S3F9454XX-DH [SAMSUNG]

Microcontroller, 8-Bit, FLASH, SAM88RCRI CPU, 10MHz, CMOS, PDIP16;
S3F9454XX-DH
型号: S3F9454XX-DH
厂家: SAMSUNG    SAMSUNG
描述:

Microcontroller, 8-Bit, FLASH, SAM88RCRI CPU, 10MHz, CMOS, PDIP16

微控制器 光电二极管
文件: 总190页 (文件大小:837K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
22-S3-C9444/F9444/C9454/F9454-200301  
USER'S MANUAL  
S3C9444/F9444/C9454/F9454  
8-Bit CMOS  
Microcontroller  
Revision 2  
S3C9444/F9444/C9454/F9454  
8-BIT CMOS  
MICROCONTROLLER  
USER'S MANUAL  
Revision 2  
Important Notice  
The information in this publication has been carefully  
"Typical" parameters can and do vary in different  
applications. All operating parameters, including  
"Typicals" must be validated for each customer  
application by the customer's technical experts.  
checked and is believed to be entirely accurate at  
the time of publication. Samsung assumes no  
responsibility, however, for possible errors or  
omissions, or for any consequences resulting from  
the use of the information contained herein.  
Samsung products are not designed, intended, or  
authorized for use as components in systems  
intended for surgical implant into the body, for other  
applications intended to support or sustain life, or for  
any other application in which the failure of the  
Samsung product could create a situation where  
personal injury or death may occur.  
Samsung reserves the right to make changes in its  
products or product specifications with the intent to  
improve function or design at any time and without  
notice and is not required to update this  
documentation to reflect such changes.  
This publication does not convey to a purchaser of  
semiconductor devices described herein any license  
under the patent rights of Samsung or others.  
Should the Buyer purchase or use a Samsung  
product for any such unintended or unauthorized  
application, the Buyer shall indemnify and hold  
Samsung and its officers, employees, subsidiaries,  
affiliates, and distributors harmless against all  
claims, costs, damages, expenses, and reasonable  
attorney fees arising out of, either directly or  
indirectly, any claim of personal injury or death that  
may be associated with such unintended or  
unauthorized use, even if such claim alleges that  
Samsung was negligent regarding the design or  
manufacture of said product.  
Samsung makes no warranty, representation, or  
guarantee regarding the suitability of its products for  
any particular purpose, nor does Samsung assume  
any liability arising out of the application or use of  
any product or circuit and specifically disclaims any  
and all liability, including without limitation any  
consequential or incidental damages.  
S3C9444/F9444/C9454/F9454 8-Bit CMOS Microcontroller  
User's Manual, Revision 2  
Publication Number: 22-S3-C9444/F9444/C9454/F9454-200301  
© 2003 Samsung Electronics  
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in  
any form or by any means, electric or mechanical, by photocopying, recording, or otherwise, without the prior  
written consent of Samsung Electronics.  
Samsung Electronics' microcontroller business has been awarded full ISO-14001  
certification (BVQ1 Certificate No. FM9300). All semiconductor products are designed  
and manufactured in accordance with the highest quality standards and objectives.  
Samsung Electronics Co., Ltd.  
San #24 Nongseo-Ri, Giheung-Eup  
Yongin-City, Gyeonggi-Do, Korea  
C.P.O. Box #37, Suwon 440-900  
TEL: (0331) 209-1907  
FAX: (0331) 209-1899  
Home-Page URL: Http://www.samsungsemi.com/  
Printed in the Republic of Korea  
Preface  
The S3C9444/F9444/C9454/F9454 Microcontroller User's Manual is designed for application designers and  
programmers who are using the S3C9444/F9444/C9454/F9454 microcontroller for application development. It is  
organized in two parts:  
Part I Programming Model  
Part II Hardware Descriptions  
Part I contains software-related information to familiarize you with the microcontroller's architecture, programming  
model, instruction set, and interrupt structure. It has six sections:  
Chapter 1  
Chapter 2  
Chapter 3  
Product Overview  
Address Spaces  
Addressing Modes  
Chapter 4  
Chapter 5  
Chapter 6  
Control Registers  
Interrupt Structure  
SAM88RCRI Instruction Set  
Chapter 1, "Product Overview," is a high-level introduction to the S3C9444/F9444/C9454/F9454 with a general  
product description, and detailed information about individual pin characteristics and pin circuit types.  
Chapter 2, "Address Spaces," explains the S3C9444/F9444/C9454/F9454 program and data memory, internal  
register file, and mapped control registers, and explains how to address them. Chapter 2 also describes working  
register addressing, as well as system and user-defined stack operations.  
Chapter 3, "Addressing Modes," contains detailed descriptions of the six addressing modes that are supported by  
the CPU.  
Chapter 4, "Control Registers," contains overview tables for all mapped system and peripheral control register  
values, as well as detailed one-page descriptions in standard format. You can use these easy-to-read,  
alphabetically organized, register descriptions as a quick-reference source when writing programs.  
Chapter 5, "Interrupt Structure," describes the S3C9444/F9444/C9454/F9454 interrupt structure in detail and  
further prepares you for additional information presented in the individual hardware module descriptions in Part II.  
Chapter 6, "SAM88RCRI Instruction Set," describes the features and conventions of the instruction set used for  
all S3C9-series microcontrollers. Several summary tables are presented for orientation and reference. Detailed  
descriptions of each instruction are presented in a standard format. Each instruction description includes one or  
more practical examples of how to use the instruction when writing an application program.  
A basic familiarity with the information in Part I will help you to understand the hardware module descriptions in  
Part II. If you are not yet familiar with the SAM88RCRI product family and are reading this manual for the first  
time, we recommend that you first read chapter 1-3 carefully. Then, briefly look over the detailed information in  
chapters 4, 5, and 6. Later, you can reference the information in Part I as necessary.  
Part II contains detailed information about the peripheral components of the S3C9444/F9444/C9454/F9454  
microcontrollers. Also included in Part II are electrical, mechanical, MTP, and development tools data. It has 10  
chapters:  
Chapter 7  
Chapter 8  
Chapter 9  
Chapter 10  
Chapter 11  
Clock Circuit  
RESET and Power-Down  
I/O Ports  
Basic Timer and Timer 0  
8-bit PWM  
Chapter 12  
Chapter 13  
Chapter 14  
Chapter 15  
Chapter 16  
A/D Converter  
Electrical Data  
Mechanical Data  
S3F9444/F9454  
Development Tools  
Two order forms are included at the back of this manual to facilitate customer order  
S3C9444/F9444/C9454/F9454 microcontrollers: the Mask ROM Order Form, and the Mask Option Selection  
Form. You can photocopy these forms, fill them out, and then forward them to your local Samsung Sales  
Representative.  
S3C9444/F9444/C9454/F9454 MICROCONTROLLER  
iii  
Table of Contents  
Part I — Programming Model  
Chapter 1  
Product Overview  
SAM88RCRI Product Family ......................................................................................................................1-1  
S3C9444/C9454 Microcontroller.................................................................................................................1-1  
MTP............................................................................................................................................................1-1  
Features .....................................................................................................................................................1-2  
Block Diagram............................................................................................................................................1-3  
Pin Assignments.........................................................................................................................................1-4  
Pin Descriptions..........................................................................................................................................1-6  
Pin Circuits .................................................................................................................................................1-7  
Chapter 2  
Address Spaces  
Overview..........................................................................................................................................................................2-1  
Program Memory (ROM)..............................................................................................................................................2-2  
Register Architecture.....................................................................................................................................................2-5  
Common Working Register Area (C0H–CFH)..........................................................................................................2-7  
System Stack..................................................................................................................................................................2-8  
Chapter 3  
Addressing Modes  
Overview..........................................................................................................................................................................3-1  
Register Addressing Mode (R) ..........................................................................................................................3-2  
Indirect Register Addressing Mode (IR)...........................................................................................................3-3  
Indexed Addressing Mode (X) ...........................................................................................................................3-7  
Direct Address Mode (DA)..................................................................................................................................3-10  
Relative Address Mode (RA)..............................................................................................................................3-12  
Immediate Mode (IM)...........................................................................................................................................3-12  
S3C9444/F9444/C9454/F9454 MICROCONTROLLER  
v
Table of Contents (Continued)  
Chapter 4  
Control Registers  
Overview.................................................................................................................................................... 4-1  
Chapter 5  
Interrupt Structure  
Overview..........................................................................................................................................................................5-1  
Interrupt Processing Control Points..................................................................................................................5-1  
Enable/Disable Interrupt Instructions (EI, DI)..................................................................................................5-2  
Interrupt Pending Function Types.....................................................................................................................5-2  
Interrupt Priority....................................................................................................................................................5-2  
Interrupt Source Service Sequence..................................................................................................................5-3  
Interrupt Service Routines..................................................................................................................................5-3  
Generating interrupt Vector Addresses............................................................................................................5-3  
S3C9444/C9454 Interrupt Structure.................................................................................................................5-4  
Chapter 6  
SAM88RCRI Instruction Set  
Overview..........................................................................................................................................................................6-1  
Register Addressing ............................................................................................................................................6-1  
Addressing Modes ...............................................................................................................................................6-1  
Flags Register (FLAGS)......................................................................................................................................6-4  
Flag Descriptions..................................................................................................................................................6-4  
Instruction Set Notation.......................................................................................................................................6-5  
Condition Codes...................................................................................................................................................6-9  
Instruction Descriptions.......................................................................................................................................6-10  
vi  
S3C9444/F9444/C9454/F9454 MICROCONTROLLER  
Table of Contents (Continued)  
Part II — Hardware Descriptions  
Chapter 7  
Clock Circuit  
Overview..........................................................................................................................................................................7-1  
Main Oscillator Logic ...........................................................................................................................................7-1  
Clock Status During Power-Down Modes .......................................................................................................7-2  
System Clock Control Register (CLKCON).....................................................................................................7-2  
Chapter 8  
RESET and Power-Down  
System Reset..................................................................................................................................................................8-1  
Overview................................................................................................................................................................8-1  
Power-Down Modes ......................................................................................................................................................8-3  
Stop Mode .............................................................................................................................................................8-3  
Idle Mode ...............................................................................................................................................................8-3  
Hardware Reset Values................................................................................................................................................8-4  
Chapter 9  
I/O Ports  
Overview..........................................................................................................................................................................9-1  
Port Data Registers..............................................................................................................................................9-2  
Port 0 ......................................................................................................................................................................9-3  
Port 1 ......................................................................................................................................................................9-7  
Port 2 ......................................................................................................................................................................9-9  
Chapter 10  
Basic Timer and Timers  
Module Overview............................................................................................................................................................10-1  
Basic Timer (BT) ............................................................................................................................................................10-2  
Basic Timer Control Register (BTCON)...........................................................................................................10-2  
Basic Timer Function Description......................................................................................................................10-3  
Timer 0.............................................................................................................................................................................10-7  
Timer 0 Control Registers (T0CON) .................................................................................................................10-7  
Timer 0 Function Description .............................................................................................................................10-8  
S3C9444/F9444/C9454/F9454 MICROCONTROLLER  
vii  
Table of Contents (Continued)  
Chapter 11  
8-Bit PWM  
Overview..........................................................................................................................................................................11-1  
Function description ......................................................................................................................................................11-1  
PWM.......................................................................................................................................................................11-1  
PWM Control Register (PWMCON)..................................................................................................................11-5  
Chapter 12  
A/D Converter  
Overview..........................................................................................................................................................................12-1  
Using A/D Pins for Standard digital Input ........................................................................................................12-2  
A/D Converter Control Register (ADCON) ......................................................................................................12-2  
Internal Reference Voltage Levels....................................................................................................................12-3  
Conversion timing.................................................................................................................................................12-4  
Internal A/D Conversion Procedure..................................................................................................................12-4  
Chapter 13  
Electrical Data  
Overview.................................................................................................................................................... 13-1  
Chapter 14  
Mechanical Data  
Overview.................................................................................................................................................... 14-1  
Chapter 15  
S3F9444/F9454 MTP  
Overview..........................................................................................................................................................................15-1  
Operating Mode Characteristics........................................................................................................................15-3  
Chapter 16  
Development Tools  
Overview..........................................................................................................................................................................16-1  
SHINE............................................................................................................................................... 16-1  
SAMA Assembler .............................................................................................................................. 16-1  
SASM86............................................................................................................................................ 16-1  
HEX2ROM ........................................................................................................................................ 16-1  
Target Boards ................................................................................................................................... 16-2  
MTPs................................................................................................................................................. 16-2  
TB9444/9454 Target Board............................................................................................................... 16-3  
viii  
S3C9444/F9444/C9454/F9454 MICROCONTROLLER  
List of Figures  
Figure  
Title  
Page  
Number  
Number  
1-1  
1-2  
1-3  
1-4  
1-5  
1-6  
1-7  
1-8  
1-9  
1-10  
1-11  
Block Diagram........................................................................................................................................1-3  
Pin Assignment Diagram (20-Pin DIP/SOP Package)....................................................................1-4  
Pin Assignment Diagram (16-Pin DIP Package) .............................................................................1-5  
Pin Assignment Diagram (8-Pin DIP/SOP Package)......................................................................1-5  
Pin Circuit Type A..................................................................................................................................1-7  
Pin Circuit Type B..................................................................................................................................1-7  
Pin Circuit Type C..................................................................................................................................1-7  
Pin Circuit Type D..................................................................................................................................1-7  
Pin Circuit Type E..................................................................................................................................1-8  
Pin Circuit Type E-1 ..............................................................................................................................1-8  
Pin Circuit Type E-2 ..............................................................................................................................1-9  
2-1  
2-2  
2-3  
2-4  
2-5  
Program Memory Address Space ......................................................................................................2-2  
Smart Option...........................................................................................................................................2-3  
Internal Register File Organization.....................................................................................................2-6  
16-Bit Register Pairs .............................................................................................................................2-7  
Stack Operations ...................................................................................................................................2-8  
3-1  
3-2  
3-3  
3-4  
3-5  
3-6  
3-7  
3-8  
Register Addressing..............................................................................................................................3-2  
Working Register Addressing..............................................................................................................3-2  
Indirect Register Addressing to Register File...................................................................................3-3  
Indirect Register Addressing to Program Memory ..........................................................................3-4  
Indirect Working Register Addressing to Register File...................................................................3-5  
Indirect Working Register Addressing to Program or Data Memory............................................3-6  
Indexed Addressing to Register File..................................................................................................3-7  
Indexed Addressing to Program or Data Memory with Short Offset............................................3-8  
Indexed Addressing to Program or Data Memory with Long Offset.............................................3-9  
Direct Addressing for Load Instructions ............................................................................................3-10  
Direct Addressing for Call and Jump Instructions............................................................................3-11  
Relative Addressing ..............................................................................................................................3-12  
Immediate Addressing..........................................................................................................................3-12  
3-9  
3-10  
3-11  
3-12  
3-13  
4-1  
Register Description Format................................................................................................................4-4  
5-1  
5-2  
5-3  
S3C9-Series Interrupt Type.................................................................................................................5-1  
Interrupt Function Diagram..................................................................................................................5-2  
S3C9444/C9454 Interrupt Structure...................................................................................................5-4  
6-1  
System Flags Register (FLAGS) ........................................................................................................6-4  
S3C9444/F9444/C9454/F9454 MICROCONTROLLER  
ix  
List of Figures (Continued)  
Figure  
Title  
Page  
Number  
Number  
7-1  
7-2  
7-3  
7-4  
Main Oscillator Circuit (RC Oscillator with Internal Capacitor)......................................................7-1  
Main Oscillator Circuit (Crystal/Ceramic Oscillator)........................................................................7-1  
System Clock Control Register (CLKCON) ......................................................................................7-2  
System Clock Circuit Diagram ............................................................................................................7-3  
8-1  
8-2  
Reset Block Diagram ............................................................................................................................8-2  
Timing for S3C9444/C9454 after RESET.........................................................................................8-2  
9-1  
9-2  
9-3  
9-4  
9-5  
9-6  
9-7  
9-8  
9-9  
9-10  
Port Data Register Format...................................................................................................................9-2  
Port 0 Circuit Diagram ..........................................................................................................................9-3  
Port 0 Control Register (P0CONH, High Byte) ................................................................................9-4  
Port 0 Control Register (P0CONL, Low Byte)..................................................................................9-5  
Port 0 Interrupt Pending Registers (P0PND)....................................................................................9-6  
Port 1 Circuit Diagram ..........................................................................................................................9-7  
Port 1 Control Register (P1CON) .......................................................................................................9-8  
Port 2 Circuit Diagram ..........................................................................................................................9-9  
Port 2 Control Register (P2CONH, High Byte) ................................................................................9-10  
Port 2 Control Register (P2CONL, Low byte) ..................................................................................9-11  
10-1  
10-2  
10-3  
10-4  
10-5  
10-6  
10-7  
Basic Timer Control Register (BTCON) ............................................................................................10-2  
Oscillation Stabilization Time on RESET..........................................................................................10-4  
Oscillation Stabilization Time on STOP Mode Release .................................................................10-5  
Timer 0 Control Registers (T0CON) ..................................................................................................10-7  
Simplified Timer 0 Function Diagram (Interval Timer Mode).........................................................10-8  
Timer 0 Timing Diagram.......................................................................................................................10-9  
Basic Timer and Timer 0 Block Diagram...........................................................................................10-10  
11-1  
11-2  
11-3  
11-4  
8-Bit PWM Basic Waveform ................................................................................................................11-3  
8-Bit Extended PWM Waveform.........................................................................................................11-4  
PWM Control Register (PWMCON)...................................................................................................11-5  
PWM Functional Block Diagram.........................................................................................................11-6  
12-1  
12-2  
12-3  
12-4  
12-5  
A/D Converter Control Register (ADCON)........................................................................................12-2  
A/D Converter Circuit Diagram ...........................................................................................................12-3  
A/D Converter Data Register (ADDATAH/L)....................................................................................12-3  
A/D Converter Timing Diagram...........................................................................................................12-4  
Recommended A/D Converter Circuit for Highest Absolute Accuracy........................................12-5  
x
S3C9444/F9444/C9454/F9454 MICROCONTROLLER  
List of Figures (Concluded)  
Figure  
Title  
Page  
Number  
Number  
13-1  
13-2  
13-3  
13-4  
13-5  
Input Timing Measurement Points......................................................................................................13-4  
Operating Voltage Range.....................................................................................................................13-6  
Schmitt Trigger Input Characteristics Diagram ................................................................................13-6  
Stop Mode Release Timing When Initiated by a RESET...............................................................13-7  
LVR Reset Timing..................................................................................................................................13-9  
14-1  
14-2  
14-3  
14-4  
14-5  
20-DIP-300A Package Dimensions....................................................................................................14-1  
20-SOP-375 Package Dimensions.....................................................................................................14-2  
16-DIP-300A Package Dimensions....................................................................................................14-3  
8-DIP-300 Package Dimensions.........................................................................................................14-4  
8-SOP-225 Package Dimensions.......................................................................................................14-5  
15-1  
15-2  
15-3  
Pin Assignment Diagram (20-Pin Package) .....................................................................................15-1  
Pin Assignment Diagram (16-Pin Package) .....................................................................................15-2  
Pin Assignment Diagram (8-Pin Package)........................................................................................15-2  
16-1  
16-2  
16-3  
16-4  
16-5  
SMDS Product Configuration (SMDS2+)..........................................................................................16-2  
TB9444/9454 Target Board Configuration........................................................................................16-3  
DIP Switch for Smart Option................................................................................................................16-5  
20-Pin Connector for TB9444/9454 ...................................................................................................16-6  
S3C9444/C9454 Probe Adapter for 20-DIP Package.....................................................................16-6  
S3C9444/F9444/C9454/F9454 MICROCONTROLLER  
xi  
List of Tables  
Table  
Title  
Page  
Number  
Number  
1-1  
2-1  
4-1  
S3C9454 Pin Descriptions...................................................................................................................1-6  
Register Type Summary.......................................................................................................................2-5  
System and Peripheral control Registers..........................................................................................4-2  
6-1  
6-2  
6-3  
6-4  
6-5  
6-6  
Instruction Group Summary.................................................................................................................6-2  
Flag Notation Conventions...................................................................................................................6-5  
Instruction Set Symbols........................................................................................................................6-5  
Instruction Notation Conventions........................................................................................................6-6  
Opcode Quick Reference.....................................................................................................................6-7  
Condition Codes ....................................................................................................................................6-9  
8-1  
Register Values after a Reset .............................................................................................................8-4  
9-1  
9-2  
S3C9444/C9454 Port Configuration Overview.................................................................................9-1  
Port Data Register Summary...............................................................................................................9-2  
11-1  
11-2  
PWM Control and Data Registers ......................................................................................................11-2  
PWM output "stretch" Values for Extension Data Register (PWMDATA.1–.0)..........................11-3  
13-1  
13-2  
13-3  
13-4  
13-5  
13-6  
13-7  
13-8  
Absolute Maximum Ratings.................................................................................................................13-2  
DC Electrical Characteristics...............................................................................................................13-3  
AC Electrical Characteristics...............................................................................................................13-4  
Oscillator Characteristics......................................................................................................................13-5  
Oscillation Stabilization Time...............................................................................................................13-5  
Data Retention Supply Voltage in Stop Mode..................................................................................13-7  
A/D Converter Electrical Characteristics...........................................................................................13-8  
LVD Circuit Characteristics..................................................................................................................13-9  
15-1  
15-2  
15-3  
Descriptions of Pins Used to Read/Write the Flash ROM..............................................................15-3  
Comparison of S3F9444/F9454 and S3C9444/C9454 Features..................................................15-3  
Operating Mode Selection Criteria .....................................................................................................15-3  
16-1  
16-2  
16-3  
Power Selection Settings for TB9444/9454......................................................................................16-4  
The SMDS2+ Tool Selection Setting .................................................................................................16-4  
Using Single Header Pins as the Input Path for External Trigger Sources ................................16-5  
S3C9444/F9444/C9454/F9454 MICROCONTROLLER  
xiii  
List of Programming Tips  
Description  
Chapter 2:  
Page  
Number  
Address Spaces  
Smart Option Setting.....................................................................................................................................................2-4  
Addressing the Common Working Register Area....................................................................................................2-7  
Standard Stack Operations Using PUSH and POP.................................................................................................2-9  
Chapter 8:  
RESET and Power-Down  
Sample S3C9454 Initialization Routine......................................................................................................................8-6  
Chapter 10:  
Basic Timer and Timer 0  
Configuring the Basic Timer.........................................................................................................................................10-6  
Configuring Timer 0 (Interval Mode)...........................................................................................................................10-11  
Chapter 11:  
8-Bit PWM  
Programming the PWM Module to Sample Specifications.....................................................................................11-7  
Chapter 12:  
A/D Converter  
Configuring A/D Converter ...........................................................................................................................................12-6  
S3C9444/F9444/C9454/F9454 MICROCONTROLLER  
xv  
List of Register Descriptions  
Register  
Identifier  
Full Register Name  
Page  
Number  
ADCON  
BTCON  
CLKCON  
FLAGS  
A/D Converter Control Register................................................................................4-5  
Basic Timer Control Register....................................................................................4-6  
System Clock Control Register.................................................................................4-7  
System Flags Register .............................................................................................4-8  
Port 0 Control Register (High Byte).....................................................................................4-9  
Port 0 Control Register (Low Byte)......................................................................................4-10  
Port 0 Interrupt Pending Register .............................................................................4-11  
Port 1 Control Register.............................................................................................4-12  
Port 2 Control Register (High Byte).....................................................................................4-13  
Port 2 Control Register (Low Byte)......................................................................................4-14  
PWM Control Register..............................................................................................4-15  
STOP Mode Control Register...................................................................................4-16  
System Mode Register .............................................................................................4-16  
Timer 0 Control Register ..........................................................................................4-17  
P0CONH  
P0CONL  
P0PND  
P1CON  
P2CONH  
P2CONL  
PWMCON  
STOPCON  
SYM  
T0CON  
S3C9444/F9444/C9454/F9454 MICROCONTROLLER  
xvii  
List of Instruction Descriptions  
Instruction  
Mnemonic  
Full Instruction Name  
Page  
Number  
ADC  
ADD  
AND  
CALL  
CCF  
Add with Carry..........................................................................................................6-11  
Add...........................................................................................................................6-12  
Logical AND .............................................................................................................6-13  
Call Procedure..........................................................................................................6-14  
Complement Carry Flag ...........................................................................................6-15  
Clear.........................................................................................................................6-16  
Complement.............................................................................................................6-17  
Compare...................................................................................................................6-18  
Decrement................................................................................................................6-19  
Disable Interrupts .....................................................................................................6-20  
Enable Interrupts ......................................................................................................6-21  
Idle Operation...........................................................................................................6-22  
Increment .................................................................................................................6-23  
Interrupt Return ........................................................................................................6-24  
Jump ........................................................................................................................6-25  
Jump Relative...........................................................................................................6-26  
Load .........................................................................................................................6-27  
Load Memory ...........................................................................................................6-29  
Load Memory and Decrement ..................................................................................6-31  
Load Memory and Increment....................................................................................6-32  
CLR  
COM  
CP  
DEC  
DI  
EI  
IDLE  
INC  
IRET  
JP  
JR  
LD  
LDC/LDE  
LDCD/LDED  
LDCI/LDEI  
S3C9444/F9444/C9454/F9454 MICROCONTROLLER  
xix  
List of Instruction Descriptions (Continued)  
Instruction  
Mnemonic  
Full Instruction Name  
Page  
Number  
NOP  
OR  
No Operation ........................................................................................................... 6-33  
Logical OR............................................................................................................... 6-34  
Pop From Stack....................................................................................................... 6-35  
Push To Stack ......................................................................................................... 6-36  
Reset Carry Flag...................................................................................................... 6-37  
Return...................................................................................................................... 6-38  
Rotate Left............................................................................................................... 6-39  
Rotate Left Through Carry ....................................................................................... 6-40  
Rotate Right............................................................................................................. 6-41  
Rotate Right Through Carry..................................................................................... 6-42  
Subtract With Carry ................................................................................................. 6-43  
Set Carry Flag.......................................................................................................... 6-44  
Shift Right Arithmetic ............................................................................................... 6-45  
Stop Operation......................................................................................................... 6-46  
Subtract ................................................................................................................... 6-47  
Test Complement Under Mask ................................................................................ 6-48  
Test Under Mask ..................................................................................................... 6-49  
Logical Exclusive OR............................................................................................... 6-50  
POP  
PUSH  
RCF  
RET  
RL  
RLC  
RR  
RRC  
SBC  
SCF  
SRA  
STOP  
SUB  
TCM  
TM  
XOR  
xx  
S3C9444/F9444/C9454/F9454 MICROCONTROLLER  
S3C9444/F9444/C9454/F9454  
PRODUCT OVERVIEW  
1
PRODUCT OVERVIEW  
SAM88RCRI PRODUCT FAMILY  
Samsung's SAM88RCRI family of 8-bit single-chip CMOS microcontrollers offers a fast and efficient CPU, a wide  
range of integrated peripherals, and various mask-programmable ROM sizes.  
