S3C9498XX-SN [SAMSUNG]

Microcontroller, 8-Bit, MROM, SAM88RCRI CPU, 8MHz, CMOS, PDSO28;
S3C9498XX-SN
型号: S3C9498XX-SN
厂家: SAMSUNG    SAMSUNG
描述:

Microcontroller, 8-Bit, MROM, SAM88RCRI CPU, 8MHz, CMOS, PDSO28

微控制器 光电二极管
文件: 总239页 (文件大小:1277K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
S3C9498/F9498  
8-BIT CMOS  
MICROCONTROLLER  
USER'S MANUAL  
Revision 1  
Important Notice  
The information in this publication has been carefully  
checked and is believed to be entirely accurate at the  
time of publication. Samsung assumes no  
responsibility, however, for possible errors or  
omissions, or for any consequences resulting from  
the use of the information contained herein.  
"Typical" parameters can and do vary in different  
applications. All operating parameters, including  
"Typicals" must be validated for each customer  
application by the customer's technical experts.  
Samsung products are not designed, intended, or  
authorized for use as components in systems  
intended for surgical implant into the body, for other  
applications intended to support or sustain life, or for  
any other application in which the failure of the  
Samsung product could create a situation where  
personal injury or death may occur.  
Samsung reserves the right to make changes in its  
products or product specifications with the intent to  
improve function or design at any time and without  
notice and is not required to update this  
documentation to reflect such changes.  
This publication does not convey to a purchaser of  
semiconductor devices described herein any license  
under the patent rights of Samsung or others.  
Should the Buyer purchase or use a Samsung  
product for any such unintended or unauthorized  
application, the Buyer shall indemnify and hold  
Samsung and its officers, employees, subsidiaries,  
affiliates, and distributors harmless against all claims,  
costs, damages, expenses, and reasonable attorney  
fees arising out of, either directly or indirectly, any  
claim of personal injury or death that may be  
associated with such unintended or unauthorized use,  
even if such claim alleges that Samsung was  
negligent regarding the design or manufacture of said  
product.  
Samsung makes no warranty, representation, or  
guarantee regarding the suitability of its products for  
any particular purpose, nor does Samsung assume  
any liability arising out of the application or use of any  
product or circuit and specifically disclaims any and  
all liability, including without limitation any  
consequential or incidental damages.  
S3C9498/F9498 8-Bit CMOS Microcontroller  
User's Manual, Revision 1  
Publication Number: 21-S3-C9498/F9498-102004  
© 2004 Samsung Electronics  
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any  
form or by any means, electric or mechanical, by photocopying, recording, or otherwise, without the prior written  
consent of Samsung Electronics.  
Samsung Electronics' microcontroller business has been awarded full ISO-14001  
certification (BVQ1 Certificate No. 9330). All semiconductor products are designed and  
manufactured in accordance with the highest quality standards and objectives.  
Samsung Electronics Co., Ltd.  
San #24 Nongseo-Ri, Giheung- Eup  
Yongin-City, Gyeonggi-Do, Korea  
C.P.O. Box #37, Suwon 449-900  
TEL:  
FAX:  
(82)-(031)-209-1934  
(82) (331) 209-1889  
Home-Page URL: Http://www.samsungsemi.com/  
Printed in the Republic of Korea  
Preface  
The S3C9498/F9498 Microcontroller User's Manual is designed for application designers and programmers who are  
using the S3C9498/F9498 microcontroller for application development. It is organized in two parts:  
Part I  
Programming Model  
Part II  
Hardware Descriptions  
Part I contains software-related information to familiarize you with the microcontroller's architecture, programming  
model, instruction set, and interrupt structure. It has six chapters:  
Chapter 1  
Chapter 2  
Chapter 3  
Product Overview  
Address Spaces  
Addressing Modes  
Chapter 4  
Chapter 5  
Chapter 6  
Control Registers  
Interrupt Structure  
SAM88RCRI Instruction Set  
Chapter 1, "Product Overview," is a high-level introduction to the S3C9498/F9498 with a general product description,  
and detailed information about individual pin characteristics and pin circuit types.  
Chapter 2, "Address Spaces," explains the S3C9498/F9498 program and data memory, internal register file, and  
mapped control registers, and explains how to address them. Chapter 2 also describes working register addressing,  
as well as system and user-defined stack operations.  
Chapter 3, "Addressing Modes," contains detailed descriptions of the six addressing modes that are supported by  
the CPU.  
Chapter 4, "Control Registers," contains overview tables for all mapped system and peripheral control register values,  
as well as detailed one-page descriptions in standard format. You can use these easy-to-read, alphabetically  
organized, register descriptions as a quick-reference source when writing programs.  
Chapter 5, "Interrupt Structure," describes the S3C9498/F9498 interrupt structure in detail and further prepares you  
for additional information presented in the individual hardware module descriptions in part II.  
Chapter 6, "SAM88RCRI Instruction Set," describes the features and conventions of the instruction set used for all  
S3C9-series microcontrollers. Several summary tables are presented for orientation and reference. Detailed  
descriptions of each instruction are presented in a standard format. Each instruction description includes one or  
more practical examples of how to use the instruction when writing an application program.  
A basic familiarity with the information in part I will help you to understand the hardware module descriptions in Part  
II. If you are not yet familiar with the SAM88RCRI product family and are reading this manual for the first time, we  
recommend that you first read chapters 1–3 carefully. Then, briefly look over the detailed information in chapters 4,  
5, and 6. Later, you can reference the information in part I as necessary.  
Part II contains detailed information about the peripheral components of the S3C9498/F9498 microcontrollers. Also  
included in part II are electrical, mechanical, MTP, and development tools data. It has 14 chapters:  
Chapter 7  
Chapter 8  
Chapter 9  
Chapter 10  
Chapter 11  
Chapter 12  
Chapter 13  
Clock Circuit  
RESET and Power-Down  
I/O Ports  
Chapter 14  
Chapter 15  
Chapter 16  
Chapter 17  
Chapter 18  
Chapter 19  
Chapter 20  
Chapter 21  
UART  
Serial I/O Interface  
PWM  
Basic Timer  
ADC  
8-bit Timer A/B  
16-bit Timer 1  
Timer 0  
Electrical Data  
Mechanical Data  
MTP  
Development Tools  
Two order forms are included at the back of this manual to facilitate customer order for S3C9498/F9498  
microcontroller: the Mask ROM Order Form, and the Mask Option Selection Form. You can photocopy these forms,  
fill them out, and then forward them to your local Samsung Sales Representative.  
S3C9498/F9498 MICROCONTROLLER  
iii  
Table of Contents  
Part I — Programming Model  
Chapter 1  
Product Overview  
S3C9-Series Microcontrollers ...............................................................................................................1-1  
S3C9498/F9498 Microcontroller ............................................................................................................1-1  
MTP ...................................................................................................................................................1-1  
Features.............................................................................................................................................1-2  
Block Diagram ....................................................................................................................................1-3  
Pin Assignment...................................................................................................................................1-4  
Pin Descriptions..................................................................................................................................1-6  
Pin Circuits.........................................................................................................................................1-8  
Chapter 2  
Address Spaces  
Overview.............................................................................................................................................2-1  
Program Memory (ROM)......................................................................................................................2-2  
Program Memory (ROM)......................................................................................................................2-2  
Register Architecture...........................................................................................................................2-4  
Common Working Register Area (C0H–CFH) .........................................................................................2-6  
System Stack.....................................................................................................................................2-7  
Chapter 3  
Addressing Modes  
Overview.............................................................................................................................................3-1  
Register Addressing Mode (R)..............................................................................................................3-2  
Indirect Register Addressing Mode (IR)..................................................................................................3-3  
Indexed Addressing Mode (X) ...............................................................................................................3-7  
Direct Address Mode (DA)....................................................................................................................3-10  
Direct Address Mode (Continued)..........................................................................................................3-11  
Relative Address Mode (RA).................................................................................................................3-12  
Immediate Mode (IM)...........................................................................................................................3-13  
S3C9498/F9498 MICROCONTROLLER  
v
Table of Contents(Continued)  
Chapter 4  
Control Registers  
Overview.............................................................................................................................................4-1  
Chapter 5  
Interrupt Structure  
Overview.............................................................................................................................................5-1  
Interrupt Processing Control Points ...............................................................................................5-1  
Enable/Disable Interrupt Instructions (EI, DI)..................................................................................5-2  
Interrupt Pending Function Types..................................................................................................5-2  
Interrupt Priority...........................................................................................................................5-2  
Interrupt Source SERvice Sequence..............................................................................................5-3  
Interrupt Service Routines.............................................................................................................5-3  
Generating interrupt Vector Addresses..........................................................................................5-3  
S3C9498/F9498 Interrupt Structure ...............................................................................................5-4  
Chapter 6  
SAM88RCRI Instruction Set  
Overview.............................................................................................................................................6-1  
Register Addressing ....................................................................................................................6-1  
Addressing Modes.......................................................................................................................6-1  
Flags Register (FLAGS)...............................................................................................................6-4  
Flag Descriptions ........................................................................................................................6-4  
Instruction Set Notation................................................................................................................6-5  
Condition Codes..........................................................................................................................6-9  
Instruction Descriptions................................................................................................................6-10  
vi  
S3C9498/F9498 MICROCONTROLLER  
Table of Contents(Continued)  
Part II — Hardware Descriptions  
Chapter 7  
Clock Circuit  
Overview.............................................................................................................................................7-1  
System Clock Circuit...................................................................................................................7-1  
Clock Status During Power-Down Modes.......................................................................................7-2  
System Clock Control Register (CLKCON).....................................................................................7-3  
Chapter 8  
RESET and Power-Down  
System Reset .....................................................................................................................................8-1  
Overview.....................................................................................................................................8-1  
Normal Mode Reset Operation......................................................................................................8-1  
Hardware Reset Values................................................................................................................8-2  
Power-Down Modes.............................................................................................................................8-4  
Stop Mode..................................................................................................................................8-4  
Idle Mode....................................................................................................................................8-5  
Chapter 9  
I/O Ports  
Overview.............................................................................................................................................9-1  
Port Data Registers.....................................................................................................................9-2  
Port 0.........................................................................................................................................9-3  
Port 1.........................................................................................................................................9-5  
Port 2.........................................................................................................................................9-9  
Port 3.........................................................................................................................................9-12  
Chapter 10  
Basic Timer  
Overview.............................................................................................................................................10-1  
BASic timer (Bt)..................................................................................................................................10-2  
Basic Timer Control Register (BTCON)..........................................................................................10-2  
Basic Timer Function Description..................................................................................................10-3  
S3C9498/F9498 MICROCONTROLLER  
vii  
Table of Contents (Continued)  
Chapter 11  
8-bit Timer A/B  
8-bit timer A........................................................................................................................................11-1  
Overview.....................................................................................................................................11-1  
Function Description....................................................................................................................11-2  
Timer A Control Register (TACON) ................................................................................................11-3  
Timer A Data Register (TADATA)..................................................................................................11-4  
Block Diagram ............................................................................................................................11-5  
8-Bit Timer B.......................................................................................................................................11-6  
Overview.....................................................................................................................................11-6  
Chapter 12  
16-bit Timer 1  
Overview.............................................................................................................................................12-1  
Function Description....................................................................................................................12-2  
Timer 1 Control Register (T1CON) .................................................................................................12-3  
Block Diagram ............................................................................................................................12-5  
Chapter 13  
Timer 0  
One 16-Bit Timer Mode (Timer 0)..........................................................................................................13-1  
Overview.....................................................................................................................................13-1  
Function Description....................................................................................................................13-1  
Block Diagram ....................................................................................................................................13-3  
Two 8-Bit Timers Mode (Timer C and D).................................................................................................13-4  
Overview.....................................................................................................................................13-4  
Function Description....................................................................................................................13-7  
viii  
S3C9498/F9498 MICROCONTROLLER  
Table of Contents (Continued)  
Chapter 14  
UART  
Overview.............................................................................................................................................14-1  
Programming Procedure...............................................................................................................14-1  
UART Control Register (UARTCON)..............................................................................................14-2  
UART Interrupt Pending Register (UARTPND) ................................................................................14-3  
Uart Data Register (UDATA).........................................................................................................14-4  
Uart Baud Rate Data Register (BRDATA).......................................................................................14-4  
Baud Rate Calculations................................................................................................................14-5  
Block Diagram ....................................................................................................................................14-6  
Uart Mode 0 Function Description.................................................................................................14-7  
Uart Mode 1 Function Description.................................................................................................14-8  
Uart Mode 2 Function Description.................................................................................................14-9  
Serial Communication For Multiprocessor Configurations ................................................................14-11  
Chapter 15  
Serial I/O Interface  
Overview.............................................................................................................................................15-1  
Programming Procedure...............................................................................................................15-1  
Serial I/O Control Registers (SIOCON)...........................................................................................15-2  
SIO Prescaler Register (SIOPS) ...................................................................................................15-3  
Chapter 16  
PWM  
Overview.............................................................................................................................................16-1  
Function Description............................................................................................................................16-1  
PWM .........................................................................................................................................16-1  
PWM Control Register (PWMCON)...............................................................................................16-5  
Chapter 17  
A/D Converter  
Overview.............................................................................................................................................17-1  
Function Description............................................................................................................................17-1  
Conversion Timing .......................................................................................................................17-2  
A/D Converter Control Register (ADCON).......................................................................................17-2  
Internal Reference Voltage Levels..................................................................................................17-3  
Block Diagram ....................................................................................................................................17-4  
Internal A/D Conversion Procedure ................................................................................................17-5  
S3C9498/F9498 MICROCONTROLLER  
ix  
Table of Contents (Continued)  
Chapter 18  
Electrical Data  
Overview.............................................................................................................................................18-1  
Chapter 19  
Mechanical Data  
Overview.............................................................................................................................................19-1  
Chapter 20  
MTP  
Overview.............................................................................................................................................20-1  
Chapter 21  
Development Tools  
Overview.............................................................................................................................................21-1  
SHINE ........................................................................................................................................21-1  
SASM........................................................................................................................................21-1  
SAMA Assembler........................................................................................................................21-1  
HEX2ROM..................................................................................................................................21-1  
Target Boards .............................................................................................................................21-2  
TB9498 Target Board...................................................................................................................21-3  
x
S3C9498/F9498 MICROCONTROLLER  
List of Figures  
Figure  
Title  
Page  
Number  
Number  
1-1  
1-2  
1-3  
1-4  
1-5  
1-7  
1-6  
1-8  
1-9  
1-10  
1-11  
S3C9498/F9498 Block Diagram........................................................................................1-3  
S3C9498/F9498 Pin Assignment (32-DIP, 32-SOP) ............................................................1-4  
S3C9498/F9498 Pin Assignment (28-SOP)........................................................................1-4  
S3C9498/F9498 Pin Assignment (30-SDIP) .......................................................................1-5  
Pin Circuit Type B (RESET)..............................................................................................1-8  
Pin Circuit Type C ...........................................................................................................1-8  
Pin Circuit Type D-1.........................................................................................................1-8  
Pin Circuit Type D-2.........................................................................................................1-8  
Pin Circuit Type E ...........................................................................................................1-9  
Pin Circuit Type E-1.........................................................................................................1-9  
Pin Circuit Type E-2.........................................................................................................1-10  
2-1  
2-2  
2-3  
2-4  
2-5  
Program Memory Address Space.....................................................................................2-2  
Smart Option ..................................................................................................................2-3  
Internal Register File Organization.....................................................................................2-5  
16-Bit Register Pairs........................................................................................................2-6  
Stack Operations ............................................................................................................2-7  
3-1  
3-2  
3-3  
3-4  
3-5  
3-6  
3-7  
3-8  
Register Addressing ........................................................................................................3-2  
Working Register Addressing ...........................................................................................3-2  
Indirect Register Addressing to Register File......................................................................3-3  
Indirect Register Addressing to Program Memory ...............................................................3-4  
Indirect Working Register Addressing to Register File........................................................3-5  
Indirect Working Register Addressing to Program or Data Memory.......................................3-6  
Indexed Addressing to Register File..................................................................................3-7  
Indexed Addressing to Program or Data Memory with Short Offset.......................................3-8  
Indexed Addressing to Program or Data Memory ................................................................3-9  
Direct Addressing for Load Instructions..............................................................................3-10  
Direct Addressing for Call and Jump Instructions ................................................................3-11  
Relative Addressing.........................................................................................................3-12  
Immediate Addressing .....................................................................................................3-13  
3-9  
3-10  
3-11  
3-12  
3-13  
S3C9498/F9498 MICROCONTROLLER  
xi  
List of Figures (Continued)  
Figure  
Title  
Page  
Number  
Number  
4-1  
Register Description Format .............................................................................................4-3  
5-1  
5-2  
5-3  
S3C9-Series Interrupt Type...............................................................................................5-1  
Interrupt Function Diagram ...............................................................................................5-2  
S3F9498 Interrupt Structure..............................................................................................5-4  
6-1  
System Flags Register (FLAGS).......................................................................................6-4  
7-1  
7-2  
7-3  
Main Oscillator Circuit (Crystal or Ceramic Oscillator).........................................................7-1  
System Clock Control Register (CLKCON).........................................................................7-3  
STOP Control Register (STPCON) ....................................................................................7-3  
9-1  
9-2  
9-3  
9-4  
9-5  
9-6  
9-7  
Port 0 High-Byte Control Register (P0CON) .......................................................................9-4  
Port 1 High-Byte Control Register (P1CONH) .....................................................................9-6  
Port 1 Low-Byte Control Register (P1CONL)......................................................................9-7  
Port 1 Interrupt Control Register P1PND)...........................................................................9-8  
Port 2 High-Byte Control Register (P2CONH) .....................................................................9-10  
Port 2 Low-Byte Control Register (P2CONL)......................................................................9-11  
Port 3 High-Byte Control Register (P3CON) .......................................................................9-13  
10-1  
10-2  
10-3  
Basic Timer Control Register (BTCON)..............................................................................10-2  
Oscillation Stabilization Time on RESET ...........................................................................10-4  
Oscillation Stabilization Time on STOP Mode Release........................................................10-5  
11-1  
11-2  
11-3  
11-4  
11-5  
11-6  
11-7  
Timer A Control Register (TACON) ....................................................................................11-3  
Timer interrupts Pending Register (TINTPND) .....................................................................11-4  
Timer A Data Register (TADATA)......................................................................................11-4  
Timer A Functional Block Diagram....................................................................................11-5  
Timer B Functional Block Diagram....................................................................................11-6  
Timer B Control Register (TBCON)....................................................................................11-7  
Timer B Data Registers (TBDATA) ....................................................................................11-7  
xii  
S3C9498/F9498 MICROCONTROLLER  
List of Figures (Continued)  
Figure  
Title  
Page  
Number  
Number  
12-1  
12-2  
12-3  
Timer 1 Control Register (T1CON) .....................................................................................12-3  
Timer A/B/D and Timer 1 Pending Register (TINTPND)........................................................12-4  
Timer 1 Functional Block Diagram.....................................................................................12-5  
13-1  
13-2  
13-3  
13-4  
13-5  
13- 6  
Timer 0 Control Register (TCCON).....................................................................................13-2  
Timer 0 Functional Block Diagram.....................................................................................13-3  
Timer C Control Register (TCCON) ....................................................................................13-5  
Timer D Control Register (TDCON) ....................................................................................13-6  
Timer C and B Function Block Diagram.............................................................................13-8  
Timer D PWM Function Block Diagram .............................................................................13-9  
14-1  
14-2  
14-3  
14-4  
14-5  
14-6  
14-7  
14-8  
14-9  
14-10  
UART Control Register (UARTCON)..................................................................................14-2  
UART Interrupt Pending Register (UARTPND) ....................................................................14-3  
UART Data Register (UDATA)...........................................................................................14-4  
UART Baud Rate Data Register (BRDATA)........................................................................14-4  
UART Functional Block Diagram .......................................................................................14-6  
Timing Diagram for UART Mode 0 Operation......................................................................14-7  
Timing Diagram for UART Mode 1 Operation......................................................................14-8  
Timing Diagram for UART Mode 2 Operation......................................................................14-9  
Timing Diagram for UART Mode 3 Operation......................................................................14-10  
Connection Example for Multiprocessor Serial Data Communications...................................14-12  
15-1  
15-2  
15-3  
15-4  
15-5  
15-6  
Serial I/O Interface Control Register (SIOCON)...................................................................15-2  
SIO Pre-Scaler Register (SIOPS)......................................................................................15-3  
IO Functional Block Diagram............................................................................................15-3  
Serial I/O Timing in Transmit-Receive Mode (Tx at falling, SIOCON.4 = 0).............................15-4  
Serial I/O Timing in Transmit-Receive Mode (Tx at rising, SIOCON.4 = 1) .............................15-4  
Serial I/O Timing in Receive-Only Mode.............................................................................15-5  
16-1  
16-2  
16-3  
16-4  
12-Bit PWM Basic Waveform ...........................................................................................15-3  
12-Bit Extended PWM Waveform......................................................................................15-4  
PWM/Capture Module Control Register (PWMCON)...........................................................15-5  
PWM/Capture Module Functional Block Diagram ...............................................................15-6  
S3C9498/F9498 MICROCONTROLLER  
xiii  
List of Figures (Continued)  
Figure  
Title  
Page  
Number  
Number  
17-1  
17-2  
17-3  
17-4  
A/D Converter Control Register (ADCON)...........................................................................17-2  
A/D Converter Data Register (ADDATAH/L)........................................................................17-3  
A/D Converter Functional Block Diagram ...........................................................................17-4  
Recommended A/D Converter Circuit for Highest Absolute Accuracy....................................17-5  
18-1  
18-2  
18-3  
18-4  
18-5  
Input Timing Measurement Points.....................................................................................18-4  
Operating Voltage Range (S3C9498/F9498).......................................................................18-5  
Schimtt Trigger Input Characteristic Diagram......................................................................18-5  
Stop Mode Release Timing When Initiated by a RESET......................................................18-7  
Definition of DLE and ILE..................................................................................................18-9  
19-1  
19-2  
19-3  
32-SOP-450A Package Dimensions..................................................................................19-1  
28-SOP-375 Package Dimensions ....................................................................................19-2  
30-Pin SDIP Package Dimensions ....................................................................................19-3  
20-1  
20-2  
20-3  
Pin Assignment Diagram (32-Pin Package)........................................................................20-1  
Pin Assignment Diagram (30-Pin Package)........................................................................20-2  
Pin Assignment Diagram (28-Pin Package)........................................................................20-2  
21-1  
21-2  
21-3  
21-4  
21-5  
SMDS+ or SK-1000 Product Configuration.........................................................................21-2  
TB9498 Target Board Configuration ...................................................................................21-3  
DIP Switch for Smart Option.............................................................................................21-5  
44-Pin Connector for TB9498 ............................................................................................21-6  
S3C9498/F9498 Probe Adapter for 40pin Connector Package..............................................21-6  
xiv  
S3C9498/F9498 MICROCONTROLLER  
List of Tables  
Table  
Title  
Page  
Number  
Number  
1-1  
1-2  
Pin Descriptions of 28-SOP (32-SOP, 32-SDIP / 30-SDIP)..................................................1-6  
Pin Descriptions of 28-SOP (32-SOP, 32-SDIP / 30-SDIP)..................................................1-7  
2-1  
4-1  
Register Type Summary...................................................................................................2-4  
System and Peripheral Registers......................................................................................4-1  
6-1  
6-2  
6-3  
6-4  
6-5  
6-6  
Instruction Group Summary..............................................................................................6-2  
Flag Notation Conventions ................................................................................................6-5  
Instruction Set Symbols ...................................................................................................6-5  
Instruction Notation Conventions .......................................................................................6-6  
Opcode Quick Reference.................................................................................................6-7  
Condition Codes..............................................................................................................6-9  
8-1  
S3C9498/F9498 Register Values after RESET ...................................................................8-2  
9-1  
9-2  
S3C9498/F9498 Port Configuration Overview......................................................................9-1  
