
(Top View)  
VSS  
XOUT  
XIN  
TEST  
42-SDIP  
P2.5/INT9  
P2.6/INT9  
nRESET  
P2.7/INT9  
P1.0  
P3.2/T0CK  
Figure 1-2. Pin Assignment Diagram (42-Pin SDIP Package)  
1-4  
S3C80F9B/C80G9B  
PRODUCT OVERVIEW  
P1.3  
P1.2  
P1.1  
P4.7  
P3.3/T1CAP  
P3.2/T0CK  
P1.0  
P2.7/INT9  
P3.5  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
P0.4/INT4  
P0.5/INT4  
P0.6/INT4  
P0.7/INT4  
P4.3  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
S3C80F9B/C80G9B  
(Top View)  
P4.2  
P4.1  
P4.0  
(44-QFP)  
P2.0/INT5  
P2.1/INT6  
P2.2/INT7  
P3.4  
nRESET  
Figure 1-3. Pin Assignment Diagram (44-Pin QFP Package)  
1-5  
PRODUCT OVERVIEW  
S3C80F9B/C80G9B  
NC  
24  
P0.4/INT4  
37  
38  
39  
2
3
P1.3  
P1.2  
P1.1  
P0.5/INT4  
P0.6/INT4  
P0.7/INT4  
22  
21  
20  
19  
18  
17  
16  
15  
S3C80F9B  
0
4
P4.7  
P4.3  
P4.2  
P4.1  
41  
2
4
43  
44  
Top View  
P3.3/T1CAP  
P3.2/T0CK  
P1.0  
P2.7/INT9  
P3.5  
P4.0  
(48-ELP)  
P2.0/INT5  
P2.1/INT6  
P2.2/INT7  
NC  
4
5
46  
47  
48  
1
4
P3.4  
n
RESET  
1
3
Figure 1-4. S3C80F9B Pin Assignment (48-pin ELP)  
1-6  
S3C80F9B/C80G9B  
PRODUCT OVERVIEW  
VDD  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
VSS  
XIN  
XOUT  
TEST  
1
2
3
4
5
6
7
8
P3.1/REM/T0CK/SCLK  
P3.0/T0PWM/T0CAP/T1CAP/SDAT  
P2.4/INT9  
P2.3/INT8  
P2.2/INT7  
P2.1/INT6  
P2.0/INT5  
P0.7/INT4  
P0.6/INT4  
P0.5/INT4  
P0.4/INT4  
P0.3/INT3  
P0.2/INT2  
P0.1/INT1  
P0.0/INT0  
P2.5/INT9  
P2.6/INT9  
nRESET  
P2.7/INT9  
P1.0  
S3C80F9B/C80G9B  
(Top View)  
9
P1.1  
P1.2  
P1.3  
P1.4  
P1.5  
P1.6  
P1.7  
10  
11  
12  
13  
14  
15  
16  
32-SOP  
Figure 1-5. Pin Assignment Diagram (32-Pin SOP Package)  
VDD  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
VSS  
XOUT  
XIN  
TEST  
RESET  
P1.0  
1
2
3
4
5
6
7
8
P3.1/REM/T0CK/SCLK  
P3.0/T0PWM/T0CAP/T1CAP/SDAT  
P2.3/INT8  
P2.2/INT7  
P2.1/INT6  
P2.0/INT5  
P0.7/INT4  
P0.6/INT4  
P0.5/INT4  
P0.4/INT4  
P0.3/INT3  
P0.2/INT2  
P0.1/INT1  
S3C80G7/C80G9  
(Top View)  
P1.1  
P1.2  
P1.3  
P1.4  
P1.5  
P1.6  
P1.7  
28-SOP  
9
10  
11  
12  
13  
14  
INT0/P0.0  
Figure 1-6. S3C80G9 Pin Assignment Diagram (28-Pin SOP Package)  
1-7  
PRODUCT OVERVIEW  
S3C80F9B/C80G9B  
Table 1-1. Pin Descriptions of 44-QFP and 42-SDIP  
Pin  
Pin  
Pin Description  
Circuit 42 Pin 44 Pin  
Shared  
Names  
Type  
Type  
No.  
No.  
Functions  
P0.0–P0.7  
I/O  
I/O port with bit-programmable pins.  
Configurable to input or push-pull output  
mode. Pull-up resistors can be assigned  
by software. Pins can be assigned  
individually as external interrupt inputs  
with noise filters, interrupt enable/  
disable, and interrupt pending control.  
SED & R circuit built in P0 for STOP  
releasing.  
1
34–41 30–37  
Ext. INT  
(INT0 - 4)  
P1.0–P1.7  
I/O  
I/O  
I/O port with bit-programmable pins.  
Configurable to input mode or output  
mode. Pin circuits are either push-pull or  
n-channel open-drain type.  
2
1
20  
16  
24–30 20–26  
P2.0–P2.3  
P2.4–P2.7  
I/O port with bit-programmable pins.  
Configurable to input or push-pull output  
mode. Pull-up resistors can be assigned  
by software. Pins can be assigned  
individually as external interrupt inputs  
with noise filters, interrupt enable/  
disable, and interrupt pending control.  
SED & R circuit built in P2 for STOP  
releasing.  
4–8,  
16, 17  
19  
42–44  
1,2,  
10,11,  
15  
Ext. INT  
(INT5–9)  
P3.0  
P3.1  
I/O  
2-bit I/O port with bit-programmable pins.  
Configurable to input mode, push-pull  
output mode, or n-channel open-drain  
output mode. Input mode with pull-up  
resistors can be assigned by software.  
The two port 3 pins have high current  
drive capability  
3
4
9–10  
3–4  
T0PWM/T0CAP  
REM  
P3.2–P3.3  
P3.4–P3.5  
P4.0–P4.7  
I
C-MOS Input port with pull-up resistors  
5
6
7
21  
22  
17  
18  
(T0CK)  
(T1CAP)  
O
O
Open drain output port for high current  
drive  
None  
13–14  
8- bit-programmable output pins.  
Configurable to open drain output port or  
push-pull output port.  
1–3  
42,23  
31-33  
41–38  
27–29  
19  
XIN, XOUT  
nRESET  
I
System clock input and output pins  
8
13,14  
18  
7,8  
12  
System reset signal input pin and back-  
up mode input.  
TEST  
I
Test signal input pin (for factory use only;  
must be connected to VSS.)  
15  
9
VDD  
VSS  
Power supply input pin  
Ground pin  
11  
12  
5
6
1-8  
S3C80F9B/C80G9B  
PRODUCT OVERVIEW  
Table 1-2. Pin Descriptions of 28-SOP and 32-SOP  
Pin  
Names  
Pin  
Type  
Pin Description  
Circuit  
Type  
28 Pin  
No.  
32 Pin  
No.  
Shared  
Functions  
P0.0–P0.7  
I/O I/O port with bit-programmable pins.  
Configurable to input or push-pull output  
mode. Pull-up resistors are assignable by  
software. Pins can be assigned individually  
as external interrupt inputs with noise  
filters, interrupt enable/ disable, and  
interrupt pending control. SED & R circuit  
built in P0 for STOP releasing.  
1
15-21  
17–24  
Ext. INT  
P1.0–P1.7  
I/O I/O port with bit-programmable pins.  
Configurable to input mode or output mode.  
Pin circuits are either push-pull or n-  
channel open-drain type.  
2
1
6-13  
9–16  
P2.0–P2.3  
P2.4–P2.7  
I/O I/O port with bit-programmable pins.  
Configurable to input or push-pull output  
mode. Pull-up resistors can be assigned by  
software. Pins can be assigned individually  
as external interrupt inputs with noise  
filters, interrupt enable/disable, and  
22-25  
None  
25–28  
29,5, 6,8  
Ext. INT  
interrupt pending control. SED & R circuit  
built in P2 for STOP releasing.  
P3.0  
P3.1  
I/O 2-bit I/O port with bit-programmable pins.  
Configurable to input mode, push-pull  
output mode, or n-channel open-drain  
output mode. Input mode with pull-up  
resistors can be assigned by software. The  
two port 3 pins have high current drive  
capability.  
3
4
26  
27  
30,31  
T0PWM/  
T0CAP/  
T1CAP  
REM/T0CK  
XIN, XOUT  
RESET  
I
System clock input and output pins  
8
2,3  
7
2,3  
7
System reset signal input pin and back-up  
mode input.  
TEST  
I
Test signal input pin (for factory use only;  
4
4
must be connected to V ).  
SS  
VDD  
VSS  
Power supply input pin  
Ground pin  
28  
1
32  
1
1-9  
PRODUCT OVERVIEW  
S3C80F9B/C80G9B  
Table 1-3. Pin Descriptions of 48-ELP  
Pin  
Names  
Pin  
Type  
Pin Description  
Circuit  
Type  
48 Pin  
No.  
Shared  
Functions  
P0.0–P0.7  
I/O  
I/O port with bit-programmable pins.  
Configurable to input or push-pull output  
mode. Pull-up resistors can be assigned by  
software. Pins can be assigned individually  
as external interrupt inputs with noise filters,  
interrupt enable/ disable, and interrupt  
pending control. SED & R circuit built in P0  
for STOP releasing.  
1
32–35  
37–40  
Ext. INT  
(INT0–4)  
P1.0–P1.7  
I/O  
I/O  
I/O port with bit-programmable pins.  
Configurable to input mode or output mode.  
Pin circuits are either push-pull or n-channel  
open-drain type.  
2
1
17  
21–23  
25–28  
P2.0–P2.3  
P2.4–P2.7  
I/O port with bit-programmable pins.  
Configurable to input or push-pull output  
mode. Pull-up resistors can be assigned by  
software. Pins can be assigned individually  
as external interrupt inputs with noise filters,  
interrupt enable/ disable, and interrupt  
pending control.  
45–47  
1,2,  
10,11,  
16  
Ext. INT  
(INT5–9)  
SED & R circuit built in P2 for STOP  
releasing.  
P3.0  
P3.1  
I/O  
2-bit I/O port with bit-programmable pins.  
Configurable to input mode, push-pull output  
mode, or n-channel open-drain output mode.  
Input mode with pull-up resistors can be  
assigned by software.  
3
4
3–4  
T0PWM/ T0CAP  
REM  
The two port 3 pins have high current drive  
capability  
P3.2–P3.3  
I
C-MOS Input port with pull-up resistors  
5
18  
19  
(T0CK)  
(T1CAP)  
P3.4–P3.5  
P4.0–P4.7  
O
O
Open drain output port for high current drive  
6
7
14–15  
8- bit-programmable output pins.  
Configurable to open drain output port or  
push-pull output port.  
44–41  
31–29  
20  
XIN, XOUT  
RESET  
I
System clock input and output pins  
8
7,8  
13  
System reset signal input pin and back-up  
mode input.  
TEST  
I
Test signal input pin (for factory use only;  
must be connected to VSS.)  
9
VDD  
VSS  
Power supply input pin  
Ground pin  
5
6
1-10  
S3C80F9B/C80G9B  
PRODUCT OVERVIEW  
PIN CIRCUITS  
VDD  
Pull-up  
Resistor  
Pull-up  
Enable  
VDD  
Data  
Input/  
Output  
Output  
Disable  
VSS  
External  
Interrupt  
Noise  
Filter  
Stop release  
Stop  
Figure 1-7. Pin Circuit Type 1 (Port 0 and Port2)  
1-11  
PRODUCT OVERVIEW  
S3C80F9B/C80G9B  
PIN CIRCUITS (Continued)  
VDD  
Pull-up  
Resistor  
Pull-up  
Enable  
VDD  
Data  
Input/  
Output  
Open-Drain  
Output Disable  
VSS  
Normal  
Input  
Noise  
Filter  
Figure 1-8. Pin Circuit Type 2 (Port 1)  
1-12  
S3C80F9B/C80G9B  
PRODUCT OVERVIEW  
PIN CIRCUITS (Continued)  
VDD  
Pull-up  
Resistor  
Pull-up  
Enable  
P3CON.2  
VDD  
M
U
X
Port 3.0 Data  
T0_PWM  
Data  
P3.0/T0PWM  
T0CAP/(T1CAP)  
Open-Drain  
Output Disable  
VSS  
P3.0 Input  
P3CON.2,6,7  
M
U
X
T0CAP/(T1CAP)  
Noise filter  
Figure 1-9. Pin Circuit Type 3 (P3.0)  
1-13  
PRODUCT OVERVIEW  
S3C80F9B/C80G9B  
PIN CIRCUITS (Continued)  
VDD  
Pull-up  
Resistor  
Pull-up  
Enable  
P3CON.5  
VDD  
M
U
X
Port 3.1 Data  
CAOF(CACON.0)  
Carrier On/Off (P3.7)  
Data  
P3.1/REM/(T0CK)  
Open-Drain  
Output  
Disable  
VSS  
P3.1 Input  
P3CON.5,6,7  
M
T0CK  
U
X
Noise filter  
Figure 1-10. Pin Circuit Type 4 (P3.1) Circuit  
VDD  
Pull-up  
Resistor  
Input  
M
U
X
T0CK : P3.2  
T1CAP: P3.3  
Figure 1-11. Pin Circuit Type 5 (P3.2, P3.3)  
1-14  
S3C80F9B/C80G9B  
PRODUCT OVERVIEW  
PIN CIRCUITS (Continued)  
Output  
Data  
VSS  
Figure 1-12. Pin Circuit Type 6 (P3.4, P3.5)  
VDD  
Data  
Output  
Open-Drain  
Output Disable  
VSS  
Figure 1-13. Pin Circuit Type 7 (Port 4)  
VDD  
Pull-up  
Resistor  
nRESET  
Figure 1-14. Pin Circuit Type 8 (nRESET)  
1-15  
S3C80F9B/C80G9B  
ADDRESS SPACES  
2
ADDRESS SPACES  
OVERVIEW  
The S3C80F9B/C80G9B microcontroller has two types of address space:  
— Internal program memory (ROM)  
— Internal register file  
A 16-bit address bus supports program memory operations. A separate 8-bit register bus carries addresses and  
data between the CPU and the register file.  
The S3C80F9B/C80G9B has a programmable internal 32-Kbyte ROM. An external memory interface is not  
implemented.  
The 256-byte physical register space is expanded into an addressable area of 320 bytes by the use of addressing  
modes.  
There are 318 mapped registers in the internal register file. Of these, 272 are for general-purpose use. (This  
number includes a 16-byte working register common area that is used as a “scratch area” for data operations, a  
192-byte prime register area, and a 64-byte area (Set 2) that is also used for stack operations). Nineteen 8-bit  
registers are used for CPU and system control and 28 registers are mapped peripheral control and data registers.  
Three register locations are not mapped.  
2-1  
ADDRESS SPACES  
S3C80F9B/C80G9B  
PROGRAM MEMORY  
Program memory (ROM and RAM) stores program code or table data. The S3C80F9B/C80G9B has 32-Kbyte of  
internal programmable ROM. The program memory address range is therefore 0000H–7FFFH of ROM (see  
Figure 2-1).  
The first 256 bytes of the ROM (0H–0FFH) are reserved for interrupt vector addresses. Unused locations in this  
address range can be used as normal program memory. If you do use the vector address area to store program  
code, be careful to avoid overwriting vector addresses stored in these locations.  
The ROM address at which program execution starts after a reset is 0100H.  
(HEX)  
7FFFH  
(DECIMAL)  
32,767  
32-Kbyte  
Internal  
Program  
Memory  
(ROM)  
S3C80F9B/C80G9B  
255  
0
0FFH  
0H  
Interrupt  
Vector Area  
Figure 2-1. Program Memory Address Space  
2-2  
S3C80F9B/C80G9B  
ADDRESS SPACES  
The S3C80F9B/C80G9B register file has 318 registers. To increase the size of the internal register file, the upper  
64-byte area of the register file is expanded two 64-byte areas, set 1 and set 2. The remaining 192-byte area of  
the physical register file contains freely-addressable, general-purpose registers called prime registers.  
The extension of register space into separately addressable sets is supported internally by addressing mode  
restrictions.  
Specific register types and the area (in bytes) they occupy in the S3C80F9B/C80G9B internal register space are  
summarized in Table 2-1.  
Table 2-1. S3C80F9B/C80G9B Register Type Summary  
Register Type  
Number of Bytes  
General-purpose registers (including the 16-byte common  
working register area, the 192-byte prime register area, and the  
64-byte set 2 area)  
272  
CPU and system control registers  
19  
27  
Mapped clock, peripheral, and I/O control and data registers  
318  
Total Addressable Bytes  
2-3  
ADDRESS SPACES  
S3C80F9B/C80G9B  
Set 1  
Set 2  
FFH  
E0H  
FFH  
System and  
Peripheral  
Control Register  
(Register Addressing  
Mode)  
General Purpose  
Data Register  
64  
Bytes DFH  
System Register  
(Register Addressing  
Mode)  
(Indirect Register or  
Indexed Addressing  
Modes or  
D0H  
CFH  
256  
Bytes  
Stack Operations)  
Working Register  
(Working Register  
Addressing only)  
C0H  
C0H  
BFH  
Prime  
Data Register  
192  
Bytes  
~
~
(All Addressing  
Mode)  
00H  
Figure 2-2. Internal Register File Organization  
2-4  
S3C80F9B/C80G9B  
ADDRESS SPACES  
REGISTER PAGE POINTER (PP)  
The S3C8-series architecture supports the logical expansion of the physical 256-byte internal register file (using  
an 8-bit data bus) into as many as 15 separately addressable register pages. Page addressing is controlled by  
the register page pointer (PP, DFH). In the S3C80F9B/C80G9B microcontroller, a paged register file expansion is  
not implemented and the register page pointer settings therefore always point to “page 0.”  
Following a reset, the page pointer's source value (lower nibble) and destination value (upper nibble) are always  
'0000', automatically selecting page 0 as the source and destination page for register addressing. These page  
pointer (PP) register settings, as shown in Figure 2-3, should not be modified during normal operation.  
Register Page Pointer (PP)  
DFH, Set 1, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Destination register page seleciton bits:  
0 0 0 0 Destination: page 0  
Source register page selection bits:  
0 0 0 0 Source: page 0  
NOTE:  
In this microcontroller, only page 0 is implemented. A hardware reset operation  
writes the 4-bit destination and source values shown above to the register page  
pointer. These values should not be modified.  
Figure 2-3. Register Page Pointer (PP)  
2-5  
ADDRESS SPACES  
S3C80F9B/C80G9B  
REGISTER SET 1  
The term set 1 refers to the upper 64 bytes of the register file, locations C0H–FFH.  
In some S3C8-series microcontrollers, the upper 32-byte area of this 64-byte space (E0H–FFH) is divided into  
two 32-byte register banks, bank 0 and bank 1. The set register bank instructions SB0 or SB1 are used to  
address one bank or the other. In the S3C80F9B/C80G9B microcontroller, bank 1 is not implemented. A  
hardware reset operation therefore always selects bank 0 addressing, and the SB0 and SB1 instructions are not  
necessary.  
The upper 32-byte area of set 1 (FFH–E0H) contains 26 mapped system and peripheral control registers. The  
lower 32-byte area contains 16 system registers (DFH–D0H) and a 16-byte common working register area (CFH–  
C0H). You can use the common working register area as a “scratch” area for data operations being performed in  
other areas of the register file.  
Registers in set 1 locations are directly accessible at all times using the Register addressing mode. The 16-byte  
working register area can only be accessed using working register addressing. ( For more information about  
working register addressing, please refer to Section 3, “Addressing Modes,” .)  
Register Set 2  
The same 64-byte physical space that is used for set 1 locations C0H–FFH is logically duplicated to add another  
64 bytes of register space. This expanded area of the register file is called set 2. All set 2 locations (C0H–FFH)  
are addressed as part of page 0 in the S3C80F9B/C80G9B register space.  
The logical division of set 1 and set 2 is maintained by means of addressing mode restrictions: You can use only  
Register addressing mode to access set 1 locations; to access registers in set 2, you must use Register Indirect  
addressing mode or Indexed addressing mode.  
The set 2 register area is commonly used for stack operations.  
2-6  
S3C80F9B/C80G9B  
ADDRESS SPACES  
PRIME REGISTER SPACE  
The lower 192 bytes of the 256-byte physical internal register file (00H–BFH) is called the prime register space or,  
more simply, the prime area. You can access registers in this address using any addressing mode. (In other  
words, there is no addressing mode restriction for these registers, as is the case for set 1 and set 2 registers.) All  
registers in prime area locations are addressable immediately following a reset.  
Set 1  
FFH  
FCH  
FFH  
C0H  
Set 2  
E0H  
D0H  
C0H  
CPU and system registers  
Prime  
Register  
Area  
General-purpose registers  
Peripheral control registers  
00H  
Figure 2-4. Set 1, Set 2, and Prime Area Register Map  
2-7  
ADDRESS SPACES  
S3C80F9B/C80G9B  
WORKING REGISTERS  
Instructions can access specific 8-bit registers or 16-bit register pairs using either 4-bit or 8-bit address fields.  
When 4-bit working register addressing is used, the 256-byte register file can be seen by the programmer as  
consisting of 32 8-byte register groups or "slices." Each slice consists of eight 8-bit registers.  
Using the two 8-bit register pointers, RP1 and RP0, two working register slices can be selected at any one time to  
form a 16-byte working register block. Using the register pointers, you can move this 16-byte register block  
anywhere in the addressable register file, except for the set 2 area.  
The terms slice and block are used in this manual to help you visualize the size and relative locations of selected  
working register spaces:  
— One working register slice is 8 bytes (eight 8-bit working registers; R0–R7 or R8–R15)  
— One working register block is 16 bytes (sixteen 8-bit working registers; R0–R15)  
All of the registers in an 8-byte working register slice have the same binary value for their five most significant  
address bits. This makes it possible for each register pointer to point to one of the 24 slices in the register file.  
The base addresses for the two selected 8-byte register slices are contained in register pointers RP0 and RP1.  
After a reset, RP0 and RP1 always point to the 16-byte common area in set 1 (C0H–CFH).  
Slice 32  
FFH  
F8H  
F7H  
F0H  
1 1 1 1 1 X X X  
Set 1  
Only  
RP1 (Registers R8-R15)  
Each register pointer points to  
one 8-byte slice of the register  
space, selecting a total 16-  
byte working register block.  
CFH  
C0H  
~
~
0 0 0 0 0 X X X  
10H  
FH  
8H  
7H  
0H  
RP0 (Registers R0-R7)  
Slice 1  
Figure 2-5. 8-Byte Working Register Areas (Slices)  
2-8  
S3C80F9B/C80G9B  
ADDRESS SPACES  
USING THE REGISTER POINTERS  
Register pointers RP0 and RP1, mapped to addresses D6H and D7H in set 1, are used to select two movable  
8-byte working register slices in the register file. After a reset, they point to the working register common area:  
RP0 points to addresses C0H–C7H, and RP1 points to addresses C8H–CFH.  
To change a register pointer value, you load a new value to RP0 and/or RP1 using an SRP or LD instruction (see  
Figures 2-6 and 2-7).  
With working register addressing, you can only access those two 8-bit slices of the register file that are currently  
pointed to by RP0 and RP1. You cannot, however, use the register pointers to select a working register space in  
set 2, C0H–FFH, because these locations can be accessed only using the Indirect Register or Indexed  
addressing modes.  
The selected 16-byte working register block usually consists of two contiguous 8-byte slices. As a general  
programming guideline, we recommend that RP0 point to the "lower" slice and RP1 point to the "upper" slice (see  
Figure 2-6). In some cases, it may be necessary to define working register areas in different (non-contiguous)  
areas of the register file. In Figure 2-7, RP0 points to the "upper" slice and RP1 to the "lower" slice.  
Because a register pointer can point to the either of the two 8-byte slices in the working register block, you can  
define the working register area very flexibly to support program requirements.  
PROGRAMMING TIP — Setting the Register Pointers  
SRP  
SRP1  
SRP0  
CLR  
LD  
#70H  
#48H  
#0A0H  
RP0  
RP1,#0F8H  
;
;
;
;
;
RP0 70H, RP1 78H  
RP0 no change, RP1 48H,  
RP0 A0H, RP1 no change  
RP0 00H, RP1 no change  
RP0 no change, RP1 0F8H  
Register File  
Contains 32  
8-Byte Slices  
0 0 0 0 1 X X X  
RP1  
FH (R15)  
16-byte  
contiguous  
working  
8-Byte Slice  
8-Byte Slice  
8H  
7H  
0 0 0 0 0 X X X  
RP0  
register block  
0H (R0)  
Figure 2-6. Contiguous 16-Byte Working Register Block  
2-9  
ADDRESS SPACES  
S3C80F9B/C80G9B  
F7H (R7)  
F0H (R0)  
8-Byte Slice  
Register File  
Contains 32  
8-Byte Slices  
16-byte  
contiguous  
working  
1 1 1 1 0 X X X  
register block  
RP0  
7H (R15)  
0H (R0)  
0 0 0 0 0 X X X  
RP1  
8-Byte Slice  
Figure 2-7. Non-Contiguous 16-Byte Working Register Block  
PROGRAMMING TIP — Using the RPs to Calculate the Sum of a Series of Registers  
Calculate the sum of registers 80H–85H using the register pointer. The register addresses 80H through 85H  
contains the values 10H, 11H, 12H, 13H, 14H, and 15 H, respectively:  
SRP0  
ADD  
ADC  
ADC  
ADC  
ADC  
#80H  
;
;
;
;
;
;
RP0 80H  
R0 R0 + R1  
R0 R0 + R2 + C  
R0 R0 + R3 + C  
R0 R0 + R4 + C  
R0 R0 + R5 + C  
R0,R1  
R0,R2  
R0,R3  
R0,R4  
R0,R5  
The sum of these six registers, 6FH, is located in the register R0 (80H). The instruction string used in this  
example takes 12 bytes of instruction code and its execution time is 36 cycles. If the register pointer is not used to  
calculate the sum of these registers, the following instruction sequence would have to be used:  
ADD  
ADC  
ADC  
ADC  
ADC  
80H,81H  
80H,82H  
80H,83H  
80H,84H  
80H,85H  
;
;
;
;
;
80H (80H) + (81H)  
80H (80H) + (82H) + C  
80H (80H) + (83H) + C  
80H (80H) + (84H) + C  
80H (80H) + (85H) + C  
Now, the sum of the six registers is also located in register 80H. However, this instruction string takes 15 bytes of  
instruction code instead of 12 bytes, and its execution time is 50 cycles instead of 36 cycles.  
2-10  
S3C80F9B/C80G9B  
ADDRESS SPACES  
REGISTER ADDRESSING  
The S3C8-series register architecture provides an efficient method of working register addressing that takes full  
advantage of shorter instruction formats to reduce execution time.  
With Register (R) addressing mode, in which the operand value is the content of a specific register or register  
pair, you can access all locations in the register file except for set 2. With working register addressing, you use a  
register pointer to specify an 8-byte working register space in the register file and an 8-bit register within that  
space.  
Registers are addressed either as a single 8-bit register or as a paired 16-bit register space. In a 16-bit register  
pair, the address of the first 8-bit register is always an even number and the address of the next register is always  
an odd number. The most significant byte of the 16-bit data is always stored in the even-numbered register; the  
least significant byte is always stored in the next (+ 1) odd-numbered register.  
Working register addressing differs from Register addressing because it uses a register pointer to identify a  
specific 8-byte working register space in the internal register file and a specific 8-bit register within that space.  
MSB  
Rn  
LSB  
n = Even address  
Rn+1  
Figure 2-8. 16-Bit Register Pair  
2-11  
ADDRESS SPACES  
S3C80F9B/C80G9B  
General-Purpose  
Registers  
Special-Purpose  
Registers  
Set 1  
FFH  
FFH  
D0H  
Control  
Registers  
Set 2  
System  
Registers  
CFH  
C0H  
BFH  
C0H  
RP1  
RP0  
D7H  
D6H  
Register  
Pointers  
Each register pointer (RP) can independently point  
to one of the 24 8-byte "slices" of the register file  
(other than set 2). After a reset, RP0 points to  
locations C0H-C7H and RP1 to locations C8H-CFH  
(that is, to the common working register area).  
Prime  
Registers  
NOTE: Only page 0 is implemented. Page 0  
contains all of the addressable registers in  
the internal register file.  
00H  
Page 0  
Page 0  
Register Addressing Only  
All  
Indirect  
Register,  
Indexed  
Addressing  
Modes  
Addressing  
Modes  
Can be Pointed by Register Pointer  
Figure 2-9. Register File Addressing  
2-12  
S3C80F9B/C80G9B  
ADDRESS SPACES  
COMMON WORKING REGISTER AREA (C0H–CFH)  
After a reset, register pointers RP0 and RP1 automatically select two 8-byte register slices in set 1, locations  
C0H–CFH, as the active 16-byte working register block:  
RP0 C0H–C7H  
RP1 C8H–CFH  
This 16-byte address range is called common area. That is, locations in this area can be used as working  
registers by operations that address any location on any page in the register file. Typically, these working  
registers serve as temporary buffers for data operations between different pages.  
Page 0  
Set 1  
FFH  
FFH  
FCH  
E0H  
DFH  
Set 2  
CFH  
C0H  
C0H  
BFH  
Following a hareware  
reset, register pointers RP0 and  
RP1 point to the common working  
register area, locations C0H-CFH.  
Prime  
Area  
~
~
1 1 0 0  
0 0 0 0  
1 0 0 0  
RP0 =  
RP1 = 1 1 0 0  
00H  
Figure 2-10. Common Working Register Area  
2-13  
ADDRESS SPACES  
S3C80F9B/C80G9B  
PROGRAMMING TIP — Addressing the Common Working Register Area  
As the following examples show, you should access working registers in the common area, locations C0H–CFH,  
using working register addressing mode only.  
Example 1:  
LD  
0C2H,40H  
; Invalid addressing mode!  
Use working register addressing instead:  
SRP  
LD  
#0C0H  
R2,40H  
;
R2 (C2H) the value in location 40H  
Example 2:  
ADD  
0C3H,#45H  
; Invalid addressing mode!  
Use working register addressing instead:  
SRP  
ADD  
#0C0H  
R3,#45H  
; R3 (C3H) R3 + 45H  
4-Bit Working Register Addressing  
Each register pointer defines a movable 8-byte slice of working register space. The address information stored in  
a register pointer serves as an addressing "window" that makes it possible for instructions to access working  
registers very efficiently using short 4-bit addresses. When an instruction addresses a location in the selected  
working register area, the address bits are concatenated in the following way to form a complete 8-bit address:  
— The high-order bit of the 4-bit address selects one of the register pointers ("0" selects RP0; "1" selects RP1);  
— The five high-order bits in the register pointer select an 8-byte slice of the register space;  
— The three low-order bits of the 4-bit address select one of the eight registers in the slice.  
As shown in Figure 2-11, the result of this operation is that the five high-order bits from the register pointer are  
concatenated with the three low-order bits from the instruction address to form the complete address. As long as  
the address stored in the register pointer remains unchanged, the three bits from the address will always point to  
an address in the same 8-byte register slice.  
Figure 2-12 shows a typical example of 4-bit working register addressing: The high-order bit of the instruction  
'INC R6' is "0", which selects RP0. The five high-order bits stored in RP0 (01110B) are concatenated with the  
three low-order bits of the instruction's 4-bit address (110B) to produce the register address 76H (01110110B).  
2-14  
S3C80F9B/C80G9B  
ADDRESS SPACES  
RP0  
RP1  
Selects  
RP0 or RP1  
Address  
OPCODE  
4-bit address  
procides three  
low-order bits  
Register pointer  
provides five  
high-order bits  
Together they create an  
8-bit register address  
Figure 2-11. 4-Bit Working Register Addressing  
RP1  
RP0  
0
0
0
1
1
1
1
1
1
0
1
0
1
0
0
0
1
1
1
1
0 0 0  
Selects RP0  
R6  
1
OPCODE  
Register  
address  
(76H)  
0
Instruction:  
'INC R6'  
0
1
0
1 1 1 0  
Figure 2-12. 4-Bit Working Register Addressing Example  
2-15  
ADDRESS SPACES  
S3C80F9B/C80G9B  
8-BIT WORKING REGISTER ADDRESSING  
You can also use 8-bit working register addressing to access registers in a selected working register area. To  
initiate 8-bit working register addressing, the upper four bits of the instruction address must contain the value  
1100B. This 4-bit value (1100B) indicates that the remaining four bits have the same effect as 4-bit working  
register addressing.  
As shown in Figure 2-13, the lower nibble of the 8-bit address is concatenated in much the same way as for 4-bit  
addressing: Bit 3 selects either RP0 or RP1, which then supplies the five high-order bits of the final address; the  
three low-order bits of the complete address are provided by the original instruction.  
Figure 2-14 shows an example of 8-bit working register addressing: The four high-order bits of the instruction  
address (1100B) specify 8-bit working register addressing. Bit 4 ("1") selects RP1 and the five high-order bits in  
RP1 (10101B) become the five high-order bits of the register address. The three low-order bits of the register  
address (011) are provided by the three low-order bits of the 8-bit instruction address. The five address bits from  
RP1 and the three address bits from the instruction are concatenated to form the complete register address,  
0ABH (10101011B).  
RP0  
RP1  
Selects  
RP0 or RP1  
Address  
These address  
bits indicate  
8-bit working  
register  
8-bit logical  
address  
1
1
0
0
addressing  
Three low-  
order bits  
Register pointer  
provides five  
high-order bits  
8-bit physical address  
Figure 2-13. 8-Bit Working Register Addressing  
2-16  
S3C80F9B/C80G9B  
ADDRESS SPACES  
RP1  
1
RP0  
0
1
1
1
1
0
1
0
0
0
0
0
1
0
1
0
0 0 0  
Selects RP1  
R11  
8-bit address  
from instruction  
'LD R11, R2'  
1
0 1 1  
Specifies working  
register addressing  
Register address (0ABH)  
1
0
1
0
1
0 1 1  
Figure 2-14. 8-Bit Working Register Addressing Example  
2-17  
ADDRESS SPACES  
S3C80F9B/C80G9B  
SYSTEM AND USER STACKS  
S3C8-series microcontrollers use the system stack for subroutine calls and returns and to store data. The PUSH  
and POP instructions are used to control system stack operations. The S3C80F9B/C80G9B architecture supports  
stack operations in the internal register file.  
Stack Operations  
Return addresses for procedure calls and interrupts and data are stored on the stack. The contents of the PC are  
saved to stack by a CALL instruction and restored by the RET instruction. When an interrupt occurs, the contents  
of the PC and the FLAGS register are pushed to the stack. The IRET instruction then pops these values back to  
their original locations. The stack address value is always decreased by one before a push operation and  
increased by one after a pop operation. The stack pointer (SP) always points to the stack frame stored on the top  
of the stack, as shown in Figure 2-15.  
High Address  
PCL  
PCL  
PCH  
Top of  
stack  
PCH  
Top of  
stack  
Flags  
Stack contents  
after a call  
Stack contents  
after an  
instruction  
interrupt  
Low Address  
Figure 2-15. Stack Operations  
User-Defined Stacks  
You can freely define stacks in the internal register file as data storage locations. The instructions PUSHUI,  
PUSHUD, POPUI, and POPUD support user-defined stack operations.  
Stack Pointers (SPL)  
Register location D9H contain the 8-bit stack pointer (SPL) that is used for system stack operations. After a reset,  
the SPL value is undetermined. Because only internal memory 256-byte is implemented in The  
S3C80F9B/C80G9B, the SPL must be initialized to an 8-bit value in the range 00–FFH.  
2-18  
S3C80F9B/C80G9B  
ADDRESS SPACES  
PROGRAMMING TIP — Standard Stack Operations Using PUSH and POP  
The following example shows you how to perform stack operations in the internal register file using PUSH and  
POP instructions:  
LD  
SPL,#0FFH  
;
;
;
SPL FFH  
(Normally, the SPL is set to 0FFH by the initialization  
routine)  
PUSH  
PUSH  
PUSH  
PUSH  
PP  
;
Stack address 0FEH PP  
RP0  
RP1  
R3  
; Stack address 0FDH RP0  
; Stack address 0FCH RP1  
;
Stack address 0FBH R3  
POP  
POP  
POP  
POP  
R3  
;
;
;
;
R3 Stack address 0FBH  
RP1 Stack address 0FCH  
RP0 Stack address 0FDH  
PP Stack address 0FEH  
RP1  
RP0  
PP  
2-19  
S3C80F9B/C80G9B  
ADDRESSING MODES  
3
ADDRESSING MODES  
OVERVIEW  
The program counter is used to fetch instructions that are stored in program memory for execution. Instructions  
indicate the operation to be performed and the data to be operated on. Addressing mode is the method used to  
determine the location of the data operand. The operands specified in instructions may be condition codes,  
immediate data, or a location in the register file, program memory, or data memory.  
The S3C8-series instruction set supports seven explicit addressing modes. Not all of these addressing modes are  
available for each instruction:  
— Register (R)  
— Indirect Register (IR)  
— Indexed (X)  
— Direct Address (DA)  
— Indirect Address (IA)  
— Relative Address (RA)  
— Immediate (IM)  
3-1  
ADDRESSING MODES  
S3C80F9B/C80G9B  
REGISTER ADDRESSING MODE (R)  
In Register addressing mode, the operand is the content of a specified register or register pair (see Figure 3-1).  
Working register addressing differs from Register addressing because it uses a register pointer to specify an 8-  
byte working register space in the register file and an 8-bit register within that space (see Figure 3-2).  
Program Memory  
Register File  
OPERAND  
8-bit register  
file address  
dst  
Points to one  
register in register  
file  
OPCODE  
One-Operand  
Instruction  
Value used in  
instruction execution  
(Example)  
Sample Instruction:  
DEC CNTR  
;
Where CNTR is the label of an 8-bit register address  
Figure 3-1. Register Addressing  
Register File  
MSB Points to  
RP0 ot RP1  
RP0 or RP1  
Selected  
RP points  
to start  
Program Memory  
of working  
register  
block  
4-bit  
Working Register  
3 LSBs  
dst  
src  
Points to the  
woking register  
(1 of 8)  
OPCODE  
OPERAND  
Two-Operand  
Instruction  
(Example)  
Sample Instruction:  
ADD R1, R2  
;
Where R1 and R2 are registers in the curruntly  
selected working register area.  
Figure 3-2. Working Register Addressing  
3-2  
S3C80F9B/C80G9B  
ADDRESSING MODES  
INDIRECT REGISTER ADDRESSING MODE (IR)  
In Indirect Register (IR) addressing mode, the content of the specified register or register pair is the address of the  
operand. Depending on the instruction used, the actual address may point to a register in the register file, to  
program memory (ROM), or to an external memory space, if implemented (see Figures 3-3 through 3-6).  
You can use any 8-bit register to indirectly address another register. Any 16-bit register pair can be used to  
indirectly address another memory location. Remember, however, that locations C0H–FFH in set 1 cannot be  
accessed using Indirect Register addressing mode.  
Program Memory  
Register File  
ADDRESS  
8-bit register  
file address  
dst  
Points to one  
register in register  
file  
OPCODE  
One-Operand  
Instruction  
Address of operand  
used by instruction  
(Example)  
OPERAND  
Value used in  
instruction execution  
Sample Instruction:  
RL  
@SHIFT  
;
Where SHIFT is the label of an 8-bit register address.  
Figure 3-3. Indirect Register Addressing to Register File  
3-3  
ADDRESSING MODES  
S3C80F9B/C80G9B  
INDIRECT REGISTER ADDRESSING MODE (Continued)  
Register File  
Program Memory  
Example  
Register  
Pair  
dst  
Instruction  
References  
Program  
Points to  
Register Pair  
OPCODE  
16-Bit  
Memory  
Address  
Points to  
Program  
Memory  
Program Memory  
OPERAND  
Sample Instructions:  
Value used in  
instruction  
CALL  
JP  
@RR2  
@RR2  
Figure 3-4. Indirect Register Addressing to Program Memory  
3-4  
S3C80F9B/C80G9B  
ADDRESSING MODES  
INDIRECT REGISTER ADDRESSING MODE (Continued)  
Register File  
RP0 or RP1  
MSB Points to  
RP0 or RP1  
Selected  
RP points  
to start of  
woking register  
block  
Program Memory  
4-bit  
~
~
~
~
3 LSBs  
Working  
Register  
Address  
dst  
src  
Point to the  
Woking Register  
(1 of 8)  
ADDRESS  
OPERAND  
OPCODE  
Sample Instruction:  
OR R3, @R6  
Value used in  
instruction  
Figure 3-5. Indirect Working Register Addressing to Register File  
3-5  
ADDRESSING MODES  
S3C80F9B/C80G9B  
INDIRECT REGISTER ADDRESSING MODE (Continued)  
Register File  
RP0 or RP1  
MSB Points to  
RP0 or RP1  
Selected  
RP points  
to start of  
working  
register  
block  
Program Memory  
4-bit Working  
Register Address  
dst  
src  
Register  
Pair  
Next 2-bit Point  
to Working Register  
Pair  
OPCODE  
Example Instruction  
References either  
Program Memory or  
Data Memory  
16-Bit  
(1 of 4)  
address  
points to  
program  
memory  
or data  
Program Memory  
or  
Data Memory  
LSB Selects  
memory  
Value used in  
Instruction  
OPERAND  
Sample Instructions:  
LCD  
LDE  
LDE  
R5,@RR6  
R3,@RR14  
@RR4, R8  
; Program memory access  
External data memory access  
External data memory access  
;
;
NOTE: LDE command is not available, because an external interface is not implemented  
for the S3C80F9B/C80G9B.  
Figure 3-6. Indirect Working Register Addressing to Program or Data Memory  
3-6  
S3C80F9B/C80G9B  
ADDRESSING MODES  
INDEXED ADDRESSING MODE (X)  
Indexed (X) addressing mode adds an offset value to a base address during instruction execution in order to  
calculate the effective operand address (see Figure 3–7). You can use Indexed addressing mode to access  
locations in the internal register file or in external memory (if implemented). You cannot, however, access  
locations C0H–FFH in set 1 using Indexed addressing.  
In short offset Indexed addressing mode, the 8-bit displacement is treated as a signed integer in the range –128  
to +127. This applies to external memory accesses only (see Figure 3–8).  
For register file addressing, an 8-bit base address provided by the instruction is added to an 8-bit offset contained  
in a working register. For external memory accesses, the base address is stored in the working register pair  
designated in the instruction. The 8-bit or 16-bit offset given in the instruction is then added to the base address  
(see Figure 3–9).  
The only instruction that supports Indexed addressing mode for the internal register file is the Load instruction  
(LD). The LDC and LDE instructions support Indexed addressing mode for internal program memory and for  
external data memory (if implemented).  
Register File  
MSB Points to  
RP0 or RP1  
RP0 or RP1  
~
~
~
~
Selected RP  
points to  
start of  
working  
register  
block  
Value used in  
Instruction  
OPERAND  
+
Program Memory  
Base Address  
3 LSBs  
Two-Operand  
Instruction  
Example  
dst/src  
x
INDEX  
Points to one of the  
Woking Registers  
(1 of 8)  
OPCODE  
Sample Instruction:  
LD R0, #BASE[R1]  
;
Where BASE is an 8-bit immediate value.  
Figure 3-7. Indexed Addressing to Register File  
3-7  
ADDRESSING MODES  
S3C80F9B/C80G9B  
INDEXED ADDRESSING MODE (Continued)  
Register File  
RP0 or RP1  
MSB Points to  
RP0 or RP1  
Selected  
RP points  
to start of  
working  
register  
block  
~
~
Program Memory  
OFFSET  
NEXT 2 BITS  
4-bit Working  
Register Address  
dst/src  
x
Register  
Pair  
Point to Working  
Register Pair  
(1 of 4)  
OPCODE  
16-Bit  
address  
added to  
offset  
Program Memory  
or  
LSB Selects  
Data Memory  
+
16-Bit  
8-Bit  
Value used in  
Instruction  
OPERAND  
16-Bit  
Sample Instructions:  
LDC  
LDE  
R4, #04H[RR2]  
R4,#04H[RR2]  
;
;
The values in the program address (RR2 + 04H)  
are loaded into register R4.  
Identical operation to LDC example, except that  
external data memory is accessed.  
NOTE: LDE command is not available, because an external interface is not implemented  
for the S3C80F9B/C80G9B.  
Figure 3-8. Indexed Addressing to Program or Data Memory with Short Offset  
3-8  
S3C80F9B/C80G9B  
ADDRESSING MODES  
INDEXED ADDRESSING MODE (Continued)  
Register File  
RP0 or RP1  
MSB Points to  
RP0 or RP1  
Selected  
RP points  
to start of  
working  
register  
block  
Program Memory  
OFFSET  
~
~
OFFSET  
NEXT 2 BITS  
4-bit Working  
Register Address  
dst/src  
x
Register  
Pair  
Point to Working  
Register Pair  
OPCODE  
16-Bit  
address  
added to  
offset  
Program Memory  
or  
LSB Selects  
Data Memory  
+
16-Bit  
16-Bit  
Value used in  
Instruction  
OPERAND  
16-Bit  
Sample Instructions:  
LDC  
LDE  
R4, #1000H[RR2]  
R4,#1000H[RR2]  
;
;
The values in the program address (RR2 + 1000H)  
are loaded into register R4.  
Identical operation to LDC example, except that  
external data memory is accessed.  
NOTE: LDE command is not available, because an external interface is not implemented  
for the S3C80F9B/C80G9B.  
Figure 3-9. Indexed Addressing to Program or Data Memory  
3-9  
ADDRESSING MODES  
S3C80F9B/C80G9B  
DIRECT ADDRESS MODE (DA)  
In Direct Address (DA) mode, the instruction provides the operand's 16-bit memory address. Jump (JP) and Call  
(CALL) instructions use this addressing mode to specify the 16-bit destination address that is loaded into the PC  
whenever a JP or CALL instruction is executed.  
The LDC and LDE instructions can use Direct Address mode to specify the source or destination address for  
Load operations to program memory (LDC) or to external data memory (LDE), if implemented.  
Program or  
Data Memory  
Memory  
Address  
Used  
Program Memory  
Upper Address Byte  
Lower Address Byte  
LSB Selects Program  
dst/src  
"0" or "1"  
Memory or Data Memory:  
"0" = Program Memory  
"1" = Data Memory  
OPCODE  
Sample Instructions:  
LDC  
LDE  
R5,1234H  
R5,1234H  
; The values in the program address (1234H)  
are loaded into register R5.  
; Identical operation to LDC example, except  
that external data memory is accessed.  
NOTE: LDE command is not available, because an external interface is not  
implemented for the S3C80F9B/C80G9B.  
Figure 3-10. Direct Addressing for Load Instructions  
3-10  
S3C80F9B/C80G9B  
ADDRESSING MODES  
DIRECT ADDRESS MODE (Continued)  
Program Memory  
Next OPCODE  
Program  
Memory  
Address  
Used  
Lower Address Byte  
Upper Address Byte  
OPCODE  
Sample Instructions:  
JP  
C,JOB1  
;
;
Where JOB1 is a 16-bit immediate address  
Where DISPLAY is a 16-bit immediate address  
CALL DISPLAY  
Figure 3-11. Direct Addressing for Call and Jump Instructions  
3-11  
ADDRESSING MODES  
S3C80F9B/C80G9B  
INDIRECT ADDRESS MODE (IA)  
In Indirect Address (IA) mode, the instruction specifies an address located in the lowest 256 bytes of the program  
memory. The selected pair of memory locations contains the actual address of the next instruction to be executed.  
Only the CALL instruction can use the Indirect Address mode.  
Because the Indirect Address mode assumes that the operand is located in the lowest 256 bytes of program  
memory, only an 8-bit address is supplied in the instruction; the upper bytes of the destination address are  
assumed to be all zeros.  
Program Memory  
Next Instruction  
LSB Must be Zero  
dst  
Current  
OPCODE  
Instruction  
Lower Address Byte  
Upper Address Byte  
Program Memory  
Locations 0-255  
Sample Instruction:  
CALL #40H  
;
The 16-bit value in program memory addresses 40H  
and 41H is the subroutine start address.  
Figure 3-12. Indirect Addressing  
3-12  
S3C80F9B/C80G9B  
ADDRESSING MODES  
RELATIVE ADDRESS MODE (RA)  
In Relative Address (RA) mode, a two's-complement signed displacement between – 128 and + 127 is specified  
in the instruction. The displacement value is then added to the current PC value. The result is the address of the  
next instruction to be executed. Before this addition occurs, the PC contains the address of the instruction  
immediately following the current instruction.  
Several program control instructions use the Relative Address mode to perform conditional jumps. The  
instructions that support RA addressing are BTJRF, BTJRT, DJNZ, CPIJE, CPIJNE, and JR.  
Program Memory  
Next OPCODE  
Program Memory  
Address Used  
Current  
PC Value  
+
Displacement  
Current Instruction  
OPCODE  
Signed  
Displacement Value  
Sample Instructions:  
JR  
ULT,$+OFFSET  
;
Where OFFSET is a value in the range +127 to -128  
Figure 3-13. Relative Addressing  
3-13  
ADDRESSING MODES  
S3C80F9B/C80G9B  
IMMEDIATE MODE (IM)  
In Immediate (IM) mode, the operand value used in the instruction is the value supplied in the operand field itself.  
The operand may be one byte or one word in length, depending on the instruction used. Immediate addressing  
mode is useful for loading constant values into registers.  
Program Memory  
OPERAND  
OPCODE  
(The operand value is in the instruction)  
Sample Instruction:  
LD  
R0,#0AAH  
Figure 3-14. Immediate Addressing  
3-14  
S3C80F9B/C80G9B  
CONTROL REGISTERS  
4
CONTROL REGISTERS  
OVERVIEW  
In this section, detailed descriptions of the S3C80F9B/C80G9B control registers are presented in an easy-to-read  
format. You can use this section as a quick-reference source when writing application programs. Figure 4-1  
illustrates the important features of the standard register description format.  
Control register descriptions are arranged in alphabetical order according to register mnemonic. More detailed  
information about control registers is presented in the context of the specific peripheral hardware descriptions in  
Part II of this manual.  
Data and counter registers are not described in detail in this reference section. More information about all of the  