A address/data bus architecture and a large number of bit-configurable I/O ports provide a flexible programming  
environment for applications with varied memory and I/O requirements. Timer/counters with selectable operating  
modes are included to support real-time operations.  
S3C9444/C9454 MICROCONTROLLER  
The S3C9444/C9454 single-chip 8-bit microcontroller is designed for useful A/D converter , SIO application field.  
The S3C9444/C9454 uses powerful SAM88RCRI CPU and S3C9444/C9454 architecture. The internal register  
file is logically expanded to increase the on-chip register space.  
The S3C9444/C9454 has 2K/4K bytes of on-chip program ROM and 208 bytes of RAM. The S3C9444/C9454 is a  
versatile general-purpose microcontroller that is ideal for use in a wide range of electronics applications requiring  
simple timer/counter, PWM. In addition, the S3C9444/C9454’s advanced CMOS technology provides for low  
power consumption and wide operating voltage range.  
Using the SAM88RCRI design approach, the following peripherals were integrated with the SAM88RCRI core:  
— Three configurable I/O ports (18 pins)  
— Four interrupt sources with one vector and one interrupt level  
— One 8-bit timer/counter with time interval mode  
— Analog to digital converter with nine input channels and 10-bit resolution  
— One 8-bit PWM output  
The S3C9444/C9454 microcontroller is ideal for use in a wide range of electronic applications requiring simple  
timer/counter, PWM, ADC. S3C9454 is available in a 20/16-pin DIP and a 20-pin SOP package. S3C9454 is  
available in a 8-pin and a 8-pin SOP package.  
MTP  
The S3F9444/F9454 is an MTP (Multi Time Programmable) version of the S3C9444/C9454 microcontroller. The  
S3F9444/F9454 has on-chip 4-Kbyte multi-time programmable flash ROM instead of masked ROM. The  
S3F9444/F9454 is fully compatible with the S3C9444/C9454, in function, in D.C. electrical characteristics and in  
pin configuration.  
1-1  
PRODUCT OVERVIEW  
S3C9444/F9444/C9454/F9454  
FEATURES  
CPU  
Timer/Counters  
SAM88RCRI CPU core  
One 8-bit basic timer for watchdog function  
The SAM88RCRI core is low-end version of the  
current SAM87 core.  
One 8-bit timer/counter with time interval modes  
A/D Converter  
Memory  
Nine analog input pins  
10-bit conversion resolution  
2/4-Kbyte internal program memory  
208-byte general purpose register area  
Oscillation Frequency  
Instruction Set  
1 MHz to 10 MHz external crystal oscillator  
Maximum 10 MHz CPU clock  
41 instructions  
The SAM88RCRI core provides all the SAM87  
core instruction except the word-oriented  
instruction, multiplication, division, and some  
one-byte instruction.  
Internal RC: 3.2 MHz (typ.), 0.5 MHz (typ.) in  
VDD = 5 V  
Operating Temperature Range  
Instruction Execution Time  
400 ns at 10 MHz f (minimum)  
° °  
– 25 C to + 85 C  
OSC  
Operating Voltage Range  
2.0 V (LVR Level) to 5.5 V  
Interrupts  
4 interrupt sources with one vector  
One interrupt level  
Smart Option  
Package Types  
General I/O  
S3C9454:  
Three I/O ports (Max 18 pins)  
Bit programmable ports  
20-DIP-300A  
20-SOP-375  
16-DIP-300A  
8-bit High-speed PWM  
S3C9444  
8-DIP-300  
8-SOP-225  
8-bit PWM 1-ch (Max: 156 kHz)  
6-bit base + 2-bit extension  
Built-in reset Circuit  
Low voltage detector for safe reset  
1-2  
S3C9444/F9444/C9454/F9454  
PRODUCT OVERVIEW  
BLOCK DIAGRAM  
P0.0/ADC0/INT0  
P0.1/ADC1/INT1  
P0.2/ADC2  
X
IN  
OSC  
X
OUT  
Port 0  
Port 1  
Port 2  
Port I/O and  
Interrupt Control  
P0.7/ADC7  
Basic  
Timer  
P1.0  
P1.1  
P1.2  
Timer 0  
ADC  
88RCRI  
SAMRI CPU  
ADC0-ADC8  
P0.6/PWM  
P2.0/T0  
P2.1  
2 KB ROM  
4 KB ROM  
208 Byte  
Register file  
PWM  
P2.6  
NOTE:  
P1.2 is used as input only  
Figure 1-1. Block Diagram  
1-3  
PRODUCT OVERVIEW  
S3C9444/F9444/C9454/F9454  
PIN ASSIGNMENTS  
V
SS  
1
2
3
4
5
6
7
8
9
10  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
VDD  
X
IN/P1.0  
P0.0/ADC0/INT0  
P0.1/ADC1/INT1  
P0.2/ADC2  
X
OUT/P1.1  
RESET/P1.2  
P2.0/T0  
P2.1  
P0.3/ADC3  
S3C9454  
P0.4/ADC4  
(20-DIP-300A/  
20-SOP-375)  
P2.2  
P0.5/ADC5  
P2.3  
P0.6/ADC6/PWM  
P0.7/ADC7  
P2.4  
P2.5  
P2.6/ADC8/CLO  
Figure 1-2. Pin Assignment Diagram (20-Pin DIP/SOP Package)  
1-4  
S3C9444/F9444/C9454/F9454  
PRODUCT OVERVIEW  
V
SS  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
VDD  
X
IN/P1.0  
P0.0/ADC0/INT0  
P0.1/ADC1/INT1  
P0.2/ADC2  
X
OUT/P1.1  
S3C9454  
RESET/P1.2  
P2.0/T0  
P2.1  
P0.3/ADC3  
(16-DIP-300A)  
P0.4/ADC4  
P2.2  
P0.5/ADC5  
P2.3  
P0.6/ADC6/PWM  
Figure 1-3. Pin Assignment Diagram (16-Pin DIP Package)  
V
SS  
1
2
3
4
8
7
6
5
VDD  
S3C9444  
X
IN/P1.0  
P0.0/ADC0/INT0  
P0.1/ADC1/INT1  
P0.2/ADC2  
(8-DIP-300  
8-SOP-225)  
X
OUT/P1.1  
RESET/P1.2  
Figure 1-4. Pin Assignment Diagram (8-Pin DIP/SOP Package)  
1-5  
PRODUCT OVERVIEW  
S3C9444/F9444/C9454/F9454  
PIN DESCRIPTIONS  
Table 1-1. S3C9454 Pin Descriptions  
Pin Description  
Pin  
Name  
In/Out  
Pin  
Type  
Share  
Pins  
P0.0–P0.7  
I/O  
Bit-programmable I/O port for Schmitt trigger input or  
push-pull output. Pull-up resistors are assignable by  
software. Port0 pins can also be used as A/D converter  
input, PWM output or external interrupt input.  
E-1  
ADC0–ADC7  
INT0/INT1  
PWM  
XIN, XOUT  
P1.0–P1.1  
I/O  
Bit-programmable I/O port for Schmitt trigger input or  
push-pull, open-drain output. Pull-up resistors or pull-down  
resistors are assignable by software.  
E-2  
P1.2  
I
Schmitt trigger input port  
B
E
RESET  
P2.0–P2.6  
I/O  
Bit-programmable I/O port for Schmitt trigger input or push-  
pull, open-drain output. Pull-up resistors are assignable by  
software.  
ADC8/CLO  
T0  
E-1  
B
XIN, XOUT  
Crystal/Ceramic, or RC oscillator signal for system clock.  
P1.0–P1.1  
RESET  
I
Internal LVR or External RESET  
P1.2  
VDD, VSS  
Voltage input pin and ground  
CLO  
O
I
System clock output port  
External interrupt input port  
8-Bit high speed PWM output  
Timer0 match output  
E-1  
E-1  
E-1  
E-1  
P2.6  
P0.0, P0.1  
P0.6  
INT0–INT1  
PWM  
O
O
I
T0  
P2.0  
ADC0–ADC8  
A/D converter input  
E-1  
E
P0.0–P0.7  
P2.6  
1-6  
S3C9444/F9444/C9454/F9454  
PRODUCT OVERVIEW  
PIN CIRCUITS  
VDD  
P-channel  
N-channel  
IN  
IN  
Figure 1-6. Pin Circuit Type B  
Figure 1-5. Pin Circuit Type A  
VDD  
VDD  
Pull-up  
Enable  
Data  
Out  
Data  
Circuit  
Type C  
I/O  
Output  
DIsable  
Output  
Disable  
Digital  
Input  
Figure 1-7. Pin Circuit Type C  
Figure 1-8. Pin Circuit Type D  
1-7  
PRODUCT OVERVIEW  
S3C9444/F9444/C9454/F9454  
VDD  
Open-drain  
Enable  
Pull-up  
enable  
P2CONH  
P2CONL  
VDD  
P-CH  
N-CH  
Alternative  
M
U
X
Data  
Output  
I/O  
P2.x  
Output Disable  
(Input Mode)  
Digital  
Input  
Analog Input  
Enable  
ADC  
Figure 1-9. Pin Circuit Type E  
VDD  
Pull-up  
enable  
VDD  
P0CONH  
P-CH  
N-CH  
Alternative  
M
U
X
Data  
Output  
I/O  
P0.x  
Output Disable  
(Input Mode)  
Digital Input  
Interrupt Input  
Analog Input  
Enable  
ADC  
Figure 1-10. Pin Circuit Type E-1  
1-8  
S3C9444/F9444/C9454/F9454  
PRODUCT OVERVIEW  
VDD  
Open-drain  
Enable  
Pull-up  
enable  
VDD  
P1.x  
I/O  
Output Disable  
(Input Mode)  
Pull-down  
enable  
Digital  
Input  
XIN  
XOUT  
Figure 1-11. Pin Circuit Type E-2  
1-9  
S3C9444/F9444/C9454/F9454  
ADDRESS SPACES  
2
ADDRESS SPACES  
OVERVIEW  
The S3C9444/C9454 microcontroller has two kinds of address space:  
— Internal program memory (ROM)  
— Internal register file  
A 12-bit address bus supports program memory operations. A separate 8-bit register bus carries addresses and  
data between the CPU and the internal register file.  
The S3C9444/C9454 have 2-Kbytes or 4-Kbytes of mask-programmable on-chip program memory: which is  
configured as the Internal ROM mode, all of the 4-Kbyte internal program memory is used.  
The S3C9444/C9454 microcontroller has 208 general-purpose registers in its internal register file. Twenty-six  
bytes in the register file are mapped for system and peripheral control functions.  
2-1  
ADDRESS SPACES  
S3C9444/F9444/C9454/F9454  
PROGRAM MEMORY (ROM)  
Normal Operating Mode  
The S3C9444/C9454 have 2-Kbytes (locations 0H–07FFH) or 4-Kbytes (locations 0H–0FFFH) of internal mask-  
programmable program memory.  
The first 2-bytes of the ROM (0000H–0001H) are interrupt vector address.  
Unused locations (0002H–00FFH except 3CH, 3DH, 3EH, 3FH) can be used as normal program memory.  
3CH, 3DH, 3EH, 3FH is used smart option ROM cell.  
The program reset address in the ROM is 0100H.  
(Decimal)  
4.095  
(HEX)  
1000H  
4-Kbyte  
Program  
Memory  
Area  
2,047  
07FFH  
2-Kbyte  
Program  
Memory  
Area  
Program Start  
256  
0100H  
64  
60  
2
0040H  
003CH  
0002H  
0001H  
0000H  
Smart option ROM cell  
Interrupt  
Vector  
1
0
Figure 2-1. Program Memory Address Space  
2-2  
S3C9444/F9444/C9454/F9454  
ADDRESS SPACES  
Smart Option  
Smart option is the ROM option for starting condition of the chip.  
The ROM addresses used by smart option are from 003CH to 003FH. The S3C9442/C9444/C9452/9454 only use  
003EH, 003FH. Not used ROM address 003CH, 003DH should be initialized to be initialized to 00H. The default  
value of ROM is FFH (LVR enable, internal RC oscillator).  
ROM Address: 003CH  
MSB  
MSB  
.7  
.7  
.6  
.6  
.5  
.4  
.3  
.2  
.1  
.1  
.0  
.0  
LSB  
LSB  
Must be initialized to 00H.  
ROM Address: 003DH  
.5  
.4  
.3  
.2  
Must be initialized to 00H.  
ROM Address: 003EH  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
LVR enable/disable bit:  
0 = Disable  
Not used  
1 = Enable  
LVR level selection bits:  
11001 = 2.3 V  
10010 = 3.0 V  
01100 = 3.9 V  
ROM Address: 003FH  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Not used.  
Oscillator selection bits:  
00 = External crystal/  
ceramic oscillator  
01 = External RC  
10 = Internal RC (0.5 MHz in VDD = 5 V)  
11 = Internal RC (3.2 MHz in VDD = 5 V)  
NOTES:  
1. When you use external oscillator, P1.0, P1.1 must be set to output  
port to prevent current consumption.  
2. The value of unused bits of 3EH, 3FH is don't care.  
3. When LVR is enabled, LVR level must be set to appropriate value,  
not default value.  
Figure 2-2. Smart Option  
2-3  
ADDRESS SPACES  
S3C9444/F9444/C9454/F9454  
+
PROGRAMMING TIP — Smart Option Setting  
;
<< Interrupt Vector Address >>  
ORG  
0000H  
Vector  
00H, INT_9454  
; S3C9454 has only one interrupt vector  
;
;
<< Smart Option Setting >>  
ORG  
DB  
003CH  
00H  
; 003CH, must be initialized to 0.  
; 003DH, must be initialized to 0.  
; 003EH, enable LVR (2.3 V)  
DB  
00H  
DB  
DB  
0E7H  
03H  
; 003FH, Internal RC (3.2 MHz in V = 5 V)  
DD  
<< Reset >>  
ORG  
0100H  
RESET;  
DI  
2-4  
S3C9444/F9444/C9454/F9454  
ADDRESS SPACES  
REGISTER ARCHITECTURE  
The upper 64-bytes of the S3C9444/C9454's internal register file are addressed as working registers, system  
control registers and peripheral control registers. The lower 192-bytes of internal register file(00H–BFH) is called  
the general purpose register space. 234 registers in this space can be accessed; 208 are available for general-  
purpose use.  
For many SAM88RCRI microcontrollers, the addressable area of the internal register file is further expanded by  
additional register pages at the general purpose register space (00H–BFH: page0). This register file expansion is  
not implemented in the S3C9444/C9454, however.  
The specific register types and the area (in bytes) that they occupy in the internal register file are summarized in  
Table 2-1.  
Table 2-1. Register Type Summary  
Register Type  
Number of Bytes  
CPU and system control registers  
11  
15  
Peripheral, I/O, and clock control and data registers  
General-purpose registers (including the 16-bit  
common working register area)  
208  
Total Addressable Bytes  
234  
2-5  
ADDRESS SPACES  
S3C9444/F9444/C9454/F9454  
FFH  
Peripheral Control  
Registers  
E0H  
DFH  
64 Bytes of  
Common Area  
System Control  
Registers  
D0H  
CFH  
Working Registers  
C0H  
BFH  
General Purpose  
Register File  
and Stack Area  
192 Bytes  
00H  
Figure 2-3. Internal Register File Organization  
2-6  
S3C9444/F9444/C9454/F9454  
ADDRESS SPACES  
COMMON WORKING REGISTER AREA (C0H–CFH)  
The SAM88RCRI register architecture provides an efficient method of working register addressing that takes full  
advantage of shorter instruction formats to reduce execution time.  
This16-byte address range is called common area. That is, locations in this area can be used as working registers  
by operations that address any location on any page in the register file. Typically, these working registers serve as  
temporary buffers for data operations between different pages. However, because the S3C9444/C9454 uses only  
page 0, you can use the common area for any internal data operation.  
The Register (R) addressing mode can be used to access this area  
Registers are addressed either as a single 8-bit register or as a paired 16-bit register. In 16-bit register pairs, the  
address of the first 8-bit register is always an even number and the address of the next register is an odd number.  
The most significant byte of the 16-bit data is always stored in the even-numbered register; the least significant  
byte is always stored in the next (+ 1) odd-numbered register.  
MSB  
Rn  
LSB  
n = Even address  
Rn+1  
Figure 2-4. 16-Bit Register Pairs  
+
PROGRAMMING TIP — Addressing the Common Working Register Area  
As the following examples show, you should access working registers in the common area, locations C0H–CFH,  
using working register addressing mode only.  
Examples: 1. LD  
0C2H,40H  
; Invalid addressing mode!  
Use working register addressing instead:  
LD  
R2,40H  
; R2 (C2H) ¬ the value in location 40H  
2. ADD  
0C3H,#45H  
; Invalid addressing mode!  
Use working register addressing instead:  
ADD R3,#45H ; R3 (C3H) ¬ R3 + 45H  
2-7  
ADDRESS SPACES  
S3C9444/F9444/C9454/F9454  
SYSTEM STACK  
S3C9-series microcontrollers use the system stack for subroutine calls and returns and to store data. The PUSH  
and POP instructions are used to control system stack operations. The S3C9444/C9454 architecture supports  
stack operations in the internal register file.  
Stack Operations  
Return addresses for procedure calls and interrupts and data are stored on the stack. The contents of the PC are  
saved to stack by a CALL instruction and restored by the RET instruction. When an interrupt occurs, the contents  
of the PC and the FLAGS register are pushed to the stack. The IRET instruction then pops these values back to  
their original locations. The stack address is always decremented before a push operation and incremented after a  
pop operation. The stack pointer (SP) always points to the stack frame stored on the top of the stack, as shown in  
Figure 2-4.  
High Address  
PCL  
PCL  
PCH  
Top of  
PCH  
Top of  
stack  
stack  
Flags  
Stack contents  
after a call  
instruction  
Stack contents  
after an  
Low Address  
interrupt  
Figure 2-5. Stack Operations  
Stack Pointer (SP)  
Register location D9H contains the 8-bit stack pointer (SP) that is used for system stack operations. After a reset,  
the SP value is undetermined.  
Because only internal memory space is implemented in the S3C9444/C9454, the SP must be initialized to an 8-bit  
value in the range 00H–0C0H.  
NOTE  
In case a Stack Pointer is initialized to 00H, it is decreased to FFH when stack operation starts. This  
means that a Stack Pointer access invalid stack area. We recommend that a stack pointer is initialized to  
C0H to set upper address of stack to BFH.  
2-8  
S3C9444/F9444/C9454/F9454  
ADDRESS SPACES  
+
PROGRAMMING TIP — Standard Stack Operations Using PUSH and POP  
The following example shows you how to perform stack operations in the internal register file using PUSH and  
POP instructions:  
LD  
SP,#0C0H  
; SP ¬ C0H (Normally, the SP is set to C0H by the  
; initialization routine)  
PUSH  
PUSH  
PUSH  
PUSH  
SYM  
R15  
20H  
R3  
; Stack address 0BFH ¬ SYM  
; Stack address 0BEH ¬ R15  
; Stack address 0BDH ¬ 20H  
; Stack address 0BCH ¬ R3  
POP  
POP  
POP  
POP  
R3  
; R3 ¬ Stack address 0BCH  
; 20H ¬ Stack address 0BDH  
; R15 ¬ Stack address 0BEH  
; SYM ¬ Stack address 0BFH  
20H  
R15  
SYM  
2-9  
S3C9444/F9444/C9454/F9454  
ADDRESSING MODES  
3
ADDRESSING MODES  
OVERVIEW  
Instructions that are stored in program memory are fetched for execution using the program counter. Instructions  
indicate the operation to be performed and the data to be operated on. Addressing mode is the method used to  
determine the location of the data operand. The operands specified in SAM88RCRI instructions may be condition  
codes, immediate data, or a location in the register file, program memory, or data memory.  
The SAM88RCRI instruction set supports six explicit addressing modes. Not all of these addressing modes are  
available for each instruction. The addressing modes and their symbols are as follows:  
— Register (R)  
— Indirect Register (IR)  
— Indexed (X)  
— Direct Address (DA)  
— Relative Address (RA)  
— Immediate (IM)  
3-1  
ADDRESSING MODES  
S3C9444/F9444/C9454/F9454  
REGISTER ADDRESSING MODE (R)  
In Register addressing mode, the operand is the content of a specified register (see Figure 3-1). Working register  
addressing differs from Register addressing because it uses an 16-byte working register space in the register file  
and an 4-bit register within that space (see Figure 3-2).  