Port Data Register Summary ............................................................................................9-2  
14-1  
Commonly Used Baud Rates Generated by 8-bit BRDATA..................................................14-5  
16-1  
16-2  
PWM Control and Data Registers .....................................................................................16-2  
PWM output "stretch" Values for Extension Registers PWMEX...........................................16-3  
S3C9498/F9498 MICROCONTROLLER  
xv  
List of Tables (Continued)  
Table  
Title  
Page  
Number  
Number  
18-1  
18-2  
18-3  
18-4  
18-5  
18-6  
18-7  
18-8  
Absolute Maximum Ratings..............................................................................................18-2  
D.C. Electrical Characteristics..........................................................................................18-3  
A.C. Electrical Characteristics..........................................................................................18-4  
Oscillator Characteristics.................................................................................................18-6  
Oscillation Stabilization Time............................................................................................18-6  
Data Retention Supply Voltage in Stop Mode.....................................................................18-7  
LVR(Low Voltage Reset) Circuit Characteristics ................................................................18-7  
A/D Converter Electrical Characteristics ............................................................................18-8  
20-1  
Descriptions of Pins Used to Read/Write the Flash ROM....................................................20-3  
21-1  
21-2  
Power Selection Settings for TB9498.................................................................................21-4  
The SMDS2+ Tool Selection Setting.................................................................................21-4  
xvi  
S3C9498/F9498 MICROCONTROLLER  
List of Register Descriptions  
Register  
Identifier  
Full Register Name  
Page  
Number  
ADCON  
BTCON  
CLKCON  
FLAGS  
P0CON  
P1CONH  
P1CONL  
P1INT  
P2CONH  
P2CONL  
P3CON  
PWMCON  
SIOCON  
SP  
A/D Converter Control Register .........................................................................................4  
Basic Timer Control Register ............................................................................................5  
System Clock Control Register.........................................................................................6  
System Flags Register......................................................................................................................................7  
Port 0 Control Register .....................................................................................................................................8  
Port 1 Control Register (High Byte)...............................................................................................................9  
Port 1 Control Register (Low Byte)................................................................................................................10  
Port 1 Interrupt Control Register.....................................................................................................................11  
Port 2 Control Register (High Byte)...............................................................................................................12  
Port 2 Control Register (Low Byte)................................................................................................................13  
Port 3 Control Register......................................................................................................................................14  
PWM Control Register .....................................................................................................15  
Serial I/O Module Control Registers..............................................................................................................16  
Stack Pointer ..............................................................................................................17  
Stop Control Register......................................................................................................................................... 17  
System Mode Register .................................................................................................................................... 18  
Timer 1 Control Register................................................................................................................................... 19  
Timer A Control Register................................................................................................................................... 20  
Timer B Control Register................................................................................................................................... 21  
Timer C Control Register................................................................................................................................... 22  
Timer Counter read selection Register......................................................................................................... 23  
Timer D Control Register................................................................................................................................... 24  
Interrupt Pending Register................................................................................................................................ 25  
UART Control Register ...................................................................................................................................... 26  
UART Pending and parity control................................................................................................................... 27  
STPCON  
SYM  
T1CON  
TACON  
TBCON  
TCCON  
TCNTSEL  
TDCON  
TINTPND  
UARTCON  
UARTPND  
S3C9498/F9498 MICROCONTROLLER  
xvii  
List of Instruction Descriptions  
Instruction  
Mnemonic  
Full Instruction Name  
Page  
Number  
ADC  
ADD  
AND  
CALL  
CCF  
CLR  
Add With Carry .......................................................................................6-11  
Add........................................................................................................6-12  
Logical AND............................................................................................6-13  
Call Procedure ........................................................................................6-14  
Complement Carry Flag ...........................................................................6-15  
Clear......................................................................................................6-16  
Complement ...........................................................................................6-17  
Compare.................................................................................................6-18  
Decrement..............................................................................................6-19  
Disable Interrupts ....................................................................................6-20  
Enable Interrupts.....................................................................................6-21  
Idle Operation..........................................................................................6-22  
Increment ...............................................................................................6-23  
Interrupt Return .......................................................................................6-24  
Jump......................................................................................................6-25  
Jump Relative..........................................................................................6-26  
Load.......................................................................................................6-27  
Load Memory..........................................................................................6-29  
Load Memory and Decrement...................................................................6-31  
Load Memory and Increment ....................................................................6-32  
No Operation...........................................................................................6-33  
Logical OR..............................................................................................6-34  
Pop From Stack......................................................................................6-35  
Push To Stack ........................................................................................6-36  
Reset Carry Flag.....................................................................................6-37  
Return ....................................................................................................6-38  
Rotate Left..............................................................................................6-39  
Rotate Left Through Carry.........................................................................6-40  
Rotate Right............................................................................................6-41  
Rotate Right Through Carry ......................................................................6-42  
Subtract with Carry..................................................................................6-43  
Set Carry Flag.........................................................................................6-44  
Shift Right Arithmetic ...............................................................................6-45  
Stop Operation........................................................................................6-46  
Subtract .................................................................................................6-47  
Test Complement Under Mask..................................................................6-48  
Test Under Mask.....................................................................................6-49  
Logical Exclusive OR...............................................................................6-50  
COM  
CP  
DEC  
DI  
EI  
IDLE  
INC  
IRET  
JP  
JR  
LD  
LDC/LDE  
LDCD/LDED  
LDCI/LDEI  
NOP  
OR  
POP  
PUSH  
RCF  
RET  
RL  
RLC  
RR  
RRC  
SBC  
SCF  
SRA  
STOP  
SUB  
TCM  
TM  
XOR  
S3C9498/F9498 MICROCONTROLLER  
xix  
S3C9498/F9498  
PRODUCT OVERVIEW  
1
PRODUCT OVERVIEW  
S3C9-SERIES MICROCONTROLLERS  
Samsung's SAM88RCRI family of 8-bit single-chip CMOS microcontrollers offer a fast and efficient CPU, a wide  
range of integrated peripherals, and various mask-programmable ROM sizes.  
A address/data bus architecture and a large number of bit-configurable I/O ports provide a flexible programming  
environment for applications with varied memory and I/O requirements. Timer/counters with selectable operating  
modes are included to support real-time operations.  
S3C9498/F9498 MICROCONTROLLER  
The S3C9498/F9498single-chip CMOS microcontrollers are fabricated using the highly advanced CMOS process  
technology based on Samsung’s latest CPU architecture.  
The S3C9498/F9498 is a microcontroller with a 8K-byte multi time programmable ROM embedded.  
Using a proven modular design approach, Samsung engineers have successfully developed the S3C9498/F9498  
by integrating the following peripheral modules with the powerful SAM88 RCRI core:  
— Four configurable I/O ports (22 pins / 24pins / 26pin)  
— Fifteen interrupt sources with one vector and one interrupt level  
— One watchdog timer function (Basic Timer overflow )  
— One 8-bit basic timer for oscillation stabilization  
— Four 8-bit timer/counter with time interval, PWM, and Capture mode  
(Timer C and Timer D can be used for 16-bit Timer 0)  
— One 16-bit timer/counter with three operating modes; Interval timer, Capture and PWM mode  
(If Timer C and Timer D is used for Timer 0, S3C9498/F9498 has two 16-bit Timer; Timer 0 and Timer 1)  
— Analog to digital converter with 8 input channels and 10-bit resolution  
— One asynchronous UART and one synchronous SIO  
The S3C9498/F9498 microcontroller is ideal for use in a wide range of home applications requiring simple  
timer/counter, ADC, etc. They are currently available in 32-pin SOP/SDIP, 28-pin SOP, 30-pin SDIP package.  
MTP  
The S3C9498/F9498 has on-chip 8-Kbyte multi time programmable (MTP) ROM instead of masked ROM. The  
S3C9498/F9498 is fully compatible to the S3C9498, in function, in D.C. electrical characteristics and in pin  
configuration.  
1-1  
PRODUCT OVERVIEW  
S3C9498/F9498  
FEATURES  
CPU  
Timer 0 Timer/Counters  
·
SAM88RCRI CPU core  
·
·
The programmable 8-bit timer/counters  
Configurable as on 16-bit timer/counters  
Memory  
PWM module  
·
·
·
208-byte general purpose register (RAM)  
·
·
12-bit PWM (Max: 250KHz)  
6-bit base + 6-bit extension frame  
8K-byte internal mask program memory  
8K-byte internal multi time program memory  
(S3C9498/F9498) Half-Flash  
A/D Converter  
Oscillation Sources  
·
·
Eight analog input channels  
25us conversion speed at 8MHz f  
·
·
Crystal, Ceramic  
clock  
ADC  
CPU clock divider (1/1, 1/2, 1/8, 1/16)  
Serial I/O  
Instruction Set  
·
·
One synchronous serial I/O module  
·
·
41 instructions  
Selectable transmit and receive rates.  
IDLE and STOP instructions added for power-  
down modes  
Asynchronous UART  
·
·
Programmable baud rate generator  
Instruction Execution Time  
500 ns at 8-MHz f (minimum)  
Support serial data transmit/receive operations  
with 8-bit, 9-bit UART  
·
OSC  
Interrupts  
15 interrupt sources with one vector / one level  
Low Voltage Reset (LVR)  
·
·
·
Low Voltage Check to make system reset  
= 3V (by smart option)  
V
LVR  
I/O Ports  
Operating Temperature Range  
·
Total 22/24/26 bit-programmable pins  
°
°
·
–25 C to + 85 C  
Basic Timer  
Operating Voltage Range  
·
One programmable 8-bit basic timer (BT) for  
Oscillation stabilization control  
·
3 V to 5.5 V (LVR)  
2.2 V to 5.5V (No LVR)  
Timers  
Package Type  
28-pin SOP, 30-pin SDIP, 32-pin SDIP/SOP  
·
One 8-bit timer/counter (Timer A) with three  
operating modes; Interval mode, capture mode  
and PWM mode  
·
·
·
One 8-bit timer/counter (Timer B) Carrier  
frequency (or PWM) generator  
One 16-bit capture timer/counter (Timer 1) with  
three operating modes; Interval mode, Capture  
mode for pulse period or duty and PWM mode.  
.
1-2  
S3C9498/F9498  
PRODUCT OVERVIEW  
BLOCK DIAGRAM  
PWM  
(ADC0-7)  
A/D  
PW  
M
P0.0-  
P0.2  
Port 0  
XIN  
XOUT  
OSC/nRESET  
nRESET  
P1.0-  
P1.7  
I/O Port and Interrupt Control  
Port 1  
8-Bit  
Basic Timer  
TAOUT  
TACK  
TACAP  
8-Bit  
Timer  
/Counter A  
P2.0-  
P2.7  
Port 2  
Port 3  
SAM88RCRI CPU  
16-bit  
Timer  
/Counter 1  
P3.0-  
P3.6  
8-Bit  
Timer  
/Counter B  
8-Kbyte  
ROM  
208-Byte  
RAM  
TBOUT  
TDOUT  
SI  
SO  
SCK  
SIO  
8-Bit timer  
C/D  
TXD  
RXD  
UART  
Figure 1-1. S3C9498/F9498 Block Diagram  
1-3  
PRODUCT OVERVIEW  
S3C9498/F9498  
PIN ASSIGNMENT  
VDD  
32  
31  
VSS  
XOUT  
XIN  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
P3.2/SCK(SCLK)  
P3.1/SO(SDAT)  
P3.0/SI  
P2.7/PWM  
P2.6/T1CAP  
P2.5/T1OUT  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
(Vpp)TEST  
RxD/P0.0  
TxD/P0.1  
S3F9498  
nRESET/P0.2  
P3.6  
P3.5  
P3.3  
P3.4  
AVREF  
(Top View)  
P2.4/T1CK  
P2.3/TBOUT  
P2.2/TACAP  
P2.1/TACK  
P2.0/TAOUT  
P1.7/ADC7  
P1.6/ADC6/TDOUT  
INT0/ADC0/P1.0  
INT1/ADC1/P1.1  
ADC2/P1.2  
32-SOP  
32-SDIP  
ADC3/P1.3  
ADC4/P1.4  
ADC5/P1.5  
Figure 1-2. S3C9498/F9498 Pin Assignment (32-DIP, 32-SOP)  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
VDD  
VSS  
XOUT  
XIN  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
P3.2/SCK (SCLK)  
P3.1/SO (SDAT)  
P3.0/SI  
(Vpp)TEST  
RxD/P0.0  
TxD/P0.1  
S3F9498  
P2.7/PWM  
P2.6/T1CAP  
P2.5/T1OUT  
P2.4/T1CK  
P2.3/TBOUT  
P2.2/TACAP  
P2.1/TACK  
P2.0/TAOUT  
P1.7/ADC7  
P1.6/ADC6/TDOUT  
nRESET/P0.2  
AVREF  
(Top View)  
28-SOP  
INT0/ADC0/P1.0  
INT1/ADC1/P1.1  
ADC2/P1.2  
ADC3/P1.3  
ADC4/P1.4  
ADC5/P1.5  
Figure 1-3. S3C9498/F9498 Pin Assignment (28-SOP)  
1-4  
S3C9498/F9498  
PRODUCT OVERVIEW  
PIN ASSIGNMENT  
VDD  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
VSS  
XOUT  
XIN  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
P3.2/SCK (SCLK)  
P3.1/SO (SDAT)  
P3.0/SI  
(Vpp)TEST  
RxD/P0.0  
TxD/P0.1  
S3F9498  
P2.7/PWM  
P2.6/T1CAP  
P2.5/T1OUT  
P3.5  
nRESET/P0.2  
P3.3  
AVREF  
INT0/ADC0/P1.0  
INT1/ADC1/P1.1  
ADC2/P1.2  
P2.4/T1CK  
(Top View)  
30-SDIP  
P2.3/TBOUT  
P2.2/TACAP  
P2.1/TACK  
P2.0/TAOUT  
P1.7/ADC7  
ADC3/P1.3  
ADC4/P1.4  
ADC5/P1.5  
P1.6/ADC6/TDOUT  
Figure 1-4. S3C9498/F9498 Pin Assignment (30-SDIP)  
1-5  
PRODUCT OVERVIEW  
S3C9498/F9498  
PIN DESCRIPTIONS  
Table 1-1. Pin Descriptions of 28-SOP (32-SOP,32-SDIP / 30-SDIP)  
Pin  
Names  
Pin  
Type  
Pin Description  
Circuit  
Type  
28 Pin  
No.  
Shared  
Functions  
D-1  
E-2  
5–7  
P0.0, P0.1  
P0.2  
I/O  
I/O  
I/O  
I/O port with bit-programmable pins.  
Configurable to input or push-pull output  
mode. Pull-up resistors can be assigned  
by software. Pins can also be assigned  
individually as alternative function pins.  
RxD, TxD  
RESETB  
D-2  
E-1  
P1.0 – P1.1  
P1.2 – P1.7  
I/O port with bit-programmable pins.  
Configurable to input or push-pull output  
mode. Pull-up resistors can be assigned  
by software. Pins can also be assigned  
individually as alternative function pins.  
9–16  
( 11–18 /  
11- 18 )  
INT0–INT1  
ADC0–ADC7  
TDOUT  
P2.0,P2.3  
P2.5,P2.7  
P2.1-P2.2  
P2.4,P2.6  
I/O port with bit-programmable pins.  
Configurable to input mode, push-pull  
output mode, or n-channel open-drain  
output mode. Input mode with pull-up  
resistors can be assigned by software.  
The port 2 pins have high current drive  
capability. Pins can also be assigned  
individually as alternative function pins.  
D-1  
E
17–24  
( 19–23,  
26–28 /  
19–23,  
24–26)  
TAOUT/TACK  
TACAP  
TBOUT  
T1CAP/T1CK  
T1OUT  
PWM  
25–27  
( 29–31,  
8-9,  
24-25  
/ 27–29,  
8, 23 )  
P3.0–P3.2  
(P3.3–P3.6)  
I/O  
I/O port with bit-programmable pins.  
Configurable to input or push-pull output  
mode. Pull-up resistors can be assigned  
by software. Pins can also be assigned  
individually as alternative function pins.  
D-1  
(E)  
SI/SO/SCK  
X , X  
I, O  
I
System clock input and output pins  
_
2,3  
_
IN  
OUT  
TEST  
Test signal input pin (for factory use only;  
4
must be connected to V .)  
SS  
V
Power supply input pin  
Ground pin  
28 (32/30)  
1
DD  
V
SS  
1-6  
S3C9498/F9498  
PRODUCT OVERVIEW  
Table 1-2. Pin Descriptions of 28-SOP (32-SOP,32-SDIP / 30-SDIP)  
Pin  
Names  
Pin  
Type  
Pin Description  
Circuit  
Type  
28 Pin  
No.  
Shared  
Functions  
SCK  
SO  
27(31/29)  
26(30/28)  
25(29/27)  
24(28/26)  
I/O  
O
I
Serial interface clock input or output  
Serial data output  
D-1  
D-1  
D-1  
D-1  
E-1  
P3.2  
P3.1  
P3.0  
SI  
Serial data output  
PWM  
ADC0–7  
O
I
PWM output  
P2.7  
P1.0–P1.7  
A/D converter analog input channels  
9-16  
(11-18  
/ 10-17)  
AVREF  
RxD  
I
A/D converter reference voltage  
8(10/9)  
5
I/O  
Serial data RXD pin for receive input and  
transmit output (mode 0)  
D-1  
D-1  
D-2  
P0.0  
P0.1  
TxD  
O
I
Serial data TXD pin for transmit output  
and shift clock output (mode 0)  
6
INT0  
INT1  
External interrupts.  
9–10  
(11,12  
/10,11)  
P1.0  
P1.1  
TAOUT  
O
Timer/counter(A) match output, or  
Timer/counter(A) PWM output  
D-1  
17(19/18)  
P2.0  
TACK  
I
I
Timer/counter(A) external clock input  
Timer/counter(A) external capture input  
E
E
18(20/19)  
19(21/20)  
P2.1  
P2.2  
TACAP  
T1OUT  
O
Timer/counter(0) match output, or  
Timer/counter(0) PWM output  
D-1  
22(26/24)  
P2.5  
T1CK  
I
I
Timer/counter(0) external clock input  
Timer/counter(0) external capture input  
E
E
21(23/22)  
23(27/25)  
20(22/21)  
P2.4  
P2.6  
P2.3  
T1CAP  
TBOUT  
O
Timer/counter(B) match output, or  
Timer/counter(B) PWM output  
D-1  
TDOUT  
O
I
Timer/counter(B) match output, or  
Timer/counter(B) PWM output  
D-1  
B
15(17/16)  
7
P1.6  
ADC6  
RESETB  
System reset signal input pin  
P0.2  
1-7  
PRODUCT OVERVIEW  
S3C9498/F9498  
PIN CIRCUITS  
VDD  
Pull-up  
Enable  
Data  
IN  
Pin Circuit  
Type C  
I/O  
Output  
Disable  
Figure 1-5. Pin Circuit Type B (nRESET)  
Figure 1-6. Pin Circuit Type D-1  
V
DD  
Pull-up  
Enable  
VDD  
V
DD  
P-Channel  
Out  
Data  
Data  
Pin Circuit  
Type C  
I/O  
Output  
Disable  
N-Channel  
Output  
Disable  
Noise  
Filter  
Ext.INT  
Input  
Normal  
Figure 1-7. Pin Circuit Type C  
Figure 1-8. Pin Circuit Type D-2  
1-8  
S3C9498/F9498  
PRODUCT OVERVIEW  
VDD  
Pull-up  
resistor  
PNE  
VDD  
Pull-up  
Enable  
P-CH  
Data  
In/Out  
N-CH  
Output  
DIsable  
Schmitt Trigger  
Figure 1-9. Pin Circuit Type E  
VDD  
Pull-up  
Resistor  
VDD  
Pull-up  
Enable  
PNE  
Data  
I/O  
Output  
Disable  
Analog Input  
Figure 1-9. Pin Circuit Type E-1  
1-9  
PRODUCT OVERVIEW  
S3C9498/F9498  
VDD  
Pull-up register  
(50 kW typical)  
Pull-up  
enable  
Open-drain  
VDD  
Smart  
option  
Data  
In/Out  
MUX  
Output DIsable  
(input mode)  
Input  
Data  
MUX  
nRESET  
Figure 1-11. Pin Circuit Type E-2  
1-10  
S3C9498/F9498  
ADDRESS SPACES  
2
ADDRESS SPACES  
OVERVIEW  
The S3C9498/F9498 microcontroller has two kinds of address space:  
— Internal program memory (ROM)  
— Internal register file  
A 13-bit address bus supports program memory operations. A separate 8-bit register bus carries addresses and  
data between the CPU and the internal register file.  
The S3C9498/F9498 have 8-Kbytes of on-chip program memory, which is configured as the Internal ROM mode,  
all of the 8-Kbyte internal program memory is used.  
The S3C9498/F9498 microcontroller has 208 general-purpose registers in its internal register file. 45 bytes in the  
register file are mapped for system and peripheral control functions.  
2-1  
ADDRESS SPACES  
S3C9498/F9498  
PROGRAM MEMORY (ROM)  
Program memory (ROM) stores program codes or table data. The S3C9498/F9498 have 8Kbytes of internal multi  
time programmable (MTP) program memory (see Figure 2-1).  
The first 2-bytes of the ROM (0000H–0001H) are interrupt vector address.  
Unused locations (0002H–00FFH except 3CH, 3DH, 3EH, and 3FH) can be used as normal program memory.  
The location 3CH, 3DH, 3EH, and 3FH is used as smart option ROM cell.  
The program reset address in the ROM is 0100H.  
(Decimal)  
8,191  
(HEX)  
1FFFH  
8-Kbyte  
Program  
Memory  
Area  
0200H  
0100H  
Program Start  
003FH  
003CH  
Smart option ROM cell  
0002H  
0000H  
Interrupt Vector Area  
0
Figure 2-1. Program Memory Address Space  
2-2  
S3C9498/F9498  
Smart Option  
ADDRESS SPACES  
Smart option is the ROM option for starting condition of the chip. The ROM addresses used by smart option are  
from 003CH to 003FH. The default value of ROM is FFH.  
ROM Address: 003CH  
MSB  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
LSB  
Not used  
ROM Address: 003DH  
.5 .4 .3 .2  
.7  
.6  
.1  
.0  
Not used  
ROM Address: 003EH  
.5 .4 .3 .2  
MSB  
.7  
.6  
.1  
.0  
LSB  
LVR enable  
or disable bit:  
0 = Disable  
1 = Enable  
LVR level selection bits:  
10001 = 3 V  
Not used  
ROM Address: 003FH  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Not used  
P0.2/nRESET pin  
selection bit:  
0 = Nomal I/O P0.2  
pin enable  
1 = nRESET  
Pin enable  
NOTES:  
1. The unused bits of 3CH, 3DH, 3EH, 3FH must be logic "1".  
2. When LVR is enabled, LVR level must be set to appropriate value(10001B), not default value.  
Figure 2-2. Smart Option  
2-3  
ADDRESS SPACES  
S3C9498/F9498  
REGISTER ARCHITECTURE  
The upper 64-bytes (C0H-FFH) of the S3C9498/F9498 internal register file are addressed as working registers,  
system control registers and peripheral control registers. The lower 192-bytes of internal register file (00H–BFH) is  
called the general-purpose register space. 253 registers in this space can be accessed; 208 are available for  
general-purpose use.  
For many SAM88RCRI microcontrollers, the addressable area of the internal register file is further expanded by  
additional register pages at space of the general purpose register (00H–BFH). This register file expansion is not  
implemented in the S3C9498/F9498, however.  
The specific register types and the area (in bytes) that they occupy in the internal register file are summarized in  
Table 2-1.  
Table 2-1. Register Type Summary  
Register Type  
Number of Bytes  
System and peripheral registers  
45  
General-purpose registers (including the 16-bit  
common working register area)  
208  
Total Addressable Bytes  
253  
2-4  
S3C9498/F9498  
ADDRESS SPACES  
FFH  
Peripheral Control  
Registers  
E0H  
DFH  
64 Bytes of  
Common Area  
System Control  
Registers  
D0H  
CFH  
Working Registers  
C0H  
BFH  
General Purpose  
Register File  
and Stack Area  
192 Bytes  
00H  
Figure 2-3. Internal Register File Organization  
2-5  
ADDRESS SPACES  
S3C9498/F9498  
COMMON WORKING REGISTER AREA (C0H–CFH)  
The SAM88RCRI register architecture provides an efficient method of working register addressing that takes full  
advantage of shorter instruction formats to reduce execution time.  
This 16-byte address range is called common area. That is, locations in this area can be used as working registers  
by operations that address any location on any page in the register file.  
Registers are addressed either as a single 8-bit register or as a paired 16-bit register. In 16-bit register pairs, the  
address of the first 8-bit register is always an even number and the address of the next register is an odd number.  
The most significant byte of the 16-bit data is always stored in the even-numbered register; the least significant  
byte is always stored in the next (+ 1) odd-numbered register.  
MSB  
Rn  
LSB  
n = Even address  
Rn+1  
Figure 2-4. 16-Bit Register Pairs  
2-6  
S3C9498/F9498  
ADDRESS SPACES  
SYSTEM STACK  
S3F9-series microcontrollers use the system stack for subroutine calls and returns and to store data. The PUSH  
and POP instructions are used to control system stack operations. The S3C9498/F9498 architecture supports  
stack operations in the internal register file.  
Stack Operations  
Return addresses for procedure calls and interrupts and data are stored on the stack. The contents of the PC are  
saved to stack by a CALL instruction and restored by the RET instruction. When an interrupt occurs, the contents  
of the PC and the FLAGS registers are pushed to the stack. The IRET instruction then pops these values back to  
their original locations. The stack address always decrements before a push operation and increments after a pop  
operation. The stack pointer (SP) always points to the stack frame stored on the top of the stack, as shown in  
Figure 2-5.  
High Address  
PCL  
PCL  
PCH  
Top of  
PCH  
Top of  
stack  
stack  
Flags  
Stack contents  
after a call  
instruction  
Stack contents  
after an  
Low Address  
interrupt  
Figure 2-5. Stack Operations  
Stack Pointer (SP)  
Register location D9H contains the 8-bit stack pointer (SP) that is used for system stack operations. After a reset,  
the SP value is undetermined.  
Because only internal memory space is implemented in the S3C9498/F9498, the SP must be initialized to an 8-bit  
value in the range 00H–0C0H.  
NOTE  
In case a Stack Pointer is initialized to 00H, it is decreased to FFH when stack operation starts. This  
means that a Stack Pointer access invalid stack area. We recommend that a stack pointer is initialized to  
C0H to set upper address of stack to BFH.  
2-7  
ADDRESS SPACES  
S3C9498/F9498  
F
PROGRAMMING TIP — Standard Stack Operations Using PUSH and POP  
The following example shows you how to perform stack operations in the internal register file using PUSH and  
POP instructions:  
LD  
SP,#0C0H  
;
;
SP ¬ C0H (Normally, the SP is set to C0H by the  
initialization routine)  
PUSH  
PUSH  
PUSH  
PUSH  
SYM  
R15  
20H  
R3  
;
;
;
;
Stack address 0BFH ¬ SYM  
Stack address 0BEH ¬ R15  
Stack address 0BDH ¬ 20H  
Stack address 0BCH ¬ R3  
POP  
POP  
POP  
POP  
R3  
;
;
;
;
R3 ¬ Stack address 0BCH  
20H ¬ Stack address 0BDH  
R15 ¬ Stack address 0BEH  
SYM ¬ Stack address 0BFH  
20H  
R15  
SYM  
2-8  
S3C9498/F9498  
ADDRESSING MODES  
3
ADDRESSING MODES  
OVERVIEW  
Instructions that are stored in program memory are fetched for execution using the program counter. Instructions  
indicate the operation to be performed and the data to be operated on. Addressing mode is the method used to  
determine the location of the data operand. The operands specified in SAM88RCRI instructions may be condition  
codes, immediate data, or a location in the register file, program memory, or data memory.  
The SAM88RCRI instruction set supports seven explicit addressing modes. Not all of these addressing modes are  
available for each instruction. The six addressing modes and their symbols are:  
— Register (R)  
— Indirect Register (IR)  
— Indexed (X)  
— Direct Address (DA)  
— Relative Address (RA)  
— Immediate (IM)  
3-1  
ADDRESSING MODES  
S3C9498/F9498  
REGISTER ADDRESSING MODE (R)  
In Register addressing mode (R), the operand value is the content of a specified register or register pair  
(see Figure 3-1).  
Working register addressing differs from Register addressing in that it uses a register pointer to specify an 8-byte  
working register space in the register file and an 8-bit register within that space (see Figure 3-2).  
ProgramMemory  
RegisterFile  
OPERAND  
8-bit Register  
File Address  
dst  
PointtoOne  
Register in Register  
File  
OPCODE  
One-Operand  
Instruction  
Value usedin  
InstructionExecution  
(Example)  
SampleInstruction:  
DEC  
CNTR  
;
Where CNTR is the label of an 8-bit register address  
Figure 3-1. Register Addressing  
Register File  
MSB Point to  
RP0 ot RP1  
RP0 or RP1  
Selected  
RP points  
to start  
Program Memory  
of working  
register  
block  
4-bit  
3 LSBs  
Working Register  
dst  
src  
Point to the  
Working Register  
(1 of 8)  
OPCODE  
OPERAND  
Two-Operand  
Instruction  
(Example)  
Sample Instruction:  
ADD R1, R2  
;
Where R1 and R2 are registers in the currently  
selected working register area.  
Figure 3-2. Working Register Addressing  
3-2  
S3C9498/F9498  
ADDRESSING MODES  
INDIRECT REGISTER ADDRESSING MODE (IR)  
In Indirect Register (IR) addressing mode, the content of the specified register or register pair is the address of the  
operand. Depending on the instruction used, the actual address may point to a register in the register file, to  
program memory (ROM), or to an external memory space (see Figures 3-3 through 3-6).  
You can use any 8-bit register to indirectly address another register. Any 16-bit register pair can be used to  
indirectly address another memory location.  
Program Memory  
Register File  
ADDRESS  
8-bit Register  
File Address  
dst  
Point to One  
Register in Register  
File  
OPCODE  
One-Operand  
Instruction  
(Example)  
Address of Operand  
used by Instruction  
OPERAND  
Value used in  
Instruction Execution  
Sample Instruction:  
RL  
@SHIFT  
;
Where SHIFT is the label of an 8-bit register address  
Figure 3-3. Indirect Register Addressing to Register File  
3-3  
ADDRESSING MODES  
S3C9498/F9498  
INDIRECT REGISTER ADDRESSING MODE (Continued)  
Register File  
Program Memory  
Example  
REGISTER  
PAIR  
dst  
Instruction  
References  
Program  
Points to  
Register Pair  
OPCODE  
16-Bit  
Memory  
Address  
Points to  
Program  
Memory  
Program Memory  
OPERAND  
Sample Instructions:  
Value used in  
Instruction  
CALL  
JP  
@RR2  
@RR2  
Figure 3-4. Indirect Register Addressing to Program Memory  
3-4  
S3C9498/F9498  
ADDRESSING MODES  
INDIRECT REGISTER ADDRESSING MODE (Continued)  
Register File  
MSB Points to  
RP0 or RP1  
RP0 or RP1  
Selected  
RP points  
to start fo  
working register  
block  
Program Memory  
~
~
~
~
4-bit  
Working  
Register  
Address  
3 LSBs  
dst  
src  
Point to the  
Working Register  
(1 of 8)  
ADDRESS  
OPERAND  
OPCODE  
Sample Instruction:  
OR R3, @R6  
Value used in  
Instruction  
Figure 3-5. Indirect Working Register Addressing to Register File  
3-5  
ADDRESSING MODES  
S3C9498/F9498  
INDIRECT REGISTER ADDRESSING MODE (Concluded)  
Register File  
RP0 or RP1  
MSB Points to  
RP0 or RP1  
Selected  
RP points  
to start of  
working  
register  
block  
Program Memory  
4-bit Working  
Register Address  
dst  
src  
Register  
Pair  
Next 2-bit Point  
to Working  
Register Pair  
(1 of 4)  
OPCODE  
Example Instruction  
References either  
Program Memory or  
Data Memory  
16-Bit  
address  
points to  
program  
memory  
or data  
Program Memory  
or  
Data Memory  
LSB Selects  
memory  
Value used in  
Instruction  
OPERAND  
Sample Instructions:  
LCD  
LDE  
LDE  
R5,@RR6  
R3,@RR14  
@RR4, R8  
; Program memory access  
; External data memory access  
; External data memory access  
Figure 3-6. Indirect Working Register Addressing to Program or Data Memory  
3-6  
S3C9498/F9498  
ADDRESSING MODES  
INDEXED ADDRESSING MODE (X)  
Indexed (X) addressing mode adds an offset value to a base address during instruction execution in order to  
calculate the effective operand address (see Figure 3-7). You can use Indexed addressing mode to access  
locations in the internal register file or in external memory.  
In short offset Indexed addressing mode, the 8-bit displacement is treated as a signed integer in the range –128  
to +127. This applies to external memory accesses only (see Figure 3-8.)  
For register file addressing, an 8-bit base address provided by the instruction is added to an 8-bit offset contained  
in a working register. For external memory accesses, the base address is stored in the working register pair  
designated in the instruction. The 8-bit or 16-bit offset given in the instruction is then added to that base address  
(see Figure 3-9).  
The only instruction that supports Indexed addressing mode for the internal register file is the Load instruction  
(LD). The LDC and LDE instructions support Indexed addressing mode for internal program memory and for  
external data memory, when implemented.  
Register File  
RP0 or RP1  
~
~
~
~
Selected RP  
points to  
start of  
working  
register  
block  
Value used in  
Instruction  
OPERAND  
+
Program Memory  
Base Address  
3 LSBs  
Two-Operand  
Instruction  
Example  
dst/src  
x
INDEX  
Point to One of the  
Woking Register  
(1 of 8)  
OPCODE  
Sample Instruction:  
LD R0, #BASE[R1]  
;
Where BASE is an 8-bit immediate value  
Figure 3-7. Indexed Addressing to Register File  
3-7  
ADDRESSING MODES  
S3C9498/F9498  
INDEXED ADDRESSING MODE (Continued)  
Register File  
RP0 or RP1  
MSB Points to  
RP0 or RP1  
Selected  
RP points  
to start of  
working  
register  
block  
~
~
Program Memory  
OFFSET  
NEXT 2 Bits  
4-bit Working  
Register Address  
dst/src  
x
Register  
Pair  
Point to Working  
Register Pair  
(1 of 4)  
OPCODE  
16-Bit  
address  
added to  
offset  
Program Memory  
or  
LSB Selects  
Data Memory  
+
16-Bits  
8-Bits  
Value used in  
Instruction  
OPERAND  
16-Bits  
Sample Instructions:  
LDC  
LDE  
R4, #04H[RR2]  
R4,#04H[RR2]  
;
;
The values in the program address (RR2 + 04H)  
are loaded into register R4.  
Identical operation to LDC example, except that  
external program memory is accessed.  
Figure 3-8. Indexed Addressing to Program or Data Memory with Short Offset  
3-8  
S3C9498/F9498  
ADDRESSING MODES  
INDEXED ADDRESSING MODE (Concluded)  
Register File  
RP0 or RP1  
MSB Points to  
RP0 or RP1  
Selected  
RP points  
to start of  
working  
register  
block  
Program Memory  
~
~
OFFSET  
OFFSET  
NEXT 2 Bits  
4-bit Working  
Register Address  
dst/src  
src  
Register  
Pair  
Point to Working  
Register Pair  
OPCODE  
16-Bit  
address  
added to  
offset  
Program Memory  
or  
LSB Selects  
Data Memory  
+
16-Bits  
8-Bits  
Value used in  
Instruction  
OPERAND  
16-Bits  
Sample Instructions:  
LDC  
LDE  
R4, #1000H[RR2]  
R4,#1000H[RR2]  
;
;
The values in the program address (RR2 + 1000H)  
are loaded into register R4.  
Identical operation to LDC example, except that  
external program memory is accessed.  
Figure 3-9. Indexed Addressing to Program or Data Memory  
3-9  
ADDRESSING MODES  
S3C9498/F9498  
DIRECT ADDRESS MODE (DA)  
In Direct Address (DA) mode, the instruction provides the operand's 16-bit memory address. Jump (JP) and Call  
(CALL) instructions use this addressing mode to specify the 16-bit destination address that is loaded into the PC  
whenever a JP or CALL instruction is executed.  
The LDC and LDE instructions can use Direct Address mode to specify the source or destination address for Load  
operations to program memory (LDC) or to external data memory (LDE), if implemented.  
Program or  
Data Memory  
Memory  
Address  
Used  
Program Memory  
Upper Address Byte  
Lower Address Byte  
dst/src "0" or "1"  
OPCODE  
LSB Selects Program  
Memory or Data Memory:  
"0" = Program Memory  
"1" = Data Memory  
Sample Instructions:  
LDC  
LDE  
R5,1234H  
R5,1234H  
;
;
The values in the program address (1234H)  
are loaded into register R5.  
Identical operation to LDC example, except that  
external program memory is accessed.  
Figure 3-10. Direct Addressing for Load Instructions  
3-10  
S3C9498/F9498  
ADDRESSING MODES  
DIRECT ADDRESS MODE (Continued)  
Program Memory  
Next OPCODE  
Memory  
Address  
Used  
Upper Address Byte  
Lower Address Byte  
OPCODE  
Sample Instructions:  
JP  
C,JOB1  
;
;
Where JOB1 is a 16-bit immediate address  
Where DISPLAY is a 16-bit immediate address  
CALL DISPLAY  
Figure 3-11. Direct Addressing for Call and Jump Instructions  
3-11  
ADDRESSING MODES  
S3C9498/F9498  
RELATIVE ADDRESS MODE (RA)  
In Relative Address (RA) mode, a twos-complement signed displacement between – 128 and + 127 is specified in  
the instruction. The displacement value is then added to the current PC value. The result is the address of the next  
instruction to be executed. Before this addition occurs, the PC contains the address of the instruction immediately  
following the current instruction.  
The instructions that support RA addressing is JR.  
Program Memory  
Next OPCODE  
Program Memory  
Address Used  
Current  
PC Value  
+
Displacement  
OPCODE  
Current Instruction  
Signed  
Displacement Value  
Sample Instructions:  
JR  
ULT,$+OFFSET  
;
Where OFFSET is a value in the range +127 to -128  
Figure 3-12. Relative Addressing  
3-12  
S3C9498/F9498  
ADDRESSING MODES  
IMMEDIATE MODE (IM)  
In Immediate (IM) addressing mode, the operand value used in the instruction is the value supplied in the operand  
field itself. Immediate addressing mode is useful for loading constant values into registers.  
Program Memory  
OPERAND  
OPCODE  
(The Operand value is in the instruction)  
Sample Instruction:  
LD  
R0,#0AAH  
Figure 3-13. Immediate Addressing  
3-13  
ADDRESSING MODES  
S3C9498/F9498  
NOTES  
3-14  
S3C9498/F9498  
CONTROL REGI STER  
4
CONTROL REGISTERS  
OVERVIEW  
Control register descriptions are arranged in alphabetical order according to register mnemonic. More detailed  
information about control registers is presented in the context of the specific peripheral hardware descriptions in Part  
II of this manual.  
The locations and read/write characteristics of all mapped registers in the S3C9498/F9498 register file are listed in  
Table 4-1. The hardware reset value for each mapped register is described in Chapter 8, RESET and Power-Down."  
Table 4-1. System and Peripheral Registers  
Register Name  
Timer C control register  
Mnemonic  
TCCON  