registers used by a specific peripheral is presented in the corresponding peripheral descriptions in Part II of this  
manual.  
4-1  
CONTROL REGISTERS  
S3C80F9B/C80G9B  
Table 4-1. Mapped Registers (Set 1)  
Register Name  
Mnemonic  
T0CNT  
T0DATA  
T0CON  
BTCON  
CLKCON  
FLAGS  
RP0  
Decimal  
208  
Hex  
D0H  
D1H  
D2H  
D3H  
D4H  
D5H  
D6H  
D7H  
R/W  
R (note)  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Timer 0 counter  
Timer 0 data register  
Timer 0 control register  
Basic timer control register  
Clock control register  
System flags register  
Register pointer 0  
209  
210  
211  
212  
213  
214  
Register pointer 1  
RP1  
215  
Locations D8H is not mapped.  
Stack pointer (low byte)  
SPL  
IPH  
217  
D9H  
DAH  
DBH  
DCH  
DDH  
DEH  
DFH  
E0H  
E1H  
E2H  
E3H  
E4H  
E5H  
E6H  
E7H  
E8H  
E9H  
EAH  
EBH  
ECH  
EDH  
EEH  
EFH  
F0H  
R/W  
R/W  
R/W  
R (note)  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Instruction pointer (high byte)  
Instruction pointer (low byte)  
Interrupt request register  
Interrupt mask register  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
IPL  
IRQ  
IMR  
System mode register  
SYM  
Register page pointer  
PP  
Port 0 data register  
P0  
Port 1 data register  
P1  
Port 2 data register  
P2  
Port 3 data register  
P3  
Port 4 data register  
P4  
Port 2 interrupt enable register  
Port 2 interrupt pending register  
Port 0 pull-up resistor enable register  
Port 0 control register (high byte)  
Port 0 control register (low byte)  
Port 1 control register (high byte)  
Port 1 control register (low byte)  
Port 2 control register (high byte)  
Port 2 control register (low byte)  
Port 2 pull-up enable register  
Port 3 control register  
P2INT  
P2PND  
P0PUR  
P0CONH  
P0CONL  
P1CONH  
P1CONL  
P2CONH  
P2CONL  
P2PUR  
P3CON  
P4CON  
Port 4 control register  
4-2  
S3C80F9B/C80G9B  
CONTROL REGISTERS  
Table 4-1. Mapped Registers (Continued)  
Register Name  
Mnemonic  
P0INT  
Decimal  
241  
Hex  
F1H  
F2H  
F3H  
F4H  
F5H  
F6H  
F7H  
F8H  
F9H  
R/W  
R/W  
Port 0 interrupt enable register  
Port 0 interrupt pending register  
Counter A control register  
P0PND  
242  
R/W  
CACON  
243  
R/W  
Counter A data register (high byte)  
Counter A data register (low byte)  
Timer 1 counter register (high byte)  
Timer 1 counter register (low byte)  
Timer 1 data register (high byte)  
Timer 1 data register (low byte)  
Timer 1 control register  
CADATAH  
CADATAL  
T1CNTH  
T1CNTL  
T1DATAH  
T1DATAL  
T1CON  
244  
R/W  
245  
R/W  
R (note)  
R (note)  
R/W  
246  
247  
248  
249  
R/W  
250  
FAH  
FBH  
R/W  
W
STOP Control register  
STOPCON  
251  
Locations FCH is not mapped.  
R (note)  
R/W  
Basic timer counter  
BTCNT  
EMT  
253  
FDH  
FEH  
FFH  
External memory timing register  
Interrupt priority register  
254  
255  
IPR  
R/W  
NOTE: You cannot use a read-only register as a destination for the instructions OR, AND, LD, or LDB.  
4-3  
CONTROL REGISTERS  
S3C80F9B/C80G9B  
Bit number(s) that is/are appended to the  
register name for bit addressing  
Name of individual  
bit or bit function  
Register address  
(hexadecimal)  
Register  
Full Register name  
mnemonic  
D5H  
FLAGS - System Flags Register  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
Bit Identifier  
RESET Value  
Read/Write  
x
R/W  
x
R/W  
x
R/W  
x
R/W  
x
R/W  
x
R/W  
0
R/W  
0
R/W  
.7  
Carry Flag (C)  
0
1
Operation dose not generate a carry or borrow condition  
Operation generates carry-out or borrow into high-order bit7  
.6  
Zero Flag  
0
1
Operation result is a non-zero value  
Operation result is zero  
.5  
Sign Flag  
0
1
Operation generates positive number (MSB = "0")  
Operation generates negative number (MSB = "1")  
R = Read-only  
W = Write-only  
R/W = Read/write  
' - ' = Not used  
Description of the  
effect of specific  
bit settings  
RESETvalue notation:  
'-' = Not used  
'x' = Undetermind value  
'0' = Logic zero  
'1' = Logic one  
Addressing mode or  
modes you can use to  
modify register values  
Bit number:  
MSB = Bit 7  
LSB = Bit 0  
Figure 4-1. Register Description Format  
4-4  
S3C80F9B/C80G9B  
CONTROL REGISTERS  
BTCON — Basic Timer Control Register  
D3H  
Set 1  
Bit Identifier  
Reset Value  
Read/Write  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Register addressing mode only  
Addressing Mode  
.7 – .4  
Watchdog Timer Function Disable Code (for System Reset)  
1
0
1
0
Disable watchdog timer function  
Enable watchdog timer function  
Any other value  
.3 and .2  
Basic Timer Input Clock Selection Bits  
f
f
f
/4096  
/1024  
/128  
0
0
1
1
0
1
0
1
OSC  
OSC  
OSC  
Invalid setting; not used for S3C80F9B/C80G9B  
(1)  
.1  
Basic Timer Counter Clear Bit  
0
1
No effect  
Clear the basic timer counter value  
(2)  
.0  
Clock Frequency Divider Clear Bit for Basic Timer and Timer 0  
0
1
No effect  
Clear both block frequency dividers  
NOTES:  
1. When you write a “1” to BTCON.1, the basic timer counter value is cleared to ‘00H’. Immediately following the write  
operation, the BTCON.1 value is automatically cleared to “0”.  
2. When you write a "1" to BTCON.0, the corresponding frequency divider is cleared to '00H'. Immediately following the  
write operation, the BTCON.0 value is automatically cleared to "0".  
4-5  
CONTROL REGISTERS  
S3C80F9B/C80G9B  
CACON — Counter A Control Register  
F3H  
Set 1  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
Bit Identifier  
Reset Value  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Read/Write  
Register addressing mode only  
Addressing Mode  
.7 and .6  
Counter A Input Clock Selection Bits  
fOSC  
0
0
1
1
0
1
0
1
fOSC/2  
fOSC/4  
fOSC/8  
.5 and .4  
Counter A Interrupt Timing Selection Bits  
0
0
1
1
0
1
0
1
Elapsed time for Low data value  
Elapsed time for High data value  
Elapsed time for combined Low and High data values  
Invalid setting; not used for S3C80F9B/C80G9B  
.3  
.2  
.1  
.0  
Counter A Interrupt Enable Bit  
0
1
Disable interrupt  
Enable interrupt  
Counter A Start Bit  
0
1
Stop counter A  
Start counter A  
Counter A Mode Selection Bit  
0
1
One-shot mode  
Repeating mode  
Counter A Output Flip-Flop Control Bit  
0
1
Flip-Flop Low level (T-FF = Low)  
Flip-flop High level (T-FF = High)  
4-6  
S3C80F9B/C80G9B  
CONTROL REGISTERS  
CLKCON — System Clock Control Register  
D4H  
Set 1  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
Bit Identifier  
Reset Value  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Read/Write  
Register addressing mode only  
Addressing Mode  
.7  
Oscillator IRQ Wake-up Function Enable Bit  
Not used for S3C80F9B/C80G9B  
.6 and .5  
.4 and .3  
Main Oscillator Stop Control Bits  
Not used for S3C80F9B/C80G9B  
CPU Clock (System Clock) Selection Bits (1)  
f
f
f
f
/16  
0
0
1
1
0
1
0
1
OSC  
OSC  
OSC  
OSC  
/8  
/2  
(non-divided)  
Subsystem Clock Selection Bits (2)  
.2 – .0  
1
0
1
Invalid setting for S3C80F9B/C80G9B  
Select main system clock (MCLK)  
Other value  
NOTES:  
1. After a reset, the slowest clock (divided by 16) is selected as the system clock. To select faster clock speeds, load the  
appropriate values to CLKCON.3 and CLKCON.4.  
2. These selection bits are required only for systems that have a main clock and a subsystem clock. The  
S3C80F9B/C80G9B uses only the main oscillator clock circuit. For this reason, the setting '101B' is invalid.  
4-7  
CONTROL REGISTERS  
S3C80F9B/C80G9B  
(note)  
EMT — External Memory Timing Register  
FEH  
Set 1  
Bit Identifier  
Reset Value  
.7  
0
.6  
1
.5  
1
.4  
1
.3  
1
.2  
1
.1  
0
.0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Read/Write  
Register addressing mode only  
Addressing Mode  
.7  
External WAIT Input Function Enable Bit  
0
1
Disable WAIT input function for external device  
Enable WAIT input function for external device  
.6  
Slow Memory Timing Enable Bit  
0
1
Disable slow memory timing  
Enable slow memory timing  
.5 and .4  
Program Memory Automatic Wait Control Bits  
0
0
1
1
0
1
0
1
No wait  
Wait one cycle  
Wait two cycles  
Wait three cycles  
.3 and .2  
Data Memory Automatic Wait Control Bits  
0
0
1
1
0
1
0
1
No wait  
Wait one cycle  
Wait two cycles  
Wait three cycles  
.1  
.0  
Stack Area Selection Bit  
0
1
Select internal register file area  
Select external data memory area  
Not used for S3C80F9B/C80G9B  
NOTE: The EMT register is not used for S3C80F9B/C80G9B, because an external peripheral interface is not implemented in  
the S3C80F9B/C80G9B. The program initialization routine should clear the EMT register to '00H' following a reset.  
Modification of EMT values during normal operation may cause a system malfunction.  
4-8  
S3C80F9B/C80G9B  
CONTROL REGISTERS  
FLAGS — System Flags Register  
D5H  
Set 1  
Bit Identifier  
Reset Value  
.7  
x
.6  
x
.5  
x
.4  
x
.3  
x
.2  
x
.1  
0
.0  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
R/W  
Read/Write  
Register addressing mode only  
Addressing Mode  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
Carry Flag (C)  
0
1
Operation does not generate a carry or borrow condition  
Operation generates a carry-out or borrow into high-order bit 7  
Zero Flag (Z)  
0
1
Operation result is a non-zero value  
Operation result is zero  
Sign Flag (S)  
0
1
Operation generates a positive number (MSB = "0")  
Operation generates a negative number (MSB = "1")  
Overflow Flag (V)  
0
1
Operation result is +127 or –128  
Operation result is > +127 or < –128  
Decimal Adjust Flag (D)  
0
1
Add operation completed  
Subtraction operation completed  
Half-Carry Flag (H)  
0
1
No carry-out of bit 3 or no borrow into bit 3 by addition or subtraction  
Addition generated carry-out of bit 3 or subtraction generated borrow into bit 3  
Fast Interrupt Status Flag (FIS)  
0
1
Interrupt return (IRET) in progress (when read)  
Fast interrupt service routine in progress (when read)  
Bank Address Selection Flag (BA)  
0
1
Bank 0 is selected (normal setting for S3C80F9B/C80G9B)  
Invalid selection (bank 1 is not implemented)  
4-9  
CONTROL REGISTERS  
S3C80F9B/C80G9B  
IMR — Interrupt Mask Register  
DDH  
Set 1  
.7  
x
.6  
x
.5  
x
.4  
x
.3  
x
.2  
x
.1  
x
.0  
x
Bit Identifier  
Reset Value  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Read/Write  
Register addressing mode only  
Addressing Mode  
.7  
.6  
.5  
.4  
Interrupt Level 7 (IRQ7) Enable Bit; External Interrupts P0.7–P0.4  
0
1
Disable (mask)  
Enable (un-mask)  
Interrupt Level 6 (IRQ6) Enable Bit; External Interrupts P0.3–P0.0  
0
1
Disable (mask)  
Enable (un-mask)  
Interrupt Level 5 (IRQ5) Enable Bit; External Interrupts P2.7–P2.4  
0
1
Disable (mask)  
Enable (un-mask)  
Interrupt Level 4 (IRQ4) Enable Bit; External Interrupts P2.3–P2.0  
0
1
Disable (mask)  
Enable (un-mask)  
Not used for S3C80F9B/C80G9B  
.3  
.2  
Interrupt Level 2 (IRQ2) Enable Bit; Counter A Interrupt  
0
1
Disable (mask)  
Enable (un-mask)  
.1  
.0  
Interrupt Level 1 (IRQ1) Enable Bit; Timer 1 Match or Overflow  
0
1
Disable (mask)  
Enable (un-mask)  
Interrupt Level 0 (IRQ0) Enable Bit; Timer 0 Match or Overflow  
0
1
Disable (mask)  
Enable (un-mask)  
4-10  
S3C80F9B/C80G9B  
CONTROL REGISTERS  
IPH — Instruction Pointer (High Byte)  
DBH  
Set 1  
.7  
x
.6  
x
.5  
x
.4  
x
.3  
x
.2  
x
.1  
x
.0  
x
Bit Identifier  
Reset Value  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Read/Write  
Register addressing mode only  
Addressing Mode  
.7 – .1  
Instruction Pointer Address (High Byte)  
The high-byte instruction pointer value is the upper eight bits of the 16-bit instruction  
pointer address (IP15–IP8). The lower byte of the IP address is located in the IPL  
register (DBH).  
IPL — Instruction Pointer (Low Byte)  
DBH  
Set 1  
.7  
x
.6  
x
.5  
x
.4  
x
.3  
x
.2  
x
.1  
.0  
x
Bit Identifier  
Reset Value  
x
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Read/Write  
Register addressing mode only  
Addressing Mode  
.7 – .0  
Instruction Pointer Address (Low Byte)  
The low-byte instruction pointer value is the lower eight bits of the 16-bit instruction  
pointer address (IP7–IP0). The upper byte of the IP address is located in the IPH  
register (DAH).  
4-11  
CONTROL REGISTERS  
S3C80F9B/C80G9B  
IPR — Interrupt Priority Register  
FFH  
Set 1  
Bit Identifier  
Reset Value  
.7  
x
.6  
x
.5  
x
.4  
x
.3  
x
.2  
x
.1  
x
.0  
x
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Read/Write  
Register addressing mode only  
Addressing Mode  
.7, .4, and .1  
Priority Control Bits for Interrupt Groups A, B, and C  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Group priority undefined  
B > C > A  
A > B > C  
B > A > C  
C > A > B  
C > B > A  
A > C > B  
Group priority undefined  
.6  
.5  
.3  
.2  
.0  
Interrupt Subgroup C Priority Control Bit  
0
1
IRQ6 > IRQ7  
IRQ7 > IRQ6  
Interrupt Group C Priority Control Bit  
0
1
IRQ5 > (IRQ6, IRQ7)  
(IRQ6, IRQ7) > IRQ5  
Interrupt Subgroup B Priority Control Bit (see Note)  
0
1
IRQ4  
IRQ4  
Interrupt Group B Priority Control Bit (see Note)  
0
1
IRQ2 >IRQ4  
IRQ4 > IRQ2  
Interrupt Group A Priority Control Bit  
0
1
IRQ0 > IRQ1  
IRQ1 > IRQ0  
NOTE: The S3C80F9B/C80G9B interrupt structure uses only seven levels: IRQ0IRQ2, and IRQ4-IRQ7.  
Because IRQ3 is not recognized, the interrupt Subgroup B setting (IPR.3) is not evaluated.  
4-12  
S3C80F9B/C80G9B  
CONTROL REGISTERS  
IRQ — Interrupt Request Register  
DCH  
Set 1  
Bit Identifier  
Reset Value  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
R
R
R
R
R
R
R
R
Read/Write  
Register addressing mode only  
Addressing Mode  
.6  
.6  
.5  
Level 7 (IRQ7) Request Pending Bit; External Interrupts P0.7–P0.4  
0
1
Not pending  
Pending  
Level 6 (IRQ6) Request Pending Bit; External Interrupts P0.3–P0.0  
0
1
Not pending  
Pending  
Level 5 (IRQ5) Request Pending Bit; External Interrupts P2.7–P2.4  
Not pending  
Pending  
0
1
.4  
Level 4 (IRQ4) Request Pending Bit; External Interrupts P2.3–P2.0  
0
1
Not pending  
Pending  
.3  
.2  
Not used for S3C80F9B/C80G9B  
Level 2 (IRQ2) Request Pending Bit; Counter A Interrupt  
0
1
Not pending  
Pending  
.1  
.0  
Level 1 (IRQ1) Request Pending Bit; Timer 1 Match/Capture or Overflow  
0
1
Not pending  
Pending  
Level 0 (IRQ0) Request Pending Bit; Timer 0 Match/Capture or Overflow  
0
1
Not pending  
Pending  
NOTE: Interrupt level IRQ3 is not used in the S3C80F9B/C80G9B interrupt structure.  
4-13  
CONTROL REGISTERS  
S3C80F9B/C80G9B  
P0CONH — Port 0 Control Register (High Byte)  
E8H  
Set 1  
Bit Identifier  
Reset Value  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Read/Write  
Register addressing mode only  
Addressing Mode  
.7 and .6  
.5 and .4  
.3 and .2  
P0.7/INT4 Mode Selection Bits  
0
0
1
1
0
1
0
1
C-MOS input mode; interrupt on falling edges  
C-MOS input mode; interrupt on rising and falling edges  
Push-pull output mode  
C-MOS input mode; interrupt on rising edges  
P0.6/INT4 Mode Selection Bits  
0
0
1
1
0
1
0
1
C-MOS input mode; interrupt on falling edges  
C-MOS input mode; interrupt on rising and falling edges  
Push-pull output mode  
C-MOS input mode; interrupt on rising edges  
P0.5/INT4 Mode Selection Bits  
0
0
1
1
0
1
0
1
C-MOS input mode; interrupt on falling edges  
C-MOS input mode; interrupt on rising and falling edges  
Push-pull output mode  
C-MOS input mode; interrupt on rising edges  
.1 and .0  
P0.4/INT4 Mode Selection Bits  
0
0
1
1
0
1
0
1
C-MOS input mode; interrupt on falling edges  
C-MOS input mode; interrupt on rising and falling edges  
Push-pull output mode  
C-MOS input mode; interrupt on rising edges  
NOTES:  
1. The INT4 external interrupts at the P0.7–P0.4 pins share the same interrupt level (IRQ7) and interrupt vector  
address (E8H).  
2. You can assign pull-up resistors to individual port 0 pins by making the appropriate settings to the P0PUR register.  
4-14  
S3C80F9B/C80G9B  
CONTROL REGISTERS  
P0CONL — Port 0 Control Register (Low Byte)  
E9H  
Set 1  
Bit Identifier  
Reset Value  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Read/Write  
Register addressing mode only  
Addressing Mode  
.7 and .6  
.5 and .4  
.3 and .2  
P0.3/INT3 Mode Selection Bits  
0
0
1
1
0
1
0
1
C-MOS input mode; interrupt on falling edges  
C-MOS input mode; interrupt on rising and falling edges  
Push-pull output mode  
C-MOS input mode; interrupt on rising edges  
P0.2/INT2 Mode Selection Bits  
0
0
1
1
0
1
0
1
C-MOS input mode; interrupt on falling edges  
C-MOS input mode; interrupt on rising and falling edges  
Push-pull output mode  
C-MOS input mode; interrupt on rising edges  
P0.1/INT1 Mode Selection Bits  
0
0
1
1
0
1
0
1
C-MOS input mode; interrupt on falling edges  
C-MOS input mode; interrupt on rising and falling edges  
Push-pull output mode  
C-MOS input mode; interrupt on rising edges  
.1 and .0  
P0.0/INT0 Mode Selection Bits  
0
0
1
1
0
1
0
1
C-MOS input mode; interrupt on falling edges  
C-MOS input mode; interrupt on rising and falling edges  
Push-pull output mode  
C-MOS input mode; interrupt on rising edges  
NOTES:  
1. The INT3–INT0 external interrupts at P0.3–P0.0 are interrupt level IRQ6. Each interrupt has a separate vector  
address.  
2. You can assign pull-up resistors to individual port 0 pins by making the appropriate settings to the P0PUR register.  
4-15  
CONTROL REGISTERS  
S3C80F9B/C80G9B  
P0INT — Port 0 External Interrupt Enable Register  
F1H  
Set 1  
Bit Identifier  
Reset Value  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Read/Write  
Register addressing mode only  
Addressing Mode  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
P0.7 External Interrupt (INT4) Enable Bit  
0
1
Disable interrupt  
Enable interrupt  
P0.6 External Interrupt (INT4) Enable Bit  
0
1
Disable interrupt  
Enable interrupt  
P0.5 External Interrupt (INT4) Enable Bit  
0
1
Disable interrupt  
Enable interrupt  
P0.4 External Interrupt (INT4) Enable Bit  
0
1
Disable interrupt  
Enable interrupt  
P0.3 External Interrupt (INT3) Enable Bit  
0
1
Disable interrupt  
Enable interrupt  
P0.2 External Interrupt (INT2) Enable Bit  
0
1
Disable interrupt  
Enable interrupt  
P0.1 External Interrupt (INT1) Enable Bit  
0
1
Disable interrupt  
Enable interrupt  
P0.0 External Interrupt (INT0) Enable Bit  
0
1
Disable interrupt  
Enable interrupt  
4-16  
S3C80F9B/C80G9B  
CONTROL REGISTERS  
P0PND — Port 0 External Interrupt Pending Register  
F2H  
Set 1  
Bit Identifier  
Reset Value  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Read/Write  
Register addressing mode only  
Addressing Mode  
(see Note)  
.7  
P0.7 External Interrupt (INT4) Pending Flag  
0
1
No P0.7 external interrupt pending (when read)  
P0.7 external interrupt is pending (when read)  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
P0.6 External Interrupt (INT4) Pending Flag  
0
1
No P0.6 external interrupt pending (when read)  
P0.6 external interrupt is pending (when read)  
P0.5 External Interrupt (INT4) Pending Flag  
0
1
No P0.5 external interrupt pending (when read)  
P0.5 external interrupt is pending (when read)  
P0.4 External Interrupt (INT4) Pending Flag  
0
1
No P0.4 external interrupt pending (when read)  
P0.4 external interrupt is pending (when read)  
P0.3 External Interrupt (INT3) Pending Flag  
0
1
No P0.3 external interrupt pending (when read)  
P0.3 external interrupt is pending (when read)  
P0.2 External Interrupt (INT2) Pending Flag  
0
1
No P0.2 external interrupt pending (when read)  
P0.2 external interrupt is pending (when read)  
P0.1 External Interrupt (INT1) Pending Flag  
0
1
No P0.1 external interrupt pending (when read)  
P0.1 external interrupt is pending (when read)  
P0.0 External Interrupt (INT0) Pending Flag  
No P0.0 external interrupt pending (when read)  
P0.0 external interrupt is pending (when read)  
0
1
NOTE: To clear an interrupt pending condition, write a “0” to the appropriate pending flag. Writing a “1” to an interrupt  
pending flag (P0PND.0–7) has no effect.  
4-17  
CONTROL REGISTERS  
S3C80F9B/C80G9B  
P0PUR — Port 0 Pull-up Resistor Enable Register  
E7H  
Set 1  
Bit Identifier  
Reset Value  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Read/Write  
Register addressing mode only  
Addressing Mode  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
P0.7 Pull-up Resistor Enable Bit  
0
1
Disable pull-up resistor  
Enable pull-up resistor  
P0.6 Pull-up Resistor Enable Bit  
0
1
Disable pull-up resistor  
Enable pull-up resistor  
P0.5 Pull-up Resistor Enable Bit  
0
1
Disable pull-up resistor  
Enable pull-up resistor  
P0.4 Pull-up Resistor Enable Bit  
0
1
Disable pull-up resistor  
Enable pull-up resistor  
P0.3 Pull-up Resistor Enable Bit  
0
1
Disable pull-up resistor  
Enable pull-up resistor  
P0.2 Pull-up Resistor Enable Bit  
0
1
Disable pull-up resistor  
Enable pull-up resistor  
P0.1 Pull-up Resistor Enable Bit  
0
1
Disable pull-up resistor  
Enable pull-up resistor  
P0.0 Pull-up Resistor Enable Bit  
0
1
Disable pull-up resistor  
Enable pull-up resistor  
4-18  
S3C80F9B/C80G9B  
CONTROL REGISTERS  
P1CONH — Port 1 Control Register (High Byte)  
EAH  
Set 1  
Bit Identifier  
Reset Value  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Read/Write  
Register addressing mode only  
Addressing Mode  
.7 and .6  
.5 and .4  
.3 and .2  
.1 and .0  
P1.7 Mode Selection Bits  
0
0
1
1
0
1
0
1
C-MOS input mode  
Open-drain output mode  
Push-pull output mode  
C-MOS input with pull up mode  
P1.6 Mode Selection Bits  
0
0
1
1
0
1
0
1
C-MOS input mode  
Open-drain output mode  
Push-pull output mode  
C-MOS input with pull up mode  
P1.5 Mode Selection Bits  
0
0
1
1
0
1
0
1
C-MOS input mode  
Open-drain output mode  
Push-pull output mode  
C-MOS input with pull up mode  
P1.4 Mode Selection Bits  
0
0
1
1
0
1
0
1
C-MOS input mode  
Open-drain output mode  
Push-pull output mode  
C-MOS input with pull up mode  
4-19  
CONTROL REGISTERS  
S3C80F9B/C80G9B  
P1CONL — Port 1 Control Register (Low Byte)  
EBH  
Set 1  
Bit Identifier  
Reset Value  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Read/Write  
Register addressing mode only  
Addressing Mode  
.7 and .6  
.5 and .4  
.3 and .2  
.1 and .0  
P1.3 Mode Selection Bits  
0
0
1
1
0
1
0
1
C-MOS input mode  
Open-drain output mode  
Push-pull output mode  
C-MOS input with pull up mode  
P1.2 Mode Selection Bits  
0
0
1
1
0
1
0
1
C-MOS input mode  
Open-drain output mode  
Push-pull output mode  
C-MOS input with pull up mode  
P1.1 Mode Selection Bits  
0
0
1
1
0
1
0
1
C-MOS input mode  
Open-drain output mode  
Push-pull output mode  
C-MOS input with pull up mode  
P1.0 Mode Selection Bits  
0
0
1
1
0
1
0
1
C-MOS input mode  
Open-drain output mode  
Push-pull output mode  
C-MOS input with pull up mode  
4-20  
S3C80F9B/C80G9B  
CONTROL REGISTERS  
P2CONH — Port 2 Control Register (High Byte)  
ECH  
Set 1  
Bit Identifier  
Reset Value  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Read/Write  
Register addressing mode only  
Addressing Mode  
.7 and .6  
.5 and .4  
.3 and .2  
.1 and .0  
P2.7 Mode Selection Bits  
0
0
1
1
0
1
0
1
C-MOS input mode; interrupt on falling edges  
C-MOS input mode ; interrupt on rising and falling edges  
Push-pull output mode  
C-MOS input mode; interrupt on rising edges  
P2.6 Mode Selection Bits  
0
0
1
1
0
1
0
1
C-MOS input mode; interrupt on falling edges  
C-MOS input mode ; interrupt on rising and falling edges  
Push-pull output mode  
C-MOS input mode; interrupt on rising edges  
P2.5 Mode Selection Bits  
0
0
1
1
0
1
0
1
C-MOS input mode; interrupt on falling edges  
C-MOS input mode ; interrupt on rising and falling edges  
Push-pull output mode  
C-MOS input mode; interrupt on rising edges  
P2.4 Mode Selection Bits  
0
0
1
1
0
1
0
1
C-MOS input mode; interrupt on falling edges  
C-MOS input mode ; interrupt on rising and falling edges  
Push-pull output mode  
C-MOS input mode; interrupt on rising edges  
NOTE: Pull-up resistors can be assigned to individual port 2 pins by making the appropriate settings to the P2PUR control  
register, location EEH, set 1.  
4-21  
CONTROL REGISTERS  
S3C80F9B/C80G9B  
P2CONL — Port 2 Control Register (Low Byte)  
EDH  
Set 1  
Bit Identifier  
Reset Value  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Read/Write  
Register addressing mode only  
Addressing Mode  
.7 and .6  
.5 and .4  
.3 and .2  
.1 and .0  
P2.3 Mode Selection Bits  
0
0
1
1
0
1
0
1
C-MOS input mode; interrupt on falling edges  
C-MOS input mode ; interrupt on rising and falling edges  
Push-pull output mode  
C-MOS input mode; interrupt on rising edges  
P2.2 Mode Selection Bits  
0
0
1
1
0
1
0
1
C-MOS input mode; interrupt on falling edges  
C-MOS input mode ; interrupt on rising and falling edges  
Push-pull output mode  
C-MOS input mode; interrupt on rising edges  
P2.1 Mode Selection Bits  
0
0
1
1
0
1
0
1
C-MOS input mode; interrupt on falling edges  
C-MOS input mode ; interrupt on rising and falling edges  
Push-pull output mode  
C-MOS input mode; interrupt on rising edges  
P2.0 Mode Selection Bits  
0
0
1
1
0
1
0
1
C-MOS input mode; interrupt on falling edges  
C-MOS input mode ; interrupt on rising and falling edges  
Push-pull output mode  
C-MOS input mode; interrupt on rising edges  
NOTE: Pull-up resistors can be assigned to individual port 2 pins by making the appropriate settings to the P2PUR control  
register, location EEH, set 1.  
4-22  
S3C80F9B/C80G9B  
CONTROL REGISTERS  
P2INT — Port 2 External Interrupt Enable Register  
E5H  
Set 1  
Bit Identifier  
Reset Value  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Read/Write  
Register addressing mode only  
Addressing Mode  
.7  
.6  
5.  
.4  
.3  
.2  
.1  
.0  
P2.7 External Interrupt Enable Bit  
0
1
Disable interrupt  
Enable interrupt  
P2.6 External Interrupt Enable Bit  
0
1
Disable interrupt  
Enable interrupt  
P2.5 External Interrupt Enable Bit  
0
1
Disable interrupt  
Enable interrupt  
P2.4 External Interrupt Enable Bit  
0
1
Disable interrupt  
Enable interrupt  
P2.3 External Interrupt Enable Bit  
0
1
Disable interrupt  
Enable interrupt  
P2.2 External Interrupt Enable Bit  
0
1
Disable interrupt  
Enable interrupt  
P2.1 External Interrupt Enable Bit  
0
1
Disable interrupt  
Enable interrupt  
P2.0 External Interrupt Enable Bit  
0
1
Disable interrupt  
Enable interrupt  
4-23  
CONTROL REGISTERS  
S3C80F9B/C80G9B  
P2PND — Port 2 External Interrupt Pending Register  
DBH  
Set 1  
Bit Identifier  
Reset Value  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Read/Write  
Register addressing mode only  
Addressing Mode  
P2.7 External Interrupt (INT9) Pending Flag (see note)  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
0
1
No P2.7 external interrupt pending (when read)  
P2.7 external interrupt is pending (when read)  
P2.6 External Interrupt (INT9) Pending Flag  
0
1
No P2.6 external interrupt pending (when read)  
P2.6 external interrupt is pending (when read)  
P2.5 External Interrupt (INT9) Pending Flag  
0
1
No P2.5 external interrupt pending (when read)  
P2.5 external interrupt is pending (when read)  
P2.4 External Interrupt S(INT9) Pending Flag  
0
1
No P2.4 external interrupt pending (when read)  
P2.4 external interrupt is pending (when read)  
P2.3 External Interrupt (INT8) Pending Flag  
0
1
No P2.3 external interrupt pending (when read)  
P2.3 external interrupt is pending (when read)  
P2.2 External Interrupt (INT7) Pending Flag  
0
1
No P2.2 external interrupt pending (when read)  
P2.2 external interrupt is pending (when read)  
P2.1 External Interrupt (INT6) Pending Flag  
0
1
No P2.1 external interrupt pending (when read)  
P2.1 external interrupt is pending (when read)  
P2.0 External Interrupt (INT5) Pending Flag  
0
1
No P2.0 external interrupt pending (when read)  
P2.0 external interrupt is pending (when read)  
NOTE: To clear an interrupt pending condition, write a “0” to the appropriate pending flag. Writing a “1” to an interrupt  
rending flag (P2PND.0–7) has no effect.  
4-24  
S3C80F9B/C80G9B  
CONTROL REGISTERS  
P2PUR — Port 2 Pull-up Resistor Enable Register  
EEH  
Set 1  
Bit Identifier  
Reset Value  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Read/Write  
Register addressing mode only  
Addressing Mode  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
P2.7 Pull-up Resistor Enable Bit  
0
1
Disable pull-up resistor  
Enable pull-up resistor  
P2.6 Pull-up Resistor Enable Bit  
0
1
Disable pull-up resistor  
Enable pull-up resistor  
P2.5 Pull-up Resistor Enable Bit  
0
1
Disable pull-up resistor  
Enable pull-up resistor  
P2.4 Pull-up Resistor Enable Bit  
0
1
Disable pull-up resistor  
Enable pull-up resistor  
P2.3 Pull-up Resistor Enable Bit  
0
1
Disable pull-up resistor  
Enable pull-up resistor  
P2.2 Pull-up Resistor Enable Bit  
0
1
Disable pull-up resistor  
Enable pull-up resistor  
P2.1 Pull-up Resistor Enable Bit  
0
1
Disable pull-up resistor  
Enable pull-up resistor  
P2.0 Pull-up Resistor Enable Bit  
0
1
Disable pull-up resistor  
Enable pull-up resistor  
4-25  
CONTROL REGISTERS  
S3C80F9B/C80G9B  
P3CON — Port 3 Control Register  
EFH  
Set 1  
Bit Identifier  
Reset Value  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Read/Write  
Register addressing mode only  
Addressing Mode  
.7 and .6  
Package selection and Alternative function select.  
32 pin package  
P3.0: TOPWM/T0CAP/T1CAP, P3.1 : REM/T0CK  
OTHER 42/44 pin package  
P3.0: T0PWM/T0CAP , P3.3 : T1CAP  
P3.1: REM , P3.2 : T0CK  
0
0
.5  
P3.1 function selection bits  
0
1
Normal I/O selection  
Alternative function enable(REM/T0CK)  
.4 and .3  
P3.1 mode selection bit  
0
0
1
1
0
1
0
1
Schmitt trigger input mode  
Open- drain output mode  
Push pull output mode  
Schmitt trigger input with pull up resistor.  
.2  
Function Selection Bits for P3.0 & P3.3  
0
1
Normal I/O selection  
Alternative function enable(P3.0: T0PWM/T0CAP, P3.3: T1CAP)  
.1 and .0  
P3.0 mode selection bit  
0
0
1
1
0
1
0
1
Schmitt trigger input mode  
Open- drain output mode  
Push pull output mode  
Schmitt trigger input with pull up resistor.  
NOTES:  
1. The port 3 data register, P3, at location E3H, contains seven bit values which correspond to the following port 3 pin  
functions (bit 6 is not used for the S3C80F9B/C80G9B:  
a. P3, bit 7: carrier signal on (“1”) or off (“0”).  
b. P3, bit 1: P3.1/REM/T0CK pin status, bit 0: P3.0/T0PWM/T0CAP/T1CAP pin level.  
c. P3, bit 2,3: P3.2,P3.3 are selected only to input pin with pull up resistor automatically.  
d. P3, bit 4,5: P3.4,P3.5 are selected only to open drain output pin automatically.  
2. The alternative function enable/disable are enabled in accordance with Function selection bit(bit5 and bit2) .  
3. In case of 42/44 pin package, the pin assign for alternative functions can be selectable relating to mode selection  
bit(bit0,1,2,3,4and 5)  
4. Following Table is the specific example about the alternative function and pin assignment according to the each bit  
control of P3CON in 42/44 pin package.  
4-26  
S3C80F9B/C80G9B  
CONTROL REGISTERS  
Table 4-2. Each Function Description and Pin Assignment of P3CON in 42/44 Pin Package  
P3CON  
Each function description and assignment to P3.0–P3.3  
B5 B4 B3 B2 B1 B0  
P3.0  
Normal I/O  
Normal I/O  
T0_CAP  
T0_CAP  
T0PWM  
P3.1  
Normal I/O  
Normal I/O  
Normal I/O  
Normal I/O  
Normal I/O  
Normal I/O  
Normal Input  
Normal Input  
REM  
P3.2  
Normal Input  
P3.3  
Normal Input  
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
x
x
x
x
x
x
0
1
0
1
0
1
0
1
0
1
0
1
x
x
x
x
x
x
0
1
1
0
0
1
1
0
0
1
1
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
1
x
x
0
1
0
1
x
x
x
x
0
1
0
1
0
1
0
1
x
x
0
1
1
0
x
x
x
x
0
1
1
0
1
0
0
1
Normal Input  
Normal Input  
Normal Input  
T1CAP/Normal Input  
T1CAP/Normal Input  
T1CAP/Normal Input  
T1CAP/Normal Input  
Normal Input  
Normal Input  
Normal Input/  
Normal Input  
T0PWM  
Normal I/O  
Normal I/O  
Normal I/O  
Normal I/O  
T0_CAP  
T0_CAP  
T0PWM  
T0CK  
T0CK  
Normal Input  
T0CK  
Normal Input  
REM  
T0CK  
Normal Input  
Normal Input  
Normal Input  
REM  
T0CK/Normal Input  
T0CK/Normal Input  
T0CK/Normal Input  
T0CK/Normal Input  
T0CK/Normal Input  
T0CK/Normal Input  
T0CK/Normal Input  
T0CK/Normal Input  
T1CAP/Normal Input  
T1CAP/Normal Input  
T1CAP/Normal Input  
T1CAP/Normal Input  
T1CAP/Normal Input  
T1CAP/Normal Input  
T1CAP/Normal Input  
T1CAP/Normal Input  
T0PWM  
REM  
T0PWM  
Normal Input  
Normal Input  
REM  
T0PWM  
T0_CAP  
T0_CAP  
REM  
4-27  
CONTROL REGISTERS  
S3C80F9B/C80G9B  
P4CON — Port 4 Control Resistor Enable Register  
F0H  
Set 1  
Bit Identifier  
Reset Value  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Read/Write  
Register addressing mode only  
Addressing Mode  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
P4.7 Mode Selection Bit  
0
1
Open-drain output mode  
Push-pull output mode  
P4.6 Mode Selection Bit  
0
1
Open-drain output mode  
Push-pull output mode  
P4.5 Mode Selection Bit  
0
1
Open-drain output mode  
Push-pull output mode  
P4.4 Mode Selection Bit  
0
1
Open-drain output mode  
Push-pull output mode  
P4.3 Mode Selection Bit  
0
1
Open-drain output mode  
Push-pull output mode  
P4.2 Mode Selection Bit  
0
1
Open-drain output mode  
Push-pull output mode  
P4.1 Mode Selection Bit  
0
1
Open-drain output mode  
Push-pull output mode  
P4.0 Mode Selection Bit  
0
1
Open-drain output mode  
Push-pull output mode  
4-28  
S3C80F9B/C80G9B  
CONTROL REGISTERS  
PP — Register Page Pointer  
DFH  
Set 1  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
Bit Identifier  
Reset Value  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Read/Write  
Register addressing mode only  
Addressing Mode  
.7 – .4  
.3 – .0  
Destination Register Page Selection Bits  
Destination: page 0 (see note)  
0
0
0
0
Source Register Page Selection Bits  
Source: page 0 (see note)  
0
0
0
0
NOTE: In the S3C80F9B/C80G9B microcontroller, a paged expansion of the internal register file is not implemented. For this  
reason, only page 0 settings are valid. Register page pointer values for the source and destination register page are  
automatically set to ‘0000B’ following a hardware reset. These values should not be changed during normal operation.  
4-29  
CONTROL REGISTERS  
S3C80F9B/C80G9B  
RP0 — Register Pointer 1  
D6H  
Set 1  
.7  
1
.6  
1
.5  
0
.4  
0
.3  
0
.2  
.1  
.0  
Bit Identifier  
Reset Value  
R/W  
R/W  
R/W  
R/W  
R/W  
Read/Write  
Register addressing mode only  
Addressing Mode  
.7 – .3  
Register Pointer 0 Address Value  
Register pointer 0 can independently point to one of the 24 8-byte working register  
areas in the register file. Using the register pointers RP0 and RP1, you can select  
two 8-byte register slices at one time as active working register space. After a reset,  
RP0 points to address C0H in register set 1, selecting the 8-byte working register  
slice C0H–C7H.  
Not used for S3C80F9B/C80G9B  
.2 – .0  
RP1 — Register Pointer 1  
D7H  
Set 1  
.7  
1
.6  
1
.5  
0
.4  
0
.3  
1
.2  
.1  
.0  
Bit Identifier  
Reset Value  
R/W  
R/W  
R/W  
R/W  
R/W  
Read/Write  
Register addressing mode only  
Addressing Mode  
.7 – .3  
Register Pointer 1 Address Value  
Register pointer 1 can independently point to one of the 24 8-byte working register  
areas in the register file. Using the register pointers RP0 and RP1, you can select  
two 8-byte register slices at one time as active working register space. After a reset,  
RP1 points to address C8H in register set 1, selecting the 8-byte working register  
slice C8H–CFH.  
Not used for S3C80F9B/C80G9B  
.2 – .0  
4-30  
S3C80F9B/C80G9B  
CONTROL REGISTERS  
SPL — Stack Pointer  
D9H  
Set 1  
.7  
x
.6  
x
.5  
x
.4  
x
.3  
x
.2  
x
.1  
x
.0  
x
Bit Identifier  
Reset Value  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Read/Write  
Register addressing mode only  
Addressing Mode  
.7 – .0  
Stack Pointer Address (Low Byte)  
The SP value is undefined following a reset.  
STOPCON — Stop Control Register  
FBH  
Set 1  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
Bit Identifier  
Reset Value  
W
W
W
W
W
W
W
W
Read/Write  
Register addressing mode only  
Addressing Mode  
.7—.0  
Stop Control Register enable bits  
1
0
1
0
0
1
0
1
Enable STOPCON  
NOTES:  
1. To get into STOP mode, stop control register must be enabled just before STOP instruction.  
2. When STOP mode is released, stop control register (STOPCON) value is cleared automatically.  
3. It is prohibited to write another value into STOPCON.  
4-31  
CONTROL REGISTERS  
S3C80F9B/C80G9B  
SYM — System Mode Register  
DEH  
Set 1  
.7  
0
.6  
.5  
.4  
x
.3  
x
.2  
x
.1  
0
.0  
0
Bit Identifier  
Reset Value  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Read/Write  
Register addressing mode only  
Addressing Mode  
(1)  
.7  
Tri-State External Interface Control Bit  
0
1
Normal operation (disable tri-state operation)  
Set external interface lines to high impedance (enable tri-state operation)  
(2)  
.6 and .5  
.4 – .2  
Not used for S3C80F9B/C80G9B  
(3)  
Fast Interrupt Level Selection Bits  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
IRQ0  
IRQ1  
Not used for S3C80F9B/C80G9B  
Not used for S3C80F9B/C80G9B  
IRQ4  
IRQ5  
IRQ6  
IRQ7  
(4)  
.1  
Fast Interrupt Enable Bit  
0
1
Disable fast interrupt processing  
Enable fast interrupt processing  
(5)  
.0  
Global Interrupt Enable Bit  
0
1
Disable global interrupt processing  
Enable global interrupt processing  
NOTES:  
1. Because an external interface is not implemented for the S3C80F9B/C80G9B, SYM.7 must always be  
"0".  
2. Although the SYM register is not used, SYM.5 should always be “0”. If you accidentally write a “1” to this bit during  
normal operation, a system malfunction may occur.  
3. You can select only one interrupt level at a time for fast interrupt processing.  
4. Setting SYM.1 to "1" enables fast interrupt processing for the interrupt level currently selected by SYM.2–SYM.4.  
5. Following a reset, you must enable global interrupt processing by executing an EI instruction (not by writing a "1"  
to SYM.0).  
4-32  
S3C80F9B/C80G9B  
CONTROL REGISTERS  
T0CON — Timer 0 Control Register  
D2H  
Set 1  
Bit Identifier  
Reset Value  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
R/W  
R/W  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Register addressing mode only  
Addressing Mode  
.7 and .6  
Timer 0 Input Clock Selection Bits  
0
0
1
1
0
1
0
1
f
f
f
/4096  
/256  
/8  
OSC  
OSC  
OSC  
External clock input (at the T0CK pin, P3.1)  
.5 and .4  
Timer 0 Operating Mode Selection Bits  
0
0
1
1
0
1
0
1
Interval timer mode (counter cleared by match signal)  
Capture mode (rising edges, counter running, OVF interrupt can occur)  
Capture mode (falling edges, counter running, OVF interrupt can occur)  
PWM mode (OVF interrupt can occur)  
.3  
.2  
.1  
.0  
Timer 0 Counter Clear Bit  
0
1
No effect (when write)  
Clear T0 counter, T0CNT (when write)  
Timer 0 Overflow Interrupt Enable Bit (note)  
0
1
Disable T0 overflow interrupt  
Enable T0 overflow interrupt  
Timer 0 Match/Capture Interrupt Enable Bit  
0
1
Disable T0 match/capture interrupt  
Enable T0 match/capture interrupt  
Timer 0 Match/Capture Interrupt Pending Flag  
0
0
1
1
No T0 match/capture interrupt pending (when read)  
Clear T0 match/capture interrupt pending condition (when write)  
T0 match/capture interrupt is pending (when read)  
No effect (when write)  
NOTE: A timer 1 overflow interrupt pending condition is automatically cleared by hardware. However, the timer 0 match/  
capture interrupt, IRQ1, vector F6H, must be cleared by the interrupt service routine.  
4-33  
CONTROL REGISTERS  
S3C80F9B/C80G9B  
T1CON — Timer 1 Control Register  
FAH  
Set 1  
Bit Identifier  
Reset Value  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
R/W  
R/W  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Register addressing mode only  
Addressing Mode  
.7 and .6  
Timer 1 Input Clock Selection Bits  
0
0
1
1
0
1
0
1
f
f
f
/4  
OSC  
OSC  
OSC  
/8  
/16  
Internal clock (counter A flip-flop, T-FF)  
.5 and .4  
Timer 1 Operating Mode Selection Bits  
0
0
1
1
0
1
0
1
Interval timer mode (counter cleared by match signal)  
Capture mode (rising edges, counter running, OVF can occur)  
Capture mode (falling edges, counter running, OVF can occur)  
Capture mode (rising and falling edges, counter running, OVF can occur)  
.3  
.2  
.1  
.0  
Timer 1 Counter Clear Bit  
0
1
No effect (when write)  
Clear T1 counter, T1CNT (when write)  
Timer 1 Overflow Interrupt Enable Bit (note)  
0
1
Disable T1 overflow interrupt  
Enable T1 overflow interrupt  
Timer 1 Match/Capture Interrupt Enable Bit  
0
1
Disable T1 match/capture interrupt  
Enable T1 match/capture interrupt  
Timer 1 Match/Capture Interrupt Pending Flag  
0
0
1
1
No T1 match/capture interrupt pending (when read)  
Clear T1 match/capture interrupt pending condition (when write)  
T1 match/capture interrupt is pending (when read)  
No effect (when write)  
NOTE: A timer 1 overflow interrupt pending condition is automatically cleared by hardware. However, the timer 1 match/  
capture interrupt, IRQ1, vector F6H, must be cleared by the interrupt service routine.  
4-34  
S3C80F9B/C80G9B  
INTERRUPT STRUCTURE  
5
INTERRUPT STRUCTURE  
OVERVIEW  
The S3C8-series interrupt structure has three basic components: levels, vectors, and sources. The SAM87 CPU  
recognizes up to eight interrupt levels and supports up to 128 interrupt vectors. When a specific interrupt level has  
more than one vector address, the vector priorities are established in hardware. A vector address can be  
assigned to one or more sources.  
Levels  
Interrupt levels are the main unit for interrupt priority assignment and recognition. All peripherals and I/O blocks  
can issue interrupt requests. In other words, peripheral and I/O operations are interrupt-driven. There are eight  
possible interrupt levels: IRQ0–IRQ7, also called level 0 – level 7. Each interrupt level directly corresponds to an  
interrupt request number (IRQn). The total number of interrupt levels used in the interrupt structure varies from  
device to device. The S3C80F9B/C80G9B interrupt structure recognizes seven interrupt levels.  
The interrupt level numbers 0 through 7 do not necessarily indicate the relative priority of the levels. They are  
simply identifiers for the interrupt levels that are recognized by the CPU. The relative priority of different interrupt  
levels is determined by settings in the interrupt priority register, IPR. Interrupt group and subgroup logic controlled  
by IPR settings lets you define more complex priority relationships between different levels.  
Vectors  
Each interrupt level can have one or more interrupt vectors, or it may have no vector address assigned at all. The  
maximum number of vectors that can be supported for a given level is 128. (The actual number of vectors used  
for S3C8-series devices is always much smaller.) If an interrupt level has more than one vector address, the  
vector priorities are set in hardware. The S3C80F9B/C80G9B uses sixteen vectors. Two vector address is shared  
by four interrupt sources.  
Sources  
A source is any peripheral that generates an interrupt. A source can be an external pin or a counter overflow, for  
example. Each vector can have several interrupt sources. In the S3C80F9B/C80G9B interrupt structure, there are  
22 possible interrupt sources.  
When a service routine starts, the respective pending bit is either cleared automatically by hardware or is must be  
cleared "manually" by program software. The characteristics of the source's pending mechanism determine which  
method is used to clear its respective pending bit.  
5-1  
INTERRUPT STRUCTURE  
INTERRUPT TYPES  
S3C80F9B/C80G9B  
The three components of the S3C8 interrupt structure described above — levels, vectors, and sources — are  
combined to determine the interrupt structure of an individual device and to make full use of its available interrupt  
logic. There are three possible combinations of interrupt structure components, called interrupt types 1, 2, and 3.  
The types differ in the number of vectors and interrupt sources assigned to each level (see Figure 5-1):  
Type 1:  
Type 2:  
Type 3:  
One level (IRQn) + one vector (V ) + one source (S )  
1 1  
One level (IRQn) + one vector (V ) + multiple sources (S – S )  
1
1
n
One level (IRQn) + multiple vectors (V – V ) + multiple sources (S – S , S  
– S  
)
1
n
1
n
n+1  
n+m  
In the S3C80F9B/C80G9B microcontroller, all three interrupt types are implemented.  
Levels  
Vectors  
Sources  
Type 1:  
Type 2:  
IRQn  
V
1
S1  
S1  
S2  
S3  
Sn  
S1  
S2  
S3  
Sn  
IRQn  
IRQn  
V1  
V1  
V2  
V3  
Vn  
Type 3:  
Sn +  
Sn +  
Sn +  
1
2
m
NOTE:  
The number of Sn and Vn value is expandable.  
Figure 5-1. S3C8-Series Interrupt Types  
5-2  
S3C80F9B/C80G9B  
INTERRUPT STRUCTURE  
The S3C80F9B/C80G9B microcontroller supports twenty two interrupt sources. Sixteen of the interrupt sources  
have a corresponding interrupt vector address; the remaining eight interrupt sources share by two vector address.  
Seven interrupt levels are recognized by the CPU in this device-specific interrupt structure, as shown in Figure 5-  
2.  
When multiple interrupt levels are active, the interrupt priority register (IPR) determines the order in which  
contending interrupts are to be serviced. If multiple interrupts occur within the same interrupt level, the interrupt  
with the lowest vector address is usually processed first (The relative priorities of multiple interrupts within a single  
level are fixed in hardware).  
When the CPU grants an interrupt request, interrupt processing starts: All other interrupts are disabled and the  
program counter value and status flags are pushed to stack. The starting address of the service routine is fetched  
from the appropriate vector address (plus the next 8-bit value to concatenate the full 16-bit address) and the  