Program Memory  
Register File  
OPERAND  
8-Bit Register  
File Address  
dst  
Point to one  
register in register  
file  
OPCODE  
One-Operand  
Instruction  
Value used in  
Instruction Execution  
(Example)  
Sample Instruction:  
DEC  
CNTR  
;
Where CNTR is the label of an 8-bit register address  
Figure 3-1. Register Addressing  
Register File  
MSB point to  
RP0 to RP1  
RP0 or RP1  
Selected  
RP points to  
start of  
Program Memory  
4-Bit  
Working Register  
working  
register block  
3 LSBs  
dst  
src  
Point to the  
working register  
(1 of 8)  
OPERAND  
OPCODE  
Two-Operand  
Instruction  
(Example)  
Sample Instruction:  
ADD R1, R2  
;
Where R1 and R2 are registers in the currently selected  
working register area.  
Figure 3-2. Working Register Addressing  
3-2  
S3C9444/F9444/C9454/F9454  
ADDRESSING MODES  
INDIRECT REGISTER ADDRESSING MODE (IR)  
In Indirect Register (IR) addressing mode, the content of the specified register or register pair is the address of the  
operand. Depending on the instruction used, the actual address may point to a register in the register file, to  
program memory (ROM), or to an external memory space (see Figures 3-3 through 3-6).  
You can use any 8-bit register to indirectly address another register. Any 16-bit register pair can be used to  
indirectly address another memory location.  
Program Memory  
Register File  
ADDRESS  
8-Bit Register  
File Address  
dst  
Point to one  
register in register  
file  
OPCODE  
One-Operand  
Instruction (Example)  
Address of operand  
used by instruction  
OPERAND  
Value used in  
instruction execution  
Sample Instruction:  
RL  
@SHIFT  
;
Where SHIFT is the label of an 8-bit register ddress  
Figure 3-3. Indirect Register Addressing to Register File  
3-3  
ADDRESSING MODES  
S3C9444/F9444/C9454/F9454  
INDIRECT REGISTER ADDRESSING MODE (Continued)  
Register File  
Program Memory  
Example  
REGISTER  
PAIR  
dst  
Instruction  
References  
Program  
Point to  
register pair  
OPCODE  
16-bit  
Memory  
address  
points to  
program  
memory  
Program Memory  
OPERAND  
Value used in  
instruction  
Sample Instructions:  
CALL  
JP  
@RR2  
@RR2  
Figure 3-4. Indirect Register Addressing to Program Memory  
3-4  
S3C9444/F9444/C9454/F9454  
ADDRESSING MODES  
INDIRECT REGISTER ADDRESSING MODE (Continued)  
Register File  
CFH  
.
.
.
.
Program Memory  
4-Bit  
4 LSBs  
Working  
Register  
Address  
OPERAND  
dst  
src  
Point to the  
working register  
(1 of 16)  
OPCODE  
C0H  
Sample Instruction:  
OR R6, @R2  
Value used in  
instruction  
OPERAND  
Figure 3-5. Indirect Working Register Addressing to Register File  
3-5  
ADDRESSING MODES  
S3C9444/F9444/C9454/F9454  
INDIRECT REGISTER ADDRESSING MODE (Concluded)  
Register File  
CFH  
.
.
.
.
Program Memory  
4-Bit Working  
Register Address  
dst  
src  
Register  
Pair  
Next 3 Bits Point  
to working  
OPCODE  
Example instruction  
references either  
program memory or  
data memory  
C0H  
register pair  
(1 of 8)  
16-Bit  
address  
points to  
program  
memory  
or data  
memory  
Program Memory  
or  
Data Memory  
LSB Selects  
Value used in  
instruction  
OPERAND  
Sample Instructions:  
LCD  
LDE  
LDE  
R5,@RR6  
R3,@RR14  
@RR4, R8  
; Program memory access  
; External data memory access  
; External data memory access  
Figure 3-6. Indirect Working Register Addressing to Program or Data Memory  
3-6  
S3C9444/F9444/C9454/F9454  
ADDRESSING MODES  
INDEXED ADDRESSING MODE (X)  
Indexed (X) addressing mode adds an offset value to a base address during instruction execution in order to  
calculate the effective operand address (see Figure 3-7). You can use Indexed addressing mode to access  
locations in the internal register file or in external memory.  
In short offset Indexed addressing mode, the 8-bit displacement is treated as a signed integer in the range  
– 128 to + 127. This applies to external memory accesses only (see Figure 3-8).  
For register file addressing, an 8-bit base address provided by the instruction is added to an 8-bit offset contained  
in a working register. For external memory accesses, the base address is stored in the working register pair  
designated in the instruction. The 8-bit or 16-bit offset given in the instruction is then added to the base address  
(see Figure 3-9).  
The only instruction that supports Indexed addressing mode for the internal register file is the Load instruction  
(LD). The LDC and LDE instructions support Indexed addressing mode for internal program memory, external  
program memory, and for external data memory, when implemented.  
Register File  
~
~
~
~
Value used in  
instruction  
OPERAND  
+
Program Memory  
X (OFFSET)  
4 LSBs  
dst  
src  
INDEX  
Two-Operand  
Instruction  
Example  
Point to one of the  
working register  
(1 of 16)  
OPCODE  
Sample Instruction:  
LD  
R0, #BASE[R1]  
;
Where BASE is an 8-bit immediate value  
Figure 3-7. Indexed Addressing to Register File  
3-7  
ADDRESSING MODES  
S3C9444/F9444/C9454/F9454  
INDEXED ADDRESSING MODE (Continued)  
Program Memory  
Register File  
XS (OFFSET)  
4-Bit Working  
NEXT 3 Bits  
Register  
Pair  
dst  
src  
Register Address  
Point to working  
register pair  
(1 of 8)  
OPCODE  
16-Bit  
address  
added to  
offset  
LSB Selects  
+
16-Bit  
8-Bit  
Program Memory  
or  
Data memory  
Value used in  
instruction  
OPERAND  
16-Bit  
Sample Instructions:  
LDC  
LDE  
R4, #04H[RR2]  
R4,#04H[RR2]  
; The values in the program address (RR2 + #04H)  
are loaded into register R4.  
; Identical operation to LDC example, except that  
external program memory is accessed.  
Figure 3-8. Indexed Addressing to Program or Data Memory with Short Offset  
3-8  
S3C9444/F9444/C9454/F9454  
ADDRESSING MODES  
INDEXED ADDRESSING MODE (Concluded)  
Program Memory  
XLH (OFFSET)  
Register File  
XLL (OFFSET)  
4-Bit Working  
Register  
Pair  
NEXT 3 Bits  
dst  
src  
Register Address  
Point to working  
register pair  
(1 of 8)  
OPCODE  
16-Bit  
address  
added to  
offset  
LSB Selects  
+
16-Bit  
8-Bit  
Program Memory  
or  
Datamemory  
Value used in  
instruction  
OPERAND  
16-Bit  
Sample Instructions:  
LDC  
LDE  
R4, #1000H[RR2]  
R4, #1000H[RR2]  
; The values in the program address (RR2 + #1000H)  
are loaded into register R4.  
; Identical operation to LDC example, except that  
external program memory is accessed.  
Figure 3-9. Indexed Addressing to Program or Data Memory with Long Offset  
3-9  
ADDRESSING MODES  
S3C9444/F9444/C9454/F9454  
DIRECT ADDRESS MODE (DA)  
In Direct Address (DA) mode, the instruction provides the operand's 16-bit memory address. Jump (JP) and Call  
(CALL) instructions use this addressing mode to specify the 16-bit destination address that is loaded into the PC  
whenever a JP or CALL instruction is executed.  
The LDC and LDE instructions can use Direct Address mode to specify the source or destination address for Load  
operations to program memory (LDC) or to external data memory (LDE), if implemented.  
Program or  
Data Memory  
Memory  
Address  
Used  
Program Memory  
Upper Address Byte  
Lower Address Byte  
LSB Selects Program  
dst/src  
"0" or "1"  
Memory or Data Memory:  
"0" = Program Memory  
"1" = Data Memory  
OPCODE  
Sample Instructions:  
LDC  
LDE  
R5,1234H ; The values in the program address (1234H)are loaded  
into register R5.  
R5,1234H ; Identical operation to LDC example, except that  
external program memory is accessed.  
Figure 3-10. Direct Addressing for Load Instructions  
3-10  
S3C9444/F9444/C9454/F9454  
ADDRESSING MODES  
DIRECT ADDRESS MODE (Continued)  
Program Memory  
Next OPCODE  
Program  
Memory  
Address  
Used  
Lower Address Byte  
Upper Address Byte  
OPCODE  
Sample Instructions:  
JP  
CALL  
C,JOB1  
DISPLAY  
;
;
Where JOB1 is a 16-bit immediate address  
Where DISPLAY is a 16-bit immediate address  
Figure 3-11. Direct Addressing for Call and Jump Instructions  
3-11  
ADDRESSING MODES  
S3C9444/F9444/C9454/F9454  
RELATIVE ADDRESS MODE (RA)  
In Relative Address (RA) mode, a two's-complement signed displacement between – 128 and + 127 is specified  
in the instruction. The displacement value is then added to the current PC value. The result is the address of the  
next instruction to be executed. Before this addition occurs, the PC contains the address of the instruction  
immediately following the current instruction.  
The instructions that support RA addressing is JR.  
Program Memory  
Next OPCODE  
Program Memory  
Address Used  
Current  
PC Value  
+
Displacement  
OPCODE  
Current Instruction  
Signed  
Displacement Value  
Sample Instructions:  
JR  
ULT,$ + OFFSET  
;
Where OFFSET is a value in the range + 127 to - 128  
Figure 3-12. Relative Addressing  
IMMEDIATE MODE (IM)  
In Immediate (IM) addressing mode, the operand value used in the instruction is the value supplied in the operand  
field itself. Immediate addressing mode is useful for loading constant values into registers.  
Program Memory  
OPERAND  
OPCODE  
(The Operand value is in the instruction)  
Sample Instruction: LD  
R0,#0AAH  
Figure 3-13. Immediate Addressing  
3-12  
S3C9444/F9444/C9454/F9454  
CONTROL REGISTERS  
4
CONTROL REGISTERS  
OVERVIEW  
In this section, detailed descriptions of the S3C9444/C9454 control registers are presented in an easy-to-read  
format. These descriptions will help familiarize you with the mapped locations in the register file. You can also use  
them as a quick-reference source when writing application programs.  
System and peripheral registers are summarized in Table 4-1. Figure 4-1 illustrates the important features of the  
standard register description format.  
Control register descriptions are arranged in alphabetical order according to register mnemonic. More information  
about control registers is presented in the context of the various peripheral hardware descriptions in Part II of this  
manual.  
4-1  
CONTROL REGISTERS  
S3C9444/F9444/C9454/F9454  
RESET value (Bit)  
Table 4-1. System and Peripheral Control Registers  
Register name  
Mnemonic  
Address & Location  
Address  
D0H  
R/W  
R
7
0
1
0
6
0
1
0
5
0
1
4
0
1
3
0
1
0
2
0
1
1
0
1
0
0
0
1
0
Timer 0 counter register  
Timer 0 data register  
Timer 0 control register  
T0CNT  
T0DATA  
T0CON  
D1H  
R/W  
R/W  
D2H  
Location D3H is not mapped  
Clock control register  
System flags register  
CLKCON  
FLAGS  
D4H  
D5H  
R/W  
R/W  
0
x
x
x
0
x
0
Locations D6H–D8H are not mapped  
Stack pointer register  
SP  
D9H  
R/W  
x
x
x
x
x
x
x
x
Location DAH is not mapped  
MDS special register  
MDSREG  
BTCON  
BTCNT  
FTSTCON  
SYM  
DBH  
DCH  
DDH  
DEH  
DFH  
R/W  
R/W  
R
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Basic timer control register  
Basic timer counter  
Test mode control register  
System mode register  
W
R/W  
NOTES:  
1. – : Not mapped or not used, x: Undefined  
2. The factory test mode register, FTSTCON, is for factory use only. Its value should always be '00H' during the  
normal operation.  
4-2  
S3C9444/F9444/C9454/F9454  
CONTROL REGISTERS  
Table 4-1. System and Peripheral Control Registers (Continued)  
Register Name  
Mnemonic  
Address  
Hex  
R/W  
Bit Values After RESET  
7
0
6
0
0
5
0
0
4
0
0
3
0
0
2
0
0
0
1
0
0
0
0
0
0
0
Port 0 data register  
P0  
P1  
P2  
E0H  
R/W  
R/W  
R/W  
Port 1 data register  
Port 2 data register  
E1H  
E2H  
Locations E3H–E5H are not mapped  
Port 0 control register (High byte)  
Port 0 control register  
P0CONH  
P0CONL  
P0PND  
E6H  
E7H  
E8H  
E9H  
EAH  
EBH  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Port 0 interrupt pending register  
Port 1 control register  
P1CON  
Port 2 control register (High byte)  
Port 2 control register (Low byte)  
P2CONH  
P2CONL  
Locations ECH–F1H are not mapped  
PWM data register  
PWMDATA  
PWMCON  
STOPCON  
F2H  
F3H  
F4H  
R/W  
R/W  
R/W  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
PWM control register  
STOP .control register  
Locations F5H–F6H are not mapped  
A/D control register  
ADCON  
ADDATAH  
ADDATAL  
F7H  
F8H  
F9H  
R/W  
R
0
x
0
0
x
0
0
x
0
0
x
0
0
x
0
0
x
0
0
x
x
0
x
x
A/D converter data register ( High )  
A/D converter data register ( Low )  
R
Locations FAH–FFH are not mapped  
NOTE: – : Not mapped or not used, x: Undefined  
4-3  
CONTROL REGISTERS  
S3C9444/F9444/C9454/F9454  
Bit number(s) that is/are appended to the  
register name for bit addressing  
Name of individual  
bit or bit function  
Register address  
(hexadecimal)  
Register  
Full Register name  
mnemonic  
D5H  
FLAGS - System Flags Register  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
Bit Identifier  
RESET Value  
Read/Write  
x
R/W  
x
R/W  
x
R/W  
x
R/W  
x
R/W  
x
R/W  
0
R/W  
0
R/W  
.7  
Carry Flag (C)  
0
1
Operation dose not generate a carry or borrow condition  
Operation generates carry-out or borrow into high-order bit7  
.6  
Zero Flag  
0
1
Operation result is a non-zero value  
Operation result is zero  
.5  
Sign Flag  
0
1
Operation generates positive number (MSB = "0")  
Operation generates negative number (MSB = "1")  
R = Read-only  
W = Write-only  
R/W = Read/write  
' - ' = Not used  
Description of the  
effect of specific  
bit settings  
RESET  
value notation:  
'-' = Not mapped or Not used  
'x' = Undetermind value  
'0' = Logic zero  
'1' = Logic one  
Addressing mode or  
modes you can use to  
modify register values  
Bit number:  
MSB = Bit 7  
LSB = Bit 0  
Figure 4-1. Register Description Format  
4-4  
S3C9444/F9444/C9454/F9454  
CONTROL REGISTERS  
ADCON— A/D Converter Control Register  
F7H  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
.7–.4  
A/D Converter Input Pin Selection Bits  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
ADC0 (P0.0)  
ADC1 (P0.1)  
ADC2 (P0.2)  
ADC3 (P0.3)/ In S3C9444, connected with GND internally  
ADC4 (P0.4)/ In S3C9444, connected with GND internally  
ADC5 (P0.5)/ In S3C9444, connected with GND internally  
ADC6 (P0.6)/ In S3C9444, connected with GND internally  
ADC7 (P0.7)/ In S3C9444, connected with GND internally  
ADC8 (P2.6)/ In S3C9444, connected with GND internally  
Connected with GND internally  
Connected with GND internally  
Connected with GND internally  
Connected with GND internally  
Connected with GND internally  
Connected with GND internally  
Connected with GND internally  
.3  
End-of-Conversion Status Bit  
0
1
A/D conversion is in progress  
A/D conversion complete  
(note)  
.2–.1  
Clock Source Selection Bit  
0
0
1
1
0
1
0
1
f
f
f
f
/16 (f  
£ 10 MHz)  
OSC  
OSC  
OSC  
OSC  
OSC  
/8 (f  
£ 10 MHz)  
£ 10 MHz)  
£ 2.5 MHz)  
OSC  
/4 (f  
/1 (f  
OSC  
OSC  
.0  
Conversion Start Bit  
0
1
No meaning  
A/D conversion start  
NOTE: Maximum ADC clock input = 4 MHz.  
4-5  
CONTROL REGISTERS  
S3C9444/F9444/C9454/F9454  
BTCON — Basic Timer Control Register  
DCH  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
.7–.4  
.3–.2  
Watchdog Timer Function Enable Bit  
1
0
1
0
Disable watchdog timer function  
Enable watchdog timer function  
Others  
Basic Timer Input Clock Selection Code  
f
f
f
/4096  
/1024  
/128  
0
0
1
1
0
1
0
1
OSC  
OSC  
OSC  
Invalid setting  
.1  
.0  
Basic Timer 8-Bit Counter Clear Bit  
0
1
No effect  
Clear the basic timer counter value  
Basic Timer Divider Clear Bit  
0
1
No effect  
Clear both dividers  
NOTE: When you write a "1" to BTCON.0 (or BTCON.1), the basic timer counter (or basic timer divider) is cleared.  
The bit is then cleared automatically to "0".  
4-6  
S3C9444/F9444/C9454/F9454  
CONTROL REGISTERS  
CLKCON— Clock Control Register  
D4H  
Bit Identifier  
.7  
0
.6  
.5  
.4  
0
.3  
0
.2  
.1  
.0  
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
.7  
Oscillator IRQ Wake-up Function Enable Bit  
0
1
Enable IRQ for main system oscillator wake-up function  
Disable IRQ for main system oscillator wake-up function  
.6–.5  
.4–.3  
Not used for S3C9444/C9454  
Divided by Selection Bits for CPU Clock frequency  
Divide by 16 (f  
/16)  
0
0
1
1
0
1
0
1
OSC  
Divide by 8 (f  
/8)  
OSC  
Divide by 2 (f  
/2)  
OSC  
Non-divided clock (f  
)
OSC  
.2–.0  
Not used for S3C9444/C9454  
4-7  
CONTROL REGISTERS  
S3C9444/F9444/C9454/F9454  
FLAGS— System Flags Register  
D5H  
Bit Identifier  
.7  
x
.6  
x
.5  
x
.4  
x
.3  
.2  
.1  
.0  
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
.7  
Carry Flag (C)  
0
1
Operation does not generate a carry or borrow condition  
Operation generates a carry-out or borrow into high-order bit 7  
.6  
Zero Flag (Z)  
0
1
Operation result is a non-zero value  
Operation result is zero  
.5  
Sign Flag (S)  
0
1
Operation generates a positive number (MSB = "0")  
Operation generates a negative number (MSB = "1")  
.4  
Overflow Flag (V)  
0
1
Operation result is £ + 127 or ³ – 128  
Operation result is > + 127 or < – 128  
.3–.0  
Not used for S3C9444/C9454  
4-8  
S3C9444/F9444/C9454/F9454  
CONTROL REGISTERS  
P0CONH— Port 0 Control Register (High Byte)  
E6H  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
.7–.6  
.5–.4  
.3–.2  
.1–.0  
Port 0, P0.7/INT7 Configuration Bits  
0
0
1
1
0
1
0
1
Schmitt trigger input; pull-up enable  
Schmitt trigger input  
Push-pull output  
A/D converter input (ADC7); Schmitt trigger input off  
Port 0, P0.6/ADC6/PWM Configuration Bits  
0
0
1
1
0
1
0
1
Schmitt trigger input; pull-up enable  
Alternative function (PWM output)  
Push-pull output  
A/D converter input (ADC6); Schmitt trigger input off  
Port 0, P0.5/ADC5 Configuration Bits  
0
0
1
1
0
1
0
1
Schmitt trigger input; pull-up enable  
Schmitt trigger input  
Push-pull output  
A/D converter input (ADC5); Schmitt trigger input off  
Port 0, P0.4/ADC4 Configuration Bits  
0
0
1
1
0
1
0
1
Schmitt trigger input; pull-up enable  
Schmitt trigger input  
Push-pull output  
A/D converter input (ADC4); Schmitt trigger input off  
4-9  
CONTROL REGISTERS  
S3C9444/F9444/C9454/F9454  
P0CONL— Port 0 Control Register (Low Byte)  
E7H  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
.7–.6  
.5–.4  
.3–.2  
.1–.0  
Port 0, P0.3/INT3 Configuration Bits  
0
0
1
1
0
1
0
1
Schmitt trigger input  
Schmitt trigger input; pull-up enable  
Push-pull output  
A/D converter input (ADC3); Schmitt trigger input off  
Port 0, P0.2/ADC2 Configuration Bits  
0
0
1
1
0
1
0
1
Schmitt trigger input  
Schmitt trigger input; pull-up enable  
Push-pull output  
A/D converter input (ADC2); Schmitt trigger input off  
Port 0, P0.1/ADC1/INT1 Configuration Bits  
0
0
1
1
0
1
0
1
Schmitt trigger input/falling edge interrupt input  
Schmitt trigger input; pull-up enable/falling edge interrupt input  
Push-pull output  
A/D converter input (ADC1); Schmitt trigger input off  
Port 0, P0.0/ADC0/INT0 Configuration Bits  
0
0
1
1
0
1
0
1
Schmitt trigger input/falling edge interrupt input  
Schmitt trigger input; pull-up enable/falling edge interrupt input  
Push-pull output  
A/D converter input (ADC0); Schmitt trigger input off  
4-10  
S3C9444/F9444/C9454/F9454  
CONTROL REGISTERS  
P0PND— Port 0 Interrupt Pending Register  
E8H  
Bit Identifier  
.7  
.6  
.5  
.4  
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
.7–.4  
.3  
Not used for the S3C9444/C9454  
Port 0.1/ADC1/INT1 Interrupt Enable Bit  
0
1
INT1 falling edge interrupt disable  
INT1 falling edge interrupt enable  
.2  
Port 0.1/ADC1/INT1 Interrupt Pending Bit  
0
0
1
1
No interrupt pending (when read)  
Pending bit clear (when write)  
Interrupt is pending (when read)  
No effect (when write)  
.1  
.0  
Port 0.0/ADC0/INT0 Interrupt Enable Bit  
0
1
INT0 falling edge interrupt disable  
INT0 falling edge interrupt enable  
Port 0.0/ADC0/INT0 Interrupt Pending Bit  
0
0
1
1
No interrupt pending (when read)  
Pending bit clear (when write)  
Interrupt pending (when read)  
No effect (when write)  
4-11  
CONTROL REGISTERS  
S3C9444/F9444/C9454/F9454  
P1CON— Port 1 Control Register  
E9H  
Bit Identifier  
.7  
0
.6  
0
.5  
.4  
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
.7  
.6  
Part 1.1 N-channel open-drain Enable Bit  
0
1
Configure P1.1 as a push-pull output  
Configure P1.1 as a n-channel open-drain output  
Port 1.0 N-channel open-drain Enable Bit  
0
1
Configure P1.0 as a push-pull output  
Configure P1.0 as a n-channel open-drain output  
.5–.4  
.3–.2  
Not used for S3C9444/C9454  
Port 1, P1.1 Interrupt Pending Bits  
0
0
1
1
0
1
0
1
Schmitt trigger input;  
Schmitt trigger input; pull-up enable  
Output  
Schmitt trigger input; pull-down enable  
.1–.0  
Port 0, P1.0 Configuration Bits  
0
0
1
1
0
1
0
1
Schmitt trigger input;  
Schmitt trigger input; pull-up enable  
Output  
Schmitt trigger input; pull-down enable  
NOTE: When you use external oscillator, P1.0, P1.1 must be set to output port to prevent current consumption.  