TDCON  
TCDATA  
TDDATA  
CLKCON  
FLAGS  
Decimal  
208  
Hex  
D0H  
D1H  
D2H  
D3H  
D4H  
D5H  
D6H  
D7H  
D8H  
D9H  
DAH  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
Timer D control register  
209  
Timer C data register register  
Timer D data register register  
System Clock control register  
System flags register  
210  
211  
212  
213  
UART Baud rate data register  
STOP control register  
BRDATA  
STPCON  
TCNTSEL  
SP  
214  
215  
Timer Counter selection register  
Stack pointer register  
216  
217  
Timer counter register  
TCNT  
218  
Location DBH is not mapped  
Basic timer control register  
Basic timer counter register  
BTCON  
BTCNT  
220  
221  
DCH  
DDH  
R/W  
R
Location DEH is not mapped  
SYM  
System mode register  
223  
DFH  
R/W  
4-1  
CONTROL REGISTERS  
S3C9498/F9498  
Table 4-1. System and Peripheral Registers (continued)  
Register Name  
Mnemonic  
P0  
Decimal  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
241  
242  
243  
244  
245  
246  
Hex  
E0H  
E1H  
E2H  
E3H  
E4H  
E5H  
E6H  
E7H  
E8H  
E9H  
EAH  
EBH  
ECH  
EDH  
EEH  
EFH  
F0H  
F1H  
F2H  
F3H  
F4H  
F5H  
F6H  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Port 0 Data Register  
Port 1 Data Register  
P1  
Port 2 Data Register  
P2  
Port 3 Data Register  
P3  
PWM data register  
PWMDATA  
PWMEX  
P0CON  
P1INT  
PWM extension data register  
Port 0 control register  
P1 interrupt control register  
Port 1 control High register  
Port 1 control Low register  
Port 2 control High register  
Port 2 control Low register  
Port 3 control register  
P1CONH  
P1CONL  
P2CONH  
P2CONL  
P3CON  
PWMCON  
T1DATAH  
T1DATAL  
T1CON  
SIOCON  
TINTPND  
TACON  
SIOPS  
PWM control register  
Timer 1 data register(high byte)  
Timer 1 data register(low byte)  
Timer 1 control register  
Serial I/O control register  
Timer Interrupt pending register  
Timer A control register  
SIO pre-scalar register  
Timer A data register  
TADATA  
TBDATA  
Timer B data register  
Location F7H is not mapped  
TBCON  
Timer B control register  
SIO data register  
248  
249  
250  
251  
252  
253  
254  
255  
F8H  
F9H  
FAH  
FBH  
FCH  
FDH  
FEH  
FFH  
R/W  
R/W  
R
SIODATA  
A/D converter data register(high byte)  
A/D converter data register(low byte)  
A/D converter control register  
UART control register  
ADDATAH  
ADDATAL  
R
ADCON  
R/W  
R/W  
R/W  
R/W  
UARTCON  
UARTPND  
UDATA  
UART pending register  
UART data register  
4-2  
S3C9498/F9498  
CONTROL REGI STER  
Bit number(s) that is/are appended to  
the register name for bit addressing  
Name of individual  
bit or related bits  
Register location  
in the internal  
register file  
Register address  
(hexadecimal)  
Register ID  
Register name  
FLAGS - System Flags Register  
D5H  
Set 1  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
Bit Identifier  
RESET Value  
Read/Write  
x
x
x
x
x
x
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
R/W  
Bit Addressing  
Register addressing mode only  
Mode  
.7  
Carry Flag (C)  
0
0
Operation does not generate a carry or borrow condition  
Operation generates carry-out or borrow into high-order bit 7  
.6  
.5  
Zero Flag (Z)  
0
0
Operation result is a non-zero value  
Operation result is zero  
Sign Flag (S)  
0
0
Operation generates positive number (MSB = "0")  
Operation generates negative number (MSB = "1")  
Description of the  
effect of specific  
bit settings  
R = Read-only  
W = Write-only  
R/W = Read/write  
RESETvalue notation:  
'-' = Not used  
'x' = Undetermined value  
'0' = Logic zero  
'1' = Logic one  
'-' = Not used  
Bit number:  
MSB = Bit 7  
LSB = Bit 0  
Type of addressing  
that must be used to  
address the bit  
(1-bit, 4-bit, or 8-bit)  
Figure 4-1. Register Description Format  
4-3  
CONTROL REGISTERS  
S3C9498/F9498  
ADCON — A/D Converter Control Register  
FCH  
Bit Identifier  
RESET Value  
Read/Write  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
.0  
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
.7-.4  
A/D Input Pin Selection Bits  
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
ADC0  
ADC1  
ADC2  
ADC3  
ADC4  
ADC5  
ADC6  
ADC7  
Other value  
Connected with GND internally  
.3  
End-Of-Conversion (EOC) Status Bit  
0
1
A/D conversion is in progress  
A/D conversion complete  
.2-.1  
Clock Source Selection Bits  
0
0
1
1
0
1
0
1
fxx/16 (  
8MHz)  
8MHz)  
OSC  
OSC  
OSC  
fxx/8 (  
fxx/4 (  
Fxx (f  
8MHz)  
2.5MHz)  
OSC  
.0  
A/D Conversion Start Bit  
0
1
Disable operation  
Start operation  
NOTE: Maximum ADC clock input = 4MHz.  
4-4  
S3C9498/F9498  
CONTROL REGISTER  
BTCON — Basic Timer Control Register  
DCH  
Bit Identifier  
RESET Value  
Read/Write  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
.7–.4  
Watchdog Timer Function Enable Bit  
1
0
1
0
Disable watchdog timer function  
Enable watchdog timer function  
Others  
.3–.2  
Basic Timer Input Clock Selection Code  
0
0
1
1
0
1
0
1
f
/4096  
/1024  
/128  
OSC  
f
OSC  
f
OSC  
Invalid setting  
.1  
.0  
Basic Timer 8-Bit Counter Clear Bit  
0
1
No effect  
Clear the basic timer counter value  
Basic Timer Divider Clear Bit  
0
1
No effect  
Clear both dividers  
NOTE: When you write a "1" to BTCON.0 (or BTCON.1), the basic timer counter (or basic timer divider) is cleared.  
The bit is then cleared automatically to "0".  
4-5  
CONTROL REGISTERS  
S3C9498/F9498  
CLKCON — System Clock Control Register  
D4H  
Bit Identifier  
RESET Value  
Read/Write  
.7  
0
.6  
.5  
.4  
0
.3  
0
.2  
.1  
.0  
R/W  
R/W  
R/W  
.7  
Oscillator IRQ Wake-up Function Enable Bit  
0
1
Enable IRQ for main system oscillator wake-up function  
Disable IRQ for main system oscillator wake-up function  
.6-.5  
.4-.3  
Not used for the S3C9498/F9498  
(note)  
CPU Clock (System Clock) Selection Bits  
0
0
1
1
0
1
0
1
fxx/16  
fxx/8  
fxx/2  
fxx/1 (non-divided)  
.2-.0  
Not used for the S3C9498/F9498  
NOTE: After a reset, the slowest clock (divided by 16) is selected as the system clock. To select faster clock speeds, load  
the appropriate values to CLKCON.3 and CLKCON.4.  
4-6  
S3C9498/F9498  
CONTROL REGISTER  
FLAGS— System Flags Register  
D5H  
Bit Identifier  
RESET Value  
Read/Write  
.7  
x
.6  
x
.5  
x
.4  
x
.3  
.2  
.1  
.0  
R/W  
R/W  
R/W  
R/W  
.7  
.6  
.5  
Carry Flag (C)  
0
1
Operation does not generate a carry or borrow condition  
Operation generates a carry-out or borrow into high-order bit 7  
Zero Flag (Z)  
0
1
Operation result is a non-zero value  
Operation result is zero  
Sign Flag (S)  
0
1
Operation generates a positive number (MSB = "0")  
Operation generates a negative number (MSB = "1")  
.4  
Overflow Flag (V)  
0
1
Operation result is £ + 127 or _ – 128  
Operation result is > + 127 or < – 128  
.3–.0  
Not used for the S3C9498/F9498  
4-7  
CONTROL REGISTERS  
S3C9498/F9498  
P0CON — Port 0 Control Register  
E6H  
Bit Identifier  
RESET Value  
Read/Write  
.7  
.6  
.5  
0
.4  
0
.3  
0
.2  
0
.1  
.0  
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
.7-.6  
.5-.4  
Not used for S3C9498/F9498  
P0.2  
0
0
1
1
0
1
0
1
Input mode with pull-up  
Input mode,  
Push-pull output  
Open-drain Output  
.3–.2  
P0.1/TxD  
0
0
1
1
0
1
0
1
Input mode with pull-up  
Input mode  
Push-pull output  
Alternative function, TxD output  
.1-.0  
P0.0/RxD  
0
0
1
1
0
1
0
1
Input mode with pull-up; RxD input  
Input mode; RxD input  
Push-pull output  
Alternative function; RxD output  
NOTE: When users use Port 0, users must be care of the pull-up resistance status.  
4-8  
S3C9498/F9498  
CONTROL REGISTER  
P1CONH — Port 1 Control Register (High Byte)  
E8H  
Bit Identifier  
RESET Value  
Read/Write  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
.7-.6  
P1.7/ADC7  
0
0
Input mode with pull-up  
0
1
1
1
0
1
Not used for S3C9498/F9498  
Push-pull output  
Alternative function; ADC7 input  
.5-.4  
.3-.2  
.1-.0  
P1.6/ADC6/TDOUT  
0
0
0
1
Input mode with pull-up  
Alternative function; TDOUT output  
1
1
0
1
Push-pull output  
Alternative function; ADC6 input  
P1.5/ADC5  
0
0
1
1
0
1
0
1
Input mode with pull-up  
Input mode  
Push-pull output  
Alternative function; ADC5 input  
P1.4/ADC4  
0
0
Input mode with pull-up  
0
1
1
1
0
1
Input mode  
Push-pull output  
Alternative function; ADC4 input  
4-9  
CONTROL REGISTERS  
S3C9498/F9498  
P1CONL — Port 1 Control Register (Low Byte)  
E9H  
Bit Identifier  
RESET Value  
Read/Write  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
.0  
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
.7-.6  
.5-.4  
.3-.2  
.1-.0  
P1.3/ADC3  
0
0
1
1
0
1
0
1
Input mode with pull-up  
Input mode  
Push-pull output  
Alternative function; ADC3 input  
P1.2/ADC2  
0
0
1
1
0
1
0
1
Input mode with pull-up  
Input mode  
Push-pull output  
Alternative function; ADC2 input  
P1.1/ADC1/INT1  
0
0
1
1
0
1
0
1
Input mode with pull-up; INT1 input  
Input mode; INT1 input  
Push-pull output  
Alternative function; ADC1 input  
P1.0/ADC0/INT0  
0
0
1
1
0
1
0
1
Input mode with pull-up; INT0 input  
Input mode; INT0 input  
Push-pull output  
Alternative function; ADC0 input  
4-10  
S3C9498/F9498  
CONTROL REGISTER  
P1INT — Port 1 Interrupt Control Register  
E7H  
Bit Identifier  
RESET Value  
Read/Write  
.7  
.6  
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
.7-.6  
.5-.4  
Not used for S3C9498/F9498  
P1.1/ INT1 Interrupt Enable/Disable Selection Bits  
0
1
1
X
0
1
Interrupt Disable  
Interrupt Enable; falling edge  
Interrupt Enable; rising edge  
.3-.2  
P1.0/ INT0 Interrupt Enable/Disable Selection Bits  
0
1
1
X
0
1
Interrupt Disable  
Interrupt Enable; falling edge  
Interrupt Enable; rising edge  
.1  
.0  
INT1 Interrupt Pending Bit  
0
1
No interrupt pending (Clear pending bit when write)  
Interrupt pending  
INT0 Interrupt Pending Bit  
0
1
No interrupt pending (Clear pending bit when write)  
Interrupt pending  
4-11  
CONTROL REGISTERS  
S3C9498/F9498  
P2CONH — Port 2 Control Register (High Byte)  
EAH  
Bit Identifier  
RESET Value  
Read/Write  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
.0  
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
.7–.6  
.5-.4  
.3–.2  
.1–.0  
P2.7/PWM  
0
0
1
1
0
1
0
1
Input mode with pull-up  
Input mode  
Push-pull output  
Alternative function; PWM signal output  
P2.6/T1CAP  
0
0
1
1
0
1
0
1
Input mode with pull-up; T1CAP input  
Input mode; T1CAP input  
Push-pull output  
Open-drain output  
P2.5/T1OUT  
0
0
1
1
0
1
0
1
Input mode with pull-up  
Input mode  
Push-pull output  
Alternative function; T1OUT signal output  
P2.4/T1CK  
0
0
1
1
0
1
0
1
Input mode with pull-up; T1CK input  
Input mode; T1CK input  
Push-pull output  
Open-drain output  
4-12  
S3C9498/F9498  
CONTROL REGISTER  
P2CONL — Port 2 Control Register (Low Byte)  
EBH  
Bit Identifier  
RESET Value  
Read/Write  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
.7-.6  
.5-.4  
.3-.2  
.1-.0  
P2.3/TBOUT  
0
0
1
1
0
1
0
1
Input mode with pull-up  
Input mode  
Push-pull output  
Alternative function; TBOUT signal output  
P2.2/TACAP  
0
0
1
1
0
1
0
1
Input mode with pull-up; TACAP input  
Input mode; TACAP input  
Push-pull output  
Open-drain output  
P2.1/TACK  
0
0
1
1
0
1
0
1
Input mode with pull-up; TACK input  
Input mode; TACK input  
Push-pull output  
Open-drain output  
P2.0/TAOUT  
0
0
1
1
0
1
0
1
Input mode with pull-up  
Input mode  
Push-pull output  
Alternative function; TAOUT signal output  
4-13  
CONTROL REGISTERS  
S3C9498/F9498  
P3CON — Port 3 Control Register  
ECH  
Bit Identifier  
RESET Value  
Read/Write  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
.0  
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
.7–.6  
P3.6/P3.5/P3.4/P3.3  
0
0
1
1
0
1
0
1
Input mode with pull-up  
Input mode  
Push-pull output  
Open-drain output  
.5–.4  
P3.2/SCK  
0
0
Input mode, pull-up (SCK input)  
0
1
1
1
0
1
Input mode (SCK input)  
Push-pull output  
Alternative output mode (SCK output)  
.3–.2  
P3.1/SO  
0
0
1
1
0
Input mode, pull-up  
Input mode  
1
0
1
Push-pull output  
Alternative output mode (SO)  
.1–.0  
P3.0/SI  
0
0
1
1
0
1
0
1
Input mode(SI) , pull-up  
Input mode (SI)  
Push-pull output  
Alternative output mode(Not used)  
4-14  
S3C9498/F9498  
CONTROL REGISTER  
PWMCON — PWM Control Register  
EDH  
Bit Identifier  
RESET Value  
Read/Write  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
.7–.6  
PWM Input Clock Selection Bit  
0
0
1
1
0
1
0
1
fosc/256  
fosc/64  
fosc/8  
fosc/1  
.5  
PWM Data Reload Interval Selection Bit  
0
1
Reload from 12-bit up counter overflow  
Reload from 6-bit up counter overflow  
.4  
.3  
Not used for S3C9498/F9498  
PWM Counter Clear Bit  
0
1
No effect  
Clear 12-bit up counter (when write)  
.2  
.1  
.0  
PWM Counter Enable Bit  
0
1
Stop counter  
Start (Resume counting)  
PWM Overflow Interrupt Enable bit (12-bit Counter Overflow)  
0
1
Disable interrupt  
Enable interrupt  
PWM 12-Bit Counter Overflow Interrupt Pending Bit  
0
0
1
No interrupt pending  
Clear pending condition (when write)  
Interrupt pending (Clear pending bit when write)  
4-15  
CONTROL REGISTERS  
S3C9498/F9498  
SIOCON— Serial I/O Module Control Registers  
F1H  
Bit Identifier  
RESET Value  
Read/Write  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
.0  
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
.7  
.6  
.5  
SIO Shift Clock Selection Bit  
0
1
Interval clock (P.S Clock)  
External clock (SCK)  
Data Direction Control Bit  
0
1
MSB-first mode  
LSB-first mode  
SIO Mode Selection Bit  
0
1
Receive-only mode  
Transmit/Receive mode  
.4  
Shift Clock Edge Selection Bit  
0
1
Tx at falling edges, Rx at rising edges.  
Tx at rising edges, Rx at falling edges.  
.3  
.2  
.1  
.0  
SIO Counter Clear and Shift Start Bit  
0
1
No action  
Clear 3-bit counter and start shifting  
SIO Shift Operation Enable Bit  
0
1
Disable shift and clock counter  
Enable shift and clock counter  
SIO Interrupt Enable Bit  
0
1
Disable SIO interrupt  
Enable SIO interrupt  
SIO Interrupt Pending Bit  
0
1
No interrupt pending  
Interrupt pending (Clear pending bit when write)  
4-16  
S3C9498/F9498  
CONTROL REGISTER  
SP — Stack Pointer  
D9H  
Bit Identifier  
RESET Value  
Read/Write  
.7  
x
.6  
x
.5  
x
.4  
x
.3  
x
.2  
x
.1  
x
.0  
X
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
.7–.0  
Stack Pointer Address  
The stack pointer value is 8-bit stack pointer address (SP7–SP0). The SP value is  
undefined following a reset.  
STPCON — Stop Control Register  
D7H  
Bit Identifier  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
RESET Value  
Read/Write  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
.7–.0  
STOP Control Bits  
1 0 1 0 0 1 0 1 Enable stop instruction  
Other values Disable stop instruction  
NOTE: Before executing the STOP instruction, you must set this STPCON register as “10100101b”. Otherwise the STOP  
instruction will not be executed.  
4-17  
CONTROL REGISTERS  
S3C9498/F9498  
SYM — System Mode Register  
DFH  
Bit Identifier  
RESET Value  
Read/Write  
.7  
.6  
.5  
.4  
.3  
0
.2  
0
.1  
.0  
0
0
R/W  
R/W  
R/W  
R/W  
.7–.4  
.3  
Not used for S3C9498/F9498  
Global Interrupt Enable Bit  
0
1
Disable all interrupts  
Enable all interrupt  
.2–.0  
Page Select Bits  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Page 0  
Page 1 (Not used for S3C9498/F9498)  
Page 2 (Not used for S3C9498/F9498)  
Page 3 (Not used for S3C9498/F9498)  
Page 4 (Not used for S3C9498/F9498)  
Page 5 (Not used for S3C9498/F9498)  
Page 6 (Not used for S3C9498/F9498)  
Page 7 (Not used for S3C9498/F9498)  
NOTE: Following a reset, you must enable global interrupt processing by executing an EI instruction (not by writing a "1"  
to SYM.3).  
4-18  
S3C9498/F9498  
CONTROL REGISTER  
T1CON — Timer 1 Control Register  
F0H  
Bit Identifier  
RESET Value  
Read/Write  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7-.5  
Timer 1 Input Clock Selection Bits  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
fxx/1024  
fxx (Non-divide)  
fxx/256  
External clock falling edge  
fxx/64  
External clock rising edge  
fxx/8  
Counter stop  
.4-.3  
Timer 1 Operating Mode Selection Bits  
0
0
1
1
0
1
0
1
Interval mode  
Capture mode (Capture on rising edge, OVF can occur)  
Capture mode (Capture on falling edge, OVF can occur)  
PWM mode  
.2  
.1  
.0  
Timer 1 Counter Clear Bit  
0
1
No effect  
Clear the timer 1 counter (Auto-clear bit)  
Timer 1 Match/Capture Interrupt Enable Bit  
0
1
Disable interrupt  
Enable interrupt  
Timer 1 Overflow Interrupt Enable  
0
1
Disable overflow interrupt  
Enable overflow interrupt  
4-19  
CONTROL REGISTERS  
S3C9498/F9498  
TACON — Timer A Control Register  
F3H  
Bit Identifier  
RESET Value  
Read/Write  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
.0  
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
.7-.6  
Timer A Input Clock Selection Bits  
0
0
1
1
0
1
0
1
fxx/1024  
fxx/256  
fxx/64  
External clock (TACK)  
.5-.4  
Timer A Operating Mode Selection Bits  
0
0
1
1
0
1
0
1
Internal mode (TAOUT mode)  
Capture mode (capture on rising edge, counter running, OVF can occur)  
Capture mode (capture on falling edge, counter running, OVF can occur)  
PWM mode (OVF interrupt can occur)  
.3  
.2  
.1  
Timer A Counter Clear Bit  
0
1
No effect  
Clear the timer A counter (After clearing, return to zero)  
Timer A Overflow Interrupt Enable Bit  
0
1
Disable interrupt  
Enable interrupt  
Timer A Match/Capture Interrupt Enable Bit  
0
1
Disable interrupt  
Enable interrupt  
.0  
Timer A Start/Stop Bit  
0
1
Stop Timer A  
Start Timer A  
4-20  
S3C9498/F9498  
CONTROL REGISTER  
TBCON — Timer B Control Register  
F8H  
Bit Identifier  
RESET Value  
Read/Write  
.7  
0
.6  
0
.5  
0
.4  
.3  
0
.2  
0
.1  
0
.0  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
.7-.6  
Timer B Input Clock Selection Bits  
0
0
1
1
0
1
0
1
fxx/8  
fxx/4  
fxx/2  
fxx/1  
.5  
.4  
Not used for S3C9498/F9498  
Timer B Operating Mode Selection Bits  
0
1
Interval mode (TBOUT mode)  
PWM mode (OVF interrupt can occur)  
.3  
.2  
.1  
.0  
Timer B Counter Clear Bit  
0
1
No effect  
Clear the timer B counter (After clearing, return to zero)  
Timer B Overflow Interrupt Enable Bit  
0
1
Disable interrupt  
Enable interrupt  
Timer B Match Interrupt Enable Bit  
0
1
Disable interrupt  
Enable interrupt  
Timer B Start/Stop Bit  
0
1
Stop Timer B  
Start Timer B  
4-21  
CONTROL REGISTERS  
S3C9498/F9498  
TCCON — Timer C Control Register  
D0H  
Bit Identifier  
RESET Value  
Read/Write  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
.0  
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
.7  
Timer 0 operation mode selection bit  
0
1
Two 8-bit timers mode (Timer C/D)  
One 16-bit timer mode (Timer 0)  
.6  
Not used for S3C9498/F9498 (Must be kept ‘0’)  
Timer C Input Clock Selection Bits  
.5–.4  
0
0
1
1
0
1
0
1
Fxx/1024  
fxx/512  
fxx/8  
fxx  
.3  
.2  
Timer C Counter Clear Bit  
0
1
No affect  
Clear the timer C counter (when write)  
Timer C Counter Run Enable Bit  
0
1
Disable counter running  
Enable counter running  
.1  
.0  
Timer C Interrupt Enable Bit  
0
1
Disable Interrupt  
Enable Interrupt  
Timer C Interrupt pending Bit  
0
1
No interrupt pending (Clear pending bit when write)  
Interrupt pending  
4-22  
S3C9498/F9498  
CONTROL REGISTER  
TCNTSEL — Timer Counter read selection Register  
D8H  
Bit Identifier  
RESET Value  
Read/Write  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
.7-.3  
.2-.0  
Not used for S3C9498/F9498  
Timer counter read selection bits  
0
0
0
0
1
1
0
0
1
1
X
X
0
1
0
1
0
1
Select Timer A counter  
Select Timer B counter  
Select Timer C counter  
Select Timer D counter  
Select Timer 1 counter high byte  
Select Timer 1 counter low byte  
4-23  
CONTROL REGISTERS  
S3C9498/F9498  
TDCON — Timer D Control Register  
D1H  
Bit Identifier  
RESET Value  
Read/Write  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
.0  
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.6  
Timer D operating Mode Selection Bits  
0
0
1
1
0
1
0
1
Interval mode  
6-bit PWM mode (OVF interrupt can occur)  
7-bit PWM mode (OVF interrupt can occur)  
8-bit PWM mode (OVF interrupt can occur)  
.5–.4  
Timer D Clock Selection Bits  
0
0
1
1
0
1
0
1
fxx/8  
fxx/4  
fxx/2  
fxx  
.3  
.2  
.1  
.0  
Timer D Counter Clear Bit  
0
1
No effect  
Clear the timer D counter (when write)  
Timer D Count Enable Bit  
0
1
Disable count operation  
Enable count operation  
Timer D match Interrupt Enable Bit  
0
1
Disable interrupt  
Enable interrupt  
Timer D overflow interrupt enable bit  
0
1
Disable interrupt  
Enable interrupt  
4-24  
S3C9498/F9498  
CONTROL REGISTER  
TINTPND — Interrupt Pending Register  
F2H  
Bit Identifier  
RESET Value  
Read/Write  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
.7  
Timer 1 Overflow Interrupt Pending Bit  
0
1
No interrupt pending (Clear pending bit when write)  
Interrupt pending  
.6  
Timer 1 Match/Capture Interrupt Pending Bit  
0
1
No interrupt pending (Clear pending bit when write)  
Interrupt pending  
.5  
.4  
.3  
.2  
.1  
Timer D Overflow Interrupt Pending Bit  
0
1
No interrupt pending (Clear pending bit when write)  
Interrupt pending  
Timer D Match Interrupt Pending Bit  
0
1
No interrupt pending (Clear pending bit when write)  
Interrupt pending  
Timer B Overflow Interrupt Pending Bit  
0
1
No interrupt pending (Clear pending bit when write)  
Interrupt pending  
Timer B Match/Capture Interrupt Pending Bit  
0
1
No interrupt pending (Clear pending bit when write)  
Interrupt pending  
Timer A Overflow Interrupt Pending Bit  
0
1
No interrupt pending (Clear pending bit when write)  
Interrupt pending  
.0  
Timer A Match/Capture Interrupt Pending Bit  
0
1
No interrupt pending (Clear pending bit when write)  
Interrupt pending  
4-25  
CONTROL REGISTERS  
S3C9498/F9498  
UARTCON — UART Control Register  
FDH  
Bit Identifier  
RESET Value  
Read/Write  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
.0  
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.6  
Operating mode and baud rate selection bits  
0
0
1
1
0
1
0
1
Mode 0: SIO mode [fxx/(16 ´ (BRDATA1 + 1))]  
Mode 1: 8-bit UART [fxx/(16 ´ (BRDATA1 + 1))]  
Mode 2: 9-bit UART [fxx/16]  
Mode 3: 9-bit UART [fxx/(16 ´ (BRDATA1 + 1))]  
(1)  
.5  
.4  
Multiprocessor communication enable bit (for modes 2 and 3 only)  
0
1
Disable  
Enable  
Serial data receive enable bit  
0
1
Disable  
Enable  
th  
.3  
.2  
.1  
Location of the 9 data bit to be transmitted in UART mode 2 or 3 ("0" or "1")  
th  
Location of the 9 data bit that was received in UART mode 2 or 3 ("0" or "1")  
Receive interrupt enable bit  
0
1
Disable Receive interrupt  
Enable Receive interrupt  
.0  
Transmit interrupt enable bit  
0
1
Disable Transmit interrupt  
Enable Transmit Interrupt  
NOTES:  
1. In mode 2 or 3, if the MCE (UARTCON.5) bit is set to "1", then the receive interrupt will not be activated if the received  
th  
9
data bit is "0". In mode 1, if MCE = "1”, then the receive interrupt will not be activated if a valid stop bit was not  
received. In mode 0, the MCE(UARTCON.5) bit should be "0".  
2. The descriptions for 8-bit and 9-bit UART mode do not include start and stop bits for serial data receive and transmit.  
4-26  
S3C9498/F9498  
CONTROL REGISTER  
UARTPND — UART Pending and parity control  
FEH  
Bit Identifier  
RESET Value  
Read/Write  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
0
.0  
0
R/W  
R/W  
.7-.3  
.1  
Not used for the S3C9498/F9498  
UART receive interrupt pending flag  
0
0
1
Not pending  
Clear pending bit (when write)  
Interrupt pending  
.0  
UART transmit interrupt pending flag  
0
0
1
Not pending  
Clear pending bit (when write)  
Interrupt pending  
NOTES:  
1. In order to clear a data transmit or receive interrupt pending flag, you must write a "0" to the appropriate pending bit.  
2. To avoid programming errors, we recommend using load instruction (except for LDB), when manipulating UARTPND  
values.  
4-27  
CONTROL REGISTERS  
S3C9498/F9498  
NOTES  
4-28  
S3C9498/F9498  
INTERRUPT STRUCTURE  
5
INTERRUPT STRUCTURE  
OVERVIEW  
The SAM88RCRI interrupt structure has two basic components: a vector, and sources. The number of interrupt  
sources can be serviced through an interrupt vector which is assigned in ROM address 0000H.  
VECTOR  
SOURCES  
S1  
0000H  
0001H  
S2  
S3  
Sn  
NOTES:  
1. The SAM88RCRI interrupt has only one vector address (0000H-0001H).  
2. The numbern of Sn value is expandable.  
Figure 5-1. S3C9-Series Interrupt Type  
INTERRUPT PROCESSING CONTROL POINTS  
Interrupt processing can be controlled in two ways: either globally or specific interrupt level and source.  
The system-level control points in the interrupt structure are therefore:  
— Global interrupt enable and disable (by EI and DI instructions)  
— Interrupt source enable and disable settings in the corresponding peripheral control register(s)  
5-1  
INTERRUPT STRUCTURE  
S3C9498/F9498  
ENABLE/DISABLE INTERRUPT INSTRUCTIONS (EI, DI)  
The system mode register, SYM (DFH), is used to enable and disable interrupt processing.  
SYM.3 is the enable and disable bit for global interrupt processing respectively, by modifying SYM.3. An Enable  
Interrupt (EI) instruction must be included in the initialization routine that follows a reset operation in order to  
enable interrupt processing. Although you can manipulate SYM.3 directly to enable and disable interrupts during  
normal operation, we recommend that you use the EI and DI instructions for this purpose.  
INTERRUPT PENDING FUNCTION TYPES  
When the interrupt service routine has executed, the application program's service routine must clear the  
appropriate pending bit before the return from interrupt subroutine (IRET) occurs.  
INTERRUPT PRIORITY  
Because there is not a interrupt priority register in SAM88RCRI, the order of service is determined by a sequence  
of source which is executed in interrupt service routine.  
"EI" Instruction  
Interrupt Pending  
Register  
S
R
Q
Execution  
RESET  
Interrpt priority  
is determind by  
software polling  
method  
Source Interrupts  
Vector Interrupt  
Cycle  
Source Interrupt  
Enable  
Global Interrupt  
Control (EI, DI instruction)  
Figure 5-2. Interrupt Function Diagram  
5-2  
S3C9498/F9498  
INTERRUPT STRUCTURE  
INTERRUPT SOURCE SERVICE SEQUENCE  
The interrupt request polling and servicing sequence is as follows:  
1. A source generates an interrupt request by setting the interrupt request pending bit to "1".  
2. The CPU generates an interrupt acknowledge signal.  
3. The service routine starts and the source's pending flag is cleared to "0" by software.  
4. Interrupt priority must be determined by software polling method.  
INTERRUPT SERVICE ROUTINES  
Before an interrupt request can be serviced, the following conditions must be met:  
— Interrupt processing must be enabled (EI, SYM.3 = "1")  
— Interrupt must be enabled at the interrupt's source (peripheral control register)  
If all of the above conditions are met, the interrupt request is acknowledged at the end of the instruction cycle. The  
CPU then initiates an interrupt machine cycle that completes the following processing sequence:  
1. Reset (clear to "0") the global interrupt enable bit in the SYM register (DI, SYM.3 = "0")  
to disable all subsequent interrupts.  
2. Save the program counter and status flags to stack.  
3. Branch to the interrupt vector to fetch the service routine's address.  
4. Pass control to the interrupt service routine.  
When the interrupt service routine is completed, an Interrupt Return instruction (IRET) occurs. The IRET restores  
the PC and status flags and sets SYM.3 to "1" (EI), allowing the CPU to process the next interrupt request.  
GENERATING INTERRUPT VECTOR ADDRESSES  
The interrupt vector area in the ROM contains the address of the interrupt service routine. Vectored interrupt  
processing follows this sequence:  
1. Push the program counter's low-byte value to stack.  
2. Push the program counter's high-byte value to stack.  
3. Push the FLAGS register values to stack.  
4. Fetch the service routine's high-byte address from the vector address 0000H.  
5. Fetch the service routine's low-byte address from the vector address 0001H.  
6. Branch to the service routine specified by the 16-bit vector address.  
5-3  
INTERRUPT STRUCTURE  
S3C9498/F9498  
S3C9498/F9498 INTERRUPT STRUCTURE  
The S3F9498 microcontroller has four peripheral interrupt sources:  
— Timer A/ B match / overflow, Timer C / D interrupt, Timer 1 match / overflow interrupt  
UART transmit interrupt / receive interrupt, PWM overflow interrupt  
SIO interrupt, INT0, INT1 external interrupt  
Vector  
Pending Bits  
TINTPND.0  
Enable/Disable  
Source  
Timer A Match  
TACON.1  
TACON.2  
Timer A Overflow  
Timer B Match  
TINTPND.1  
TINTPND.2  
TINTPND.3  
TCCON.0  
TBCON.1  
TBCON.2  
TCCON.1  
Timer B Overflow  
Timer C Interrupt  
0000H  
0001H  
Timer D Match  
SYM.3  
(EI, DI)  
TINTPND.7  
TINTPND.6  
TDCON.1  
TDCON.0  
Timer D Overflow  
Timer 1 Match/Capture  
Timer 1 Overflow  
TINTPND.4  
T1CON.1  
TINTPND.5  
P1INT.0  
T1CON.0  
P1INT.3  
P1.0 External Interrupt  
(INT0)  
P1.1 External Interrupt  
(INT1)  
P1INT.1  
P1INT.5  
SIO Interrupt  
SIOCON.0  
SIOCON.1  
PWM Interrupt  
UART Transmit  
UART Receive  
PWMCON.0  
UARTPND.0  
UARTPND.1  
PWMCON.1  
UARTCON.0  
UARTCON.1  
Figure 5-3. S3F9498 Interrupt Structure  
5-4  
S3C9498/F9498  
SAM88RCRI INSTRUCTION SET  
6
SAM88RCRI INSTRUCTION SET  
OVERVIEW  
The SAM88RCRI instruction set is designed to support the large register file. It includes a full complement of  
8-bit arithmetic and logic operations. There are 41 instructions. No special I/O instructions are necessary because  
I/O control and data registers are mapped directly into the register file. Flexible instructions for bit addressing, rotate,  
and shift operations complete the powerful data manipulation capabilities of the SAM88RCRI instruction set.  
REGISTER ADDRESSING  
To access an individual register, an 8-bit address in the range 0-255 or the 4-bit address of a working register is  
specified. Paired registers can be used to construct 13-bit program memory or data memory addresses. For  
detailed information about register addressing, please refer to Chapter 2, "Address Spaces".  
ADDRESSING MODES  
There are six addressing modes: Register (R), Indirect Register (IR), Indexed (X), Direct (DA), Relative (RA), and  
Immediate (IM). For detailed descriptions of these addressing modes, please refer to Chapter 3, "Addressing  
Modes".  
6-1  
SAM88RCRI INSTRUCTION SET  
S3C9498/F9498  
Table 6-1. Instruction Group Summary  
Operands Instruction  
Mnemonic  
Load Instructions  
CLR  
LD  
dst  
Clear  
dst,src  
dst,src  
dst,src  
dst,src  
dst,src  
dst,src  
dst,src  
dst  
Load  
LDC  
LDE  
Load program memory  
Load external data memory  
Load program memory and decrement  
Load external data memory and decrement  
Load program memory and increment  
Load external data memory and increment  
Pop from stack  
LDCD  
LDED  
LDCI  
LDEI  
POP  
PUSH  
src  
Push to stack  
Arithmetic Instructions  
ADC  
ADD  
CP  
dst,src  
dst,src  
dst,src  
dst  
Add with carry  
Add  
Compare  
DEC  
INC  
Decrement  
Increment  
Subtract with carry  
Subtract  
dst  
SBC  
SUB  
dst,src  
dst,src  
Logic Instructions  
AND  
COM  
OR  
dst,src  
dst  
Logical AND  
Complement  
dst,src  
dst,src  
Logical OR  
XOR  
Logical exclusive OR  
6-2  
S3C9498/F9498  
SAM88RCRI INSTRUCTION SET  
Table 6-1. Instruction Group Summary (Continued)  
Operands Instruction  
Mnemonic  
Program Control Instructions  
CALL  
IRET  
JP  
dst  
Call procedure  
Interrupt return  
cc,dst  
dst  
Jump on condition code  
Jump unconditional  
Jump relative on condition code  
Return  
JP  
JR  
cc,dst  
RET  
Bit Manipulation Instructions  
TCM  
TM  
dst,src  
dst,src  
Test complement under mask  
Test under mask  
Rotate and Shift Instructions  
RL  
dst  
dst  
dst  
dst  
dst  
Rotate left  
RLC  
RR  
Rotate left through carry  
Rotate right  
RRC  
SRA  
Rotate right through carry  
Shift right arithmetic  
CPU Control Instructions  
CCF  
DI  
Complement carry flag  
Disable interrupts  
Enable interrupts  
Enter Idle mode  
No operation  
EI  
IDLE  
NOP  
RCF  
SCF  
STOP  
Reset carry flag  
Set carry flag  
Enter stop mode  
6-3  
SAM88RCRI INSTRUCTION SET  
FLAGS REGISTER (FLAGS)  
S3C9498/F9498  
The flags register FLAGS contains eight bits that describe the current status of CPU operations. Four of these bits,  
FLAGS.4–FLAGS.7, can be tested and used with conditional jump instructions;  
FLAGS register can be set or reset by instructions as long as its outcome does not affect the flags, such as, Load  
instruction. Logical and Arithmetic instructions such as, AND, OR, XOR, ADD, and SUB can affect the Flags register.  
For example, the AND instruction updates the Zero, Sign and Overflow flags based on the outcome of the AND  
instruction. If the AND instruction uses the Flags register as the destination, then simultaneously, two write will occur  
to the Flags register producing an unpredictable result.  
System Flags Register (FLAGS)  
D5H, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Carry flag (C)  
Not mapped  
Zero flag (Z)  
Sign flag (S)  
Overflow flag (V)  
Figure 6-1. System Flags Register (FLAGS)  
FLAG DESCRIPTIONS  
Overflow Flag (FLAGS.4, V)  
The V flag is set to "1" when the result of a two's-complement operation is greater than + 127 or less than – 128. It is  
also cleared to "0" following logic operations.  
Sign Flag (FLAGS.5, S)  
Following arithmetic, logic, rotate, or shift operations, the sign bit identifies the state of the MSB of the result. A logic  
zero indicates a positive number and a logic one indicates a negative number.  
Zero Flag (FLAGS.6, Z)  
For arithmetic and logic operations, the Z flag is set to "1" if the result of the operation is zero. For operations that  
test register bits, and for shift and rotate operations, the Z flag is set to "1" if the result is logic zero.  
Carry Flag (FLAGS.7, C)  
The C flag is set to "1" if the result from an arithmetic operation generates a carry-out from or a borrow to the bit 7  
position (MSB). After rotate and shift operations, it contains the last value shifted out of the specified register.  
Program instructions can set, clear, or complement the carry flag.  
6-4  
S3C9498/F9498  
SAM88RCRI INSTRUCTION SET  
INSTRUCTION SET NOTATION  
Table 6-2. Flag Notation Conventions  
Flag  
C
Z
Description  
Carry flag  
Zero flag  
S
V
0
Sign flag  
Overflow flag  
Cleared to logic zero  
Set to logic one  
1
*
Set or cleared according to operation  
Value is unaffected  
Value is undefined  
x
Table 6-3. Instruction Set Symbols  
Symbol  
Description  
Destination operand  
dst  
src  
@
Source operand  
Indirect register address prefix  
Program counter  
PC  
FLAGS  
#
Flags register (D5H)  
Immediate operand or register address prefix  
Hexadecimal number suffix  
Decimal number suffix  
Binary number suffix  
H
D
B
opc  
Opcode  
6-5  
SAM88RCRI INSTRUCTION SET  
S3C9498/F9498  
Table 6-4. Instruction Notation Conventions  
Description Actual Operand Range  
Notation  
cc  
r
Condition code  
See list of condition codes in Table 6-6.  
Rn (n = 0–15)  
Working register only  
rr  
Working register pair  
RRp (p = 0, 2, 4, ..., 14)  
R
Register or working register  
Register pair or working register pair  
reg or Rn (reg = 0–255, n = 0–15)  
RR  
reg or RRp (reg = 0–254, even number only, where  
p = 0, 2, ..., 14)  
Ir  
IR  
Indirect working register only  
@Rn (n = 0–15)  
Indirect register or indirect working register @Rn or @reg (reg = 0–255, n = 0–15)  
Irr  
Indirect working register pair only  
@RRp (p = 0, 2, ..., 14)  
IRR  
Indirect register pair or indirect working  
register pair  
@RRp or @reg (reg = 0–254, even only, where  
p = 0, 2, ..., 14)  
X
Indexed addressing mode  
#reg[Rn] (reg = 0–255, n = 0–15)  
XS  
Indexed (short offset) addressing mode  
#addr[RRp] (addr = range – 128 to + 127, where  
p = 0, 2, ..., 14)  
xl  
Indexed (long offset) addressing mode  
#addr [RRp] (addr = range 0–8191, where  
p = 0, 2, ..., 14)  
da  
ra  
Direct addressing mode  
Relative addressing mode  
addr (addr = range 0–8191)  
addr (addr = number in the range + 127 to – 128 that is  
an offset relative to the address of the next instruction)  
im  
Immediate addressing mode  
#data (data = 0–255)  
6-6  
S3C9498/F9498  
SAM88RCRI INSTRUCTION SET  
Table 6-5. Opcode Quick Reference  
OPCODE MAP  
LOWER NIBBLE (HEX)  
0
1
2
3
4
5
6
7
U
P
P
E
R
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
DEC  
R1  
DEC  
IR1  
ADD  
r1,r2  
ADD  
r1,Ir2  
ADD  
R2,R1  
ADD  
IR2,R1  
ADD  
R1,IM  
RLC  
R1  
RLC  
IR1  
ADC  
r1,r2  
ADC  
r1,Ir2  
ADC  
R2,R1  
ADC  
IR2,R1  
ADC  
R1,IM  
INC  
R1  
INC  
IR1  
SUB  
r1,r2  
SUB  
r1,Ir2  
SUB  
R2,R1  
SUB  
IR2,R1  
SUB  
R1,IM  
JP  
IRR1  
SBC  
r1,r2  
SBC  
r1,Ir2  
SBC  
R2,R1  
SBC  
IR2,R1  
SBC  
R1,IM  
OR  
r1,r2  
OR  
r1,Ir2  
OR  
R2,R1  
OR  
IR2,R1  
OR  
R1,IM  
POP  
R1  
POP  
IR1  
AND  
r1,r2  
AND  
r1,Ir2  
AND  
R2,R1  
AND  
IR2,R1  
AND  
R1,IM  
N
I
COM  
R1  
COM  
IR1  
TCM  
r1,r2  
TCM  
r1,Ir2  
TCM  
R2,R1  
TCM  
IR2,R1  
TCM  
R1,IM  
PUSH  
R2  
PUSH  
IR2  
TM  
r1,r2  
TM  
r1,Ir2  
TM  
R2,R1  
TM  
IR2,R1  
TM  
R1,IM  
B
B
L
E
LD  
r1, x, r2  
RL  
R1  
RL  
IR1  
LD  
r2, x, r1  
CP  
r1,r2  
CP  
r1,Ir2  
CP  
R2,R1  
CP  
IR2,R1  
CP  
R1,IM  
LDC  
r1, Irr2, xL  
CLR  
R1  
CLR  
IR1  
XOR  
r1,r2  
XOR  
r1,Ir2  
XOR  
R2,R1  
XOR  
IR2,R1  
XOR  
R1,IM  
LDC  
r2, Irr2, xL  
RRC  
R1  
RRC  
IR1  
LDC  
r1,Irr2  
LD  
r1, Ir2  
H
E
X
SRA  
R1  
SRA  
IR1  
LDC  
r2,Irr1  
LD  
IR1,IM  
LD  
Ir1, r2  
RR  
R1  
RR  
IR1  
LDCD  
r1,Irr2  
LDCI  
r1,Irr2  
LD  
R2,R1  
LD  
R2,IR1  
LD  
R1,IM  
LDC  
r1, Irr2, xs  
CALL  
IRR1  
LD  
IR2,R1  
CALL  
DA1  
LDC  
r2, Irr1, xs  
6-7  
SAM88RCRI INSTRUCTION SET  
S3C9498/F9498  
Table 6-5. Opcode Quick Reference (Continued)  
OPCODE MAP  
LOWER NIBBLE (HEX)  
0
8
9
A
B
C
D
E
F
U
P
LD  
r1,R2  
LD  
r2,R1  
JR  
cc,RA  
LD  
r1,IM  
JP  
cc,DA  
INC  
r1  
¯
¯
¯
¯
¯
¯
1
P
E
R
2
3
4
5
N
I
6
IDLE  
STOP  
DI  
¯
¯
¯
¯
¯
¯
7
B
B
L
E
8
9
EI  
A
B
C
D
E
F
RET  
IRET  
RCF  
SCF  
CCF  
NOP  
H
E
X
¯
¯
¯
¯
¯
¯
LD  
r1,R2  
LD  
r2,R1  
JR  
cc,RA  
LD  
r1,IM  
JP  
cc,DA  
INC  
r1  
6-8  
S3C9498/F9498  
SAM88RCRI INSTRUCTION SET  
CONDITION CODES  
The opcode of a conditional jump always contains a 4-bit field called the condition code (cc). This specifies under  
which conditions it is to execute the jump. For example, a conditional jump with the condition code for "equal" after  
a compare operation only jumps if the two operands are equal. Condition codes are listed in Table 6-6.  
The carry (C), zero (Z), sign (S), and overflow (V) flags are used to control the operation of conditional jump  
instructions.  
Table 6-6. Condition Codes  
Binary  
0000  
Mnemonic  
F
Description  
Flags Set  
Always false  
Always true  
Carry  
1000  
T
0111 (1)  
1111 (1)  
0110 (1)  
1110 (1)  
1101  
C
C = 1  
C = 0  
Z = 1  
Z = 0  
S = 0  
S = 1  
V = 1  
V = 0  
Z = 1  
Z = 0  
NC  
Z
No carry  
Zero  
NZ  
Not zero  
Plus  
PL  
0101  
MI  
Minus  
0100  
OV  
NOV  
EQ  
NE  
Overflow  
No overflow  
Equal  
1100  
0110 (1)  
1110 (1)  
1001  
Not equal  
GE  
LT  
Greater than or equal  
Less than  
(S XOR V) = 0  
(S XOR V) = 1  
(Z OR (S XOR V)) = 0  
(Z OR (S XOR V)) = 1  
C = 0  
0001  
1010  
GT  
Greater than  
0010  
LE  
Less than or equal  
Unsigned greater than or equal  
Unsigned less than  
Unsigned greater than  
Unsigned less than or equal  
1111 (1)  
0111 (1)  
1011  
UGE  
ULT  
UGT  
ULE  
C = 1  
(C = 0 AND Z = 0) = 1  
(C OR Z) = 1  
0011  
NOTES:  
1. It indicates condition codes that are related to two different mnemonics but which test the same flag.  