service routine is executed.  
5-3  
INTERRUPT STRUCTURE  
S3C80F9B/C80G9B  
Levels  
Vectors  
Sources  
Reset/Clear  
100H  
FCH  
FAH  
F6H  
F4H  
ECH  
D6H  
D4H  
D2H  
D0H  
RESET  
IRQ0  
Basic timer overflow  
H/W  
1
0
1
0
Timer 0 match/capture  
Timer 0 overflow  
S/W  
H/W  
S/W  
Timer 1 match/capture  
Timer 1 overflow  
IRQ1  
IRQ2  
H/W  
H/W  
S/W  
S/W  
S/W  
S/W  
S/W  
S/W  
S/W  
Counter A  
4
4
4
4
P2.3 external interrupt  
P2.2 external interrupt  
P2.1 external interrupt  
P2.0 external interrupt  
P2.7 external interrupt  
P2.6 external interrupt  
P2.5 external interrupt  
P2.4 external interrupt  
P0.3 external interrupt  
P0.2 external interrupt  
P0.1 external interrupt  
P0.0 external interrupt  
IRQ4  
IRQ5  
D8H  
S/W  
S/W  
S/W  
S/W  
S/W  
3
2
1
0
E6H  
E4H  
E2H  
E0H  
IRQ6  
IRQ7  
P0.7 external interrupt  
P0.6 external interrupt  
P0.5 external interrupt  
S/W  
S/W  
S/W  
S/W  
E8H  
P0.4 external interrupt  
Figure 5-2. S3C80F9B/C80G9B Interrupt Structure  
5-4  
S3C80F9B/C80G9B  
INTERRUPT STRUCTURE  
INTERRUPT VECTOR ADDRESSES  
All interrupt vector addresses for the S3C80F9B/C80G9B interrupt structure are stored in the vector address area  
of the internal program memory ROM, 00H–FFH (see Figure 5-3).  
You can allocate unused locations in the vector address area as normal program memory. If you do so, please be  
careful not to overwrite any of the stored vector addresses (Table 5-1 lists all vector addresses) .  
The program reset address in the ROM is 0100H.  
(Decim al)  
32,767  
(HEX)  
7FFFH  
32-Kbyte  
Internal  
Program  
M em ory  
(RO M )  
S3C80F9/C80G 9  
0FFH  
0H  
255  
0
Interrupt  
Vector Area  
Figure 5-3. ROM Vector Address Area  
5-5  
INTERRUPT STRUCTURE  
Vector Address  
S3C80F9B/C80G9B  
Reset/Clear  
Table 5-1. S3C80F9B/C80G9B Interrupt Vectors  
Interrupt Source  
Request  
Decimal  
Value  
Hex  
Interrupt  
Level  
Priority in  
Level  
H/W  
S/W  
Value  
100H  
FCH  
FAH  
F6H  
F4H  
ECH  
E8H  
E8H  
E8H  
E8H  
E6H  
E4H  
E2H  
E0H  
D8H  
D8H  
D8H  
D8H  
D6H  
D4H  
D2H  
D0H  
254  
252  
250  
246  
244  
236  
232  
232  
232  
232  
230  
228  
226  
224  
216  
216  
216  
216  
214  
212  
210  
208  
Basic timer overflow/POR  
Timer 0 (match/capture)  
Timer 0 overflow  
RESET  
IRQ0  
1
0
1
0
3
2
1
0
3
2
1
0
Timer 1 (match/capture)  
Timer 1 overflow  
IRQ1  
Counter A  
IRQ2  
IRQ7  
P0.7 external interrupt  
P0.6 external interrupt  
P0.5 external interrupt  
P0.4 external interrupt  
P0.3 external interrupt  
P0.2 external interrupt  
P0.1 external interrupt  
P0.0 external interrupt  
P2.7 external interrupt  
P2.6 external interrupt  
P2.5 external interrupt  
P2.4 external interrupt  
P2.3 external interrupt  
P2.2 external interrupt  
P2.1 external interrupt  
P2.0 external interrupt  
IRQ6  
IRQ5  
IRQ4  
NOTES:  
1. Interrupt priorities are identified in inverse order: '0' is highest priority, '1' is the next highest, and so on.  
2. If two or more interrupts within the same level contend, the interrupt with the lowest vector address usually  
has priority over one with a higher vector address. The priorities within a given level are fixed in hardware.  
5-6  
S3C80F9B/C80G9B  
INTERRUPT STRUCTURE  
ENABLE/DISABLE INTERRUPT INSTRUCTIONS (EI, DI)  
Executing the Enable Interrupts (EI) instruction globally enables the interrupt structure. All interrupts are then  
serviced as they occur, and according to the established priorities.  
NOTE  
The system initialization routine that is executed following a reset must always contain an EI instruction to  
globally enable the interrupt structure.  
During normal operation, you can execute the DI (Disable Interrupt) instruction at any time to globally disable  
interrupt processing. The EI and DI instructions change the value of bit 0 in the SYM register. Although you can  
manipulate SYM.0 directly to enable or disable interrupts, we recommend that you use the EI and DI instructions  
instead.  
SYSTEM-LEVEL INTERRUPT CONTROL REGISTERS  
In addition to the control registers for specific interrupt sources, four system-level registers control interrupt  
processing:  
— The interrupt mask register, IMR, enables (un-masks) or disables (masks) interrupt levels.  
— The interrupt priority register, IPR, controls the relative priorities of interrupt levels.  
— The interrupt request register, IRQ, contains interrupt pending flags for each interrupt level (as opposed to  
each interrupt source).  
— The system mode register, SYM, enables or disables global interrupt processing (SYM settings also enable  
fast interrupts and control the activity of external interface, if implemented).  
Table 5-2. Interrupt Control Register Overview  
Control Register  
ID  
R/W  
Function Description  
Interrupt mask register  
IMR  
R/W  
Bit settings in the IMR register enable or disable interrupt  
processing for each of the seven interrupt levels: IRQ0, IRQ1,  
IRQ2, and IRQ4–IRQ7.  
Interrupt priority register  
IPR  
R/W  
Controls the relative processing priorities of the interrupt levels.  
The seven levels of the S3C80F7/C80F9/C80G7  
/C80G9 are organized into three groups: A, B, and C. Group A  
is IRQ0 and IRQ1, group B is IRQ2 and IRQ4, and group C is  
IRQ5, IRQ6, and IRQ7.  
Interrupt request register  
System mode register  
IRQ  
R
This register contains a request pending bit for each interrupt  
level.  
SYM  
R/W  
Dynamic global interrupt processing enable/disable, fast  
interrupt processing, and external interface control (An external  
memory interface is not implemented in the  
S3C80F9B/C80G9B microcontroller).  
5-7  
INTERRUPT STRUCTURE  
S3C80F9B/C80G9B  
INTERRUPT PROCESSING CONTROL POINTS  
Interrupt processing can therefore be controlled in two ways: globally or by specific interrupt level and source. The  
system-level control points in the interrupt structure are, therefore:  
— Global interrupt enable and disable (by EI and DI instructions or by direct manipulation of SYM.0 )  
— Interrupt level enable/disable settings (IMR register)  
— Interrupt level priority settings (IPR register)  
— Interrupt source enable/disable settings in the corresponding peripheral control registers  
NOTE  
When writing the part of your application program that handles interrupt processing, be sure to include the  
necessary register file address (register pointer) information.  
EI  
Interrupt Request Register  
(Read-only)  
S
R
Q
Polling  
Cycle  
nRESET  
IRQ0-IRQ2  
and IRG4-IRQ7  
Interrupts  
Vector  
Interrupt  
Cycle  
Interrupt Priority  
Register  
Interrupt Mask  
Register  
Global Interrupt Control (EI,  
DI or SYM.0 manipulation)  
Figure 5-4. Interrupt Function Diagram  
5-8  
S3C80F9B/C80G9B  
INTERRUPT STRUCTURE  
PERIPHERAL INTERRUPT CONTROL REGISTERS  
For each interrupt source there is one or more corresponding peripheral control registers that let you control the  
interrupt generated by that peripheral (see Table 5-3).  
Table 5-3. Vectored Interrupt Source Control and Data Registers  
Interrupt Source  
Interrupt Level  
Register(s)  
Location(s) in Set 1  
Timer 0 match or timer 0  
overflow  
IRQ0  
T0CON (see Note)  
T0DATA  
D2H  
D1H  
Timer 1 match or timer 1  
overflow  
IRQ1  
IRQ2  
IRQ7  
T1CON (see Note)  
T1DATAH, T1DATAL  
FAH  
F8H, F9H  
Counter A  
CACON  
CADATAH, CADATAL  
F3H  
F4H, F5H  
P0.7 external interrupt  
P0.6 external interrupt  
P0.5 external interrupt  
P0.4 external interrupt  
P0CONH  
P0INT  
P0PND  
E8H  
F1H  
F2H  
P0.3 external interrupt  
P0.2 external interrupt  
P0.1 external interrupt  
P0.0 external interrupt  
IRQ6  
IRQ5  
IRQ4  
P0CONL  
P0INT  
P0PND  
E9H  
F1H  
F2H  
P2.7 external interrupt  
P2.6 external interrupt  
P2.5 external interrupt  
P2.4 external interrupt  
P2CONH  
P2INT  
P2PND  
ECH  
E5H  
E6H  
P2.3 external interrupt  
P2.2 external interrupt  
P2.1 external interrupt  
P2.0 external interrupt  
P2CONL  
P2INT  
P2PND  
EDH  
E5H  
E6H  
NOTES:  
1. Because the timer 0 and timer 1 overflow interrupts are cleared by hardware, the T0CON and T1CON registers  
control only the enable/disable functions. The T0CON and T1CON registers contain enable/disable and pending bits  
for the timer 0 and timer 1 match/capture interrupts, respectively.  
2. If a interrupt is un-mask(Enable interrupt level) in the IMR register, the pending bit and enable bit of the interrupt  
should be written after a DI instruction is executed.  
5-9  
INTERRUPT STRUCTURE  
S3C80F9B/C80G9B  
SYSTEM MODE REGISTER (SYM)  
The system mode register, SYM (set 1, DEH), is used to globally enable and disable interrupt processing and to  
control fast interrupt processing (see Figure 5-5).  
A reset clears SYM.7, SYM.1, and SYM.0 to "0". The 3-bit value for fast interrupt level selection, SYM.4–SYM.2,  
is undetermined.  
The instructions EI and DI enable and disable global interrupt processing, respectively, by modifying the bit 0  
value of the SYM register. An Enable Interrupt (EI) instruction must be included in the initialization routine, which  
follows a reset operation, in order to enable interrupt processing. Although you can manipulate SYM.0 directly to  
enable and disable interrupts during normal operation, we recommend using the EI and DI instructions for this  
purpose.  
System Mode Register (SYM)  
DEH, Set 1, R/W  
MSB  
.7  
-
-
.4  
.3  
.2  
.1  
.0  
LSB  
External interface tri-state  
enable bit:  
Global interrupt enable bit:  
0 = Disable all  
0 = Normal operation  
(Tri-state disabled)  
1 = High impedance  
(Tri-state enabled)  
Not used  
Fast interrupt level  
selection bits:  
1 = Enable all  
Fast interrupt enable bit:  
0 = Disable fast  
1 = Enable fast  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
IRQ0  
IRQ1  
not used  
not used  
IRQ4  
IRQ5  
IRQ6  
IRQ7  
NOTE:  
An external memory interface is not implemented.  
Figure 5-5. System Mode Register (SYM)  
5-10  
S3C80F9B/C80G9B  
INTERRUPT STRUCTURE  
INTERRUPT MASK REGISTER (IMR)  
The interrupt mask register, IMR (set 1, DDH) is used to enable or disable interrupt processing for individual  
interrupt levels. After a reset, all IMR bit values are undetermined and must therefore be written to their required  
settings by the initialization routine.  
Each IMR bit corresponds to a specific interrupt level: bit 1 to IRQ1, bit 2 to IRQ2, and so on. When the IMR bit of  
an interrupt level is cleared to "0", interrupt processing for that level is disabled (masked). When you set a level's  
IMR bit to "1", interrupt processing for the level is enabled (not masked).  
The IMR register is mapped to register location DDH in set 1. Bit values can be read and written by instructions  
using the Register addressing mode.  
Interrupt Mask Register  
DDH, Set 1, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
IRQ0  
IRQ1  
IRQ2  
not  
IRQ4  
used  
Interrupt level enable bits (7-4,2,1,0):  
0 = Disable (mask) interrupt  
IRQ5  
IRQ6  
IRQ7  
1 = Enable (un-mask) interrupt  
NOTE:  
Before IMR register is changed to any value, all interrupts must be disable.  
Using DI instruction is recommended.  
Figure 5-6. Interrupt Mask Register (IMR)  
5-11  
INTERRUPT STRUCTURE  
S3C80F9B/C80G9B  
INTERRUPT PRIORITY REGISTER (IPR)  
The interrupt priority register, IPR (set 1, bank 0, FFH), is used to set the relative priorities of the interrupt levels  
used in the microcontroller’s interrupt structure. After a reset, all IPR bit values are undetermined and must  
therefore be written to their required settings by the initialization routine.  
When more than one interrupt source is active, the source with the highest priority level is serviced first. If both  
sources belong to the same interrupt level, the source with the lowest vector address usually has priority (This  
priority is fixed in hardware).  
To support programming of the relative interrupt level priorities, they are organized into groups and subgroups by  
the interrupt logic. Please note that these groups (and subgroups) are used only by IPR logic for the IPR register  
priority definitions (see Figure 5–7):  
Group A  
Group B  
Group C  
IRQ0, IRQ1  
IRQ4, IRQ2  
IRQ5, IRQ6, IRQ7  
IPR  
IPR  
IPR  
Group A  
Group B  
Group C  
A1  
B1  
B2  
C1  
A2  
C2  
C22  
IRQ7  
C21  
IRQ6  
IRQ2  
IRQ0  
IRQ1  
IRQ4  
IRQ5  
Figure 5-7. Interrupt Request Priority Groups  
As you can see in Figure 5-8, IPR.7, IPR.4, and IPR.1 control the relative priority of interrupt groups A, B, and C.  
For example, the setting '001B' for these bits would select the group relationship B > C > A; the setting '101B'  
would select the relationship C > B > A.  
The functions of the other IPR bit settings are as follows:  
— IPR.5 controls the relative priorities of group C interrupts.  
— Interrupt group B has a subgroup to provide an additional priority relationship between for interrupt levels 2, 3,  
and 4. IPR.3 defines the possible subgroup B relationships. IPR.2 controls interrupt group B. In the  
S3C80F9B/C80G9B implementation, interrupt levels 3 is not used. Therefore, IPR.3 settings are not  
evaluated.  
— IPR.0 controls the relative priority setting of IRQ0 and IRQ1 interrupts.  
5-12  
S3C80F9B/C80G9B  
INTERRUPT STRUCTURE  
Interrupt Priority Register  
FEH, Set 1, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Group priority:  
D7 D4 D1  
Group A  
0 = IRQ0 > IRQ1  
1 = IRQ1 > IRQ0  
Group B  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0 = Undefined  
1 = B > C > A  
0 = A > B > C  
1 = B > A > C  
0 = C > A > B  
1 = C > B > A  
0 = A > C > B  
1 = Undefined  
0 = IRQ2 > IRQ4  
1 = IRQ2 < IRQ4  
Subgroup B (see note)  
0 = IRQ4  
1 = IRQ4  
Group C  
0 = IRQ5 > (IRQ6, IRQ7)  
1 = (IRQ6, IRQ7) > IRQ5  
Subgroup C  
0 = IRQ6 > IRQ7  
1 = IRQ7 > IRQ6  
NOTE: In the S3C80F9B/C80G9B interrupt structure, only levels IRQ0-IRQ2,  
and IRQ4-IRQ7 are used. Settings for subgroup B, which control relative  
priorities for levels IRQ3, is therefore not evaluated.  
Figure 5-8. Interrupt Priority Register (IPR)  
5-13  
INTERRUPT STRUCTURE  
S3C80F9B/C80G9B  
INTERRUPT REQUEST REGISTER (IRQ)  
You can poll bit values in the interrupt request register, IRQ (set 1, DCH), to monitor interrupt request status for all  
levels in the microcontroller’s interrupt structure. Each bit corresponds to the interrupt level of the same number:  
bit 0 to IRQ0, bit 1 to IRQ1, and so on. A "0" indicates that no interrupt request is currently being issued for that  
level; a "1" indicates that an interrupt request has been generated for that level.  
IRQ bit values are read-only addressable using Register addressing mode. You can read (test) the contents of the  
IRQ register at any time using bit or byte addressing to determine the current interrupt request status of specific  
interrupt levels. After a reset, all IRQ status bits are cleared to “0”.  
You can poll IRQ register values even if a DI instruction has been executed (that is, if global interrupt processing  
is disabled). If an interrupt occurs while the interrupt structure is disabled, the CPU will not service it. You can,  
however, still detect the interrupt request by polling the IRQ register. In this way, you can determine which events  
occurred while the interrupt structure was globally disabled.  
Interrupt Request Register  
DCH, Set 1, Read-only  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
IRQ0  
IRQ1  
IRQ2  
not  
IRQ4  
used  
IRQ5  
IRQ6  
IRQ7  
Interrupt level request enable bits:  
0 = Interrupt level is not pending  
1 = Interrupt level is pending  
Figure 5-9. Interrupt Request Register (IRQ)  
5-14  
S3C80F9B/C80G9B  
INTERRUPT STRUCTURE  
INTERRUPT PENDING FUNCTION TYPES  
Overview  
There are two types of interrupt pending bits: One type is automatically cleared by hardware after the interrupt  
service routine is acknowledged and executed; the other type must be cleared by the interrupt service routine.  
Pending Bits Cleared Automatically by Hardware  
For interrupt pending bits that are cleared automatically by hardware, interrupt logic sets the corresponding  
pending bit to "1" when a request occurs. It then issues an IRQ pulse to inform the CPU that an interrupt is waiting  
to be serviced. The CPU acknowledges the interrupt source by sending an IACK, executes the service routine,  
and clears the pending bit to "0". This type of pending bit is not mapped and cannot, therefore, be read or written  
by application software.  
In the S3C80F9B/C80G9B interrupt structure, the timer 0 and timer 1 overflow interrupts (IRQ0 and IRQ1), and  
the counter A interrupt (IRQ2) belong to this category of interrupts whose pending condition is cleared  
automatically by hardware.  
Pending Bits Cleared by the Service Routine  
The second type of pending bit must be cleared by program software. The service routine must clear the  
appropriate pending bit before a return-from-interrupt subroutine (IRET) occurs. To do this, a "0" must be written  
to the corresponding pending bit location in the source’s mode or control register.  
In the S3C80F9B/C80G9B interrupt structure, pending conditions for all interrupt sources except the timer 0 and  
timer 1 overflow interrupts and the counter A borrow interrupt, must be cleared by the interrupt service routine.  
5-15  
INTERRUPT STRUCTURE  
S3C80F9B/C80G9B  
INTERRUPT SOURCE POLLING SEQUENCE  
The interrupt request polling and servicing sequence is as follows:  
1. A source generates an interrupt request by setting the interrupt request bit to "1".  
2. The CPU polling procedure identifies a pending condition for that source.  
3. The CPU checks the source's interrupt level.  
4. The CPU generates an interrupt acknowledge signal.  
5. Interrupt logic determines the interrupt's vector address.  
6. The service routine starts and the source's pending bit is cleared to "0" (by hardware or by software).  
7. The CPU continues polling for interrupt requests.  
INTERRUPT SERVICE ROUTINES  
Before an interrupt request can be serviced, the following conditions must be met:  
— Interrupt processing must be globally enabled (EI, SYM.0 = "1")  
— The interrupt level must be enabled (IMR register)  
— The interrupt level must have the highest priority if more than one level is currently requesting service  
— The interrupt must be enabled at the interrupt's source (peripheral control register)  
If all of the above conditions are met, the interrupt request is acknowledged at the end of the instruction cycle. The  
CPU then initiates an interrupt machine cycle that completes the following processing sequence:  
1. Reset (clear to "0") the interrupt enable bit in the SYM register (SYM.0) to disable all subsequent interrupts.  
2. Save the program counter (PC) and status flags to the system stack.  
3. Branch to the interrupt vector to fetch the address of the service routine.  
4. Pass control to the interrupt service routine.  
When the interrupt service routine is completed, the CPU issues an Interrupt Return (IRET). The IRET restores  
the PC and status flags and sets SYM.0 to "1", allowing the CPU to process the next interrupt request.  
5-16  
S3C80F9B/C80G9B  
INTERRUPT STRUCTURE  
GENERATING INTERRUPT VECTOR ADDRESSES  
The interrupt vector area in the ROM (00H–FFH) contains the addresses of interrupt service routines that  
correspond to each level in the interrupt structure. Vectored interrupt processing follows this sequence:  
1. Push the program counter's low-byte value to the stack.  
2. Push the program counter's high-byte value to the stack.  
3. Push the FLAG register values to the stack.  
4. Fetch the service routine's high-byte address from the vector location.  
5. Fetch the service routine's low-byte address from the vector location.  
6. Branch to the service routine specified by the concatenated 16-bit vector address.  
NOTE  
A 16-bit vector address always begins at an even-numbered ROM address within the range 00H–FFH.  
NESTING OF VECTORED INTERRUPTS  
It is possible to nest a higher-priority interrupt request while a lower-priority request is being serviced. To do this,  
you must follow these steps:  
1. Push the current 8-bit interrupt mask register (IMR) value to the stack (PUSH IMR).  
2. Load the IMR register with a new mask value that enables only the higher priority interrupt.  
3. Execute an EI instruction to enable interrupt processing (a higher priority interrupt will be processed if it  
occurs).  
4. When the lower-priority interrupt service routine ends, restore the IMR to its original value by returning the  
previous mask value from the stack (POP IMR).  
5. Execute an IRET.  
Depending on the application, you may be able to simplify the above procedure to some extent.  
INSTRUCTION POINTER (IP)  
The instruction pointer (IP) is used by all S3C8-series microcontrollers to control the optional high-speed interrupt  
processing feature called fast interrupts. The IP consists of register pair DAH and DBH. The IP register names are  
IPH (high byte, IP15–IP8) and IPL (low byte, IP7–IP0).  
FAST INTERRUPT PROCESSING  
The feature called fast interrupt processing lets you specify that an interrupt within a given level be completed in  
approximately six clock cycles instead of the usual 22 clock cycles. To select a specific interrupt level for fast  
interrupt processing, you write the appropriate 3-bit value to SYM.4–SYM.2. Then, to enable fast interrupt  
processing for the selected level, you set SYM.1 to “1”.  
5-17  
INTERRUPT STRUCTURE  
S3C80F9B/C80G9B  
FAST INTERRUPT PROCESSING (Continued)  
Two other system registers support fast interrupt processing:  
— The instruction pointer (IP) contains the starting address of the service routine (and is later used to swap the  
program counter values), and  
— When a fast interrupt occurs, the contents of the FLAGS register is stored in an unmapped, dedicated register  
called FLAGS' (“FLAGS prime”).  
NOTE  
For the S3C80F9B/C80G9B microcontroller, the service routine for any one of the seven interrupt levels:  
IRQ0-IRQ2, or IRQ4–IRQ7, can be selected for fast interrupt processing.  
Procedure for Initiating Fast Interrupts  
To initiate fast interrupt processing, follow these steps:  
1. Load the start address of the service routine into the instruction pointer (IP).  
2. Load the interrupt level number (IRQn) into the fast interrupt selection field (SYM.4–SYM.2)  
3. Write a "1" to the fast interrupt enable bit in the SYM register.  
Fast Interrupt Service Routine  
When an interrupt occurs in the level selected for fast interrupt processing, the following events occur:  
1. The contents of the instruction pointer and the PC are swapped.  
2. The FLAG register values are written to the FLAGS' (“FLAGS prime”) register.  
3. The fast interrupt status bit in the FLAGS register is set.  
4. The interrupt is serviced.  
5. Assuming that the fast interrupt status bit is set, when the fast interrupt service routine ends, the instruction  
pointer and PC values are swapped back.  
6. The content of FLAGS' (“FLAGS prime”) is copied automatically back to the FLAGS register.  
7. The fast interrupt status bit in FLAGS is cleared automatically.  
Programming Guidelines  
Remember that the only way to enable/disable a fast interrupt is to set/clear the fast interrupt enable bit in the  
SYM register, SYM.1. Executing an EI or DI instruction globally enables or disables all interrupt processing,  
including fast interrupts. If you use fast interrupts, remember to load the IP with a new start address when the fast  
interrupt service routine ends.  
5-18  
S3C80F9B/C80G9B  
INSTRUCTION SET  
6
INSTRUCTION SET  
OVERVIEW  
The SAM8 instruction set is specifically designed to support the large register files that are typical of most SAM8  
microcontrollers. There are 78 instructions. The powerful data manipulation capabilities and features of the  
instruction set include:  
— A full complement of 8-bit arithmetic and logic operations, including multiply and divide  
— No special I/O instructions (I/O control/data registers are mapped directly into the register file)  
— Decimal adjustment included in binary-coded decimal (BCD) operations  
— 16-bit (word) data can be incremented and decremented  
— Flexible instructions for bit addressing, rotate, and shift operations  
Data Types  
The SAM8 CPU performs operations on bits, bytes, BCD digits, and two-byte words. Bits in the register file can  
be set, cleared, complemented, and tested. Bits within a byte are numbered from 7 to 0, where bit 0 is the least  
significant (right-most) bit.  
Register Addressing  
To access an individual register, an 8-bit address in the range 0-255 or the 4-bit address of a working register is  
specified. Paired registers can be used to construct 16-bit data or 16-bit program memory or data memory  
addresses. For detailed information about register addressing, please refer to Section 2, "Address Spaces."  
Addressing Modes  
There are seven explicit addressing modes: Register (R), Indirect Register (IR), Indexed (X), Direct (DA), Relative  
(RA), Immediate (IM), and Indirect (IA). For detailed descriptions of these addressing modes, please refer to  
Section 3, "Addressing Modes."  
6-1  
INSTRUCTION SET  
S3C80F9B/C80G9B  
Table 6-1. Instruction Group Summary  
Operands Instruction  
Mnemonic  
Load Instructions  
CLR  
dst  
Clear  
LD  
dst,src  
dst,src  
dst,src  
dst,src  
dst,src  
dst,src  
dst,src  
dst,src  
dst,src  
dst,src  
dst,src  
dst,src  
dst,src  
dst  
Load  
LDB  
Load bit  
LDE  
Load external data memory  
Load program memory  
LDC  
LDED  
LDCD  
LDEI  
Load external data memory and decrement  
Load program memory and decrement  
Load external data memory and increment  
Load program memory and increment  
LDCI  
LDEPD  
LDCPD  
LDEPI  
LDCPI  
LDW  
Load external data memory with pre-decrement  
Load program memory with pre-decrement  
Load external data memory with pre-increment  
Load program memory with pre-increment  
Load word  
POP  
Pop from stack  
POPUD  
POPUI  
PUSH  
PUSHUD  
PUSHUI  
dst,src  
dst,src  
src  
Pop user stack (decrementing)  
Pop user stack (incrementing)  
Push to stack  
dst,src  
dst,src  
Push user stack (decrementing)  
Push user stack (incrementing)  
6-2  
S3C80F9B/C80G9B  
INSTRUCTION SET  
Table 6-1. Instruction Group Summary (Continued)  
Operands Instruction  
Mnemonic  
Arithmetic Instructions  
ADC  
ADD  
CP  
dst,src  
Add with carry  
Add  
dst,src  
dst,src  
dst  
Compare  
DA  
Decimal adjust  
Decrement  
Decrement word  
Divide  
DEC  
DECW  
DIV  
dst  
dst  
dst,src  
dst  
INC  
Increment  
INCW  
MULT  
SBC  
SUB  
dst  
Increment word  
Multiply  
dst,src  
dst,src  
dst,src  
Subtract with carry  
Subtract  
Logic Instructions  
AND  
COM  
OR  
dst,src  
dst  
Logical AND  
Complement  
dst,src  
dst,src  
Logical OR  
XOR  
Logical exclusive OR  
6-3  
INSTRUCTION SET  
Mnemonic  
S3C80F9B/C80G9B  
Table 6-1. Instruction Group Summary (Continued)  
Operands Instruction  
Program Control Instructions  
BTJRF  
BTJRT  
CALL  
CPIJE  
CPIJNE  
DJNZ  
ENTER  
EXIT  
IRET  
JP  
dst,src  
dst,src  
dst  
Bit test and jump relative on false  
Bit test and jump relative on true  
Call procedure  
dst,src  
dst,src  
r,dst  
Compare, increment and jump on equal  
Compare, increment and jump on non-equal  
Decrement register and jump on non-zero  
Enter  
Exit  
Interrupt return  
cc,dst  
dst  
Jump on condition code  
Jump unconditional  
JP  
JR  
cc,dst  
Jump relative on condition code  
Next  
NEXT  
RET  
Return  
WFI  
Wait for interrupt  
Bit Manipulation Instructions  
BAND  
BCP  
BITC  
BITR  
BITS  
BOR  
BXOR  
TCM  
TM  
dst,src  
dst,src  
dst  
Bit AND  
Bit compare  
Bit complement  
Bit reset  
dst  
dst  
Bit set  
dst,src  
dst,src  
dst,src  
dst,src  
Bit OR  
Bit XOR  
Test complement under mask  
Test under mask  
6-4  
S3C80F9B/C80G9B  
INSTRUCTION SET  
Table 6-1. Instruction Group Summary (Concluded)  
Operands Instruction  
Mnemonic  
Rotate and Shift Instructions  
RL  
dst  
dst  
dst  
dst  
dst  
dst  
Rotate left  
RLC  
RR  
Rotate left through carry  
Rotate right  
RRC  
SRA  
SWAP  
Rotate right through carry  
Shift right arithmetic  
Swap nibbles  
CPU Control Instructions  
CCF  
DI  
Complement carry flag  
Disable interrupts  
Enable interrupts  
Enter Idle mode  
No operation  
EI  
IDLE  
NOP  
RCF  
SB0  
SB1  
SCF  
Reset carry flag  
Set bank 0  
Set bank 1  
Set carry flag  
SRP  
src  
src  
src  
Set register pointers  
Set register pointer 0  
Set register pointer 1  
Enter Stop mode  
SRP0  
SRP1  
STOP  
6-5  
INSTRUCTION SET  
S3C80F9B/C80G9B  
FLAGS REGISTER (FLAGS)  
The flags register FLAGS contains eight bits that describe the current status of CPU operations. Four of these  
bits, FLAGS.7–FLAGS.4, can be tested and used with conditional jump instructions; two others FLAGS.3 and  
FLAGS.2 are used for BCD arithmetic.  
The FLAGS register also contains a bit to indicate the status of fast interrupt processing (FLAGS.1) and a bank  
address status bit (FLAGS.0) to indicate whether bank 0 or bank 1 is currently being addressed. FLAGS register  
can be set or reset by instructions as long as its outcome does not affect the flags, such as, Load instruction.  
Logical and Arithmetic instructions such as, AND, OR, XOR, ADD, and SUB can affect the Flags register.  
For example, the AND instruction updates the Zero, Sign and Overflow flags based on the outcome of the  
AND instruction. If the AND instruction uses the Flags register as the destination, then simultaneously,  
two write will occur to the Flags register producing an unpredictable result.  
System Flags Register (FLAGS)  
D5H, Set 1, R/W  
MSB .7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Bank address  
status flag (BA)  
Carry flag (C)  
Zero flag (Z)  
Sign flag (S)  
Overflow flag (V)  
Fast interrupt  
status flag (FIS)  
Half-carry flag (H)  
Decimal adjust flag (D)  
Figure 6-1. System Flags Register (FLAGS)  
6-6  
S3C80F9B/C80G9B  
INSTRUCTION SET  
FLAG DESCRIPTIONS  
C
Carry Flag (FLAGS.7)  
The C flag is set to "1" if the result from an arithmetic operation generates a carry-out from or a borrow to  
the bit 7 position (MSB). After rotate and shift operations, it contains the last value shifted out of the  
specified register. Program instructions can set, clear, or complement the carry flag.  
Z
Zero Flag (FLAGS.6)  
For arithmetic and logic operations, the Z flag is set to "1" if the result of the operation is zero. For  
operations that test register bits, and for shift and rotate operations, the Z flag is set to "1" if the result is  
logic zero.  
S
V
D
Sign Flag (FLAGS.5)  
Following arithmetic, logic, rotate, or shift operations, the sign bit identifies the state of the MSB of the  
result. A logic zero indicates a positive number and a logic one indicates a negative number.  
Overflow Flag (FLAGS.4)  
The V flag is set to "1" when the result of a two's-complement operation is greater than + 127 or less than  
– 128. It is also cleared to "0" following logic operations.  
Decimal Adjust Flag (FLAGS.3)  
The DA bit is used to specify what type of instruction was executed last during BCD operations, so that a  
subsequent decimal adjust operation can execute correctly. The DA bit is not usually accessed by  
programmers, and cannot be used as a test condition.  
H
Half-Carry Flag (FLAGS.2)  
The H bit is set to "1" whenever an addition generates a carry-out of bit 3, or when a subtraction borrows  
out of bit 4. It is used by the Decimal Adjust (DA) instruction to convert the binary result of a previous  
addition or subtraction into the correct decimal (BCD) result. The H flag is seldom accessed directly by a  
program.  
FIS Fast Interrupt Status Flag (FLAGS.1)  
The FIS bit is set during a fast interrupt cycle and reset during the IRET following interrupt servicing.  
When set, it inhibits all interrupts and causes the fast interrupt return to be executed when the IRET  
instruction is executed.  
BA Bank Address Flag (FLAGS.0)  
The BA flag indicates which register bank in the set 1 area of the internal register file is currently selected,  
bank 0 or bank 1. The BA flag is cleared to "0" (select bank 0) when you execute the SB0 instruction and  
is set to "1" (select bank 1) when you execute the SB1 instruction.  
6-7  
INSTRUCTION SET  
S3C80F9B/C80G9B  
INSTRUCTION SET NOTATION  
Table 6-2. Flag Notation Conventions  
Flag  
C
Z
Description  
Carry flag  
Zero flag  
S
V
D
H
0
Sign flag  
Overflow flag  
Decimal-adjust flag  
Half-carry flag  
Cleared to logic zero  
Set to logic one  
1
*
Set or cleared according to operation  
Value is unaffected  
Value is undefined  
x
Table 6-3. Instruction Set Symbols  
Symbol  
dst  
src  
@
Description  
Destination operand  
Source operand  
Indirect register address prefix  
Program counter  
PC  
IP  
Instruction pointer  
FLAGS  
RP  
#
Flags register (D5H)  
Register pointer  
Immediate operand or register address prefix  
Hexadecimal number suffix  
Decimal number suffix  
Binary number suffix  
Opcode  
H
D
B
opc  
6-8  
S3C80F9B/C80G9B  
Notation  
INSTRUCTION SET  
Table 6-4. Instruction Notation Conventions  
Description Actual Operand Range  
cc  
r
Condition code  
Working register only  
See list of condition codes in Table 6-6.  
Rn (n = 0–15)  
rb  
r0  
rr  
Bit (b) of working register  
Rn.b (n = 0–15, b = 0–7)  
Rn (n = 0–15)  
Bit 0 (LSB) of working register  
Working register pair  
RRp (p = 0, 2, 4, ..., 14)  
reg or Rn (reg = 0–255, n = 0–15)  
reg.b (reg = 0–255, b = 0–7)  
R
Register or working register  
Bit 'b' of register or working register  
Register pair or working register pair  
Rb  
RR  
reg or RRp (reg = 0–254, even number only, where  
p = 0, 2, ..., 14)  
IA  
Ir  
Indirect addressing mode  
addr (addr = 0–254, even number only)  
@Rn (n = 0–15)  
Indirect working register only  
IR  
Indirect register or indirect working register @Rn or @reg (reg = 0–255, n = 0–15)  
Irr  
Indirect working register pair only  
@RRp (p = 0, 2, ..., 14)  
IRR  
Indirect register pair or indirect working  
register pair  
@RRp or @reg (reg = 0–254, even only, where  
p = 0, 2, ..., 14)  
X
Indexed addressing mode  
#reg [Rn] (reg = 0–255, n = 0–15)  
XS  
Indexed (short offset) addressing mode  
#addr [RRp] (addr = range –128 to +127, where  
p = 0, 2, ..., 14)  
XL  
Indexed (long offset) addressing mode  
#addr [RRp] (addr = range 0–65535, where  
p = 0, 2, ..., 14)  
DA  
RA  
Direct addressing mode  
Relative addressing mode  
addr (addr = range 0–65535)  
addr (addr = number in the range +127 to –128 that is  
an offset relative to the address of the next instruction)  
IM  
Immediate addressing mode  
#data (data = 0–255)  
IML  
Immediate (long) addressing mode  
#data (data = range 0–65535)  
6-9  
INSTRUCTION SET  
S3C80F9B/C80G9B  
Table 6-5. Opcode Quick Reference  
OPCODE MAP  
LOWER NIBBLE (HEX)  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
DEC  
R1  
DEC  
IR1  
ADD  
r1,r2  
ADD  
r1,Ir2  
ADD  
R2,R1  
ADD  
IR2,R1  
ADD  
R1,IM  
BOR  
r0–Rb  
U
P
P
E
R
RLC  
R1  
RLC  
IR1  
ADC  
r1,r2  
ADC  
r1,Ir2  
ADC  
R2,R1  
ADC  
IR2,R1  
ADC  
R1,IM  
BCP  
r1.b, R2  
INC  
R1  
INC  
IR1  
SUB  
r1,r2  
SUB  
r1,Ir2  
SUB  
R2,R1  
SUB  
IR2,R1  
SUB  
R1,IM  
BXOR  
r0–Rb  
JP  
IRR1  
SRP/0/1  
IM  
SBC  
r1,r2  
SBC  
r1,Ir2  
SBC  
R2,R1  
SBC  
IR2,R1  
SBC  
R1,IM  
BTJR  
r2.b, RA  
DA  
R1  
DA  
IR1  
OR  
r1,r2  
OR  
r1,Ir2  
OR  
R2,R1  
OR  
IR2,R1  
OR  
R1,IM  
LDB  
r0–Rb  
POP  
R1  
POP  
IR1  
AND  
r1,r2  
AND  
r1,Ir2  
AND  
R2,R1  
AND  
IR2,R1  
AND  
R1,IM  
BITC  
r1.b  
COM  
R1  
COM  
IR1  
TCM  
r1,r2  
TCM  
r1,Ir2  
TCM  
R2,R1  
TCM  
IR2,R1  
TCM  
R1,IM  
BAND  
r0–Rb  
N
I
PUSH  
R2  
PUSH  
IR2  
TM  
r1,r2  
TM  
r1,Ir2  
TM  
R2,R1  
TM  
IR2,R1  
TM  
R1,IM  
BIT  
r1.b  
DECW  
RR1  
DECW  
IR1  
PUSHUD PUSHUI  
IR1,R2  
MULT  
R2,RR1  
MULT  
IR2,RR1  
MULT  
IM,RR1  
LD  
r1, x, r2  
B
B
L
E
IR1,R2  
RL  
R1  
RL  
IR1  
POPUD  
IR2,R1  
POPUI  
IR2,R1  
DIV  
R2,RR1  
DIV  
IR2,RR1  
DIV  
IM,RR1  
LD  
r2, x, r1  
INCW  
RR1  
INCW  
IR1  
CP  
r1,r2  
CP  
r1,Ir2  
CP  
R2,R1  
CP  
IR2,R1  
CP  
R1,IM  
LDC  
r1, Irr2, xL  
CLR  
R1  
CLR  
IR1  
XOR  
r1,r2  
XOR  
r1,Ir2  
XOR  
R2,R1  
XOR  
IR2,R1  
XOR  
R1,IM  
LDC  
r2, Irr2, xL  
RRC  
R1  
RRC  
IR1  
CPIJE  
Ir,r2,RA  
LDC  
r1,Irr2  
LDW  
LDW  
LDW  
LD  
r1, Ir2  
RR2,RR1 IR2,RR1 RR1,IML  
SRA  
R1  
SRA  
IR1  
CPIJNE  
Irr,r2,RA  
LDC  
r2,Irr1  
CALL  
IA1  
LD  
IR1,IM  
LD  
Ir1, r2  
H
E
X
RR  
R1  
RR  
IR1  
LDCD  
r1,Irr2  
LDCI  
r1,Irr2  
LD  
R2,R1  
LD  
R2,IR1  
LD  
R1,IM  
LDC  
r1, Irr2, xs  
SWAP  
R1  
SWAP  
IR1  
LDCPD  
r2,Irr1  
LDCPI  
r2,Irr1  
CALL  
IRR1  
LD  
IR2,R1  
CALL  
DA1  
LDC  
r2, Irr1, xs  
6-10  
S3C80F9B/C80G9B  
INSTRUCTION SET  
Table 6-5. Opcode Quick Reference (Continued)  
OPCODE MAP  
LOWER NIBBLE (HEX)  
8
9
A
B
C
D
E
F
U
P
P
E
R
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
LD  
r1,R2  
LD  
r2,R1  
DJNZ  
r1,RA  
JR  
cc,RA  
LD  
r1,IM  
JP  
cc,DA  
INC  
r1  
NEXT  
ENTER  
EXIT  
WFI  
SB0  
SB1  
IDLE  
STOP  
DI  
N
I
B
B
L
E
EI  
RET  
IRET  
RCF  
SCF  
CCF  
NOP  
H
E
X
LD  
r1,R2  
LD  
r2,R1  
DJNZ  
r1,RA  
JR  
cc,RA  
LD  
r1,IM  
JP  
cc,DA  
INC  
r1  
6-11  
INSTRUCTION SET  
S3C80F9B/C80G9B  
CONDITION CODES  
The opcode of a conditional jump always contains a 4-bit field called the condition code (cc). This specifies under  
which conditions it is to execute the jump. For example, a conditional jump with the condition code for "equal"  
after a compare operation only jumps if the two operands are equal. Condition codes are listed in Table 6-6.  
The carry (C), zero (Z), sign (S), and overflow (V) flags are used to control the operation of conditional jump  
instructions.  
Table 6-6. Condition Codes  
Binary  
Mnemonic  
Description  
Always false  
Flags Set  
0000  
1000  
F
T
Always true  
0111 (note)  
1111 (note)  
0110 (note)  
1110 (note)  
1101  
C
Carry  
C = 1  
C = 0  
Z = 1  
Z = 0  
S = 0  
S = 1  
V = 1  
V = 0  
Z = 1  
Z = 0  
NC  
Z
No carry  
Zero  
NZ  
PL  
MI  
OV  
Not zero  
Plus  
0101  
Minus  
0100  
Overflow  
1100  
NOV  
EQ  
No overflow  
Equal  
0110 (note)  
1110 (note)  
1001  
NE  
Not equal  
GE  
Greater than or equal  
Less than  
(S XOR V) = 0  
(S XOR V) = 1  
(Z OR (S XOR V)) = 0  
(Z OR (S XOR V)) = 1  
C = 0  
0001  
LT  
1010  
GT  
Greater than  
Less than or equal  
Unsigned greater than or equal  
Unsigned less than  
Unsigned greater than  
Unsigned less than or equal  
0010  
LE  
1111 (note)  
0111 (note)  
1011  
UGE  
ULT  
UGT  
ULE  
C = 1  
(C = 0 AND Z = 0) = 1  
(C OR Z) = 1  
0011  
NOTES:  
1. It indicates condition codes that are related to two different mnemonics but which test the same flag. For  
example, Z and EQ are both true if the zero flag (Z) is set, but after an ADD instruction, Z would probably be used;  
after a CP instruction, however, EQ would probably be used.  
2. For operations involving unsigned numbers, the special condition codes UGE, ULT, UGT, and ULE must be used.  
6-12  
S3C80F9B/C80G9B  
INSTRUCTION SET  
INSTRUCTION DESCRIPTIONS  
This section contains detailed information and programming examples for each instruction in the SAM8  
instruction set. Information is arranged in a consistent format for improved readability and for fast referencing. The  
following information is included in each instruction description:  
— Instruction name (mnemonic)  
— Full instruction name  
— Source/destination format of the instruction operand  
— Shorthand notation of the instruction's operation  
— Textual description of the instruction's effect  
— Specific flag settings affected by the instruction  
— Detailed description of the instruction's format, execution time, and addressing mode(s)  
— Programming example(s) explaining how to use the instruction  
6-13  
INSTRUCTION SET  
S3C80F9B/C80G9B  
ADC — Add with carry  
ADC  
dst,src  
dst dst + src + c  
Operation:  
The source operand, along with the setting of the carry flag, is added to the destination operand  
and the sum is stored in the destination. The contents of the source are unaffected. Two's-  
complement addition is performed. In multiple precision arithmetic, this instruction permits the  
carry from the addition of low-order operands to be carried into the addition of high-order  
operands.  
Flags:  
C: Set if there is a carry from the most significant bit of the result; cleared otherwise.  
Set if the result is "0"; cleared otherwise.  
Z:  
S: Set if the result is negative; cleared otherwise.  
Set if arithmetic overflow occurs, that is, if both operands are of the same sign and the  
result is of the opposite sign; cleared otherwise.  
V:  
D:  
Always cleared to "0".  
H: Set if there is a carry from the most significant bit of the low-order four bits of the result;  
cleared otherwise.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
opc  
dst | src  
src  
2
4
6
12  
13  
r
r
r
lr  
dst  
src  
3
3
6
6
14  
15  
R
R
R
IR  
dst  
6
16  
R
IM  
Examples:  
Given: R1 = 10H, R2 = 03H, C flag = "1", register 01H = 20H, register 02H = 03H, and  
register 03H = 0AH:  
ADC  
ADC  
ADC  
ADC  
ADC  
R1,R2  
R1 = 14H, R2 = 03H  
R1,@R2  
01H,02H  
01H,@02H  
01H,#11H  
R1 = 1BH, R2 = 03H  
Register 01H = 24H, register 02H = 03H  
Register 01H = 2BH, register 02H = 03H  
Register 01H = 32H  
In the first example, destination register R1 contains the value 10H, the carry flag is set to "1",  
and the source working register R2 contains the value 03H. The statement "ADC R1,R2" adds  
03H and the carry flag value ("1") to the destination value 10H, leaving 14H in register R1.  
6-14  
S3C80F9B/C80G9B  
INSTRUCTION SET  
ADD — Add  
ADD  
dst,src  
Operation:  
dst dst + src  
The source operand is added to the destination operand and the sum is stored in the destination.  
The contents of the source are unaffected. Two's-complement addition is performed.  
Flags:  
C: Set if there is a carry from the most significant bit of the result; cleared otherwise.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result is negative; cleared otherwise.  
V: Set if arithmetic overflow occurred, that is, if both operands are of the same sign and the  
result is of the opposite sign; cleared otherwise.  
D: Always cleared to "0".  
H: Set if a carry from the low-order nibble occurred.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
opc  
dst | src  
src  
2
4
6
02  
03  
r
r
r
lr  
dst  
src  
3
3
6
6
04  
05  
R
R
R
IR  
dst  
6
06  
R
IM  
Examples:  
Given: R1 = 12H, R2 = 03H, register 01H = 21H, register 02H = 03H, register 03H = 0AH:  
ADD  
ADD  
ADD  
ADD  
ADD  
R1,R2  
R1 = 15H, R2 = 03H  
R1,@R2  
01H,02H  
01H,@02H  
01H,#25H  
R1 = 1CH, R2 = 03H  
Register 01H = 24H, register 02H = 03H  
Register 01H = 2BH, register 02H = 03H  
Register 01H = 46H  
In the first example, destination working register R1 contains 12H and the source working register  
R2 contains 03H. The statement "ADD R1,R2" adds 03H to 12H, leaving the value 15H in  
register R1.  
6-15  
INSTRUCTION SET  
S3C80F9B/C80G9B  
AND — Logical AND  
AND  
dst, src  
Operation:  
dst dst AND src  
The source operand is logically ANDed with the destination operand. The result is stored in the  
destination. The AND operation results in a "1" bit being stored whenever the corresponding bits  
in the two operands are both logic ones; otherwise a "0" bit value is stored. The contents of the  
source are unaffected.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Always cleared to "0".  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
opc  
dst | src  
src  
2
4
6
52  
53  
r
r
r
lr  
dst  
src  
3
3
6
6
54  
55  
R
R
R
IR  
dst  
6
56  
R
IM  
Examples:  
Given: R1 = 12H, R2 = 03H, register 01H = 21H, register 02H = 03H, register 03H = 0AH:  
AND  
AND  
AND  
AND  
AND  
R1,R2  
R1 = 02H, R2 = 03H  
R1,@R2  
01H,02H  
01H,@02H  
01H,#25H  
R1 = 02H, R2 = 03H  
Register 01H = 01H, register 02H = 03H  
Register 01H = 00H, register 02H = 03H  
Register 01H = 21H  
In the first example, destination working register R1 contains the value 12H and the source  
working register R2 contains 03H. The statement "AND R1,R2" logically ANDs the source  
operand 03H with the destination operand value 12H, leaving the value 02H in register R1.  
6-16  
S3C80F9B/C80G9B  
INSTRUCTION SET  
BAND — Bit AND  
BAND  
dst,src.b  
BAND  
dst.b,src  
Operation:  
dst(0) dst(0) AND src(b)  
or  
dst(b) dst(b) AND src(0)  
The specified bit of the source (or the destination) is logically ANDed with the zero bit (LSB) of  
the destination (or source). The resultant bit is stored in the specified bit of the destination. No  
other bits of the destination are affected. The source is unaffected.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Cleared to "0".  
V: Undefined.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
src  
dst  
3
6
67  
r0  
Rb  
dst | b | 0  
src | b | 1  
3
6
67  
Rb  
r0  
NOTE: In the second byte of the 3-byte instruction formats, the destination (or source) address is four bits,  
the bit address 'b' is three bits, and the LSB address value is one bit in length.  
Examples:  
Given: R1 = 07H and register 01H = 05H:  
BAND  
BAND  
R1,01H.1  
01H.1,R1  
R1 = 06H, register 01H = 05H  
Register 01H = 05H, R1 = 07H  
In the first example, source register 01H contains the value 05H (00000101B) and destination  
working register R1 contains 07H (00000111B). The statement "BAND R1,01H.1" ANDs the bit 1  
value of the source register ("0") with the bit 0 value of register R1 (destination), leaving the value  
06H (00000110B) in register R1.  
6-17  
INSTRUCTION SET  
S3C80F9B/C80G9B  
BCP — Bit Compare  
BCP  
dst,src.b  
Operation:  
dst(0) – src(b)  
The specified bit of the source is compared to (subtracted from) bit zero (LSB) of the destination.  
The zero flag is set if the bits are the same; otherwise it is cleared. The contents of both  
operands are unaffected by the comparison.  