4-12  
S3C9444/F9444/C9454/F9454  
CONTROL REGISTERS  
P2CONH— Port 2 Control Register (High Byte)  
EAH  
Bit Identifier  
.7  
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
.7  
Not used for the S3C9444/C9454  
.6–.4  
Port 2, P2.6/ADC8/CLO Configuration Bits  
0
0
0
1
1
1
1
0
0
1
0
0
1
1
0
1
x
0
1
0
1
Schmitt trigger input; pull-up enable  
Schmitt trigger input  
ADC input  
Push-pull output  
Open-drain output; pull-up enable  
Open-drain output  
Alternative function; CLO output  
.3–.2  
.1–.0  
Port 2, 2.5 Configuration Bits  
0
0
1
1
0
1
0
1
Schmitt trigger input; pull-up enable  
Schmitt trigger input  
Push-pull output  
Open-drain output  
Port 2, 2.4 Configuration Bits  
0
0
1
1
0
1
0
1
Schmitt trigger input; pull-up enable  
Schmitt trigger input  
Push-pull output  
Open-drain output  
NOTE: When noise problem is important issue, you had better not use CLO output.  
4-13  
CONTROL REGISTERS  
S3C9444/F9444/C9454/F9454  
P2CONL— Port 2 Control Register (Low Byte)  
EBH  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
.7–.6  
.5–.4  
.3–.2  
.1–.0  
Part 2, P2.3 Configuration Bits  
0
0
1
1
0
1
0
1
Schmitt trigger input; pull-up enable  
Schmitt trigger input  
Push-pull output  
Open-drain output  
Port 2, P2.2 Configuration Bits  
0
0
1
1
0
1
0
1
Schmitt trigger input; pull-up enable  
Schmitt trigger input  
Push-pull output  
Open-drain output  
Port 2, P2.1 Configuration Bits  
0
0
1
1
0
1
0
1
Schmitt trigger input; pull-up enable  
Schmitt trigger input  
Push-pull output  
Open-drain output  
Port 2, P2.0 Configuration Bits  
0
0
1
1
0
1
0
1
Schmitt trigger input; pull-up enable  
Schmitt trigger input  
Push-pull output  
T0 match output  
4-14  
S3C9444/F9444/C9454/F9454  
CONTROL REGISTERS  
PWMCON— PWM Control Register  
E3H  
Bit Identifier  
.7  
0
.6  
0
.5  
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
.7–.6  
PWM Input Clock Selection Bits  
f
f
f
f
/64  
/8  
0
0
1
1
0
1
0
1
OSC  
OSC  
OSC  
OSC  
/2  
/1  
.5  
.4  
Not used for S3C9444/C9454  
PWMDATA Reload Interval Selection Bit  
0
1
Reload from 8-bit up counter overflow  
Reload from 6-bit up counter overflow  
.3  
.2  
.1  
.0  
PWM Counter Clear Bit  
0
1
No effect  
Clear the PWM counter (when write)  
PWM Counter Enable Bit  
0
1
Stop counter  
Start (Resume countering)  
PWM Overflow Interrupt Enable Bit (8-Bit Overflow)  
0
1
Disable interrupt  
Enable interrupt  
PWM Overflow Interrupt Pending Bit  
0
0
1
1
No interrupt pending (when read)  
Clear pending bit (when write)  
Interrupt is pending (when read)  
No effect (when write)  
NOTE: PWMCON.3 is not auto-cleared. You must pay attention when clear pending bit. (refer to page 11-8).  
4-15  
CONTROL REGISTERS  
S3C9444/F9444/C9454/F9454  
STOPCON— STOP Mode Control Register  
E4H  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
.7–.0  
Watchdog Timer Function Enable Bit  
10100101 Enable STOP instruction  
Other value Disable STOP instruction  
NOTE: When STOPCON register is not #0A5H value, if you use STOP instruction, PC is changed to reset address.  
SYM— System Mode Register  
DFH  
Bit Identifier  
.7  
.6  
.5  
.4  
.3  
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
.7–.3  
.2  
Not used for S3C9444/C9454  
Global Interrupt Enable Bit  
0
1
Disable all interrupts  
Enable all interrupt  
.1–.0  
Page Select Bits  
0
0
1
1
0
1
0
1
Page 0  
Page 1 (Not used for S3C9444/C9454)  
Page 2 (Not used for S3C9444/C9454)  
Page 3 (Not used for S3C9444/C9454)  
4-16  
S3C9444/F9444/C9454/F9454  
CONTROL REGISTERS  
T0CON— TIMER 0 Control Register  
F4H  
Bit Identifier  
.7  
0
.6  
0
.5  
.4  
.3  
0
.2  
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
.7–.6  
Timer 0 Input Clock Selection Bits  
f
f
f
f
/256  
/64  
/8  
0
0
1
1
0
1
0
1
OSC  
OSC  
OSC  
OSC  
/1  
.5–.4  
.3  
Not used for the S3C9444/C9454  
Timer 0 Counter Clear Bit  
0
1
No effect  
Clear the timer 0 counter (when write)  
.2  
.1  
Not used for the S3C9444/C9454  
Timer 0 Interrupt Enable Bit  
0
1
Disable interrupt  
Enable interrupt  
.0  
Timer 0 Interrupt Pending Bit (Capture or match interrupt)  
0
0
1
1
No interrupt pending (when read)  
Clear pending bit (when write)  
Interrupt is pending (when read)  
No effect (when write)  
NOTE: T0CON.3 is not auto-cleared. You must pay attention when clear pending bit. (refer to page 10-12)  
4-17  
S3C9444/F9444/C9454/F9454  
INTERRUPT STRUCTURE  
5
INTERRUPT STRUCTURE  
OVERVIEW  
The SAM88RCRI interrupt structure has two basic components: a vector, and sources. The number of interrupt  
sources can be serviced through an interrupt vector which is assigned in ROM address 0000H.  
VECTOR  
SOURCES  
S1  
0000H  
0001H  
S2  
S3  
Sn  
NOTES:  
1. The SAM88RCRI interrupt has only one vector address (0000H-0001H).  
2. The numbern of Sn value is expandable.  
Figure 5-1. S3F9-Series Interrupt Type  
INTERRUPT PROCESSING CONTROL POINTS  
Interrupt processing can be controlled in two ways: either globally, or by specific interrupt level and source.  
The system-level control points in the interrupt structure are therefore:  
— Global interrupt enable and disable (by EI and DI instructions)  
— Interrupt source enable and disable settings in the corresponding peripheral control register(s)  
5-1  
INTERRUPT STRUCTURE  
S3C9444/F9444/C9454/F9454  
ENABLE/DISABLE INTERRUPT INSTRUCTIONS (EI, DI)  
The system mode register, SYM (DFH), is used to enable and disable interrupt processing.  
SYM.2 is the enable and disable bit for global interrupt processing respectively, by modifying SYM.2. An Enable  
Interrupt (EI) instruction must be included in the initialization routine that follows a reset operation in order to  
enable interrupt processing. Although you can manipulate SYM.2 directly to enable and disable interrupts during  
normal operation, we recommend that you use the EI and DI instructions for this purpose.  
INTERRUPT PENDING FUNCTION TYPES  
When the interrupt service routine has executed, the application program's service routine must clear the  
appropriate pending bit before the return from interrupt subroutine (IRET) occurs.  
INTERRUPT PRIORITY  
Because there is not a interrupt priority register in SAM88RCRI, the order of service is determined by a sequence  
of source which is executed in interrupt service routine.  
"EI" Instruction  
Interrupt Pending  
Register  
S
R
Q
Execution  
RESET  
Interrpt priority  
is determind by  
software polling  
method  
Source Interrupts  
Vector Interrupt  
Cycle  
Source Interrupt  
Enable  
Global Interrupt  
Control (EI, DI instruction)  
05005Figure 5-2. Interrupt Function Diagram  
5-2  
S3C9444/F9444/C9454/F9454  
INTERRUPT STRUCTURE  
INTERRUPT SOURCE SERVICE SEQUENCE  
The interrupt request polling and servicing sequence is as follows:  
1. A source generates an interrupt request by setting the interrupt request pending bit to "1".  
2. The CPU generates an interrupt acknowledge signal.  
3. The service routine starts and the source's pending flag is cleared to "0" by software.  
4. Interrupt priority must be determined by software polling method.  
INTERRUPT SERVICE ROUTINES  
Before an interrupt request can be serviced, the following conditions must be met:  
— Interrupt processing must be enabled (EI, SYM.2 = "1")  
— Interrupt must be enabled at the interrupt's source (peripheral control register)  
If all of the above conditions are met, the interrupt request is acknowledged at the end of the instruction cycle. The  
CPU then initiates an interrupt machine cycle that completes the following processing sequence:  
1. Reset (clear to "0") the global interrupt enable bit in the SYM register (DI, SYM.2 = "0")  
to disable all subsequent interrupts.  
2. Save the program counter and status flags to stack.  
3. Branch to the interrupt vector to fetch the service routine's address.  
4. Pass control to the interrupt service routine.  
When the interrupt service routine is completed, an Interrupt Return instruction (IRET) occurs. The IRET restores  
the PC and status flags and sets SYM.2 to "1" (EI), allowing the CPU to process the next interrupt request.  
GENERATING INTERRUPT VECTOR ADDRESSES  
The interrupt vector area in the ROM contains the address of the interrupt service routine. Vectored interrupt  
processing follows this sequence:  
1. Push the program counter's low-byte value to stack.  
2. Push the program counter's high-byte value to stack.  
3. Push the FLAGS register values to stack.  
4. Fetch the service routine's high-byte address from the vector address 0000H.  
5. Fetch the service routine's low-byte address from the vector address 0001H.  
6. Branch to the service routine specified by the 16-bit vector address.  
5-3  
INTERRUPT STRUCTURE  
S3C9444/F9444/C9454/F9454  
S3C9444/C9454 INTERRUPT STRUCTURE  
The S3C9444/C9454 microcontroller has four peripheral interrupt sources:  
— PWM overflow  
— Timer 0 match  
— P0.0 external interrupt  
— P0.1 external interrupt  
Vector  
Pending Bits  
T0CON.0  
Enable/Disable  
T0CON.1  
Source  
Timer 0 match  
PWM Overflow  
PWMCON.0  
P0PND.2  
PWMCON.1  
P0PND.1  
0000H  
0001H  
P0.0 External Interrupt  
P0.1 External Interrupt  
SYM.2  
(EI, DI)  
P0PND.0  
P0PND.3  
Figure 5-3. S3C9444/C9454 Interrupt Structure  
5-4  
S3C9444/F9444/C9454/F9454  
SAM88RCRI INSTRUCTION SET  
6
SAM88RCRI INSTRUCTION SET  
OVERVIEW  
The SAM88RCRI instruction set is designed to support the large register file. It includes a full complement of  
8-bit arithmetic and logic operations. There are 41 instructions. No special I/O instructions are necessary because  
I/O control and data registers are mapped directly into the register file. Flexible instructions for bit addressing,  
rotate, and shift operations complete the powerful data manipulation capabilities of the SAM88RCRI instruction  
set.  
REGISTER ADDRESSING  
To access an individual register, an 8-bit address in the range 0-255 or the 4-bit address of a working register is  
specified. Paired registers can be used to construct 13-bit program memory or data memory addresses. For  
detailed information about register addressing, please refer to Chapter 2, "Address Spaces".  
ADDRESSING MODES  
There are six addressing modes: Register (R), Indirect Register (IR), Indexed (X), Direct (DA), Relative (RA), and  
Immediate (IM). For detailed descriptions of these addressing modes, please refer to Chapter 3, "Addressing  
Modes".  
6-1  
SAM88RCRI INSTRUCTION SET  
S3C9444/F9444/C9454/F9454  
Table 6-1. Instruction Group Summary  
Operands Instruction  
Mnemonic  
Load Instructions  
CLR  
LD  
dst  
Clear  
dst,src  
dst,src  
dst,src  
dst,src  
dst,src  
dst,src  
dst,src  
dst  
Load  
LDC  
LDE  
Load program memory  
Load external data memory  
LDCD  
LDED  
LDCI  
LDEI  
POP  
PUSH  
Load program memory and decrement  
Load external data memory and decrement  
Load program memory and increment  
Load external data memory and increment  
Pop from stack  
src  
Push to stack  
Arithmetic Instructions  
ADC  
ADD  
CP  
dst,src  
dst,src  
dst,src  
dst  
Add with carry  
Add  
Compare  
DEC  
INC  
Decrement  
Increment  
Subtract with carry  
Subtract  
dst  
SBC  
SUB  
dst,src  
dst,src  
Logic Instructions  
AND  
COM  
OR  
dst,src  
dst  
Logical AND  
Complement  
dst,src  
dst,src  
Logical OR  
XOR  
Logical exclusive OR  
6-2  
S3C9444/F9444/C9454/F9454  
Mnemonic  
SAM88RCRI INSTRUCTION SET  
Table 6-1. Instruction Group Summary (Continued)  
Operands Instruction  
Program Control Instructions  
CALL  
IRET  
JP  
dst  
Call procedure  
Interrupt return  
cc,dst  
dst  
Jump on condition code  
Jump unconditional  
Jump relative on condition code  
Return  
JP  
JR  
cc,dst  
RET  
Bit Manipulation Instructions  
TCM  
TM  
dst,src  
dst,src  
Test complement under mask  
Test under mask  
Rotate and Shift Instructions  
RL  
dst  
dst  
dst  
dst  
dst  
Rotate left  
RLC  
RR  
Rotate left through carry  
Rotate right  
RRC  
SRA  
Rotate right through carry  
Shift right arithmetic  
CPU Control Instructions  
CCF  
DI  
Complement carry flag  
Disable interrupts  
Enable interrupts  
Enter Idle mode  
No operation  
EI  
IDLE  
NOP  
RCF  
SCF  
STOP  
Reset carry flag  
Set carry flag  
Enter stop mode  
6-3  
SAM88RCRI INSTRUCTION SET  
FLAGS REGISTER (FLAGS)  
S3C9444/F9444/C9454/F9454  
The flags register FLAGS contains eight bits that describe the current status of CPU operations. Four of these bits,  
FLAGS.4–FLAGS.7, can be tested and used with conditional jump instructions;  
FLAGS register can be set or reset by instructions as long as its outcome does not affect the flags, such as, Load  
instruction. Logical and Arithmetic instructions such as, AND, OR, XOR, ADD, and SUB can affect the Flags  
register. For example, the AND instruction updates the Zero, Sign and Overflow flags based on the outcome of the  
AND instruction. If the AND instruction uses the Flags register as the destination, then simultaneously, two write  
will occur to the Flags register producing an unpredictable result.  
System Flags Register (FLAGS)  
D5H, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Carry flag (C)  
Not mapped  
Zero flag (Z)  
Sign flag (S)  
Overflow flag (V)  
Figure 6-1. System Flags Register (FLAGS)  
FLAG DESCRIPTIONS  
3333Overflow Flag (FLAGS.4, V)  
The V flag is set to "1" when the result of a two's-complement operation is greater than + 127 or less than – 128. It  
is also cleared to "0" following logic operations.  
Sign Flag (FLAGS.5, S)  
Following arithmetic, logic, rotate, or shift operations, the sign bit identifies the state of the MSB of the result. A  
logic zero indicates a positive number and a logic one indicates a negative number.  
Zero Flag (FLAGS.6, Z)  
For arithmetic and logic operations, the Z flag is set to "1" if the result of the operation is zero. For operations that  
test register bits, and for shift and rotate operations, the Z flag is set to "1" if the result is logic zero.  
Carry Flag (FLAGS.7, C)  
The C flag is set to "1" if the result from an arithmetic operation generates a carry-out from or a borrow to the bit 7  
position (MSB). After rotate and shift operations, it contains the last value shifted out of the specified register.  
Program instructions can set, clear, or complement the carry flag.  
6-4  
S3C9444/F9444/C9454/F9454  
SAM88RCRI INSTRUCTION SET  
INSTRUCTION SET NOTATION  
Table 6-2. Flag Notation Conventions  
Flag  
C
Z
Description  
Carry flag  
Zero flag  
S
V
0
Sign flag  
Overflow flag  
Cleared to logic zero  
Set to logic one  
1
*
Set or cleared according to operation  
Value is unaffected  
Value is undefined  
x
Table 6-3. Instruction Set Symbols  
Symbol  
Description  
Destination operand  
dst  
src  
@
Source operand  
Indirect register address prefix  
Program counter  
PC  
FLAGS  
#
Flags register (D5H)  
Immediate operand or register address prefix  
Hexadecimal number suffix  
Decimal number suffix  
Binary number suffix  
H
D
B
opc  
Opcode  
6-5  
SAM88RCRI INSTRUCTION SET  
S3C9444/F9444/C9454/F9454  
Table 6-4. Instruction Notation Conventions  
Description Actual Operand Range  
Notation  
cc  
r
Condition code  
See list of condition codes in Table 6-6.  
Rn (n = 0–15)  
Working register only  
rr  
Working register pair  
RRp (p = 0, 2, 4, ..., 14)  
R
Register or working register  
Register pair or working register pair  
reg or Rn (reg = 0–255, n = 0–15)  
RR  
reg or RRp (reg = 0–254, even number only, where  
p = 0, 2, ..., 14)  
Ir  
IR  
Indirect working register only  
@Rn (n = 0–15)  
Indirect register or indirect working register @Rn or @reg (reg = 0–255, n = 0–15)  
Irr  
Indirect working register pair only  
@RRp (p = 0, 2, ..., 14)  
IRR  
Indirect register pair or indirect working  
register pair  
@RRp or @reg (reg = 0–254, even only, where  
p = 0, 2, ..., 14)  
X
Indexed addressing mode  
#reg[Rn] (reg = 0–255, n = 0–15)  
XS  
Indexed (short offset) addressing mode  
#addr[RRp] (addr = range – 128 to + 127, where  
p = 0, 2, ..., 14)  
XL  
Indexed (long offset) addressing mode  
#addr [RRp] (addr = range 0–8191, where  
p = 0, 2, ..., 14)  
DA  
RA  
Direct addressing mode  
Relative addressing mode  
addr (addr = range 0–8191)  
addr (addr = number in the range + 127 to – 128 that is  
an offset relative to the address of the next instruction)  
IM  
Immediate addressing mode  
#data (data = 0–255)  
6-6  
S3C9444/F9444/C9454/F9454  
SAM88RCRI INSTRUCTION SET  
Table 6-5. Opcode Quick Reference  
OPCODE MAP  
LOWER NIBBLE (HEX)  
0
0
1
2
3
4
5
6
7
U
P
P
E
R
DEC  
R1  
DEC  
IR1  
ADD  
r1,r2  
ADD  
r1,Ir2  
ADD  
R2,R1  
ADD  
IR2,R1  
ADD  
R1,IM  
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
RLC  
R1  
RLC  
IR1  
ADC  
r1,r2  
ADC  
r1,Ir2  
ADC  
R2,R1  
ADC  
IR2,R1  
ADC  
R1,IM  
INC  
R1  
INC  
IR1  
SUB  
r1,r2  
SUB  
r1,Ir2  
SUB  
R2,R1  
SUB  
IR2,R1  
SUB  
R1,IM  
JP  
IRR1  
SBC  
r1,r2  
SBC  
r1,Ir2  
SBC  
R2,R1  
SBC  
IR2,R1  
SBC  
R1,IM  
OR  
r1,r2  
OR  
r1,Ir2  
OR  
R2,R1  
OR  
IR2,R1  
OR  
R1,IM  
POP  
R1  
POP  
IR1  
AND  
r1,r2  
AND  
r1,Ir2  
AND  
R2,R1  
AND  
IR2,R1  
AND  
R1,IM  
N
I
COM  
R1  
COM  
IR1  
TCM  
r1,r2  
TCM  
r1,Ir2  
TCM  
R2,R1  
TCM  
IR2,R1  
TCM  
R1,IM  
PUSH  
R2  
PUSH  
IR2  
TM  
r1,r2  
TM  
r1,Ir2  
TM  
R2,R1  
TM  
IR2,R1  
TM  
R1,IM  
B
B
L
E
LD  
r1, x, r2  
RL  
R1  
RL  
IR1  
LD  
r2, x, r1  
CP  
r1,r2  
CP  
r1,Ir2  
CP  
R2,R1  
CP  
IR2,R1  
CP  
R1,IM  
LDC  
r1, Irr2, xL  
CLR  
R1  
CLR  
IR1  
XOR  
r1,r2  
XOR  
r1,Ir2  
XOR  
R2,R1  
XOR  
IR2,R1  
XOR  
R1,IM  
LDC  
r2, Irr2, xL  
RRC  
R1  
RRC  
IR1  
LDC  
r1,Irr2  
LD  
r1, Ir2  
H
E
X
SRA  
R1  
SRA  
IR1  
LDC  
r2,Irr1  
LD  
IR1,IM  
LD  
Ir1, r2  
RR  
R1  
RR  
IR1  
LDCD  
r1,Irr2  
LDCI  
r1,Irr2  
LD  
R2,R1  
LD  
R2,IR1  
LD  
R1,IM  
LDC  
r1, Irr2, xs  
CALL  
IRR1  
LD  
IR2,R1  
CALL  
DA1  
LDC  
r2, Irr1, xs  
6-7  
SAM88RCRI INSTRUCTION SET  
S3C9444/F9444/C9454/F9454  
Table 6-5. Opcode Quick Reference (Continued)  
OPCODE MAP  
LOWER NIBBLE (HEX)  
0
8
9
A
B
C
D
E
F
U
P
LD  
r1,R2  
LD  
r2,R1  
JR  
cc,RA  
LD  
r1,IM  
JP  
cc,DA  
INC  
r1  
1
¯
¯
¯
¯
¯
¯
¯
¯
¯
¯
¯
¯
¯
¯
¯
¯
¯
¯
P
E
R
2
3
4
5
N
I
6
IDLE  
STOP  
DI  
7
B
B
L
E
8
9
EI  
A
B
C
D
E
F
RET  
IRET  
RCF  
SCF  
CCF  
NOP  
H
E
X
LD  
r1,R2  
LD  
r2,R1  
JR  
cc,RA  
LD  
r1,IM  
JP  
cc,DA  
INC  
r1  
6-8  
S3C9444/F9444/C9454/F9454  
CONDITION CODES  
SAM88RCRI INSTRUCTION SET  
The opcode of a conditional jump always contains a 4-bit field called the condition code (cc). This specifies under  
which conditions it is to execute the jump. For example, a conditional jump with the condition code for "equal" after  
a compare operation only jumps if the two operands are equal. Condition codes are listed in Table 6-6.  
The carry (C), zero (Z), sign (S), and overflow (V) flags are used to control the operation of conditional jump  
instructions.  
Table 6-6. Condition Codes  
Binary  
0000  
Mnemonic  
Description  
Flags Set  
F
T
C
Always false  
Always true  
Carry  
1000  
(1)  
C = 1  
C = 0  
Z = 1  
Z = 0  
S = 0  
S = 1  
V = 1  
V = 0  
Z = 1  
Z = 0  
0111  
(1)  
NC  
Z
No carry  
Zero  
1111  
(1)  
0110  
(1)  
NZ  
Not zero  
Plus  
1110  
PL  
1101  
0101  
0100  
1100  
MI  
Minus  
OV  
NOV  
EQ  
NE  
GE  
LT  
Overflow  
No overflow  
Equal  
(1)  
0110  
(1)  
Not equal  
1110  
1001  
0001  
1010  
0010  
Greater than or equal  
Less than  
(S XOR V) = 0  
(S XOR V) = 1  
(Z OR (S XOR V)) = 0  
(Z OR (S XOR V)) = 1  
C = 0  
GT  
LE  
Greater than  
Less than or equal  
Unsigned greater than or equal  
Unsigned less than  
Unsigned greater than  
Unsigned less than or equal  
(1)  
UGE  
ULT  
UGT  
ULE  
1111  
(1)  
C = 1  
0111  
1011  
0011  
(C = 0 AND Z = 0) = 1  
(C OR Z) = 1  
NOTES:  
1. It indicates condition codes that are related to two different mnemonics but which test the same flag.  
For example, Z and EQ are both true if the zero flag (Z) is set, but after an ADD instruction, Z would probably be used;  
after a CP instruction, however, EQ would probably be used.  