For example, Z and EQ are both true if the zero flag (Z) is set, but after an ADD instruction, Z would probably be used;  
after a CP instruction, however, EQ would probably be used.  
2. For operations involving unsigned numbers, the special condition codes UGE, ULT, UGT, and ULE must be used.  
6-9  
SAM88RCRI INSTRUCTION SET  
INSTRUCTION DESCRIPTIONS  
S3C9498/F9498  
This section contains detailed information and programming examples for each instruction in the SAM88RCRI  
instruction set. Information is arranged in a consistent format for improved readability and for fast referencing. The  
following information is included in each instruction description:  
— Instruction name (mnemonic)  
— Full instruction name  
— Source/destination format of the instruction operand  
— Shorthand notation of the instruction's operation  
— Textual description of the instruction's effect  
— Specific flag settings affected by the instruction  
— Detailed description of the instruction's format, execution time, and addressing mode(s)  
— Programming example(s) explaining how to use the instruction  
6-10  
S3C9498/F9498  
SAM88RCRI INSTRUCTION SET  
ADC — Add with Carry  
ADC  
dst,src  
Operation:  
dst _ dst + src + c  
The source operand, along with the setting of the carry flag, is added to the destination operand and  
the sum is stored in the destination. The contents of the source are unaffected.  
Two's-complement addition is performed. In multiple precision arithmetic, this instruction permits  
the carry from the addition of low-order operands to be carried into the addition of high-order  
operands.  
Flags:  
C: Set if there is a carry from the most significant bit of the result; cleared otherwise.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result is negative; cleared otherwise.  
V: Set if arithmetic overflow occurs, that is, if both operands are of the same sign and the  
result is of the opposite sign; cleared otherwise.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
opc  
dst | src  
src  
2
4
6
12  
13  
r
r
r
lr  
dst  
src  
3
3
6
6
14  
15  
R
R
R
IR  
dst  
6
16  
R
IM  
Examples:  
Given: R1 = 10H, R2 = 03H, C flag = "1", register 01H = 20H, register 02H = 03H, and register  
03H = 0AH:  
ADC  
ADC  
ADC  
ADC  
ADC  
R1,R2  
®
®
®
®
®
R1 = 14H, R2 = 03H  
R1,@R2  
01H,02H  
01H,@02H  
01H,#11H  
R1 = 1BH, R2 = 03H  
Register 01H = 24H, register 02H = 03H  
Register 01H = 2BH, register 02H = 03H  
Register 01H = 32H  
In the first example, destination register R1 contains the value 10H, the carry flag is set to "1", and  
the source working register R2 contains the value 03H. The statement "ADC R1,R2" adds 03H and  
the carry flag value ("1") to the destination value 10H, leaving 14H in register R1.  
6-11  
SAM88RCRI INSTRUCTION SET  
S3C9498/F9498  
ADD — Add  
ADD  
dst,src  
Operation:  
dst _ dst + src  
The source operand is added to the destination operand and the sum is stored in the destination.  
The contents of the source are unaffected. Two's-complement addition is performed.  
Flags:  
C: Set if there is a carry from the most significant bit of the result; cleared otherwise.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result is negative; cleared otherwise.  
V: Set if arithmetic overflow occurred, that is, if both operands are of the same sign and the result is  
of the opposite sign; cleared otherwise.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
opc  
dst | src  
src  
2
4
6
02  
03  
r
r
r
lr  
dst  
src  
3
3
6
6
04  
05  
R
R
R
IR  
dst  
6
06  
R
IM  
Examples:  
Given: R1 = 12H, R2 = 03H, register 01H = 21H, register 02H = 03H, register 03H = 0AH:  
ADD  
ADD  
ADD  
ADD  
ADD  
R1,R2  
®
®
®
®
®
R1 = 15H, R2 = 03H  
R1,@R2  
01H,02H  
01H,@02H  
01H,#25H  
R1 = 1CH, R2 = 03H  
Register 01H = 24H, register 02H = 03H  
Register 01H = 2BH, register 02H = 03H  
Register 01H = 46H  
In the first example, destination working register R1 contains 12H and the source working register  
R2 contains 03H. The statement "ADD R1,R2" adds 03H to 12H, leaving the value 15H in register  
R1.  
6-12  
S3C9498/F9498  
SAM88RCRI INSTRUCTION SET  
AND — Logical AND  
AND  
dst,src  
Operation:  
dst _ dst AND src  
The source operand is logically ANDed with the destination operand. The result is stored in the  
destination. The AND operation results in a "1" bit being stored whenever the corresponding bits in  
the two operands are both logic ones; otherwise a "0" bit value is stored. The contents of the source  
are unaffected.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Always cleared to "0".  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
opc  
dst | src  
src  
2
4
6
52  
53  
r
r
r
lr  
dst  
src  
3
3
6
6
54  
55  
R
R
R
IR  
dst  
6
56  
R
IM  
Examples:  
Given: R1 = 12H, R2 = 03H, register 01H = 21H, register 02H = 03H, register 03H = 0AH:  
AND  
AND  
AND  
AND  
AND  
R1,R2  
®
®
®
®
®
R1 = 02H, R2 = 03H  
R1,@R2  
01H,02H  
01H,@02H  
01H,#25H  
R1 = 02H, R2 = 03H  
Register 01H = 01H, register 02H = 03H  
Register 01H = 00H, register 02H = 03H  
Register 01H = 21H  
In the first example, destination working register R1 contains the value 12H and the source working  
register R2 contains 03H. The statement "AND R1,R2" logically ANDs the source operand 03H with  
the destination operand value 12H, leaving the value 02H in register R1.  
6-13  
SAM88RCRI INSTRUCTION SET  
S3C9498/F9498  
CALL — Call Procedure  
CALL  
dst  
Operation:  
SP  
@SP  
SP  
@SP  
PC  
¬
¬
¬
¬
¬
SP – 1  
PCL  
SP –1  
PCH  
dst  
The current contents of the program counter are pushed onto the top of the stack. The program  
counter value used is the address of the first instruction following the CALL instruction. The  
specified destination address is then loaded into the program counter and points to the first  
instruction of a procedure. At the end of the procedure the return instruction (RET) can be used to  
return to the original program flow. RET pops the top of the stack back into the program counter.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
opc  
dst  
3
14  
F6  
DA  
dst  
2
12  
F4  
IRR  
Examples:  
Given: R0 = 15H, R1 = 21H, PC = 1A47H, and SP = 0B2H:  
CALL  
1521H  
®
SP = 0B0H  
(Memory locations 00H = 1AH, 01H = 4AH, where 4AH  
is the address that follows the instruction.)  
CALL  
@RR0  
®
SP = 0B0H (00H = 1AH, 01H = 49H)  
In the first example, if the program counter value is 1A47H and the stack pointer contains the value  
0B2H, the statement "CALL 1521H" pushes the current PC value onto the top of the stack. The  
stack pointer now points to memory location 00H. The PC is then loaded with the value 1521H, the  
address of the first instruction in the program sequence to be executed.  
If the contents of the program counter and stack pointer are the same as in the first example, the  
statement "CALL @RR0" produces the same result except that the 49H is stored in stack location  
01H (because the two-byte instruction format was used). The PC is then loaded with the value  
1521H, the address of the first instruction in the program sequence to be executed.  
6-14  
S3C9498/F9498  
SAM88RCRI INSTRUCTION SET  
CCF — Complement Carry Flag  
CCF  
Operation:  
C _ NOT C  
The carry flag (C) is complemented. If C = "1", the value of the carry flag is changed to logic zero;  
if C = "0", the value of the carry flag is changed to logic one.  
Flags:  
C: Complemented.  
No other flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
4
EF  
Example:  
Given: The carry flag = "0":  
CCF  
If the carry flag = "0", the CCF instruction complements it in the FLAGS register (0D5H), changing  
its value from logic zero to logic one.  
6-15  
SAM88RCRI INSTRUCTION SET  
S3C9498/F9498  
CLR — Clear  
CLR  
dst  
Operation:  
dst _ "0"  
The destination location is cleared to "0".  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
4
4
B0  
B1  
R
IR  
Examples:  
Given: Register 00H = 4FH, register 01H = 02H, and register 02H = 5EH:  
CLR  
CLR  
00H  
®
®
Register 00H = 00H  
@01H  
Register 01H = 02H, register 02H = 00H  
In Register (R) addressing mode, the statement "CLR 00H" clears the destination register 00H  
value to 00H. In the second example, the statement "CLR @01H" uses Indirect Register (IR)  
addressing mode to clear the 02H register value to 00H.  
6-16  
S3C9498/F9498  
SAM88RCRI INSTRUCTION SET  
COM — Complement  
COM  
dst  
Operation:  
dst _ NOT dst  
The contents of the destination location are complemented (one's complement); all "1s" are  
changed to "0s", and vice-versa.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Always reset to "0".  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
4
4
60  
61  
R
IR  
Examples:  
Given: R1 = 07H and register 07H = 0F1H:  
COM  
COM  
R1  
®
®
R1 = 0F8H  
R1 = 07H, register 07H = 0EH  
@R1  
In the first example, destination working register R1 contains the value 07H (00000111B). The  
statement "COM R1" complements all the bits in R1: all logic ones are changed to logic zeros, and  
vice-versa, leaving the value 0F8H (11111000B).  
In the second example, Indirect Register (IR) addressing mode is used to complement the value of  
destination register 07H (11110001B), leaving the new value 0EH (00001110B).  
6-17  
SAM88RCRI INSTRUCTION SET  
S3C9498/F9498  
CP — Compare  
CP  
dst,src  
Operation:  
dst – src  
The source operand is compared to (subtracted from) the destination operand, and the appropriate  
flags are set accordingly. The contents of both operands are unaffected by the comparison.  
Flags:  
C: Set if a "borrow" occurred (src > dst); cleared otherwise.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result is negative; cleared otherwise.  
V: Set if arithmetic overflow occurred, that is, if the operands were of opposite signs and the sign of  
the result is of the same as the sign of the source operand; cleared otherwise.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
opc  
dst | src  
src  
2
4
6
A2  
A3  
r
r
r
lr  
dst  
src  
3
3
6
6
A4  
A5  
R
R
R
IR  
dst  
6
A6  
R
IM  
Examples:  
1. Given: R1 = 02H and R2 = 03H:  
CP R1,R2  
®
Set the C and S flags  
Destination working register R1 contains the value 02H and source register R2 contains the  
value 03H. The statement "CP R1,R2" subtracts the R2 value (source/subtrahend) from the R1  
value (destination/minuend). Because a "borrow" occurs and the difference is negative,  
C and S are "1".  
2. Given: R1 = 05H and R2 = 0AH:  
CP  
JP  
INC  
LD  
R1,R2  
UGE,SKIP  
R1  
SKIP  
R3,R1  
In this example, destination working register R1 contains the value 05H which is less than the  
contents of the source working register R2 (0AH). The statement "CP R1,R2" generates C =  
"1" and the JP instruction does not jump to the SKIP location. After the statement "LD R3,R1"  
executes, the value 06H remains in working register R3.  
6-18  
S3C9498/F9498  
SAM88RCRI INSTRUCTION SET  
DEC — Decrement  
DEC  
dst  
Operation:  
dst _ dst – 1  
The contents of the destination operand are decremented by one.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if result is negative; cleared otherwise.  
V: Set if arithmetic overflow occurred, that is, dst value is – 128 (80H) and result value is  
+ 127 (7FH); cleared otherwise.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
4
4
00  
01  
R
IR  
Examples:  
Given: R1 = 03H and register 03H = 10H:  
DEC  
DEC  
R1  
®
®
R1 = 02H  
Register 03H = 0FH  
@R1  
In the first example, if working register R1 contains the value 03H, the statement "DEC R1"  
decrements the hexadecimal value by one, leaving the value 02H. In the second example, the  
statement "DEC @R1" decrements the value 10H contained in the destination register 03H by one,  
leaving the value 0FH.  
6-19  
SAM88RCRI INSTRUCTION SET  
S3C9498/F9498  
DI — Disable Interrupts  
DI  
Operation:  
SYM (3) _ 0  
Bit zero of the system mode register, SYM.3, is cleared to "0", globally disabling all interrupt  
processing. Interrupt requests will continue to set their respective interrupt pending bits, but the  
CPU will not service them while interrupt processing is disabled.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
4
8F  
Example:  
Given: SYM = 08H:  
DI  
If the value of the SYM register is 08H, the statement "DI" leaves the new value 00H in the register  
and clears SYM.3 to "0", disabling interrupt processing.  
6-20  
S3C9498/F9498  
SAM88RCRI INSTRUCTION SET  
EI — Enable Interrupts  
EI  
Operation:  
SYM (3) _ 1  
An EI instruction sets bit 3 of the system mode register, SYM.3 to "1". This allows interrupts to be  
serviced as they occur. If an interrupt's pending bit was set while interrupt processing was disabled  
(by executing a DI instruction), it will be serviced when you execute the EI instruction.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
4
9F  
Example:  
Given: SYM = 00H:  
EI  
If the SYM register contains the value 00H, that is, if interrupts are currently disabled, the statement  
"EI" sets the SYM register to 08H, enabling all interrupts. (SYM.3 is the enable bit for global interrupt  
processing.)  
6-21  
SAM88RCRI INSTRUCTION SET  
S3C9498/F9498  
IDLE — Idle Operation  
IDLE  
Operation:  
The IDLE instruction stops the CPU clock while allowing system clock oscillation to continue. Idle  
mode can be released by an interrupt request (IRQ) or an external reset operation.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
1
4
6F  
Example:  
The instruction  
IDLE  
NOP  
NOP  
NOP  
stops the CPU clock but not the system clock.  
6-22  
S3C9498/F9498  
SAM88RCRI INSTRUCTION SET  
INC — Increment  
INC  
dst  
Operation:  
dst _ dst + 1  
The contents of the destination operand are incremented by one.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result is negative; cleared otherwise.  
V: Set if arithmetic overflow occurred, that is dst value is + 127 (7FH) and result is – 128 (80H);  
cleared otherwise.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
dst | opc  
opc  
1
4
rE  
r
r = 0 to F  
dst  
2
4
4
20  
21  
R
IR  
Examples:  
Given: R0 = 1BH, register 00H = 0CH, and register 1BH = 0FH:  
INC  
INC  
INC  
R0  
®
®
®
R0 = 1CH  
00H  
@R0  
Register 00H = 0DH  
R0 = 1BH, register 01H = 10H  
In the first example, if destination working register R0 contains the value 1BH, the statement "INC  
R0" leaves the value 1CH in that same register.  
The next example shows the effect an INC instruction has on register 00H, assuming that it contains  
the value 0CH.  
In the third example, INC is used in Indirect Register (IR) addressing mode to increment the value of  
register 1BH from 0FH to 10H.  
6-23  
SAM88RCRI INSTRUCTION SET  
S3C9498/F9498  
IRET — Interrupt Return  
IRET  
IRET  
Operation:  
FLAGS _ @SP  
SP _ SP + 1  
PC _ @SP  
SP _ SP + 2  
SYM(2) _ 1  
This instruction is used at the end of an interrupt service routine. It restores the flag register and the  
program counter. It also re-enables global interrupts.  
Flags:  
All flags are restored to their original settings (that is, the settings before the interrupt occurred).  
Format:  
IRET  
(Normal)  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
10  
12  
BF  
6-24  
S3C9498/F9498  
SAM88RCRI INSTRUCTION SET  
JP — Jump  
JP  
cc,dst  
dst  
(Conditional)  
JP  
(Unconditional)  
Operation:  
If cc is true, PC _ dst  
The conditional JUMP instruction transfers program control to the destination address if the  
condition specified by the condition code (cc) is true; otherwise, the instruction following the JP  
instruction is executed. The unconditional JP simply replaces the contents of the PC with the  
contents of the specified register pair. Control then passes to the statement addressed by the PC.  
Flags:  
No flags are affected.  
(1)  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
(2)  
cc | opc  
dst  
3
8
ccD  
DA  
cc = 0 to F  
opc  
dst  
2
8
30  
IRR  
NOTES:  
1. The 3-byte format is used for a conditional jump and the 2-byte format for an unconditional jump.  
2. In the first byte of the three-byte instruction format (conditional jump), the condition code and the  
op code are both four bits.  
Examples:  
Given: The carry flag (C) = "1", register 00 = 01H, and register 01 = 20H:  
JP  
JP  
C,LABEL_W  
@00H  
®
®
LABEL_W = 1000H, PC = 1000H  
PC = 0120H  
The first example shows a conditional JP. Assuming that the carry flag is set to "1", the statement  
"JP C,LABEL_W" replaces the contents of the PC with the value 1000H and transfers control to  
that location. Had the carry flag not been set, control would then have passed to the statement  
immediately following the JP instruction.  
The second example shows an unconditional JP. The statement "JP @00" replaces the contents of  
the PC with the contents of the register pair 00H and 01H, leaving the value 0120H.  
6-25  
SAM88RCRI INSTRUCTION SET  
S3C9498/F9498  
JR — Jump Relative  
JR  
cc,dst  
Operation:  
If cc is true, PC _ PC + dst  
If the condition specified by the condition code (cc) is true, the relative address is added to the  
program counter and control passes to the statement whose address is now in the program counter;  
otherwise, the instruction following the JR instruction is executed (See list of condition codes).  
The range of the relative address is + 127, – 128, and the original value of the program counter is  
taken to be the address of the first instruction byte following the JR statement.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
(note)  
cc | opc  
dst  
2
6
ccB  
RA  
cc = 0 to F  
NOTE: In the first byte of the two-byte instruction format, the condition code and the op code are each  
four bits.  
Example:  
Given: The carry flag = "1" and LABEL_X = 1FF7H:  
JR  
C,LABEL_X  
®
PC = 1FF7H  
If the carry flag is set (that is, if the condition code is true), the statement "JR C,LABEL_X" will pass  
control to the statement whose address is now in the PC. Otherwise, the program instruction  
following the JR would be executed.  
6-26  
S3C9498/F9498  
SAM88RCRI INSTRUCTION SET  
LD — Load  
LD  
dst,src  
Operation:  
dst _ src  
The contents of the source are loaded into the destination. The source's contents are unaffected.  
No flags are affected.  
Flags:  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
IM  
R
dst | opc  
src | opc  
opc  
src  
dst  
2
4
4
rC  
r8  
r
r
2
2
3
3
4
r9  
R
r
r = 0 to F  
dst | src  
4
4
C7  
D7  
r
lr  
r
Ir  
opc  
src  
dst  
src  
6
6
E4  
E5  
R
R
R
IR  
opc  
dst  
6
6
E6  
D6  
R
IM  
IM  
IR  
opc  
opc  
opc  
src  
dst  
x
3
3
3
6
6
6
F5  
87  
97  
IR  
r
R
x [r]  
r
dst | src  
src | dst  
x
x [r]  
6-27  
SAM88RCRI INSTRUCTION SET  
S3C9498/F9498  
LD — Load  
LD  
(Continued)  
Examples:  
Given: R0 = 01H, R1 = 0AH, register 00H = 01H, register 01H = 20H,  
register 02H = 02H, LOOP = 30H, and register 3AH = 0FFH:  
LD  
LD  
LD  
LD  
LD  
LD  
LD  
LD  
LD  
LD  
LD  
LD  
R0,#10H  
®
®
®
®
®
®
®
®
®
®
®
®
R0 = 10H  
R0,01H  
R0 = 20H, register 01H = 20H  
Register 01H = 01H, R0 = 01H  
R1 = 20H, R0 = 01H  
01H,R0  
R1,@R0  
@R0,R1  
R0 = 01H, R1 = 0AH, register 01H = 0AH  
Register 00H = 20H, register 01H = 20H  
Register 02H = 20H, register 00H = 01H  
Register 00H = 0AH  
00H,01H  
02H,@00H  
00H,#0AH  
@00H,#10H  
@00H,02H  
R0,#LOOP[R1]  
#LOOP[R0],R1  
Register 00H = 01H, register 01H = 10H  
Register 00H = 01H, register 01H = 02, register 02H = 02H  
R0 = 0FFH, R1 = 0AH  
Register 31H = 0AH, R0 = 01H, R1 = 0AH  
6-28  
S3C9498/F9498  
SAM88RCRI INSTRUCTION SET  
LDC/LDE — Load Memory  
LDC/LDE  
dst,src  
Operation:  
dst _ src  
This instruction loads a byte from program or data memory into a working register or vice-versa.  
The source values are unaffected. LDC refers to program memory and LDE to data memory. The  
assembler makes "Irr" or "rr" values an even number for program memory and odd an odd number  
for data memory.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
1.  
2.  
3.  
4.  
5.  
opc  
opc  
opc  
opc  
opc  
dst | src  
src | dst  
dst | src  
src | dst  
dst | src  
2
10  
C3  
D3  
E7  
F7  
A7  
r
Irr  
2
3
3
4
10  
12  
12  
14  
Irr  
r
XS  
XS  
XL  
r
XS [rr]  
r
XS [rr]  
r
XL  
XL  
XL [rr]  
L
H
XL  
6.  
7.  
opc  
opc  
opc  
opc  
src | dst  
dst | 0000  
src | 0000  
dst | 0001  
src | 0001  
4
4
4
4
4
14  
14  
14  
14  
14  
B7  
A7  
B7  
A7  
B7  
XL [rr]  
r
DA  
r
L
H
DA  
DA  
DA  
DA  
DA  
DA  
DA  
DA  
r
L
L
L
L
H
H
H
H
8.  
DA  
r
9.  
DA  
r
10.  
opc  
DA  
NOTES:  
1. The source (src) or working register pair [rr] for formats 5 and 6 cannot use register pair 0–1.  
2. For formats 3 and 4, the destination address "XS [rr]" and the source address "XS [rr]" are each one  
byte.  
3. For formats 5 and 6, the destination address "XL [rr]" and the source address "XL [rr]" are each two  
bytes.  
4. The DA and r source values for formats 7 and 8 are used to address program memory; the second set  
of values, used in formats 9 and 10, are used to address data memory.  
6-29  
SAM88RCRI INSTRUCTION SET  
S3C9498/F9498  
LDC/LDE — Load Memory  
LDC/LDE  
(Continued)  
Examples:  
Given: R0 = 11H, R1 = 34H, R2 = 01H, R3 = 04H, R4 = 00H, R5 = 60H; Program memory  
locations 0061 = AAH, 0103H = 4FH, 0104H = 1A, 0105H = 6DH, and 1104H = 88H. External  
data memory locations 0061H = BBH, 0103H = 5FH, 0104H = 2AH, 0105H = 7DH, and 1104H  
= 98H:  
LDC  
LDE  
LDC  
R0,@RR2  
R0,@RR2  
@RR2,R0  
;
;
R0 _ contents of program memory location 0104H  
R0 = 1AH, R2 = 01H, R3 = 04H  
;
;
R0 _ contents of external data memory location 0104H  
R0 = 2AH, R2 = 01H, R3 = 04H  
(note)  
;
;
;
11H (contents of R0) is loaded into program memory  
location 0104H (RR2),  
working registers R0, R2, R3 _ no change  
LDE  
LDC  
@RR2,R0  
;
;
;
11H (contents of R0) is loaded into external data memory  
location 0104H (RR2),  
working registers R0, R2, R3 _ no change  
R0,#01H[RR4]  
;
;
;
R0 _ contents of program memory location 0061H  
(01H + RR4),  
R0 = AAH, R2 = 00H, R3 = 60H  
LDE  
LDC  
LDE  
LDC  
LDE  
R0,#01H[RR4]  
#01H[RR4],R0  
#01H[RR4],R0  
;
;
R0 _ contents of external data memory location 0061H  
(01H + RR4), R0 = BBH, R4 = 00H, R5 = 60H  
(note)  
;
;
11H (contents of R0) is loaded into program memory location  
0061H (01H + 0060H)  
;
;
11H (contents of R0) is loaded into external data memory  
location 0061H (01H + 0060H)  
R0,#1000H[RR2] ; R0 _ contents of program memory location 1104H  
(1000H + 0104H), R0 = 88H, R2 = 01H, R3 = 04H  
;
R0,#1000H[RR2] ; R0 _ contents of external data memory location 1104H  
;
(1000H + 0104H), R0 = 98H, R2 = 01H, R3 = 04H  
LDC  
LDE  
R0,1104H  
R0,1104H  
;
R0 _ contents of program memory location 1104H, R0 = 88H  
;
;
R0 _ contents of external data memory location 1104H,  
R0 = 98H  
(note)  
LDC  
LDE  
1105H,R0  
1105H,R0  
;
;
11H (contents of R0) is loaded into program memory location  
1105H, (1105H) _ 11H  
;
;
11H (contents of R0) is loaded into external data memory  
location 1105H, (1105H) _ 11H  
NOTE: These instructions are not supported by masked ROM type devices.  
6-30  
S3C9498/F9498  
SAM88RCRI INSTRUCTION SET  
LDCD/LDED — Load Memory and Decrement  
LDCD/LDED dst,src  
Operation:  
dst _ src  
rr _ rr – 1  
These instructions are used for user stacks or block transfers of data from program or data memory  
to the register file. The address of the memory location is specified by a working register pair. The  
contents of the source location are loaded into the destination location. The memory address is then  
decremented. The contents of the source are unaffected.  
LDCD references program memory and LDED references external data memory. The assembler  
makes "Irr" an even number for program memory and an odd number for data memory.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
dst | src  
2
10  
E2  
r
Irr  
Examples:  
Given: R6 = 10H, R7 = 33H, R8 = 12H, program memory location 1033H = 0CDH, and  
external data memory location 1033H = 0DDH:  
LDCD  
R8,@RR6  
;
;
;
0CDH (contents of program memory location 1033H) is loaded  
into R8 and RR6 is decremented by one  
R8 = 0CDH, R6 = 10H, R7 = 32H (RR6 _ RR6 – 1)  
LDED  
R8,@RR6  
;
;
;
0DDH (contents of data memory location 1033H) is loaded  
into R8 and RR6 is decremented by one (RR6 _ RR6 – 1)  
R8 = 0DDH, R6 = 10H, R7 = 32H  
6-31  
SAM88RCRI INSTRUCTION SET  
S3C9498/F9498  
LDCI/LDEI— LOAD MEMORY AND INCREMENT  
LDCI/LDEI  
Operation:  
dst,src  
dst _ src  
rr _ rr + 1  
These instructions are used for user stacks or block transfers of data from program or data memory  
to the register file. The address of the memory location is specified by a working register pair. The  
contents of the source location are loaded into the destination location. The memory address is then  
incremented automatically. The contents of the source are unaffected.  
LDCI refers to program memory and LDEI refers to external data memory. The assembler makes  
"Irr" even for program memory and odd for data memory.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
dst | src  
2
10  
E3  
r
Irr  
Examples:  
Given: R6 = 10H, R7 = 33H, R8 = 12H, program memory locations 1033H = 0CDH and  
1034H = 0C5H; external data memory locations 1033H = 0DDH and 1034H = 0D5H:  
LDCI  
R8,@RR6  
;
;
;
0CDH (contents of program memory location 1033H) is loaded  
into R8 and RR6 is incremented by one (RR6 _ RR6 + 1)  
R8 = 0CDH, R6 = 10H, R7 = 34H  
LDEI  
R8,@RR6  
;
;
;
0DDH (contents of data memory location 1033H) is loaded  
into R8 and RR6 is incremented by one (RR6 _ RR6 + 1)  
R8 = 0DDH, R6 = 10H, R7 = 34H  
6-32  
S3C9498/F9498  
SAM88RCRI INSTRUCTION SET  
NOP — No Operation  
NOP  
Operation:  
No action is performed when the CPU executes this instruction. Typically, one or more NOPs are  
executed in sequence in order to effect a timing delay of variable duration.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
4
FF  
Example:  
When the instruction  
NOP  
is encountered in a program, no operation occurs. Instead, there is a delay in instruction execution  
time.  
6-33  
SAM88RCRI INSTRUCTION SET  
S3C9498/F9498  
OR — Logical OR  
OR  
dst,src  
Operation:  
dst _ dst OR src  
The source operand is logically ORed with the destination operand and the result is stored in the  
destination. The contents of the source are unaffected. The OR operation results in a "1" being  
stored whenever either of the corresponding bits in the two operands is a "1"; otherwise a "0" is  
stored.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Always cleared to "0".  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
opc  
dst | src  
src  
2
4
6
42  
43  
r
r
r
lr  
dst  
src  
3
3
6
6
44  
45  
R
R
R
IR  
dst  
6
46  
R
IM  
Examples:  
Given: R0 = 15H, R1 = 2AH, R2 = 01H, register 00H = 08H, register 01H = 37H, and register  
08H = 8AH:  
OR  
OR  
OR  
OR  
OR  
R0,R1  
®
®
®
®
®
R0 = 3FH, R1 = 2AH  
R0,@R2  
00H,01H  
01H,@00H  
00H,#02H  
R0 = 37H, R2 = 01H, register 01H = 37H  
Register 00H = 3FH, register 01H = 37H  
Register 00H = 08H, register 01H = 0BFH  
Register 00H = 0AH  
In the first example, if working register R0 contains the value 15H and register R1 the value 2AH,  
the statement "OR R0,R1" logical-ORs the R0 and R1 register contents and stores the result (3FH)  
in destination register R0.  
The other examples show the use of the logical OR instruction with the various addressing modes  
and formats.  
6-34  
S3C9498/F9498  
SAM88RCRI INSTRUCTION SET  
POP — Pop From Stack  
POP  
dst  
Operation:  
dst _ @SP  
SP _ SP + 1  
The contents of the location addressed by the stack pointer are loaded into the destination. The  
stack pointer is then incremented by one.  
Flags:  
No flags affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
8
8
50  
51  
R
IR  
Examples:  
Given: Register 00H = 01H, register 01H = 1BH, SP (0D9H) = 0BBH, and stack register 0BBH  
= 55H:  
POP  
POP  
00H  
®
®
Register 00H = 55H, SP = 0BCH  
@00H  
Register 00H = 01H, register 01H = 55H, SP = 0BCH  
In the first example, general register 00H contains the value 01H. The statement "POP 00H" loads  
the contents of location 0BBH (55H) into destination register 00H and then increments the stack  
pointer by one. Register 00H then contains the value 55H and the SP points to location 0BCH.  
6-35  
SAM88RCRI INSTRUCTION SET  
S3C9498/F9498  
PUSH — Push To Stack  
PUSH  
src  
Operation:  
SP _ SP – 1  
@SP _ src  
A PUSH instruction decrements the stack pointer value and loads the contents of the source (src)  
into the location addressed by the decremented stack pointer. The operation then adds the new  
value to the top of the stack.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
src  
2
8
8
70  
71  
R
IR  
Examples:  
Given: Register 40H = 4FH, register 4FH = 0AAH, SP = 0C0H:  
PUSH  
40H  
®
Register 40H = 4FH, stack register 0BFH = 4FH,  
SP = 0BFH  
PUSH  
@40H  
®
Register 40H = 4FH, register 4FH = 0AAH, stack register  
0BFH = 0AAH, SP = 0BFH  
In the first example, if the stack pointer contains the value 0C0H, and general register 40H the value  
4FH, the statement "PUSH 40H" decrements the stack pointer from 0C0 to 0BFH. It then loads the  
contents of register 40H into location 0BFH. Register 0BFH then contains the value 4FH and SP  
points to location 0BFH.  
6-36  
S3C9498/F9498  
SAM88RCRI INSTRUCTION SET  
RCF — Reset Carry Flag  
RCF  
RCF  
Operation:  
C _ 0  
The carry flag is cleared to logic zero, regardless of its previous value.  
C: Cleared to "0".  
Flags:  
No other flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
4
CF  
Example:  
Given: C = "1" or "0":  
The instruction RCF clears the carry flag (C) to logic zero.  
6-37  
SAM88RCRI INSTRUCTION SET  
S3C9498/F9498  
RET — Return  
RET  
Operation:  
PC _ @SP  
SP _ SP + 2  
The RET instruction is normally used to return to the previously executing procedure at the end of a  
procedure entered by a CALL instruction. The contents of the location addressed by the stack  
pointer are popped into the program counter. The next statement that is executed is the one that is  
addressed by the new program counter value.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
8
AF  
10  
Example:  
Given: SP = 0BCH, (SP) = 101AH, and PC = 1234:  
RET PC = 101AH, SP = 0BEH  
®
The statement "RET" pops the contents of stack pointer location 0BCH (10H) into the high byte of  
the program counter. The stack pointer then pops the value in location 0BDH (1AH) into the PC's  
low byte and the instruction at location 101AH is executed. The stack pointer now points to memory  
location 0BEH.  
6-38  
S3C9498/F9498  
SAM88RCRI INSTRUCTION SET  
RL — Rotate Left  
RL  
dst  
Operation:  
C _ dst (7)  
dst (0) _ dst (7)  
dst (n + 1) _ dst (n), n = 0–6  
The contents of the destination operand are rotated left one bit position. The initial value of bit 7 is  
moved to the bit zero (LSB) position and also replaces the carry flag.  
7
0
C
Flags:  
C: Set if the bit rotated from the most significant bit position (bit 7) was "1".  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Set if arithmetic overflow occurred, that is, if the sign of the destination changed during rotation;  
cleared otherwise.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
4
4
90  
91  
R
IR  
Examples:  
Given: Register 00H = 0AAH, register 01H = 02H and register 02H = 17H:  
RL  
RL  
00H  
®
®
Register 00H = 55H, C = "1"  
Register 01H = 02H, register 02H = 2EH, C = "0"  
@01H  
In the first example, if general register 00H contains the value 0AAH (10101010B), the statement  
"RL 00H" rotates the 0AAH value left one bit position, leaving the new value 55H (01010101B) and  
setting the carry and overflow flags.  
6-39  
SAM88RCRI INSTRUCTION SET  
S3C9498/F9498  
RLC — Rotate Left Through Carry  
RLC  
dst  
Operation:  
dst (0) _ C  
C _ dst (7)  
dst (n + 1) _ dst (n), n = 0–6  
The contents of the destination operand with the carry flag are rotated left one bit position. The initial  
value of bit 7 replaces the carry flag (C); the initial value of the carry flag replaces bit zero.  
7
0
C
Flags:  
C: Set if the bit rotated from the most significant bit position (bit 7) was "1".  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Set if arithmetic overflow occurred, that is, if the sign of the destination changed during rotation;  
cleared otherwise.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
4
4
10  
11  
R
IR  
Examples:  
Given: Register 00H = 0AAH, register 01H = 02H, and register 02H = 17H, C = "0":  
RLC  
RLC  
00H  
®
®
Register 00H = 54H, C = "1"  
@01H  
Register 01H = 02H, register 02H = 2EH, C = "0"  
In the first example, if general register 00H has the value 0AAH (10101010B), the statement "RLC  
00H" rotates 0AAH one bit position to the left. The initial value of bit 7 sets the carry flag and the  
initial value of the C flag replaces bit zero of register 00H, leaving the value 55H (01010101B). The  
MSB of register 00H resets the carry flag to "1" and sets the overflow flag.  
6-40  
S3C9498/F9498  
SAM88RCRI INSTRUCTION SET  
RR — Rotate Right  
RR  
dst  
Operation:  
C _ dst (0)  
dst (7) _ dst (0)  
dst (n) _ dst (n + 1), n = 0–6  
The contents of the destination operand are rotated right one bit position. The initial value of bit zero  
(LSB) is moved to bit 7 (MSB) and also replaces the carry flag (C).  
7
0
C
Flags:  
C: Set if the bit rotated from the least significant bit position (bit zero) was "1".  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Set if arithmetic overflow occurred, that is, if the sign of the destination changed during rotation;  
cleared otherwise.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
4
4
E0  
E1  
R
IR  
Examples:  
Given: Register 00H = 31H, register 01H = 02H, and register 02H = 17H:  
RR  
RR  
00H  
®
®
Register 00H = 98H, C = "1"  
Register 01H = 02H, register 02H = 8BH, C = "1"  
@01H  
In the first example, if general register 00H contains the value 31H (00110001B), the statement "RR  
00H" rotates this value one bit position to the right. The initial value of bit zero is moved to bit 7,  
leaving the new value 98H (10011000B) in the destination register. The initial bit zero also resets  
the C flag to "1" and the sign flag and overflow flag are also set to "1".  
6-41  
SAM88RCRI INSTRUCTION SET  
S3C9498/F9498  
RRC — Rotate Right Through Carry  
RRC  
dst  
Operation:  
dst (7) _ C  
C _ dst (0)  
dst (n) _ dst (n + 1), n = 0–6  
The contents of the destination operand and the carry flag are rotated right one bit position. The  
initial value of bit zero (LSB) replaces the carry flag; the initial value of the carry flag replaces bit 7  
(MSB).  
7
0
C
Flags:  
C: Set if the bit rotated from the least significant bit position (bit zero) was "1".  
Z: Set if the result is "0" cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Set if arithmetic overflow occurred, that is, if the sign of the destination changed during rotation;  
cleared otherwise.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
4
4
C0  
C1  
R
IR  
Examples:  
Given: Register 00H = 55H, register 01H = 02H, register 02H = 17H, and C = "0":  
RRC  
RRC  
00H  
®
®
Register 00H = 2AH, C = "1"  
@01H  
Register 01H = 02H, register 02H = 0BH, C = "1"  
In the first example, if general register 00H contains the value 55H (01010101B), the statement  
"RRC 00H" rotates this value one bit position to the right. The initial value of bit zero ("1") replaces  
the carry flag and the initial value of the C flag ("1") replaces bit 7. This leaves the new value 2AH  
(00101010B) in destination register 00H. The sign flag and overflow flag are both cleared to "0".  
6-42  
S3C9498/F9498  
SAM88RCRI INSTRUCTION SET  
SBC — Subtract With Carry  
SBC  
dst,src  
Operation:  
dst _ dst – src – c  
The source operand, along with the current value of the carry flag, is subtracted from the destination  
operand and the result is stored in the destination. The contents of the source are unaffected.  
Subtraction is performed by adding the two's-complement of the source operand to the destination  
operand. In multiple precision arithmetic, this instruction permits the carry ("borrow") from the  
subtraction of the low-order operands to be subtracted from the subtraction of high-order operands.  
Flags:  
C: Set if a borrow occurred (src > dst); cleared otherwise.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result is negative; cleared otherwise.  
V: Set if arithmetic overflow occurred, that is, if the operands were of opposite sign and the sign of  
the result is the same as the sign of the source; cleared otherwise.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
opc  
dst | src  
src  
2
4
6
32  
33  
r
r
r
lr  
dst  
src  
3
3
6
6
34  
35  
R
R
R
IR  
dst  
6
36  
R
IM  
Examples:  
Given: R1 = 10H, R2 = 03H, C = "1", register 01H = 20H, register 02H = 03H, and register  
03H = 0AH:  
SBC  
SBC  
SBC  
SBC  
SBC  
R1,R2  
®
®
®
®
®
R1 = 0CH, R2 = 03H  
R1,@R2  
01H,02H  
01H,@02H  
01H,#8AH  
R1 = 05H, R2 = 03H, register 03H = 0AH  
Register 01H = 1CH, register 02H = 03H  
Register 01H = 15H,register 02H = 03H, register 03H = 0AH  
Register 01H = 95H; C, S, and V = "1"  
In the first example, if working register R1 contains the value 10H and register R2 the value 03H, the  
statement "SBC R1,R2" subtracts the source value (03H) and the C flag value ("1") from the  
destination (10H) and then stores the result (0CH) in register R1.  
6-43  
SAM88RCRI INSTRUCTION SET  
S3C9498/F9498  
SCF — Set Carry Flag  
SCF  
Operation:  
Flags:  
C _ 1  
The carry flag (C) is set to logic one, regardless of its previous value.  
C: Set to "1".  
No other flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
4
DF  
Example:  
The statement  
SCF  
sets the carry flag to logic one.  
6-44  
S3C9498/F9498  
SAM88RCRI INSTRUCTION SET  
SRA— Shift Right Arithmetic  
SRA  
dst  
Operation:  
dst (7) _ dst (7)  
C _ dst (0)  
dst (n) _ dst (n + 1), n = 0–6  
An arithmetic shift-right of one bit position is performed on the destination operand. Bit zero (the  
LSB) replaces the carry flag. The value of bit 7 (the sign bit) is unchanged and is shifted into bit  
position 6.  
7 6  
0
C
Flags:  
C: Set if the bit shifted from the LSB position (bit zero) was "1".  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result is negative; cleared otherwise.  
V: Always cleared to "0".  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
4
4
D0  
D1  
R
IR  
Examples:  
Given: Register 00H = 9AH, register 02H = 03H, register 03H = 0BCH, and C = "1":  
SRA  
SRA  
00H  
®
®
Register 00H = 0CD, C = "0"  
@02H  
Register 02H = 03H, register 03H = 0DEH, C = "0"  
In the first example, if general register 00H contains the value 9AH (10011010B), the statement  
"SRA 00H" shifts the bit values in register 00H right one bit position. Bit zero ("0") clears the C flag  
and bit 7 ("1") is then shifted into the bit 6 position (bit 7 remains unchanged). This leaves the value  
0CDH (11001101B) in destination register 00H.  
6-45  
SAM88RCRI INSTRUCTION SET  
S3C9498/F9498  
STOP — Stop Operation  
STOP  
Operation:  
The STOP instruction stops the both the CPU clock and system clock and causes the  
microcontroller to enter Stop mode. During Stop mode, the contents of on-chip CPU registers,  
peripheral registers, and I/O port control and data registers are retained. Stop mode can be  
released by an external reset operation or External interrupt input. For the reset operation, the  
RESET pin must be held to Low level until the required oscillation stabilization interval has elapsed.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
1
4
7F  
Example:  
The statement  
LD  
STOPCON, #0A5H  
STOP  
NOP  
NOP  
NOP  
halts all microcontroller operations. When STOPCON register is not #0A5H value, if you use STOP  
instruction, PC is changed to reset address.  
6-46  
S3C9498/F9498  
SAM88RCRI INSTRUCTION SET  
SUB — Subtract  
SUB  
dst,src  
Operation:  
dst _ dst – src  
The source operand is subtracted from the destination operand and the result is stored in the  