Flags:  
C: Unaffected.  
Z: Set if the two bits are the same; cleared otherwise.  
S: Cleared to "0".  
V: Undefined.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
src  
3
6
17  
r0  
Rb  
dst | b | 0  
NOTE: In the second byte of the instruction format, the destination address is four bits, the bit address 'b' is  
three bits, and the LSB address value is one bit in length.  
Example:  
Given: R1 = 07H and register 01H = 01H:  
BCP  
R1,01H.1  
R1 = 07H, register 01H = 01H  
If destination working register R1 contains the value 07H (00000111B) and the source register  
01H contains the value 01H (00000001B), the statement "BCP R1,01H.1" compares bit one of  
the source register (01H) and bit zero of the destination register (R1). Because the bit values are  
not identical, the zero flag bit (Z) is cleared in the FLAGS register (0D5H).  
6-18  
S3C80F9B/C80G9B  
INSTRUCTION SET  
BITC — Bit Complement  
BITC  
dst.b  
Operation:  
dst(b) NOT dst(b)  
This instruction complements the specified bit within the destination without affecting any other  
bits in the destination.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Cleared to "0".  
V: Undefined.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
2
4
57  
rb  
dst | b | 0  
NOTE: In the second byte of the instruction format, the destination address is four bits, the bit address 'b'  
is three bits, and the LSB address value is one bit in length.  
Example:  
Given: R1 = 07H  
BITC  
R1.1  
R1 = 05H  
If working register R1 contains the value 07H (00000111B), the statement "BITC R1.1"  
complements bit one of the destination and leaves the value 05H (00000101B) in register R1.  
Because the result of the complement is not "0", the zero flag (Z) in the FLAGS register (0D5H) is  
cleared.  
6-19  
INSTRUCTION SET  
S3C80F9B/C80G9B  
BITR — Bit Reset  
BITR  
dst.b  
Operation:  
dst(b) 0  
The BITR instruction clears the specified bit within the destination without affecting any other bits  
in the destination.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
2
4
77  
rb  
dst | b | 0  
NOTE: In the second byte of the instruction format, the destination address is four bits, the bit address 'b'  
is three bits, and the LSB address value is one bit in length.  
Example:  
Given: R1 = 07H:  
BITR  
R1.1  
R1 = 05H  
If the value of working register R1 is 07H (00000111B), the statement "BITR R1.1" clears bit one  
of the destination register R1, leaving the value 05H (00000101B).  
6-20  
S3C80F9B/C80G9B  
INSTRUCTION SET  
BITS — Bit Set  
BITS  
dst.b  
Operation:  
dst(b) 1  
The BITS instruction sets the specified bit within the destination without affecting any other bits in  
the destination.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
2
4
77  
rb  
dst | b | 1  
NOTE: In the second byte of the instruction format, the destination address is four bits, the bit address 'b'  
is three bits, and the LSB address value is one bit in length.  
Example:  
Given: R1 = 07H:  
BITS  
R1.3  
R1 = 0FH  
If working register R1 contains the value 07H (00000111B), the statement "BITS R1.3" sets bit  
three of the destination register R1 to "1", leaving the value 0FH (00001111B).  
6-21  
INSTRUCTION SET  
S3C80F9B/C80G9B  
BOR — Bit OR  
BOR  
BOR  
dst,src.b  
dst.b,src  
Operation:  
dst(0) dst(0) OR src(b)  
or  
dst(b) dst(b) OR src(0)  
The specified bit of the source (or the destination) is logically ORed with bit zero (LSB) of the  
destination (or the source). The resulting bit value is stored in the specified bit of the destination.  
No other bits of the destination are affected. The source is unaffected.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Cleared to "0".  
V: Undefined.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
src  
dst  
3
6
07  
r0  
Rb  
dst | b | 0  
src | b | 1  
3
6
07  
Rb  
r0  
NOTE: In the second byte of the 3-byte instruction formats, the destination (or source) address is four bits,  
the bit address 'b' is three bits, and the LSB address value is one bit.  
Examples:  
Given: R1 = 07H and register 01H = 03H:  
BOR  
BOR  
R1, 01H.1  
01H.2, R1  
R1 = 07H, register 01H = 03H  
Register 01H = 07H, R1 = 07H  
In the first example, destination working register R1 contains the value 07H (00000111B) and  
source register 01H the value 03H (00000011B). The statement "BOR R1,01H.1" logically ORs  
bit one of register 01H (source) with bit zero of R1 (destination). This leaves the same value  
(07H) in working register R1.  
In the second example, destination register 01H contains the value 03H (00000011B) and the  
source working register R1 the value 07H (00000111B). The statement "BOR 01H.2,R1" logically  
ORs bit two of register 01H (destination) with bit zero of R1 (source). This leaves the value 07H  
in register 01H.  
6-22  
S3C80F9B/C80G9B  
INSTRUCTION SET  
BTJRF — Bit Test, Jump Relative on False  
BTJRF  
dst,src.b  
Operation:  
If src(b) is a "0", then PC PC + dst  
The specified bit within the source operand is tested. If it is a "0", the relative address is added to  
the program counter and control passes to the statement whose address is now in the PC;  
otherwise, the instruction following the BTJRF instruction is executed.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
(Note 1)  
dst  
src  
opc  
dst  
3
10  
37  
RA  
rb  
src | b | 0  
NOTE: In the second byte of the instruction format, the source address is four bits, the bit address 'b' is  
three bits, and the LSB address value is one bit in length.  
Example:  
Given: R1 = 07H:  
BTJRF  
SKIP,R1.3  
PC jumps to SKIP location  
If working register R1 contains the value 07H (00000111B), the statement "BTJRF SKIP,R1.3"  
tests bit 3. Because it is "0", the relative address is added to the PC and the PC jumps to the  
memory location pointed to by the SKIP. (Remember that the memory location must be within the  
allowed range of + 127 to – 128.)  
6-23  
INSTRUCTION SET  
S3C80F9B/C80G9B  
BTJRT — Bit Test, Jump Relative on True  
BTJRT  
dst,src.b  
Operation:  
If src(b) is a "1", then PC PC + dst  
The specified bit within the source operand is tested. If it is a "1", the relative address is added to  
the program counter and control passes to the statement whose address is now in the PC;  
otherwise, the instruction following the BTJRT instruction is executed.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
(Note 1)  
dst  
src  
opc  
dst  
3
10  
37  
RA  
rb  
src | b | 1  
NOTE: In the second byte of the instruction format, the source address is four bits, the bit address 'b' is  
three bits, and the LSB address value is one bit in length.  
Example:  
Given: R1 = 07H:  
BTJRT  
SKIP,R1.1  
If working register R1 contains the value 07H (00000111B), the statement "BTJRT SKIP,R1.1"  
tests bit one in the source register (R1). Because it is a "1", the relative address is added to the  
PC and the PC jumps to the memory location pointed to by the SKIP. (Remember that the  
memory location must be within the allowed range of + 127 to – 128.)  
6-24  
S3C80F9B/C80G9B  
INSTRUCTION SET  
BXOR — Bit XOR  
BXOR  
dst,src.b  
BXOR  
dst.b,src  
Operation:  
dst(0) dst(0) XOR src(b)  
or  
dst(b) dst(b) XOR src(0)  
The specified bit of the source (or the destination) is logically exclusive-ORed with bit zero (LSB)  
of the destination (or source). The result bit is stored in the specified bit of the destination. No  
other bits of the destination are affected. The source is unaffected.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Cleared to "0".  
V: Undefined.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
src  
dst  
3
6
27  
r0  
Rb  
dst | b | 0  
src | b | 1  
3
6
27  
Rb  
r0  
NOTE: In the second byte of the 3-byte instruction formats, the destination (or source) address is four bits,  
the bit address 'b' is three bits, and the LSB address value is one bit in length.  
Examples:  
Given: R1 = 07H (00000111B) and register 01H = 03H (00000011B):  
BXOR  
BXOR  
R1,01H.1  
01H.2,R1  
R1 = 06H, register 01H = 03H  
Register 01H = 07H, R1 = 07H  
In the first example, destination working register R1 has the value 07H (00000111B) and source  
register 01H has the value 03H (00000011B). The statement "BXOR R1,01H.1" exclusive-ORs  
bit one of register 01H (source) with bit zero of R1 (destination). The result bit value is stored in  
bit zero of R1, changing its value from 07H to 06H. The value of source register 01H is  
unaffected.  
6-25  
INSTRUCTION SET  
S3C80F9B/C80G9B  
CALL — Call Procedure  
CALL  
dst  
Operation:  
SP  
@SP  
SP  
@SP  
PC  
SP – 1  
PCL  
SP –1  
PCH  
dst  
The current contents of the program counter are pushed onto the top of the stack. The program  
counter value used is the address of the first instruction following the CALL instruction. The  
specified destination address is then loaded into the program counter and points to the first  
instruction of a procedure. At the end of the procedure the return instruction (RET) can be used  
to return to the original program flow. RET pops the top of the stack back into the program  
counter.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
opc  
opc  
dst  
3
14  
F6  
F4  
D4  
DA  
IRR  
IA  
dst  
dst  
2
2
12  
14  
Examples:  
Given: R0 = 35H, R1 = 21H, PC = 1A47H, and SP = 0002H:  
CALL  
3521H  
SP = 0000H  
(Memory locations 0000H = 1AH, 0001H = 4AH, where  
4AH is the address that follows the instruction.)  
CALL  
CALL  
@RR0  
#40H  
SP = 0000H (0000H = 1AH, 0001H = 49H)  
SP = 0000H (0000H = 1AH, 0001H = 49H)  
In the first example, if the program counter value is 1A47H and the stack pointer contains the  
value 0002H, the statement "CALL 3521H" pushes the current PC value onto the top of the  
stack. The stack pointer now points to memory location 0000H. The PC is then loaded with the  
value 3521H, the address of the first instruction in the program sequence to be executed.  
If the contents of the program counter and stack pointer are the same as in the first example, the  
statement "CALL @RR0" produces the same result except that the 49H is stored in stack  
location 0001H (because the two-byte instruction format was used). The PC is then loaded with  
the value 3521H, the address of the first instruction in the program sequence to be executed.  
Assuming that the contents of the program counter and stack pointer are the same as in the first  
example, if program address 0040H contains 35H and program address 0041H contains 21H, the  
statement "CALL #40H" produces the same result as in the second example.  
6-26  
S3C80F9B/C80G9B  
INSTRUCTION SET  
CCF — Complement Carry Flag  
CCF  
Operation:  
C NOT C  
The carry flag (C) is complemented. If C = "1", the value of the carry flag is changed to logic  
zero; if C = "0", the value of the carry flag is changed to logic one.  
Flags:  
C: Complemented.  
No other flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
4
EF  
Example:  
Given: The carry flag = "0":  
CCF  
If the carry flag = "0", the CCF instruction complements it in the FLAGS register (0D5H),  
changing its value from logic zero to logic one.  
6-27  
INSTRUCTION SET  
S3C80F9B/C80G9B  
CLR — Clear  
CLR  
dst  
Operation:  
dst "0"  
The destination location is cleared to "0".  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
4
4
B0  
B1  
R
IR  
Examples:  
Given: Register 00H = 4FH, register 01H = 02H, and register 02H = 5EH:  
CLR  
CLR  
00H  
Register 00H = 00H  
@01H  
Register 01H = 02H, register 02H = 00H  
In Register (R) addressing mode, the statement "CLR 00H" clears the destination register 00H  
value to 00H. In the second example, the statement "CLR @01H" uses Indirect Register (IR)  
addressing mode to clear the 02H register value to 00H.  
6-28  
S3C80F9B/C80G9B  
INSTRUCTION SET  
COM — Complement  
COM  
dst  
Operation:  
dst NOT dst  
The contents of the destination location are complemented (one's complement); all "1s" are  
changed to "0s", and vice-versa.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Always reset to "0".  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
4
4
60  
61  
R
IR  
Examples:  
Given: R1 = 07H and register 07H = 0F1H:  
COM  
COM  
R1  
R1 = 0F8H  
R1 = 07H, register 07H = 0EH  
@R1  
In the first example, destination working register R1 contains the value 07H (00000111B). The  
statement "COM R1" complements all the bits in R1: all logic ones are changed to logic zeros,  
and vice-versa, leaving the value 0F8H (11111000B).  
In the second example, Indirect Register (IR) addressing mode is used to complement the value  
of destination register 07H (11110001B), leaving the new value 0EH (00001110B).  
6-29  
INSTRUCTION SET  
S3C80F9B/C80G9B  
CP — Compare  
CP  
dst,src  
Operation:  
dst – src  
The source operand is compared to (subtracted from) the destination operand, and the  
appropriate flags are set accordingly. The contents of both operands are unaffected by the  
comparison.  
Flags:  
C: Set if a "borrow" occurred (src > dst); cleared otherwise.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result is negative; cleared otherwise.  
V: Set if arithmetic overflow occurred; cleared otherwise.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
dst |  
src  
2
4
6
A2  
r
r
A3  
r
lr  
opc  
opc  
src  
dst  
dst  
src  
3
3
6
6
A4  
A5  
R
R
R
IR  
6
A6  
R
IM  
Examples:  
1. Given: R1 = 02H and R2 = 03H:  
CP R1,R2 →  
Set the C and S flags  
Destination working register R1 contains the value 02H and source register R2 contains the value  
03H. The statement "CP R1,R2" subtracts the R2 value (source/subtrahend) from the R1 value  
(destination/minuend). Because a "borrow" occurs and the difference is negative, C and S are  
"1".  
2. Given: R1 = 05H and R2 = 0AH:  
CP  
JP  
INC  
LD  
R1,R2  
UGE,SKIP  
R1  
SKIP  
R3,R1  
In this example, destination working register R1 contains the value 05H which is less than the  
contents of the source working register R2 (0AH). The statement "CP R1,R2" generates C = "1"  
and the JP instruction does not jump to the SKIP location. After the statement "LD R3,R1"  
executes, the value 06H remains in working register R3.  
6-30  
S3C80F9B/C80G9B  
INSTRUCTION SET  
CPIJE — Compare, Increment, and Jump on Equal  
CPIJE  
dst,src,RA  
Operation:  
If dst – src = "0", PC PC + RA  
Ir Ir + 1  
The source operand is compared to (subtracted from) the destination operand. If the result is "0",  
the relative address is added to the program counter and control passes to the statement whose  
address is now in the program counter. Otherwise, the instruction immediately following the  
CPIJE instruction is executed. In either case, the source pointer is incremented by one before the  
next instruction is executed.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
src dst  
RA  
3
12  
C2  
r
Ir  
NOTE: Execution time is 18 cycles if the jump is taken or 16 cycles if it is not taken.  
Example:  
Given: R1 = 02H, R2 = 03H, and register 03H = 02H:  
CPIJE  
R1,@R2,SKIP  
R2 = 04H, PC jumps to SKIP location  
In this example, working register R1 contains the value 02H, working register R2 the value 03H,  
and register 03 contains 02H. The statement "CPIJE R1,@R2,SKIP" compares the @R2 value  
02H (00000010B) to 02H (00000010B). Because the result of the comparison is equal, the  
relative address is added to the PC and the PC then jumps to the memory location pointed to by  
SKIP. The source register (R2) is incremented by one, leaving a value of 04H. (Remember that  
the memory location must be within the allowed range of + 127 to – 128.)  
6-31  
INSTRUCTION SET  
S3C80F9B/C80G9B  
CPIJNE — Compare, Increment, and Jump on Non-Equal  
CPIJNE  
dst,src,RA  
Operation:  
If dst – src _ "0", PC PC + RA  
Ir Ir + 1  
The source operand is compared to (subtracted from) the destination operand. If the result is not  
"0", the relative address is added to the program counter and control passes to the statement  
whose address is now in the program counter; otherwise the instruction following the CPIJNE  
instruction is executed. In either case the source pointer is incremented by one before the next  
instruction.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
src dst  
RA  
3
12  
D2  
r
Ir  
NOTE: Execution time is 18 cycles if the jump is taken or 16 cycles if it is not taken.  
Example:  
Given: R1 = 02H, R2 = 03H, and register 03H = 04H:  
CPIJNE R1,@R2,SKIP  
R2 = 04H, PC jumps to SKIP location  
Working register R1 contains the value 02H, working register R2 (the source pointer) the value  
03H, and general register 03 the value 04H. The statement "CPIJNE R1,@R2,SKIP" subtracts  
04H (00000100B) from 02H (00000010B). Because the result of the comparison is non-equal, the  
relative address is added to the PC and the PC then jumps to the memory location pointed to by  
SKIP. The source pointer register (R2) is also incremented by one, leaving a value of 04H.  
(Remember that the memory location must be within the allowed range of + 127 to – 128.)  
6-32  
S3C80F9B/C80G9B  
INSTRUCTION SET  
DA — Decimal Adjust  
DA  
dst  
Operation:  
dst DA dst  
The destination operand is adjusted to form two 4-bit BCD digits following an addition or  
subtraction operation. For addition (ADD, ADC) or subtraction (SUB, SBC), the following table  
indicates the operation performed. (The operation is undefined if the destination operand was not  
the result of a valid addition or subtraction of BCD digits):  
Instruction  
Carry  
Before DA  
Bits 4–7  
Value (Hex)  
H Flag  
Before DA  
Bits 0–3  
Value (Hex)  
Number Added  
to Byte  
Carry  
After DA  
0
0
0
0
0
0
1
1
1
0
0
1
1
0–9  
0–8  
0–9  
A–F  
9–F  
A–F  
0–2  
0–2  
0–3  
0–9  
0–8  
7–F  
6–F  
0
0
1
0
0
1
0
0
1
0
1
0
1
0–9  
A–F  
0–3  
0–9  
A–F  
0–3  
0–9  
A–F  
0–3  
0–9  
6–F  
0–9  
6–F  
00  
0
0
0
1
1
1
1
1
1
0
0
1
1
06  
06  
ADD  
ADC  
60  
66  
66  
60  
66  
66  
00 = – 00  
FA = – 06  
A0 = – 60  
9A = – 66  
SUB  
SBC  
Flags:  
C: Set if there was a carry from the most significant bit; cleared otherwise (see table).  
Z: Set if result is "0"; cleared otherwise.  
S: Set if result bit 7 is set; cleared otherwise.  
V: Undefined.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
4
4
40  
41  
R
IR  
6-33  
INSTRUCTION SET  
S3C80F9B/C80G9B  
DA — Decimal Adjust  
DA  
(Continued)  
Example:  
Given: Working register R0 contains the value 15 (BCD), working register R1 contains  
27 (BCD), and address 27H contains 46 (BCD):  
ADD  
DA  
R1,R0  
R1  
;
;
C "0", H "0", Bits 4–7 = 3, bits 0–3 = C, R1 3CH  
R1 3CH + 06  
If addition is performed using the BCD values 15 and 27, the result should be 42. The sum is  
incorrect, however, when the binary representations are added in the destination location using  
standard binary arithmetic:  
0 0 0 1 0 1 0 1  
15  
27  
+ 0 0 1 0 0 1 1 1  
0 0 1 1 1 1 0 0  
=
3CH  
The DA instruction adjusts this result so that the correct BCD representation is obtained:  
0 0 1 1 1 1 0 0  
+ 0 0 0 0 0 1 1 0  
0 1 0 0 0 0 1 0  
=
42  
Assuming the same values given above, the statements  
SUB  
DA  
27H,R0  
@R1  
;
;
C "0", H "0", Bits 4–7 = 3, bits 0–3 = 1  
@R1 31–0  
leave the value 31 (BCD) in address 27H (@R1).  
6-34  
S3C80F9B/C80G9B  
INSTRUCTION SET  
DEC — Decrement  
DEC  
dst  
Operation:  
dst dst – 1  
The contents of the destination operand are decremented by one.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if result is negative; cleared otherwise.  
V: Set if arithmetic overflow occurred; cleared otherwise.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
4
4
00  
01  
R
IR  
Examples:  
Given: R1 = 03H and register 03H = 10H:  
DEC  
DEC  
R1  
R1 = 02H  
Register 03H = 0FH  
@R1  
In the first example, if working register R1 contains the value 03H, the statement "DEC R1"  
decrements the hexadecimal value by one, leaving the value 02H. In the second example, the  
statement "DEC @R1" decrements the value 10H contained in the destination register 03H by  
one, leaving the value 0FH.  
6-35  
INSTRUCTION SET  
S3C80F9B/C80G9B  
DECW — Decrement Word  
DECW  
dst  
Operation:  
dst dst – 1  
The contents of the destination location (which must be an even address) and the operand  
following that location are treated as a single 16-bit value that is decremented by one.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result is negative; cleared otherwise.  
V: Set if arithmetic overflow occurred; cleared otherwise.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
8
8
80  
81  
RR  
IR  
Examples:  
Given: R0 = 12H, R1 = 34H, R2 = 30H, register 30H = 0FH, and register 31H = 21H:  
DECW  
DECW  
RR0  
R0 = 12H, R1 = 33H  
@R2  
Register 30H = 0FH, register 31H = 20H  
In the first example, destination register R0 contains the value 12H and register R1 the value  
34H. The statement "DECW RR0" addresses R0 and the following operand R1 as a 16-bit word  
and decrements the value of R1 by one, leaving the value 33H.  
NOTE:  
A system malfunction may occur if you use a Zero flag (FLAGS.6) result together with a DECW  
instruction. To avoid this problem, we recommend that you use DECW as shown in the following  
example:  
LOOP:  
DECW  
LD  
OR  
RR0  
R2,R1  
R2,R0  
NZ,LOOP  
JR  
6-36  
S3C80F9B/C80G9B  
INSTRUCTION SET  
DI — Disable Interrupts  
DI  
Operation:  
SYM (0) 0  
Bit zero of the system mode control register, SYM.0, is cleared to "0", globally disabling all  
interrupt processing. Interrupt requests will continue to set their respective interrupt pending bits,  
but the CPU will not service them while interrupt processing is disabled.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
4
8F  
Example:  
Given: SYM = 01H:  
DI  
If the value of the SYM register is 01H, the statement "DI" leaves the new value 00H in the  
register and clears SYM.0 to "0", disabling interrupt processing.  
Before changing IMR, interrupt pending and interrupt source control register, be sure DI state.  
6-37  
INSTRUCTION SET  
S3C80F9B/C80G9B  
DIV— Divide (Unsigned)  
DIV  
dst,src  
Operation:  
dst ÷ src  
dst (UPPER) REMAINDER  
dst (LOWER) QUOTIENT  
The destination operand (16 bits) is divided by the source operand (8 bits). The quotient (8 bits)  
is stored in the lower half of the destination. The remainder (8 bits) is stored in the upper half of  
8
the destination. When the quotient is 2 , the numbers stored in the upper and lower halves of  
the destination for quotient and remainder are incorrect. Both operands are treated as unsigned  
integers.  
8
9
Flags:  
C: Set if the V flag is set and quotient is between 2 and 2 –1; cleared otherwise.  
Z: Set if divisor or quotient = "0"; cleared otherwise.  
S: Set if MSB of quotient = "1"; cleared otherwise.  
8
V: Set if quotient is 2 or if divisor = "0"; cleared otherwise.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
RR  
RR  
RR  
src  
opc  
src  
dst  
3
26/10  
26/10  
26/10  
94  
95  
96  
R
IR  
IM  
NOTE: Execution takes 10 cycles if the divide-by-zero is attempted; otherwise it takes 26 cycles.  
Examples:  
Given: R0 = 10H, R1 = 03H, R2 = 40H, register 40H = 80H:  
DIV  
DIV  
DIV  
RR0,R2  
R0 = 03H, R1 = 40H  
R0 = 03H, R1 = 20H  
R0 = 03H, R1 = 80H  
RR0,@R2  
RR0,#20H  
In the first example, destination working register pair RR0 contains the values 10H (R0) and 03H  
(R1), and register R2 contains the value 40H. The statement "DIV RR0,R2" divides the 16-bit  
RR0 value by the 8-bit value of the R2 (source) register. After the DIV instruction, R0 contains the  
value 03H and R1 contains 40H. The 8-bit remainder is stored in the upper half of the destination  
register RR0 (R0) and the quotient in the lower half (R1).  
6-38  
S3C80F9B/C80G9B  
INSTRUCTION SET  
DJNZ — Decrement and Jump if Non-Zero  
DJNZ  
r,dst  
Operation:  
r r – 1  
If r 0, PC PC + dst  
The working register being used as a counter is decremented. If the contents of the register are  
not logic zero after decrementing, the relative address is added to the program counter and  
control passes to the statement whose address is now in the PC. The range of the relative  
address is +127 to –128, and the original value of the PC is taken to be the address of the  
instruction byte following the DJNZ statement.  
NOTE: In case of using DJNZ instruction, the working register being used as a counter should be set at  
the one of location 0C0H to 0CFH with SRP, SRP0, or SRP1 instruction.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
r | opc  
dst  
2
8 (jump taken)  
8 (no jump)  
rA  
RA  
r = 0 to F  
Example:  
Given: R1 = 02H and LOOP is the label of a relative address:  
SRP  
#0C0H  
DJNZ  
R1,LOOP  
DJNZ is typically used to control a "loop" of instructions. In many cases, a label is used as the  
destination operand instead of a numeric relative address value. In the example, working register  
R1 contains the value 02H, and LOOP is the label for a relative address.  
The statement "DJNZ R1, LOOP" decrements register R1 by one, leaving the value 01H.  
Because the contents of R1 after the decrement are non-zero, the jump is taken to the relative  
address specified by the LOOP label.  
6-39  
INSTRUCTION SET  
S3C80F9B/C80G9B  
EI — Enable Interrupts  
EI  
Operation:  
SYM (0) 1  
An EI instruction sets bit zero of the system mode register, SYM.0 to "1". This allows interrupts to  
be serviced as they occur (assuming they have highest priority). If an interrupt's pending bit was  
set while interrupt processing was disabled (by executing a DI instruction), it will be serviced  
when you execute the EI instruction.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
4
9F  
Example:  
Given: SYM = 00H:  
EI  
If the SYM register contains the value 00H, that is, if interrupts are currently disabled, the  
statement "EI" sets the SYM register to 01H, enabling all interrupts. (SYM.0 is the enable bit for  
global interrupt processing.)  
6-40  
S3C80F9B/C80G9B  
INSTRUCTION SET  
ENTER — Enter  
ENTER  
Operation:  
SP  
@SP  
IP  
SP – 2  
IP  
PC  
PC  
IP  
@IP  
IP + 2  
This instruction is useful when implementing threaded-code languages. The contents of the  
instruction pointer are pushed to the stack. The program counter (PC) value is then written to the  
instruction pointer. The program memory word that is pointed to by the instruction pointer is  
loaded into the PC, and the instruction pointer is incremented by two.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
14  
1F  
Example:  
The diagram below shows one example of how to use an ENTER statement.  
Before  
After  
Data  
Address  
IP  
Data  
Address  
IP  
0050  
0040  
0022  
0043  
0110  
0020  
Address  
Data  
1F  
Address  
40 Enter  
Data  
1F  
PC  
SP  
40 Enter  
PC  
SP  
41 Address H 01  
42 Address L 10  
43 Address H  
41 Address H 01  
42 Address L 10  
43 Address H  
20  
21  
22  
00  
50  
IPH  
IPL  
Data  
110 Routine  
Memory  
Memory  
22 Data  
Stack  
Stack  
6-41  
INSTRUCTION SET  
S3C80F9B/C80G9B  
EXIT — Exit  
EXIT  
Operation:  
IP  
@SP  
SP  
PC  
IP  
SP + 2  
@IP  
IP + 2  
This instruction is useful when implementing threaded-code languages. The stack value is  
popped and loaded into the instruction pointer. The program memory word that is pointed to by  
the instruction pointer is then loaded into the program counter, and the instruction pointer is  
incremented by two.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode (Hex)  
opc  
1
14 (internal stack)  
16 (internal stack)  
2F  
Example:  
The diagram below shows one example of how to use an EXIT statement.  
Before  
After  
Data  
Address  
IP  
Data  
Address  
IP  
0050  
0040  
0022  
0052  
0060  
0022  
Address  
Data  
Address  
Data  
PC  
SP  
PC  
SP  
50 PCL old  
51 PCH  
60  
00  
60  
Main  
140 Exit  
2F  
20  
21  
22  
00  
50  
IPH  
IPL  
Data  
Memory  
Memory  
Data  
22  
Stack  
Stack  
6-42  
S3C80F9B/C80G9B  
INSTRUCTION SET  
IDLE — Idle Operation  
IDLE  
Operation:  
The IDLE instruction stops the CPU clock while allowing system clock oscillation to continue. Idle  
mode can be released by an interrupt request (IRQ) or an external reset operation.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
1
4
6F  
Example:  
The instruction  
IDLE  
stops the CPU clock but not the system clock.  
6-43  
INSTRUCTION SET  
S3C80F9B/C80G9B  
INC — Increment  
INC  
dst  
Operation:  
dst dst + 1  
The contents of the destination operand are incremented by one.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result is negative; cleared otherwise.  
V: Set if arithmetic overflow occurred; cleared otherwise.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
dst | opc  
opc  
1
4
rE  
r
r = 0 to F  
dst  
2
4
4
20  
21  
R
IR  
Examples:  
Given: R0 = 1BH, register 00H = 0CH, and register 1BH = 0FH:  
INC  
INC  
INC  
R0  
R0 = 1CH  
00H  
@R0  
Register 00H = 0DH  
R0 = 1BH, register 01H = 10H  
In the first example, if destination working register R0 contains the value 1BH, the statement "INC  
R0" leaves the value 1CH in that same register.  
The next example shows the effect an INC instruction has on register 00H, assuming that it  
contains the value 0CH.  
In the third example, INC is used in Indirect Register (IR) addressing mode to increment the  
value of register 1BH from 0FH to 10H.  
6-44  
S3C80F9B/C80G9B  
INSTRUCTION SET  
INCW — Increment Word  
INCW  
dst  
Operation:  
dst dst + 1  
The contents of the destination (which must be an even address) and the byte following that  
location are treated as a single 16-bit value that is incremented by one.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result is negative; cleared otherwise.  
V: Set if arithmetic overflow occurred; cleared otherwise.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
8
8
A0  
A1  
RR  
IR  
Examples:  
Given: R0 = 1AH, R1 = 02H, register 02H = 0FH, and register 03H = 0FFH:  
INCW  
INCW  
RR0  
R0 = 1AH, R1 = 03H  
@R1  
Register 02H = 10H, register 03H = 00H  
In the first example, the working register pair RR0 contains the value 1AH in register R0 and 02H  
in register R1. The statement "INCW RR0" increments the 16-bit destination by one, leaving the  
value 03H in register R1. In the second example, the statement "INCW @R1" uses Indirect  
Register (IR) addressing mode to increment the contents of general register 03H from 0FFH to  
00H and register 02H from 0FH to 10H.  
NOTE:  
A system malfunction may occur if you use a Zero (Z) flag (FLAGS.6) result together with an  
INCW instruction. To avoid this problem, we recommend that you use INCW as shown in the  
following example:  
LOOP:  
INCW  
LD  
OR  
RR0  
R2,R1  
R2,R0  
NZ,LOOP  
JR  
6-45  
INSTRUCTION SET  
S3C80F9B/C80G9B  
IRET — Interrupt Return  
IRET  
IRET (Normal)  
IRET (Fast)  
Operation:  
FLAGS @SP  
SP SP + 1  
PC @SP  
PC IP  
FLAGS FLAGS'  
FIS 0  
SP SP + 2  
SYM(0) 1  
This instruction is used at the end of an interrupt service routine. It restores the flag register and  
the program counter. It also re-enables global interrupts. A "normal IRET" is executed only if the  
fast interrupt status bit (FIS, bit one of the FLAGS register, 0D5H) is cleared (= "0"). If a fast  
interrupt occurred, IRET clears the FIS bit that was set at the beginning of the service routine.  
Flags:  
All flags are restored to their original settings (that is, the settings before the interrupt occurred).  
Format:  
IRET  
(Normal)  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
10 (internal stack)  
12 (internal stack)  
BF  
IRET  
(Fast)  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
6
BF  
Example:  
In the figure below, the instruction pointer is initially loaded with 100H in the main program before  
interrupts are enabled. When an interrupt occurs, the program counter and instruction pointer are  
swapped. This causes the PC to jump to address 100H and the IP to keep the return address.  
The last instruction in the service routine normally is a jump to IRET at address FFH. This causes  
the instruction pointer to be loaded with 100H "again" and the program counter to jump back to  
the main program. Now, the next interrupt can occur and the IP is still correct at 100H.  
0H  
IRET  
FFH  
Interrupt  
Service  
Routine  
100H  
JP to FFH  
FFFFH  
NOTE: In the fast interrupt example above, if the last instruction is not a jump to IRET, you must pay attention to the order  
of the last two instructions. The IRET cannot be immediately proceeded by a clearing of the interrupt status (as with  
a reset of the IPR register).  
6-46  
S3C80F9B/C80G9B  
INSTRUCTION SET  
JP — Jump  
JP  
cc,dst  
(Conditional)  
JP  
dst  
(Unconditional)  
Operation:  
If cc is true, PC dst  
The conditional JUMP instruction transfers program control to the destination address if the  
condition specified by the condition code (cc) is true; otherwise, the instruction following the JP  
instruction is executed. The unconditional JP simply replaces the contents of the PC with the  
contents of the specified register pair. Control then passes to the statement addressed by the  
PC.  
Flags:  
No flags are affected.  
Format: (1)  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
(2)  
cc | opc  
dst  
3
8
ccD  
DA  
cc = 0 to F  
opc  
dst  
2
8
30  
IRR  
NOTES:  
1. The 3-byte format is used for a conditional jump and the 2-byte format for an unconditional jump.  
2. In the first byte of the three-byte instruction format (conditional jump), the condition code and the  
opcode are both four bits.  
Examples:  
Given: The carry flag (C) = "1", register 00 = 01H, and register 01 = 20H:  
JP  
JP  
C,LABEL_W  
@00H  
LABEL_W = 1000H, PC = 1000H  
PC = 0120H  
The first example shows a conditional JP. Assuming that the carry flag is set to "1", the statement  
"JP C,LABEL_W" replaces the contents of the PC with the value 1000H and transfers control to  
that location. Had the carry flag not been set, control would then have passed to the statement  
immediately following the JP instruction.  
The second example shows an unconditional JP. The statement "JP @00" replaces the contents  
of the PC with the contents of the register pair 00H and 01H, leaving the value 0120H.  
6-47  
INSTRUCTION SET  
S3C80F9B/C80G9B  
JR — Jump Relative  
JR  
cc,dst  
Operation:  
If cc is true, PC PC + dst  
If the condition specified by the condition code (cc) is true, the relative address is added to the  
program counter and control passes to the statement whose address is now in the program  
counter; otherwise, the instruction following the JR instruction is executed. (See list of condition  
codes).  
The range of the relative address is +127, –128, and the original value of the program counter is  
taken to be the address of the first instruction byte following the JR statement.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
(1)  
cc | opc  
dst  
2
6
ccB  
RA  
cc = 0 to F  
NOTE: In the first byte of the two-byte instruction format, the condition code and the opcode are each  
four bits.  
Example:  
Given: The carry flag = "1" and LABEL_X = 1FF7H:  
JR  
C,LABEL_X  
PC = 1FF7H  
If the carry flag is set (that is, if the condition code is true), the statement "JR C,LABEL_X" will  
pass control to the statement whose address is now in the PC. Otherwise, the program  
instruction following the JR would be executed.  
6-48  
S3C80F9B/C80G9B  
INSTRUCTION SET  
LD — Load  
LD  
dst, src  
Operation:  
dst src  
The contents of the source are loaded into the destination. The source's contents are unaffected.  
No flags are affected.  
Flags:  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
IM  
R
dst | opc  
src | opc  
opc  
src  
dst  
2
4
4
rC  
r8  
r
r
2
2
3
3
4
r9  
R
r
r = 0 to F  
dst | src  
4
4
C7  
D7  
r
lr  
r
Ir  
opc  
src  
dst  
src  
6
6
E4  
E5  
R
R
R
IR  
opc  
dst  
6
6
E6  
D6  
R
IM  
IM  
IR  
opc  
opc  
opc  
src  
dst  
x
3
3
3
6
6
6
F5  
87  
97  
IR  
r
R
x [r]  
r
dst | src  
src | dst  
x
x [r]  
6-49  
INSTRUCTION SET  
S3C80F9B/C80G9B  
LD — Load  
LD  
(Continued)  
Examples:  
Given: R0 = 01H, R1 = 0AH, register 00H = 01H, register 01H = 20H,  
register 02H = 02H, LOOP = 30H, and register 3AH = 0FFH:  
LD  
LD  
LD  
LD  
LD  
LD  
LD  
LD  
LD  
LD  
LD  
LD  
R0,#10H  
R0 = 10H  
R0,01H  
R0 = 20H, register 01H = 20H  
Register 01H = 01H, R0 = 01H  
R1 = 20H, R0 = 01H  
01H,R0  
R1,@R0  
@R0,R1  
R0 = 01H, R1 = 0AH, register 01H = 0AH  
Register 00H = 20H, register 01H = 20H  
Register 02H = 20H, register 00H = 01H  
Register 00H = 0AH  
00H,01H  
02H,@00H  
00H,#0AH  
@00H,#10H  
@00H,02H  
R0,#LOOP[R1]  
#LOOP[R0],R1  
Register 00H = 01H, register 01H = 10H  
Register 00H = 01H, register 01H = 02, register 02H = 02H  
R0 = 0FFH, R1 = 0AH  
Register 31H = 0AH, R0 = 01H, R1 = 0AH  
6-50  
S3C80F9B/C80G9B  
INSTRUCTION SET  
LDB — Load Bit  
LDB  
dst,src.b  
LDB  
dst.b,src  
Operation:  
dst(0) src(b)  
or  
dst(b) src(0)  
The specified bit of the source is loaded into bit zero (LSB) of the destination, or bit zero of the  
source is loaded into the specified bit of the destination. No other bits of the destination are  
affected. The source is unaffected.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
src  
dst  
3
6
47  
r0  
Rb  
dst | b | 0  
src | b | 1  
3
6
47  
Rb  
r0  
NOTE: In the second byte of the instruction formats, the destination (or source) address is four bits, the bit  
address 'b' is three bits, and the LSB address value is one bit in length.  
Examples:  
Given: R0 = 06H and general register 00H = 05H:  
LDB  
LDB  
R0,00H.2  
00H.0,R0  
R0 = 07H, register 00H = 05H  
R0 = 06H, register 00H = 04H  
In the first example, destination working register R0 contains the value 06H and the source  
general register 00H the value 05H. The statement "LD R0,00H.2" loads the bit two value of the  
00H register into bit zero of the R0 register, leaving the value 07H in register R0.  
In the second example, 00H is the destination register. The statement "LD 00H.0,R0" loads bit  
zero of register R0 to the specified bit (bit zero) of the destination register, leaving 04H in general  
register 00H.  
6-51  
INSTRUCTION SET  
S3C80F9B/C80G9B  
LDC/LDE — Load Memory  
LDC/LDE  
dst,src  
Operation:  
dst src  
This instruction loads a byte from program or data memory into a working register or vice-versa.  
The source values are unaffected. LDC refers to program memory and LDE to data memory. The  
assembler makes 'Irr' or 'rr' values an even number for program memory and odd an odd number  
for data memory.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
8.  
9.  
opc  
opc  
opc  
opc  
opc  
opc  
opc  
opc  
opc  
opc  
dst | src  
src | dst  
dst | src  
src | dst  
dst | src  
src | dst  
dst | 0000  
src | 0000  
dst | 0001  
src | 0001  
2
10  
C3  
D3  
E7  
F7  
A7  
B7  
A7  
B7  
A7  
B7  
r
Irr  
2
3
3
4
4
4
4
4
4
10  
12  
12  
14  
14  
14  
14  
14  
14  
Irr  
r
XS  
XS  
XL  
r
XS [rr]  
XS [rr]  
r
XL  
XL  
r
XL [rr]  
r
XL [rr]  
L
H
H
XL  
r
DA  
r
L
DA  
DA  
DA  
DA  
DA  
DA  
DA  
DA  
L
L
L
L
H
H
H
H
DA  
r
DA  
r
10.  
DA  
NOTES:  
1. The source (src) or working register pair [rr] for formats 5 and 6 cannot use register pair 0–1.  
2. For formats 3 and 4, the destination address 'XS [rr]' and the source address 'XS [rr]' are each one byte.  
3. For formats 5 and 6, the destination address 'XL [rr] and the source address 'XL [rr]' are each two bytes.  
4. The DA and r source values for formats 7 and 8 are used to address program memory; the second set of  
values, used in formats 9 and 10, are used to address data memory.  
6-52  
S3C80F9B/C80G9B  
INSTRUCTION SET  
LDC/LDE — Load Memory  
LDC/LDE  
(Continued)  
Examples:  
Given: R0 = 11H, R1 = 34H, R2 = 01H, R3 = 04H; Program memory locations  
0103H = 4FH, 0104H = 1A, 0105H = 6DH, and 1104H = 88H. External data memory  
locations 0103H = 5FH, 0104H = 2AH, 0105H = 7DH, and 1104H = 98H:  
LDC  
R0,@RR2  
;
;
R0 contents of program memory location 0104H  
R0 = 1AH, R2 = 01H, R3 = 04H  
LDE  
R0,@RR2  
;
;
R0 contents of external data memory location 0104H  
R0 = 2AH, R2 = 01H, R3 = 04H  
LDC (note) @RR2,R0  
;
;
;
11H (contents of R0) is loaded into program memory  
location 0104H (RR2),  
working registers R0, R2, R3 no change  
LDE  
LDC  
LDE  
@RR2,R0  
;
;
;
11H (contents of R0) is loaded into external data memory  
location 0104H (RR2),  
working registers R0, R2, R3 no change  
R0,#01H[RR2]  
R0,#01H[RR2]  
;
;
;
R0 contents of program memory location 0105H  
(01H + RR2),  
R0 = 6DH, R2 = 01H, R3 = 04H  
;
;
R0 contents of external data memory location 0105H  
(01H + RR2), R0 = 7DH, R2 = 01H, R3 = 04H  
LDC (note) #01H[RR2],R0  
;
;
11H (contents of R0) is loaded into program memory location  
0105H (01H + 0104H)  
LDE  
LDC  
LDE  
#01H[RR2],R0  
;
;
11H (contents of R0) is loaded into external data memory  
location 0105H (01H + 0104H)  
R0,#1000H[RR2] ; R0 contents of program memory location 1104H  
(1000H + 0104H), R0 = 88H, R2 = 01H, R3 = 04H  
;
R0,#1000H[RR2] ; R0 contents of external data memory location 1104H  
;
(1000H + 0104H), R0 = 98H, R2 = 01H, R3 = 04H  
LDC  
LDE  
R0,1104H  
R0,1104H  
;
R0 contents of program memory location 1104H, R0 = 88H  
;
;
R0 contents of external data memory location 1104H,  
R0 = 98H  
LDC (note) 1105H,R0  
;
;
11H (contents of R0) is loaded into program memory location  
1105H, (1105H) 11H  
LDE  
1105H,R0  
;
;
11H (contents of R0) is loaded into external data memory  
location 1105H, (1105H) 11H  
NOTE: These instructions are not supported by masked ROM type devices.  
6-53  
INSTRUCTION SET  
S3C80F9B/C80G9B  
LDCD/LDED — Load Memory and Decrement  
LDCD/LDED dst,src  
Operation:  
dst src  
rr rr – 1  
These instructions are used for user stacks or block transfers of data from program or data  
memory to the register file. The address of the memory location is specified by a working register  
pair. The contents of the source location are loaded into the destination location. The memory  
address is then decremented. The contents of the source are unaffected.  
LDCD references program memory and LDED references external data memory. The assembler  
makes 'Irr' an even number for program memory and an odd number for data memory.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
dst | src  
2
10  
E2  
r
Irr  
Examples:  
Given: R6 = 10H, R7 = 33H, R8 = 12H, program memory location 1033H = 0CDH, and  
external data memory location 1033H = 0DDH:  
LDCD  
R8,@RR6  
;
;
;
0CDH (contents of program memory location 1033H) is loaded  
into R8 and RR6 is decremented by one  
R8 = 0CDH, R6 = 10H, R7 = 32H (RR6 RR6 – 1)  
LDED  
R8,@RR6  
;
;
;
0DDH (contents of data memory location 1033H) is loaded  
into R8 and RR6 is decremented by one (RR6 RR6 – 1)  
R8 = 0DDH, R6 = 10H, R7 = 32H  
6-54  
S3C80F9B/C80G9B  
INSTRUCTION SET  
LDCI/LDEI — Load Memory and Increment  
LDCI/LDEI  
dst,src  
Operation:  
dst src  
rr rr + 1  
These instructions are used for user stacks or block transfers of data from program or data  
memory to the register file. The address of the memory location is specified by a working register  
pair. The contents of the source location are loaded into the destination location. The memory  
address is then incremented automatically. The contents of the source are unaffected.  
LDCI refers to program memory and LDEI refers to external data memory. The assembler makes  
'Irr' even for program memory and odd for data memory.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
dst | src  
2
10  
E3  
r
Irr  
Examples:  
Given: R6 = 10H, R7 = 33H, R8 = 12H, program memory locations 1033H = 0CDH and  
1034H = 0C5H; external data memory locations 1033H = 0DDH and 1034H = 0D5H:  
LDCI  
R8,@RR6  
;
;
;
0CDH (contents of program memory location 1033H) is loaded  
into R8 and RR6 is incremented by one (RR6 RR6 + 1)  
R8 = 0CDH, R6 = 10H, R7 = 34H  
LDEI  
R8,@RR6  
;
;
;
0DDH (contents of data memory location 1033H) is loaded  
into R8 and RR6 is incremented by one (RR6 RR6 + 1)  
R8 = 0DDH, R6 = 10H, R7 = 34H  
6-55  
INSTRUCTION SET  
S3C80F9B/C80G9B  
LDCPD/LDEPD — Load Memory with Pre-Decrement  
LDCPD/  
LDEPD  
dst,src  
Operation:  
rr rr – 1  
dst src  
These instructions are used for block transfers of data from program or data memory from the  
register file. The address of the memory location is specified by a working register pair and is first  
decremented. The contents of the source location are then loaded into the destination location.  
The contents of the source are unaffected.  
LDCPD refers to program memory and LDEPD refers to external data memory. The assembler  
makes 'Irr' an even number for program memory and an odd number for external data memory.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
src | dst  
2
14  
F2  
Irr  
r
Examples:  
Given: R0 = 77H, R6 = 30H, and R7 = 00H:  
LDCPD @RR6,R0  
;
;
;
;
(RR6 RR6 – 1)  
77H (contents of R0) is loaded into program memory location  
2FFFH (3000H – 1H)  
R0 = 77H, R6 = 2FH, R7 = 0FFH  
LDEPD @RR6,R0  
;
;
;
;
(RR6 RR6 – 1)  
77H (contents of R0) is loaded into external data memory  
location 2FFFH (3000H – 1H)  
R0 = 77H, R6 = 2FH, R7 = 0FFH  
6-56  
S3C80F9B/C80G9B  
INSTRUCTION SET  
LDCPI/LDEPI — Load Memory with Pre-Increment  
LDCPI/  
LDEPI  
dst,src  
Operation:  
rr rr + 1  
dst src  
These instructions are used for block transfers of data from program or data memory from the  
register file. The address of the memory location is specified by a working register pair and is first  
incremented. The contents of the source location are loaded into the destination location. The  
contents of the source are unaffected.  
LDCPI refers to program memory and LDEPI refers to external data memory. The assembler  
makes 'Irr' an even number for program memory and an odd number for data memory.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
src | dst  
2
14  
F3  
Irr  
r
Examples:  
Given: R0 = 7FH, R6 = 21H, and R7 = 0FFH:  
LDCPI  
@RR6,R0  
;
;
;
;
(RR6 RR6 + 1)  
7FH (contents of R0) is loaded into program memory  