2. For operations involving unsigned numbers, the special condition codes UGE, ULT, UGT, and ULE must be used.  
6-9  
SAM88RCRI INSTRUCTION SET  
INSTRUCTION DESCRIPTIONS  
S3C9444/F9444/C9454/F9454  
This section contains detailed information and programming examples for each instruction in the SAM87Ri  
instruction set. Information is arranged in a consistent format for improved readability and for fast referencing. The  
following information is included in each instruction description:  
— Instruction name (mnemonic)  
— Full instruction name  
— Source/destination format of the instruction operand  
— Shorthand notation of the instruction's operation  
— Textual description of the instruction's effect  
— Specific flag settings affected by the instruction  
— Detailed description of the instruction's format, execution time, and addressing mode(s)  
— Programming example(s) explaining how to use the instruction  
6-10  
S3C9444/F9444/C9454/F9454  
SAM88RCRI INSTRUCTION SET  
ADC — Add with Carry  
ADC  
dst,src  
Operation:  
dst ¬ dst + src + c  
The source operand, along with the setting of the carry flag, is added to the destination operand  
and the sum is stored in the destination. The contents of the source are unaffected.  
Two's-complement addition is performed. In multiple precision arithmetic, this instruction permits  
the carry from the addition of low-order operands to be carried into the addition of high-order  
operands.  
Flags:  
C: Set if there is a carry from the most significant bit of the result; cleared otherwise.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result is negative; cleared otherwise.  
V: Set if arithmetic overflow occurs, that is, if both operands are of the same sign and the  
result is of the opposite sign; cleared otherwise.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
opc  
dst | src  
src  
2
4
6
12  
13  
r
r
r
lr  
dst  
src  
3
3
6
6
14  
15  
R
R
R
IR  
dst  
6
16  
R
IM  
Examples:  
Given: R1 = 10H, R2 = 03H, C flag = "1", register 01H = 20H, register 02H = 03H, and  
register 03H = 0AH:  
ADC  
ADC  
ADC  
ADC  
ADC  
R1,R2  
®
®
®
®
®
R1 = 14H, R2 = 03H  
R1,@R2  
01H,02H  
01H,@02H  
01H,#11H  
R1 = 1BH, R2 = 03H  
Register 01H = 24H, register 02H = 03H  
Register 01H = 2BH, register 02H = 03H  
Register 01H = 32H  
In the first example, destination register R1 contains the value 10H, the carry flag is set to "1", and  
the source working register R2 contains the value 03H. The statement "ADC R1,R2" adds 03H  
and the carry flag value ("1") to the destination value 10H, leaving 14H in register R1.  
6-11  
SAM88RCRI INSTRUCTION SET  
S3C9444/F9444/C9454/F9454  
ADD — Add  
ADD  
dst,src  
Operation:  
dst ¬ dst + src  
The source operand is added to the destination operand and the sum is stored in the destination.  
The contents of the source are unaffected. Two's-complement addition is performed.  
Flags:  
C: Set if there is a carry from the most significant bit of the result; cleared otherwise.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result is negative; cleared otherwise.  
V: Set if arithmetic overflow occurred, that is, if both operands are of the same sign and the result is  
of the opposite sign; cleared otherwise.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
opc  
dst | src  
src  
2
4
6
02  
03  
r
r
r
lr  
dst  
src  
3
3
6
6
04  
05  
R
R
R
IR  
dst  
6
06  
R
IM  
Examples:  
Given: R1 = 12H, R2 = 03H, register 01H = 21H, register 02H = 03H, register 03H = 0AH:  
ADD  
ADD  
ADD  
ADD  
ADD  
R1,R2  
®
®
®
®
®
R1 = 15H, R2 = 03H  
R1,@R2  
01H,02H  
01H,@02H  
01H,#25H  
R1 = 1CH, R2 = 03H  
Register 01H = 24H, register 02H = 03H  
Register 01H = 2BH, register 02H = 03H  
Register 01H = 46H  
In the first example, destination working register R1 contains 12H and the source working register  
R2 contains 03H. The statement "ADD R1,R2" adds 03H to 12H, leaving the value 15H in register  
R1.  
6-12  
S3C9444/F9444/C9454/F9454  
SAM88RCRI INSTRUCTION SET  
AND — Logical AND  
AND  
dst,src  
Operation:  
dst ¬ dst AND src  
The source operand is logically ANDed with the destination operand. The result is stored in the  
destination. The AND operation results in a "1" bit being stored whenever the corresponding bits in  
the two operands are both logic ones; otherwise a "0" bit value is stored. The contents of the  
source are unaffected.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Always cleared to "0".  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
opc  
dst | src  
src  
2
4
6
52  
53  
r
r
r
lr  
dst  
src  
3
3
6
6
54  
55  
R
R
R
IR  
dst  
6
56  
R
IM  
Examples:  
Given: R1 = 12H, R2 = 03H, register 01H = 21H, register 02H = 03H, register 03H = 0AH:  
AND  
AND  
AND  
AND  
AND  
R1,R2  
®
®
®
®
®
R1 = 02H, R2 = 03H  
R1,@R2  
01H,02H  
01H,@02H  
01H,#25H  
R1 = 02H, R2 = 03H  
Register 01H = 01H, register 02H = 03H  
Register 01H = 00H, register 02H = 03H  
Register 01H = 21H  
In the first example, destination working register R1 contains the value 12H and the source  
working register R2 contains 03H. The statement "AND R1,R2" logically ANDs the source operand  
03H with the destination operand value 12H, leaving the value 02H in register R1.  
6-13  
SAM88RCRI INSTRUCTION SET  
S3C9444/F9444/C9454/F9454  
CALL — Call Procedure  
CALL  
dst  
Operation:  
SP  
@SP  
SP  
@SP  
PC  
¬
¬
¬
¬
¬
SP – 1  
PCL  
SP –1  
PCH  
dst  
The current contents of the program counter are pushed onto the top of the stack. The program  
counter value used is the address of the first instruction following the CALL instruction. The  
specified destination address is then loaded into the program counter and points to the first  
instruction of a procedure. At the end of the procedure the return instruction (RET) can be used to  
return to the original program flow. RET pops the top of the stack back into the program counter.  
Flags: No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
opc  
dst  
3
14  
F6  
DA  
dst  
2
12  
F4  
IRR  
Examples:  
Given: R0 = 15H, R1 = 21H, PC = 1A47H, and SP = 0B2H:  
CALL  
1521H  
®
SP = 0B0H  
(Memory locations 00H = 1AH, 01H = 4AH, where 4AH  
is the address that follows the instruction.)  
CALL  
@RR0  
®
SP = 0B0H (00H = 1AH, 01H = 49H)  
In the first example, if the program counter value is 1A47H and the stack pointer contains the  
value 0B2H, the statement "CALL 1521H" pushes the current PC value onto the top of the stack.  
The stack pointer now points to memory location 00H. The PC is then loaded with the value  
1521H, the address of the first instruction in the program sequence to be executed.  
If the contents of the program counter and stack pointer are the same as in the first example, the  
statement "CALL @RR0" produces the same result except that the 49H is stored in stack location  
01H (because the two-byte instruction format was used). The PC is then loaded with the value  
1521H, the address of the first instruction in the program sequence to be executed.  
6-14  
S3C9444/F9444/C9454/F9454  
SAM88RCRI INSTRUCTION SET  
CCF — Complement Carry Flag  
CCF  
Operation:  
C ¬ NOT C  
The carry flag (C) is complemented. If C = "1", the value of the carry flag is changed to logic zero;  
if C = "0", the value of the carry flag is changed to logic one.  
Flags:  
C: Complemented.  
No other flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
4
EF  
Example:  
Given: The carry flag = "0":  
CCF  
If the carry flag = "0", the CCF instruction complements it in the FLAGS register (0D5H),  
changing its value from logic zero to logic one.  
6-15  
SAM88RCRI INSTRUCTION SET  
S3C9444/F9444/C9454/F9454  
CLR — Clear  
CLR  
dst  
Operation:  
dst ¬ "0"  
The destination location is cleared to "0".  
Flags: No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
4
4
B0  
B1  
R
IR  
Examples:  
Given: Register 00H = 4FH, register 01H = 02H, and register 02H = 5EH:  
CLR  
CLR  
00H  
®
®
Register 00H = 00H  
@01H  
Register 01H = 02H, register 02H = 00H  
In Register (R) addressing mode, the statement "CLR 00H" clears the destination register 00H  
value to 00H. In the second example, the statement "CLR @01H" uses Indirect Register (IR)  
addressing mode to clear the 02H register value to 00H.  
6-16  
S3C9444/F9444/C9454/F9454  
SAM88RCRI INSTRUCTION SET  
COM — Complement  
COM  
dst  
Operation:  
dst ¬ NOT dst  
The contents of the destination location are complemented (one's complement); all "1s" are  
changed to "0s", and vice-versa.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Always reset to "0".  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
4
4
60  
61  
R
IR  
Examples:  
Given: R1 = 07H and register 07H = 0F1H:  
COM  
COM  
R1  
®
®
R1 = 0F8H  
R1 = 07H, register 07H = 0EH  
@R1  
In the first example, destination working register R1 contains the value 07H (00000111B). The  
statement "COM R1" complements all the bits in R1: all logic ones are changed to logic zeros,  
and vice-versa, leaving the value 0F8H (11111000B).  
In the second example, Indirect Register (IR) addressing mode is used to complement the value  
of destination register 07H (11110001B), leaving the new value 0EH (00001110B).  
6-17  
SAM88RCRI INSTRUCTION SET  
S3C9444/F9444/C9454/F9454  
CP — Compare  
CP  
dst,src  
Operation:  
dst – src  
The source operand is compared to (subtracted from) the destination operand, and the  
appropriate flags are set accordingly. The contents of both operands are unaffected by the  
comparison.  
Flags:  
C: Set if a "borrow" occurred (src > dst); cleared otherwise.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result is negative; cleared otherwise.  
V: Set if arithmetic overflow occurred, that is, if the operands were of opposite signs and the sign of  
the result is of the same as the sign of the source operand; cleared otherwise.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
opc  
dst | src  
src  
2
4
6
A2  
A3  
r
r
r
lr  
dst  
src  
3
3
6
6
A4  
A5  
R
R
R
IR  
dst  
6
A6  
R
IM  
Examples:  
1. Given: R1 = 02H and R2 = 03H:  
CP R1,R2  
®
Set the C and S flags  
Destination working register R1 contains the value 02H and source register R2 contains the  
value 03H. The statement "CP R1,R2" subtracts the R2 value (source/subtrahend) from the  
R1 value (destination/minuend). Because a "borrow" occurs and the difference is negative,  
C and S are "1".  
2. Given: R1 = 05H and R2 = 0AH:  
CP  
JP  
INC  
LD  
R1,R2  
UGE,SKIP  
R1  
SKIP  
R3,R1  
In this example, destination working register R1 contains the value 05H which is less than the  
contents of the source working register R2 (0AH). The statement "CP R1,R2" generates C =  
"1" and the JP instruction does not jump to the SKIP location. After the statement "LD R3,R1"  
executes, the value 06H remains in working register R3.  
6-18  
S3C9444/F9444/C9454/F9454  
SAM88RCRI INSTRUCTION SET  
DEC — Decrement  
DEC  
dst  
Operation:  
dst ¬ dst – 1  
The contents of the destination operand are decremented by one.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if result is negative; cleared otherwise.  
V: Set if arithmetic overflow occurred, that is, dst value is – 128 (80H) and result value is  
+ 127 (7FH); cleared otherwise.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
4
4
00  
01  
R
IR  
Examples:  
Given: R1 = 03H and register 03H = 10H:  
DEC  
DEC  
R1  
®
®
R1 = 02H  
Register 03H = 0FH  
@R1  
In the first example, if working register R1 contains the value 03H, the statement "DEC R1"  
decrements the hexadecimal value by one, leaving the value 02H. In the second example, the  
statement "DEC @R1" decrements the value 10H contained in the destination register 03H by  
one, leaving the value 0FH.  
6-19  
SAM88RCRI INSTRUCTION SET  
S3C9444/F9444/C9454/F9454  
DI — Disable Interrupts  
DI  
Operation:  
SYM (2) ¬ 0  
Bit zero of the system mode register, SYM.2, is cleared to "0", globally disabling all interrupt  
processing. Interrupt requests will continue to set their respective interrupt pending bits, but the  
CPU will not service them while interrupt processing is disabled.  
Flags: No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
4
8F  
Example:  
Given: SYM = 04H:  
DI  
If the value of the SYM register is 04H, the statement "DI" leaves the new value 00H in the register  
and clears SYM.2 to "0", disabling interrupt processing.  
6-20  
S3C9444/F9444/C9454/F9454  
SAM88RCRI INSTRUCTION SET  
EI — Enable Interrupts  
EI  
Operation:  
SYM (2) ¬ 1  
An EI instruction sets bit 2 of the system mode register, SYM.2 to "1". This allows interrupts to be  
serviced as they occur. If an interrupt's pending bit was set while interrupt processing was disabled  
(by executing a DI instruction), it will be serviced when you execute the EI instruction.  
Flags: No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
4
9F  
Example:  
Given: SYM = 00H:  
EI  
If the SYM register contains the value 00H, that is, if interrupts are currently disabled, the  
statement "EI" sets the SYM register to 04H, enabling all interrupts. (SYM.2 is the enable bit for  
global interrupt processing.)  
6-21  
SAM88RCRI INSTRUCTION SET  
S3C9444/F9444/C9454/F9454  
IDLE — Idle Operation  
IDLE  
Operation:  
The IDLE instruction stops the CPU clock while allowing system clock oscillation to continue. Idle  
mode can be released by an interrupt request (IRQ) or an external reset operation.  
Flags: No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
1
4
6F  
Example:  
The instruction  
IDLE  
NOP  
NOP  
NOP  
stops the CPU clock but not the system clock.  
6-22  
S3C9444/F9444/C9454/F9454  
SAM88RCRI INSTRUCTION SET  
INC — Increment  
INC  
dst  
Operation:  
dst ¬ dst + 1  
The contents of the destination operand are incremented by one.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result is negative; cleared otherwise.  
V: Set if arithmetic overflow occurred, that is dst value is + 127 (7FH) and result is – 128 (80H);  
cleared otherwise.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
dst | opc  
opc  
1
4
rE  
r
r = 0 to F  
dst  
2
4
4
20  
21  
R
IR  
Examples:  
Given: R0 = 1BH, register 00H = 0CH, and register 1BH = 0FH:  
INC  
INC  
INC  
R0  
®
®
®
R0 = 1CH  
00H  
@R0  
Register 00H = 0DH  
R0 = 1BH, register 01H = 10H  
In the first example, if destination working register R0 contains the value 1BH, the statement "INC  
R0" leaves the value 1CH in that same register.  
The next example shows the effect an INC instruction has on register 00H, assuming that it  
contains the value 0CH.  
In the third example, INC is used in Indirect Register (IR) addressing mode to increment the value  
of register 1BH from 0FH to 10H.  
6-23  
SAM88RCRI INSTRUCTION SET  
S3C9444/F9444/C9454/F9454  
IRET — Interrupt Return  
IRET  
IRET  
Operation:  
FLAGS ¬ @SP  
SP ¬ SP + 1  
PC ¬ @SP  
SP ¬ SP + 2  
SYM(2) ¬ 1  
This instruction is used at the end of an interrupt service routine. It restores the flag register and  
the program counter. It also re-enables global interrupts.  
Flags: All flags are restored to their original settings (that is, the settings before the interrupt occurred).  
Format:  
IRET  
(Normal)  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
10  
12  
BF  
6-24  
S3C9444/F9444/C9454/F9454  
SAM88RCRI INSTRUCTION SET  
JP — Jump  
JP  
cc,dst  
dst  
(Conditional)  
JP  
(Unconditional)  
Operation:  
If cc is true, PC ¬ dst  
The conditional JUMP instruction transfers program control to the destination address if the  
condition specified by the condition code (cc) is true; otherwise, the instruction following the JP  
instruction is executed. The unconditional JP simply replaces the contents of the PC with the  
contents of the specified register pair. Control then passes to the statement addressed by the PC.  
Flags: No flags are affected.  
(1)  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
(2)  
cc | opc  
dst  
3
8
ccD  
DA  
cc = 0 to F  
opc  
dst  
2
8
30  
IRR  
NOTES:  
1. The 3-byte format is used for a conditional jump and the 2-byte format for an unconditional jump.  
2. In the first byte of the three-byte instruction format (conditional jump), the condition code and the  
op code are both four bits.  
Examples:  
Given: The carry flag (C) = "1", register 00 = 01H, and register 01 = 20H:  
JP  
JP  
C,LABEL_W  
@00H  
®
®
LABEL_W = 1000H, PC = 1000H  
PC = 0120H  
The first example shows a conditional JP. Assuming that the carry flag is set to "1", the statement  
"JP C,LABEL_W" replaces the contents of the PC with the value 1000H and transfers control to  
that location. Had the carry flag not been set, control would then have passed to the statement  
immediately following the JP instruction.  
The second example shows an unconditional JP. The statement "JP @00" replaces the contents  
of the PC with the contents of the register pair 00H and 01H, leaving the value 0120H.  
6-25  
SAM88RCRI INSTRUCTION SET  
S3C9444/F9444/C9454/F9454  
JR — Jump Relative  
JR  
cc,dst  
Operation:  
If cc is true, PC ¬ PC + dst  
If the condition specified by the condition code (cc) is true, the relative address is added to the  
program counter and control passes to the statement whose address is now in the program  
counter; otherwise, the instruction following the JR instruction is executed (See list of condition  
codes).  
The range of the relative address is + 127, – 128, and the original value of the program counter is  
taken to be the address of the first instruction byte following the JR statement.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
(note)  
cc | opc  
dst  
2
6
ccB  
RA  
cc = 0 to F  
NOTE: In the first byte of the two-byte instruction format, the condition code and the op code are each  
four bits.  
Example:  
Given: The carry flag = "1" and LABEL_X = 1FF7H:  
JR  
C,LABEL_X  
®
PC = 1FF7H  
If the carry flag is set (that is, if the condition code is true), the statement "JR C,LABEL_X" will  
pass control to the statement whose address is now in the PC. Otherwise, the program instruction  
following the JR would be executed.  
6-26  
S3C9444/F9444/C9454/F9454  
SAM88RCRI INSTRUCTION SET  
LD — Load  
LD  
dst,src  
Operation:  
dst ¬ src  
The contents of the source are loaded into the destination. The source's contents are unaffected.  
No flags are affected.  
Flags:  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
IM  
R
dst | opc  
src | opc  
opc  
src  
dst  
2
4
4
rC  
r8  
r
r
2
2
3
3
4
r9  
R
r
r = 0 to F  
dst | src  
4
4
C7  
D7  
r
lr  
r
Ir  
opc  
src  
dst  
src  
6
6
E4  
E5  
R
R
R
IR  
opc  
dst  
6
6
E6  
D6  
R
IM  
IM  
IR  
opc  
opc  
opc  
src  
dst  
x
3
3
3
6
6
6
F5  
87  
97  
IR  
r
R
x [r]  
r
dst | src  
src | dst  
x
x [r]  
6-27  
SAM88RCRI INSTRUCTION SET  
S3C9444/F9444/C9454/F9454  
LD — Load  
LD  
(Continued)  
Examples:  
Given: R0 = 01H, R1 = 0AH, register 00H = 01H, register 01H = 20H,  
register 02H = 02H, LOOP = 30H, and register 3AH = 0FFH:  
LD  
LD  
LD  
LD  
LD  
LD  
LD  
LD  
LD  
LD  
LD  
LD  
R0,#10H  
®
®
®
®
®
®
®
®
®
®
®
®
R0 = 10H  
R0,01H  
R0 = 20H, register 01H = 20H  
Register 01H = 01H, R0 = 01H  
R1 = 20H, R0 = 01H  
01H,R0  
R1,@R0  
@R0,R1  
R0 = 01H, R1 = 0AH, register 01H = 0AH  
Register 00H = 20H, register 01H = 20H  
Register 02H = 20H, register 00H = 01H  
Register 00H = 0AH  
00H,01H  
02H,@00H  
00H,#0AH  
@00H,#10H  
@00H,02H  
R0,#LOOP[R1]  
#LOOP[R0],R1  
Register 00H = 01H, register 01H = 10H  
Register 00H = 01H, register 01H = 02, register 02H = 02H  
R0 = 0FFH, R1 = 0AH  
Register 31H = 0AH, R0 = 01H, R1 = 0AH  
6-28  
S3C9444/F9444/C9454/F9454  
SAM88RCRI INSTRUCTION SET  
LDC/LDE — Load Memory  
LDC/LDE  
dst,src  
Operation:  
dst ¬ src  
This instruction loads a byte from program or data memory into a working register or vice-versa.  
The source values are unaffected. LDC refers to program memory and LDE to data memory. The  
assembler makes "Irr" or "rr" values an even number for program memory and odd an odd  
number for data memory.  
Flags: No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
1.  
2.  
3.  
4.  
5.  
opc  
opc  
opc  
opc  
opc  
dst | src  
src | dst  
dst | src  
src | dst  
dst | src  
2
10  
C3  
D3  
E7  
F7  
A7  
r
Irr  
2
3
3
4
10  
12  
12  
14  
Irr  
r
XS  
XS  
XL  
r
XS [rr]  
r
XS [rr]  
r
XL  
XL  
XL [rr]  
L
H
H
XL  
6.  
7.  
opc  
opc  
opc  
opc  
src | dst  
dst | 0000  
src | 0000  
dst | 0001  
src | 0001  
4
4
4
4
4
14  
14  
14  
14  
14  
B7  
A7  
B7  
A7  
B7  
XL [rr]  
r
DA  
r
L
DA  
DA  
DA  
DA  
DA  
DA  
DA  
DA  
r
L
L
L
L
H
H
H
H
8.  
DA  
r
9.  
DA  
r
10.  
opc  
DA  
NOTES:  
1. The source (src) or working register pair [rr] for formats 5 and 6 cannot use register pair 0–1.  
2. For formats 3 and 4, the destination address "XS [rr]" and the source address "XS [rr]" are each one  
byte.  
3. For formats 5 and 6, the destination address "XL [rr]" and the source address "XL [rr]" are each two  
bytes.  
4. The DA and r source values for formats 7 and 8 are used to address program memory; the second set  
of values, used in formats 9 and 10, are used to address data memory.  
6-29  
SAM88RCRI INSTRUCTION SET  
S3C9444/F9444/C9454/F9454  
LDC/LDE — Load Memory  
LDC/LDE  
(Continued)  
Examples:  
Given: R0 = 11H, R1 = 34H, R2 = 01H, R3 = 04H, R4 = 00H, R5 = 60H; Program memory  
locations 0061 = AAH, 0103H = 4FH, 0104H = 1A, 0105H = 6DH, and 1104H = 88H.  