destination. The contents of the source are unaffected. Subtraction is performed by adding the  
two's complement of the source operand to the destination operand.  
Flags:  
C: Set if a "borrow" occurred; cleared otherwise.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result is negative; cleared otherwise.  
V: Set if arithmetic overflow occurred, that is, if the operands were of opposite signs and the sign of  
the result is of the same as the sign of the source operand; cleared otherwise.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
opc  
dst | src  
src  
2
4
6
22  
23  
r
r
r
lr  
dst  
src  
3
3
6
6
24  
25  
R
R
R
IR  
dst  
6
26  
R
IM  
Examples:  
Given: R1 = 12H, R2 = 03H, register 01H = 21H, register 02H = 03H, register 03H = 0AH:  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
R1,R2  
®
®
®
®
®
®
R1 = 0FH, R2 = 03H  
R1,@R2  
01H,02H  
01H,@02H  
01H,#90H  
01H,#65H  
R1 = 08H, R2 = 03H  
Register 01H = 1EH, register 02H = 03H  
Register 01H = 17H, register 02H = 03H  
Register 01H = 91H; C, S, and V = "1"  
Register 01H = 0BCH; C and S = "1", V = "0"  
In the first example, if working register R1 contains the value 12H and if register R2 contains the  
value 03H, the statement "SUB R1,R2" subtracts the source value (03H) from the destination value  
(12H) and stores the result (0FH) in destination register R1.  
6-47  
SAM88RCRI INSTRUCTION SET  
S3C9498/F9498  
TCM — Test Complement Under Mask  
TCM  
dst,src  
Operation:  
(NOT dst) AND src  
This instruction tests selected bits in the destination operand for a logic one value. The bits to be  
tested are specified by setting a "1" bit in the corresponding position of the source operand (mask).  
The TCM statement complements the destination operand, which is then ANDed with the source  
mask. The zero (Z) flag can then be checked to determine the result. The destination and source  
operands are unaffected.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Always cleared to "0".  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
opc  
dst | src  
src  
2
4
6
62  
63  
r
r
r
lr  
dst  
src  
3
3
6
6
64  
65  
R
R
R
IR  
dst  
6
66  
R
IM  
Examples:  
Given: R0 = 0C7H, R1 = 02H, R2 = 12H, register 00H = 2BH, register 01H = 02H, and register  
02H = 23H:  
TCM  
TCM  
TCM  
TCM  
R0,R1  
®
®
®
®
R0 = 0C7H, R1 = 02H, Z = "1"  
R0,@R1  
00H,01H  
00H,@01H  
R0 = 0C7H, R1 = 02H, register 02H = 23H, Z = "0"  
Register 00H = 2BH, register 01H = 02H, Z = "1"  
Register 00H = 2BH, register 01H = 02H,  
register 02H = 23H, Z = "1"  
TCM  
00H,#34  
®
Register 00H = 2BH, Z = "0"  
In the first example, if working register R0 contains the value 0C7H (11000111B) and register R1  
the value 02H (00000010B), the statement "TCM R0,R1" tests bit one in the destination register for  
a "1" value. Because the mask value corresponds to the test bit, the Z flag is set to logic one and  
can be tested to determine the result of the TCM operation.  
6-48  
S3C9498/F9498  
SAM88RCRI INSTRUCTION SET  
TM — Test Under Mask  
TM  
dst,src  
Operation:  
dst AND src  
This instruction tests selected bits in the destination operand for a logic zero value. The bits to be  
tested are specified by setting a "1" bit in the corresponding position of the source operand (mask),  
which is ANDed with the destination operand. The zero (Z) flag can then be checked to determine  
the result. The destination and source operands are unaffected.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Always reset to "0".  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
opc  
dst | src  
src  
2
4
6
72  
73  
r
r
r
lr  
dst  
src  
3
3
6
6
74  
75  
R
R
R
IR  
dst  
6
76  
R
IM  
Examples:  
Given: R0 = 0C7H, R1 = 02H, R2 = 18H, register 00H = 2BH, register 01H = 02H, and register  
02H = 23H:  
TM  
TM  
TM  
TM  
R0,R1  
®
®
®
®
R0 = 0C7H, R1 = 02H, Z = "0"  
R0,@R1  
00H,01H  
00H,@01H  
R0 = 0C7H, R1 = 02H, register 02H = 23H, Z = "0"  
Register 00H = 2BH, register 01H = 02H, Z = "0"  
Register 00H = 2BH, register 01H = 02H,  
register 02H = 23H, Z = "0"  
TM  
00H,#54H  
®
Register 00H = 2BH, Z = "1"  
In the first example, if working register R0 contains the value 0C7H (11000111B) and register R1  
the value 02H (00000010B), the statement "TM R0,R1" tests bit one in the destination register for a  
"0" value. Because the mask value does not match the test bit, the Z flag is cleared to logic zero and  
can be tested to determine the result of the TM operation.  
6-49  
SAM88RCRI INSTRUCTION SET  
S3C9498/F9498  
XOR — Logical Exclusive OR  
XOR  
dst,src  
Operation:  
dst _ dst XOR src  
The source operand is logically exclusive-ORed with the destination operand and the result is  
stored in the destination. The exclusive-OR operation results in a "1" bit being stored whenever the  
corresponding bits in the operands are different; otherwise, a "0" bit is stored.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Always reset to "0".  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
opc  
dst | src  
src  
2
4
6
B2  
B3  
r
r
r
lr  
dst  
src  
3
3
6
6
B4  
B5  
R
R
R
IR  
dst  
6
B6  
R
IM  
Examples:  
Given: R0 = 0C7H, R1 = 02H, R2 = 18H, register 00H = 2BH, register 01H = 02H, and register  
02H = 23H:  
XOR  
XOR  
XOR  
XOR  
XOR  
R0,R1  
®
®
®
®
®
R0 = 0C5H, R1 = 02H  
R0,@R1  
00H,01H  
00H,@01H  
00H,#54H  
R0 = 0E4H, R1 = 02H, register 02H = 23H  
Register 00H = 29H, register 01H = 02H  
Register 00H = 08H, register 01H = 02H, register 02H = 23H  
Register 00H = 7FH  
In the first example, if working register R0 contains the value 0C7H and if register R1 contains the  
value 02H, the statement "XOR R0,R1" logically exclusive-ORs the R1 value with the R0 value and  
stores the result (0C5H) in the destination register R0.  
6-50  
S3C9498/F9498  
CLOCK CIRCUIT  
7
CLOCK CIRCUIT  
OVERVIEW  
The clock frequency generation for the S3C9498/F9498 by an external crystal can range from 1 MHz to 8 MHz.  
The maximum CPU clock frequency is 8 MHz. The X and X  
pins connect the external oscillator or clock  
IN  
OUT  
source to the on-chip clock circuit.  
SYSTEM CLOCK CIRCUIT  
The system clock circuit has the following components:  
— External crystal or ceramic resonator oscillation source (or an external clock source)  
— Oscillator stop and wake-up functions  
— Programmable frequency divider for the CPU clock (fxx divided by 1, 2, 8, or 16)  
— System clock control register, CLKCON  
— STOP control register, STPCON  
C1  
C2  
XIN  
S3F9498  
XOUT  
Figure 7-1. Main Oscillator Circuit  
(Crystal or Ceramic Oscillator)  
CLOCK STATUS DURING POWER-DOWN MODES  
The two power-down modes, Stop mode and Idle mode, affect clock oscillation as follows:  
— In Stop mode, the main oscillator "freezes", halting the CPU and peripherals. The contents of the register file  
and current system register values are retained. Stop mode is released, and the oscillator started, by a reset  
operation or by an external interrupt with RC-delay noise filter (for S3C9498/F9498, INT0-INT1).  
— In Idle mode, the internal clock signal is gated off to the CPU, but not to interrupt control and the timer. The  
current CPU status is preserved, including stack pointer, program counter, and flags. Data in the register file is  
retained. Idle mode is released by a reset or by an interrupt (external or internally-generated).  
7-1  
CLOCK CIRCUIT  
S3C9498/F9498  
SYSTEM CLOCK CONTROL REGISTER (CLKCON)  
The system clock control register, CLKCON, is located at address D0H. It is read/write addressable and has the  
following functions:  
— Oscillator frequency divide-by value  
After the main oscillator is activated, and the fxx/16 (the slowest clock speed) is selected as the CPU clock. If  
necessary, you can then increase the CPU clock speed to fxx/8, fxx/2, or fxx/1.  
System Clock Control Register (CLKCON)  
D4H, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Not used  
Not used  
Oscillator IRQ Wake-up  
Function Enable Bit:  
0 = Enable IRQ for main system  
oscillator wake-up function  
Divide-by selection bits for  
CPU clock frequency:  
00 = fxx/16  
01 = fxx/8  
1 = Disable IRQ for main system  
oscillator wake-up function  
10 = fxx/2  
11 = fxx/1 (non-divided)  
Figure 7-2. System Clock Control Register (CLKCON)  
STOP Control Register (STPCON)  
D7H, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
STOP Control bits:  
Other values = Disable STOP instruction  
10100101 = Enable STOP instruction  
Figure 7-3. STOP Control Register (STPCON)  
7-2  
S3C9498/F9498  
RESET and POWER-DOWN  
8
RESET and POWER-DOWN  
SYSTEM RESET  
OVERVIEW  
During a power-on Reset, the voltage at V goes to High level and the nRESET pin is forced to Low level. The  
DD  
RESET signal is input through a Schmitt trigger circuit where it is then synchronized with the CPU clock. This  
procedure brings S3C9498/F9498 into a known operating status.  
To allow time for internal CPU clock oscillation to stabilize, the nRESET pin must be held to Low level for a  
minimum time interval after the power supply comes within tolerance. The minimum required oscillation  
stabilization time for a Reset operation is 1millisecond.  
Whenever a reset occurs during normal operation (that is, when both V and nRESET are High level), the  
DD  
nRESET pin is forced Low and the reset operation starts. All system and peripheral control registers are then  
Reset to their default hardware values.  
In summary, the following sequence of events occurs during a reset operation:  
— Interrupt is disabled.  
— The watchdog function is enabled.  
Ports 0-3 are set to input mode.  
— Peripheral control and data registers are disabled and reset to their default hardware values.  
— The program counter (PC) is loaded with the program reset address in the ROM, 0100H.  
— When the programmed oscillation stabilization time interval has elapsed, the instruction stored in ROM  
location 0100H (and 0101H) is fetched and executed.  
NORMAL MODE RESET OPERATION  
In normal (masked ROM) mode, the Test pin is tied to V . A reset enables access to the 8 on-chip ROM. (The  
SS  
external interface is not automatically configured).  
8-1  
RESET and POWER-DOWN  
S3C9498/F9498  
HARDWARE RESET VALUES  
The reset values for CPU and system registers, peripheral control registers, and peripheral data registers following  
a reset operation. The following notation is used to represent reset values:  
— A "1" or a "0" shows the reset bit value as logic one or logic zero, respectively.  
— An "x" means that the bit value is undefined after a reset.  
— A dash ("–") means that the bit is either not used or not mapped, but read 0 is the bit value.  
Table 8-1. S3C9498/F9498Registers Values after RESET (Continued)  
Register Name  
Mnemonic  
Address  
Dec  
Bit Values After RESET  
Hex  
D0H  
D1H  
D2H  
D3H  
D4H  
D5H  
D6H  
D7H  
D8H  
D9H  
DAH  
7
0
0
1
1
0
x
1
0
x
x
6
0
0
1
1
x
1
0
x
x
5
0
0
1
1
x
1
0
x
x
4
0
0
1
1
0
x
1
0
x
x
3
0
0
1
1
0
1
0
x
x
2
0
0
1
1
1
0
0
x
x
1
0
0
1
1
1
0
0
x
x
0
0
0
1
1
1
0
0
x
x
Timer C control register  
Timer D control register  
Timer C data register register  
Timer D data register register  
System Clock control register  
System flags register  
TCCON  
TDCON  
TCDATA  
TDDATA  
CLKCON  
FLAGS  
208  
209  
210  
211  
212  
213  
214  
215  
216  
217  
218  
UART Baud rate data register  
STOP control register  
BRDATA  
STPCON  
TCNTSEL  
SP  
Timer Counter selection register  
Stack pointer register  
Timer counter register  
TCNT  
Location DBH is not mapped  
Basic timer control register  
Basic timer counter register  
BTCON  
BTCNT  
220  
221  
DCH  
DDH  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Location DEH is not mapped  
SYM 223 DFH  
System mode register  
0
0
0
0
8-2  
S3C9498/F9498  
RESET and POWER-DOWN  
Table 8-2. S3C9498/F9498Registers Values after RESET (Concluded)  
Register Name  
Mnemonic  
Address  
Dec  
Bit Values After RESET  
Hex  
E0H  
E1H  
E2H  
E3H  
E4H  
E5H  
E6H  
E7H  
E8H  
E9H  
EAH  
EBH  
ECH  
EDH  
EEH  
EFH  
F0H  
F1H  
F2H  
F3H  
F4H  
F5H  
F6H  
7
0
0
0
0
1
0
0
0
0
0
0
1
1
0
0
0
0
0
0
6
0
0
0
0
1
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
5
0
0
0
0
1
1
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
4
0
0
0
0
1
1
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
3
0
0
0
0
1
1
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
2
0
0
0
0
1
1
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
1
0
0
0
0
1
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
Port 0 Data Register  
P0  
P1  
P2  
P3  
224  
225  
226  
227  
Port 1 Data Register  
Port 2 Data Register  
Port 3 Data Register  
PWM data register  
PWMDATA 228  
PWM Extension data register  
Port 0 control register  
PWMEX  
P0CON  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
241  
242  
243  
244  
245  
246  
P1 interrupt control register  
Port 1 control High register  
Port 1 control Low register  
Port 2 control High register  
Port 2 control Low register  
Port 3 control register  
P1INT  
P1CONH  
P1CONL  
P2CONH  
P2CONL  
P3CON  
PWM control register  
PWMCON  
T1DATAH  
T1DATAL  
T1CON  
Timer 1 data register(high byte)  
Timer 1 data register(low byte)  
Timer 1 control register  
Serial I/O control register  
Timer Interrupt pending register  
Timer A control register  
SIO pre-scalar register  
Timer A data register  
SIOCON  
TINTPND  
TACON  
SIOPS  
TADATA  
TBDATA  
Timer B data register  
Location F7H is not mapped  
Timer B control register  
TBCON  
SIODATA  
ADDATAH  
ADDATAL  
ADCON  
248  
249  
250  
251  
252  
253  
254  
255  
F8H  
F9H  
FAH  
FBH  
FCH  
FDH  
FEH  
FFH  
0
0
x
0
0
x
0
0
x
0
0
x
0
x
0
0
x
0
0
x
0
0
x
0
0
x
0
0
x
0
0
x
0
0
x
0
0
x
x
0
0
0
x
0
0
x
x
0
0
0
x
SIO data register  
A/D converter data register(high byte)  
A/D converter data register(low byte)  
A/D converter control register  
UART control register  
UARTCON  
UARTPND  
UDATA  
UART pending register  
UART data register  
NOTE: – : Not mapped or not used, x: Undefined.  
8-3  
RESET and POWER-DOWN  
S3C9498/F9498  
POWER-DOWN MODES  
STOP MODE  
Stop mode is invoked by the instruction STOP (opcode 7FH). In Stop mode, the operation of the CPU and all  
peripherals is halted. That is, the on-chip main oscillator stops and the supply current is reduced to less than 3 µA.  
All system functions stop when the clock "freezes," but data stored in the internal register file is retained. Stop  
mode can be released in one of two ways: by a reset or by interrupts.  
NOTE  
Do not use stop mode if you are using an external clock source because X input must be restricted  
IN  
internally to V to reduce current leakage.  
SS  
Using RESET to Release Stop Mode  
Stop mode is released when the nRESET signal is released and returns to high level: all system and peripheral  
control registers are reset to their default hardware values and the contents of all data registers are retained. A  
reset operation automatically selects a slow clock (1/16) because CLKCON.3 and CLKCON.4 are cleared to '00B'.  
After the programmed oscillation stabilization interval has elapsed, the CPU starts the system initialization routine  
by fetching the program instruction stored in ROM location 0100H (and 0101H).  
Using an External Interrupt to Release Stop Mode  
External interrupts with an RC-delay noise filter circuit can be used to release Stop mode. Which interrupt you can  
use to release Stop mode in a given situation depends on the microcontroller's current internal operating mode.  
The external interrupts in the S3C9498/F9498interrupt structure that can be used to release Stop mode are:  
— External interrupts P1.0-P1.1 (INT0-INT1)  
Please note the following conditions for Stop mode release:  
— If you release Stop mode using an external interrupt, the current values in system and peripheral control  
registers are unchanged except STPCON register.  
— If you use an external interrupt for Stop mode release, you can also program the duration of the oscillation  
stabilization interval. To do this, you must make the appropriate control and clock settings before entering Stop  
mode.  
— When the Stop mode is released by external interrupt, the CLKCON.4 and CLKCON.3 bit-pair setting remains  
unchanged and the currently selected clock value is used.  
— The external interrupt is serviced when the Stop mode release occurs. Following the IRET from the service  
routine, the instruction immediately following the one that initiated Stop mode is executed.  
8-4  
S3C9498/F9498  
IDLE MODE  
RESET and POWER-DOWN  
Idle mode is invoked by the instruction IDLE (opcode 6FH). In idle mode, CPU operations are halted while some  
peripherals remain active. During idle mode, the internal clock signal is gated away from the CPU, but all  
peripherals timers remain active. Port pins retain the mode (input or output) they had at the time idle mode was  
entered.  
There are two ways to release idle mode:  
1. Execute a reset. All system and peripheral control registers are reset to their default values and the contents  
of all data registers are retained. The reset automatically selects the slow clock fxx/16 because CLKCON.4  
and CLKCON.3 are cleared to ‘00B’. If interrupts are masked, a reset is the only way to release idle mode.  
2. Activate any enabled interrupt, causing idle mode to be released. When you use an interrupt to release idle  
mode, the CLKCON.4 and CLKCON.3 register values remain unchanged, and the currently selected clock  
value is used. The interrupt is then serviced. When the return-from-interrupt (IRET) occurs, the instruction  
immediately following the one that initiated idle mode is executed.  
8-5  
RESET and POWER-DOWN  
S3C9498/F9498  
NOTES  
8-6  
S3C9498/F9498  
I/O PORTS  
9
I/O PORTS  
OVERVIEW  
The S3C9498/F9498 microcontroller has four bit-programmable I/O ports, P0-P3. The port 0 and 3 are 3-bit /7-bits  
ports and the others are 8-bit ports. This gives a total of 22/24/26 I/O pins. Each port can be flexibly configured to  
meet application design requirements. The CPU accesses ports by directly writing or reading port registers. No  
special I/O instructions are required.  
Table 9-1 gives you a general overview of the S3C9498/F9498 I/O port functions.  
Table 9-1. S3C9498/F9498 Port Configuration Overview  
Port  
Configuration Options  
0
I/O port with bit-programmable pins. Configurable to input or push-pull output mode. Pull-up resistors  
can be assigned by software. Pins can also be assigned individually as alternative function pins.  
1
2
3
I/O port with bit-programmable pins. Configurable to input or push-pull output mode. Pull-up resistors  
can be assigned by software. Pins can also be assigned individually as alternative function pins.  
I/O port with bit-programmable pins. Configurable to input mode, push-pull output mode. Pins can  
also be assigned individually as alternative function pins.  
I/O port with bit-programmable pins. Configurable to input mode, push-pull output mode. Pins can  
also be assigned individually as alternative function pins.  
9-1  
I/O PORTS  
S3C9498/F9498  
PORT DATA REGISTERS  
Table 9-2 gives you an overview of the register locations of all five S3C9498/F9498I/O port data registers. Data  
registers for ports 0, 1, 2, and 3 have the general format shown in Figure 9-1.  
Table 9-2. Port Data Register Summary  
Register Name  
Port 0 data register  
Port 1 data register  
Port 2 data register  
Port 3 data register  
Mnemonic  
Decimal  
224  
Hex  
E0H  
E1H  
E2H  
E3H  
R/W  
R/W  
R/W  
R/W  
R/W  
P0  
P1  
P2  
P3  
225  
226  
227  
9-2  
S3C9498/F9498  
I/O PORTS  
PORT 0  
Port 0 is a 3-bit I/O Port that you can use two ways:  
— General-purpose I/O  
— Alternative function  
Port 0 is accessed directly by writing or reading the port 0 data register, P0 at location E0H.  
Port 0 Control Register (P0CON)  
Port 0 pins are configured individually by bit-pair settings in three control registers located : P0CON.  
When you select output mode, a push-pull or an open-drain circuit is configured. In input mode, many different  
selections are available:  
Input mode.  
Output mode(Push-pull or Open-drain)  
Alternative function: UART module – TXD/RXD  
Alternative function: RESETB  
9-3  
I/O PORTS  
S3C9498/F9498  
Port 0 Control Register (P0CON)  
E6H, R/W, Reset value:00H  
MSB .7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Not used  
P0.2  
P0.1  
/TxD  
P0.0  
/RxD  
.7 .6 bit  
XX  
Not used for 9498  
.5 .4 bit/P0.2  
00  
01  
10  
11  
Input mode with pull-up  
Input mode  
Push-pull output  
Open-drain Output  
.3 .2 bit/P0.1/TxD  
00 Input mode with pull-up  
01 Input mode  
10 Push-pull output  
11 Alternative function: TxD Output  
.1 .0 bit/P0.0/RxD  
00 Input mode with pull-up; RxD output  
01 Input mode; RxD output  
10 Push-pull output  
11 Alternative function: RxD output  
NOTE:  
When users use Port 0, users must be care of the pull-up resistance status register value.  
Figure 9-1. Port 0 High-Byte Control Register (P0CON)  
9-4  
S3C9498/F9498  
I/O PORTS  
PORT 1  
Port 1 is an 8-bit I/O port that you can use two ways:  
— General-purpose I/O  
— Alternative function  
Port 1 is accessed directly by writing or reading the port 1 data register, P1 at location E1H.  
Port 1 Control Register (P1CONH, P1CONL)  
Port 1 pins are configured individually by bit-pair settings in three control registers located:  
P1CONL(low byte, E9H) and P1CONH(high byte, E8H).  
When you select output mode, a push-pull circuit is configured. In input mode, many different selections are  
available:  
— Input mode.  
Push-pull output mode  
Alternative function: External Interrupt – INT0, INT1  
Alternative function: Timer D output- TDOUT  
Alternative function: ADC input mode – ADC0, ADC1, ADC2, ADC3, ADC4, ADC5, ADC6, ADC7  
9-5  
I/O PORTS  
S3C9498/F9498  
Port 1 Control Register, High Byte (P1CONH)  
E8H, R/W, Reset value:00H  
MSB .7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
P1.7  
/ADC7  
P1.6  
/ADC6  
P1.5  
/ADC5  
P1.4  
/ADC4  
/TDOUT  
.7 .6 bit/P1.7/ADC7  
00  
01  
10  
11  
Input mode with pull-up  
Not used for S3F9498  
Push-pull output  
Alternative function: ADC7 input  
.5 .4 bit/P1.6/ADC6  
00  
01  
10  
11  
Input mode with pull-up  
Alternative function: TDOUT mode  
Push-pull output  
Alternative function: ADC6 input  
.3 .2 bit/P1.5/ADC5  
00  
01  
10  
11  
Input mode with pull-up  
Input mode  
Push-pull output  
Alternative function: ADC5 input  
.1 .0 bit/P1.4/ADC4  
00  
01  
10  
11  
Input mode with pull-up  
Input mode  
Push-pull output  
Alternative function: ADC4 input  
Figure 9-2. Port 1 High-Byte Control Register (P1CONH)  
9-6  
S3C9498/F9498  
I/O PORTS  
Port 1 Control Register, Low Byte (P1CONL)  
E9H, R/W, Reset value:00H  
MSB .7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
P1.3  
/ADC3  
P1.2  
/ADC2  
P1.1  
/ADC1  
/INT1  
P1.0  
/ADC0  
/INT0  
.7 .6 bit/P1.3/ADC3  
00  
01  
10  
11  
Input mode with pull-up  
Input mode  
Push-pull output  
Alternative function: ADC3 input  
.5 .4 bit/P1.2/ADC2  
00  
01  
10  
11  
Input mode with pull-up  
Input mode  
Push-pull output  
Alternative function: ADC2 input  
.3 .2 bit/P1.1/ADC1/INT1  
00  
01  
10  
11  
Input mode with pull-up; INT1 input  
Input mode; INT1 input  
Push-pull output  
Alternative function: ADC1 input  
.1 .0 bit/P1.0/ADC0/INT0  
00  
01  
10  
11  
Input mode with pull-up; INT0 input  
Input mode; INT0 input  
Push-pull output  
Alternative function: ADC0 input  
Figure 9-3. Port 1 Low-Byte Control Register (P1CONL)  
9-7  
I/O PORTS  
S3C9498/F9498  
Port 1 External Interrupt Register (P1INT)  
E7H, R/W, Reset value:00H  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
INT0  
INT0  
Not used  
.7 .6 bits Not used for S3F9498  
INT1  
INT1  
.5 .4 bits INT1 Interrupt Enable/Disable Selection  
0x Interrupt disable  
10 Interrupt enable; falling edge  
11 Interrupt enable; rising edge  
.3 .2 bits INT0 Interrupt Enable/Disable Selection  
0x  
10  
11  
Interrupt disable  
Interrupt enable; falling edge  
Interrupt enable; rising edge  
.1 bits INT1 Pending bit  
0
1
No interrupt Pending (clear pending bit when write)  
Interrupt enable  
.0 bits INT0 Pending bit  
0
1
No interrupt Pending (clear pending bit when write)  
Interrupt enable  
Figure 9-4. Port 1 Interrupt Control Register P1PND)  
9-8  
S3C9498/F9498  
I/O PORTS  
PORT 2  
Port 2 is an 8-bit I/O port that you can use two ways:  
— General-purpose I/O  
— Alternative function  
Port 2 is accessed directly by writing or reading the port 2 data register, P2 at location E2H.  
Port 2 Control Register (P2CONH, P2CONL)  
Port 2 pins are configured individually by bit-pair settings in two control registers located :  
P2CONL (low byte, EBH) and P2CONH (high byte, EAH).  
When you select output mode, a push-pull, an open-drain circuit is configured. In input mode, many different  
selections are available:  
— Input mode.  
Output mode(Push-pull or Open-drain)  
Alternative function: Timer A signal in/out mode – TAOUT, TACAP, TACK  
Alternative function: Timer B signal out mode – TBOUT  
Alternative function: Timer 1 signal in/out mode – T1OUT, T1CAP, T1CK  
Alternative function: PWM out mode – PWM  
9-9  
I/O PORTS  
S3C9498/F9498  
Port 2 Control Register, High Byte (P2CONH)  
EAH, R/W, Reset value:00H  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
P2.7  
/PWM  
P2.6  
/T1CAP  
P2.5  
/T1OUT  
P2.4  
/T1CK  
.7 .6 bit/P2.7/PWM  
00  
01  
10  
11  
Input mode with pull-up  
Input mode  
Push-pull output  
Alternative function: PWM signal output  
.5 .4 bit/P2.6/T1CAP  
00  
01  
10  
11  
Input mode with pull-up; T1CAP input  
Input mode; T1CAP input  
Push-pull output  
Open-drain output  
.3 .2 bit/P2.5/T1OUT  
00  
01  
10  
11  
Input mode with pull-up  
Input mode  
Push-pull output  
Alternative function: T1OUT signal output  
.1 .0 bit/P2.4/T1CK  
00  
01  
10  
11  
Input mode with pull-up; T1CK input  
Input mode;T1CK input  
Push-pull output  
Open-drain output  
Figure 9-5. Port 2 High-Byte Control Register (P2CONH)  
9-10  
S3C9498/F9498  
I/O PORTS  
Port 2 Control Register, Low Byte (P2CONL)  
EBH, R/W, Reset value:00H  
MSB .7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
P2.3  
/TBOUT  
P2.2  
/TACAP  
P2.1  
/TACK  
P2.0  
/TAOUT  
.7 .6 bit/P2.3/TBOUT  
00  
01  
10  
11  
Input mode with pull-up  
Input mode  
Push-pull output  
Alternative function: TBOUT signal output  
.5 .4 bit/P2.2/TACAP  
00  
01  
10  
11  
Input mode with pull-up; TACAP input  
Input mode; TACAP input  
Push-pull output  
Open-drain output  
.3 .2 bit/P2.1/TACK  
00  
01  
10  
11  
Input mode with pull-up; TACK input  
Input mode; TACK input  
Push-pull output  
Open-drain output  
.1 .0 bit/P2.0/TAOUT  
00  
01  
10  
11  
Input mode with pull-up  
Input mode  
Push-pull output  
Alternative function: TAOUT signal output  
Figure 9-6. Port 2 Low-Byte Control Register (P2CONL)  
9-11  
I/O PORTS  
S3C9498/F9498  
PORT 3  
Port 3 is a 7-bit I/O Port that you can use two ways:  
— General-purpose I/O  
— Alternative function  
Port 3 is accessed directly by writing or reading the port 3 data register, P3 at location E3H.  
Port 3 Control / Interrupt Control Register (P3CON)  
Port 3 pins are configured individually by bit-pair settings in two control registers located : P3CON (ECH).  
When you select output mode, a push-pull or an open-drain circuit is configured. In input mode, many different  
selections are available:  
Input mode.  
Output mode(Push-pull or Open-drain)  
Alternative function: SIO module – SI/SO/SCK  
9-12  
S3C9498/F9498  
I/O PORTS  
Port 3 Control Register (P3CON)  
ECH, R/W, Reset value:00H  
MSB .7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
P3.6/P3.5  
P3.4/P3.3  
P3.2 / SI  
P3.2 / SCK P3.1 / SO  
.7 .6 bit/P3.6/P3.5/P3.4/P3.3  
00  
01  
10  
11  
Input mode with pull-up  
Input mode  
Push-pull output  
Open-drain output  
.5 .4 bit/P3.2/SCK  
00  
01  
10  
11  
Input mode, pull-up (SCK input)  
Input mode(SCK input)  
Push-pull output  
Alternative output mode (SCK output)  
.5 .4 bit/P3.1/SO  
Input mode, pull-up  
Input mode  
00  
01  
10  
11  
Push-pull output  
Alternative output mode (SO)  
.5 .4 bit/P3.0/SI  
00  
01  
10  
11  
Input mode, pull-up (SI)  
Input mode(SI)  
Push-pull output  
Open-drain output mode  
Figure 9-7. Port 3 High-Byte Control Register (P3CON)  
9-13  
I/O PORTS  
S3C9498/F9498  
NOTES  
9-14  
S3C9498/F9498  
BASIC TIMER  
10 BASIC TIMER  
OVERVIEW  
Basic Timer (BT)  
You can use the basic timer (BT) in two different ways:  
— As a watchdog timer to provide an automatic reset mechanism in the event of a system malfunction.  
— To signal the end of the required oscillation stabilization interval after a reset or a Stop mode release.  
The functional components of the basic timer block are:  
— Clock frequency divider (f  
divided by 4096, 1024, or 128) with multiplexer  
OSC  
— 8-bit basic timer counter, BTCNT (DDH, read-only)  
— Basic timer control register, BTCON (DCH, read/write)  
10-1  
BASIC TIMER  
S3C9498/F9498  
BASIC TIMER (BT)  
BASIC TIMER CONTROL REGISTER (BTCON)  
The basic timer control register, BTCON, is used to select the input clock frequency, to clear the basic timer  
counter and frequency dividers, and to enable or disable the watchdog timer function.  
A reset clears BTCON to "00H". This enables the watchdog function and selects a basic timer clock frequency of  
f
/4096. To disable the watchdog function, you must write the signature code "1010B" to the basic timer register  
OSC  
control bits BTCON.7–BTCON.4.  
The 8-bit basic timer counter, BTCNT, can be cleared during normal operation by writing a "1" to BTCON.1. To  
clear the frequency dividers for the basic timer input clock, you write a "1" to BTCON.0.  
Basic Timer Control Register (BTCON)  
DCH, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Watchdog timer enable bits:  
Divider clear bit for basic  
timer  
0 = No effect  
1010B = Disable watchdog function  
Other value = Enable watchdog  
function  
1 = Clear both dividers  
Basic timer counter clear bits:  
0 = No effect  
1 = Clear basic timer counter  
Basic timer input clock selection bits:  
00 = fosc/4096  
01 = fosc/1024  
10 = fosc/128  
11 = Invalid selection  
NOTE: When you write a 1 to BTCON.0 (or BTCON.1), the basic timer  
divider (or basic timer counter) is cleared. The bit is then cleared  
automatically to 0.  
Figure 10-1. Basic Timer Control Register (BTCON)  
10-2  
S3C9498/F9498  
BASIC TIMER  
BASIC TIMER FUNCTION DESCRIPTION  
Watchdog Timer Function  
You can program the basic timer overflow signal (BTOVF) to generate a reset by setting BTCON.7–BTCON.4 to  
any value other than "1010B" (The "1010B" value disables the watchdog function). A reset clears BTCON to  
"00H", automatically enabling the watchdog timer function. A reset also selects the oscillator clock divided by 4096  
as the BT clock.  
A reset whenever a basic timer counter overflow occurs. During normal operation, the application program must  
prevent the overflow, and the accompanying reset operation, from occurring. To do this, the BTCNT value must be  
cleared (by writing a "1" to BTCON.1) at regular intervals.  
If a system malfunction occurs due to circuit noise or some other error condition, the BT counter clear operation  
will not be executed and a basic timer overflow will occur, initiating a reset. In other words, during normal  
operation, the basic timer overflow loop (a bit 7 overflow of the 8-bit basic timer counter, BTCNT) is always broken  
by a BTCNT clear instruction. If a malfunction does occur, a reset is triggered automatically.  
Oscillation Stabilization Interval Timer Function  
You can also use the basic timer to program a specific oscillation stabilization interval following a reset or when  
Stop mode has been released by an external interrupt.  
In Stop mode, whenever a reset or an external interrupt occurs, the oscillator starts. The BTCNT value then starts  
increasing at the rate of f  
/4096 (for reset), or at the rate of the preset clock source (for an external interrupt).  
OSC  
When BTCNT.4 is set, a signal is generated to indicate that the stabilization interval has elapsed and to gate the  
clock signal off to the CPU so that it can resume normal operation.  
In summary, the following events occur when Stop mode is released:  
1. During Stop mode, an external power-on reset or an external interrupt occurs to trigger the Stop mode release  
and oscillation starts.  
2. If an external power-on reset occurred, the basic timer counter will increase at the rate of fOSC/4096. If an  
external interrupt is used to release Stop mode, the BTCNT value increases at the rate of the preset clock  
source.  
3. Clock oscillation stabilization interval begins and continues until bit 4 of the basic timer counter is set.  
4. When a BTCNT.4 is set, normal CPU operation resumes.  
Figure 10-2 and 10-3 shows the oscillation stabilization time on RESET and STOP mode release  
10-3  
BASIC TIMER  
S3C9498/F9498  
Oscillation Stabilization Time  
Normal Operating mode  
0.8 VDD  
VDD  
Reset Release Voltage  
nRESET  
trst RC  
~
Internal  
Reset  
Release  
0.8 VDD  
Oscillator  
(XOUT)  
Oscillator Stabilization Time  
BTCNT  
clock  
10000B  
BTCNT  
value  
00000B  
tWAIT = (4096x16)/fOSC  
Basic timer increment and  
CPU operations are IDLE mode  
NOTE: Duration of the oscillator stabilization wait time, tWAIT, when it is released by a  
Power-on-reset is 4096 x 16/fOSC.  
~
tRST RC (R and C are value of external power on reset)  
~
Figure 10-2. Oscillation Stabilization Time on RESET  
10-4  
S3C9498/F9498  
BASIC TIMER  
Normal  
Operating  
Mode  
STOP Mode  
Oscillation Stabilization Time  
Normal  
Operating  
Mode  
VDD  
STOP  
Instruction  
Execution  
STOP Mode  
Release Signal  
External  
Interrupt  
RESET  
STOP  
Release  
Signal  
Oscillator  
(XOUT)  
BTCNT  
clock  
10000B  
BTCNT  
Value  
00000B  
tWAIT  
Basic Timer Increment  
NOTE: Duration of the oscillator stabilzation wait time, tWAIT, it is released by an  
interrupt is determined by the setting in basic timer control register, BTCON.  
tWAIT  
tWAIT (When fOSC is 8 MHz)  
BTCON.3  
BTCON.2  
0
0
1
1
0
1
0
1
(4096 x 16)/fosc  
(1024 x 16)/fosc  
(128 x 16)/fosc  
Invalid setting  
8.19 ms  
2.05 ms  
0.25 ms  
Figure 10-3. Oscillation Stabilization Time on STOP Mode Release  
10-5  
BASIC TIMER  
S3C9498/F9498  
F
PROGRAMMING TIP — Configuring the Basic Timer  
This example shows how to configure the basic timer to sample specification.  
ORG  
0000H  
VECTOR  
00H,INT_9498  
;
S3C9498/F9498 has only one interrupt vector  
;--------------<< Smart Option >>  
ORG  
DB  
DB  
DB  
DB  
003CH  
0FFH  
0FFH  
0C7H  
0FFH  
;
;
;
;
003CH, must be initialized to 1  
003DH, must be initialized to 1  
003EH, enable LVR (3.0 V)  
003FH, RESET pin enable  
;--------------<< Initialize System and Peripherals >>  
ORG  
0100H  
RESET:  
DI  
LD  
LD  
·
;
;
;
Disable interrupt  
Select non-divided CPU clock  
Stack pointer must be set  
CLKCON,#00011000B  
SP,#0C0H  
·
LD  
BTCON,#02H  
;
;
Enable watchdog function  
Basic timer clock: f  
/4096  
OSC  
;
Basic counter (BTCNT) clear  
·
·
·
EI  
;
Enable interrupt  
;--------------<< Main loop >>  
MAIN:  
·
LD  
BTCON,#02H  
;
;
Enable watchdog function  
Basic counter (BTCNT) clear  
·
·
·
JR  
T,MAIN  
;
;--------------<< Interrupt Service Routines >>  
INT_9498:  
·
;
;
;
;
Interrupt enable bit and pending bit check  
Pending bit clear  
·
·
IRET  
·
·
END  
;
10-6  
S3C9498/F9498  
8-BIT TIMER A/B  
11 8-BIT TIMER A/B  
8-BIT TIMER A  
OVERVIEW  
The 8-bit timer A is an 8-bit general-purpose timer/counter. Timer A has three operating modes, you can select  
one of them using the appropriate TACON setting:  
— Interval timer mode (Toggle output at TAOUT pin)  
— Capture input mode with a rising or falling edge trigger at the TACAP pin  
— PWM mode (TAOUT)  
Timer A has the following functional components:  
— Clock frequency divider (fxx divided by 1024, 256, or 64) with multiplexer  
— External clock input pin (TACK)  
— 8-bit counter (TACNT), 8-bit comparator, and 8-bit reference data register (TADATA)  
— I/O pins for capture input (TACAP) or PWM or match output (TAOUT)  
— Timer A overflow interrupt and match/capture interrupt generation  
— Timer A control register, TACON (F3H, read/write)  
11-1  
8-BIT TIMER A/B  
S3C9498/F9498  
FUNCTION DESCRIPTION  
Timer A Interrupts  
The timer A module can generate two interrupts: the timer A overflow interrupt (TAOVF), and the timer A match/  
capture interrupt (TAINT).  
Timer A overflow interrupt and match/capture interrupt pending conditions are cleared by software when it has  
been serviced.  
Interval Timer Function  
The timer A module can generate an interrupt: the timer A match interrupt (TAINT).  
When timer A interrupt occurs and is serviced by the CPU, the pending condition is cleared by software.  
In interval timer mode, a match signal is generated and TAOUT is toggled when the counter value is identical to  
the value written to the Timer A reference data register, TADATA. The match signal generates a timer A match  
interrupt and clears the counter.  
If, for example, you write the value 10H to TADATA and 0AH to TACON, the counter will increment until it reaches  
10H. At this point, the TA interrupt request is generated, the counter value is reset, and counting resumes.  
Pulse Width Modulation Mode  
Pulse width modulation (PWM) mode lets you program the width (duration) of the pulse that is output at the  
TAOUT pin. As in interval timer mode, a match signal is generated when the counter value is identical to the value  
written to the timer A data register. In PWM mode, however, the match signal does not clear the counter. Instead,  
it runs continuously, overflowing at FFH, and then continues incrementing from 00H.  
Although you can use the match signal to generate a timer A overflow interrupt, interrupts are not typically used in  
PWM-type applications. Instead, the pulse at the TAOUT pin is held to Low level as long as the reference data  
value is less than or equal to ( £ ) the counter value and then the pulse is held to High level for as long as the data  
value is greater than ( > ) the counter value. One pulse width is equal to t  
• 256 .  
CLK  
Capture Mode  
In capture mode, a signal edge that is detected at the TACAP pin opens a gate and loads the current counter value  
into the Timer A data register. You can select rising or falling edges to trigger this operation.  
Timer A also gives you capture input source: the signal edge at the TACAP pin. You select the capture input by  
setting the value of the timer A capture input selection bit in the Port 2 low–byte control register, P2CONL, (EBH).  
When P2CONL.5.4 is 00 and 01, the TACAP input or normal input is selected. When P2CONL.5.4 is set to 10 and  
11, output is selected.  
Both kinds of timer A interrupts can be used in capture mode: the timer A overflow interrupt is generated whenever  
a counter overflow occurs; the timer A match/capture interrupt is generated whenever the counter value is loaded  
into the Timer A data register.  
By reading the captured data value in TADATA, and assuming a specific value for the timer A clock frequency, you  
can calculate the pulse width (duration) of the signal that is being input at the TACAP pin.  
11-2  
S3C9498/F9498  
8-BIT TIMER A/B  
TIMER A CONTROL REGISTER (TACON)  
You use the timer A control register, TACON  
— Select the timer A operating mode (interval timer, capture mode and PWM mode)  
— Select the timer A input clock frequency  
— Clear the timer A counter, TACNT  
Enable the timer A overflow interrupt or timer A match/capture interrupt  
Timer A start/stop  
— Clear Timer A match/capture interrupt pending conditions  
TACON is located at address F3H, and is read/write addressable using Register addressing mode.  