location 2200H (21FFH + 1H)  
R0 = 7FH, R6 = 22H, R7 = 00H  
LDEPI  
@RR6,R0  
;
;
;
;
(RR6 RR6 + 1)  
7FH (contents of R0) is loaded into external data memory  
location 2200H (21FFH + 1H)  
R0 = 7FH, R6 = 22H, R7 = 00H  
6-57  
INSTRUCTION SET  
S3C80F9B/C80G9B  
LDW — Load Word  
LDW  
dst,src  
Operation:  
dst src  
The contents of the source (a word) are loaded into the destination. The contents of the source  
are unaffected.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
RR  
RR  
src  
RR  
IR  
opc  
opc  
src  
dst  
dst  
3
8
8
C4  
C5  
src  
4
8
C6  
RR  
IML  
Examples:  
Given: R4 = 06H, R5 = 1CH, R6 = 05H, R7 = 02H, register 00H = 1AH,  
register 01H = 02H, register 02H = 03H, and register 03H = 0FH:  
LDW  
LDW  
RR6,RR4  
00H,02H  
R6 = 06H, R7 = 1CH, R4 = 06H, R5 = 1CH  
Register 00H = 03H, register 01H = 0FH,  
register 02H = 03H, register 03H = 0FH  
LDW  
LDW  
LDW  
LDW  
RR2,@R7  
R2 = 03H, R3 = 0FH,  
04H,@01H  
RR6,#1234H  
02H,#0FEDH  
Register 04H = 03H, register 05H = 0FH  
R6 = 12H, R7 = 34H  
Register 02H = 0FH, register 03H = 0EDH  
In the second example, please note that the statement "LDW 00H,02H" loads the contents of the  
source word 02H, 03H into the destination word 00H, 01H. This leaves the value 03H in general  
register 00H and the value 0FH in register 01H.  
The other examples show how to use the LDW instruction with various addressing modes and  
formats.  
6-58  
S3C80F9B/C80G9B  
INSTRUCTION SET  
MULT — Multiply (Unsigned)  
MULT  
dst,src  
Operation:  
dst dst src  
The 8-bit destination operand (even register of the register pair) is multiplied by the source  
operand (8 bits) and the product (16 bits) is stored in the register pair specified by the destination  
address. Both operands are treated as unsigned integers.  
Flags:  
C: Set if result is > 255; cleared otherwise.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if MSB of the result is a "1"; cleared otherwise.  
V: Cleared.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
RR  
RR  
RR  
src  
opc  
src  
dst  
3
22  
22  
22  
84  
85  
86  
R
IR  
IM  
Examples:  
Given: Register 00H = 20H, register 01H = 03H, register 02H = 09H, register 03H = 06H:  
MULT  
MULT  
MULT  
00H, 02H  
Register 00H = 01H, register 01H = 20H, register 02H = 09H  
Register 00H = 00H, register 01H = 0C0H  
00H, @01H  
00H, #30H  
Register 00H = 06H, register 01H = 00H  
In the first example, the statement "MULT 00H,02H" multiplies the 8-bit destination operand (in  
the register 00H of the register pair 00H, 01H) by the source register 02H operand (09H). The  
16-bit product, 0120H, is stored in the register pair 00H, 01H.  
6-59  
INSTRUCTION SET  
S3C80F9B/C80G9B  
NEXT — Next  
NEXT  
Operation:  
PC @ IP  
IP IP + 2  
The NEXT instruction is useful when implementing threaded-code languages. The program  
memory word that is pointed to by the instruction pointer is loaded into the program counter. The  
instruction pointer is then incremented by two.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
10  
0F  
Example:  
The following diagram shows one example of how to use the NEXT instruction.  
Before  
After  
Data  
Address  
IP  
Data  
Address  
IP  
0043  
0120  
0045  
0130  
Address  
Data  
Address  
43 Address H  
Data  
PC  
43 Address H 01  
PC  
44 Address L 10  
45 Address H  
44 Address L  
45 Address H  
120 Next  
Memory  
130 Routine  
Memory  
6-60  
S3C80F9B/C80G9B  
INSTRUCTION SET  
NOP — No Operation  
NOP  
Operation:  
No action is performed when the CPU executes this instruction. Typically, one or more NOPs are  
executed in sequence in order to effect a timing delay of variable duration.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
4
FF  
Example:  
When the instruction  
NOP  
is encountered in a program, no operation occurs. Instead, there is a delay in instruction  
execution time.  
6-61  
INSTRUCTION SET  
S3C80F9B/C80G9B  
OR — Logical OR  
OR  
dst,src  
Operation:  
dst dst OR src  
The source operand is logically ORed with the destination operand and the result is stored in the  
destination. The contents of the source are unaffected. The OR operation results in a "1" being  
stored whenever either of the corresponding bits in the two operands is a "1"; otherwise a "0" is  
stored.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Always cleared to "0".  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
opc  
dst | src  
src  
2
4
6
42  
43  
r
r
r
lr  
dst  
src  
3
3
6
6
44  
45  
R
R
R
IR  
dst  
6
46  
R
IM  
Examples:  
Given: R0 = 15H, R1 = 2AH, R2 = 01H, register 00H = 08H, register 01H = 37H, and  
register 08H = 8AH:  
OR  
OR  
OR  
OR  
OR  
R0,R1  
R0 = 3FH, R1 = 2AH  
R0,@R2  
00H,01H  
01H,@00H  
00H,#02H  
R0 = 37H, R2 = 01H, register 01H = 37H  
Register 00H = 3FH, register 01H = 37H  
Register 00H = 08H, register 01H = 0BFH  
Register 00H = 0AH  
In the first example, if working register R0 contains the value 15H and register R1 the value 2AH,  
the statement "OR R0,R1" logical-ORs the R0 and R1 register contents and stores the result  
(3FH) in destination register R0.  
The other examples show the use of the logical OR instruction with the various addressing  
modes and formats.  
6-62  
S3C80F9B/C80G9B  
INSTRUCTION SET  
POP — Pop From Stack  
POP  
dst  
Operation:  
dst @SP  
SP SP + 1  
The contents of the location addressed by the stack pointer are loaded into the destination. The  
stack pointer is then incremented by one.  
Flags:  
No flags affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
8
8
50  
51  
R
IR  
Examples:  
Given: Register 00H = 01H, register 01H = 1BH, SPH (0D8H) = 00H, SPL (0D9H) = 0FBH,  
and stack register 0FBH = 55H:  
POP  
POP  
00H  
Register 00H = 55H, SP = 00FCH  
@00H  
Register 00H = 01H, register 01H = 55H, SP = 00FCH  
In the first example, general register 00H contains the value 01H. The statement "POP 00H"  
loads the contents of location 00FBH (55H) into destination register 00H and then increments the  
stack pointer by one. Register 00H then contains the value 55H and the SP points to location  
00FCH.  
6-63  
INSTRUCTION SET  
S3C80F9B/C80G9B  
POPUD — Pop User Stack (Decrementing)  
POPUD  
dst,src  
Operation:  
dst src  
IR IR – 1  
This instruction is used for user-defined stacks in the register file. The contents of the register file  
location addressed by the user stack pointer are loaded into the destination. The user stack  
pointer is then decremented.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
src  
dst  
3
8
92  
R
IR  
Example:  
Given: Register 00H = 42H (user stack pointer register), register 42H = 6FH, and  
register 02H = 70H:  
POPUD 02H,@00H  
Register 00H = 41H, register 02H = 6FH, register 42H = 6FH  
If general register 00H contains the value 42H and register 42H the value 6FH, the statement  
"POPUD 02H,@00H" loads the contents of register 42H into the destination register 02H. The  
user stack pointer is then decremented by one, leaving the value 41H.  
6-64  
S3C80F9B/C80G9B  
INSTRUCTION SET  
POPUI — Pop User Stack (Incrementing)  
POPUI  
dst,src  
Operation:  
dst src  
IR IR + 1  
The POPUI instruction is used for user-defined stacks in the register file. The contents of the  
register file location addressed by the user stack pointer are loaded into the destination. The user  
stack pointer is then incremented.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
src  
dst  
3
8
93  
R
IR  
Example:  
Given: Register 00H = 01H and register 01H = 70H:  
POPUI 02H,@00H Register 00H = 02H, register 01H = 70H, register 02H = 70H  
If general register 00H contains the value 01H and register 01H the value 70H, the statement  
"POPUI 02H,@00H" loads the value 70H into the destination general register 02H. The user  
stack pointer (register 00H) is then incremented by one, changing its value from 01H to 02H.  
6-65  
INSTRUCTION SET  
S3C80F9B/C80G9B  
PUSH — Push To Stack  
PUSH  
src  
Operation:  
SP SP – 1  
@SP src  
A PUSH instruction decrements the stack pointer value and loads the contents of the source (src)  
into the location addressed by the decremented stack pointer. The operation then adds the new  
value to the top of the stack.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
src  
2
8 (internal clock)  
8 (external clock)  
70  
R
8 (internal clock)  
8 (external clock)  
71  
IR  
Examples:  
Given: Register 40H = 4FH, register 4FH = 0AAH, SPH = 00H, and SPL = 00H:  
PUSH  
40H  
Register 40H = 4FH, stack register 0FFH = 4FH,  
SPH = 0FFH, SPL = 0FFH  
PUSH  
@40H  
Register 40H = 4FH, register 4FH = 0AAH, stack register  
0FFH = 0AAH, SPH = 0FFH, SPL = 0FFH  
In the first example, if the stack pointer contains the value 0000H, and general register 40H the  
value 4FH, the statement "PUSH 40H" decrements the stack pointer from 0000 to 0FFFFH. It  
then loads the contents of register 40H into location 0FFFFH and adds this new value to the top  
of the stack.  
6-66  
S3C80F9B/C80G9B  
INSTRUCTION SET  
PUSHUD — Push User Stack (Decrementing)  
PUSHUD  
dst,src  
Operation:  
IR IR – 1  
dst src  
This instruction is used to address user-defined stacks in the register file. PUSHUD decrements  
the user stack pointer and loads the contents of the source into the register addressed by the  
decremented stack pointer.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
dst  
src  
3
8
82  
IR  
R
Example:  
Given: Register 00H = 03H, register 01H = 05H, and register 02H = 1AH:  
PUSHUD @00H,01H Register 00H = 02H, register 01H = 05H, register 02H = 05H  
If the user stack pointer (register 00H, for example) contains the value 03H, the statement  
"PUSHUD @00H,01H" decrements the user stack pointer by one, leaving the value 02H. The  
01H register value, 05H, is then loaded into the register addressed by the decremented user  
stack pointer.  
6-67  
INSTRUCTION SET  
S3C80F9B/C80G9B  
PUSHUI — Push User Stack (Incrementing)  
PUSHUI  
dst,src  
Operation:  
IR IR + 1  
dst src  
This instruction is used for user-defined stacks in the register file. PUSHUI increments the user  
stack pointer and then loads the contents of the source into the register location addressed by  
the incremented user stack pointer.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
dst  
src  
3
8
83  
IR  
R
Example:  
Given: Register 00H = 03H, register 01H = 05H, and register 04H = 2AH:  
PUSHUI @00H,01H Register 00H = 04H, register 01H = 05H, register 04H = 05H  
If the user stack pointer (register 00H, for example) contains the value 03H, the statement  
"PUSHUI @00H,01H" increments the user stack pointer by one, leaving the value 04H. The 01H  
register value, 05H, is then loaded into the location addressed by the incremented user stack  
pointer.  
6-68  
S3C80F9B/C80G9B  
INSTRUCTION SET  
RCF — Reset Carry Flag  
RCF  
RCF  
Operation:  
C 0  
The carry flag is cleared to logic zero, regardless of its previous value.  
Flags:  
C:  
Cleared to "0".  
No other flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
4
CF  
Example:  
Given: C = "1" or "0":  
The instruction RCF clears the carry flag (C) to logic zero.  
6-69  
INSTRUCTION SET  
S3C80F9B/C80G9B  
RET — Return  
RET  
Operation:  
PC @SP  
SP SP + 2  
The RET instruction is normally used to return to the previously executing procedure at the end of  
a procedure entered by a CALL instruction. The contents of the location addressed by the stack  
pointer are popped into the program counter. The next statement that is executed is the one that  
is addressed by the new program counter value.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode (Hex)  
opc  
1
8 (internal stack)  
10 (internal stack)  
AF  
Example:  
Given: SP = 00FCH, (SP) = 101AH, and PC = 1234:  
RET PC = 101AH, SP = 00FEH  
The statement "RET" pops the contents of stack pointer location 00FCH (10H) into the high byte  
of the program counter. The stack pointer then pops the value in location 00FEH (1AH) into the  
PC's low byte and the instruction at location 101AH is executed. The stack pointer now points to  
memory location 00FEH.  
6-70  
S3C80F9B/C80G9B  
INSTRUCTION SET  
RL — Rotate Left  
RL  
dst  
Operation:  
C dst (7)  
dst (0) dst (7)  
dst (n + 1) dst (n), n = 0–6  
The contents of the destination operand are rotated left one bit position. The initial value of bit 7 is  
moved to the bit zero (LSB) position and also replaces the carry flag.  
7
0
C
Flags:  
C: Set if the bit rotated from the most significant bit position (bit 7) was "1".  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Set if arithmetic overflow occurred; cleared otherwise.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
4
4
90  
91  
R
IR  
Examples:  
Given: Register 00H = 0AAH, register 01H = 02H and register 02H = 17H:  
RL  
RL  
00H  
Register 00H = 55H, C = "1"  
Register 01H = 02H, register 02H = 2EH, C = "0"  
@01H  
In the first example, if general register 00H contains the value 0AAH (10101010B), the statement  
"RL 00H" rotates the 0AAH value left one bit position, leaving the new value 55H (01010101B)  
and setting the carry and overflow flags.  
6-71  
INSTRUCTION SET  
S3C80F9B/C80G9B  
RLC — Rotate Left Through Carry  
RLC  
dst  
Operation:  
dst (0) C  
C dst (7)  
dst (n + 1) dst (n), n = 0–6  
The contents of the destination operand with the carry flag are rotated left one bit position. The  
initial value of bit 7 replaces the carry flag (C); the initial value of the carry flag replaces bit zero.  
7
0
C
Flags:  
C: Set if the bit rotated from the most significant bit position (bit 7) was "1".  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Set if arithmetic overflow occurred, that is, if the sign of the destination changed during  
rotation; cleared otherwise.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
4
4
10  
11  
R
IR  
Examples:  
Given: Register 00H = 0AAH, register 01H = 02H, and register 02H = 17H, C = "0":  
RLC  
RLC  
00H  
Register 00H = 54H, C = "1"  
@01H  
Register 01H = 02H, register 02H = 2EH, C = "0"  
In the first example, if general register 00H has the value 0AAH (10101010B), the statement  
"RLC 00H" rotates 0AAH one bit position to the left. The initial value of bit 7 sets the carry flag  
and the initial value of the C flag replaces bit zero of register 00H, leaving the value 55H  
(01010101B). The MSB of register 00H resets the carry flag to "1" and sets the overflow flag.  
6-72  
S3C80F9B/C80G9B  
INSTRUCTION SET  
RR — Rotate Right  
RR  
dst  
Operation:  
C dst (0)  
dst (7) dst (0)  
dst (n) dst (n + 1), n = 0–6  
The contents of the destination operand are rotated right one bit position. The initial value of bit  
zero (LSB) is moved to bit 7 (MSB) and also replaces the carry flag (C).  
7
0
C
Flags:  
C: Set if the bit rotated from the least significant bit position (bit zero) was "1".  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Set if arithmetic overflow occurred, that is, if the sign of the destination changed during  
rotation; cleared otherwise.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
4
4
E0  
E1  
R
IR  
Examples:  
Given: Register 00H = 31H, register 01H = 02H, and register 02H = 17H:  
RR  
RR  
00H  
Register 00H = 98H, C = "1"  
Register 01H = 02H, register 02H = 8BH, C = "1"  
@01H  
In the first example, if general register 00H contains the value 31H (00110001B), the statement  
"RR 00H" rotates this value one bit position to the right. The initial value of bit zero is moved to  
bit 7, leaving the new value 98H (10011000B) in the destination register. The initial bit zero also  
resets the C flag to "1" and the sign flag and overflow flag are also set to "1".  
6-73  
INSTRUCTION SET  
S3C80F9B/C80G9B  
RRC — Rotate Right Through Carry  
RRC  
dst  
Operation:  
dst (7) C  
C dst (0)  
dst (n) dst (n + 1), n = 0–6  
The contents of the destination operand and the carry flag are rotated right one bit position. The  
initial value of bit zero (LSB) replaces the carry flag; the initial value of the carry flag replaces bit  
7 (MSB).  
7
0
C
Flags:  
C: Set if the bit rotated from the least significant bit position (bit zero) was "1".  
Z: Set if the result is "0" cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Set if arithmetic overflow occurred, that is, if the sign of the destination changed during  
rotation; cleared otherwise.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
4
4
C0  
C1  
R
IR  
Examples:  
Given: Register 00H = 55H, register 01H = 02H, register 02H = 17H, and C = "0":  
RRC  
RRC  
00H  
Register 00H = 2AH, C = "1"  
@01H  
Register 01H = 02H, register 02H = 0BH, C = "1"  
In the first example, if general register 00H contains the value 55H (01010101B), the statement  
"RRC 00H" rotates this value one bit position to the right. The initial value of bit zero ("1")  
replaces the carry flag and the initial value of the C flag ("1") replaces bit 7. This leaves the new  
value 2AH (00101010B) in destination register 00H. The sign flag and overflow flag are both  
cleared to "0".  
6-74  
S3C80F9B/C80G9B  
INSTRUCTION SET  
SB0 — Select Bank 0  
SB0  
Operation:  
BANK 0  
The SB0 instruction clears the bank address flag in the FLAGS register (FLAGS.0) to logic zero,  
selecting bank 0 register addressing in the set 1 area of the register file.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
4
4F  
Example:  
The statement  
SB0  
clears FLAGS.0 to "0", selecting bank 0 register addressing.  
6-75  
INSTRUCTION SET  
S3C80F9B/C80G9B  
SB1 — Select Bank 1  
SB1  
Operation:  
BANK 1  
The SB1 instruction sets the bank address flag in the FLAGS register (FLAGS.0) to logic one,  
selecting bank 1 register addressing in the set 1 area of the register file. (Bank 1 is not  
implemented in some KS88-series microcontrollers.)  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
4
5F  
Example:  
The statement  
SB1  
sets FLAGS.0 to "1", selecting bank 1 register addressing, if implemented.  
6-76  
S3C80F9B/C80G9B  
INSTRUCTION SET  
SBC — Subtract With Carry  
SBC  
dst,src  
Operation:  
dst dst – src – c  
The source operand, along with the current value of the carry flag, is subtracted from the  
destination operand and the result is stored in the destination. The contents of the source are  
unaffected. Subtraction is performed by adding the two's-complement of the source operand to  
the destination operand. In multiple precision arithmetic, this instruction permits the carry  
("borrow") from the subtraction of the low-order operands to be subtracted from the subtraction of  
high-order operands.  
Flags:  
C: Set if a borrow occurred (src > dst); cleared otherwise.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result is negative; cleared otherwise.  
V: Set if arithmetic overflow occurred, that is, if the operands were of opposite sign and the sign  
of the result is the same as the sign of the source; cleared otherwise.  
D: Always set to "1".  
H: Cleared if there is a carry from the most significant bit of the low-order four bits of the result;  
set otherwise, indicating a "borrow".  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
opc  
dst | src  
src  
2
4
6
32  
33  
r
r
r
lr  
dst  
src  
3
3
6
6
34  
35  
R
R
R
IR  
dst  
6
36  
R
IM  
Examples:  
Given: R1 = 10H, R2 = 03H, C = "1", register 01H = 20H, register 02H = 03H, and register  
03H = 0AH:  
SBC  
SBC  
SBC  
SBC  
SBC  
R1,R2  
R1 = 0CH, R2 = 03H  
R1,@R2  
01H,02H  
01H,@02H  
01H,#8AH  
R1 = 05H, R2 = 03H, register 03H = 0AH  
Register 01H = 1CH, register 02H = 03H  
Register 01H = 15H,register 02H = 03H, register 03H = 0AH  
Register 01H = 95H; C, S, and V = "1"  
In the first example, if working register R1 contains the value 10H and register R2 the value 03H,  
the statement "SBC R1,R2" subtracts the source value (03H) and the C flag value ("1") from the  
destination (10H) and then stores the result (0CH) in register R1.  
6-77  
INSTRUCTION SET  
S3C80F9B/C80G9B  
SCF — Set Carry Flag  
SCF  
Operation:  
Flags:  
C 1  
The carry flag (C) is set to logic one, regardless of its previous value.  
C: Set to "1".  
No other flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
4
DF  
Example:  
The statement  
SCF  
sets the carry flag to logic one.  
6-78  
S3C80F9B/C80G9B  
INSTRUCTION SET  
SRA — Shift Right Arithmetic  
SRA  
dst  
Operation:  
dst (7) dst (7)  
C dst (0)  
dst (n) dst (n + 1), n = 0–6  
An arithmetic shift-right of one bit position is performed on the destination operand. Bit zero (the  
LSB) replaces the carry flag. The value of bit 7 (the sign bit) is unchanged and is shifted into bit  
position 6.  
7
6
0
C
Flags:  
C: Set if the bit shifted from the LSB position (bit zero) was "1".  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result is negative; cleared otherwise.  
V: Always cleared to "0".  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
4
4
D0  
D1  
R
IR  
Examples:  
Given: Register 00H = 9AH, register 02H = 03H, register 03H = 0BCH, and C = "1":  
SRA  
SRA  
00H  
Register 00H = 0CD, C = "0"  
@02H  
Register 02H = 03H, register 03H = 0DEH, C = "0"  
In the first example, if general register 00H contains the value 9AH (10011010B), the statement  
"SRA 00H" shifts the bit values in register 00H right one bit position. Bit zero ("0") clears the C  
flag and bit 7 ("1") is then shifted into the bit 6 position (bit 7 remains unchanged). This leaves the  
value 0CDH (11001101B) in destination register 00H.  
6-79  
INSTRUCTION SET  
S3C80F9B/C80G9B  
SRP/SRP0/SRP1 — Set Register Pointer  
SRP  
src  
src  
src  
SRP0  
SRP1  
Operation:  
If src (1) = 1 and src (0) = 0 then: RP0 (3–7)  
src (3–7)  
src (3–7)  
src (4–7),  
0
If src (1) = 0 and src (0) = 1 then: RP1 (3–7)  
If src (1) = 0 and src (0) = 0 then: RP0 (4–7)  
RP0 (3)  
RP1 (4–7)  
RP1 (3)  
src (4–7),  
1
The source data bits one and zero (LSB) determine whether to write one or both of the register  
pointers, RP0 and RP1. Bits 3–7 of the selected register pointer are written unless both register  
pointers are selected. RP0.3 is then cleared to logic zero and RP1.3 is set to logic one.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
src  
opc  
src  
2
4
31  
IM  
Examples:  
The statement  
SRP #40H  
sets register pointer 0 (RP0) at location 0D6H to 40H and register pointer 1 (RP1) at location  
0D7H to 48H.  
The statement "SRP0 #50H" sets RP0 to 50H, and the statement "SRP1 #68H" sets RP1 to  
68H.  
6-80  
S3C80F9B/C80G9B  
INSTRUCTION SET  
STOP — Stop Operation  
STOP  
Operation:  
The STOP instruction stops the both the CPU clock and system clock and causes the  
microcontroller to enter Stop mode. During Stop mode, the contents of on-chip CPU registers,  
peripheral registers, and I/O port control and data registers are retained. Stop mode can be  
released by an external reset operation or by external interrupts. For the reset operation, the  
RESET pin must be held to Low level until the required oscillation stabilization interval has  
elapsed.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
1
4
7F  
Example:  
The statement  
STOP  
halts all microcontroller operations.  
6-81  
INSTRUCTION SET  
S3C80F9B/C80G9B  
SUB — Subtract  
SUB  
dst,src  
Operation:  
dst dst – src  
The source operand is subtracted from the destination operand and the result is stored in the  
destination. The contents of the source are unaffected. Subtraction is performed by adding the  
two's complement of the source operand to the destination operand.  
Flags:  
C: Set if a "borrow" occurred; cleared otherwise.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result is negative; cleared otherwise.  
V: Set if arithmetic overflow occurred, that is, if the operands were of opposite signs and the  
sign of the result is of the same as the sign of the source operand; cleared otherwise.  
D: Always set to "1".  
H: Cleared if there is a carry from the most significant bit of the low-order four bits of the result;  
set otherwise indicating a "borrow".  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
dst |  
src  
2
4
6
22  
r
r
23  
r
lr  
opc  
opc  
src  
dst  
dst  
src  
3
3
6
6
24  
25  
R
R
R
IR  
6
26  
R
IM  
Examples:  
Given: R1 = 12H, R2 = 03H, register 01H = 21H, register 02H = 03H, register 03H = 0AH:  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
R1,R2  
R1 = 0FH, R2 = 03H  
R1,@R2  
01H,02H  
01H,@02H  
01H,#90H  
01H,#65H  
R1 = 08H, R2 = 03H  
Register 01H = 1EH, register 02H = 03H  
Register 01H = 17H, register 02H = 03H  
Register 01H = 91H; C, S, and V = "1"  
Register 01H = 0BCH; C and S = "1", V = "0"  
In the first example, if working register R1 contains the value 12H and if register R2 contains the  
value 03H, the statement "SUB R1,R2" subtracts the source value (03H) from the destination  
value (12H) and stores the result (0FH) in destination register R1.  
6-82  
S3C80F9B/C80G9B  
INSTRUCTION SET  
SWAP — Swap Nibbles  
SWAP  
dst  
Operation:  
dst (0 – 3) dst (4 – 7)  
The contents of the lower four bits and upper four bits of the destination operand are swapped.  
7
4 3  
0
Flags:  
C: Undefined.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Undefined.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
4
4
F0  
F1  
R
IR  
Examples:  
Given: Register 00H = 3EH, register 02H = 03H, and register 03H = 0A4H:  
SWAP  
SWAP  
00H  
Register 00H = 0E3H  
@02H  
Register 02H = 03H, register 03H = 4AH  
In the first example, if general register 00H contains the value 3EH (00111110B), the statement  
"SWAP 00H" swaps the lower and upper four bits (nibbles) in the 00H register, leaving the value  
0E3H (11100011B).  
6-83  
INSTRUCTION SET  
S3C80F9B/C80G9B  
TCM — Test Complement Under Mask  
TCM  
dst,src  
Operation:  
(NOT dst) AND src  
This instruction tests selected bits in the destination operand for a logic one value. The bits to be  
tested are specified by setting a "1" bit in the corresponding position of the source operand  
(mask). The TCM statement complements the destination operand, which is then ANDed with the  
source mask. The zero (Z) flag can then be checked to determine the result. The destination and  
source operands are unaffected.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Always cleared to "0".  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
opc  
dst | src  
src  
2
4
6
62  
63  
r
r
r
lr  
dst  
src  
3
3
6
6
64  
65  
R
R
R
IR  
dst  
6
66  
R
IM  
Examples:  
Given: R0 = 0C7H, R1 = 02H, R2 = 12H, register 00H = 2BH, register 01H = 02H, and  
register 02H = 23H:  
TCM  
TCM  
TCM  
TCM  
R0,R1  
R0 = 0C7H, R1 = 02H, Z = "1"  
R0,@R1  
00H,01H  
00H,@01H  
R0 = 0C7H, R1 = 02H, register 02H = 23H, Z = "0"  
Register 00H = 2BH, register 01H = 02H, Z = "1"  
Register 00H = 2BH, register 01H = 02H,  
register 02H = 23H, Z = "1"  
TCM  
00H,#34  
Register 00H = 2BH, Z = "0"  
In the first example, if working register R0 contains the value 0C7H (11000111B) and register R1  
the value 02H (00000010B), the statement "TCM R0,R1" tests bit one in the destination register  
for a "1" value. Because the mask value corresponds to the test bit, the Z flag is set to logic one  
and can be tested to determine the result of the TCM operation.  
6-84  
S3C80F9B/C80G9B  
INSTRUCTION SET  
TM — Test Under Mask  
TM  
dst,src  
Operation:  
dst AND src  
This instruction tests selected bits in the destination operand for a logic zero value. The bits to be  
tested are specified by setting a "1" bit in the corresponding position of the source operand  
(mask), which is ANDed with the destination operand. The zero (Z) flag can then be checked to  
determine the result. The destination and source operands are unaffected.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Always reset to "0".  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
opc  
dst | src  
src  
2
4
6
72  
73  
r
r
r
lr  
dst  
src  
3
3
6
6
74  
75  
R
R
R
IR  
dst  
6
76  
R
IM  
Examples:  
Given: R0 = 0C7H, R1 = 02H, R2 = 18H, register 00H = 2BH, register 01H = 02H, and  
register 02H = 23H:  
TM  
TM  
TM  
TM  
R0,R1  
R0 = 0C7H, R1 = 02H, Z = "0"  
R0,@R1  
00H,01H  
00H,@01H  
R0 = 0C7H, R1 = 02H, register 02H = 23H, Z = "0"  
Register 00H = 2BH, register 01H = 02H, Z = "0"  
Register 00H = 2BH, register 01H = 02H,  
register 02H = 23H, Z = "0"  
TM  
00H,#54H  
Register 00H = 2BH, Z = "1"  
In the first example, if working register R0 contains the value 0C7H (11000111B) and register R1  
the value 02H (00000010B), the statement "TM R0,R1" tests bit one in the destination register  
for a "0" value. Because the mask value does not match the test bit, the Z flag is cleared to logic  
zero and can be tested to determine the result of the TM operation.  
6-85  
INSTRUCTION SET  
S3C80F9B/C80G9B  
WFI — Wait For Interrupt  
WFI  
Operation:  
The CPU is effectively halted until an interrupt occurs, except that DMA transfers can still take  
place during this wait state. The WFI status can be released by an internal interrupt, including a  
fast interrupt .  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
4n  
3F  
( n = 1, 2, 3, ......)  
Example:  
The following sample program structure shows the sequence of operations that follow a "WFI"  
statement:  
Main program  
.
.
.
EI  
WFI  
(Enable global interrupt)  
(Wait for interrupt)  
(Next instruction)  
.
.
.
Interrupt occurs  
Interrupt service routine  
.
.
.
Clear interrupt flag  
IRET  
Service routine completed  
6-86  
S3C80F9B/C80G9B  
INSTRUCTION SET  
XOR — Logical Exclusive OR  
XOR  
dst,src  
Operation:  
dst dst XOR src  
The source operand is logically exclusive-ORed with the destination operand and the result is  
stored in the destination. The exclusive-OR operation results in a "1" bit being stored whenever  
the corresponding bits in the operands are different; otherwise, a "0" bit is stored.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Always reset to "0".  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
opc  
dst | src  
src  
2
4
6
B2  
B3  
r
r
r
lr  
dst  
src  
3
3
6
6
B4  
B5  
R
R
R
IR  
dst  
6
B6  
R
IM  
Examples:  
Given: R0 = 0C7H, R1 = 02H, R2 = 18H, register 00H = 2BH, register 01H = 02H, and  
register 02H = 23H:  
XOR  
XOR  
XOR  
XOR  
XOR  
R0,R1  
R0 = 0C5H, R1 = 02H  
R0,@R1  
00H,01H  
00H,@01H  
00H,#54H  
R0 = 0E4H, R1 = 02H, register 02H = 23H  
Register 00H = 29H, register 01H = 02H  
Register 00H = 08H, register 01H = 02H, register 02H = 23H  
Register 00H = 7FH  
In the first example, if working register R0 contains the value 0C7H and if register R1 contains  
the value 02H, the statement "XOR R0,R1" logically exclusive-ORs the R1 value with the R0  
value and stores the result (0C5H) in the destination register R0.  
6-87  
S3C80F9B/C80G9B  
CLOCK CIRCUITS  
7
CLOCK CIRCUITS  
OVERVIEW  
The clock frequency for the S3C80F9B/C80G9B can be generated by an external crystal, or supplied by an  
external clock source. The clock frequency for the S3C80F9B can range from 1MHz to 8 MHz and for the  
S3C80G9B can range from 1 MHz to 4 MHz. The maximum CPU clock frequency, as determined by CLKCON  
register, is 8 MHz (for the S3C80F9B) and 4 MHz (for the S3C80G9B). The XIN and XOUT pins connect the  
external oscillator or clock source to the on-chip clock circuit.  
SYSTEM CLOCK CIRCUIT  
The system clock circuit has the following components:  
— External crystal or ceramic resonator oscillation source (or an external clock)  
— Oscillator stop and wake-up functions  
— Programmable frequency divider for the CPU clock (f  
divided by 1, 2, 8, or 16)  
OSC  
— Clock circuit control register, CLKCON  
X
IN  
C1  
C2  
XIN  
External  
Clock  
Open Pin  
XOUT  
XOUT  
Figure 7-2. External Clock Circuit  
Figure 7-1. Main Oscillator Circuit  
(External Crystal or Ceramic Resonator)  
7-1  
CLOCK CIRCUITS  
S3C80F9B/C80G9B  
CLOCK STATUS DURING POWER-DOWN MODES  
The two power-down modes, Stop mode and Idle mode, affect the system clock as follows:  
— In Stop mode, the main oscillator is halted. Stop mode is released, and the oscillator starts, by a Reset  
operation or by an external interrupt. To enter the Stop mode, STOPCON (STOP Control register) has to be  
loaded with value, #0A5H before STOP instruction execution. After recovering from the Stop mode by a reset  
or an external interrupt, STOPCON register is automatically cleared.  
— In Idle mode, the internal clock signal is gated away from the CPU, but continues to be supplied to the  
interrupt structure, timer 0, timer 1, and counter A. Idle mode is released by a reset or by an interrupt  
(external or internally generated).  
STOP  
Instruction  
STOPCON  
CLKCON.3, .4  
Oscillator  
Stop  
1/2  
1/8  
M
U
X
Main  
OSC  
CPU  
Clock  
Oscillator  
Wake-up  
1/16  
Noise  
Filter  
(1)  
INT Pin  
NOTES  
1.  
An external interrupt with an RC-delay noise filter (for the S3C80F9B/C80G9B  
INT0-9) is fiexed to release Stop mode and "wake up" the main oscillator.  
Because the S3C80F9B/C80G9B has no subsystem clock,  
2.  
the 3-bit CLKCON signature code (CLKCON.2-CLKCON.0) is no meaning.  
Figure 7-3. System Clock Circuit Diagram  
7-2  
S3C80F9B/C80G9B  
CLOCK CIRCUITS  
SYSTEM CLOCK CONTROL REGISTER (CLKCON)  
The system clock control register, CLKCON, is located in set 1, address D4H. It is read/write addressable and  
has the following functions:  
— Oscillator frequency divide-by value  
CLKCON register setting control whether or not an external interrupt can be used to trigger a Stop mode release.  
(This is called the "IRQ wake-up" function.) The IRQ wake-up enable bit is CLKCON.7.  
In S3C80F9B/C80G9B, this bit is not valid any more. Actually bit 7, 6, 5, 2, 1, and 0 are no meaning in  
S3C80F9B/C80G9B.  
After a reset, the main oscillator is activated, and the fOSC/16 (the slowest clock speed) is selected as the CPU  
clock. If necessary, you can then increase the CPU clock speed to fOSC, fOSC/2, or fOSC/8  
.
System Clock Control Register (CLKCON)  
D4H, Set 1, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Not used  
Not used  
Divide-by selection bits  
for CPU clock frequency  
00 = fosc/16  
Not used  
01 = fosc/8  
10 = fosc/2  
11 = fosc (non-divided)  
Figure 7-4. System Clock Control Register (CLKCON)  
7-3  
S3C80F9B/C80G9B  
RESET AND POWER-DOWN 1 (S3C80F9B)  
8
RESET and Power-Down 1 (S3C80F9B)  
SYSTEM RESET  
OVERVIEW  
The interlocking work of nReset pin and LVD circuit supplies two operating modes: back-up mode input, and  
system reset input. Back-up mode input automatically creates a chip stop state when the nReset pin is set to low  
level or the voltage at VDD is lower than VLVD. When the nReset pin is at a high state and the LVD circuit detects  
rising edge of VDD on the point VLVD, the Reset pulse generator makes a Reset pulse, and system Reset occurs.  
System Reset pulse occurs by three sources - nReset pin, LVD circuit, and Basic Timer - as below.  
1. The rising edge detection of LVD circuit while the rising slope of VDD pass the voltage of VLVD (Low level  
Detect Voltage).  
2. The Reset pulse generation by transiting of nReset pin to High level from Low level on the condition that VDD  
is higher level state than VLVD (Low level Detect Voltage).  
3. BT overflow for watch-dog timer. See the chapter 11. Basic Timer and Timer 0 for more understanding.  
VDD  
LVD  
nRESET/  
Back-up  
mode  
Back-up mode  
System Reset  
Noise  
Filter  
Rising Edge  
Detector  
Reset Pulse  
Generator  
fosc  
BT (WDT)  
Figure 8-1. Reset block diagram  
8-1  
RESET AND POWER-DOWN 1 (S3C80F9B  
SYSTEM RESET BY LVD CIRCUIT  
S3C80F9B/C80G9B  
The Low Voltage detect circuit is built on the S3C80F9B product for system Reset and back-up mode. It detects a  
falling/rising slope of VDD by comparing the voltage at VDD with VLVD (Low level Detect Voltage). The system  
Reset pulse is generated by the rising slope of VDD. While the voltage at VDD is rising up and passing VLVD, the  
Reset pulse is occurred at the moment "VDD VLVD". The other way, while the voltage at VDD is falling down and  
passing VLVD, the chip go into back-up mode at the moment "VDD = VLVD".  
SYSTEM RESET BY nRESET PIN  
When the nReset pin transiting to VIH (high input level of reset pin) from VIL (low input level of reset pin), the  
Reset pulse is generated on the condition of "VDD VLVD"  
WATCH-DOG TIMER RESET  
The S3C80F9B build a watch-dog timer that can recover to normal operation from abnormal function. Watch-dog  
timer generates a system Reset signal if not clearing a BT-Basic Counter within a specific time by program.  
System Reset can return to the proper operation of chip. For more understanding of watch-dog timer function,  
please see the chapter 11, Basic Timer and Timer0.  
NOTE  
The system Reset operation depends on the interlocking work of the nReset pin and LVD circuit. So if the  
both Reset source is not the exact Reset condition at the same time, the system Reset is not occurred.  
Refer to following table for more information.  
Table 8-1. Reset Condition  
Condition  
Reset  
System Reset  
Slope of VDD  
VDD  
The voltage level of reset pin  
(Vreset)  
Source  
Rising up from  
VDD < VLVD  
Vreset > VIH  
Vreset < VIH  
LVD circuit  
System reset occurs  
No system reset  
No system reset  
VDD VLVD  
VDD > VLVD  
VDD < VLVD  
Transition from  
“Vreset < VIL” to “VIH < Vreset”  
VDD > VLVD  
Standstill  
Transition from  
Reset pin  
System reset occurs  
(VDD > VLVD  
)
“Vreset < VIL” to “VIH < Vreset”  
8-2  
S3C80F9B/C80G9B  
RESET AND POWER-DOWN 1 (S3C80F9B)  
SYSTEM RESET OPERATION  
System Reset starts the oscillation circuit, synchronize chip operation with CPU clock, and initialize the internal  
CPU and peripheral modules. This procedure brings the S3C80F9B into a known operating status. To allow time  
for internal CPU clock oscillation to stabilize, the Reset pulse generator must be held to active level for a minimum  
time interval after the power supply comes within tolerance. The minimum required Reset operation for a  
oscillation stabilization time is 16 oscillation clocks. All system and peripheral control registers are then Reset to  
their default hardware values (see Tables 8-2).  
In summary, the following sequence of events occurs during a Reset operation:  
— All interrupts are disabled.  
— The watchdog function (basic timer) is enabled.  
— Ports 0, 1, 2 and 3 are set to input mode and all pull-up resistors are disabled for the I/O port pin circuits.  
— Peripheral control and data register settings are disabled and reset to their default hardware values (see  
Table 8-2).  
— The program counter (PC) is loaded with the program reset address in the ROM, 0100H.  
— When the programmed oscillation stabilization time interval has elapsed, the instruction stored in ROM  
location 0100H (and 0101H) is fetched and executed.  
NOTE  
To program the duration of the oscillation stabilization interval, you make the appropriate settings to the  
basic timer control register, BTCON, before entering Stop mode. Also, if you do not want to use the basic  
timer watchdog function (which causes a system reset if a basic timer counter overflow occurs), you can  
disable it by writing '1010B' to the upper nibble of BTCON. But we recommend you should use it to  
prevent the chip malfunction.  
8-3  
RESET AND POWER-DOWN 1 (S3C80F9B  
HARDWARE RESET VALUES  
S3C80F9B/C80G9B  
Tables 8-2 list the reset values for CPU and system registers, peripheral control registers, and peripheral data  
registers following a reset operation. The following notation is used to represent reset values:  
— A "1" or a "0" shows the reset bit value as logic one or logic zero, respectively.  
— An 'x' means that the bit value is undefined after a reset.  
— A dash ('–') means that the bit is either not used or not mapped (but a 0 is read from the bit position)  
Table 8-2. Set 1 Register Values After Reset  
Register Name  
Mnemonic  
Address  
Dec  
Bit Values After Reset  
Hex  
D0H  
D1H  
D2H  
D3H  
D4H  
D5H  
D6H  
D7H  
7
0
1
0
0
0
x
6
0
1
0
0
0
x
5
0
1
0
0
0
x
4
0
1
0
0
0
x
3
0
1
0
0
0
x
2
0
1
0
0
0
x
1
0
1
0
0
0
0
0
0
1
0
0
0
0
Timer 0 counter (read-only)  
Timer 0 data register  
Timer 0 control register  
Basic timer control register  
Clock control register  
System flags register  
Register pointer 0  
T0CNT  
T0DATA  
T0CON  
BTCON  
CLKCON  
FLAGS  
RP0  
208  
209  
210  
211  
212  
213  
214  
215  
1
1
1
1
0
0
0
0
0
1
Register pointer 1  
RP1  
Location D8H (SPH) is not mapped.  
Stack pointer (low byte)  
Instruction pointer (high byte)  
Instruction pointer (low byte)  
Interrupt request register (read-only)  
Interrupt mask register  
SPL  
IPH  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
D9H  
DAH  
DBH  
DCH  
DDH  
DEH  
DFH  
E0H  
E1H  
E2H  
E3H  
E4H  
E5H  
E6H  
E7H  
E8H  
E9H  
x
x
x
0
x
0
0
0
0
0
0
0
0
0
0
0
0
x
x
x
0
x
0
0
0
0
0
0
0
0
0
0
x
x
x
0
x
0
0
0
0
0
0
0
0
0
0
0
x
x
x
0
x
x
0
0
0
0
0
0
0
0
0
0
0
x
x
x
0
x
x
0
0
0
0
1
0
0
0
0
0
0
x
x
x
0
x
x
0
0
0
0
1
0
0
0
0
0
0
x
x
x
0
x
0
0
0
0
0
0
0
0
0
0
0
0
x
x
x
0
x
0
0
0
0
0
0
0
0
0
0
0
0
IPL  
IRQ  
IMR  
System mode register  
SYM  
PP  
Register page pointer  
Port 0 data register  
P0  
Port 1 data register  
P1  
Port 2 data register  
P2  
Port 3 data register  
P3  
Port 4 data register  
P4  
Port 2 interrupt enable register  
Port 2 interrupt pending register  
Port 0 pull-up enable register  
Port 0 control register (high byte)  
Port 0 control register (low byte)  
P2INT  
P2PND  
P0PUR  
P0CONH  
P0CONL  
8-4  
S3C80F9B/C80G9B  
RESET AND POWER-DOWN 1 (S3C80F9B)  
Table 8-2. Set 1 Register Values After Reset (Continued)  
Register Name  
Mnemonic  
Address  
Dec  
Bit Values After Reset  
Hex  
EAH  
EBH  
ECH  
EDH  
EEH  
EFH  
F0H  
F1H  
F2H  
F3H  
F4H  
F5H  
F6H  
F7H  
F8H  
F9H  
FAH  
FBH  
7
0
0
0
0
0
0
0
0
0
0
1
1
0
0
1
1
0
0
6
0
0
0
0
0
0
0
0
0
0
1
1
0
0
1
1
0
0
5
0
0
0
0
0
0
0
0
0
0
1
1
0
0
1
1
0
0
4
0
0
0
0
0
0
0
0
0
0
1
1
0
0
1
1
0
0
3
0
0
0
0
0
0
0
0
0
0
1
1
0
0
1
1
0
0
2
0
0
0
0
0
0
0
0
0
0
1
1
0
0
1
1
0
0
1
0
0
0
0
0
0
0
0
0
0
1
1
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
1
1
0
0
Port 1 control register (high byte)  
Port 1 control register (low byte)  
Port 2 control register (high byte)  
Port 2 control register (low byte)  
Port 2 pull-up enable register  
Port 3 control register  
P1CONH  
P1CONL  
P2CONH  
P2CONL  
P2PUR  
234  
235  
236  
237  
238  
239  
240  
241  
242  
243  
244  
245  
246  
247  
248  
249  
250  
P3CON  
Port 4 control register  
P4CON  
Port 0 interrupt enable register  
Port 0 interrupt pending register  
Counter A control register  
P0INT  
P0PND  
CACON  
CADATAH  
CADATAL  
T1CNTH  
T1CNTL  
T1DATAH  
T1DATAL  
T1CON  
Counter A data register (high byte)  
Counter A data register (low byte)  
Timer 1 counter register (high byte)  
Timer 1 counter register (low byte)  
Timer 1 data register (high byte)  
Timer 1 data register (low byte)  
Timer 1 control register  
Stop control register  
STOPCON 251  
Locations FCH is not mapped.  
Basic timer counter  
BTCNT  
EMT  
253  
254  
255  
FDH  
FEH  
FFH  
x
0
x
x
1
x
x
1
x
x
1
x
x
1
x
x
1
x
x
0
x
x
-
External memory timing register  
Interrupt priority register  
IPR  
x
NOTES:  
1. Although the SYM register is not used, SYM.5 should always be “0”. If you accidentally write a 1 to this bit during  
normal operation, a system malfunction may occur.  
2. Except for T0CNT, IRQ, T1CNTH, T1CNTL, and BTCNT, which are read-only, all registers in set 1 are  
read/write addressable.  
3. You cannot use a read-only register as a destination field for the instructions OR, AND, LD, and LDB.  
4. Interrupt pending flags are noted by shaded table cells.  
8-5  
RESET AND POWER-DOWN 1 (S3C80F9B  
S3C80F9B/C80G9B  
POWER-DOWN MODES  
BACK-UP MODE  
For reducing current consumption, S3C80F9B goes into Back-up mode in related to nReset pin or LVD circuit.  
While external nReset pin is low state or a falling slope of VDD is detected by LVD circuit on the point of VLVD, chip  
changes to the back-up mode, where CPU and peripheral operation were stopped due to oscillation stop and the  
supply current is reduced to less than 25 µA at 5.0 V. In back-up mode, chip can not release stop state by any  
interrupt. The only way to release back-up mode is system Reset operation by interactive work of nReset pin and  
LVD circuit. The system Reset of watch dog timer is not occurred in back up mode.  
VDD  
LVD  
Back-up mode  
System Reset  
nRESET/  
Back-up mode  
NF  
Figure 8-2. Block Diagram for Back-up Mode  
Voltage [V]  
Slope of RESET &  
VDD pin  
VDD  
Rising edge detected  
(VDD >= VLVD)  
VLVD  
Low level  
Reset Pulse generated,  
oscillation starts  
detect voltage  
Falling edge detected,  
oscillation stop.  
(VDD < VLVD)  
Normal Operation  
Back up Mode  
Normal Operation  
NOTES:  
1, When the rising edge is detected by LVD circuit, Back-up mode is relesase (VLVD =< VDD)  
2. When the falling edge is detected by LVD circuit, Back-up mode is activated (VLVD > VDD)  
Figure 8-3. Timing Diagram for Back-up Mode Input and Release by LVD  
8-6  
S3C80F9B/C80G9B  
Stop Mode  
RESET AND POWER-DOWN 1 (S3C80F9B)  
Stop mode is invoked by stop control register (STOPCON) setting and the instruction STOP. In Stop mode, the  
operation of the CPU and all peripherals is halted. That is, the on-chip main oscillator stops and the supply current  
is reduced to less than 25 µA at 5.0 V. All system functions stop when the clock "freezes," but data stored in the  
internal register file is retained. Stop mode can be released in one of two ways: by a system reset or by an  
external interrupt.  
After releasing from STOP mode, the value of stop control register (STOPCON) is cleared automatically.  
)
PROGRAMMING TIP - To enter STOP mode.  
This example shows how to enter the stop mode.  
ORG  
0000H  
; Reset address  
JP  
T,START  
ENTER_STOP:  
LD  
STOPCON,#0A5H  
STOP  
NOP  
NOP  
NOP  
RET  
ORG  
JP  
0100H-3  
T,START  
ORG  
0100H  
; Reset address  
START  
MAIN  
LD  
BTCON,#03  
; clear basic timer counter.  