External data memory locations 0061H = BBH, 0103H = 5FH, 0104H = 2AH, 0105H = 7DH,  
and 1104H = 98H:  
LDC  
LDE  
LDC  
R0,@RR2  
R0,@RR2  
@RR2,R0  
; R0 ¬ contents of program memory location 0104H  
; R0 = 1AH, R2 = 01H, R3 = 04H  
; R0 ¬ contents of external data memory location 0104H  
; R0 = 2AH, R2 = 01H, R3 = 04H  
(note)  
; 11H (contents of R0) is loaded into program memory  
; location 0104H (RR2),  
; working registers R0, R2, R3 ® no change  
LDE  
LDC  
@RR2,R0  
; 11H (contents of R0) is loaded into external data memory  
; location 0104H (RR2),  
; working registers R0, R2, R3 ® no change  
R0,#01H[RR4]  
; R0 ¬ contents of program memory location 0061H  
; (01H + RR4),  
; R0 = AAH, R2 = 00H, R3 = 60H  
LDE  
LDC  
LDE  
LDC  
LDE  
R0,#01H[RR4]  
#01H[RR4],R0  
#01H[RR4],R0  
; R0 ¬ contents of external data memory location 0061H  
; (01H + RR4), R0 = BBH, R4 = 00H, R5 = 60H  
(note)  
; 11H (contents of R0) is loaded into program memory location  
; 0061H (01H + 0060H)  
; 11H (contents of R0) is loaded into external data memory  
; location 0061H (01H + 0060H)  
R0,#1000H[RR2] ; R0 ¬ contents of program memory location 1104H  
; (1000H + 0104H), R0 = 88H, R2 = 01H, R3 = 04H  
R0,#1000H[RR2] ; R0 ¬ contents of external data memory location 1104H  
; (1000H + 0104H), R0 = 98H, R2 = 01H, R3 = 04H  
LDC  
LDE  
R0,1104H  
R0,1104H  
; R0 ¬ contents of program memory location 1104H, R0 = 88H  
; R0 ¬ contents of external data memory location 1104H,  
; R0 = 98H  
(note)  
LDC  
LDE  
1105H,R0  
1105H,R0  
; 11H (contents of R0) is loaded into program memory location  
; 1105H, (1105H) ¬ 11H  
; 11H (contents of R0) is loaded into external data memory  
; location 1105H, (1105H) ¬ 11H  
NOTE: These instructions are not supported by masked ROM type devices.  
6-30  
S3C9444/F9444/C9454/F9454  
SAM88RCRI INSTRUCTION SET  
LDCD/LDED — Load Memory and Decrement  
LDCD/LDED dst,src  
Operation:  
dst ¬ src  
rr ¬ rr – 1  
These instructions are used for user stacks or block transfers of data from program or data  
memory to the register file. The address of the memory location is specified by a working register  
pair. The contents of the source location are loaded into the destination location. The memory  
address is then decremented. The contents of the source are unaffected.  
LDCD references program memory and LDED references external data memory. The assembler  
makes "Irr" an even number for program memory and an odd number for data memory.  
Flags: No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
dst | src  
2
10  
E2  
r
Irr  
Examples:  
Given: R6 = 10H, R7 = 33H, R8 = 12H, program memory location 1033H = 0CDH, and  
external data memory location 1033H = 0DDH:  
LDCD  
R8,@RR6  
; 0CDH (contents of program memory location 1033H) is loaded  
; into R8 and RR6 is decremented by one  
; R8 = 0CDH, R6 = 10H, R7 = 32H (RR6 ¬ RR6 – 1)  
LDED  
R8,@RR6  
; 0DDH (contents of data memory location 1033H) is loaded  
; into R8 and RR6 is decremented by one (RR6 ¬ RR6 – 1)  
; R8 = 0DDH, R6 = 10H, R7 = 32H  
6-31  
SAM88RCRI INSTRUCTION SET  
S3C9444/F9444/C9454/F9454  
LDCI/LDEI— LOAD MEMORY AND INCREMENT  
LDCI/LDEI  
Operation:  
dst,src  
dst ¬ src  
rr ¬ rr + 1  
These instructions are used for user stacks or block transfers of data from program or data  
memory to the register file. The address of the memory location is specified by a working register  
pair. The contents of the source location are loaded into the destination location. The memory  
address is then incremented automatically. The contents of the source are unaffected.  
LDCI refers to program memory and LDEI refers to external data memory. The assembler makes  
"Irr" even for program memory and odd for data memory.  
Flags: No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
dst | src  
2
10  
E3  
r
Irr  
Examples:  
Given: R6 = 10H, R7 = 33H, R8 = 12H, program memory locations 1033H = 0CDH and  
1034H = 0C5H; external data memory locations 1033H = 0DDH and 1034H = 0D5H:  
LDCI  
R8,@RR6  
; 0CDH (contents of program memory location 1033H) is loaded  
; into R8 and RR6 is incremented by one (RR6 ¬ RR6 + 1)  
; R8 = 0CDH, R6 = 10H, R7 = 34H  
LDEI  
R8,@RR6  
; 0DDH (contents of data memory location 1033H) is loaded  
; into R8 and RR6 is incremented by one (RR6 ¬ RR6 + 1)  
; R8 = 0DDH, R6 = 10H, R7 = 34H  
6-32  
S3C9444/F9444/C9454/F9454  
SAM88RCRI INSTRUCTION SET  
NOP — No Operation  
NOP  
Operation:  
No action is performed when the CPU executes this instruction. Typically, one or more NOPs are  
executed in sequence in order to effect a timing delay of variable duration.  
Flags: No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
4
FF  
Example:  
When the instruction  
NOP  
is encountered in a program, no operation occurs. Instead, there is a delay in instruction execution  
time.  
6-33  
SAM88RCRI INSTRUCTION SET  
S3C9444/F9444/C9454/F9454  
OR — Logical OR  
OR  
dst,src  
Operation:  
dst ¬ dst OR src  
The source operand is logically ORed with the destination operand and the result is stored in the  
destination. The contents of the source are unaffected. The OR operation results in a "1" being  
stored whenever either of the corresponding bits in the two operands is a "1"; otherwise a "0" is  
stored.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Always cleared to "0".  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
opc  
dst | src  
src  
2
4
6
42  
43  
r
r
r
lr  
dst  
src  
3
3
6
6
44  
45  
R
R
R
IR  
dst  
6
46  
R
IM  
Examples:  
Given: R0 = 15H, R1 = 2AH, R2 = 01H, register 00H = 08H, register 01H = 37H, and  
register 08H = 8AH:  
OR  
OR  
OR  
OR  
OR  
R0,R1  
®
®
®
®
®
R0 = 3FH, R1 = 2AH  
R0,@R2  
00H,01H  
01H,@00H  
00H,#02H  
R0 = 37H, R2 = 01H, register 01H = 37H  
Register 00H = 3FH, register 01H = 37H  
Register 00H = 08H, register 01H = 0BFH  
Register 00H = 0AH  
In the first example, if working register R0 contains the value 15H and register R1 the value 2AH,  
the statement "OR R0,R1" logical-ORs the R0 and R1 register contents and stores the result  
(3FH) in destination register R0.  
The other examples show the use of the logical OR instruction with the various addressing modes  
and formats.  
6-34  
S3C9444/F9444/C9454/F9454  
SAM88RCRI INSTRUCTION SET  
POP — Pop From Stack  
POP  
dst  
Operation:  
dst ¬ @SP  
SP ¬ SP + 1  
The contents of the location addressed by the stack pointer are loaded into the destination. The  
stack pointer is then incremented by one.  
Flags: No flags affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
8
8
50  
51  
R
IR  
Examples:  
Given: Register 00H = 01H, register 01H = 1BH, SP (0D9H) = 0BBH, and stack register  
0BBH = 55H:  
POP  
POP  
00H  
®
®
Register 00H = 55H, SP = 0BCH  
@00H  
Register 00H = 01H, register 01H = 55H, SP = 0BCH  
In the first example, general register 00H contains the value 01H. The statement "POP 00H"  
loads the contents of location 0BBH (55H) into destination register 00H and then increments the  
stack pointer by one. Register 00H then contains the value 55H and the SP points to location  
0BCH.  
6-35  
SAM88RCRI INSTRUCTION SET  
S3C9444/F9444/C9454/F9454  
PUSH — Push To Stack  
PUSH  
src  
Operation:  
SP ¬ SP – 1  
@SP ¬ src  
A PUSH instruction decrements the stack pointer value and loads the contents of the source (src)  
into the location addressed by the decremented stack pointer. The operation then adds the new  
value to the top of the stack.  
Flags: No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
src  
2
8
8
70  
71  
R
IR  
Examples:  
Given: Register 40H = 4FH, register 4FH = 0AAH, SP = 0C0H:  
PUSH  
40H  
®
Register 40H = 4FH, stack register 0BFH = 4FH,  
SP = 0BFH  
PUSH  
@40H  
®
Register 40H = 4FH, register 4FH = 0AAH, stack register  
0BFH = 0AAH, SP = 0BFH  
In the first example, if the stack pointer contains the value 0C0H, and general register 40H the  
value 4FH, the statement "PUSH 40H" decrements the stack pointer from 0C0 to 0BFH. It then  
loads the contents of register 40H into location 0BFH. Register 0BFH then contains the value 4FH  
and SP points to location 0BFH.  
6-36  
S3C9444/F9444/C9454/F9454  
SAM88RCRI INSTRUCTION SET  
RCF — Reset Carry Flag  
RCF  
RCF  
Operation:  
C ¬ 0  
The carry flag is cleared to logic zero, regardless of its previous value.  
C: Cleared to "0".  
Flags:  
No other flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
4
CF  
Example:  
Given: C = "1" or "0":  
The instruction RCF clears the carry flag (C) to logic zero.  
6-37  
SAM88RCRI INSTRUCTION SET  
S3C9444/F9444/C9454/F9454  
RET — Return  
RET  
Operation:  
PC ¬ @SP  
SP ¬ SP + 2  
The RET instruction is normally used to return to the previously executing procedure at the end of  
a procedure entered by a CALL instruction. The contents of the location addressed by the stack  
pointer are popped into the program counter. The next statement that is executed is the one that  
is addressed by the new program counter value.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
8
AF  
10  
Example:  
Given: SP = 0BCH, (SP) = 101AH, and PC = 1234:  
RET PC = 101AH, SP = 0BEH  
®
The statement "RET" pops the contents of stack pointer location 0BCH (10H) into the high byte of  
the program counter. The stack pointer then pops the value in location 0BDH (1AH) into the PC's  
low byte and the instruction at location 101AH is executed. The stack pointer now points to  
memory location 0BEH.  
6-38  
S3C9444/F9444/C9454/F9454  
SAM88RCRI INSTRUCTION SET  
RL — Rotate Left  
RL  
dst  
Operation:  
C ¬ dst (7)  
dst (0) ¬ dst (7)  
dst (n + 1) ¬ dst (n), n = 0–6  
The contents of the destination operand are rotated left one bit position. The initial value of bit 7 is  
moved to the bit zero (LSB) position and also replaces the carry flag.  
7
0
C
Flags:  
C: Set if the bit rotated from the most significant bit position (bit 7) was "1".  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Set if arithmetic overflow occurred, that is, if the sign of the destination changed during rotation;  
cleared otherwise.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
4
4
90  
91  
R
IR  
Examples:  
Given: Register 00H = 0AAH, register 01H = 02H and register 02H = 17H:  
RL  
RL  
00H  
®
®
Register 00H = 55H, C = "1"  
Register 01H = 02H, register 02H = 2EH, C = "0"  
@01H  
In the first example, if general register 00H contains the value 0AAH (10101010B), the statement  
"RL 00H" rotates the 0AAH value left one bit position, leaving the new value 55H (01010101B)  
and setting the carry and overflow flags.  
6-39  
SAM88RCRI INSTRUCTION SET  
S3C9444/F9444/C9454/F9454  
RLC — Rotate Left Through Carry  
RLC  
dst  
Operation:  
dst (0) ¬ C  
C ¬ dst (7)  
dst (n + 1) ¬ dst (n), n = 0–6  
The contents of the destination operand with the carry flag are rotated left one bit position. The  
initial value of bit 7 replaces the carry flag (C); the initial value of the carry flag replaces bit zero.  
7
0
C
Flags:  
C: Set if the bit rotated from the most significant bit position (bit 7) was "1".  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Set if arithmetic overflow occurred, that is, if the sign of the destination changed during rotation;  
cleared otherwise.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
4
4
10  
11  
R
IR  
Examples:  
Given: Register 00H = 0AAH, register 01H = 02H, and register 02H = 17H, C = "0":  
RLC  
RLC  
00H  
®
®
Register 00H = 54H, C = "1"  
@01H  
Register 01H = 02H, register 02H = 2EH, C = "0"  
In the first example, if general register 00H has the value 0AAH (10101010B), the statement "RLC  
00H" rotates 0AAH one bit position to the left. The initial value of bit 7 sets the carry flag and the  
initial value of the C flag replaces bit zero of register 00H, leaving the value 55H (01010101B). The  
MSB of register 00H resets the carry flag to "1" and sets the overflow flag.  
6-40  
S3C9444/F9444/C9454/F9454  
SAM88RCRI INSTRUCTION SET  
RR — Rotate Right  
RR  
dst  
Operation:  
C ¬ dst (0)  
dst (7) ¬ dst (0)  
dst (n) ¬ dst (n + 1), n = 0–6  
The contents of the destination operand are rotated right one bit position. The initial value of bit  
zero (LSB) is moved to bit 7 (MSB) and also replaces the carry flag (C).  
7
0
C
Flags:  
C: Set if the bit rotated from the least significant bit position (bit zero) was "1".  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Set if arithmetic overflow occurred, that is, if the sign of the destination changed during rotation;  
cleared otherwise.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
4
4
E0  
E1  
R
IR  
Examples:  
Given: Register 00H = 31H, register 01H = 02H, and register 02H = 17H:  
RR  
RR  
00H  
®
®
Register 00H = 98H, C = "1"  
Register 01H = 02H, register 02H = 8BH, C = "1"  
@01H  
In the first example, if general register 00H contains the value 31H (00110001B), the statement  
"RR 00H" rotates this value one bit position to the right. The initial value of bit zero is moved to  
bit 7, leaving the new value 98H (10011000B) in the destination register. The initial bit zero also  
resets the C flag to "1" and the sign flag and overflow flag are also set to "1".  
6-41  
SAM88RCRI INSTRUCTION SET  
S3C9444/F9444/C9454/F9454  
RRC — Rotate Right Through Carry  
RRC  
dst  
Operation:  
dst (7) ¬ C  
C ¬ dst (0)  
dst (n) ¬ dst (n + 1), n = 0–6  
The contents of the destination operand and the carry flag are rotated right one bit position. The  
initial value of bit zero (LSB) replaces the carry flag; the initial value of the carry flag replaces bit 7  
(MSB).  
7
0
C
Flags:  
C: Set if the bit rotated from the least significant bit position (bit zero) was "1".  
Z: Set if the result is "0" cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Set if arithmetic overflow occurred, that is, if the sign of the destination changed during rotation;  
cleared otherwise.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
4
4
C0  
C1  
R
IR  
Examples:  
Given: Register 00H = 55H, register 01H = 02H, register 02H = 17H, and C = "0":  
RRC  
RRC  
00H  
®
®
Register 00H = 2AH, C = "1"  
@01H  
Register 01H = 02H, register 02H = 0BH, C = "1"  
In the first example, if general register 00H contains the value 55H (01010101B), the statement  
"RRC 00H" rotates this value one bit position to the right. The initial value of bit zero ("1") replaces  
the carry flag and the initial value of the C flag ("1") replaces bit 7. This leaves the new value 2AH  
(00101010B) in destination register 00H. The sign flag and overflow flag are both cleared to "0".  
6-42  
S3C9444/F9444/C9454/F9454  
SAM88RCRI INSTRUCTION SET  
SBC — Subtract With Carry  
SBC  
dst,src  
Operation:  
dst ¬ dst – src – c  
The source operand, along with the current value of the carry flag, is subtracted from the  
destination operand and the result is stored in the destination. The contents of the source are  
unaffected. Subtraction is performed by adding the two's-complement of the source operand to  
the destination operand. In multiple precision arithmetic, this instruction permits the carry  
("borrow") from the subtraction of the low-order operands to be subtracted from the subtraction of  
high-order operands.  
Flags:  
C: Set if a borrow occurred (src > dst); cleared otherwise.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result is negative; cleared otherwise.  
V: Set if arithmetic overflow occurred, that is, if the operands were of opposite sign and the sign of  
the result is the same as the sign of the source; cleared otherwise.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
opc  
dst | src  
src  
2
4
6
32  
33  
r
r
r
lr  
dst  
src  
3
3
6
6
34  
35  
R
R
R
IR  
dst  
6
36  
R
IM  
Examples:  
Given: R1 = 10H, R2 = 03H, C = "1", register 01H = 20H, register 02H = 03H, and register  
03H = 0AH:  
SBC  
SBC  
SBC  
SBC  
SBC  
R1,R2  
®
®
®
®
®
R1 = 0CH, R2 = 03H  
R1,@R2  
01H,02H  
01H,@02H  
01H,#8AH  
R1 = 05H, R2 = 03H, register 03H = 0AH  
Register 01H = 1CH, register 02H = 03H  
Register 01H = 15H,register 02H = 03H, register 03H = 0AH  
Register 01H = 95H; C, S, and V = "1"  
In the first example, if working register R1 contains the value 10H and register R2 the value 03H,  
the statement "SBC R1,R2" subtracts the source value (03H) and the C flag value ("1") from the  
destination (10H) and then stores the result (0CH) in register R1.  
6-43  
SAM88RCRI INSTRUCTION SET  
S3C9444/F9444/C9454/F9454  
SCF — Set Carry Flag  
SCF  
Operation:  
Flags:  
C ¬ 1  
The carry flag (C) is set to logic one, regardless of its previous value.  
C: Set to "1".  
No other flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
4
DF  
Example:  
The statement  
SCF  
sets the carry flag to logic one.  
6-44  
S3C9444/F9444/C9454/F9454  
SAM88RCRI INSTRUCTION SET  
SRA — Shift Right Arithmetic  
SRA  
dst  
Operation:  
dst (7) ¬ dst (7)  
C ¬ dst (0)  
dst (n) ¬ dst (n + 1), n = 0–6  
An arithmetic shift-right of one bit position is performed on the destination operand. Bit zero (the  
LSB) replaces the carry flag. The value of bit 7 (the sign bit) is unchanged and is shifted into bit  
position 6.  
7 6  
0
C
Flags:  
C: Set if the bit shifted from the LSB position (bit zero) was "1".  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result is negative; cleared otherwise.  
V: Always cleared to "0".  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
4
4
D0  
D1  
R
IR  
Examples:  
Given: Register 00H = 9AH, register 02H = 03H, register 03H = 0BCH, and C = "1":  
SRA  
SRA  
00H  
®
®
Register 00H = 0CD, C = "0"  
@02H  
Register 02H = 03H, register 03H = 0DEH, C = "0"  
In the first example, if general register 00H contains the value 9AH (10011010B), the statement  
"SRA 00H" shifts the bit values in register 00H right one bit position. Bit zero ("0") clears the C flag  
and bit 7 ("1") is then shifted into the bit 6 position (bit 7 remains unchanged). This leaves the  
value 0CDH (11001101B) in destination register 00H.  
6-45  
SAM88RCRI INSTRUCTION SET  
S3C9444/F9444/C9454/F9454  
STOP — Stop Operation  
STOP  
Operation:  
The STOP instruction stops the both the CPU clock and system clock and causes the  
microcontroller to enter Stop mode. During Stop mode, the contents of on-chip CPU registers,  
peripheral registers, and I/O port control and data registers are retained. Stop mode can be  
released by an external reset operation or External interrupt input. For the reset operation, the  
RESET pin must be held to Low level until the required oscillation stabilization interval has  
elapsed.  
Flags: No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
1
4
7F  
Example:  
The statement  
LD  
STOPCON, #0A5H  
STOP  
NOP  
NOP  
NOP  
halts all microcontroller operations. When STOPCON register is not #0A5H value, if you use  
STOP instruction, PC is changed to reset address.  
6-46  
S3C9444/F9444/C9454/F9454  
SAM88RCRI INSTRUCTION SET  
SUB — Subtract  
SUB  
dst,src  
Operation:  
dst ¬ dst – src  
The source operand is subtracted from the destination operand and the result is stored in the  
destination. The contents of the source are unaffected. Subtraction is performed by adding the  
two's complement of the source operand to the destination operand.  
Flags:  
C: Set if a "borrow" occurred; cleared otherwise.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result is negative; cleared otherwise.  
V: Set if arithmetic overflow occurred, that is, if the operands were of opposite signs and the sign of  
the result is of the same as the sign of the source operand; cleared otherwise.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
opc  
dst | src  
src  
2
4
6
22  
23  
r
r
r
lr  
dst  
src  
3
3
6
6
24  
25  
R
R
R
IR  
dst  
6
26  
R
IM  
Examples:  
Given: R1 = 12H, R2 = 03H, register 01H = 21H, register 02H = 03H, register 03H = 0AH:  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
R1,R2  
®
®
®
®
®
®
R1 = 0FH, R2 = 03H  
R1,@R2  
01H,02H  
01H,@02H  
01H,#90H  
01H,#65H  
R1 = 08H, R2 = 03H  
Register 01H = 1EH, register 02H = 03H  
Register 01H = 17H, register 02H = 03H  
Register 01H = 91H; C, S, and V = "1"  
Register 01H = 0BCH; C and S = "1", V = "0"  
In the first example, if working register R1 contains the value 12H and if register R2 contains the  
value 03H, the statement "SUB R1,R2" subtracts the source value (03H) from the destination  
value (12H) and stores the result (0FH) in destination register R1.  
6-47  
SAM88RCRI INSTRUCTION SET  
S3C9444/F9444/C9454/F9454  
TCM — Test Complement Under Mask  
TCM  
dst,src  
Operation:  
(NOT dst) AND src  
This instruction tests selected bits in the destination operand for a logic one value. The bits to be  
tested are specified by setting a "1" bit in the corresponding position of the source operand  
(mask). The TCM statement complements the destination operand, which is then ANDed with the  
source mask. The zero (Z) flag can then be checked to determine the result. The destination and  
source operands are unaffected.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Always cleared to "0".  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
opc  
dst | src  
src  
2
4
6
62  
63  
r
r
r
lr  
dst  
src  
3
3
6
6
64  
65  
R
R
R
IR  
dst  
6
66  
R
IM  
Examples:  
Given: R0 = 0C7H, R1 = 02H, R2 = 12H, register 00H = 2BH, register 01H = 02H, and  
register 02H = 23H:  
TCM  
TCM  
TCM  
TCM  
R0,R1  
®
®
®
®
R0 = 0C7H, R1 = 02H, Z = "1"  
R0,@R1  
00H,01H  
00H,@01H  
R0 = 0C7H, R1 = 02H, register 02H = 23H, Z = "0"  
Register 00H = 2BH, register 01H = 02H, Z = "1"  
Register 00H = 2BH, register 01H = 02H,  
register 02H = 23H, Z = "1"  
TCM  
00H,#34  
®
Register 00H = 2BH, Z = "0"  
In the first example, if working register R0 contains the value 0C7H (11000111B) and register R1  
the value 02H (00000010B), the statement "TCM R0,R1" tests bit one in the destination register  
for a "1" value. Because the mask value corresponds to the test bit, the Z flag is set to logic one  
and can be tested to determine the result of the TCM operation.  
6-48  
S3C9444/F9444/C9454/F9454  
SAM88RCRI INSTRUCTION SET  
TM — Test Under Mask  
TM  
dst,src  
Operation:  
dst AND src  
This instruction tests selected bits in the destination operand for a logic zero value. The bits to be  
tested are specified by setting a "1" bit in the corresponding position of the source operand  
(mask), which is ANDed with the destination operand. The zero (Z) flag can then be checked to  
determine the result. The destination and source operands are unaffected.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Always reset to "0".  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
opc  
dst | src  
src  
2
4
6
72  
73  
r
r
r
lr  
dst  
src  
3
3
6
6
74  
75  
R
R
R
IR  
dst  
6
76  
R
IM  
Examples:  
Given: R0 = 0C7H, R1 = 02H, R2 = 18H, register 00H = 2BH, register 01H = 02H, and  
register 02H = 23H:  
TM  
TM  
TM  
TM  
R0,R1  
®
®
®
®
R0 = 0C7H, R1 = 02H, Z = "0"  
R0,@R1  
00H,01H  
00H,@01H  
R0 = 0C7H, R1 = 02H, register 02H = 23H, Z = "0"  
Register 00H = 2BH, register 01H = 02H, Z = "0"  
Register 00H = 2BH, register 01H = 02H,  
register 02H = 23H, Z = "0"  
TM  
00H,#54H  
®
Register 00H = 2BH, Z = "1"  
In the first example, if working register R0 contains the value 0C7H (11000111B) and register R1  
the value 02H (00000010B), the statement "TM R0,R1" tests bit one in the destination register for  
a "0" value. Because the mask value does not match the test bit, the Z flag is cleared to logic zero  
and can be tested to determine the result of the TM operation.  