A reset clears TACON to '00H'. This sets timer A to normal interval timer mode, selects an input clock frequency of  
fxx/1024, and disables all Timer A interrupts. You can clear the timer A counter at any time during normal  
operation by writing a "1" to TACON.3. You can start Timer A counter by writing a “1” to TACON.0.  
The timer A overflow interrupt (TAOVF) has the vector address 00H-01H. When a timer A overflow interrupt  
occurs and is serviced by the CPU, but the pending condition must clear by software.  
To enable the timer A match/capture interrupt , you must write TACON.1 to "1". To generate the exact time  
interval, you should write TACON.3 and TINTPND .0, which cleared counter and interrupt pending bit. When  
interrupt service routine is served, the pending condition must be cleared by software by writing a ‘0’ to the  
interrupt pending bit.  
Timer A Control Register (TACON)  
F3H, R/W, Reset: 00H  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Timer A input clock selection bit:  
00 = fxx/1024  
Timer A start/stop bit:  
0 = Stop timer A  
01 = fxx/256  
1 = Start timer A  
10 = fxx/64  
11 = External clock (TACK)  
Timer A match/capture interrupt  
enable bit:  
0 = Disable interrupt  
1 = Enable interrrupt  
Timer A operating mode selection bit:  
00 = Interval mode (TAOUT mode)  
01 = Capture mode (capture on rising edge,  
counter running, OVF can occur)  
10 = Capture mode (capture on falling edge,  
counter running, OVF can occur)  
11 = PWM mode (OVF interrupt and match  
interrupt can occur)  
Timer A overflow interrupt enable bit:  
0 = Disable overflow interrupt  
1 = Enable overflow interrrupt  
Timer A counter clear bit:  
0 = No effect  
1 = Clear the timer A counter (when write)  
NOTE: When the counter clear bit(.3) is set, the 8-bit counter is cleared and  
it also is cleared automatically.  
Figure 11-1. Timer A Control Register (TACON)  
11-3  
8-BIT TIMER A/B  
S3C9498/F9498  
Timer Interrupt Pending Register (TINTPND)  
F2H, Reset: 00H, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Timer A macth/capture  
interrupt pending flag:  
0 = Not pending (clear pending bit)  
Timer 1 overflow  
interrupt pending flag:  
0 = Not pending (clear pending bit)  
1 = Interrupt pending  
1 = Interrupt pending  
Timer A overflow  
Timer 1 match  
interrupt pending flag:  
0 = Not pending (clear pending bit)  
1 = Interrupt pending  
interrupt pending flag:  
0 = Not pending (clear pending bit)  
1 = Interrupt pending  
Timer B match/capture  
interrupt pending flag:  
0 = Not pending (clear pending bit)  
1 = Interrupt pending  
Timer D overflow  
interrupt pending flag:  
0 = Not pending (clear pending bit)  
1 = Interrupt pending  
Timer B overflow  
interrupt pending flag:  
0 = Not pending (clear pending bit)  
1 = Interrupt pending  
Timer D macth/capture  
interrupt pending flag:  
0 = Not pending (clear pending bit)  
1 = Interrupt pending  
Figure 11-2. Timer interrupts Pending Register (TINTPND)  
Timer A Data Register (TADATA)  
F5H, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Reset Value: FFh  
Figure 11-3. Timer A DATA Register (TADATA)  
11-4  
S3C9498/F9498  
8-BIT TIMER A/B  
BLOCK DIAGRAM  
TACON.2  
TAOVF  
Overflow  
Clear  
TACON.7-.6  
fxx/1024  
Pending  
Data Bus  
8
TINTPND.1  
fxx/256  
M
8-bitUp-Counter  
(ReadOnly)  
TACON.3  
U
X
fxx/64  
TACK  
TACON.1  
Match  
TAINT  
8-bitComparator  
TimerABufferReg  
M
U
X
Pending  
M
U
X
TINTPND.0  
TACAP  
M
U
X
TAOUT  
TACON.5.4  
TimerADataRegister  
(Read/Write)  
TACON.5.4  
8
Data Bus  
NOTES:  
1. WhenPWMmode, matchsignalcannotclear counter.  
2. Pending bitis locatedat TINTPND register.  
Figure 11-4. Timer A Functional Block Diagram  
11-5  
8-BIT TIMER A/B  
S3C9498/F9498  
8-BIT TIMER B  
OVERVIEW  
The S3C9498/F9498 micro-controller has an 8-bit counter called timer B.  
TBCON.2  
TBOVF  
Overflow  
TBCON.7-.6  
Pending  
Data Bus  
TINTPND.3  
8
fxx/8  
fxx/4  
fxx/2  
fxx  
M
U
X
Clear  
8-bit Up-Counter  
(Read Only)  
TBCON.3  
TBCON.1  
TBINT  
Match  
8-bit Comparator  
Pending  
TINTPND.2  
TBOUT  
Timer B Buffer Reg  
Timer B Data Register  
(Read/Write)  
8
Data Bus  
NOTES:  
1. When PWM mode, match signal cannot clear counter.  
2. Pending bit is located at TINTPND register.  
Figure 11-5. Timer B Functional Block Diagram  
11-6  
S3C9498/F9498  
8-BIT TIMER A/B  
Timer B Control Register (TBCON)  
F8H, R/W, Reset: 00H  
MSB .7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Timer B input clock selection bit:  
00 = fxx/8  
Timer B start/stop bit:  
0 = Stop timer B  
01 = fxx/4  
1 = Start timer B  
10 = fxx/2  
11 = fxx/1  
Timer B match interrupt  
enable bit:  
Not used  
0 = Disable interrupt  
1 = Enable interrrupt  
Timer B overflow interrupt enable bit:  
0 = Disable overflow interrupt  
1 = Enable overflow interrrupt  
Timer B operating mode selection bit:  
0 = Interval mode (TBOUT mode)  
1 = PWM mode (OVF interrupt and match  
interrupt can occur)  
Timer B counter clear bit:  
0 = No effect  
1 = Clear the timer B counter (when write)  
NOTE: When th counter clear bit(.3) is set, the 8-bit counter is cleared and  
it also is cleared automatically.  
Figure 11-6. Timer B Control Register (TBCON)  
Timer B Data Register (TBDATA)  
F6H, R/W  
MSB .7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Reset Value: FFh  
Figure 11-7. Timer B DATA Registers (TBDATA)  
11-7  
8-BIT TIMER A/B  
S3C9498/F9498  
NOTES  
11-8  
S3C9498/F9498  
16-BIT TIMER 1  
12 16-BIT TIMER 1  
OVERVIEW  
The S3C9498/F9498 has two 16-bit timer/counters. The 16-bit timer 1 is a 16-bit general-purpose timer/counter.  
Timer 1 has three operating modes, one of which you select using the appropriate T1CON setting is:  
— Interval timer mode (Toggle output at T1OUTpin)  
— Capture input mode with a rising or falling edge trigger at the T1CAP pin  
— PWM mode (T1PWM); PWM output shares their output port with T1OUT pin  
Timer 1 has the following functional components:  
— Clock frequency divider (fxx divided by 1024, 256, 64, 8, 1 or T1CK: External clock) with multiplexer  
— External clock input pin (T1CK )  
— A 16-bit counter , 16-bit comparator, and two 16-bit reference data register (T1DATAH/L)  
— I/O pins for capture input (T1CAP), or match output (T1OUT)  
— Timer 1 overflow interrupt and match/capture interrupt generation  
— Timer 1 control register, T1CON  
12-1  
16-BIT TIMER 1  
S3C9498/F9498  
FUNCTION DESCRIPTION  
Timer 1 Interrupts  
The timer 1 module can generate two interrupts, the timer 1 overflow interrupt (T1OVF), and the timer 1  
match/capture interrupt (T1INT).  
A timer 1 overflow interrupt pending condition is cleared by software when it has been serviced.  
A timer 1 match/capture interrupt, T1INT pending condition is also cleared by software when it has been serviced.  
Interval Mode (match)  
Timer 1 module can generate an interrupt: Timer 1 match interrupt (T1INT).  
In interval timer mode, a match signal is generated and T1OUT is toggled when the counter value is identical to  
the value written to the T1 reference data register, T1DATAH/L. The match signal generates a timer 1 match  
interrupt (T1INT) and clears the counter.  
Capture Mode  
In capture mode for Timer 1, a signal edge that is detected at the T1CAP pin opens a gate and loads the current  
counter value into the T1 data register (T1DATAH/L for rising edge, or falling edge). You can select rising or falling  
edges to trigger this operation.  
Timer 1 also gives you capture input source, the signal edge at the T1CAP pin. You select the capture input by  
setting the capture input selection bit in the port 2 control register, P2CONH,.  
Both kinds of timer 1 interrupts (T1OVF, T1INT) can be used in capture mode, the timer 1 overflow interrupt is  
generated whenever a counter overflow occurs, the timer 1 capture interrupt is generated whenever the counter  
value is loaded into the T1 data register (T1DATAH/L).  
By reading the captured data value in T1DATAH/L, and assuming a specific value for the timer 1 clock frequency,  
you can calculate the pulse width (duration) of the signal that is being input at the T1CAP pin.  
PWM Mode  
Pulse width modulation (PWM) mode lets you program the width (duration) of the pulse that is output at the  
T1OUT pin. As in interval timer mode, a match signal is generated when the counter value is identical to the value  
written to the timer 1 data register. In PWM mode, however, the match signal does not clear the counter but can  
generate a match interrupt. The counter runs continuously, overflowing at FFFFH, and then continuous increasing  
from 0000H. Whenever an overflow is occurred, an overflow (OVF1) interrupt can be generated.  
Although you can use the match or the overflow interrupt in the PWM mode, these interrupts are not typically used  
in PWM-type applications. Instead, the pulse at the T1OUT pin is held to low level as long as the reference data  
value is less than or equal to(£) the counter value and then the pulse is held to high level for as long as the data  
value is greater than(>) the counter value. One pulse width is equal to tCLK  
.
12-2  
S3C9498/F9498  
16-BIT TIMER 1  
TIMER 1 CONTROL REGISTER (T1CON)  
You use the TIMER 1 control register, T1CON, to  
— Select the TIMER 1 operating mode (interval timer, capture mode, or PWM mode)  
— Select the TIMER 1 input clock frequency  
— Clear the TIMER 1 counter.  
— Enable the TIMER 1 overflow interrupt  
— Enable the TIMER 1 match/capture interrupt  
T1CON is located at address F0H, and is read/write addressable using Register addressing mode.  
A reset clears T1CON to ‘00H’. This sets TIMER 1 to normal interval timer mode, selects an input clock frequency  
of fxx/1024, and disables all TIMER 1 interrupts.  
You can clear the TIMER 1 counter at any time during normal operation by writing a “1” to T1CON.2. To generate  
the exact time interval, you should write “1” to T1CON.2 and clear appropriate pending bits of the TINTPND.6  
register.  
To detect a match/capture or overflow interrupt pending condition when T1INT or T1OVF is disabled, the  
application program should poll the pending bit T1CON and INTPND register. When a “1” is detected, a TIMER 1  
match/capture or overflow interrupt is pending.  
When the sub-routine has been serviced, the pending condition must be cleared by software by writing a “0” to the  
interrupt pending bit.  
Timer 1 Control Register (T1CON)  
F0H, R/W, Reset Value = 00H  
MSB .7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Timer 1 clock source selection bit:  
000 = fxx/1024  
001 = fxx  
010 = fxx/256  
011 = External clock(T1CK) falling edge  
100 = fxx/64  
Timer 1 overflow interrupt  
enable bit:  
0 = Disable overflow interrupt  
1 = Enable overflow interrrupt  
Timer 1 match/capture interrupt enable bit:  
0 = Disable interrupt  
1 = Enable interrrupt  
101 = External clock(T1CK) rising edge  
110 = fxx/8  
111 = Counter stop  
Timer 1 counter clear bit:  
0 = No effect  
1 = Clear counter (Auto-clear bit)  
Timer 1 operating mode selection bit:  
00 = Interval mode  
01 = Capture mode (capture on rising edge, OVF can occur)  
10 = Capture mode (capture on falling edge, OVF can occur)  
11 = PWM mode (T1OVF and T1INT can occur)  
NOTE:  
Interrupt pending bits are located in TINTPND register.  
Figure 12-1. TIMER 1 Control Register (T1CON)  
12-3  
16-BIT TIMER 1  
S3C9498/F9498  
Timer Interrupt Pending Register (TINTPND)  
F2H, Reset: 00H, R/W  
MSB .7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Timer A macth/capture  
interrupt pending flag:  
0 = Not pending (clear pending bit)  
1 = Interrupt pending  
Timer 1 overflow  
interrupt pending flag:  
0 = Not pending (clear pending bit)  
1 = Interrupt pending  
Timer A overflow  
interrupt pending flag:  
0 = Not pending (clear pending bit)  
1 = Interrupt pending  
Timer 1 match  
interrupt pending flag:  
0 = Not pending (clear pending bit)  
1 = Interrupt pending  
Timer B match/capture  
interrupt pending flag:  
0 = Not pending (clear pending bit)  
1 = Interrupt pending  
Timer D overflow  
interrupt pending flag:  
0 = Not pending (clear pending bit)  
1 = Interrupt pending  
Timer B overflow  
interrupt pending flag:  
0 = Not pending (clear pending bit)  
1 = Interrupt pending  
Timer D macth/capture  
interrupt pending flag:  
0 = Not pending (clear pending bit)  
1 = Interrupt pending  
Figure 12-2. Timer A/B/D and TIMER 1 Pending Register (TINTPND)  
12-4  
S3C9498/F9498  
16-BIT TIMER 1  
BLOCK DIAGRAM  
T1CON.7-.5  
T1CON.0  
T1OVF  
Overflow  
Clear  
fxx/1024  
fxx/256  
fxx/64  
fxx/8  
Pending  
Data Bus  
8
TINTPND.7  
M
U
X
fxx/1  
16-bit Up-Counter  
(Read Only)  
T1CON.2  
T1CON.1  
T1CK  
VSS  
Match  
T1INT  
16-bit Comparator  
16-bit Timer Buffer  
M
U
X
Pending  
M
U
X
TINTPND.6  
T1CAP  
T1OUT  
T1PWM  
T1CON.4.3  
T1CON.4.3  
16-bit Timer Data Register  
(T1DATAH/L)  
PG output signal  
8
Data Bus  
NOTES:  
1. When PWM mode, match signal cannot clear counter.  
2. Pending bit is located at TINTPND register.  
Figure 12-3. TIMER 1 Functional Block Diagram  
12-5  
16-BIT TIMER 1  
S3C9498/F9498  
F
PROGRAMMING TIP — Using the Timer 1  
ORG  
0000h  
VECTOR  
ORG  
00h,INT_9498  
0100h  
INITIAL:  
LD  
LD  
LD  
SYM,#00h  
SP,#0C0H  
BTCON,#10100011b  
;
;
;
Disable Global/Fast interrupt  
Set stack area  
Disable Watch-dog  
LD  
LD  
T1DATAH,#00H  
T1DATAL,#0F0H  
LD  
T1CON,#01001110b  
EI  
;
;
fxx/256, interval, clear counter, Enable interrupt  
Duration 7.68ms (8 MHz x’tal)  
MAIN:  
·
·
·
MAIN ROUTINE  
·
·
·
JR  
T,MAIN  
INT_9498:  
·
·
·
Interrupt service routine  
·
·
·
IRET  
.END  
12-6  
S3C9498/F9498  
TIMER 0  
13 TIMER 0  
ONE 16-BIT TIMER MODE (TIMER 0)  
The 16-bit timer 0 is used in one 16-bit timer or two 8-bit timers mode. If TCCON.7 is set to "1", Timer 0 is used as  
a 16-bit timer. If TCCON.7 is set to "0", timer 0 is used as two 8-bit timers.  
— One 16-bit timer mode (Timer 0)  
— Two 8-bit timers mode (Timer C and D)  
OVERVIEW  
The 16-bit timer 0 is an 16-bit general-purpose timer. Timer 0 has the interval timer mode by using the appropriate  
TCCON setting.  
Timer 0 has the following functional components:  
— Clock frequency divider (fxx divided by 1024, 512, 8, or 1) with multiplexer  
— 16-bit comparator, and 16-bit reference data register (TCDATA, TDDATA)  
— Timer 0 match interrupt generation  
— Timer 0 control register, TCCON (D0H, read/write)  
FUNCTION DESCRIPTION  
Interval Timer Function  
The timer 0 module can generate an interrupt: the timer 0 match interrupt (T0INT). The T0INT pending condition  
should be cleared by software when it has been serviced. Even though T0INT is disabled, the application's service  
routine can detect a pending condition of T0INT by the software and execute it's sub-routine. When this case is  
used, the T0INT pending bit must be cleared by the application sub-routine by writing a "0" to the TCCON.0  
pending bit.  
In interval timer mode, a match signal is generated when the counter value is identical to the values written to the  
timer 0 reference data registers, TCDATA and TDDATA. The match signal generates a timer 0 match interrupt  
and clears the counter.  
If, for example, you write the value 32H and 10H to TCDATA and TDDATA, respectively, and 8EH to TCCON, the  
counter will increment until it reaches 3210H. At this point, the timer 0 interrupt request is generated, the counter  
value is reset, and counting resumes.  
13-1  
TIMER 0  
S3C9498/F9498  
Timer 0 Control Register (TCCON)  
You use the timer 0 control register, TCCON, to  
— Enable the timer 0 operating (interval timer)  
— Select the timer 0 input clock frequency  
— Clear the timer 0 counter  
— Enable the timer 0 interrupt  
— Clear timer 0 interrupt pending conditions  
TCCON is located at address D0H, and is read/write addressable using register addressing mode.  
A reset clears TCCON to "00H". This sets timer 0 to disable interval timer mode, selects an input clock frequency  
of fxx/1024, and disables timer 0 interrupt. You can clear the timer 0 counter at any time during normal operation  
by writing a "1" to TCCON.3.  
To enable the timer 0 interrupt , you must write TCCON.7, TCCON.2, and TCCON.1 to "1".  
To generate the exact time interval, you should write TCCON.3 and TCCON.0, which cleared counter and interrupt  
pending bit. To detect an interrupt pending condition when T0INT is disabled, the application program polls  
pending bit, TCCON.0. When a "1" is detected, a timer 0 interrupt is pending. When the T0INT sub-routine has  
been serviced, the pending condition must be cleared by software by writing a "0" to the timer 0 interrupt pending  
bit, TCCON.0.  
Timer C Control Register (TCCON)  
D0H, Reset = 00H, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Timer C interrupt pending bit:  
0 = No interrupt pending  
Timer 0 operation mode selection bit  
0 = Two 8-bit timers mode (Timer C/D)  
1 = One 16-bit timer mode (Timer 0)  
0 = Clear pending bit (when write)  
1 = Interrupt is pending  
Not used  
Timer C interrupt enable bit:  
0 = Disable interrupt  
1 = Enable interrupt  
Timer C clock selection bits:  
00 = fxx/1024  
01 = fxx/512  
Timer C counter enable bit:  
0 = Disable counting operation  
1 = Enable counting operation  
10 = fxx/8  
11 = fxx  
Timer C counter clear bit:  
0 = No affect  
1 = Clear the timer C counter (when write)  
Figure 13-1. Timer 0 Control Register (TCCON)  
13-2  
S3C9498/F9498  
TIMER 0  
BLOCK DIAGRAM  
TCCON.5-.4  
TCCON.2  
LSB  
TDCNT  
MSB  
TCCNT  
f
/1024  
XX  
f
/512  
XX  
TCCON.3  
M
U
X
Match  
f
/8  
XX  
Comparator  
/
1
f
XX  
LSB  
TDDATA  
MSB  
TCDATA  
TCINT  
TCCON.1  
NOTE: When TCCON.7 is '1', one 16-bit Timer 0.  
Figure 13-2. Timer 0 Functional Block Diagram  
13-3  
TIMER 0  
S3C9498/F9498  
TWO 8-BIT TIMERS MODE (TIMER C and D)  
OVERVIEW  
The 8-bit Timer C and D are the 8-bit general-purpose timers. Timer C have the interval timer mode, and the  
Timer D have the interval timer mode and PWM mode by using the appropriate TCCON and TDCON setting,  
respectively.  
Timer C and D have the following functional components:  
— Clock frequency divider with multiplexer  
– fxx divided by 1024, 512, 8 and 1 for Timer C  
– fxx divided by 8, 4, 2, or 1 for Timer D  
— 8-bit counter (TCCNT, TDCNT), 8-bit comparator, and 8-bit reference data register (TCDATA, TDDATA))  
— Timer C match interrupt generation  
— Timer C control register, TCCON (D0H, read/write)  
— Timer D have I/O pin for match and PWM output (P1.6, TDOUT)  
— Timer D overflow interrupt generation  
— Timer D match interrupt generation  
— Timer D control register, TDCON (D1H, read/write)  
Timer C and D Control Register (TCCON, TDCON)  
You can use the Timer C and D control register, TCCON and TDCON to  
— Enable the Timer C (interval timer mode) and D operating (interval timer mode and PWM mode)  
— Select the Timer C and D input clock frequency  
— Clear the Timer C and D counter, TCCNT and TDCNT  
— Enable the Timer C and D interrupt  
— Clear Timer C and D interrupt pending conditions  
13-4  
S3C9498/F9498  
TIMER 0  
TCCON and TDCON are located in address D0H and D1H, and is read/write addressable using register  
addressing mode.  
A reset clears TCCON to "00H". This sets Timer C to disable interval timer mode, selects an input clock frequency  
of fxx/1024, and disables Timer C interrupt. You can clear the Timer C counter at any time during normal  
operation by writing a "1" to TCCON.3.  
A reset clears TDCON to "00H". This sets Timer D to enable interval timer mode and disable PWM mode, selects  
an input clock frequency of fxx/8, and disables Timer C interrupt. You can clear the Timer D counter at any time  
during normal operation by writing a "1" to TDCON.3.  
To enable the Timer C interrupt (TCINT) and Timer D interrupt (TDINT) you must write TCCON.7 to "0", TCCON.2  
(TDCON.2) and TCCON.1 (TDCON.1) to "1". To generate the exact time interval, you should write TCCON.3  
(TDCON.3) and TCCON.0 (TINTPND.4), which cleared counter and interrupt pending bit. To detect an interrupt  
pending condition when TCINT and TDINT is disabled, the application program polls pending bit, TCCON.0 and  
TINTPND.4. When a "1" is detected, a Timer C interrupt (TCINT) and Timer D interrupt (TDINT) is pending. When  
the TCINT and TDINT sub-routine has been serviced, the pending condition must be cleared by software by  
writing a "0" to the Timer C and D interrupt pending bit, TCCON.0 and TINTPND.4.  
Also, to enable Timer D overflow interrupt (TDOVF), you must write TCCON.7 to "0", TDCON.2 and TDCON.0 to  
"1". To generate the exact time interval, you should write TDCON.3 and TINTPND.5, witch cleared counter and  
interrupt pending bit.  
Timer C Control Register (TCCON)  
E0H, Reset = 00H, R/W  
MSB .7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
One 16-bit timer or Two 8-bit timers  
mode:  
Timer C interrupt pending bit:  
0 = No interrupt pending  
0 = Two 8-bit timers mode (Timer C/D)  
1 = One 16-bit timer mode (Timer 0)  
0 = Clear pending bit (when write)  
1 = Interrupt is pending  
Not used  
Timer C interrupt enable bit:  
0 = Disable interrupt  
1 = Enable interrupt  
Timer C clock selection bits:  
00 = fxx/1024  
01 = fxx/512  
Timer C counter enable bit:  
0 = Disable counting operation  
1 = Enable counting operation  
10 = fxx/8  
11 = fxx  
Timer C counter clear bit:  
0 = No affect  
1 = Clear the timer C counter (when write)  
Figure 13-3. Timer C Control Register (TCCON)  
13-5  
TIMER 0  
S3C9498/F9498  
Timer B Control Register (TDCON)  
D1H, Reset = 00H, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Timer D overflow interrupt enable bit:  
0 = Disable overflow interrupt  
1 = Enable overflow interrupt  
Timer D operating mode selection bits:  
00 = Interval mode  
01 = 6-bit PWM mode (OVF interrupt can occur)  
10 = 7-bit PWM mode (OVF interrupt can occur)  
11 = 8-bit PWM mode (OVF interrupt can occur)  
Timer D match interrupt enable bit:  
0 = Disable match interrupt  
1 = Enable match interrupt  
Timer D clock selection bits:  
00 = fxx/8  
Timer D count enable bit:  
01 = fxx/4  
10 = fxx/2  
0 = Disable counting operating  
1 = Enable counting operating  
11 = fxx  
Timer D counter clear bit:  
0 = No effect  
1 = Clear the timer D counter (when write)  
Figure 13-4. Timer D Control Register (TDCON)  
13-6  
S3C9498/F9498  
TIMER 0  
FUNCTION DESCRIPTION  
Interval Timer Function (Timer C and Timer D)  
The Timer C and D module can generate an interrupt: the Timer C match interrupt (TCINT) and the Timer D  
match interrupt (TDINT). The Timer C match interrupt pending condition (TCCON.0) and the Timer D match  
interrupt pending condition (TINTPND.4) must be cleared by software in the application's interrupt service by  
means of writing a "0" to the TCCON.0 and TINTPND.4 interrupt pending bit.  
Even though TCINT and TDINT are disabled, the application's service routine can detect a pending condition of  
TCINT and TDINT by the software and execute it's sub-routine. When this case is used, the TCINT and TDINT  
pending bit must be cleared by the application sub-routine by writing a "0" to the corresponding pending bit  
TCCON.0 and TINTPND.6.  
In interval timer mode, a match signal is generated when the counter value is identical to the values written to the  
Timer C or Timer D reference data registers, TCDATA or TDDATA. The match signal generates corresponding  
match interrupt (TCINT, TDINT) and clears the counter.  
If, for example, you write the value 20H to TCDATA and 0EH to TCCON, the counter will increment until it  
reaches 20H. At this point, the Timer C interrupt request is generated, the counter value is cleared, and counting  
resumes and you write the value 10H to TDDATA, "0" to TCCON.6, and 0EH to TDCON, the counter will  
increment until it reaches 10H. At this point, TB interrupt request is generated, the counter value is cleared and  
counting resumes.  
13-7  
TIMER 0  
S3C9498/F9498  
TCCON.5-.4  
TCCON.2  
Clear  
fxx/1024  
fxx/512  
fXX/8  
TCCNT  
Comparator  
TCDATA  
R
TCCON.3  
M
U
X
Match  
fXX/1  
TCCON.1  
TDCON.1  
TCINT  
TDDATA  
Comparator  
TDCNT  
fXX/8  
fXX/4  
fXX/2  
fXX/1  
M
U
X
TDOUT  
P1.6  
M
U
X
Match  
R
Clear  
TDCON.3  
TDCON.7-.6  
TDCON.5-.4  
NOTE:  
When TCCON.7 is '0', two 8-bit timer C/D (Interval mode).  
Figure 13-5. Timer C and B Function Block Diagram  
13-8  
S3C9498/F9498  
TIMER 0  
Pulse Width Modulation Mode (Timer D)  
Pulse width modulation (PWM) mode lets you program the width (duration) of the pulse that is output at the  
TDOUT (P1.6) pin. As in interval timer mode, a match signal is generated when the counter value is identical to  
the value written to the Timer D data register. In PWM mode, however, the match signal does not clear the  
counter. Instead, it runs continuously, overflowing at "FFH", and then continues incrementing from "00H".  
Although you can use the match signal to generate a Timer D overflow interrupt, interrupts are not typically used in  
PWM-type applications. Instead, the pulse at the TDOUT pin is held to Low level as long as the reference data  
value is less than or equal to (£) the counter value and then the pulse is held to High level for as long as the data  
value is greater than (>) the counter value. One pulse width is equal to t  
´ 256 (see Figure 13-6).  
CLK  
6-Bit OVF  
7-Bit OVF  
8-Bit OVF  
MUX  
TDCON.6-.7  
TINTPND.5  
TDCON.5-.4  
TDOVF  
Clear  
TDCON.3  
MUX  
Up-Counter  
(Read-Only)  
R
fxx/8  
fxx/4  
fxx/2  
fxx/1  
TDCON.0  
M
U
6-Bit Match  
7-Bit Match  
8-Bit Match  
TDCON.6-.7  
X
Match  
TBOUT(PWM, Interval)  
8-Bit Comparator  
P1.6  
TDINT  
MUX  
TINTPND.6  
Pending Bit  
TDCON.1  
(Match INT)  
Timer D Buffer  
Register  
TDCON.6-.7  
Selected TDOVF  
TDCON.3  
Timer D Data Register  
(Read/Write)  
Data Bus  
Figure 13- 6. Timer D PWM Function Block Diagram  
13-9  
TIMER 0  
S3C9498/F9498  
NOTES  
13-10  
S3C9498/F9498  
UART  
14 UART  
OVERVIEW  
The UART block has a full-duplex serial port with programmable operating modes: There is one synchronous  
mode and three UART (Universal Asynchronous Receiver/Transmitter) modes:  
— Shift Register I/O with baud rate of fxx/(16 ´ (8bit BRDATA+1))  
— 8-bit UART mode; variable baud rate, fxx/(16 ´ (8bit BRDATA+1))  
— 9-bit UART mode; fxx/16  
— 9-bit UART mode; variable baud rate, fxx/(16 ´ (8bit BRDATA+1))  
UART receive and transmit buffers are both accessed via the data register, UDATA, is at address FFH. Writing to  
the UART data register loads the transmit buffer; reading the UART data register accesses a physically separate  
receive buffer.  
When accessing a receive data buffer (shift register), reception of the next byte can begin before the previously  
received byte has been read from the receive register. However, if the first byte has not been read by the time the  
next byte has been completely received, the first data byte will be lost (Overrun error).  
In all operating modes, transmission is started when any instruction (usually a write operation) uses the UDATA  
register as its destination address. In mode 0, serial data reception starts when the receive interrupt pending bit  
(UARTPND.1) is "0" and the receive enable bit (UARTCON.4) is "1". In mode 1 and 2, reception starts whenever  
an incoming start bit ("0") is received and the receive enable bit (UARTCON.4) is set to "1".  
PROGRAMMING PROCEDURE  
To program the UART modules, follow these basic steps:  
1. Configure P0.0 and P0.1 to alternative function (RXD (P0.0), TXD (P0.1)) for UART module by setting the  
P0CON register to appropriatly value.  
2. Load an 8-bit value to the UARTCON control register to properly configure the UART I/O module.  
3. For interrupt generation, set the UART interrupt enable bit (UARTCON.1 or UARTCON.0) to "1".  
4. When you transmit data to the UART buffer, write transmit data to UDATA, the shift operation starts.  
5. When the shift operation (transmit/receive) is completed, UART pending bit (UARTPND.1 or UARTPND.0) is  
set to "1" and an UART interrupt request is generated.  
14-1  
UART  
S3C9498/F9498  
UART CONTROL REGISTER (UARTCON)  
The control register for the UART is called UARTCON at address FDH. It has the following control functions:  
— Operating mode and baud rate selection  
— Multiprocessor communication and interrupt control  
— Serial receive enable/disable control  
9th data bit location for transmit and receive operations (mode 2)  
— UART transmit and receive interrupt control  
A reset clears the UARTCON value to "00H". So, if you want to use UART module, you must write appropriate  
value to UARTCON.  
UART Control Register (UARTCON)  
FDH, R/W, Reset Value: 00H  
MSB MS1 MS0 MCE RE  
TB8 RB8 RIE  
LSB  
TIE  
Operating mode and  
baud rate selection bits  
(see table below)  
Transmit interrupt enable bit:  
0 = Disable  
1 = Enable  
Multiprocessor communication(1)  
enable bit (for modes 2 and 3 only):  
0 = Disable  
Received interrupt enable bit:  
0 = Disable  
1 = Enable  
1 = Enable  
Serial data receive enable bit:  
0 = Disable  
Location of the 9th data bit that was  
received in UART mode 2 or 3 ("0" or "1")  
1 = Enable  
Location of the 9th data bit to be  
transmitted in UART mode 2 or 3 ("0" or "1")  
MS1 MS0 Mode Description(2) Baud Rate  
0
0
1
1
0
1
0
1
0
1
2
3
Shift register fxx/(16 x (BRDATA +1))  
8-bit UART fxx/(16 x (BRDATA +1))  
9-bit UART fxx/16  
9-bit UART fxx/(16 x (BRDATA +1))  
NOTES:  
1. In mode 2 or 3, if the UARTCON.5 bit is set to "1" then the receive interrupt will not be  
activated if the received 9th data bit is "0". In mode 1, if UARTCON.5 = "1" then the  
receive interrut will not be activated if a valid stop bit was not received.  
In mode 0, the UARTCON.5 bit should be "0"  
2. The descriptions for 8-bit and 9-bit UART mode do not include start and stop bits  
for serial data receive and transmit.  
Figure 14-1. UART Control Register (UARTCON)  
14-2  
S3C9498/F9498  
UART  
UART INTERRUPT PENDING REGISTER (UARTPND)  
The UART interrupt pending register, UARTPND is located at address FEH. It contains the UART data transmit  
interrupt pending bit (UARTPND.0) and the receive interrupt pending bit (UARTPND.1).  
In mode 0 of the UART module, the receive interrupt pending flag UARTPND.1 is set to "1" when the 8th receive  
data bit has been shifted. In mode 1 or 2, the UARTPND.1 bit is set to "1" at the halfway point of the stop bit's shift  
time. When the CPU has acknowledged the receive interrupt pending condition, the UARTPND.1 flag must be  
cleared by software in the interrupt service routine.  
In mode 0 of the UART module, the transmit interrupt pending flag UARTPND.0 is set to "1" when the 8th transmit  
data bit has been shifted. In mode 1 or 2, the UARTPND.0 bit is set at the start of the stop bit. When the CPU has  
acknowledged the transmit interrupt pending condition, the UARTPND.0 flag must be cleared by software in the  
interrupt service routine.  
UART Pending Register (UARTPND)  
FEH, R/W, Reset Value: 00H  
.5  
.4  
RIP  
.7  
.6  
.3  
.2  
TIP  
MSB  
LSB  
Not used  
UART transmit interrupt pending flag:  
0 = Not pending  
0 = Clear pending bit (when write)  
1 = Interrupt pending  
UART receive interrupt pending flag:  
0 = Not pending  
0 = Clear pending bit (when write)  
1 = Interrupt pending  
NOTES:  
1. In order to clear a data transmit or receive interrupt pending  
flag, you must write a "0" to the appropriate pending bit.  
2. To avoid errors, we recommend using load instruction  
(except for LDB), when manipulating UARTPND values.  
Figure 14-2. UART Interrupt Pending Register (UARTPND)  
14-3  
UART  
S3C9498/F9498  
UART DATA REGISTER (UDATA)  
UART Data Register (UDATA)  
FFH, R/W, Reset Value: FFH  
.1  
.7  
.6  
.4  
.3  
.2  
.0  
MSB  
.5  
LSB  
Transmit or Receive data  
Figure 14-3. UART Data Register (UDATA)  
UART BAUD RATE DATA REGISTER (BRDATA)  
The value stored in the UART baud rate register, (BRDATA), lets you determine the UART clock rate (baud rate).  
UART Baud Rate Data Register  
(BRDATA) D6H, R/W, Reset Value: FFH  
.0  
MSB  
.7  
.6  
.5  
.3  
LSB  
.4  
.2  
.1  
Brud rate data  
Figure 14-4. UART Baud Rate Data Register (BRDATA)  
14-4  
S3C9498/F9498  
UART  
BAUD RATE CALCULATIONS  
The baud rate is determined by the baud rate data register, 8bit BRDATA  
Mode 0 baud rate = fxx/(16 ´ (8Bit BRDATA + 1))  
Mode 1 baud rate = fxx/(16 ´ (8Bit BRDATA + 1))  
Mode 2 baud rate = fxx/16  
Mode 3 baud rate = fxx/(16 ´ (8Bit BRDATA + 1))  
Table 14-1. Commonly Used Baud Rates Generated by 8-bit BRDATA  
BRDATA  
Mode  
Baud Rate  
0.5 MHz  
Oscillation Clock  
Decimal  
Hex  
x
Mode 2  
Mode 0  
Mode 1  
Mode 3  
8 MHz  
10 MHz  
10 MHz  
8 MHz  
8 MHz  
4 MHz  
4 MHz  
x
62,500 Hz  
9,615 Hz  
38,461 Hz  
12,500 Hz  
19,230 Hz  
9,615 Hz  
09  
64  
12  
39  
12  
25  
09H  
40H  
0CH  
27H  
0CH  
19H  
14-5  
UART  
S3C9498/F9498  
BLOCK DIAGRAM  
SAM86 Internal Data Bus  
TB8  
S
8 BIT  
BRDATA  
D
Q
UDATA  
CLK  
CLK  
MS0  
MS1  
RxD (P0.0)  
TxD (P0.1)  
Baud Rate  
Generator  
fxx  
Zero Detector  
Write to  
UDATA  
Shift  
EN  
Send  
Start  
Tx Control  
Tx Clock  
TIP  
TxD (P0.1)  
Shift  
Clock  
TIE  
RIE  
Interrupt  
Rx  
Clock  
RIP  
Receive  
Shift  
RE  
RIE  
Rx Control  
Start  
1-to-0  
Transition  
Detector  
Shift  
Value  
Bit Detector  
Shift  
Register  
MS0  
MS1  
UDATA  
RxD (P0.0)  
SAM86 Internal Data Bus  
Figure 14-5. UART Functional Block Diagram  
14-6  
S3C9498/F9498  
UART  
UART MODE 0 FUNCTION DESCRIPTION  
In mode 0, UART is input and output through the RxD (P0.0) pin and TxD (P0.1) pin outputs the shift clock. Data is  
transmitted or received in 8-bit units only. The LSB of the 8-bit value is transmitted (or received) first.  
Mode 0 Transmit Procedure  
1. Select mode 0 by setting UARTCON.6 and .7 to "00B".  
2. Write transmission data to the shift register UDATA (FFH) to start the transmission operation.  
Mode 0 Receive Procedure  
1. Select mode 0 by setting UATCON.6 and .7 to "00B".  
2. Clear the receive interrupt pending bit (UARTPND.1) by writing a "0" to UARTPND.1.  
3. Set the UART receive enable bit (UARTCON.4) to "1".  
4. The shift clock will now be output to the TxD (P0.1) pin and will read the data at the RxD (P0.0) pin. A UART  
receive interrupt (vector 00H-01H) occurs when UARTCON.1 is set to "1".  
Write to Shift Register (UDATA)  
Shift  
RxD (Data Out)  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
TxD (Shift Clock)  
TIP  
Write to UARTPND (Clear RIP and set RE)  
RIP  
RE  
Shift  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
RxD (Data In)  
TxD (Shift Clock)  
1
2
3
4
5
6
7
8
Figure 14-6. Timing Diagram for UART Mode 0 Operation  
14-7  
UART  
S3C9498/F9498  
UART MODE 1 FUNCTION DESCRIPTION  
In mode 1, 10-bits are transmitted (through the TxD (P0.1) pin) or received (through the RxD (P0.0) pin). Each  
data frame has three components:  
— Start bit ("0")  
— 8 data bits (LSB first)  
— Stop bit ("1")  
When receiving, the stop bit is written to the RB8 bit in the UARTCON register. The baud rate for mode 1 is  
variable.  
Mode 1 Transmit Procedure  
1. Select the baud rate generated by 8bit BRDATA.  
2. Select mode 1 (8-bit UART) by setting UARTCON bits 7 and 6 to '01B'.  
3. Write transmission data to the shift register UDATA (FFH). The start and stop bits are generated automatically  
by hardware.  
Mode 1 Receive Procedure  
1. Select the baud rate to be generated by 8bit BRDATA.  
2. Select mode 1 and set the RE (Receive Enable) bit in the UARTCON register to "1".  
3. The start bit low ("0") condition at the RxD (P0.0) pin will cause the UART module to start the serial data  
receive operation.  
Tx  
Clock  
Write to Shift Register (UDATA)  
Shift  
TxD  
TIP  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
Stop Bit  
Start Bit  
Rx  
Clock  
RxD  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
Stop Bit  
Start Bit  
Bit Detect Sample Time  
Shift  
RIP  
Figure 14-7. Timing Diagram for UART Mode 1 Operation  
14-8  
S3C9498/F9498  
UART  
UART MODE 2 FUNCTION DESCRIPTION  
In mode 2, 10-bits are transmitted through the TxD pin or received through the RxD pin. Each data frame has  
three components:  
— Start bit ("0")  
8 data bits (LSB first)  
Programmable 9th data bit  
— Stop bit ("1")  
The 9th data bit to be transmitted can be assigned a value of "0" or "1" by writing the TB8 bit (UARTCON0.3).  
When receiving, the 9th data bit that is received is written to the RB8 bit (UARTCON0.2), while the stop bit is  
ignored. The baud rate for mode 2 is fosc/16 clock frequency.  
Mode 2 Transmit Procedure  
1. Select mode 2 (9-bit UART0) by setting UARTCON bits 6 and 7 to '10B'. Also, select the 9th data bit to be  
transmitted by writing TB8 to "0" or "1".  
2. Write transmission data to the shift register, UDATA (FFH), to start the transmit operation.  
Mode 2 Receive Procedure  
1. Select mode 2 and set the receive enable bit (RE) in the UARTCON register to "1".  
2. The receive operation starts when the signal at the RxD pin goes to low level.  
Tx  
Clock  
Write to Shift Register (UDATA)  
Shift  
TxD  
TIP  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
Stop Bit  
Start Bit  
Rx  
Clock  
RxD  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
Stop Bit  
Start Bit  
Bit Detect Sample Time  
Shift  
RIP  
Figure 14-8. Timing Diagram for UART Mode 2 Operation  
14-9  
UART  
S3C9498/F9498  
UART Mode 3 Function Description  
In mode 3, 11-bits are transmitted (through the TxD) or received (through the RxD). Mode 3 is identical to mode 2  
except for baud rate, which is variable. Each data frame has four components:  
— Start bit ("0")  
— 8 data bits (LSB first)  
— Programmable 9th data bit  
— Stop bit ("1")  
Mode 3 Transmit Procedure  
1. Select the baud rate generated by setting BRDATA.  
2. Select mode 3 (9-bit UART) by setting UARTCON bits 6 and 7 to '11B'. Also, select the 9th data bit to be  
transmitted by writing TB8 to "0" or "1"  
3. Write transmission data to the shift register, UDATA (FFH), to start the transmit operation.  
Mode 3 Receive Procedure  
1. Select the baud rate to be generated by setting BRDATA.  
2. Select mode 3 and set the receive enable bit (RE) in the UARTCON register to "1".  
3. The receive operation starts when the signal at the RxD pin goes to low level.  
Tx  
Clock  
Write to Shift Register (UARTDATA)  
Shift  
TxD  
TIP  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
Stop Bit  
Start Bit  
TB8 or Parity bit  
RB8 or Parity bit  
Rx  
Clock  
RxD  
Stop  
Bit  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
Start Bit  
Bit Detect Sample Time  
Shift  
RIP  
Figure 14-9. Timing Diagram for UART Mode 3 Operation  
14-10  
S3C9498/F9498  
UART  
SERIAL COMMUNICATION FOR MULTIPROCESSOR CONFIGURATIONS  
The S3C9-series multiprocessor communication features let a "master" S3C9498/F9498 send a multiple-frame  
serial message to a "slave" device in a multi- S3C9498/F9498 configuration. It does this without interrupting other  
slave devices that may be on the same serial line.  
This feature can be used only in UART mode 2 or 3 with the parity disable mode. In mode 2 and 3, 9 data bits are  
received. The 9th bit value is written to RB8 (UARTCON.2). The data receive operation is concluded with a stop  
bit. You can program this function so that when the stop bit is received, the serial interrupt will be generated only if  
RB8 = "1".  
To enable this feature, you set the MCE bit in the UARTCON registers. When the MCE bit is "1", serial data  
frames that are received with the 9th bit = "0" do not generate an interrupt. In this case, the 9th bit simply  
separates the address from the serial data.  
Sample Protocol for Master/Slave Interaction  
When the master device wants to transmit a block of data to one of several slaves on a serial line, it first sends out  
an address byte to identify the target slave. Note that in this case, an address byte differs from a data byte: In an  