NOP  
CALL  
ENTER_STOP  
; Enter the STOP mode  
LD  
JP  
BTCON,#02H  
T,MAIN  
; clear basic timer counter.  
8-7  
RESET AND POWER-DOWN 1 (S3C80F9B  
S3C80F9B/C80G9B  
Using system Reset to Release Stop Mode  
Stop mode is released when the Reset signal goes active by LVD circuit or nReset pin: all system and peripheral  
control registers are Reset to their default hardware values and the contents of all data registers are retained.  
When the programmed oscillation stabilization interval has elapsed, the CPU starts the system initialization  
routine by fetching the program instruction stored in ROM location 0100H.  
Using an External Interrupt to Release Stop Mode  
External interrupts with an RC-delay noise filter circuit can be used to release Stop mode. For the S3C80F9B  
microcontroller, we recommend using the INT0-9 interrupt at P0 and P2.  
Please note the following conditions for Stop mode release:  
— If you release Stop mode using an external interrupt, the current values in system and peripheral control  
registers are unchanged.  
— If you use an external interrupt for Stop mode release, you can also program the duration of the oscillation  
stabilization interval. To do this, you must make the appropriate control and clock settings before entering  
Stop mode.  
— If you use an interrupt to release Stop mode, the bit-pair setting for CLKCON.4/CLKCON.3 remains  
unchanged and the currently selected clock value is used.  
The external interrupt is serviced when the Stop mode release occurs. Following the IRET from the service  
routine, the instruction immediately following the one that initiated Stop mode is executed.  
Using a SED & R (Stop Error Detect and Recovery )to Release Stop Mode  
The Stop Error Detect & Recovery circuit is used to release stop mode and prevent abnormal - stop mode that  
can be occurred by battery bouncing. It executes two functions in related to the internal logic of P0 and P2. One is  
releasing from stop status by switching the level of input port (P0 or P2) and the other is keeping the chip from the  
stop mode when the chip is in abnormal status.  
Releasing from stop mode  
When the level of a pin on Port0 and Port2 is switching, the chip is released from stop mode even though external  
interrupt is disabled.  
Keeping the chip from entering abnormal - stop mode  
This circuit detects the abnormal status by checking the port (P0 and P2) status. If the chip is in abnormal status it  
keeps from entering stop mode.  
NOTE  
Do not use stop mode if you are using an external clock source because Xin input must be cleared  
internally to VSS to reduce current leakage.  
8-8  
S3C80F9B/C80G9B  
IDLE MODE  
RESET AND POWER-DOWN 1 (S3C80F9B)  
Idle mode is invoked by the instruction IDLE (opcode 6FH). In Idle mode, CPU operations are halted while some  
peripherals remain active. During Idle mode, the internal clock signal is gated away from the CPU and from all but  
the following peripherals, which remain active:  
— Interrupt logic  
— Timer 0  
— Timer 1  
— Counter A  
I/O port pins retain the mode (input or output) they had at the time Idle mode was entered.  
Idle Mode Release  
You can release Idle mode in one of two ways:  
1. Execute a Reset. All system and peripheral control registers are reset to their default values and the contents  
of all data registers are retained. The reset automatically selects the slowest clock (1/16) because of the  
hardware reset value for the CLKCON register. If all interrupts are masked in the IMR register, a reset is the  
only way you can release Idle mode.  
2. Activate any enabled interrupt; internal or external. When you use an interrupt to release Idle mode, the 2-bit  
CLKCON.4/CLKCON.3 value remains unchanged, and the currently selected clock value is used. The  
interrupt is then serviced. When the return-from-interrupt condition (IRET) occurs, the instruction immediately  
following the one which initiated Idle mode is executed.  
NOTE  
Only external interrupts with an RC delay built in to the pin circuit can be used to release Stop mode. To  
release Idle mode, you can use either an external interrupt or an internally-generated interrupt.  
8-9  
RESET AND POWER-DOWN 1 (S3C80F9B  
S3C80F9B/C80G9B  
RECOMMENDATION FOR UNUSUED PINS  
To reduce overall power consumption, please configure unused pins according to the guideline description Table  
8-3.  
Table 8-3. Guideline for Unused Pins to Reduced Power Consumption.  
Pin Name  
Recommend  
Set Input mode  
Enable Pull-up Resister  
No Connection for Pins  
Example  
Port 0  
P0CONH # 00H or 0FFH  
P0CONL # 00H or 0FFH  
P0PUR # 0FFH  
Port 1  
Set Open-Drain Output mode  
Set P1 Data Register to #00H.  
Disable Pull-up Resister  
P1CONH # 55H  
P1CONL # 55H  
P1  
# 00H  
No Connection for Pins  
Port 2  
Set Push-pull Output mode  
Set P2 Data Register to #00H.  
Disable Pull-up resister  
P2CONH # 0AAH  
P2CONL # 0AAH  
P2  
# 00H  
No Connection for Pins  
P2PUR # 00H  
P3.0–3.1  
Set Push-pull Output mode  
Set P3 Data Register to #00H.  
No Connection for Pins  
P3CON # 11010010B  
P3  
# 00H  
P3.2– P3.3  
P3.4–P3.5  
No connection  
Set P3 Data Register to #00H.  
P3  
# 00H  
Port 4  
TEST  
Set Push-pull Output mode  
Set P4 Data Register to #00H.  
P4CON # 0FFH  
P4  
# 00H  
Connect to Vss.  
8-10  
S3C80F9B/C80G9B  
RESET AND POWER-DOWN 1 (S3C80F9B)  
SUMMARY TABLE OF BACK-UP MODE, STOP MODE, AND, RESET STATUS  
For more understanding, please see the below description Table 8-4.  
Table 8-4. Summary of Each Mode.  
Item/Mode  
Back-up  
Reset status  
Stop  
Approach  
Condition  
External nReset pin is low  
level state or VDD is lower  
than VLVD  
External nReset pin is on rising  
edge.  
The rising edge at VDD is  
STOPCON # A5H  
STOP  
( LD STOPCON,#0A5H  
STOP)  
detected by LVD circuit.  
(When VDD VLVD  
)
WDT overflow signal is  
activated.  
PORT  
status  
All I/O port is floating status  
except P3.2 and P3.3  
All I/O port is floating status  
except P3.2 and P3.3  
All port is keep the previous  
status.  
All port becomes input mode Disable all pull-up resister  
Input port data is not  
changed.  
but is blocked.  
except P3.2 and P3.3  
Disable all pull-up resister  
except P3.2 and P3.3  
Control  
Register  
All control register and  
system register are  
initialized as list of Table 8-2  
All control register and system  
register are initialized as list of  
Table 8-2.  
Releasing  
Condition  
External nReset pin is high  
(Rising edge)  
After passing an oscillation  
warm-up time  
External interrupt, or Reset  
SED & R Circuit.  
The rising edge of LVD  
circuit is generated.  
Others  
There is no current  
There can be input leakage  
It depend on control  
consumption in chip.  
current in chip.  
program  
8-11  
S3C80F9B/C80G9B  
RESET and POWER-DOWN 2  
9
RESET and Power-Down 2 (S3C80G9B)  
SYSTEM RESET  
OVERVIEW  
The interlocking work of nReset pin and LVD circuit supplies two operating modes: back-up mode input, and  
system Reset input. Back-up mode input automatically creates a chip stop state when the nReset pin is set to low  
level or the voltage at VDD is lower than VLVD. When the nReset pin is at a high state and the LVD circuit detects  
rising edge of VDD on the point VLVD, the Reset pulse generator makes a reset pulse, and system Reset occurs.  
When the operating mode is in “STOP mode”, the LVD circuit is disabled to reduce the current consumption under  
6uA instead of 25uA (at VDD = 5.0 V). Therefor, although the voltage at VDD is lower than VLVD, the chip doesn’t  
go into back-up mode when the operating state is in stop mode and nReset pin is High level (Vreset > VIH).  
The S3C80G9B has four different system reset sources as following:  
1. Not in stop mode, the rising edge detection of LVD circuit while the rising slope of VDD pass the voltage of  
VLVD (Low level Detect Voltage).  
2. The Reset pulse generation by transiting of nReset pin to High level from Low level on the condition that VDD  
is higher level state than VLVD (Low level Detect Voltage).  
3. Internal Power-on Reset  
4. BT overflow for watchdog timer. See the chapter 11. Basic Timer and Timer 0 for more understanding.  
9-1  
RESET and POWER-DOWN 2  
S3C80F9B/C80G9B  
Enable/Disable  
VDD  
LVD  
STOP  
STOPCON  
nRESET/  
Back-up  
Mode  
Back-up mode  
System Reset  
Noise  
Filter  
Rising Edge  
Detector  
Reset Pulse  
Generator  
Internal POR  
fosc  
BT (WDT)  
Figure 9-1 Reset block diagram For the S3C80G9B  
SYSTEM RESET BY LVD CIRCUIT  
The Low Voltage detect circuit is built on the S3C80G9B product to generate a system Reset when the operating  
state is not in stop mode. When the operating status is not stop mode it detects a slope of VDD by comparing the  
voltage at VDD with VLVD (Low level Detect Voltage). The system Reset pulse is generated by the rising slope of  
VDD. While the voltage at VDD is rising up and passing VLVD, the Reset pulse is occurred at the moment “VDD ≥  
VLVD “. The other way, while the voltage at VDD is falling down and passing VLVD, the chip go into back-up mode  
at the moment “VDD = VLVD”. This function is disabled when the operating state is “STOP mode” to reduce the  
current consumption under 6uA instead of 25uA (at VDD = 5.0V).  
SYSTEM RESET BY nRESET PIN  
When the nReset pin transiting to VIH (high input level of nReset pin) from VIL (low input level of reset pin), the  
reset pulse is generated on the condition of VDD VLVD“.  
WATCH-DOG TIMER RESET  
The S3C80G9B build a watchdog timer that can recover to normal operation from abnormal function. Watchdog  
timer generates a system reset signal if not clearing a BT-Basic Counter within a specific time by program.  
System reset can return to the proper operation of chip. For more understanding of watchdog timer function,  
please see the chapter 11, Basic Timer and Timer0.  
9-2  
S3C80F9B/C80G9B  
RESET and POWER-DOWN 2  
INTERNAL POWER-ON RESET  
The power-on reset circuit is built on the S3C80G9B product. During a power-on Reset, the voltage at VDD goes to  
High level and the Schmitt trigger input of POR circuit is forced to Low level and then to High level. The power-on  
Reset circuit makes a Reset signal whenever the power supply voltage is powering-up and the Schmitt trigger  
input senses the Low level. This on-chip POR circuit consists of an internal resistor, an internal capacitor, and a  
Schmitt trigger input transistor.  
VDD  
R: On-Chip Resistor  
C: On-Chip Capacitor  
System Reset  
C
Schmitt Trigger Inverter  
VSS  
Figure 9-2. Power-on reset Circuit  
TVDD  
(VDD Rising Time)  
Voltage [V]  
VDD  
VDD  
Va  
VIH = 0.85 VDD  
VIL = 0.4 VDD  
Reset Pulse Width  
Reset pulse  
Time  
If Va voltage(schmitt trigger input voltage) is under the 0.4VDD, Reset pulse signal is gernerated.  
If Va voltage(schmitt trigger input voltage) is over than 0.4VDD, Reset pulse is not gernerated.  
Figure 9-3. Timing Diagram for Power-on Reset Circuit  
9-3  
RESET and POWER-DOWN 2  
S3C80F9B/C80G9B  
NOTE  
The system Reset operation depends on the interlocking work of the nReset pin, LVD circuit and Internal  
POR. The LVD circuit is disabled when the operating mod is in stop mode. So although the voltage at VDD  
is rising up and passing VLVD, the system reset by LVD circuit is not occurs in stop mode.  
Refer to following table and figure for more information.  
Table 9-1. Reset Condition not in STOP mode  
Condition  
The voltage level of reset pin  
(Vreset)  
Reset  
System Reset  
Slope of VDD  
VDD  
Source  
Vreset > VIH  
Vreset < VIH  
Rising up from  
VDD < VLVD  
LVD circuit  
System Reset occurs  
No system Reset  
No system Reset  
VDD VLVD  
VDD > VLVD  
VDD < VLVD  
Transition from  
“Vreset < VIL” to “VIH < Vreset”  
VDD > VLVD  
Standstill  
Transition from  
nReset pin  
System Reset occurs  
“Vreset < VIL” to “VIH < Vreset”  
(VDD > VLVD  
)
Table 9-2. Reset Condition in STOP mode  
Condition Reset  
System Reset  
Slope of VDD  
VDD  
The voltage level of reset pin  
(Vreset)  
Source  
Vreset > VIH  
Rising up from  
No system Reset  
VDD VLVD  
0.4 VDD < VDD  
VLVD  
<
VDD > VLVD Vreset < VIH  
No system Reset  
No system Reset  
VDD < VLVD  
Transition from  
“Vreset < VIL” to “VIH < Vreset”  
Vreset > VIH  
Rising up from  
VDD < 0.4VDD  
Internal POR System Reset occurs  
VDD VLVD  
VDD > VLVD Vreset < VIH  
No system Reset  
No system Reset  
VDD < VLVD  
Transition from  
“Vreset < VIL” to “VIH < Vreset”  
VDD > VLVD  
Standstill  
Transition from  
“Vreset < VIL” to “VIH < Vreset”  
nReset pin  
System Reset occurs  
(VDD > VLVD  
)
9-4  
S3C80F9B/C80G9B  
RESET and POWER-DOWN 2  
When "Vreset > VIH" and the operating status is in STOP mode, LVD circuit is disabled in the  
S3C80G9B.  
VDD  
a
0.85VDD  
VLVD  
b
Va  
b
c
Va  
c
0.4VDD  
Reset Pulse Width  
RAM Retention  
Voltage  
NOTE:  
Va is a schmitt trigger input signal of internal Power-on reset  
a. System reset is not occurs, RAM data is retentioned  
b. System reset is occurs by internal POR circuit, RAM data is retentioned.  
c. System reset is occurs by internal POR circuit, RAM data is not retentioned.  
Figure 9-4. Reset Timing Diagram for the S3C80G9B in STOP mode  
9-5  
RESET and POWER-DOWN 2  
SYSTEM RESET OPERATION  
S3C80F9B/C80G9B  
System Reset starts the oscillation circuit, synchronize chip operation with CPU clock, and initialize the internal  
CPU and peripheral modules. This procedure brings the S3C80G9B into a known operating status. To allow time  
for internal CPU clock oscillation to stabilize, the reset pulse generator must be held to active level for a minimum  
time interval after the power supply comes within tolerance. The minimum required Reset operation for a  
oscillation stabilization time is 16 oscillation clocks. All system and peripheral control registers are then Reset to  
their default hardware values (see Tables 9-3).  
In summary, the following sequence of events occurs during a Reset operation:  
— All interrupts are disabled.  
— The watchdog function (basic timer) is enabled.  
— Ports 0, 1, 2 and 3 are set to input mode and all pull-up resistors are disabled for the I/O port pin circuits.  
— Peripheral control and data register settings are disabled and reset to their default hardware values (see  
Table 9-3).  
— The program counter (PC) is loaded with the program reset address in the ROM, 0100H.  
— When the programmed oscillation stabilization time interval has elapsed, the instruction stored in ROM  
location 0100H (and 0101H) is fetched and executed.  
NOTE  
To program the duration of the oscillation stabilization interval, you make the appropriate settings to the  
basic timer control register, BTCON, before entering Stop mode. Also, if you do not want to use the basic  
timer watchdog function (which causes a system reset if a basic timer counter overflow occurs), you can  
disable it by writing '1010B' to the upper nibble of BTCON. But we recommend you should use it to  
prevent the chip malfunction.  
9-6  
S3C80F9B/C80G9B  
RESET and POWER-DOWN 2  
HARDWARE RESET VALUES  
Tables 9-3 list the Reset values for CPU and system registers, peripheral control registers, and peripheral data  
registers following a reset operation. The following notation is used to represent Reset values:  
— A "1" or a "0" shows the reset bit value as logic one or logic zero, respectively.  
— An 'x' means that the bit value is undefined after a reset.  
— A dash ('–') means that the bit is either not used or not mapped (but a 0 is read from the bit position)  
Table 9-3. Set 1 Register Values After Reset  
Register Name  
Mnemonic  
Address  
Dec  
Bit Values After Reset  
Hex  
D0H  
D1H  
D2H  
D3H  
D4H  
D5H  
D6H  
D7H  
7
0
1
0
0
0
x
6
0
1
0
0
0
x
5
0
1
0
0
0
x
4
0
1
0
0
0
x
3
0
1
0
0
0
x
2
0
1
0
0
0
x
1
0
1
0
0
0
0
0
0
1
0
0
0
0
Timer 0 counter (read-only)  
Timer 0 data register  
Timer 0 control register  
Basic timer control register  
Clock control register  
System flags register  
Register pointer 0  
T0CNT  
T0DATA  
T0CON  
BTCON  
CLKCON  
FLAGS  
RP0  
208  
209  
210  
211  
212  
213  
214  
215  
1
1
1
1
0
0
0
0
0
1
Register pointer 1  
RP1  
Location D8H (SPH) is not mapped.  
Stack pointer (low byte)  
Instruction pointer (high byte)  
Instruction pointer (low byte)  
Interrupt request register (read-only)  
Interrupt mask register  
SPL  
IPH  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
D9H  
DAH  
DBH  
DCH  
DDH  
DEH  
DFH  
E0H  
E1H  
E2H  
E3H  
E4H  
E5H  
E6H  
E7H  
E8H  
E9H  
x
x
x
0
x
0
0
0
0
0
0
0
0
0
0
0
0
x
x
x
0
x
0
0
0
0
0
0
0
0
0
0
x
x
x
0
x
0
0
0
0
0
0
0
0
0
0
0
x
x
x
0
x
x
0
0
0
0
0
0
0
0
0
0
0
x
x
x
0
x
x
0
0
0
0
1
0
0
0
0
0
0
x
x
x
0
x
x
0
0
0
0
1
0
0
0
0
0
0
x
x
x
0
x
0
0
0
0
0
0
0
0
0
0
0
0
x
x
x
0
x
0
0
0
0
0
0
0
0
0
0
0
0
IPL  
IRQ  
IMR  
System mode register  
SYM  
PP  
Register page pointer  
Port 0 data register  
P0  
Port 1 data register  
P1  
Port 2 data register  
P2  
Port 3 data register  
P3  
Port 4 data register  
P4  
Port 2 interrupt enable register  
Port 2 interrupt pending register  
Port 0 pull-up enable register  
Port 0 control register (high byte)  
Port 0 control register (low byte)  
P2INT  
P2PND  
P0PUR  
P0CONH  
P0CONL  
9-7  
RESET and POWER-DOWN 2  
S3C80F9B/C80G9B  
Table 9-3. Set 1 Register Values After Reset (Continued)  
Register Name  
Mnemonic  
Address  
Dec  
Bit Values After Reset  
Hex  
EAH  
EBH  
ECH  
EDH  
EEH  
EFH  
F0H  
F1H  
F2H  
F3H  
F4H  
F5H  
F6H  
F7H  
F8H  
F9H  
FAH  
FBH  
7
0
0
0
0
0
0
0
0
0
0
1
1
0
0
1
1
0
0
6
0
0
0
0
0
0
0
0
0
0
1
1
0
0
1
1
0
0
5
0
0
0
0
0
0
0
0
0
0
1
1
0
0
1
1
0
0
4
0
0
0
0
0
0
0
0
0
0
1
1
0
0
1
1
0
0
3
0
0
0
0
0
0
0
0
0
0
1
1
0
0
1
1
0
0
2
0
0
0
0
0
0
0
0
0
0
1
1
0
0
1
1
0
0
1
0
0
0
0
0
0
0
0
0
0
1
1
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
1
1
0
0
Port 1 control register (high byte)  
Port 1 control register (low byte)  
Port 2 control register (high byte)  
Port 2 control register (low byte)  
Port 2 pull-up enable register  
Port 3 control register  
P1CONH  
P1CONL  
P2CONH  
P2CONL  
P2PUR  
234  
235  
236  
237  
238  
239  
240  
241  
242  
243  
244  
245  
246  
247  
248  
249  
250  
251  
P3CON  
Port 4 control register  
P4CON  
Port 0 interrupt enable register  
Port 0 interrupt pending register  
Counter A control register  
P0INT  
P0PND  
CACON  
CADATAH  
CADATAL  
T1CNTH  
T1CNTL  
T1DATAH  
T1DATAL  
T1CON  
Counter A data register (high byte)  
Counter A data register (low byte)  
Timer 1 counter register (high byte)  
Timer 1 counter register (low byte)  
Timer 1 data register (high byte)  
Timer 1 data register (low byte)  
Timer 1 control register  
Stop control register  
STOPCON  
Locations FCH is not mapped.  
Basic timer counter  
BTCNT  
EMT  
253  
254  
255  
FDH  
FEH  
FFH  
x
0
x
x
1
x
x
1
x
x
1
x
x
1
x
x
1
x
x
0
x
x
-
External memory timing register  
Interrupt priority register  
IPR  
x
NOTES:  
1. Although the SYM register is not used, SYM.5 should always be “0”. If you accidentally write a 1 to this bit during normal  
operation, a system malfunction may occur.  
2. Except for T0CNT, IRQ, T1CNTH, T1CNTL, and BTCNT, which are read-only, all registers in set 1 are  
read/write addressable.  
3. You cannot use a read-only register as a destination field for the instructions OR, AND, LD, and LDB.  
4. Interrupt pending flags are noted by shaded table cells.  
9-8  
S3C80F9B/C80G9B  
RESET and POWER-DOWN 2  
POWER-DOWN MODES  
BACK-UP MODE  
For reducing current consumption, S3C80G9B goes into Back-up mode in related to nReset pin or LVD circuit.  
While external nReset pin is low state or a falling slope of VDD is detected by LVD circuit on the point of VLVD, chip  
changes to the back-up mode, where CPU and peripheral operation were stopped due to oscillation stop and the  
supply current is reduced to less than 25 µA at 5.0 V.  
When the operating mode is in “STOP mode”, the LVD circuit is disabled to reduce the current consumption under  
6uA instead of 25uA (at VDD = 5.0 V). Therefor, although the voltage at VDD is lower than VLVD, the chip doesn’t  
go into back-up mode when the operating state is in stop mode and nReset pin is High level (Vreset > VIH).  
In back-up mode, chip can not release stop state by any interrupt. The only way to release back-up mode is  
system Reset operation by interactive work of nReset pin and LVD circuit. The system Reset of watchdog timer is  
not occurred in back up mode.  
Enable/Disable  
VDD  
LVD  
Stop  
Back-up mode  
System Reset  
STOPCON  
nRESET/  
Back-up mode  
NF  
Figure 9-5. Block diagram for Back-up mode in the S3C80G9B  
9-9  
RESET and POWER-DOWN 2  
S3C80F9B/C80G9B  
Voltage [V]  
VDD  
Slope of RESET &  
VDD pin  
Rising edge detected  
(VDD >= VLVD)  
VLVD  
Low level  
Reset Pulse generated,  
oscillation starts  
detect voltage  
Falling edge detected,  
oscillation stop.  
(VDD < VLVD)  
Normal Operation  
Back up Mode  
Normal Operation  
NOTES:  
1. In the S3C80G9B, the LVD cricuit is disabled when the operating state is in stop mode.  
2. When the rising edge is detected by LVD circuit, Back-up mode is relesase (VLVD =< VDD)  
3. When the falling edge is detected by LVD circuit, Back-up mode is activated (VLVD > VDD)  
Figure 9-6. Timing Diagram For Back-Up Mode Input And Release by LVD  
9-10  
S3C80F9B/C80G9B  
STOP MODE  
RESET and POWER-DOWN 2  
Stop mode is invoked by stop control register (STOPCON) setting and the instruction STOP. In Stop mode, the  
operation of the CPU and all peripherals is halted. That is, the on-chip main oscillator stops and the supply current  
is reduced to less than 6 µA at 5.0 V. All system functions stop when the clock "freezes," but data stored in the  
internal register file is retained. Stop mode can be released in one of two ways: by a system reset or by an  
external interrupt.  
After releasing from STOP mode, the value of stop control register (STOPCON) is cleared automatically.  
)
PROGRAMMING TIP – To enter STOP mode  
This example shows how to enter the stop mode.  
ORG  
0000H  
; Reset address  
JP  
T,START  
ENTER_STOP:  
LD  
STOPCON,#0A5H  
STOP  
NOP  
NOP  
NOP  
RET  
ORG  
JP  
0100H-3  
T,START  
ORG  
0100H  
; Reset address  
START  
MAIN  
LD  
BTCON,#03  
; clear basic timer counter.  
NOP  
CALL  
ENTER_STOP  
; Enter the STOP mode  
LD  
JP  
BTCON,#02H  
T,MAIN  
; clear basic timer counter.  
9-11  
RESET and POWER-DOWN 2  
S3C80F9B/C80G9B  
SOURCES TO RELEASE STOP MODE  
Stop mode is released when following sources go active:  
— System Reset by reset pin  
— System Reset by internal POR  
— External Interrupt  
— SED & R circuit  
Using nReset pin to Release Stop Mode  
Stop mode is released when the system reset signal goes active by reset pin: all system and peripheral control  
registers are reset to their default hardware values and the contents of all data registers are retained. When the  
oscillation stabilization interval has elapsed, the CPU starts the system initialization routine by fetching the  
program instruction stored in ROM location 0100H.  
Using POR to Release Stop Mode  
Stop mode is released when the system Reset signal goes active by Power-on Reset (POR): all system and  
peripheral control registers are Reset to their default hardware values and contents of all data registers are  
unknown states. When the oscillation stabilization interval has elapsed, the CPU starts the system initialization  
routine by fetching the program instruction stored in ROM location 0100H.  
Using an External Interrupt to Release Stop Mode  
External interrupts with an RC-delay noise filter circuit can be used to release Stop mode. For the S3C80G9B  
microcontroller, we recommend using the INT0-9 interrupt at P0 and P2.  
Please note the following conditions for Stop mode release:  
— If you release Stop mode using an external interrupt, the current values in system and peripheral control  
registers are unchanged.  
— If you use an external interrupt for Stop mode release, you can also program the duration of the oscillation  
stabilization interval. To do this, you must make the appropriate control and clock settings before entering  
Stop mode.  
— If you use an interrupt to release Stop mode, the bit-pair setting for CLKCON.4/CLKCON.3 remains  
unchanged and the currently selected clock value is used.  
The external interrupt is serviced when the Stop mode release occurs. Following the IRET from the service  
routine, the instruction immediately following the one that initiated Stop mode is executed.  
Using a SED & R (Stop Error Detect and Recovery )to Release Stop Mode  
The Stop Error Detect & Recovery circuit is used to release stop mode and prevent abnormal - stop mode that  
can be occurred by battery bouncing. It executes two functions in related to the internal logic of P0 and P2. One is  
releasing from stop status by switching the level of input port (P0 or P2) and the other is keeping the chip from the  
stop mode when the chip is in abnormal status.  
— Releasing from stop mode  
When the level of a pin on Port0 and Port2 is switching, the chip is released from stop mode even though external  
interrupt is disabled.  
— Keeping the chip from entering abnormal - stop mode  
This circuit detects the abnormal status by checking the port (P0 and P2) status. If the chip is in abnormal status it  
keeps from entering stop mode.  
NOTE  
Do not use stop mode if you are using an external clock source because Xin input must be cleared  
internally to VSS to reduce current leakage.  
9-12  
S3C80F9B/C80G9B  
IDLE MODE  
RESET and POWER-DOWN 2  
Idle mode is invoked by the instruction IDLE (opcode 6FH). In Idle mode, CPU operations are halted while some  
peripherals remain active. During Idle mode, the internal clock signal is gated away from the CPU and from all but  
the following peripherals, which remain active:  
— Interrupt logic  
— Timer 0  
— Timer 1  
— Counter A  
I/O port pins retain the mode (input or output) they had at the time Idle mode was entered.  
Idle Mode Release  
You can release Idle mode in one of two ways:  
1. Execute a reset. All system and peripheral control registers are reset to their default values. The reset  
automatically selects the slowest clock (1/16) because of the hardware reset value for the CLKCON register.  
If all interrupts are masked in the IMR register, a reset is the only way you can release Idle mode.  
2. Activate any enabled interrupt; internal or external. When you use an interrupt to release Idle mode, the 2-bit  
CLKCON.4/CLKCON.3 value remains unchanged, and the currently selected clock value is used. The  
interrupt is then serviced. When the return-from-interrupt condition (IRET) occurs, the instruction immediately  
following the one which initiated Idle mode is executed.  
NOTE  
Only external interrupts with an RC delay built in to the pin circuit can be used to release Stop mode. To  
release Idle mode, you can use either an external interrupt or an internally-generated interrupt.  
9-13  
RESET and POWER-DOWN 2  
S3C80F9B/C80G9B  
RECOMMENDATION FOR UNUSUED PINS  
To reduce overall power consumption, please configure unused pins according to the guideline description Table  
9-4.  
Table 9-4. Guideline for Unused Pins to Reduced Power Consumption.  
Pin Name  
Port 0  
Recommend  
Set Input mode  
Enable Pull-up Resister  
No Connection for Pins  
Example  
P0CONH # 00H or 0FFH  
P0CONL # 00H or 0FFH  
P0PUR # 0FFH  
Port 1  
Set Open-Drain Output mode  
Set P1 Data Register to #00H.  
Disable Pull-up Resister  
P1CONH # 55H  
P1CONL # 55H  
P1 # 00H  
No Connection for Pins  
Port 2  
Set Push-pull Output mode  
Set P2 Data Register to #00H.  
Disable Pull-up resister  
P2CONH # 0AAH  
P2CONL # 0AAH  
P2 # 00H  
No Connection for Pins  
P2PUR # 00H  
P3.0–3.1  
Set Push-pull Output mode  
Set P3 Data Register to #00H.  
No Connection for Pins  
P3CON # 11010010B  
P3 # 00H  
P3.2–3.3  
P3.4–3.5  
No connection  
P3 # 00H  
Set P3 Data Register to #00H.  
Port 4  
TEST  
Set Push-pull Output mode  
Set P4 Data Register to #00H.  
P4CON # 0FFH  
P4 # 00H  
Connect to Vss.  
9-14  
S3C80F9B/C80G9B  
RESET and POWER-DOWN 2  
SUMMARY TABLE OF BACK-UP MODE, STOP MODE, AND RESET STATUS  
For more understanding, please see the below description Table 9-5.  
Table 9-5. Summary of Each Mode.  
Item/Mode  
Back-up  
Reset status  
Stop  
Approach  
Condition  
External reset pin is low  
level state  
External reset pin is on rising  
edge.  
STOPCON # A5H  
STOP  
VDD is lower than VLVD  
when the operating state is  
not in Stop mode  
The rising edge at VDD is  
detected by LVD circuit not in  
Stop mode.  
( LD STOPCON,#0A5H  
STOP)  
(When VDD VLVD  
)
Internal Power-on reset  
WDT overflow signal is  
activated  
PORT  
status  
All I/O port is floating status  
except P3.2 and P3.3  
All port becomes input mode  
but is blocked.  
All I/O port is floating status  
except P3.2 and P3.3  
Disable all pull-up resister  
except P3.2 and P3.3  
All port is keep the  
previous status.  
Input port data is not  
changed.  
Disable all pull-up resister  
except P3.2 and P3.3  
Control  
Register  
All control register and  
system register are initialized  
as list of Table 9-3  
All control register and system  
register are initialized as list of  
Table 9-3.  
Releasing  
Condition  
External reset pin is high  
(Rising edge)  
The rising edge of LVD  
circuit is generated  
After passing an oscillation  
warm-up time  
External interrupt  
SED & R Circuit.  
Internal Power-on reset  
System reset by reset  
pin  
Others  
There is no current  
There can be input leakage  
It depend on control  
consumption in chip.  
current in chip.  
program  
9-15  
S3C80F9B/C80G9B  
I/O PORTS  
10 I/O PORTS  
OVERVIEW  
The S3C80F9B/C80G9B microcontroller has three kinds of package and different I/O number relating to the  
package type:  
48-ELP package has five bit-programmable I/O ports, P0–P3 and P4. Four ports, P0–P2 and P4, are 8-bit ports  
and P3 is a 6-bit port. 4 pins(12,24,36,48) are not used. This gives a total of 38 I/O pins.  
44-QFP package has five bit-programmable I/O ports, P0–P3 and P4. Four ports, P0–P2 and P4, are 8-bit ports  
and P3 is a 6-bit port. This gives a total of 38 I/O pins.  
42-SDIP package has five bit-programmable I/O ports, P0–P3 and P4. Four ports, P0–P2 and P4, are 8-bit ports  
and P3 is a 4-bit port. This gives a total of 36 I/O pins.  
32-SOP package has four bit-programmable I/O ports, P0–P3. three ports, P0–P2, are 8-bit ports and P3 is a 2-bit  
port. This gives a total of 26 I/O pins.  
28-SOP package has four bit-programmable I/O ports, P0–P3. three ports, P0–P1, are 8-bit ports, P2 is 4-bit ports  
and P3 is a 2-bit port. This gives a total of 22 I/O pins..  
Each port is bit-programmable and can be flexibly configured to meet application design requirements. The CPU  
accesses ports by directly writing or reading port registers. No special I/O instructions are required.  
For IR applications, ports 0, 1, and 2 are usually configured to the keyboard matrix and port 3 is used to IR drive  
pins.  
Table 10-1,10-2 and 10-3 give you a general overview of S3C80F9B/C80G9B I/O port functions.  
10-1  
I/O PORTS  
S3C80F9B/C80G9B  
Table 10-1. S3C80F9B/C80G9B Port Configuration Overview (44-QFP/48ELP)  
Port  
Configuration Options  
0
8-bit general-purpose I/O port; Input or push-pull output; external interrupt input on falling edges,  
rising edges, or both edges; all P0 pin circuits have noise filters and interrupt enable/disable  
(P0INT) and pending control (P0PND); Pull-up resistors can be assigned to individual P0 pins  
using P0PUR register settings. This port is dedicated for key input in IR controller application.  
1
2
8-bit general-purpose I/O port; Input without or with pull-up, open-drain output, or push-pull  
output. This port is dedicated for key output in IR controller application.  
8-bit general-purpose I/O port; Input or push-pull output. The P2 pins, P2.0–P2.7, can be used  
as external interrupt inputs and have noise filters. The P2INT register is used to enable/disable  
interrupts and P2PND bits can be polled by software for interrupt pending control. Pull-up  
resistors can be assigned to individual P2 pins using P2PUR register settings.  
P3.0–P3.1  
P3.2–P3.3  
P3.0 is configured input functions (Input mode, with or without pull-up, for normal input or  
T0CAP) or output functions (push-pull or open-drain output mode, for normal output or  
T0PWM). P3.1 is configured input functions (Input mode, with or without pull-up, for normal  
input) or output functions (push-pull or open-drain output mode, for normal output or REM  
function). P3.1 is dedicated for IR drive pin and P3.0 can be used for indicator LED drive.  
P3.2 is configured only input with pull-up mode(for normal input or T0CK function). P3.3 is  
configured only input with pull-up mode (for normal input or T1CAP function). P3.3 can be used  
for IR signal capture pin with T1CAP function.  
P3.4–P3.5  
P3.4–P3.5 are configured only open-drain output mode.  
P3.7  
4
P3.7 is not configured for I/O pin and it only used to control carrier signal on/off.  
Port 4 is configured for output only (push-pull or open-drain output mode). It can be used for key  
output pins.  
10-2  
S3C80F9B/C80G9B  
I/O PORTS  
Table 10-2. S3C80F9B/C80G9B Port Configuration Overview (42-SDIP)  
Configuration Options  
Port  
0
8-bit general-purpose I/O port; Input or push-pull output; external interrupt input on falling edges,  
rising edges, or both edges; all P0 pin circuits have noise filters and interrupt enable/disable  
(P0INT) and pending control (P0PND); Pull-up resistors can be assigned to individual P0 pins  
using P0PUR register settings. This port is dedicated for key input in IR controller application.  
1
2
8-bit general-purpose I/O port; Input without or with pull-up, open-drain output, or push-pull  
output. This port is dedicated for key output in IR controller application.  
8-bit general-purpose I/O port; Input, or push-pull output. The P2 pins, P2.0–P2.7, can be used  
as external interrupt inputs and have noise filters. The P2INT register is used to enable/disable  
interrupts and P2PND bits can be polled by software for interrupt pending control. Pull-up  
resistors can be assigned to individual P2 pins using P2PUR register settings.  
P3.0–P3.1  
P3.2–P3.3  
P3.0 is configured input functions (Input mode, with or without pull-up, for normal input or  
T0CAP) or output functions (push-pull or open-drain output mode, for normal output or  
T0PWM). P3.1 is configured input functions (Input mode, with or without pull-up, for normal  
input) or output functions (push-pull or open-drain output mode, for normal output or REM  
function). P3.1 is dedicated for IR drive pin and P3.0 can be used for indicator LED drive.  
P3.2 is configured only input with pull-up mode(for normal input or T0CK function). P3.3 is  
configured only input with pull-up mode(for normal input or T1CAP function). P3.3 can be used  
for IR signal capture pin with T1CAP function.  
P3.7  
4
P3.7 is not configured for I/O pin and it only used to control carrier signal on/off.  
Port 4 is configured for output only(push-pull or open-drain output mode). It can be used for key  
output pins.  
10-3  
I/O PORTS  
S3C80F9B/C80G9B  
Table 10-3. S3C80F9B/C80G9B Port Configuration Overview (32-SOP)  
Configuration Options  
Port  
0
8-bit general-purpose I/O port; Input or push-pull output; external interrupt input on falling edges,  
rising edges, or both edges; all P0 pin circuits have noise filters and interrupt enable/disable  
(P0INT) and pending control (P0PND); Pull-up resistors can be assigned to individual P0 pins  
using P0PUR register settings. This port is dedicated for key input in IR controller application.  
1
2
8-bit general-purpose I/O port; Input without or with pull-up, open-drain output, or push-pull  
output. This port is dedicated for key output in IR controller application.  
8-bit general-purpose I/O port; Input, or push-pull output. The P2 pins, P2.0–P2.7, can be used  
as external interrupt inputs and have noise filters. The P2INT register is used to enable/disable  
interrupts and P2PND bits can be polled by software for interrupt pending control. Pull-up  
resistors can be assigned to individual P2 pins using P2PUR register settings.  
P3.0–P3.1  
P3.7  
2-bit I/O port; P3.0 and P3.1 are configured input functions (Input mode, with or without pull-up,  
for T0CK, T0CAP or T1CAP) or output functions (push-pull or open-drain output mode, or for  
REM and T0PWM). P3.1 is dedicated for IR drive pin and P3.0 can be used for indicator LED  
drive.  
P3.7 is not configured for I/O pin and it only used to control carrier signal on/off.  
Table 10-4. S3C80G9B Port Configuration Overview (28-SOP)  
Configuration Options  
Port  
0
8-bit general-purpose I/O port; Input or push-pull output; external interrupt input on falling  
edges, rising edges, or both edges; all P0 pin circuits have noise filters and interrupt  
enable/disable (P0INT) and pending control (P0PND); Pull-up resistors can be assigned to  
individual P0 pins using P0PUR register settings. This port is dedicated for key input in IR  
controller application.  
1
2
8-bit general-purpose I/O port; Input without or with pull-up, open-drain output, or push-pull  
output. This port is dedicated for key output in IR controller application.  
4-bit general-purpose I/O port; Input, or push-pull output. The P2 pins, P2.0–P2.4, can be used  
as external interrupt inputs and have noise filters. The P2INT register is used to enable/disable  
interrupts and P2PND bits can be polled by software for interrupt pending control. Pull-up  
resistors can be assigned to individual P2 pins using P2PUR register settings.  
P3.0–P3.1  
P3.7  
2-bit I/O port; P3.0 and P3.1 are configured input functions (Input mode, with or without pull-up,  
for T0CK, T0CAP or T1CAP) or output functions (push-pull or open-drain output mode, or for  
REM and T0PWM). P3.1 is dedicated for IR drive pin and P3.0 can be used for indicator LED  
drive.  
P3.7 is not configured for I/O pin and it only used to control carrier signal on/off.  
10-4  
S3C80F9B/C80G9B  
I/O PORTS  
PORT DATA REGISTERS  
Table 10-4 gives you an overview of the register locations of all four S3C80F9B/C80G9B I/O port data registers.  
Data registers for ports 0,1,2 and 4 have the general format shown in Figure 10-1.  
NOTE  
The data register for port 3, P3, contains 6-bits for P3.0–P3.5, and an additional status bit (P3.7) for  
carrier signal on/off.  
Table 10-5. Port Data Register Summary  
Register Name  
Port 0 data register  
Port 1 data register  
Port 2 data register  
Port 3 data register  
Port 4 data register  
Mnemonic  
Decimal  
224  
Hex  
E0H  
E1H  
E2H  
E3H  
E4H  
Location  
Set 1  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
P0  
P1  
P2  
P3  
P4  
225  
Set 1  
226  
Set 1  
227  
Set 1  
228  
Set 1  
Because port 3 is a 6–bit I/O port, the port 3 data register only contains values for P3.0 – P3.5. The P3 register  
also contains a special carrier on/off bit (P3.7). See the port 3 description for details. All other S3C80F9B/C80G9B  
I/O ports are 8–bit.  
S3C80F9B/C80G9B I/O Port Data Register Format (n = 0-4)  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Pn.0  
Pn.1  
Pn.2  
Pn.3  
Pn.4  
Pn.5  
Pn.6  
Pn.7  
NOTE: Because port 3 is a 6-bit I/O port, the port 3 data  
register only contains values for P3.0-P3.5.  
The P3 register also contains a special carrier on/off bit  
(P3.7). See the port 3 description for details.  
All other S3C80F9B/C80G9B I/O ports are 8-bit.  
Figure 10-1. S3C80F9B/C80G9B I/O Port Data Register Format  
10-5  
I/O PORTS  
S3C80F9B/C80G9B  
PULL-UP RESISTOR ENABLE REGISTERS  
You can assign pull-up resistors to the pin circuits of individual pins in ports 0 and 2. To do this, you make the  
appropriate settings to the corresponding pull-up resistor enable registers- P0PUR and P2PUR. These registers  
are located in set 1 at locations E7H and EEH, respectively, and are read/write accessible using Register  
addressing mode.  
You can assign a pull-up to the port 1 pins, using basic port configuration setting in the P1CONH and P1CONL.  
You can assign a pull-up to the port 3 pins, P3.0 and P3.1, in Input mode using basic port configuration setting in  
the P3CON register.  
P3.2–P3.3 is configured input with pull-up only pins.  
Pull-up Register Enable Registers (PnPUR, where n = 0,2)  
(Set 1, E7H, EEH), R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Pn.0  
Pn.1  
Pn.2  
Pn.3  
Pn.4  
Pn.5  
Pn.6  
Pull-up resistor enable bit:  
0 = Disable pull-up resistor  
1 = Enable pull-up resistor  
Pn.7  
NOTES:  
1. Pull-up resistors can be assigned to the port 3 pins, P3.0 and P3.1,  
by making the appropriate setting the port 3 control register P3CON.  
2. Pull-up resistors can be assigned to the P1 pins, by making the  
appropriate setting the port 1 control register P1CONL and P1CONH.  
Figure 10-2. Pull-up Resistor Enable Registers (Ports 0 and 2 only)  
10-6  
S3C80F9B/C80G9B  
BASIC TIMER and TIMER 0  
11 BASIC TIMER and TIMER 0  
MODULE OVERVIEW  
The S3C80F9B/C80G9B has two default timers: an 8-bit basic timer and one 8-bit general-purpose timer/counter.  
The 8-bit timer/counter is called timer 0.  
BASIC TIMER (BT)  
You can use the basic timer (BT) in two different ways:  
— As a watchdog timer to provide an automatic Reset mechanism in the event of a system malfunction, or  
— To signal the end of the required oscillation stabilization interval after a Reset or a Stop mode release.  
The functional components of the basic timer block are:  
— Clock frequency divider (f  
OSC  
divided by 4096, 1024 or 128) with multiplexer  
— 8-bit basic timer counter, BTCNT (set 1, FDH, read-only)  
— Basic timer control register, BTCON (set 1, D3H, read/write)  
TIMER 0  
Timer 0 has three operating modes, one of which you select using the appropriate T0CON setting:  
— Interval timer mode  
— Capture input mode with a rising or falling edge trigger at the P3.0 pin  
— PWM mode  
Timer 0 has the following functional components:  
— Clock frequency divider (f  
divided by 4096, 256 or 8 ) with multiplexer  
— External clock input pin (T0CK)  
OSC  
— 8-bit counter (T0CNT), 8-bit comparator, and 8-bit reference data register (T0DATA)  
— I/O pins for capture input (T0CAP) or match output  
— Timer 0 overflow interrupt (IRQ1, vector FAH) and match/capture interrupt (IRQ1, vector FCH) generation  
— Timer 0 control register, T0CON (set 1, D2H, read/write)  
11-1  
BASIC TIMER and TIMER 0  
S3C80F9B/C80G9B  
BASIC TIMER CONTROL REGISTER (BTCON)  
The basic timer control register, BTCON, is used to select the input clock frequency, to clear the basic timer  
counter and frequency dividers, and to enable or disable the watchdog timer function. It is located in set 1,  
address D3H, and is read/write addressable using Register addressing mode.  
A Reset clears BTCON to '00H'. This enables the watchdog function and selects a basic timer clock frequency of  
fOSC/4096. To disable the watchdog function, you must write the signature code '1010B' to the basic timer  
register control bits BTCON.7–BTCON.4. For improved reliability, using the Watch-dog timer function is  
recommended in remote controllers and hand-held product applications.  
Basic Timer Control Register (BTCON)  
D3H, Set 1, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Watchdog timer enable bits:  
1010B = Disable watchdog function  
Others = Enable watchdog function  
Divider clear bit for BT and T0:  
0 = No effect  
1 = Clear both dividers  
Basic timer counter clear bits:  
0 = No effect  
1 = Clear BTCNT  
Basic timer input clock selection bits:  
00 = fOSC/4096  
01 = fOSC/1024  
10 = fOSC/128  
11 = Invalid selection  
Figure 11-1. Basic Timer Control Register (BTCON)  
11-2  
S3C80F9B/C80G9B  
BASIC TIMER and TIMER 0  
BASIC TIMER FUNCTION DESCRIPTION  
Watchdog Timer Function  
You can program the basic timer overflow signal (BTOVF) to generate a Reset by setting BTCON.7–BTCON.4 to  
any value other than '1010B'. (The '1010B' value disables the watchdog function.) A Reset clears BTCON to  
'00H', automatically enabling the watchdog timer function. A Reset also selects the CPU clock (as determined by  
the current CLKCON register setting),divided by 4096, as the BT clock.  
A Reset whenever a basic timer counter overflow occurs. During normal operation, the application program must  
prevent the overflow, and the accompanying Reset operation, from occurring. To do this, the BTCNT value must  
be cleared (by writing a "1" to BTCON.1) at regular intervals.  
If a system malfunction occurs due to circuit noise or some other error condition, the BT counter clear operation  
will not be executed and a basic timer overflow will occur, initiating a Reset. In other words, during normal  
operation, the basic timer overflow loop (a bit 7 overflow of the 8-bit basic timer counter, BTCNT) is always  
broken by a BTCNT clear instruction. If a malfunction does occur, a Reset is triggered automatically.  
Oscillation Stabilization Interval Timer Function  
You can also use the basic timer to program a specific oscillation stabilization interval following a Reset or when  
Stop mode has been released by an external interrupt.  
In Stop mode, whenever a Reset or an external interrupt occurs, the oscillator starts. The BTCNT value then  
starts increasing at the rate of fOSC/4096 (for Reset), or at the rate of the preset clock source (for an external  
interrupt). When BTCNT.3 overflows, a signal is generated to indicate that the stabilization interval has elapsed  
and to gate the clock signal off to the CPU so that it can resume normal operation.  
In summary, the following events occur when Stop mode is released:  
1. During Stop mode, a power-on Reset or an external interrupt occurs to trigger the Stop mode release and  
oscillation starts.  