6-49  
SAM88RCRI INSTRUCTION SET  
S3C9444/F9444/C9454/F9454  
XOR — Logical Exclusive OR  
XOR  
dst,src  
Operation:  
dst ¬ dst XOR src  
The source operand is logically exclusive-ORed with the destination operand and the result is  
stored in the destination. The exclusive-OR operation results in a "1" bit being stored whenever  
the corresponding bits in the operands are different; otherwise, a "0" bit is stored.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Always reset to "0".  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
opc  
dst | src  
src  
2
4
6
B2  
B3  
r
r
r
lr  
dst  
src  
3
3
6
6
B4  
B5  
R
R
R
IR  
dst  
6
B6  
R
IM  
Examples:  
Given: R0 = 0C7H, R1 = 02H, R2 = 18H, register 00H = 2BH, register 01H = 02H, and  
register 02H = 23H:  
XOR  
XOR  
XOR  
XOR  
XOR  
R0,R1  
®
®
®
®
®
R0 = 0C5H, R1 = 02H  
R0,@R1  
00H,01H  
00H,@01H  
00H,#54H  
R0 = 0E4H, R1 = 02H, register 02H = 23H  
Register 00H = 29H, register 01H = 02H  
Register 00H = 08H, register 01H = 02H, register 02H = 23H  
Register 00H = 7FH  
In the first example, if working register R0 contains the value 0C7H and if register R1 contains the  
value 02H, the statement "XOR R0,R1" logically exclusive-ORs the R1 value with the R0 value  
and stores the result (0C5H) in the destination register R0.  
6-50  
S3C9444/F9444/C9454/F9454  
CLOCK CIRCUIT  
7
CLOCK CIRCUIT  
OVERVIEW  
By smart option (3FH.1–.0 in ROM), user can select internal RC oscillator or external oscillator. In using internal  
oscillator, XIN (P1.0), XOUT (P1.1) can be used by normal I/O pins. An internal RC oscillator source provides a  
typical 3.2 MHz or 0.5 MHz (in V = 5 V) depending on smart option.  
DD  
An external RC oscillation source provides a typical 4 MHz clock for KS86C4502/C4504. An internal capacitor  
supports the RC oscillator circuit. An external crystal or ceramic oscillation source provides a maximum 10 MHz  
clock. The X and X  
pins connect the oscillation source to the on-chip clock circuit. Simplified external RC  
IN  
OUT  
oscillator and crystal/ceramic oscillator circuits are shown in Figures 7-1 and 7-2. When you use external  
oscillator, P1.0, P1.1 must be set to output port to prevent current consumption  
XIN  
C1  
C2  
R
S3C9444/C9454  
S3C9444/C9454  
XOUT  
XOUT  
Figure 7-1. Main Oscillator Circuit  
(RC Oscillator with Internal Capacitor)  
Figure 7-2. Main Oscillator Circuit  
(Crystal/Ceramic Oscillator)  
MAIN OSCILLATOR LOGIC  
To increase processing speed and to reduce clock noise, non-divided logic is implemented for the main oscillator  
circuit. For this reason, very high resolution waveforms (square signal edges) must be generated in order for the  
CPU to efficiently process logic operations.  
7-1  
CLOCK CIRCUIT  
S3C9444/F9444/C9454/F9454  
CLOCK STATUS DURING POWER-DOWN MODES  
The two power-down modes, Stop mode and Idle mode, affect clock oscillation as follows:  
— In Stop mode, the main oscillator "freezes", halting the CPU and peripherals. The contents of the register file  
and current system register values are retained. Stop mode is released, and the oscillator started, by a reset  
operation or by an external interrupt with RC-delay noise filter (for KS86C4502/C4504, INT0-INT1).  
— In Idle mode, the internal clock signal is gated off to the CPU, but not to interrupt control and the timer. The  
current CPU status is preserved, including stack pointer, program counter, and flags. Data in the register file is  
retained. Idle mode is released by a reset or by an interrupt (external or internally-generated).  
SYSTEM CLOCK CONTROL REGISTER (CLKCON)  
The system clock control register, CLKCON, is located in location D4H. It is read/write addressable and has the  
following functions:  
— Oscillator IRQ wake-up function enable/disable (CLKCON.7)  
— Oscillator frequency divide-by value: non-divided, 2, 8, or 16 (CLKCON.4 and CLKCON.3)  
The CLKCON register controls whether or not an external interrupt can be used to trigger a Stop mode release  
(This is called the "IRQ wake-up" function). The IRQ wake-up enable bit is CLKCON.7.  
After a reset, the external interrupt oscillator wake-up function is enabled, the main oscillator is activated, and the  
f
/16 (the slowest clock speed) is selected as the CPU clock. If necessary, you can then increase the CPU  
OSC  
clock speed to f  
, f  
/2 or f  
/8.  
OSC  
OSC OSC  
System Clock Control Register (CLKCON)  
D4H, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Oscillator IRQ wake-up enable bit:  
0 = Enable IRQ for main system  
oscillator wake-up function in  
power mode.  
1 = Disable IRQ for main system  
oscillator wake-up function in  
power down mode.  
Not used for  
S3C9444/C9454  
Divide-by selection bits for  
CPU clock frequency:  
00 = fosc/16  
01 = fosc/8  
10 = fosc/2  
11 = fosc (non-divided)  
Not used for  
S3C9444/C9454  
Figure 7-3. System Clock Control Register (CLKCON)  
7-2  
S3C9444/F9444/C9454/F9454  
CLOCK CIRCUIT  
Smart option  
(3F.1-0 in ROM)  
Stop  
Instruction  
CLKCON.4-.3  
Internal RC  
oscillator (3.2 MHz)  
Oscillator  
Stop  
Internal RC  
oscillator (0.5 MHz)  
1/2  
1/8  
M
U
X
Selected  
OSC  
MUX  
CPU Clock  
P2.6/CLO  
External crystal/  
ceramic oscillator  
Oscillator  
Wake-up  
1/16  
External RC  
oscillator  
Noise  
Filter  
CLKCON.7  
P2CONH.6-.4  
INT Pin  
NOTE:  
An external interrupt (with RC-delay noise filter) can be used to release stop mode  
and "wake-up" the main oscillator.  
In the S3C9444/C9454, the INT0-INT1 external interrupts are of this type.  
Figure 7-4. System Clock Circuit Diagram  
7-3  
S3C9444/F9444/C9454/F9454  
RESET and POWER-DOWN  
8
RESET and POWER-DOWN  
SYSTEM RESET  
OVERVIEW  
By smart option (3EH.7 in ROM), user can select internal RESET (LVR) or external RESET. In using internal  
RESET (LVR), RESET pin (P1.2) can be used by normal I/O pin.  
The S3C9444/C9454 can be RESET in four ways:  
— by external power-on-reset  
— by the external reset input pin pulled low  
— by the digital watchdog peripheral timing out  
— by Low Voltage reset (LVR)  
During a external power-on reset, the voltage at V is High level and the RESET pin is forced to Low level. The  
DD  
RESET signal is input through a Schmitt trigger circuit where it is then synchronized with the CPU clock. This  
brings the S3C9444/C9454 into a known operating status. To ensure correct start-up, the user should take care  
that reset signal is not released before the V level is sufficient to allow MCU operation at the chosen frequency.  
DD  
The RESET pin must be held to Low level for a minimum time interval after the power supply comes within  
tolerance in order to allow time for internal CPU clock oscillation to stabilize. The minimum required oscillation  
16  
stabilization time for a reset is approximately 6.55 ms (@ 2 /f  
, f  
= 10 MHz).  
OSC OSC  
When a reset occurs during normal operation (with both V and RESET at High level), the signal at the RESET  
DD  
pin is forced Low and the reset operation starts. All system and peripheral control registers are then set to their  
default hardware reset values (see Table 8-1).  
The MCU provides a watchdog timer function in order to ensure graceful recovery from software malfunction. If  
watchdog timer is not refreshed before an end-of-counter condition (overflow) is reached, the internal reset will be  
activated.  
The on-chip Low Voltage reset, features static Reset when supply voltage is below a reference value (Typ. 2.3,  
3.0, 3.9 V). Thanks to this feature, external reset circuit can be removed while keeping the application safety. As  
long as the supply voltage is below the reference value, there is a internal and static RESET. The MCU can start  
only when the supply voltage rises over the reference value.  
8-1  
RESET and POWER-DOWN  
S3C9444/F9444/C9454/F9454  
NOTE  
To program the duration of the oscillation stabilization interval, you must make the appropriate settings to  
the basic timer control register, BTCON, before entering Stop mode. Also, if you do not want to use the  
basic timer watchdog function (which causes a system reset if a basic timer counter overflow occurs), you  
can disable it by writing "1010B" to the upper nibble of BTCON.  
MCU Initialization Sequence  
The following sequence of events occurs during a reset operation:  
— All interrupts are disabled.  
— The watchdog function (basic timer) is enabled.  
— Ports 0–2 are set to input mode  
— Peripheral control and data registers are disabled and reset to their initial values (see Table 8-1).  
— The program counter is loaded with the ROM reset address, 0100H.  
— When the programmed oscillation stabilization time interval has elapsed, the address stored in ROM location  
0100H (and 0101H) is fetched and executed.  
Smart option  
(3EH.7)  
RESET  
MUX  
Internal RESET  
LVR RESET  
Watchdog RESET  
Figure 8-1. Reset Block Diagram  
Oscillation Stabilization wait time (6.55 ms/at 10 MHz)  
RESET Input  
Operation Mode  
Idle Mode  
Normal Mode or  
Power-Down Mode  
RESET Operation  
Figure 8-2. Timing for S3C9444/C9454 after RESET  
8-2  
S3C9444/F9444/C9454/F9454  
RESET and POWER-DOWN  
POWER-DOWN MODES  
STOP MODE  
Stop mode is invoked by the instruction STOP (opcode 7FH). In Stop mode, the operation of the CPU and all  
peripherals is halted. That is, the on-chip main oscillator stops and the supply current is reduced to less than  
100 mA. All system functions are halted when the clock "freezes", but data stored in the internal register file is  
retained. Stop mode can be released in one of two ways: by a RESET signal or by an external interrupt.  
Using RESET to Release Stop Mode  
Stop mode is released when the RESET signal is released and returns to High level. All system and peripheral  
control registers are then reset to their default values and the contents of all data registers are retained. A reset  
operation automatically selects a slow clock (f  
/16) because CLKCON.3 and CLKCON.4 are cleared to "00B".  
OSC  
After the oscillation stabilization interval has elapsed, the CPU executes the system initialization routine by fetching  
the 16-bit address stored in ROM locations 0100H and 0101H.  
Using an External Interrupt to Release Stop Mode  
External interrupts with an RC-delay noise filter circuit can be used to release Stop mode (Clock-related external  
interrupts cannot be used). External interrupts INT0-INT1 in the KS86C4502/C4504 interrupt structure meet this  
criteria. And, internal interrupt using external clock (timer, SIO etc) can be used to release stop mode also.  
Note that when Stop mode is released by an external interrupt, the current values in system and peripheral control  
registers are not changed. When you use an interrupt to release Stop mode, the CLKCON.3 and CLKCON.4  
register values remain unchanged, and the currently selected clock value is used. If you use an external interrupt  
for Stop mode release, you can also program the duration of the oscillation stabilization interval. To do this, you  
must put the appropriate value to BTCON register before entering Stop mode.  
The external interrupt is serviced when the Stop mode release occurs. Following the IRET from the service routine,  
the instruction immediately following the one that initiated Stop mode is executed.  
IDLE MODE  
Idle mode is invoked by the instruction IDLE (opcode 6FH). In Idle mode, CPU operations are halted while select  
peripherals remain active. During Idle mode, the internal clock signal is gated off to the CPU, but not to interrupt  
logic and timer/counters. Port pins retain the mode (input or output) they had at the time Idle mode was entered.  
There are two ways to release Idle mode:  
1. Execute a reset. All system and peripheral control registers are reset to their default values and the contents  
of all data registers are retained. The reset automatically selects a slow clock (f  
/16) because CLKCON.3  
OSC  
and CLKCON.4 are cleared to "00B". If interrupts are masked, a reset is the only way to release Idle mode.  
2. Activate any enabled interrupt, causing Idle mode to be released. When you use an interrupt to release Idle  
mode, the CLKCON.3 and CLKCON.4 register values remain unchanged, and the currently selected clock  
value is used. The interrupt is then serviced. Following the IRET from the service routine, the instruction  
immediately following the one that initiated Idle mode is executed.y  
NOTES  
1. Only external interrupts that are not clock-related can be used to release stop mode. To release Idle  
mode, however, any type of interrupt (that is, internal or external) can be used.  
2. Before enter the STOP or IDLE mode, the ADC must be disabled. Otherwise, the STOP or IDLE  
current will be increased significantly.  
8-3  
RESET and POWER-DOWN  
S3C9444/F9444/C9454/F9454  
HARDWARE RESET VALUES  
Table 8-1 lists the values for CPU and system registers, peripheral control registers, and peripheral data registers  
following a reset operation in normal operating mode.  
— A "1" or a "0" shows the reset bit value as logic one or logic zero, respectively.  
— An "x" means that the bit value is undefined following a reset.  
— A dash ("–") means that the bit is either not used or not mapped.  
Table 8-1. Register Values after a Reset  
Register name  
Mnemonic  
Address & Location  
RESET value (Bit)  
Address  
D0H  
R/W  
R
7
0
1
0
6
0
1
0
5
0
1
4
0
1
3
0
1
0
2
0
1
1
0
1
0
0
0
1
0
Timer 0 counter register  
Timer 0 data register  
Timer 0 control register  
T0CNT  
T0DATA  
T0CON  
D1H  
R/W  
R/W  
D2H  
Location D3H is not mapped  
Clock control register  
System flags register  
CLKCON  
FLAGS  
D4H  
D5H  
R/W  
R/W  
0
x
x
x
0
x
0
Locations D6H–D8H are not mapped  
Stack pointer register  
SP  
D9H  
R/W  
x
x
x
x
x
x
x
x
Location DAH is not mapped  
MDS special register  
MDSREG  
BTCON  
BTCNT  
FTSTCON  
SYM  
DBH  
DCH  
DDH  
DEH  
DFH  
R/W  
R/W  
R
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Basic timer control register  
Basic timer counter  
Test mode control register  
System mode register  
W
R/W  
NOTE: – : Not mapped or not used, x: undefined  
8-4  
S3C9444/F9444/C9454/F9454  
Register Name  
RESET and POWER-DOWN  
Table 8-1. Register Values After a Reset (Continued)  
Mnemonic  
Address  
Hex  
R/W  
Bit Values After RESET  
7
0
6
0
0
5
0
0
4
0
0
3
0
0
2
0
0
0
1
0
0
0
0
0
0
0
Port 0 data register  
Port 1 data register  
Port 2 data register  
P0  
P1  
P2  
E0H  
R/W  
R/W  
R/W  
E1H  
E2H  
Locations E3H–E5H are not mapped  
Port 0 control register (High byte)  
Port 0 control register  
P0CONH  
P0CON  
P0PND  
E6H  
E7H  
E8H  
E9H  
EAH  
EBH  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Port 0 interrupt pending register  
Port 1 control register  
P1CON  
P2CONH  
P2CONL  
Port 2 control register (High byte)  
Port 2 control register (Low byte)  
Locations ECH–F1H are not mapped  
PWM data register  
PWM control register  
STOP control register  
PWMDATA  
PWMCON  
STOPCON  
F2H  
F3H  
F4H  
R/W  
R/W  
R/W  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Locations F5H–F6H are not mapped  
A/D control register  
ADCON  
ADDATAH  
ADDATAL  
F7H  
F8H  
F9H  
R/W  
R
0
x
0
0
x
0
0
x
0
0
x
0
0
x
0
0
x
0
0
x
x
0
x
x
A/D converter data register (High)  
A/D converter data register (Low)  
R
Locations FAH–FFH are not mapped  
NOTE: – : Not mapped or not used, x: undefined  
8-5  
RESET and POWER-DOWN  
S3C9444/F9444/C9454/F9454  
+
PROGRAMMING TIP — Sample S3C9454 Initialization Routine  
;--------------<< Interrupt Vector Address >>  
ORG  
0000H  
VECTOR  
00H,INT_9454  
; S3C9454 has only one interrupt vector  
;--------------<< Smart Option >>  
ORG  
DB  
DB  
DB  
DB  
003CH  
00H  
00H  
0E7H  
03H  
; 003CH, must be initialized to 0  
; 003DH, must be initialized to 0  
; 003EH, enable LVR (2.3 V)  
; 003FH, internal RC (3.2 MHz in V = 5 V )  
DD  
;--------------<< Initialize System and Peripherals >>  
ORG  
DI  
0100H  
RESET:  
; disable interrupt  
LD  
LD  
LD  
BTCON,#10100011B  
CLKCON,#00011000B  
SP,#0C0H  
; Watch-dog disable  
; Select non-divided CPU clock  
; Stack pointer must be set  
LD  
LD  
LD  
LD  
LD  
P0CONH,#10101010B  
P0CONL,#10101010B  
P1CON,#00001010B  
P2CONH,#01001010B  
P2CONL,#10101010B  
;
; P0.0–P0.7 push-pull output  
; P1.0–P1.1 push-pull output  
;
; P2.0–P2.6 push-pull output  
;--------------<< Timer 0 settings >>  
LD  
LD  
T0DATA,#50H  
T0CON,#01001010B  
; CPU = 11.0592 MHz, interrupt interval = 2 msec  
; f  
/256, Timer 0 interrupt enable  
OSC  
;--------------<< Clear all data registers from 00h to 5Fh >>  
LD  
R0,#0  
; RAM clear  
RAM_CLR: CLR  
@R0  
R0  
R0,#0BFH  
ULE,RAM_CLR  
;
;
;
INC  
CP  
JP  
;--------------<< Initialize other registers >>  
·
·
·
EI  
; Enable interrupt  
8-6  
S3C9444/F9444/C9454/F9454  
RESET and POWER-DOWN  
+
PROGRAMMING TIP — Sample S3C9454 Initialization Routine (Continued)  
;--------------<< Main loop >>  
MAIN:  
NOP  
LD  
; Start main loop  
; Enable watchdog function  
; Basic counter (BTCNT) clear  
BTCON,#02H  
KEY_SCAN  
LED_DISPLAY  
JOB  
·
·
CALL  
·
;
;
;
·
·
CALL  
·
·
·
CALL  
·
·
·
JR  
T,MAIN  
;
;
;--------------<< Subroutines >>  
KEY_SCAN: NOP  
·
·
·
RET  
LED_DISPLAY: NOP  
;
;
·
·
·
RET  
JOB:  
NOP  
·
·
·
RET  
8-7  
RESET and POWER-DOWN  
S3C9444/F9444/C9454/F9454  
+
PROGRAMMING TIP — Sample S3C9454 Initialization Routine (Continued)  
;--------------<< Interrupt Service Routines >> ; Interrupt enable bit and pending bit check  
INT_9454: TM  
T0CON,#00000010B  
Z,NEXT_CHK1  
T0CON,#00000001B  
NZ,INT_TIMER0  
; Timer0 interrupt enable check  
;
; If timer0 interrupt was occurred,  
; T0CON.0 bit would be set.  
JR  
TM  
JP  
NEXT_CHK1:  
TM  
JR  
TM  
JP  
PWMCOM,#00000010B ; PWM overflow interrupt enable check  
Z,NEXT_CHK2  
;
;
;
P0PND,#00000001B  
NZ,PWMOVF_INT  
NEXT_CHK2:  
TM  
JR  
TM  
JP  
P0PND,#00000010B  
Z,NEXT_CHK3  
P0PND,#00000001B  
NZ,INT0_INT  
; INT0 interrupt enable check  
;
;
;
NEXT_CHK3:  
TM  
JP  
P0PND,#00001000B  
Z,END_INT  
; INT1 interrupt enable check  
;
TM  
JP  
P0PND,#00000100B  
NZ,INT1_INT  
;
;
IRET  
; Interrupt return  
END_INT  
; IRET  
;--------------< Timer0 interrupt service routine >  
INT_TIMER0:  
·
;
·
AND  
IRET  
T0CON,#11110110B  
; Pending bit clear  
; Interrupt return  
;--------------< PWM overflow interrupt service routine >  
PWMOVF_INT:  
·
·
AND  
IRET  
PWMCON,#11110110B ; Pending bit clear  
; Interrupt return  
8-8  
S3C9444/F9444/C9454/F9454  
RESET and POWER-DOWN  
+
PROGRAMMING TIP — Sample S3C9454 Initialization Routine (Continued)  
;--------------< External interrupt0 service routine >  
INT0_INT:  
·
·
AND  
IRET  
P0PND,#11111110B  
; INT0 Pending bit clear  
; Interrupt return  
;--------------< External interrupt1 service routine >  
INT1_INT:  
·
·
AND  
IRET  
P0PND,#11111011B  
; INT1 Pending bit clear  
; Interrupt return  
·
·
END  
;
8-9  
S3C9444/F9444/C9454/F9454  
I/O PORTS  
9
I/O PORTS  
OVERVIEW  
The S3C9444/C9454 has three I/O ports: with 18 pins total. You access these ports directly by writing or reading  
port data register addresses.  
All ports can be configured as LED drive. (High current output: typical 10 mA)  
Table 9-1. S3C9444/C9454 Port Configuration Overview  
Port  
Function Description  
Programmability  
0
Bit-programmable I/O port for schmitt trigger input or push-pull output.  
Pull-up resistors are assignable by software. Port 0 pins can also be used  
as alternative function. (ADC input, external interrupt input).  
Bit  
1
2
Bit-programmable I/O port for schmitt trigger input or push-pull, open-drain  
output. Pull-up or pull-down resistors are assignable by software. Port 1  
pins can also oscillator input/output or reset input by smart option. P1.2 is  
input only.  
Bit  
Bit  
Bit-programmable I/O port for schmitt trigger input or push-pull, open-drain  
output. Pull-up resistor are assignable by software. Port 2 can also be  
used as alternative function (ADC input, CLO, T0 clock output)  
9-1  
I/O PORTS  
S3C9444/F9444/C9454/F9454  
PORT DATA REGISTERS  
Table 9-2 gives you an overview of the port data register names, locations, and addressing characteristics. Data  
registers for ports 0-2 have the structure shown in Figure 9-1.  
Table 9-2. Port Data Register Summary  
Register Name  
Port 0 data register  
Port 1 data register  
Port 2 data register  
Mnemonic  
Hex  
E0H  
E1H  
E2H  
R/W  
R/W  
R/W  
R/W  
P0  
P1  
P2  
NOTE: A reset operation clears the P0–P2 data register to "00H".  
I/O Port n Data Register (n = 0-2)  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Pn.0  
Pn.1  
Pn.2  
Pn.3  
Pn.4  
Pn.5  
Pn.6  
Pn.7  
Figure 9-1. Port Data Register Format  
9-2  
S3C9444/F9444/C9454/F9454  
PORT 0  
I/O PORTS  
Port 0 is a bit-programmable, general-purpose, I/O ports. You can select normal input or push-pull output mode. In  
addition, you can configure a pull-up resistor to individual pins using control register settings.  