address byte, the 9th bit is "1" and in a data byte, it is "0".  
The address byte interrupts all slaves so that each slave can examine the received byte and see if it is being  
addressed. The addressed slave then clears its MCE bit and prepares to receive incoming data bytes.  
The MCE bits of slaves that were not addressed remain set, and they continue operating normally while ignoring  
the incoming data bytes.  
While the MCE bit setting has no effect in mode 0, it can be used in mode 1 to check the validity of the stop bit.  
For mode 1 reception, if MCE is "1", the receive interrupt will be issue unless a valid stop bit is received.  
14-11  
UART  
S3C9498/F9498  
Setup Procedure for Multiprocessor Communications  
Follow these steps to configure multiprocessor communications:  
1. Set all S3C9498/F9498 devices (masters and slaves) to UART mode 2 or 3  
2. Write the MCE bit of all the slave devices to "1".  
3. The master device's transmission protocol is:  
— First byte: the address  
identifying the target  
slave device (9th bit = "1")  
— Next bytes: data  
(9th bit = "0")  
4. When the target slave receives the first byte, all of the slaves are interrupted because the 9th data bit is "1".  
The targeted slave compares the address byte to its own address and then clears its MCE bit in order to  
receive incoming data. The other slaves continue operating normally.  
Full-Duplex Multi-S3C9498/F9498 Interconnect  
RxD  
RxD  
TxD  
TxD  
TxD  
TxD  
RxD  
RxD  
Master  
Slave 1  
Slave n  
Slave 2  
. . .  
S3C9498/  
F9498  
S3C9498/  
F9498  
S3C9498/  
F9498  
S3C9498/  
F9498  
Figure 14-10. Connection Example for Multiprocessor Serial Data Communications  
14-12  
S3C9498/F9498  
SERIAL I/O INTERFACE  
15 SERIAL I/O INTERFACE  
OVERVIEW  
Serial I/O module, SIO can interface with various types of external devices that require serial data transfer. The  
components of each SIO function block are:  
— 8-bit control register (SIOCON)  
— Clock selection logic  
— 8-bit data buffer (SIODATA)  
— 8-bit presale (SIOPS)  
— 3-bit serial clock counter  
— Serial data I/O pins (SI, SO)  
— External clock input pin (SCK)  
SIO module can transmit or receive 8-bit serial data at a frequency determined by its corresponding control  
register settings. To ensure flexible data transmission rates, you can select an internal or external clock source.  
PROGRAMMING PROCEDURE  
To program the SIO module, follow these basic steps:  
1. Configure the I/O pins at port 3 (SO, SCK, SI) by loading the appropriate value to the P3CON Register.  
2. Load an 8-bit value to the SIOCON control register to properly configure the serial I/O module. In this  
operation, SIOCON.2 must be set to "1" to enable the data shifter.  
3. For interrupt generation, set the serial I/O interrupt enable bit (SIOCON.1) to "1".  
4. When you the transmit data to the serial buffer, write data to SIODATA and set SIOCON.3 to 1, the shift  
operation starts.  
5. When the shift operation (transmit/receive) is completed, the SIO pending bit (SIOCON.0) is set to "1" and an  
SIO interrupt request is generated.  
15-1  
SERIAL I/O INTERFACE  
S3C9498/F9498  
SERIAL I/O CONTROL REGISTERS (SIOCON)  
The control registers for serial I/O interface, SIOCON, is located at F1H. It has the control settings for SIO module.  
— Clock source selection (internal or external) for shift clock  
— Interrupt enable  
— Edge selection for shift operation  
— Clear 3-bit counter and start shift operation  
— Shift operation (transmit) enable  
— Mode selection (transmit/receive or receive-only)  
— Data direction selection (MSB first or LSB first)  
A reset clears the SIOCON value to "00H". This configures the corresponding module with an internal clock source  
at the SCK, selects receive-only operating mode, and clears the 3-bit counter. The data shift operation and the  
interrupt are disabled. The selected data direction is MSB-first.  
SIO Control Registers (SIOCON)  
F1H, R/W, Reset: 00H  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
SIO shift clock select bit:  
SIO Interrupt pending bit:  
0 = Internal clock (P.S clock)  
1 = External clock (SCK)  
0 = No interrupt pending  
0 = Clear pending condition (when write)  
1 = Interrupt is pending  
Data direction control bit:  
0 = MSB-first mode  
1 = LSB-first mode  
SIOinterrupt enable bit:  
0 = Disable SIO interrupt  
1 = Enable SIO interrupt  
SIO mode selction bit:  
0 = Rececive-only mode  
SIO shift operation enable bit:  
1 = Transmit/receive mode  
0 = Disable shifter and clock counter  
1 = Enable shfter and clock counter  
Shift clock edge selction bit:  
0 = Tx falling edges, Rx at rising edges  
1 = Tx rising edges, Rx at falling edges  
SIO counter clear and shift start bit:  
0 = No action  
1 = Clear 3-bit counter and start shifting  
Figure 15-1. Serial I/O Interface Control Register (SIOCON)  
15-2  
S3C9498/F9498  
SERIAL I/O INTERFACE  
SIO PRESCALER REGISTER (SIOPS)  
The control register for serial I/O interface module, SIOPS is located at F4H.  
The value stored in the SIO prescaler registers, SIOPS, lets you determine the SIO clock rate (baud rate)  
as follows:  
Baud rate = Input clock(Xin/4) / (SIOP+ 1), or external SCK input clock  
SIO Pre-Scaler Registers (SIOPS)  
F4H, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Baud rate = (XIN/4)/(SIOPS + 1)  
Figure 15-2. SIO Pre-Scaler Register (SIOPS)  
3-Bit Counter  
SIOCON.0  
Pending  
SIO INT  
CLK  
Clear  
SIOCON.1  
(Interrupt Enable)  
SIOCON.3  
SIOCON.7  
(Shift Clock  
Source Select)  
SIOCON.4  
(Edge Select)  
SIOCON.2  
(Shift Enable)  
SIOCON.5  
(Mode Select)  
SCK  
SIOPS(F4H)  
MUX  
CLK  
8-Bit SIO Shift Buffer  
(SIODATA)  
SO  
8-Bit  
Prescaler  
IN  
X /2  
1/2  
Toggle  
SIOCON.6  
(LSB/MSB  
Prescaler Value =  
1/(SIOPS + 1)  
First  
Mode Select)  
8
SI  
Data Bus  
Figure 15-3. SIO Functional Block Diagram  
15-3  
SERIAL I/O INTERFACE  
S3C9498/F9498  
SCK  
SI  
D17  
D16  
D15  
D14  
D13  
D12  
D11  
D10  
SO  
DO7  
DO6  
DO5  
DO4  
DO3  
DO2  
DO1  
DO0  
Transmit  
Complete  
IRQS  
Set SIOCON.3  
Figure 15-4. Serial I/O Timing in Transmit-Receive Mode (Tx at falling, SIOCON.4 = 0)  
SCK  
D17  
D16  
D15  
D14  
D13  
D12  
D11  
D10  
SI  
SO  
DO7  
DO6  
DO5  
DO4  
DO3  
DO2  
DO1  
DO0  
Transmit  
Complete  
IRQS  
Set SIOCON.3  
Figure 15-5. Serial I/O Timing in Transmit-Receive Mode (Tx at rising, SIOCON.4 = 1)  
15-4  
S3C9498/F9498  
SERIAL I/O INTERFACE  
Shift  
Clock  
Data  
Input  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
High Impedance  
Data  
Output  
Transmit  
Complete  
IRQ5 Start  
Figure 15-6. Serial I/O Timing in Receive-Only Mode  
F
PROGRAMMING TIP — SIO  
ORG  
0000H  
00H, INT_9498  
VECTOR  
ORG  
;
S3C9498/F9498 has only one interrupt vector  
0100H  
INITIAL:  
LD  
LD  
LD  
LD  
SYM, #00H  
;
;
;
;
Global/Fast interrupt disable -> SYM  
Watch-dog disable  
non-divided CPU clock  
BTCON, #10100010B  
CLKCON, #00011000B  
SP, #0C0H  
9498 à 00~BF (After decrease, push data)  
·
·
LD  
·
P3CON, #10111100B  
;
SIO setting  
·
LD  
LD  
·
SIOCON, #00100110B  
SIOPS, #20  
;
;
Enable SIO/Interrupt  
setting baud rate  
·
EI  
15-5  
SERIAL I/O INTERFACE  
S3C9498/F9498  
F
PROGRAMMING TIP — SIO (Continued)  
MAIN:  
·
·
·
CALL  
·
SUB_SIO  
MAIN  
;
Data transmit routine  
·
·
JP  
SUB_SIO:  
LD  
OR  
·
SIODATA, TRANSBUF  
SIOCON, #00001000B  
;
;
1-byte transmission  
Shift start (8-bit transmit)  
·
RET  
INT_9498:  
INT_SIO:  
; S3C9498/F9498 has just one interrupt vector  
LD  
R0, SIOCON  
AND  
CP  
JP  
R0, #00000011B  
R0, #00000011B  
EQ, INT_SIO  
;
;
SIOCON’s pending bit & INT. enable bit check  
Pending bit clear  
AND  
SIOCON, #11111110  
·
·
·
IRET  
15-6  
S3C9498/F9498  
12-BIT PWM  
16 12-BIT PWM (PULSE WIDTH MODULATION)  
OVERVIEW  
This microcontroller has the 12-bit PWM circuit. The operation of all PWM circuit is controlled by a single control  
register, PWMCON.  
The PWM counter is a 12-bit incrementing counter. It is used by the 12-bit PWM circuits. To start the counter and  
enable the PWM circuits, you set PWMCON.2 to "1". If the counter is stopped, it retains its current count value;  
when re-started, it resumes counting from the retained count value. When there is a need to clear the counter you  
set PWMCON.3 to "1".  
You can select a clock for the PWM counter by set PWMCON.6-.7. Clocks which you can select are Fosc/256,  
Fosc/64, Fosc/8, Fosc/1.  
FUNCTION DESCRIPTION  
PWM  
The 12-bit PWM circuits have the following components:  
— 6-bit comparator and extension cycle circuit  
— 6-bit reference data registers (PWMDATA)  
— 6-bit extension data registers (PWMEX)  
— PWM output pins (P2.7/PWM)  
PWM counter  
The PWM counter is a 12-bit incrementing counter comprised of a lower 6-bit counter and an upper 6-bit counter.  
To determine the PWM module's base operating frequency, the lower byte counter is compared to the PWM data  
register value. In order to achieve higher resolutions, the six bits of the upper counter can be used to modulate the  
"stretch" cycle. To control the "stretching" of the PWM output duty cycle at specific intervals, the 6-bit extended  
counter value is compared with the 6-bit value (bits 7-2) that you write to the module's extension register.  
16-1  
12-BIT PWM  
S3C9498/F9498  
PWM data and extension registers  
PWM (duty) data registers, located in E4H , determine the output value generated by each 12-bit PWM circuit.  
These registers, PWM is read/write addressable.  
— 8-bit data register PWMDATA, of which only bits 5-0 are used.  
— 8-bit extension registers PWMEX (E5H), of which only bits 7-2 are used  
To program the required PWM output, you load the appropriate initialization values into the 6-bit data registers  
(PWMDATA) and the 6-bit extension registers (PWMEX). To start the PWM counter, or to resume counting, you  
set PWMCON.2 to "1".  
A reset operation disables all PWM output. The current counter value is retained when the counter stops. When  
the counter starts, counting resumes at the retained value.  
PWM clock rate  
The timing characteristics of both 12-bit output channels are identical, and are based on the Fosc clock frequency.  
The counter clock value is determined by the setting of PWMCON.6-.7.  
Table 16-1. PWM Control and Data Registers  
Register Name  
Mnemonic  
PWMDATA  
PWMEX  
Address  
E4H  
Function  
PWM data registers  
6-bit PWM basic cycle frame value  
6-bit extension ("stretch") value  
E5H  
PWM control registers  
PWMCON  
EDH  
PWM counter stop/start (resume), and  
Fosc clock settings  
PWM function Description  
The PWM output signal toggles to Low level whenever the lower 6-bit counter matches the reference value stored  
in the module's data register (PWMDATA). If the value in the PWMDATA register is not zero, an overflow of the  
lower counter causes the PWM output to toggle to High level. In this way, the reference value written to the data  
register determines the module's base duty cycle.  
The value in the 6-bit extension counter is compared with the extension settings in the 6-bit extension data register  
(PWMEX). This 6-bit extension counter value, together with extension logic and the PWM module's extension  
register , is then used to "stretch" the duty cycle of the PWM output. The "stretch" value is one extra clock period  
at specific intervals, or cycles (see Table 16-2).  
If, for example, the value in the extension register is '04H', the 32nd cycle will be one pulse longer than the other  
63 cycles. If the base duty cycle is 50 %, the duty of the 32nd cycle will therefore be "stretched" to approximately  
51% duty. For example, if you write 80H to the extension register, all odd-numbered pulses will be one cycle  
longer. If you write FCH to the extension register, all pulses will be stretched by one cycle except the 64th pulse.  
PWM output goes to an output buffer and then to the corresponding PWM output pin. In this way, you can obtain  
high output resolution at high frequencies.  
16-2  
S3C9498/F9498  
12-BIT PWM  
Table 16-2. PWM output "stretch" Values for Extension Registers PWMEX  
PWMEX Bit  
"Stretched" Cycle Number  
7
1, 3, 5, 7, 9, . . . , 55, 57, 59, 61, 63  
6
5
4
3
2
1
0
2, 6, 10, 14, . . . , 50, 54, 58, 62  
4, 12, 20, . . . , 44, 52, 60  
8, 24, 40, 56  
16, 48  
32  
Not used  
Not used  
0H  
4MHz  
40H  
80H  
PWM  
Clock:  
0H  
1H  
PWMDATA  
Register  
Values:  
250ns  
250ns  
20H  
3FH  
8ms  
8ms  
250ns  
Figure 16-1. 12-Bit PWM Basic Waveform  
16-3  
12-BIT PWM  
S3C9498/F9498  
0H  
4MHz  
40H  
PWM  
Clock:  
PWMDATA  
Register  
500ns  
2H  
Values: 02H  
PWMEX  
Register  
Values:  
1st  
64th 1st  
32th  
64th  
4H  
(Extended  
Value is 04H)  
32th  
40H  
0H  
4MHz  
750ns  
Figure 16-2. 12-Bit Extended PWM Waveform  
16-4  
S3C9498/F9498  
12-BIT PWM  
PWM CONTROL REGISTER (PWMCON)  
The control register for the PWM module, PWMCON, is located at register address EDH. PWMCON is used the  
12-bit PWM modules. Bit settings in the PWMCON register control the following functions:  
— PWM counter clock selection  
— PWM data reload interval selection  
— PWM counter clear  
— PWM counter stop/start (or resume) operation  
— PWM counter overflow (upper 6-bit counter overflow) interrupt control  
A reset clears all PWMCON bits to logic zero, disabling the entire PWM module.  
PWM Control Registers (PWMCON)  
EDH, Reset: 00H  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
PWM input clock  
selection bits:  
00 = fosc/256  
01 = fosc/64  
10 = fosc/8  
PWM 12-bit OVF Interrupt pending bit:  
0 = No interrupt pending  
0 = Clear pending condition (when write)  
1 = Interrupt is pending  
11 = fosc/1  
PWM Overflow Interrupt Enable bit  
(12-bit Counter Overflow)  
PWM data reload interval selection bit:  
0 = Reload from 12-bit up counter overflow  
1 = Reload from 6-bit up counter overflow  
0 = Disable PWM OVF interrupt  
1 = Enable PWM OVF interrupt  
PWM counter enable bit:  
0 = Stop counter  
1 = Start (resume countering)  
Not used  
PWM counter clear bit:  
0 = No effect  
1 = Clear the 12-bit up counter  
Figure 16-3. PWM/Capture Module Control Register (PWMCON)  
16-5  
12-BIT PWM  
S3C9498/F9498  
6-Bit Basic Register  
PWMDATA  
Reload (overflow of the lower 6-bit counter)  
6
6-Bit Buffer  
fosc/256  
"1" When PWMDATA > Counter  
6
fosc/64  
fosc/8  
"0" When PWMDATA < Counter  
=
6-Bit Comparator  
P2.7/PWM  
PWMDATA = Counter  
fosc/1  
6
MUX  
PWMCON.6-7  
Lower  
6-Bit Counter  
Upper  
Pending  
OVFINT  
6-Bit Counter  
PWMCON.0  
PWMCON.1  
PWMCON.2  
Extension Control Logic  
(1,3,...,61,63)  
Bit 7  
32  
Bit 2  
6-Bit Extension  
Registers (PWMEX)  
Figure 16-4. PWM/Capture Module Functional Block Diagram  
16-6  
S3C9498/F9498  
12-BIT PWM  
F
PROGRAMMING TIP — Programming the PWM Module to Sample Specifications  
ORG  
0000H  
VECTOR  
ORG  
00H, INT_9498  
0100H  
;
S3C9498/F9498 has only one interrupt vector  
INITIAL:  
LD  
LD  
LD  
LD  
SYM, #00H  
;
;
;
;
Global/Fast interrupt disable -> SYM  
Watch-dog disable  
non-divided CPU clock  
BTCON, #10100010B  
CLKCON, #00011000B  
SP, #0C0H  
9498 ® 00–BF (After decrease, push data)  
·
·
LD  
P2CONH, #0C0H  
;
P0.7 PWM0 output  
LD  
LD  
LD  
PWMEX, #0  
PWMDATA, #20H  
PWMCON, #00000100B  
;
;
;
;
Extension register setting  
Data register setting  
Start counting  
Half duty PWM wave out to P0.7  
·
·
·
EI  
MAIN:  
·
·
·
CALL  
·
SUB_ROUTINE  
MAIN  
·
·
JP  
SUB_ROUTINE:  
NOP  
·
·
·
RET  
16-7  
12-BIT PWM  
S3C9498/F9498  
NOTES  
16-8  
S3C9498/F9498  
A/D CONVERTER  
17 10-BIT ANALOG-TO-DIGITAL CONVERTER  
OVERVIEW  
The 10-bit A/D converter (ADC) module uses successive approximation logic to convert analog levels entering at  
one of the nine input channels to equivalent 10-bit digital values. The analog input level must lie between the  
AV  
and V values. The A/D converter has the following components:  
REF  
SS  
— Analog comparator with successive approximation logic  
— D/A converter logic (resistor string type)  
— ADC control register (ADCON)  
— Eight multiplexed analog data input pins (AD0 – AD7), alternately digital data I/O port  
— 10-bit A/D conversion data output register (ADDATAH/L)  
— AV  
AV (AV is internally connected to V  
)
REF,  
SS  
SS  
SS  
FUNCTION DESCRIPTION  
To initiate an analog-to-digital conversion procedure, at the first you must set port control register(P1CONH/L) for  
AD analog input. And you write the channel selection data in the A/D converter control register ADCON.4-.7 to  
select one of the eight analog input pins (AD0-7) and set the conversion start bit, ADCON.0. The read-write  
ADCON register is located at address FCH. The unused pin can be used for normal I/O.  
During a normal conversion, ADC logic initially sets the successive approximation register to 200H (the  
approximate half-way point of a 10-bit register). This register is then updated automatically during each conversion  
step. The successive approximation block performs 10-bit conversions for one input channel at a time. You can  
dynamically select different channels by manipulating the channel selection bit value (ADCON.4 - 7) in the ADCON  
register. To start the A/D conversion, you should set the enable bit, ADCON.0. When a conversion is completed,  
the end-of-conversion (EOC) bit is automatically set to 1 and the result is dumped into the ADDATAH/L register  
where it can be read. The A/D converter then enters an idle state. Remember to read the contents of ADDATAH/L  
before another conversion starts. Otherwise, the previous result will be overwritten by the next conversion result.  
NOTE  
Because the A/D converter has no sample-and-hold circuitry, it is very important that fluctuation in the analog level  
at the AD0-AD7input pins during a conversion procedure be kept to an absolute minimum. Any change in the input  
level, perhaps due to noise, will invalidate the result. If the chip enters to STOP or IDLE mode in conversion  
process, there will be a leakage current path in A/D block. You must use STOP or IDLE mode after ADC  
operation is finished.  
17-1  
A/D CONVERTER  
S3C9498/F9498  
CONVERSION TIMING  
The A/D conversion process requires 4 steps (4 clock edges) to convert each bit and 10 clocks to set-up A/D  
conversion. Therefore, total of 50 clocks are required to complete a 10-bit conversion: When Fxx/8 is selected for  
conversion clock with a 8 MHz fxx clock frequency, one clock cycle is 1 us. Each bit conversion requires 4 clocks,  
the conversion rate is calculated as follows:  
4 clocks/bit ´ 10 bits + set-up time = 50 clocks, 50 clock ´ 1us = 50 us at 8 MHz  
A/D CONVERTER CONTROL REGISTER (ADCON)  
The A/D converter control register, ADCON, is located at address FCH. It has three functions:  
Analog input pin selection (bits 4, 5, 6, and 7)  
A/D conversion End-of-conversion (ECO) status (bit 3)  
A/D conversion speed selection (bits 1,2)  
A/D operation start (bit 0)  
After a reset, the start bit is turned off. You can select only one analog input channel at a time. Other analog input  
pins (ADC0–ADC7)can be selected dynamically by manipulating the ADCON.4–7 bits. And the pins not used for  
analog input can be used for normal I/O function.  
A/D Converter Control Register (ADCON)  
FCH, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
End-of-conversion (ECO)  
status bit:  
0 = A/D conversion  
is in progress  
1 = A/D conversion  
complete  
A/D input pin selection bits:  
0000 = ADC0  
0001 = ADC1  
0010 = ADC2  
0011 = ADC3  
A/D conversion Start bit:  
0 = Disable operation  
1 = Start operation (Auto-clear)  
0100 = ADC4  
0101 = ADC5  
Clock source selection bits:  
0110 = ADC6  
0111 = ADC7  
other values = Connected with GND internally  
00 = fxx/16 (fosc = 8MHz)  
01 = fxx/8 (fosc = 8MHz)  
10 = fxx/4 (fosc = 8MHz)  
11 = fxx (fosc = 2.5MHz)  
NOTE: Maximum ADC clock input = 4MHz  
Figure 17-1. A/D Converter Control Register (ADCON)  
17-2  
S3C9498/F9498  
A/D CONVERTER  
Conversion Data Register High Byte (ADDATAH)  
FAH, Ready only  
MSB  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
LSB  
Conversion Data Register Low Byte (ADDATAL)  
FBH, Ready only  
x
x
x
x
x
x
.1  
.0  
Figure 17-2. A/D Converter Data Register (ADDATAH/L)  
INTERNAL REFERENCE VOLTAGE LEVELS  
In the ADC function block, the analog input voltage level is compared to the reference voltage. The analog input  
level must remain within the range V to AV (usually, AV = V ).  
SS  
REF  
REF  
DD  
Different reference voltage levels are generated internally along the resistor tree during the analog conversion  
process for each conversion step. The reference voltage level for the first conversion bit is always 1/2 AV  
.
REF  
17-3  
A/D CONVERTER  
S3C9498/F9498  
BLOCK DIAGRAM  
- A/D Converter Control Register  
ADCON (FCH)  
ADCON.0 (ADC Start)  
ADCON.7-.4  
Control  
Circuit  
Clock  
ADCON.3  
Selector  
(EOC Flag)  
M
U
L
T
I
ADCON.2-.1  
ADC0/P1.0  
ADC1/P1.1  
ADC2/P1.2  
Successive  
+
-
Approximation  
Circuit  
Analog  
Comparator  
P
L
E
X
E
R
ADC6/P0.6  
ADC7/P0.7  
Conversion Result  
AVref  
VSS  
ADDATAH ADDATAL  
D/A Converter  
(FAH)  
(FBH)  
To data bus  
Figure 17-3. A/D Converter Functional Block Diagram  
17-4  
S3C9498/F9498  
A/D CONVERTER  
INTERNAL A/D CONVERSION PROCEDURE  
1. Analog input must remain between the voltage range of V and AV  
.
SS  
REF  
2. Configure P1.0–P1.7 for analog input before A/D conversions. To do this, you load the appropriate value to the  
P1CONH and P1CONL (for ADC0–ADC7) registers.  
3. Before the conversion operation starts, you must first select one of the eight input pins (ADC0–ADC7) by  
writing the appropriate value to the ADCON register.  
4. When conversion has been completed, (50 clocks have elapsed), the EOC, ADCON.3 flag is set to "1", so that  
a check can be made to verify that the conversion was successful.  
5. The converted digital value is loaded to the output register, ADDATAH (8-bit) and ADDATAL (2-bit), then the  
ADC module enters an idle state.  
6. The digital conversion result can now be read from the ADDATAH and ADDATAL register.  
VDD  
Reference  
Voltage  
Input  
R
104  
AVref  
VDD  
Analog  
ADC0-ADC7  
Input Pin  
101  
S3F9498  
Vss  
NOTE: The symbol "R" signifies an offset resistor with a value  
.
of from 50 to 100W  
Figure 17-4. Recommended A/D Converter Circuit for Highest Absolute Accuracy  
17-5  
A/D CONVERTER  
S3C9498/F9498  
NOTES  
17-6  
S3C9498/F9498  
ELECTRICAL DATA  
18 ELECTRICAL DATA  
OVERVIEW  
In this section, the following S3C9498/F9498 electrical characteristics are presented in tables and graphs:  
— Absolute maximum ratings  
— D.C. electrical characteristics  
— A.C. electrical characteristics  
— Operating Voltage Range  
— Schmitt trigger input characteristics  
— Oscillator characteristics  
— Oscillation stabilization time  
— Data retention supply voltage in Stop mode  
— Stop mode release timing when initiated by a RESET  
— Power-on RESET circuit characteristics  
— A/D converter electrical characteristics  
18-1  
ELECTRICAL DATA  
S3C9498/F9498  
Table 18-1. Absolute Maximum Ratings  
(T = 25 °C)  
A
Parameter  
Symbol  
Conditions  
Rating  
Unit  
Supply voltage  
V
– 0.3 to + 6.5  
V
DD  
DD  
Input voltage  
V
All input ports  
– 0.3 to V + 0.3  
V
V
I
Output voltage  
Output current high  
V
All output ports  
One I/O pin active  
– 0.3 to VDD + 0.3  
– 25  
O
I
mA  
OH  
All I/O pins active  
One I/O pin active  
– 80  
+ 30  
Output current low  
I
mA  
OL  
Total pin current for ports 1, 2, 3  
+ 100  
+ 200  
Total pin current for ports 0  
Operating temperature  
Storage temperature  
T
– 25 to + 85  
°C  
°C  
A
T
– 65 to + 150  
STG  
18-2  
S3C9498/F9498  
ELECTRICAL DATA  
Table 18-2. D.C. Electrical Characteristics  
(T = – 25 °C to + 85 °C, V  
= 2.2 V to 5.5 V)  
DD  
A
Parameter  
Input high  
Symbol  
Conditions  
Min  
0.8 V  
Typ  
Max  
Unit  
V
V
= 2.2 to 5.5 V  
= 2.2 to 5.5 V  
V
Ports 0, 1, 2, 3 and  
nRESET  
V
IH1  
DD  
DD  
DD  
voltage  
V
X
and X  
OUT  
V
– 0.1  
IH3  
IN  
DD  
V
V
0.2 V  
Input low  
voltage  
Ports 0, 1, 2, 3 and  
nRESET  
V
IL1  
DD  
DD  
V
X
and X  
0.1  
IL2  
IN OUT  
V
I
= – 3 mA  
V
= 4.5 to 5.5 V  
= 4.5 to 5.5 V  
V
– 1.0  
V
Output high  
voltage  
V
V
OH  
OH  
ports 0-3  
= 8 mA  
DD  
DD  
DD  
0.4  
V
I
V
V
Output low voltage  
0.4  
2.0  
1
OL  
OL  
DD  
port 0 -3  
I
= V  
IN DD  
Input high leakage  
current  
Al l input pins except  
mA  
LIH1  
I
LIH2  
I
X
, X  
V
= V  
20  
LIH2  
IN OUT  
IN DD  
I
V
= 0 V  
Input low leakage  
current  
All input pins except  
– 1  
mA  
LIL1  
IN  
I
LIL2  
I
X
, X  
V
= 0 V  
= V  
– 20  
2
LIL2  
IN OUT  
IN  
I
V
Output high  
leakage current  
All output pins  
mA  
mA  
kW  
LOH  
OUT  
DD  
I
V
= 0 V  
Output low  
leakage current  
All output pins  
– 2  
LOL  
OUT  
R
P
V
= 0 V Port 0-3  
V
= 5V,  
Pull-up resistor  
Supply current  
25  
50  
100  
IN  
DD  
T = 25 °C  
A
I
V
= 4.5 to 5.5 V  
RUN mode 8-MHz  
CPU clock  
6
12  
mA  
DD1  
DD  
V
= 2.2 to3 V  
3-MHz CPU clock  
2
4
3
DD  
I
V
= 4.5 to 5.5 V  
Idle mode 8-MHz CPU  
clock  
1.5  
DD2  
DD  
V
= 2.2 to3 V  
3-MHz CPU clock  
1
1
2
3
DD  
I
Stop mode,  
disable  
LVR  
V
= 4.5 to 5.5 V  
mA  
DD3  
DD  
T = 25 °C  
A
V
= 2.2 to3 V  
0.5  
2
DD  
T = 25 °C  
A
NOTE: D.C. electrical values for Supply current (I  
DD1  
to I ) do not include current drawn through internal pull-up  
DD3  
resisters, output port drive current, LVR, and ADC.  
18-3  
ELECTRICAL DATA  
S3C9498/F9498  
Table 18-3. A.C. Electrical Characteristics  
(T = –25 °C to + 85 °C, V  
= 2.2 V to 5.5 V)  
A
DD  
Parameter  
Symbol  
Conditions  
Port 1(INT0, INT1)  
Min  
Typ  
Max  
Unit  
Interrupt input  
high, low width  
t
,
200  
ns  
INTH  
V
= 5V ± 10%  
t
DD  
INTL  
nRESET input  
low width  
t
1
us  
Input  
RSL  
V
= 5V ± 10%  
DD  
1/tCPU  
tINTL  
tRSL  
tINTH  
0.8 VDD  
0.2 VDD  
NOTE:  
The unit tcpu means one CPU clock period.  
Figure 18-1. Input Timing Measurement Points  
18-4  
S3C9498/F9498  
ELECTRICAL DATA  
CPU Clock  
8MHz  
4MHz  
3MHz  
2MHz  
1MHz  
1
2
3
4
4.5  
5
5.5  
6
7
2.2 2.7  
Supply Voltage (V)  
Figure 18-2. Operating Voltage Range (S3C9498/F9498)  
VOUT  
VDD  
A = 0.2 VDD  
B = 0.4 VDD  
C = 0.6 VDD  
D = 0.8 VDD  
VSS  
VIN  
A
B
C
D
0.3 VDD  
0.7 VDD  
Figure 18-3. Schimtt Trigger Input Characteristic Diagram  
18-5  
ELECTRICAL DATA  
S3C9498/F9498  
Table 18-4. Oscillator Characteristics  
(T = – 25 °C to + 85 °C)  
A
Oscillator  
Clock Circuit  
Test Condition  
Min  
Typ  
Max  
Unit  
Main crystal or  
ceramic  
1
8
MHz  
V
V
= 4.5 to 5.5 V  
= 3.0 to 4.5 V  
DD  
DD  
XIN  
XOUT  
C1  
C2  
External clock  
(Main system)  
1
8
V
V
= 4.5 to 5.5 V  
= 3.0 to 4.5 V  
DD  
XIN  
XOUT  
DD  
Table 18-5. Oscillation Stabilization Tim e  
(T = – 25 °C to + 85 °C, V  
= 2.2 V to 5.5 V)  
A
DD  
Oscillator  
Test Condition  
Min  
Typ  
Max  
20  
Unit  
Main crystal  
Main ceramic  
fosc > 1.0 MHz  
ms  
Oscillation stabilization occurs when V is equal  
DD  
10  
to the minimum oscillator voltage range.  
External clock  
(main system)  
X input high and low width (t , t  
)
50  
ns  
IN  
XH XL  
(1)  
16  
Oscillator  
stabilization wait  
time  
ms  
t
t
when released by a reset  
2
/fosc  
WAIT  
WAIT  
(2)  
when released by an interrupt  
NOTES:  
1. fosc is the oscillator frequency.  
2. The duration of the oscillator stabilization wait time, t  
, when it is released by an interrupt is determined by the  
WAIT  
setting in the basic timer control register, BTCON.  
18-6  
S3C9498/F9498  
ELECTRICAL DATA  
Table 18-6. Data Retention Supply Voltage in Stop Mode  
(T = – 25 °C to + 85 °C, V = 2.2 V to 5.5V)  
A
DD  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Data retention  
supply voltage  
V
Stop mode  
2.2  
5.5  
V
DDDR  
Data retention  
supply current  
I
Stop mode; V  
= 2.2 V  
0.1  
5
µA  
DDDR  
DDDR  
NOTE: Supply current does not include current drawn through internal pull-up resistors or external output current loads.  
Internal RESET  
Operation  
Oscillation  
Stabilization Time  
Stop Mode  
Normal  
Operating  
Mode  
Data Retention Mode  
V
DD  
V
DDDR  
Execution Of  
Stop Instrction  
RESET  
0.8 VDD  
0.2 VDD  
tWAIT  
NOTE:  
tWAIT is the same as 4096 x 16 x 1/fosc  
Figure 18-4. Stop Mode Release Timing When Initiated by a RESET  
Table 18-7. LVR(Low Voltage Reset) Circuit Characteristics  
°
(T = 25 C)  
A
Parameter  
LVR voltage level  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
°
T = 25 C  
A
V
2.7  
3.0  
3.3  
V
LVR  
18-7  
ELECTRICAL DATA  
S3C9498/F9498  
Table 18-8. A/D Converter Electrical Characteristics  
(T = – 25 °C to + 85 °C, V  
= 2.2 V to 5.5 V, V  
= 0 V)  
A
DD  
SS  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
Total accuracy  
V
= 5.12 V  
± 3  
LSB  
DD  
CPU clock = 8 MHz  
AV  
= 5.12 V  
REF  
SS  
AV  
= 0 V  
Integral linearity error  
Differential linearity error  
Offset error of top  
ILE  
DLE  
EOT  
EOB  
± 3  
± 1  
± 3  
± 3  
LSB  
±1  
±1  
Offset error of bottom  
(1)  
t
fosc = 8 MHz  
25  
ms  
V
Conversion time  
CON  
Analog input voltage  
V
AV  
AV  
REF  
IAN  
SS  
Analog input impedance  
ADC reference voltage  
ADC reference ground  
R
2
MW  
V
AN  
AV  
2.5  
V
DD  
REF  
AV  
V
V +  
SS  
V
SS  
SS  
0.3  
Analog input current  
I
AV  
AV  
AV  
AV  
= V = 5 V  
DD  
1
10  
mA  
ADIN  
REF  
REF  
REF  
REF  
(2)  
I
= V = 5 V  
DD  
3
mA  
ADC block current  
ADC  
= V = 3 V  
DD  
0.5  
100  
1.5  
= V = 5 V  
500  
nA  
DD  
Power down mode  
NOTES:  
1. ‘Conversion time’ is the time required from the moment a conversion operation starts until it ends.  
2. is operating current during A/D conversion.  
I
ADC  
18-8  
S3C9498/F9498  
ELECTRICAL DATA  
Digital Output  
Analog Input  
AVSS VEOB V2  
V(K-1) V(K)  
VEOT AVREF  
Figure 18-5. Definition of DLE and ILE  
18-9  
ELECTRICAL DATA  
S3C9498/F9498  
NOTES  
18-10  
S3C9498/F9498  
MECHANICAL DATA  
19 MECHANICAL DATA  
OVERVIEW  
The S3C9498/F9498 is available in a 32-pin SDIP package (Samsung: 32-SDIP-400) and a 32-pin SOP package  
(32-SOP-450A) and 30-pin package(30-SDIP-400) and a 28-pin SOP package (28-SOP-375). Package  
dimensions are shown in Figures19-1, 19-2, 19-3 and 19-4  
#32  
#17  
32-SOP-450A  
#1  
#16  
+ 0.1  
0.20  
- 0.05  
19.90 ± 0.2  
1.27  
(0.43)  
0.40 ± 0.1  
NOTE: Dimensions are in millimeters  
Figure 19-1. 32-SOP-450A Package Dimensions  
19-1  
MECHANICAL DATA  
S3C9498/F9498  
#32  
#17  
0-15  
32-SDIP-400  
#1  
#16  
27.88 MAX  
27.48 ?0.20  
0.45 ?0.10  
1.00 ?0.10  
1.778  
(1.37)  
NOTE: Dimensions are in millimeters.  
Figure 19-2. 32-SDIP-400 Package Dimensions  
19-2  
S3C9498/F9498  
MECHANICAL DATA  
#28  
#15  
28-SOP-375  
#1  
#14  
+ 0.10  
- 0.05  
0.15  
18.02 MAX  
17.62 ± 0.2  
1.27  
(0.56)  
0.41 ± 0.1  
NOTE: Dimensions are in millimeters  
Figure 19-3. 28-SOP-375 Package Dimensions  
19-3  
MECHANICAL DATA  
S3C9498/F9498  
#30  
#16  
0-15  
30-SDIP-400  
#1  
#15  
27.88MAX  
27.48 ± 0.2  
0.56 ± 0.1  
1.12 ± 0.1  
1.778  
(1.30)  
NOTE: Dimensions are in millimeters.  
Figure 19-4. 30-Pin SDIP Package Dimensions  
19-4  
S3C9498/F9498  
MTP  
20 MTP  
OVERVIEW  
The S3C9498/F9498 single-chip CMOS microcontroller is the MTP (Multi Time Programmable) version of the  
S3C9498 microcontroller. It has an on-chip Flash ROM instead of masked ROM. The Flash ROM is accessed by  
serial data format.  
The S3C9498/F9498 is fully compatible with the S3C9498, in function, in D.C. electrical characteristics, and in pin  
configuration. Because of its simple programming requirements, the S3F9488 is ideal for use as an evaluation chip  
for the S3C9498.  
VDD  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
VSS  
XOUT  
XIN  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
P3.2/SCK(SCLK)  
P3.1/SO(SDAT)  
P3.0/SI  
P2.7/PWM  
P2.6/T1CAP  
P2.5/T1OUT  
S3C9498/  
F9498  
(Vpp)TEST  
RxD/P0.0  
TxD/P0.1  
nRESET/P0.2  
P3.6  
P3.5  
P3.3  
P3.4  
AVREF  
(Top View)  
P2.4/T1CK  
P2.3/TBOUT  
P2.2/TACAP  
P2.1/TACK  
P2.0/TAOUT  
P1.7/ADC7  
P1.6/ADC6/TDOUT  
32-SOP  
32-SDIP  
INT0/ADC0/P1.0  
INT1/ADC1/P1.1  
ADC2/P1.2  
ADC3/P1.3  
ADC4/P1.4  
ADC5/P1.5  
Figure 20-1. Pin Assignment Diagram (32-Pin Package)  
20-1  
MTP  
S3C9498/F9498  
VDD  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
VSS  
XOUT  
XIN  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
P3.2/SCK(SCLK)  
P3.1/SO(SDAT)  
P3.0/SI  
P2.7/PWM  
P2.6/T1CAP  
P2.5/T1OUT  
P3.5  
P2.4/T1CK  
P2.3/TBOUT  
P2.2/TACAP  
P2.1/TACK  
P2.0/TAOUT  
P1.7/ADC7  
P1.6/ADC6/TDOUT  
S3C9498/  
F9498  
(Vpp)TEST  
RxD/P0.0  
TxD/P0.1  
nRESET/P0.2  
P3.3  
AVREF  
INT0/ADC0/P1.0  
INT1/ADC1/P1.1  
ADC2/P1.2  
(Top View)  
30-SDIP  
ADC3/P1.3  
ADC4/P1.4  
ADC5/P1.5  
Figure 20-2. Pin Assignment Diagram (30-Pin Package)  
VSS  
XOUT  
XIN  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
VDD  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
P3.2/SCK(SCLK)  
P3.1/SO(SDAT)  
P3.0/SI  
S3C9498/  
F9498  
(Vpp)TEST  
RxD/P0.0  
TxD/P0.1  
P2.7/PWM  
P2.6/T1CAP  
P2.5/T1OUT  
P2.4/T1CK  
P2.3/TBOUT  
P2.2/TACAP  
P2.1/TACK  
P2.0/TAOUT  
P1.7/ADC7  
P1.6/ADC6/TDOUT  
nRESET/P0.2  
AVREF  
(Top View)  
28-SOP  
INT0/ADC0/P1.0  
INT1/ADC1/P1.1  
ADC2/P1.2  
ADC3/P1.3  
ADC4/P1.4  
ADC5/P1.5  
Figure 20-3. Pin Assignment Diagram (28-Pin Package)  
21-2  
S3C9498/F9498  
MTP  
Table 20-1. Descriptions of Pins Used to Read/Write the Flash ROM  
During Programming  
Main Chip  
Pin Name  
P3.1  
Pin Name  
Pin No.  
I/O  
Function  
SDAT  
30 (32-pin)  
28 (30-pin)  
26 (28-pin)  
I/O  
Serial data pin (output when reading, Input  
when writing) Input and push-pull output port  
can be assigned  
P3.2  
SCLK  
VPP  
31 (32-pin)  
29 (30-pin)  
27 (28-pin)  
I
I
Serial clock pin (input only pin)  
TEST  
4 (32-pin)  
4 (30-pin)  
4 (28-pin)  
Power supply pin for flash ROM cell writing  
(indicates that MTP enters into the writing  
mode). When 12.5 V is applied, MTP is in  
writing mode and when 5 V is applied,  
MTP is in reading mode. (Option)  
P0.2  
RESETB  
7 (32-pin)  
7 (30-pin)  
7 (28-pin)  
I
I
V
/V  
V
/V  
32/1 (32-pin)  
30/1 (30-pin)  
28/1 (28-pin)  
Logic power supply pin.  
DD SS  
DD SS  
20-3  
MTP  
S3C9498/F9498  
NOTES  
21-4  
S3C9498/F9498  
DEVELOPMENT TOOLS  
21 DEVELOPMENT TOOLS  
OVERVIEW  
Samsung provides a powerful and easy-to-use development support system on a turnkey basis. The development  
support system is composed of a host system, debugging tools, and supporting software. For a host system, any  
standard computer that employs Win95/98/2000 as its operating system can be used. A sophisticated debugging  
tool is provided both in hardware and software: the powerful in-circuit emulator, SMDS2+ or SK-1000, for the  
S3C7-, S3C9-, and S3C8- microcontroller families. SMDS2+ is a newly improved version of SMDS2, and SK-1000  
is supported by a third party tool vendor. Samsung also offers supporting software that includes, debugger, an  
assembler, and a program for setting options.  
SHINE  
Samsung Host Interface for In-Circuit Emulator, SHINE, is a multi-window based debugger for SMDS2+. SHINE  
provides pull-down and pop-up menus, mouse support, function/hot keys, and context-sensitive hyper-linked help.  
It has an advanced, multiple-windowed user interface that emphasizes ease of use. Each window can be easily  
sized, moved, scrolled, highlighted, added, or removed.  
SASM  
The SASM takes a source file containing assembly language statements and translates them into a corresponding  
source code, an object code and comments. The SASM supports macros and conditional assembly. It runs on the  
MS-DOS operating system. As it produces the re-locatable object codes only, the user should link object files.  
Object files can be linked with other object files and loaded into memory. SASM requires a source file and an  
auxiliary register file (device_name.reg) with device specific information.  
SAMA ASSEMBLER  
The Samsung Arrangeable Microcontroller (SAM) Assembler, SAMA, is a universal assembler, and generating an  
object code in the standard hexadecimal format. Assembled program codes include the object code used for ROM  
data and required In-circuit emulators program control data. To assemble programs, SAMA requires a source file  
and an auxiliary definition (device_name.def) file with device specific information.  
HEX2ROM  
HEX2ROM file generates a ROM code from a HEX file which is produced by the assembler. A ROM code is  
needed to fabricate a microcontroller which has a mask ROM. When generating a ROM code (.OBJ file) by  
HEX2ROM, the value "FF" is automatically filled into the unused ROM area, up to the maximum ROM size of the  
target device.  
21-1  
DEVELOPMENT TOOLS  
TARGET BOARDS  
S3C9498/F9498  
Target boards are available for all the S3C9-series microcontrollers. All the required target system cables and  
adapters are included with the device-specific target board. TB9498 is a specific target board for the  
S3C9498/F9498 development  
IBM-PC AT or Compatible  
Emulator (SMDS2+ or SK-1000)  
RS-232C  
Target  
Application  
System  
EPROM Writer Unit  
RAM Break/Display Unit  
Trace/Timer Unit  
Probe  
Adapter  
TB9498  
Target  
Board  
POD  
SAM9 Base Unit  
EVA  
Chip  
Power Supply Unit  
Figure 21-1. SMDS+ or SK-1000 Product Configuration  
21-2  
S3C9498/F9498  
DEVELOPMENT TOOLS  
TB9498 TARGET BOARD  
The TB9498 target board is used for the S3C9498/F9498 microcontrollers. It is supported by the  
SK-1000/SMDS2+ development systems.  
TB9498  
To User_VCC  
Idle  
+
Stop  
+
Off  
On  
RESET  
74HC11  
25  
CN1  
1
J101  
1
40  
144 QFP  
S3E9490  
EVA Chip  
20  
21  
SMDS  
SMDS2+  
SMxxxx  
Figure 21-2. TB9498 Target Board Configuration  
21-3  
DEVELOPMENT TOOLS  
S3C9498/F9498  
Table 21-1. Power Selection Settings for TB9498  
Operating Mode  
"To User_Vcc"  
Settings  
Comments  
To user_Vcc  
The SK-1000/SMDS2+ main  
board supplies V to the  
External  
TB9498  
CC  
off  
on  
Target  
System  
target board (evaluation chip)  
and the target system.  
VCC  
VSS  
VCC  
SK-1000/SMDS2+  
To user_Vcc  
The SK-1000/SMDS2+ main  
board supplies V only to the  
CC  
External  
TB9498  
off  
on  
target board (evaluation chip).  
The target system must have  
its own power supply.  
T arget  
VCC  
System  
VSS  
VCC  
SK-1000/SMDS2+  
NOTE: The following symbol in the "To User_Vcc" Setting column indicates the electrical short (off) configuration:  
SMDS2+ Selection (SAM8)  
In order to write data into program memory that is available in SMDS2+, the target board should be selected to be  
for SMDS2+ through a switch as follows. Otherwise, the program memory writing function is not available.  
Table 21-2. The SMDS2+ Tool Selection Setting  
"SW1" Setting  
SMDS SMDS2+  
Operating Mode  
R/W*  
SMDS2+  
R/W*  
Target  
System  
21-4  
S3C9498/F9498  
DEVELOPMENT TOOLS  
ON  
OFF  
3EH.7 3FH.0  
ON  
Low  
OFF  
High  
NOTE: About EVA chip, smart option is determined by DIP switch  
not software.  
Figure 21-3. DIP Switch for Smart Option  
21-5  
DEVELOPMENT TOOLS  
S3C9498/F9498  
J101  
VSS  
1
2
3
4
5
6
7
8
VDD  
40  
39  
XOUT  
XIN  
TEST  
P3.2/SCK  
P3.1/SO  
P3.0/SI  
P2.7/PWM  
P2.6/T0CAP  
P2.5/T0OUT  
38  
37  
36  
35  
34  
33  
32  
31  
30  
RxD/P0.0  
TxD/P0.1  
RESETB/P0.2  
AVREF  
INT0/ADC0/P1.0  
INT1/ADC1/P1.1  
ADC2/P1.2  
P2.4/T0CK  
P2.3/TBOUT  
P2.2/TACAP  
P2.1/TACK  
P2.0/TAOUT  
P1.7/ADC7  
9
10  
11  
12  
13  
14  
15  
ADC3/P1.3  
ADC4/P1.4  
29  
28  
27  
26  
25  
24  
23  
22  
ADC5/P1.5  
P3.3  
P1.6/ADC6/TDOUT  
P3.6  
P3.5  
NC  
NC  
NC  
NC  
P3.4  
NC  
NC  
NC  
NC  
16  
17  
18  
19  
20  
21  
Figure 21-4. 44-Pin Connector for TB9498  
Target Board  
Target System  
J101  
40  
1
1
40  
Part Name: AS20D  
Order Cods: SM6304  
20 21  
20 21  
Figure 21-5. S3C9498/F9498 Probe Adapter for 40pin Connector Package  
21-6  