2. If a power-on Reset occurred, the basic timer counter will increase at the rate of f  
/4096. If an external  
OSC  
interrupt is used to release Stop mode, the BTCNT value increases at the rate of the preset clock source.  
3. Clock oscillation stabilization interval begins and continues until bit 3 of the basic timer counter overflows.  
4. When a BTCNT.3 overflow occurs, normal CPU operation resumes.  
TIMER 0 CONTROL REGISTER (T0CON)  
You use the timer 0 control register, T0CON, to  
— Select the timer 0 operating mode (interval timer, capture mode, or PWM mode)  
— Select the timer 0 input clock frequency  
— Clear the timer 0 counter, T0CNT  
— Enable the timer 0 overflow interrupt or timer 0 match/capture interrupt  
— Clear timer 0 match/capture interrupt pending conditions  
11-3  
BASIC TIMER and TIMER 0  
S3C80F9B/C80G9B  
T0CON is located in set 1, at address D2H, and is read/write addressable using Register addressing mode.  
A Reset clears T0CON to '00H'. This sets timer 0 to normal interval timer mode, selects an input clock frequency  
of fOSC/4096, and disables all timer 0 interrupts. You can clear the timer 0 counter at any time during normal  
operation by writing a "1" to T0CON.3.  
The timer 0 overflow interrupt (T0OVF) is interrupt level IRQ0 and has the vector address FAH. When a timer 0  
overflow interrupt occurs and is serviced by the CPU, the pending condition is cleared automatically by hardware.  
To enable the timer 0 match/capture interrupt (IRQ0, vector FCH), you must write T0CON.1 to "1". To detect a  
match/capture interrupt pending condition, the application program polls T0CON.0. When a "1" is detected, a  
timer 0 match or capture interrupt is pending. When the interrupt request has been serviced, the pending  
condition must be cleared by software by writing a "0" to the timer 0 interrupt pending bit, T0CON.0.  
Timer 0 Control Register (T0CON)  
D2H, Set 1, R/W  
MSB .7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Timer 0 input clock selection bits:  
00 = fOSC /4096  
01 = fOSC /256  
Timer 0 interrupt pending bit:  
0 = No interrupt pending  
0 = Clear pending bit (when write)  
1 = Interrupt is pending  
10 = fOSC /8  
11 = External clock (P3.1/T0CK  
or P3.2/T0CK) (note)  
Timer 0 interrupt match/capture  
enable bit:  
0 = Disable interrupt  
1 = Enable interrupt  
Timer 0 operating mode selection bits:  
00 = Interval mode  
01 = Capture mode (capture on rising edge,  
counter running, OVF can occur)  
10 = Capture mode (capture on falling edge,  
counter running, OVF can occur)  
Timer 0 overflow interrupt enable bit:  
0 = Disable overflow interrupt  
1 = Enable overflow interrupt  
11 = PWM mode (OVF interrupt can occur)  
Timer 0 counter clear bit:  
0 = No effect  
1 = Clear the timer 0 counter (when write)  
NOTE:  
The external clock source of timer 0 is P3.1/T0CK in 32-pin package, or  
P3.2/T0CK in 42/44-pin package.  
Figure 11-2. Timer 0 Control Register (T0CON)  
11-4  
S3C80F9B/C80G9B  
BASIC TIMER and TIMER 0  
TIMER 0 FUNCTION DESCRIPTION  
Timer 0 Interrupts (IRQ0, Vectors FAH and FCH)  
The timer 0 module can generate two interrupts: the timer 0 overflow interrupt (T0OVF), and the timer 0 match/  
capture interrupt (T0INT). T0OVF is interrupt level IRQ0, vector FAH. T0INT also belongs to interrupt level IRQ0,  
but is assigned the separate vector address, FCH.  
A timer 0 overflow interrupt pending condition is automatically cleared by hardware when it has been serviced.  
The T0INT pending condition must, however, be cleared by the application’s interrupt service routine by writing a  
"0" to the T0CON.0 interrupt pending bit.  
Interval Timer Mode  
In interval timer mode, a match signal is generated when the counter value is identical to the value written to the  
T0 reference data register, T0DATA. The match signal generates a timer 0 match interrupt (T0INT, vector FCH)  
and clears the counter.  
If, for example, you write the value ‘10H’ to T0DATA and ‘0BH’ to T0CON, the counter will increment until it  
reaches ‘10H’. At this point, the T0 interrupt request is generated, the counter value is Reset, and counting  
resumes. With each match, the level of the signal at the timer 0 output pin is inverted (see Figure 10-3).  
IRQ0(INT)  
Pending  
(T0CON.0)  
Interrupt  
Enable/Disable  
(T0CON.1)  
R (Clear)  
CLK  
Counter  
Match  
CTL  
P3.0  
Comparator  
Buffer Register  
T0CON.5  
T0CON.4  
Match Signal  
T0CON.3  
Data Register  
Figure 11-3. Simplified Timer 0 Function Diagram: Interval Timer Mode  
11-5  
BASIC TIMER and TIMER 0  
S3C80F9B/C80G9B  
Pulse Width Modulation Mode  
Pulse width modulation (PWM) mode lets you program the width (duration) of the pulse that is output at the  
T0PWM pin. As in interval timer mode, a match signal is generated when the counter value is identical to the  
value written to the timer 0 data register. In PWM mode, however, the match signal does not clear the counter.  
Instead, it runs continuously, overflowing at ‘FFH’, and then continues incrementing from ‘00H’.  
Although you can use the match signal to generate a timer 0 overflow interrupt, interrupts are not typically used in  
PWM-type applications. Instead, the pulse at the T0PWM pin is held to Low level as long as the reference data  
value is less than or equal to ( ) the counter value and then the pulse is held to High level for as long as the data  
value is greater than ( > ) the counter value. One pulse width is equal to t  
× 256 (see Figure 11-4).  
CLK  
IRQ0 (INT)  
Pending  
(T0CON.0)  
Interrupt  
Enable/Disable  
(T0CON.1)  
Counter  
IRQ0 (T0OVF)  
CTL  
CLK  
Match  
Comparator  
Buffer Register  
Data Register  
P3.0/T0PWM  
High level when data > counter  
Low level when data< counter  
T0CON.5  
T0CON.4  
Match Signal  
T0CON.3  
T0OVF  
NOTE:  
Interrupts are usually not used when timer 0 is configured to operate  
in PWM mode.  
Figure 11-4. Simplified Timer 0 Function Diagram: PWM Mode  
11-6  
S3C80F9B/C80G9B  
Capture Mode  
BASIC TIMER and TIMER 0  
In capture mode, a signal edge that is detected at the T0CAP pin opens a gate and loads the current counter  
value into the T0 data register. You can select rising or falling edges to trigger this operation.  
Timer 0 also gives you capture input source: the signal edge at the T0CAP pin. You select the capture input by  
setting the value of the timer 0 capture input selection bit in the port 3 control register, P3CON.2, (set 1, bank 0,  
F0H). When P3CON.2 is “1”, the T0CAP input is selected. When P3CON.2 is set to “0”, normal I/O port (P3.0) is  
selected.  
Both kinds of timer 0 interrupts can be used in capture mode: the timer 0 overflow interrupt is generated  
whenever a counter overflow occurs; the timer 0 match/capture interrupt is generated whenever the counter value  
is loaded into the T0 data register.  
By reading the captured data value in T0DATA, and assuming a specific value for the timer 0 clock frequency,  
you can calculate the pulse width (duration) of the signal that is being input at the T0CAP pin (see Figure 11-5).  
T0CON.2  
Counter  
CLK  
IRQ0 (T0OVF)  
IRQ0 (T0INT)  
Pending  
(T0CON.0)  
P3.0/T0CAP  
Interrupt  
Enable/Disable  
(T0CON.1)  
Data Register  
T0CON.5  
T0CON.4  
Figure 11-5. Simplified Timer 0 Function Diagram: Capture Mode  
11-7  
BASIC TIMER and TIMER 0  
S3C80F9B/C80G9B  
Bit 1  
RESET or STOP  
Data Bus  
Bits 3, 2  
MUX  
Basic Timer Control Register  
(Write '1010xxxxB' to disable.)  
Clear  
1/4096  
1/1024  
1/128  
8-Bit Up Counter  
(BTCNT, Read-Only)  
RESET  
XIN  
DIV  
R
OVF  
When BTCNT.4 is set after releasing from  
RESET or STOP mode, CPU clock starts.  
Bit 0  
Bits 7, 6  
Bit 2  
Data Bus  
OVF  
IRQ0  
(Timer 0 Overflow)  
R
1/4096  
1/256  
1/8  
Clear  
Bit 3  
Bit 1  
Bit 0  
8-Bit Up-Counter  
(T0CNT)  
X
IN  
DIV  
MUX  
R
Match (2)  
P3.1/T0CK  
or  
P3.2/T0CK  
(note 3)  
IRQ0  
8-Bit Compatator  
(Timer 0  
Match)  
T0PWM  
T0CAP  
Bits 5, 4  
Timer 0 Buffer  
Register  
Bits 5, 4  
Match Signal  
T0CON.3  
T0OVF  
Timer 0 Data  
Register (T0DATA)  
Basic Timer Control Register  
Timer 0 Control Register  
Data Bus  
NOTES:  
1. During a power-on reset operation, the CPU is idle during the required oscillation  
stabilization interval (until bit 4 of the basic timer counter overflows).  
2. It is available only in using internal mode.  
3. The external clock source is P3.1/T0CK in 32-pin package, or P3.2/T0CK in 42/44-pin pakcage.  
Figure 11-6. Basic Timer and Timer 0 Block Diagram  
11-8  
S3C80F9B/C80G9B  
BASIC TIMER and TIMER 0  
)
PROGRAMMING TIP — Configuring the Basic Timer  
This example shows how to configure the basic timer to sample specifications:  
ORG  
0100H  
RESET  
DI  
LD  
LD  
CLR  
CLR  
;
;
;
;
;
;
Disable all interrupts  
Disable the watchdog timer  
Non-divided clock  
Disable global and fast interrupts  
Stack pointer low byte "0"  
Stack area starts at 0FFH  
BTCON,#0AAH  
CLKCON,#18H  
SYM  
SPL  
SRP  
EI  
#0C0H  
;
;
Set register pointer 0C0H  
Enable interrupts  
MAIN  
LD  
BTCON,#52H  
;
;
Enable the watchdog timer  
Basic timer clock: f /4096  
OSC  
;
Clear basic timer counter  
NOP  
NOP  
JP  
T,MAIN  
11-9  
BASIC TIMER and TIMER 0  
S3C80F9B/C80G9B  
)
PROGRAMMING TIP — Programming Timer 0  
This sample program sets timer 0 to interval timer mode, sets the frequency of the oscillator clock, and  
determines the execution sequence which follows a timer 0 interrupt. The program parameters are as follows:  
— Timer 0 is used in interval mode; the timer interval is set to 4 milliseconds  
— Oscillation frequency is 6 MHz  
— General register 60H (page 0) 60H + 61H + 62H + 63H + 64H (page 0) is executed after a timer 0 interrupt  
ORG  
VECTOR  
ORG  
0FAH  
T0OVER  
0FCH  
;
;
Timer 0 overflow interrupt  
Timer 0 match/capture interrupt  
VECTOR  
ORG  
T0INT  
0100H  
RESET  
DI  
LD  
LD  
CLR  
CLR  
;
;
;
;
;
;
Disable all interrupts  
BTCON,#0AAH  
CLKCON,#18H  
SYM  
Disable the watchdog timer  
Select non-divided clock  
Disable global and fast interrupts  
Stack pointer low byte "0"  
Stack area starts at 0FFH  
SPL  
LD  
T0CON,#4BH  
;
;
Write ‘01001011B’  
Input clock is f  
/256  
OSC  
;
;
;
;
;
Interval timer mode  
Enable the timer 0 interrupt  
Disable the timer 0 overflow interrupt  
Set timer interval to 4 milliseconds  
(6 MHz/256) ÷ (93 + 1) = 0.25 kHz (4 ms)  
LD  
T0DATA,#5DH  
#0C0H  
SRP  
EI  
;
;
Set register pointer 0C0H  
Enable interrupts  
T0INT  
PUSH  
SRP0  
INC  
ADD  
ADC  
ADC  
RP0  
#60H  
R0  
R2,R0  
R3,R2  
R4,R0  
;
;
;
;
;
;
Save RP0 to stack  
RP0 60H  
R0 R0 + 1  
R2 R2 + R0  
R3 R3 + R2 + Carry  
R4 R4 + R0 + Carry  
(Continued on next page)  
11-10  
S3C80F9B/C80G9B  
BASIC TIMER and TIMER 0  
)
PROGRAMMING TIP — Programming Timer 0 (Continued)  
CP  
R0,#32H  
JR  
BITS  
;
;
50 × 4 = 200 ms  
ULT,NO_200MS_SET  
R1.2  
Bit setting (61.2H)  
NO_200MS_SET:  
LD  
POP  
T0CON,#42H  
RP0  
;
;
Clear pending bit  
Restore register pointer 0 value  
T0OVER  
IRET  
;
Return from interrupt service routine  
11-11  
S3C80F9B/C80G9B  
TIMER 1  
12 TIMER 1  
OVERVIEW  
The S3C80F9B/C80G9B microcontroller has a 16-bit timer/counter called timer 1 (T1). For universal remote  
controller applications, timer 1 can be used to generate the envelope pattern for the remote controller signal.  
Timer 1 has the following components:  
— One control register, T1CON (set 1, FAH, R/W)  
— Two 8-bit counter registers, T1CNTH and T1CNTL (set 1, F6H and F7H, read-only)  
— Two 8-bit reference data registers, T1DATAH and T1DATAL (set 1, F8H and F9H, R/W)  
— A 16-bit comparator  
You can select one of the following clock sources as the timer 1 clock:  
— Oscillator frequency (f ) divided by 4, 8, or 16  
OSC  
— Internal clock input from the counter A module (counter A flip/flop output)  
You can use Timer 1 in three ways:  
— As a normal free run counter, generating a timer 1 overflow interrupt (IRQ1, vector F4H) at programmed time  
intervals.  
— To generate a timer 1 match interrupt (IRQ1, vector F6H) when the 16-bit timer 1 count value matches the  
16-bit value written to the reference data registers.  
— To generate a timer 1 capture interrupt (IRQ1, vector F6H) when a triggering condition exists at the P3.2 pin  
for 42/44 package; at the P3.0 for 32 package (You can select a rising edge, a falling edge, or both edges as  
the trigger).  
In the S3C80F9B/C80G9B interrupt structure, the timer 1 overflow interrupt has higher priority than the timer 1  
match or capture interrupt.  
12-1  
TIMER 1  
S3C80F9B/C80G9B  
TIMER 1 OVERFLOW INTERRUPT  
Timer 1 can be programmed to generate an overflow interrupt (IRQ1, F4H) whenever an overflow occurs in the  
16-bit up counter. When you set the timer 1 overflow interrupt enable bit, T1CON.2, to “1”, the overflow interrupt is  
generated each time the 16-bit up counter reaches ‘FFFFH’. After the interrupt request is generated, the counter  
value is automatically cleared to ‘00H’ and up counting resumes. By writing a “1” to T1CON.3, you can clear/reset  
the 16-bit counter value at any time during program operation.  
TIMER 1 CAPTURE INTERRUPT  
Timer 1 can be used to generate a capture interrupt (IRQ1, vector F6H) whenever a triggering condition is  
detected at the P3.0 pin for 32 pin package and P3.3 pin for 42/44 pin package. The T1CON.5 and T1CON.4 bit-  
pair setting is used to select the trigger condition for capture mode operation: rising edges, falling edges, or both  
signal edges.  
In capture mode, program software can poll the timer 1 match/capture interrupt pending bit, T1CON.0, to detect  
when a timer 1 capture interrupt pending condition exists (T1CON.0 = “1”). When the interrupt request is  
acknowledged by the CPU and the service routine starts, the interrupt service routine for vector F6H must clear  
the interrupt pending condition by writing a “0” to T1CON.0.  
T1CON.2  
16-Bit Up Counter  
CLK  
IRQ1 (T1OVF)  
IRQ1 (T1INT)  
Pending  
(T1CON.0)  
P3.0 or P3.3 (note)  
Interrupt  
Enable/Disable  
(T1CON.1)  
Timer 1 Data  
T1CON.5  
T1CON.4  
NOTE:  
P3.0 is assigned as T1CAP function for 32 pin package and P3.3 is assigned as  
T1CAP function for 42/44 pin package.  
Figure 12-1. Simplified Timer 1 Function Diagram: Capture Mode  
12-2  
S3C80F9B/C80G9B  
TIMER 1  
TIMER 1 MATCH INTERRUPT  
Timer 1 can also be used to generate a match interrupt (IRQ1, vector F6H) whenever the 16-bit counter value  
matches the value that is written to the timer 1 reference data registers, T1DATAH and T1DATAL. When a match  
condition is detected by the 16-bit comparator, the match interrupt is generated, the counter value is cleared, and  
up counting resumes from ‘00H’.  
In match mode, program software can poll the timer 1 match/capture interrupt pending bit, T1CON.0, to detect  
when a timer 1 match interrupt pending condition exists (T1CON.0 = “1”). When the interrupt request is  
acknowledged by the CPU and the service routine starts, the interrupt service routine for vector F6H must clear  
the interrupt pending condition by writing a “0” to T1CON.0.  
IRQ1 (T1INT)  
Pending  
(T1CON.0)  
Interrupt  
Enable/Disable  
(T1CON.1)  
R (Clear)  
16-Bit Up Counter  
16-Bit Comparator  
CLK  
Match  
CTL  
P3.0 or P3.3  
T1CON.5  
T1CON.4  
Timer 1 High/Low  
Buffer Register  
Match Signal  
T1CON.3  
Timer 1 Data High/Low  
Buffer Register  
Figure 12-2. Simplified Timer 1 Function Diagram: Interval Timer Mode  
12-3  
TIMER 1  
S3C80F9B/C80G9B  
T1CON.2  
T1CON. 7-.6  
IRQ1  
OVF  
CAOF (T-F/F)  
f
f
OSC/4  
OSC/8  
Clear  
T1CON.3  
T1CON.1  
16-Bit Up-Counter  
(Read-Only)  
MUX  
R
f
OSC/16  
Match (note)  
MUX  
16-Bit Compatator  
T1CON.5-.4  
T1CON.0  
IRQ1  
Timer 1 High/Low  
Buffer Register  
T1CON.3  
Match Signal  
T1OVF  
Timer 1 Data  
High/Low Register  
Data Bus  
NOTE: Match signal is occurrd only in interval mode.  
Figure 12-3. Timer 1 Block Diagram  
12-4  
S3C80F9B/C80G9B  
TIMER 1  
TIMER 1 CONTROL REGISTER (T1CON)  
The timer 1 control register, T1CON, is located in set 1, FAH, and is read/write addressable. T1CON contains  
control settings for the following T1 functions:  
— Timer 1 input clock selection  
— Timer 1 operating mode selection  
— Timer 1 16-bit down counter clear  
— Timer 1 overflow interrupt enable/disable  
— Timer 1 match or capture interrupt enable/disable  
— Timer 1 interrupt pending control (read for status, write to clear)  
A reset operation clears T1CON to ‘00H’, selecting fOSC divided by 4 as the T1 clock, configuring timer 1 as a  
normal interval timer, and disabling the timer 1 interrupts.  
Timer 1 Control Register (T1CON)  
FAH, Set 1, R/W  
MSB .7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Timer 1 input clock selection bits:  
00 = fOSC/4  
Timer 1 interrupt pending bit:  
0 = No interrupt pending  
01 = fOSC/8  
10 = fOSC/16  
0 = Clear pending bit (when write)  
1 = Interrupt is pending  
11 = Internal clock (T-F/F)  
Timer 1 interrupt match/capture  
enable bit:  
0 = Disable interrupt  
1 = Enable interrupt  
Timer 1 operating mode selection bits:  
00 = Interval mode  
01 = Capture mode (capture on rising edge,  
counter running, OVF can occur)  
10 = Capture mode (capture on falling edge,  
counter running, OVF can occur)  
11 = Capture mode (capture on rising and  
Timer 1 overflow interrupt enable bit:  
0 = Disable overflow interrupt  
1 = Enable overflow interrupt  
falling edge, counter running, OVF can occur)  
Timer 1 counter clear bit:  
0 = No effect  
1 = Clear the timer 0 counter (when write)  
Figure 12-4. Timer 1 Control Register (T1CON)  
12-5  
TIMER 1  
S3C80F9B/C80G9B  
Timer1 Counter High-byte Register  
(T1CNTH) F6H, Set 1, R/W  
MSB  
MSB  
MSB  
MSB  
.7  
.7  
.7  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Reset Value: 00H  
Timer 1 Counter Low-byte Register  
(T1CNTL) F7H, Set 1, R  
.6  
.6  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Reset Value: 00H  
Timer 1 Data High-byte Register  
(T1DATAH) F8H, Set 1, R/W  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Reset Value: FFH  
Timer 1 Data Low-byte Register  
(T1DATAL) F9H, Set 1, R/W  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Reset Value: FFH  
Figure 12-5. Timer 1 Registers  
12-6  
S3C80F9B/C80G9B  
COUNTER A  
13 COUNTER A  
OVERVIEW  
The S3C80F9B/C80G9B microcontroller has an 8-bit counter called counter A. Counter A, which can be used to  
generate the carrier frequency, has the following components (see Figure 13-1):  
— Counter A control register, CACON  
— 8-bit down counter with auto-reload function  
— Two 8-bit reference data registers, CADATAH and CADATAL  
Counter A has two functions:  
— As a normal interval timer, generating a counter A interrupt (IRQ4, vector ECH) at programmed time intervals.  
— To supply a clock source to the 16-bit timer/counter module, timer 1, for generating the timer 1 overflow  
interrupt.  
13-1  
COUNTER A  
S3C80F9B/C80G9B  
CACON.6-.7  
DIV 1  
DIV 2  
DIV 4  
DIV 8  
CLK  
CACON.0  
(CAOF)  
To Other Block  
(P3.1/REM)  
MUX  
16-Bit Down Counter  
Repeat  
Control  
CACON.3  
MUX  
Interrupt  
Control  
IRQ2  
(CAINT)  
INT. GEN.  
Counter A Data  
Low Byte Register  
CACON.2  
CACON.4-.5  
fOSC  
Counter A Data  
High Byte Register  
Data Bus  
NOTE: The value of the CADTAL register is loaded into the 8-bit counter when the  
operation of the counter A stars. If a borrow occurs, the value of the  
CADATAH register isloaded into the 8-bit counter. However, if the next borrow  
occurs, the value of the CADATAL register is loaded into the 8-bit counter.  
Figure 13-1. Counter A Block Diagram  
13-2  
S3C80F9B/C80G9B  
COUNTER A  
COUNTER A CONTROL REGISTER (CACON)  
The counter A control register, CACON, is located in set 1, bank 0, F3H, and is read/write addressable. CACON  
contains control settings for the following functions (see Figure 13-2):  
— Counter A clock source selection  
— Counter A interrupt enable/disable  
— Counter A interrupt pending control (read for status, write to clear)  
— Counter A interrupt time selection  
Counter A Control Register (CACON)  
F3H, Set 1, R/W  
MSB .7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Counter A input clock  
selection bits:  
00 = fOSC  
Counter A output flip-flop control bit:  
0 = T-F/F is low  
1 = T-F/F is high  
01 = fOSC/2  
10 = fOSC/4  
11 = fOSC/8  
Counter A mode selection bit:  
0 = One shot mode  
1 = Repeating mode  
Counter A interrupt time selection bits:  
00 = Elapsed time for low data value  
01 = Elapsed time for high data value  
10 = Elapsed time for low and high data values  
11 = Invalid setting  
Counter A start/stop bit:  
0 = Stop counter A  
1 = Start counter A  
Counter A interrupt enable bit:  
0 = Disable interrupt  
1 = Enable interrupt  
Figure 13-2. Counter A Control Register (CACON)  
13-3  
COUNTER A  
S3C80F9B/C80G9B  
Counter A Data High-byte Register  
(CADATAH) F4H, Set 1, R/W  
MSB .7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Reset Value: FFH  
Counter A Data Low-byte Register  
(CADATAL) F4H, Set 1, R/W  
MSB .7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Reset Value: FFH  
Figure 13-3. Counter A Registers  
COUNTER A PULSE WIDTH CALCULATIONS  
t
HIGH  
t
LOW  
t
LOW  
To generate the above repeated waveform consisted of low period time, tLOW, and high period time, tHIGH  
.
When CAOF = 0,  
tLOW = (CADATAL + 2) × 1/Fx. 0H < CADATAL < 100H, where Fx = the selected clock.  
tHIGH = (CADATAH + 2) × 1/Fx. 0H < CADATAH < 100H, where Fx = the selected clock.  
When CAOF = 1,  
tLOW = (CADATAH + 2) × 1/Fx. 0H < CADATAH < 100H, where Fx = the selected clock.  
tHIGH = (CADATAL + 2) × 1/Fx. 0H < CADATAL < 100H, where Fx = the selected clock.  
To make tLOW = 24 us and tHIGH = 15 us. FOSC = 4 MHz, FX = 4 MHz/4 = 1 MHz  
[Method 1] When CAOF = 0,  
tLOW = 24 us = (CADATAL + 2) / FX = (CADATAL + 2) x 1us, CADATAL = 22.  
tHIGH = 15 us = (CADATAH + 2) / FX = (CADATAH + 2) x 1us, CADATAH = 13.  
[Method 2] When CAOF = 1,  
tHIGH = 15 us = (CADATAL + 2) / FX = (CADATAL + 2) x 1us, CADATAL = 13.  
LOW = 24 us = (CADATAH + 2) / FX = (CADATAH + 2) x 1us, CADATAH = 22.  
t
13-4  
S3C80F9B/C80G9B  
COUNTER A  
0H  
Counter A  
Clock  
CAOF = '0'  
High  
Low  
Low  
High  
CADATAL = 01-FFH  
CADATAH = 00H  
CAOF = '0'  
CADATAL = 00H  
CADATAH = 01-FFH  
CAOF = '0'  
CADATAL = 00H  
CADATAH = 00H  
CAOF = '1'  
CADATAL = 00H  
CADATAH = 00H  
0H  
100H  
200H  
Counter A  
Clock  
E0H  
CAOF = '1'  
CADATAL = DEH  
CADATAH = 1EH  
20H  
20H  
CAOF = '0'  
CADATAL = DEH  
CADATAH = 1EH  
E0H  
80H  
CAOF = '1'  
CADATAL = 7EH  
CADATAH = 7EH  
80H  
80H  
CAOF = '0'  
CADATAL = 7EH  
CADATAH = 7EH  
80H  
Figure 13-4. Counter A Output Flip-Flop Waveforms in Repeat Mode  
13-5  
COUNTER A  
S3C80F9B/C80G9B  
)
PROGRAMMING TIP — To generate 38 kHz, 1/3duty signal through P3.1  
This example sets Counter A to the repeat mode, sets the oscillation frequency as the Counter A clock source,  
and CADATAH and CADATAL to make a 38 kHz,1/3 Duty carrier frequency. The program parameters are:  
8.795 us  
17.59 us  
37.9 kHZ 1/3 duty  
— Counter A is used in repeat mode  
— Oscillation frequency is 4 MHz (0.25 µs)  
— CADATAH = 8.795 µs / 0.25 µs = 35.18, CADATAL = 17.59 µs / 0.25 µs = 70.36  
— Set P3.1 C-Mos push-pull output and CAOF mode.  
— 44 pin package  
ORG  
0100H  
;
Reset address  
START  
DI  
LD  
LD  
CADATAL,#(70-2)  
CADATAH,#(35-2)  
;
;
;
;
;
;
;
Set 17.5 µs  
Set 8.75 µs  
LD  
LD  
P3CON,#11110010B  
CACON,#00000110B  
Set P3 to C-Mos push-pull output.  
Set P3.1 to REM output  
Clock Source Fosc  
;
;
Disable Counter A interrupt.  
Select repeat mode for Counter A.  
; Start Counter A operation.  
; Set Counter A Output Flip-flop(CAOF) high.  
;
LD  
P3,#80H  
;
;
;
;
Set P3.7(Carrier On/Off) to high.  
This command generates 38 kHz, 1/3duty pulse signal  
through P3.1  
13-6  
S3C80F9B/C80G9B  
COUNTER A  
)
PROGRAMMING TIP — To generate a one pulse signal through P3.1  
This example sets Counter A to the one shot mode, sets the oscillation frequency as the Counter A clock source,  
and CADATAH and CADATAL to make a 40 µs width pulse. The program parameters are:  
40 us  
— Counter A is used in one shot mode  
— Oscillation frequency is 4 MHz ( 1 clock = 0.25 µs)  
— CADATAH = 40 µs / 0.25 µs = 160, CADATAL = 1  
— Set P3.1 C-Mos push-pull output and CAOF mode.  
— 44pin package  
ORG  
DI  
0100H  
;
Reset address  
START  
LD  
LD  
CADATAH,# (160-2)  
CADATAL,# 1  
;
;
;
;
;
;
;
;
;
Set 40 µs  
Set any value except 00H  
LD  
LD  
P3CON,#11110010B  
CACON,#00000001B  
Set P3 to C-Mos push-pull output.  
Set P3.1 to REM output  
Clock Source Fosc  
Disable Counter A interrupt.  
Select one shot mode for Counter A.  
; Stop Counter A operation.  
; Set Counter A Output Flip-Flop (CAOF) high  
LD  
P3,#80H  
;
Set P3.7(Carrier On/Off) to high.  
Pulse_out: LD  
CACON,#00000101B  
;
;
;
;
Start Counter A operation  
to make the pulse at this point.  
After the instruction is executed, 0.75 µs is required  
before the falling edge of the pulse starts.  
13-7  
S3C80F9B/C80G9B  
ELECTRICAL DATA  
14 ELECTRICAL DATA 1 (S3C80F9B)  
OVERVIEW  
In this section, S3C80F9B electrical characteristics are presented in tables and graphs. The information is  
arranged in the following order:  
— Absolute maximum ratings  
— D.C. electrical characteristics  
— Data retention supply voltage in Stop mode  
— Stop mode release timing when initiated by an external interrupt  
— Stop mode release timing when initiated by a Reset  
— I/O capacitance  
— A.C. electrical characteristics  
— Input timing for external interrupts  
— Input timing for RESET  
— Oscillation characteristics  
— Oscillation stabilization time  
14-1  
ELECTRICAL DATA  
S3C80F9B/C80G9B  
Table 14-1. Absolute Maximum Ratings  
(T = 25 °C)  
A
Parameter  
Symbol  
Conditions  
Rating  
Unit  
VDD  
Supply voltage  
Input voltage  
– 0.3 to + 6.5  
V
VIN  
VO  
– 0.3 to VDD + 0.3  
– 0.3 to VDD + 0.3  
V
V
Output voltage  
Output current High  
All output pins  
IOH  
One I/O pin active  
All I/O pins active  
– 18  
– 60  
mA  
IOL  
Output current Low  
One I/O pin active  
Total pin current for ports 0, 1, and 2  
Total pin current for port 3  
+ 30  
mA  
+ 100  
+ 40  
TA  
Operating  
temperature  
– 25 to + 85  
°C  
°C  
TSTG  
Storage temperature  
– 65 to + 150  
Table 14-2. D.C. Electrical Characteristics  
(T = – 25 °C to + 85 °C, VDD = 2.0 V to 5.0 V)  
A
Parameter  
Symbol  
Conditions  
FOSC = 8 MHz  
(Instruction clock = 2 MHz)  
Min  
Typ  
Max  
Unit  
VDD  
Operating Voltage  
2.0  
5.0  
V
VIH1  
All input pins except VIH2 and 0.8 VDD  
VIH3  
VDD  
Input High  
Voltage  
V
VIH2  
VIH3  
VIL1  
0.85 VDD  
VDD – 0.3  
0
VDD  
VDD  
nRESET  
XIN  
All input pins except VIL2  
and VIL3  
0.2 VDD  
Input Low Voltage  
V
V
VIL2  
VIL3  
0.2 VDD  
0.3  
nRESET  
XIN  
VOH1  
VDD = 2.4 V IOH = – 6 mA  
Port 3.1 only  
VDD – 0.7  
Output High  
Voltage  
VOH2  
VDD = 2.4 V, IOH = – 2.2mA  
P3.0, P2.0–2.3  
VDD 0.7  
14-2  
S3C80F9B/C80G9B  
ELECTRICAL DATA  
Table 14-2. D.C. Electrical Characteristics (Continued)  
(TA = – 25 °C to + 85 °C, VDD = 2.0 V to 5.0 V)  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
VOH3  
VDD = 2.4 V,IOH = – 1 mA  
VDD 1.0  
Output High  
Voltage  
0.5  
0.5  
1
V
Port0, Port1, P2.4-2.7 and Port4  
VOL1  
VOL2  
VOL3  
ILIH1  
VDD = 2.4 V, IOL = 12 mA, port  
Output Low  
Voltage  
0.4  
0.4  
0.4  
V
3.1 only  
VDD = 2.4 V, IOL = 5 mA  
P3.0, P3.4-3.5, P2.0-2.3  
IOL = 2mA  
Port 0, Port1, P2.4-2.7 and Port4  
VIN = VDD  
All input pins except X and  
IN  
XOUT  
Input High  
Leakage Current  
1
µA  
µA  
ILIH2  
ILIL1  
VIN = VDD, XIN and XOUT  
20  
VIN = 0 V  
Input Low  
– 1  
Leakage Current  
All input pins except XIN, XOUT  
ILIL2  
VIN = 0 V  
– 20  
XIN and XOUT  
ILOH  
ILOL  
RL1  
VOUT = VDD  
Output High  
Leakage Current  
1
µA  
µA  
kΩ  
All output pins  
VOUT = 0 V  
Output Low  
Leakage Current  
– 1  
95  
All output pins  
VIN = 0 V, VDD = 2.4 V  
Pull-up  
Resistors  
44  
55  
°
TA = 25 C, Ports 0–2, P3.2–3.3  
14-3  
ELECTRICAL DATA  
S3C80F9B/C80G9B  
Table 14-2. D.C. Electrical Characteristics (Continued)  
(T = – 25 °C to + 85 °C, VDD = 2.0 V to 5.0 V)  
A
Parameter  
Symbol  
Conditions  
Operating mode  
DD = 5.0 V  
Min  
Typ  
Max  
Unit  
IDD1  
Supply current  
(note)  
6
11  
mA  
V
8 MHz crystal  
4 MHz crystal  
4.5  
1.8  
9
IDD2  
Idle mode  
3.5  
VDD = 5.0 V  
8 MHz crystal  
4 MHz crystal  
1.6  
18  
3.0  
25  
IDD3  
Stop mode; VDD = 5.0 V  
uA  
T
A
= 25 °C  
12  
4.5  
1
15  
8
VDD = 3.6 V, TA = 25 °C  
VDD = 2.4 V, TA = 25 °C  
VDD = 0.7 V, TA = 25 °C  
1.5  
NOTE: Supply current does not include current drawn through internal pull-up resistors or external output current loads.  
Table 14-3. Characteristics of Low Voltage Detect circuit  
(T = 25 °C)  
A
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Hysteresys Voltage of  
100  
300  
mV  
V  
LVD (Slew Rate of LVD)  
VLVD  
Low level detect voltage  
2.00  
2.20  
2.40  
V
Table 14-4. Data Retention Supply Voltage in Stop Mode  
(T = – 25 °C to + 85 °C)  
A
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
VDDDR  
Data retention supply  
voltage  
1.0  
5.0  
V
IDDDR  
VDDDR = 1.0 V  
Stop mode  
Data retention supply  
current  
1
µA  
14-4  
S3C80F9B/C80G9B  
ELECTRICAL DATA  
Idle Mode  
(Basic Timer Active)  
Stop Mode  
Data Retention Mode  
VDD  
Normal  
Operating  
Mode  
VDDDR  
Execution of  
STOP Instrction  
EXT INT  
0.8VDD  
0.2VDD  
t
WAIT  
Figure 14-1. Stop Mode Release Timing When Initiated by an External Interrupt  
Reset  
Occur  
Oscillation Stabilization Time  
Stop Mode  
Normal  
Operating  
Mode  
VDD  
Execution of  
STOP Instrction  
nRESET  
tWAIT  
NOTE: tWAIT is the same as 4096 x 16 x 1/fOSC.  
Figure 14-2. Stop Mode Release Timing When Initiated by a RESET  
14-5  
ELECTRICAL DATA  
S3C80F9B/C80G9B  
Reset  
Occur  
Oscillation Stabilization Time  
Stop Mode  
Normal  
Operating  
Mode  
Back-up Mode  
VDD  
VLVD  
VDDDR  
t
WAIT  
Execution of  
STOP Instrction  
Data Retention Time  
NOTE  
:
tWAIT is the same as 4096 x 16 x 1/fOSC.  
Figure 14-3. Stop Mode Release Timing When Initiated by a LVD  
Table 14-5. Input/Output Capacitance  
(TA = – 25 °C to + 85 °C , VDD = 0 V)  
Parameter  
Input  
capacitance  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
CIN  
f = 1 MHz; unmeasured pins  
are connected to VSS  
10  
pF  
COUT  
CIO  
Output  
capacitance  
I/O capacitance  
Table 14-6. A.C. Electrical Characteristics  
(T = – 25 °C to + 85 °C)  
A
Parameter  
Symbol  
tINTH  
tINTL  
Conditions  
Min  
Typ  
Max  
Unit  
Interrupt input,  
High, Low width  
P0.0–P0.7, P2.3–P2.0  
DD = 5.0 V  
200  
300  
ns  
,
V
tRSL  
nRESET input  
Low width  
Input  
VDD = 5.0 V  
1000  
14-6  
S3C80F9B/C80G9B  
ELECTRICAL DATA  
t
INTL  
tINTH  
0.8 VDD  
0.2 VDD  
NOTE  
:
The unit tCPU means one CPU clock period.  
Figure 14-4. Input Timing for External Interrupts (Port 0, P2.3–P2.0)  
Reset  
Occur  
Oscillation Stabilization Time  
Normal  
Back-up Mode  
(Stop Mode)  
Normal Operating Mode  
Operating  
Mode  
VDD  
nRESET  
tWAIT  
NOTE: tWAIT is the same as 4096 x 16 x 1/fOSC.  
Figure 14-5. Input Timing for RESET  
14-7  
ELECTRICAL DATA  
S3C80F9B/C80G9B  
Table 14-7. Oscillation Characteristics  
(T = – 25 °C + 85 °C)  
A
Oscillator  
Clock Circuit  
Conditions  
Min  
Typ  
Max  
Unit  
Crystal  
CPU clock oscillation  
frequency  
1
8
MHz  
XIN  
C1  
C2  
XOUT  
Ceramic  
CPU clock oscillation  
frequency  
1
1
8
8
MHz  
MHz  
X
IN  
C1  
C2  
XOUT  
X
IN  
input frequency  
External clock  
XIN  
External  
Clock  
Open Pin  
XOUT  
Table 14-8. Oscillation Stabilization Time  
(T = – 25 °C + 85 °C, VDD = 4.5 V to 5.0 V)  
A
Oscillator  
Test Condition  
fOSC > 400 kHz  
Min  
Typ  
Max  
Unit  
Main crystal  
20  
10  
ms  
Oscillation stabilization occurs when VDD is  
Main ceramic  
ms  
ns  
equal to the minimum oscillator voltage  
range.  
XIN input High and Low width (tXH, tXL  
)
External clock  
(main system)  
25  
500  
216/fOSC  
tWAIT when released by a reset (1)  
Oscillator  
stabilization  
wait time  
ms  
ms  
tWAIT when released by an interrupt (2)  
NOTES:  
1.  
f
is the oscillator frequency.  
OSC  
2. The duration of the oscillation stabilization time (t  
) when it is released by an interrupt is determined by the setting  
WAIT  
in the basic timer control register, BTCON.  
14-8  
S3C80F9B/C80G9B  
ELECTRICAL DATA  
Instruction  
Clock  
Instruction  
Clock  
A
2 MHz  
8 MHz  
6 MHz  
1.25MHz  
1 MHz  
4 MHz  
500 kHz  
250 kHz  
100 kHz  
400 kHz  
1
2
3
4
5
6
7
Supply Voltage (V)  
Instruction Clock = 1/6n x oscillator frequency (n = 1, 2, 8, 16)  
A 2.0 V: 8MHz  
Figure 14-6. Operating Voltage Range of S3C80F9B  
14-9  
S3C80F9B/C80G9B  
ELECTRICAL DATA  
15 ELECTRICAL DATA 2 (S3C80G9B)  
OVERVIEW  
In this section, S3C80G9B electrical characteristics are presented in tables and graphs. The information is  
arranged in the following order:  
— Absolute maximum ratings  
— D.C. electrical characteristics  
— Data retention supply voltage in Stop mode  
— Stop mode release timing when initiated by an external interrupt  
— Stop mode release timing when initiated by a Reset  
— I/O capacitance  
— A.C. electrical characteristics  
— Input timing for external interrupts  
— Input timing for nRESET  
— Oscillation characteristics  
— Oscillation stabilization time  
15-1  
ELECTRICAL DATA  
S3C80F9B/C80G9B  
Table 15-1. Absolute Maximum Ratings  
(T = 25 °C)  
A
Parameter  
Symbol  
Conditions  
Rating  
Unit  
VDD  
Supply voltage  
Input voltage  
– 0.3 to + 6.5  
V
VIN  
VO  
– 0.3 to VDD + 0.3  
– 0.3 to VDD + 0.3  
V
V
Output voltage  
Output current High  
All output pins  
IOH  
One I/O pin active  
All I/O pins active  
– 18  
– 60  
mA  
IOL  
Output current Low  
One I/O pin active  
Total pin current for ports 0, 1, and 2  
Total pin current for port 3  
+ 30  
mA  
+ 100  
+ 40  
TA  
Operating  
temperature  
– 25 to + 85  
°C  
°C  
TSTG  
Storage temperature  
– 65 to + 150  
Table 15-2. D.C. Electrical Characteristics  
(T = – 25 °C to + 85 °C, V  
DD  
= 1.7 V to 3.6 V)  
Conditions  
A
Parameter  
Symbol  
VDD  
Min  
Typ  
Max  
Unit  
FOSC = 4 MHz  
Operating Voltage  
1.7  
3.6  
V
(Instruction clock = 1 MHz)  
VIH1  
All input pins except VIH2 and 0.8 VDD  
VIH3  
VDD  
Input High  
voltage  
V
V
V
VIH2  
VIH3  
VIL1  
0.85 VDD  
VDD – 0.3  
0
VDD  
VDD  
NRESET  
XIN  
All input pins except VIL2  
and VIL3  
0.2 VDD  
Input Low voltage  
VIL2  
VIL3  
0.2 VDD  
NRESET  
XIN  
0.3  
VOH1  
VDD = 2.4 V IOH = – 6 mA  
Port 3.1 only  
VDD – 0.7  
VDD– 0.7  
Output High  
voltage  
VOH2  
VDD = 2.4 V, IOH = – 2.2mA  
P3.0, P2.0–2.3  
15-2  
S3C80F9B/C80G9B  
ELECTRICAL DATA  
Table 15-2. D.C. Electrical Characteristics (Continued)  
(TA = – 25 °C to + 85 °C, VDD = 1.7 V to 3.6 V)  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
VOH3  
VDD = 2.4 V, IOH = – 1 mA  
VDD 1.0  
Output High  
voltage  
V
Port0, Port1, P2.4–2.7 and Port4  
VOL1  
VOL2  
VOL3  
ILIH1  
VDD = 2.4 V, IOL = 12 mA, port  
Output Low  
voltage  
0.4  
0.4  
0.4  
0.5  
0.5  
1
V
3.1 only  
VDD = 2.4 V, IOL = 5 mA  
P3.0, P3.4–3.5, P2.0–2.3  
IOL = 2mA  
Port 0, Port1, P2.4–2.7 and Port4  
VIN = VDD  
All input pins except X and  
IN  
XOUT  
Input High  
leakage current  
1
µA  
µA  
ILIH2  
ILIL1  
VIN = VDD, XIN and XOUT  
20  
VIN = 0 V  
Input Low  
– 1  
leakage current  
All input pins except XIN, XOUT  
ILIL2  
VIN = 0 V  
– 20  
XIN and XOUT  
ILOH  
ILOL  
RL1  
VOUT = VDD  
Output High  
leakage current  
1
µA  
µA  
kΩ  
All output pins  
VOUT = 0 V  
Output Low  
leakage current  
– 1  
95  
All output pins  
VIN = 0 V, VDD = 2.4 V  
Pull-up resistors  
44  
55  
TA = 25 °C, Ports 0–2, P3.2–3.3  
15-3  
ELECTRICAL DATA  
S3C80F9B/C80G9B  
Table 15-2. D.C. Electrical Characteristics (Continued)  
(T = – 25 °C to + 85 °C, V = 1.7 V to 3.6 V)  
A
DD  
Symbol  
Parameter  
Conditions  
Operating mode  
DD = 3.6 V  
Min  
Typ  
Max  
Unit  
IDD1  
IDD2  
IDD3  
Supply current  
(note)  
4.5  
9
3.0  
6
mA  
V
4 MHz crystal  
Idle mode  
1.6  
1
V
DD =3.6 V  
4 MHz crystal  
Stop mode;  
uA  
VDD =3.6 V, T = 25 °C  
A
NOTE: Supply current does not include current drawn through internal pull-up resistors or external output current loads.  
Table 15-3. Characteristics of Low Voltage Detect circuit  
(T = 25 °C)  
A
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Hysteresys Voltage of  
LVD (Slew Rate of LVD)  
100  
300  
mV  
V  
VLVD  
Low level detect voltage  
1.70  
1.90  
2.10  
V
Table 15-4. Data Retention Supply Voltage in Stop Mode  
(T = – 25 °C to + 85 °C)  
A
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
VDDDR  
Data retention supply  
voltage  
1.0  
3.6  
V
IDDDR  
VDDDR = 1.0 V  
Stop mode  
Data retention supply  
current  
1
µA  
15-4  
S3C80F9B/C80G9B  
ELECTRICAL DATA  
Idle Mode  
(Basic Timer Active)  
Stop Mode  
Data Retention Mode  
VDD  
Normal  
Operating  
Mode  
VDDDR  
Execution of  
STOP Instrction  
EXT INT  
0.8VDD  
0.2VDD  
t
WAIT  
Figure 15-1. Stop Mode Release Timing When Initiated by an External Interrupt  
Reset  
Occur  
Oscillation Stabilization Time  
Stop Mode  
Normal  
Operating  
Mode  
VDD  
Execution of  
STOP Instrction  
nRESET  
tWAIT  
NOTE: tWAIT is the same as 4096 x 16 x 1/fOSC.  
Figure 15-2. Stop Mode Release Timing When Initiated by a nRESET  
15-5  
ELECTRICAL DATA  
S3C80F9B/C80G9B  
Table 15-5. Input/Output Capacitance  
(TA = – 25 °C to + 85 °C , VDD = 0 V)  
Parameter  
Input  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
CIN  
f = 1 MHz; unmeasured pins  
10  
pF  
are connected to V  
capacitance  
SS  
COUT  
CIO  
Output  
capacitance  
I/O capacitance  
Table 15-6. A.C. Electrical Characteristics  
(T = – 25 °C to + 85 °C)  
A
Parameter  
Symbol  
tINTH  
tINTL  
Conditions  
Min  
Typ  
Max  
Unit  
Interrupt input,  
High, Low width  
P0.0–P0.7, P2.3–P2.0  
VDD = 3.6 V  
200  
300  
ns  
,
tRSL  
nRESET input  
Low width  
Input  
1000  
V
DD = 3.6 V  
15-6  
S3C80F9B/C80G9B  
ELECTRICAL DATA  
t
INTL  
tINTH  
0.8 VDD  
0.2 VDD  
NOTE  
:
The unit tCPU means one CPU clock period.  
Figure 15-3. Input Timing for External Interrupts (Port 0, P2.3–P2.0)  
Reset  
Occur  
Oscillation Stabilization Time  
Back-up Mode  
(Stop Mode)  
Normal  
Operating  
Mode  
Normal Operating Mode  
VDD  
nRESET  
tWAIT  
NOTE: tWAIT is the same as 4096 x 16 x 1/fOSC.  
Figure 15-4. Input Timing for RESET  
15-7  
ELECTRICAL DATA  
S3C80F9B/C80G9B  
Table 15-7. Oscillation Characteristics  
(T = – 25 °C + 85 °C)  
A
Oscillator  
Clock Circuit  
Conditions  
Min  
Typ  
Max  
Unit  
Crystal  
CPU clock oscillation  
frequency  
1
4
MHz  
XIN  
C1  
C2  
XOUT  
Ceramic  
CPU clock oscillation  
frequency  
1
1
4
4
MHz  
MHz  
X
IN  
C1  
C2  
XOUT  
X
IN  
input frequency  
External clock  
X
IN  
External  
Clock  
Open Pin  
XOUT  
Table 15-8. Oscillation Stabilization Time  
= 3.6 V )  
DD  
(T = – 25 °C + 85 °C, V  
A
Oscillator  
Test Condition  
Min  
Typ  
Max  
Unit  
fOSC > 400 kHz  
Main crystal  
20  
ms  
Oscillation stabilization occurs when VDD is  
Main ceramic  
10  
ms  
ns  
equal to the minimum oscillator voltage  
range.  
XIN input High and Low width (tXH, tXL  
)
External clock  
(main system)  
25  
500  
216/fOSC  
tWAIT when released by a reset (1)  
Oscillator  
stabilization  
wait time  
ms  
ms  
tWAIT when released by an interrupt (2)  
NOTES:  
1.  
f
is the oscillator frequency.  
OSC  
2. The duration of the oscillation stabilization time (t  
) when it is released by an interrupt is determined by the setting  
WAIT  
in the basic timer control register, BTCON.  
15-8  
S3C80F9B/C80G9B  
ELECTRICAL DATA  
Instruction  
Clock  
Instruction  
Clock  
2 MHz  
8 MHz  
6 MHz  
1.25MHz  
1 MHz  
A
4 MHz  
500 kHz  
250 kHz  
100 kHz  
400 kHz  
1
2
3
4
5
6
7
Supply Voltage (V)  
Instruction Clock = 1/6n x oscillator frequency (n = 1, 2, 8, 16)  
A 1.7 V: 4MHz  
Figure 15-6. Operating Voltage Range of S3C80G9B  
15-9  
S3C80F9B/C80G9B  
MECHANICAL DATA  
16 MECHANICAL DATA  
OVERVIEW  
The S3C80F7/C80F9/C80G7/C80G9 microcontroller is currently available in a 28-pin SOP(Only for 80G9B) ,  
32-pin SOP, 42-pin SDIP, 44-pin QFP and 48-ELP(Only for 80F9B) package.  
#28  
#15  
28-SOP-375  
#1  
#14  
+ 0.10  
- 0.05  
0.15  
18.02 MAX  
17.62  
± 0.2  
1.27  
(0.56)  
0.41 ± 0.1  
NOTE: Dimensions are in millimeters  
Figure 16-1. 28-SOP-375 Package Dimensions  
NOTE: 28-SOP package is only used for S3C80G7/G9  
16-1  
MECHANICAL DATA  
S3C80F9B/C80G9B  
0-8  
#32  
#17  
32-SOP-450A  
+ 0.10  
0.25 - 0.05  
#1  
#16  
20.30 MAX  
19.90 ± 0.20  
0.10 MAX  
1.27  
(0.43)  
0.40 ± 0.10  
NOTE: Dimensions are in millimeters.  
Figure 16-2. 32-Pin SOP Package Dimension  
16-2  
S3C80F9B/C80G9B  
MECHANICAL DATA  
#42  
#22  
0-15  
42-SDIP-600  
#1  
#21  
39.50 MAX  
39.10  
± 0.20  
0.50  
1.00  
±
±
0.10  
0.10  
1.78  
(1.77)  
NOTE: Dimensions are in millimeters.  
Figure 16-3. 42-Pin SDIP Package Dimension  
16-3  
MECHANICAL DATA  
S3C80F9B/C80G9B  
13.20  
10.00  
±
±
0.30  
0.20  
0-8  
+ 0.10  
- 0.05  
0.15  
0.10 MAX  
44-QFP-1010B  
#44  
+ 0.10  
- 0.05  
#1  
0.35  
0.05 MIN  
2.05  
2.30 MAX  
0.80  
(1.00)  
0.15 MAX  
±
0.10  
NOTE  
: Dimensions are in millimeters.  
Figure 16-4. 44-Pin QFP Package Dimension  
16-4  
S3C80F9B/C80G9B  
MECHANICAL DATA  
7.00  
6.75  
±
±
0.10  
0.05  
(3.740)  
#1 PIN  
INDEX  
#48  
#1  
+
0.10  
0.02  
#1  
0.50 BSC  
(0.75)  
0.20  
0.10  
BOTTOM VIEW  
TOP VIEW  
0.08  
0.45  
± 0.05  
0.65REF  
0 ~ 0.05  
Figure 16-5. 48-Pin ELP Package Dimension  
NOTE: 48-ELP package is only used for S3C80F9B  
16-5  
MECHANICAL DATA  
S3C80F9B/C80G9B  
NOTES  
16-6  
S3C8 SERIES MASK ROM ORDER FORM  
Product description:  
Device Number:  
S3C80F9B  
S3C80G9B  
S3C8__________- ___________(write down the ROM code number)  
Product Order Form:  
Package  
Pellet  
Wafer  
Package Type: __________  
Package Marking (Check One):  
Standard  
Custom A  
(Max 10 chars)  
Custom B  
(Max 10 chars each line)  
@ YWW  
Device Name  
@ YWW  
@ YWW  
Device Name  
SEC  
@ : Assembly site code, Y : Last number of assembly year, WW : Week of assembly  
Delivery Dates and Quantities:  
Deliverable  
ROM code  
Required Delivery Date  
Quantity  
Comments  
Not applicable  
See ROM Selection Form  
Customer sample  
Risk order  
See Risk Order Sheet  
Please answer the following questions:  
For what kind of product will you be using this order?  
)
New product  
Upgrade of an existing product  
Other  
Replacement of an existing product  
If you are replacing an existing product, please indicate the former product name  
(
)
)
What are the main reasons you decided to use a Samsung microcontroller in your product?  
Please check all that apply.  
Price  
Product quality  
Features and functions  
Delivery on time  
Development system  
Used same micom before  
Technical support  
Quality of documentation  
Samsung reputation  
Mask Charge (US$ / Won):  
Customer Information:  
____________________________  
Company Name:  
___________________  
________________________  
(Person placing the order)  
Telephone number  
_________________________  
__________________________________  
(Technical Manager)  
Signatures:  
(For duplicate copies of this form, and for additional ordering information, please contact your local  
Samsung sales representative. Samsung sales offices are listed on the back cover of this book.)  
S3C8 SERIES REQUEST  
FOR PRODUCTION AT CUSTOMER RISK  
Customer Information:  
Company Name:  
Department:  
________________________________________________________________  
________________________________________________________________  
Telephone Number:  
Date:  
__________________________  
__________________________  
Fax: _____________________________  
Risk Order Information:  
Device Number:  
S3C80F9B  
S3C80G9B  
S3C8__________- ___________(write down the ROM code number)  
Package:  
Number of Pins: ____________  
Package Type: _____________________  
Intended Application:  
Product Model Number:  
________________________________________________________________  
________________________________________________________________  
Customer Risk Order Agreement:  
We hereby request SEC to produce the above named product in the quantity stated below. We believe our risk  
order product to be in full compliance with all SEC production specifications and, to this extent, agree to assume  
responsibility for any and all production risks involved.  
Order Quantity and Delivery Schedule:  
Risk Order Quantity:  
Delivery Schedule:  
_____________________ PCS  
Delivery Date (s)  
Quantity  
Comments  
Signatures:  
_______________________________  
(Person Placing the Risk Order)  
_______________________________________  
(SEC Sales Representative)  
(For duplicate copies of this form, and for additional ordering information, please contact your local  
Samsung sales representative. Samsung sales offices are listed on the back cover of this book.)  
S3C80F9B/C80G9B  
MASK OPTION SELECTION FORM  
Device Number:  
S3C80F9B  
S3C80G9B  
S3C8__________- ___________(write down the ROM code number)  
Diskette  
PROM  
Attachment (Check one):  
Customer Checksum:  
Company Name:  
________________________________________________________________  
________________________________________________________________  
________________________________________________________________  
Signature (Engineer):  
Please answer the following questions:  
)
Application (Product Model ID: _______________________)  
Audio  
Video  
Telecom  
LCD Databank  
Industrials  
Remocon  
Caller ID  
Home Appliance  
Other  
LCD Game  
Office Automation  
Please describe in detail its application  
(For duplicate copies of this form, and for additional ordering information, please contact your local  
Samsung sales representative. Samsung sales offices are listed on the back cover of this book.)  