相关型号:

S3C94A5

8-BIT CMOS MICROCONTROLLER
SAMSUNG

S3C94A5XX-AQ5

Microcontroller, 8-Bit, MROM, SAM88RCRI CPU, 12MHz, CMOS, PDIP42
SAMSUNG

S3C9614

SAM87RI family of 8-bit single-chip CMOS microcontrollers
SAMSUNG

S3C9614XX-AT

Microcontroller, 8-Bit, MROM, 12MHz, CMOS, PDIP20, 0.300 INCH, DIP-20
SAMSUNG

S3C9614XX-QT

Microcontroller, 8-Bit, MROM, 12MHz, CMOS, PQFP64
SAMSUNG

S3C9644

SAM87RI family of 8-bit single-chip CMOS microcontrollers
SAMSUNG

S3C9644XX-AQ

Microcontroller, 8-Bit, MROM, SAM87RI CPU, 6MHz, CMOS, PDIP42, 0.600 INCH, SDIP-42
SAMSUNG

S3C9644XX-QZ

Microcontroller, 8-Bit, MROM, SAM87RI CPU, 6MHz, CMOS, PQFP44, 10 X 10 MM, QFP-44
SAMSUNG

S3C9648

SAM87RI family of 8-bit single-chip CMOS microcontrollers
SAMSUNG

S3C9648XX-AQ

暂无描述
SAMSUNG

S3C9648XX-QZ

Microcontroller, 8-Bit, MROM, SAM87RI CPU, 6MHz, CMOS, PQFP44, 10 X 10 MM, QFP-44
SAMSUNG

S3C9654

MICROCONTROLLER
SAMSUNG