相关型号:

S3C80F9BXX-QZ

Microcontroller, 8-Bit, FLASH, SAM87RC CPU, 8MHz, CMOS, PQFP44
SAMSUNG

S3C80F9BXX-SO

Microcontroller, 8-Bit, FLASH, SAM87RC CPU, 8MHz, CMOS, PDSO32
SAMSUNG

S3C80G7

S3C8-SERIES MICROCONTROLLERS
SAMSUNG

S3C80G9

S3C8-SERIES MICROCONTROLLERS
SAMSUNG

S3C80G9BXX-AQ

Microcontroller, 8-Bit, MROM, SAM87RC CPU, 4MHz, CMOS, PDIP42
SAMSUNG

S3C80G9BXX-SO

Microcontroller, 8-Bit, MROM, SAM87RC CPU, 4MHz, CMOS, PDSO32
SAMSUNG

S3C80M

8-BIT CMOS MICROCONTROLLERS USERS MANUAL
SAMSUNG

S3C80M4

8-BIT CMOS MICROCONTROLLERS USERS MANUAL
SAMSUNG

S3C80M4XX-DH4

Microcontroller, 8-Bit, MROM, SAM88RC CPU, 10MHz, CMOS, PDIP16
SAMSUNG

S3C80M4XX-DK4

Microcontroller, 8-Bit, MROM, SAM88RC CPU, 10MHz, CMOS, PDIP20
SAMSUNG

S3C80M4XX-SH4

Microcontroller, 8-Bit, MROM, SAM88RC CPU, 10MHz, CMOS, PDSO16
SAMSUNG

S3C80M4XX-SK4

Microcontroller, 8-Bit, MROM, SAM88RC CPU, 10MHz, CMOS, PDSO20
SAMSUNG