It is designed for high-current functions such as LED direct drive. Part 0 pins can also be used as alternative  
functions (ADC input, external interrupt input and PWM output).  
Two control resisters are used to control Port 0: P0CONH (E6H) and P0CONL (E7H).  
You access port 0 directly by writing or reading the corresponding port data register, P0 (E0H).  
VDD  
Pull-up  
enable  
Pull-up register  
(50 kW typical)  
VDD  
P0CONH  
M
U
X
PWM  
In/Out  
P0 Data  
Output DIsable  
(input mode)  
D1  
D0  
Input Data  
MUX  
Circuit type A  
External  
Interrupt Input  
Noise  
Filter  
To ADC  
MODE  
Output  
Input  
Input Data  
NOTE: I/O pins have protection diodes  
through VDD and VSS.  
D0  
D1  
Figure 9-2. Port 0 Circuit Diagram  
9-3  
I/O PORTS  
S3C9444/F9444/C9454/F9454  
Port 0 Control Register (High Byte)  
E6H, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
[.7-.6] Port, P0.7/ADC7 Configuration Bits  
0 0 = Schmitt trigger input; pull-up enable  
0 1 = Schmitt trigger input  
1 0 = Push-pull output  
1 1 = A/D converter input (ADC7); schmitt trigger input off  
[.5-.4] Port 0, P0.6/ADC6/PWM Configuration Bits  
0 0 = Schmitt trigger input; pull-up enable  
0 1 = Alternative function (PWM output)  
1 0 = Push-pull output  
1 1 = A/D converter input (ADC6); schmitt trigger input off  
[.3-.2] Port 0, P0.5/ADC5 Configuration Bits  
0 0 = Schmitt trigger input; pull-up enable  
0 1 = Schmitt trigger input  
1 0 = Push-pull output  
1 1 = A/D converter input (ADC5); schmitt trigger input off  
[.1-.0] Port 0, P0.4/ADC4 Configuration Bits  
0 0 = Schmitt trigger input; pull-up enable  
0 1 = Schmitt trigger input  
1 0 = Push-pull output  
1 1 = A/D converter input (ADC4); schmitt trigger input off  
Figure 9-3. Port 0 Control Register (P0CONH, High Byte)  
9-4  
S3C9444/F9444/C9454/F9454  
I/O PORTS  
Port 0 Control Register (Low Byte)  
E7H, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
[.7-.6] Port 0, P0.3/ADC3 Configuration Bits  
0 0 = Schmitt trigger input  
0 1 = Schmitt trigger input; pull-up enable  
1 0 = Push-pull output  
1 1 = A/D converter input (ADC3); Schmitt trigger input off  
[.5-.4] Port 0, P0.2/ADC2 Configuration Bits  
0 0 = Schmitt trigger input  
0 1 = Schmitt trigger input; pull-up enable  
1 0 = Push-pull output  
1 1 = A/D converter input (ADC2); Schmitt trigger input off  
[.3-.2] Port 0, P0.1/ADC1/INT1 Configuration Bits  
0 0 = Schmitt trigger input/falling edge interrupt input  
0 1 = Schmitt trigger input; pull-up enable/falling edge interrupt input  
1 0 = Push-pull output  
1 1 = A/D converter input (ADC1); Schmitt trigger input off  
[.1-.0] Port 0, P0.0/ADC0/INT0 Configuration Bits  
0 0 = Schmitt trigger input/falling edge interrupt input  
0 1 = Schmitt trigger input; pull-up enable/falling edge interrupt input  
1 0 = Push-pull output  
1 1 = A/D converter input (ADC0); Schmitt trigger input off  
Figure 9-4. Port 0 Control Register (P0CONL, Low Byte)  
9-5  
I/O PORTS  
S3C9444/F9444/C9454/F9454  
Port 0 Interrupt Pending Register  
E8H, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
[.7-.4] Not used for S3C9444/C9454  
[.3] Port 0.1/ADC1/INT1, Interrupt Enable Bit  
0 = INT1 falling edge interrupt disable  
1 = INT1 falling edge interrupt enable  
[.2] Port 0.1/ADC1/INT1, Interrupt Pending Bit  
0 = No interrupt pending (when read)  
0 = Pending bit clear (when write)  
1 = Interrupt is pending (when read)  
1 = No effect (when write)  
[.1] Port 0.0/ADC0/INT0, Interrupt Enable Bit  
0 = INT0 falling edge interrupt disable  
1 = INT0 falling edge interrupt enable  
[.0] Port 0.0/ADC0/INT0, Interrupt Pending Bit  
0 = No interrupt pending (when read)  
0 = Pending bit clear (when write)  
1 = Interrupt is pending (when read)  
1 = No effect (when write)  
Figure 9-5. Port 0 Interrupt Pending Registers (P0PND)  
9-6  
S3C9444/F9444/C9454/F9454  
PORT 1  
I/O PORTS  
Port 1, is a 3-bit I/O port with individually configurable pins. It can be used for general I/O port (Schmitt trigger input  
mode, push-pull output mode or n-channel open-drain output mode). In addition, you can configure a pull-up and  
pull-down resistor to individual pin using control register settings. It is designed for high-current functions such as  
LED direct drive.  
P1.0, P1.1 are used for oscillator input/output by smart option. Also, P1.2 is used for RESET pin by smart option.  
One control register is used to control port 1: P1CON (E9H).  
You address port 1 bits directly by writing or reading the port 1 data register, P1 (E1H). When you use external  
oscillator, P1.0, P1.1 must be set to output port to prevent current consumption.  
VDD  
Pull-up register  
(50 k  
W typical)  
Pull-up  
enable  
Open-drain  
VDD  
Smart option  
MUX  
P1 Data  
In/Out  
Output DIsable  
(input mode)  
D1  
MUX  
Input Data  
D0  
Circuit type A  
XIN, XOUT or RESET  
Pull-down  
Enable  
Pull-down register  
(50 k typical)  
W
MODE  
Output  
Input  
Input Data  
NOTE: I/O pins have protection diodes  
D0  
D1  
through V DD and VSS.  
Figure 9-6. Port 1 Circuit Diagram  
9-7  
I/O PORTS  
S3C9444/F9444/C9454/F9454  
Port 1 Control Register  
E9H, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
[.7] Port 1.1 N-channel open-drain Enable Bit  
0 = Configure P1.1 as a push-pull output  
1 = Configure P1.1 as a n-channel open-drain output  
[.6] Port 1.0 N-channel open-drain Enable Bit  
0 = Configure P1.0 as a push-pull output  
1 = Configure P1.0 as a N-channel open-drain output  
[.5-.4] Not used for S3C9444/C9454  
[.3-.2] Port 1, P1.1 Configuration Bits  
0 0 = Schmitt trigger input;  
0 1 = Schmitt trigger input; pull-up enable  
1 0 = Push-pull output  
1 1 = Schmitt trigger input; pull-down enable  
[.1-.0] Port 1, P1.1 Configuration Bits  
0 0 = Schmitt trigger input;  
0 1 = Schmitt trigger input; pull-up enable  
1 0 = Push-pull output  
1 1 = Schmitt trigger input; pull-down enable  
NOTE: When you use external oscillator, P1.0, P1.1 must be set to  
output port to prevent current consumption.  
Figure 9-7. Port 1 Control Register (P1CON)  
9-8  
S3C9444/F9444/C9454/F9454  
PORT 2  
I/O PORTS  
Port 2 is a 7-bit I/O port with individually configurable pins. It can be used for general I/O port (schmitt trigger input  
mode, push-pull output mode or N-channel open-drain output mode). You can also use some pins of port 2 ADC  
input, CLO output and T0 clock output. In addition, you can configure a pull-up resistor to individual pins using  
control register settings. It is designed for high-current functions such as LED direct drive.  
You address port 2 bits directly by writing or reading the port 2 data register, P2 (E2H). The port 2 control register,  
P2CONH and P2CONL is located at addresses EAH, EBH respectively.  
VDD  
Pull-up  
enable  
Pull-up register  
(50 kW typical)  
Open-drain  
VDD  
P2CONH/L  
CLO, T0  
P0 Data  
M
U
X
In/Out  
Output DIsable  
(input mode)  
D1  
MUX  
Input Data  
to ADC  
D0  
Circuit type A  
NOTE: I/O pins have protection diodes  
MODE  
Output  
Input  
Input Data  
through VDD and VSS.  
D0  
D1  
Figure 9-8. Port 2 Circuit Diagram  
9-9  
I/O PORTS  
S3C9444/F9444/C9454/F9454  
Port 2 Control Register (High Byte)  
EAH, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
[.7] Not sued for S3C9444/C9454  
[.6-.4] Port 2, P2.6/ADC8/CLO Configuration Bits  
0 0 0 = Schmitt trigger input; pull-up enable  
0 0 1 = Schmitt trigger input  
0 1 x = ADC input  
1 0 0 = Push-pull output  
1 0 1 = Open-drain output; pull-up enable  
1 1 0 = Open-drain output  
1 1 1 = Alternative function; CLO output  
[.3-.2] Port 2, P2.5 Configuration Bits  
0 0 = Schmitt trigger input; pull-up enable  
0 1 = Schmitt trigger input  
1 0 = Push-pull output  
1 1 = Open-drain output  
[.1-.0] Port 2, P2.4 Configuration Bits  
0 0 = Schmitt trigger input; pull-up enable  
0 1 = Schmitt trigger input  
1 0 = Push-pull output  
1 1 = Open-drain output  
NOTE: When noise problem is important issue, you had better not  
use CLO output  
Figure 9-9. Port 2 Control Register (P2CONH, High Byte)  
9-10  
S3C9444/F9444/C9454/F9454  
I/O PORTS  
Port 2 Control Register (Low Byte)  
EBH, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
[.7-.6] Port 2, P2.3 Configuration Bits  
0 0 = Schmitt trigger input; pull-up enable  
0 1 = Schmitt trigger input  
1 0 = Push-pull output  
1 1 = Open-drain output  
[.5-.4] Port 2, P2.2 Configuration Bits  
0 0 = Schmitt trigger input; pull-up enable  
0 1 = Schmitt trigger input  
1 0 = Push-pull output  
1 1 = Open-drain output  
[.3-.2] Port 2, P2.1 Configuration Bits  
0 0 = Schmitt trigger input; pull-up enable  
0 1 = Schmitt trigger input  
1 0 = Push-pull output  
1 1 = Open-drain output  
[.1-.0] Port 2, P2.0 Configuration Bits  
0 0 = Schmitt trigger input; pull-up enable  
0 1 = Schmitt trigger input  
1 0 = Push-pull output  
1 1 = T0 match output  
Figure 9-10. Port 2 Control Register (P2CONL, Low Byte)  
9-11  
S3C9444/F9444/C9454/F9454  
BASIC TIMER and TIMER 0  
10 BASIC TIMER and TIMER 0  
MODULE OVERVIEW  
The S3C9444/C9454 has two default timers: an 8-bit basic timer, one 8-bit general-purpose timer/counter, called  
timer 0.  
Basic Timer (BT)  
You can use the basic timer (BT) in two different ways:  
— As a watchdog timer to provide an automatic reset mechanism in the event of a system malfunction.  
— To signal the end of the required oscillation stabilization interval after a reset or a Stop mode release.  
The functional components of the basic timer block are:  
— Clock frequency divider (f  
divided by 4096, 1024, or 128) with multiplexer  
OSC  
— 8-bit basic timer counter, BTCNT (DDH, read-only)  
— Basic timer control register, BTCON (DCH, read/write)  
Timer 0  
Timer 0 has the following functional components:  
— Clock frequency divider (f  
divided by 4096, 256, 8, or f  
) with multiplexer  
OSC  
OSC  
— 8-bit counter (T0CNT), 8-bit comparator, and 8-bit data register (T0DATA)  
— Timer 0 control register (T0CON)  
10-1  
BASIC TIMER and TIMER 0  
S3C9444/F9444/C9454/F9454  
BASIC TIMER (BT)  
BASIC TIMER CONTROL REGISTER (BTCON)  
The basic timer control register, BTCON, is used to select the input clock frequency, to clear the basic timer  
counter and frequency dividers, and to enable or disable the watchdog timer function.  
A reset clears BTCON to "00H". This enables the watchdog function and selects a basic timer clock frequency of  
f
/4096. To disable the watchdog function, you must write the signature code "1010B" to the basic timer register  
OSC  
control bits BTCON.7–BTCON.4.  
The 8-bit basic timer counter, BTCNT, can be cleared during normal operation by writing a "1" to BTCON.1. To  
clear the frequency dividers for both the basic timer input clock and the timer 0 clock, you write a "1" to BTCON.0.  
Basic Timer Control Register (BTCON)  
DCH, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Divider clear bit for basic  
timer and timer 0:  
0 = No effect  
Watchdog timer enable bits:  
1010B = Disable watchdog function  
Other value = Enable watchdog  
function  
1 = Clear both dividers  
Basic timer counter clear bits:  
0 = No effect  
1 = Clear basic timer counter  
Basic timer input clock selection bits:  
00 = fosc/4096  
01 = fosc/1024  
10 = fosc/128  
11 = Invalid selection  
NOTE: When you write a 1 to BTCON.0 (or BTCON.1), the basic timer  
divider (or basic timer counter) is cleared. The bit is then cleared  
automatically to 0.  
Figure 10-1. Basic Timer Control Register (BTCON)  
10-2  
S3C9444/F9444/C9454/F9454  
BASIC TIMER and TIMER 0  
BASIC TIMER FUNCTION DESCRIPTION  
Watchdog Timer Function  
You can program the basic timer overflow signal (BTOVF) to generate a reset by setting BTCON.7–BTCON.4 to  
any value other than "1010B" (The "1010B" value disables the watchdog function). A reset clears BTCON to  
"00H", automatically enabling the watchdog timer function. A reset also selects the oscillator clock divided by 4096  
as the BT clock.  
A reset whenever a basic timer counter overflow occurs. During normal operation, the application program must  
prevent the overflow, and the accompanying reset operation, from occurring. To do this, the BTCNT value must be  
cleared (by writing a "1" to BTCON.1) at regular intervals.  
If a system malfunction occurs due to circuit noise or some other error condition, the BT counter clear operation  
will not be executed and a basic timer overflow will occur, initiating a reset. In other words, during normal  
operation, the basic timer overflow loop (a bit 7 overflow of the 8-bit basic timer counter, BTCNT) is always broken  
by a BTCNT clear instruction. If a malfunction does occur, a reset is triggered automatically.  
Oscillation Stabilization Interval Timer Function  
You can also use the basic timer to program a specific oscillation stabilization interval following a reset or when  
Stop mode has been released by an external interrupt.  
In Stop mode, whenever a reset or an external interrupt occurs, the oscillator starts. The BTCNT value then starts  
increasing at the rate of f  
/4096 (for reset), or at the rate of the preset clock source (for an external interrupt).  
OSC  
When BTCNT.4 is set, a signal is generated to indicate that the stabilization interval has elapsed and to gate the  
clock signal off to the CPU so that it can resume normal operation.  
In summary, the following events occur when Stop mode is released:  
1. During Stop mode, a external power-on reset or an external interrupt occurs to trigger the Stop mode release  
and oscillation starts.  
2. If a external power-on reset occurred, the basic timer counter will increase at the rate of fOSC/4096. If an  
external interrupt is used to release Stop mode, the BTCNT value increases at the rate of the preset clock  
source.  
3. Clock oscillation stabilization interval begins and continues until bit 4 of the basic timer counter is set.  
4. When a BTCNT.4 is set, normal CPU operation resumes.  
Figure 10-2 and 10-3 shows the oscillation stabilization time on RESET and STOP mode release  
10-3  
BASIC TIMER and TIMER 0  
S3C9444/F9444/C9454/F9454  
Oscillation Stabilization Time  
Normal Operating mode  
0.8 VDD  
VDD  
Reset Release Voltage  
RESET  
trst ~ RC  
~
Internal  
Reset  
Release  
0.8 VDD  
Oscillator  
(XOUT)  
Oscillator Stabilization Time  
BTCNT  
clock  
10000B  
BTCNT  
value  
00000B  
tWAIT = (4096x16)/fOSC  
Basic timer increment and  
CPU operations are IDLE mode  
NOTE: Duration of the oscillator stabilization wait time, t WAIT, when it is released by a  
Power-on-reset is 4096 x 16/fOSC.  
tRST RC (R and C are value of external power on reset)  
~
~
Figure 10-2. Oscillation Stabilization Time on RESET  
10-4  
S3C9444/F9444/C9454/F9454  
BASIC TIMER and TIMER 0  
Normal  
Operating  
Mode  
STOP Mode  
Oscillation Stabilization Time  
Normal  
Operating  
Mode  
VDD  
STOP  
Instruction  
Execution  
STOP Mode  
Release Signal  
External  
Interrupt  
RESET  
STOP  
Release  
Signal  
Oscillator  
(XOUT)  
BTCNT  
clock  
10000B  
BTCNT  
Value  
00000B  
tWAIT  
Basic Timer Increment  
NOTE: Duration of the oscillator stabilzation wait time, t WAIT, it is released by an  
interrupt is determined by the setting in basic timer control register, BTCON.  
BTCON.3  
BTCON.2  
tWAIT  
tWAIT (When fOSC is 10 MHz)  
0
0
1
1
0
1
0
1
(4096 x 16)/fosc  
(1024 x 16)/fosc  
(128 x 16)/fosc  
Invalid setting  
6.55 ms  
1.64 ms  
0.2 ms  
Figure 10-3. Oscillation Stabilization Time on STOP Mode Release  
10-5  
BASIC TIMER and TIMER 0  
S3C9444/F9444/C9454/F9454  
+
PROGRAMMING TIP — Configuring the Basic Timer  
This example shows how to configure the basic timer to sample specification.  
ORG  
0000H  
VECTOR  
00H,INT_9454  
; S3C9454 has only one interrupt vector  
;--------------<< Smart Option >>  
ORG  
DB  
DB  
DB  
DB  
003CH  
00H  
00H  
0E7H  
03H  
; 003CH, must be initialized to 0  
; 003DH, must be initialized to 0  
; 003EH, enable LVR (2.3 V)  
; 003FH, internal RC (3.2 MHz in V = 5 V)  
DD  
;--------------<< Initialize System and Peripherals >>  
ORG  
0100H  
RESET:  
DI  
LD  
LD  
·
; Disable interrupt  
; Select non-divided CPU clock  
; Stack pointer must be set  
CLKCON,#00011000B  
SP,#0C0H  
·
LD  
BTCON,#02H  
; Enable watchdog function  
; Basic timer clock: f  
/4096  
OSC  
; Basic counter (BTCNT) clear  
·
·
·
EI  
; Enable interrupt  
;--------------<< Main loop >>  
MAIN:  
·
LD  
BTCON,#02H  
; Enable watchdog function  
; Basic counter (BTCNT) clear  
·
·
·
JR  
T,MAIN  
;
;--------------<< Interrupt Service Routines >>  
INT_9454:  
·
; Interrupt enable bit and pending bit check  
·
;
·
; Pending bit clear  
;
IRET  
·
·
END  
;
10-6  
S3C9444/F9444/C9454/F9454  
BASIC TIMER and TIMER 0  
TIMER 0  
TIMER 0 CONTROL REGISTERS (T0CON)  
The timer 0 control register, T0CON, is used to select the timer 0 operating mode (interval timer) and input clock  
frequency, to clear the timer 0 counter, and to enable the T0 match interrupt. It also contains a pending bit for T0  
match interrupts.  
A reset clears T0CON to "00H". This sets timer 0 to normal interval timer mode, selects an input clock frequency  
of fOSC /4096, and disables the T0 match interrupts. The T0 counter can be cleared at any time during normal  
operation by writing a "1" to T0CON.3.  
Timer 0 Control Register  
D3H, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Timer 0 input clock selection bits:  
00 = fosc/4096  
01 = fosc/256  
10 = fosc/8  
11 = fosc  
Timer 0 interrupt pending bit:  
0 = No T0 interrupt pending (when read)  
0 = Clear T0 pending bit (when write)  
1 = Interrupt is pending (when read)  
1 = No effect (when write)  
Timer 0 interrupt enable bit:  
0 = Disable T0 interrupt  
1 = Enable T0 interrupt  
Not used for S3C9444/C9454  
Not used for S3C9444/C9454  
Timer 0 counter clear bit:  
0 = No effect  
1 = Clear the Timer 0 counter (when write)  
Figure 10-4. Timer 0 Control Registers (T0CON)  
10-7  
BASIC TIMER and TIMER 0  
S3C9444/F9444/C9454/F9454  
TIMER 0 FUNCTION DESCRIPTION  
Interval Timer Mode  
In interval timer mode, a match signal is generated when the counter value is identical to the value written to the  
Timer 0 reference data register, T0DATA. The match signal generates a Timer 0 match interrupt (T0INT, vector  
00H) and then clears the counter. If, for example, you write the value "10H" to T0DATA, the counter will increment  
until it reaches "10H". At this point, the Timer 0 interrupt request is generated, the counter value is reset and  
counting resumes.  
T0CON.3  
Counter (T0CNT)  
Comparator  
R (clear)  
CLK  
Timer 0 counter clear  
Match  
PND  
IRQ0 (T0INT)  
Data Register (T0DATA)  
T0CON.1  
Interrupt Enable/Disable  
NOTE:  
T0CON.3 is not auto-cleared, you must pay attention when clear pending bit  
(refer to P10-12)  
Figure 10-5. Simplified Timer 0 Function Diagram (Interval Timer Mode)  
10-8  
S3C9444/F9444/C9454/F9454  
BASIC TIMER and TIMER 0  
Match Match Match  
Match Match Match Match  
Compare Value  
(T0DATA)  
Up Counter Value  
(T0CNT)  
00H  
Clear Clear  
Count start  
T0CON.3 1  
Clear  
T0DATA  
Value change  
Counter Clear  
(T0CON.3)  
Interrupt Request  
(T0CON.0)  
T0 Match Output  
(P2.0)  
Figure 10-6. Timer 0 Timing Diagram  
10-9  
BASIC TIMER and TIMER 0  
S3C9444/F9444/C9454/F9454  
Bit 1  
RESET or  
STOP  
Basic Timer Control Register  
(Write '1010xxxxB' to disable.)  
Bits 3, 2  
MUX  
MUX  
Data Bus  
Clear  
1/4096  
RESET  
8-Bit Up Counter  
(BTCNT, Read-Only)  
OVF  
1/1024  
1/128  
XIN  
DIV  
R
When BTCNT.4 is set after  
releasing from RESET or STOP  
mode, CPU clock starts.  
Bit 0  
Data Bus  
Bits 7, 6  
MUX  
R
1/4096  
1/256  
1/8  
Clear  
Bit 3  
Bit 1  
Bit 0  
T0CNT (D0H)  
(Read-Only)  
DIV  
XIN  
1
Match  
8-Bit Comparator  
T0DATA Buffer  
IRQ0  
P2.0  
P2CONL.1-.0  
Bit 3  
Match Signal  
T0DATA (D1H)  
(Read/Write)  
Basic Timer Control Register  
Timer 0 Control Register  
Data Bus  
NOTE: During a power-on reset operation, the CPU is idle during the required oscillation stabilization interval  
(until bit 4 the basic timer counter is set).  
Figure 10-7. Basic Timer and Timer 0 Block Diagram  
10-10  
S3C9444/F9444/C9454/F9454  
BASIC TIMER and TIMER 0  
+
PROGRAMMING TIP1 – Configuring Timer 0 (Interval Mode)  
The following sample program sets Timer 0 to interval timer mode.  
ORG  
0000H  
VECTOR  
00H,INT_9454  
; S3C9454 has only one interrupt vector  
ORG  
DB  
DB  
DB  
DB  
003CH  
00H  
00H  
0E7H  
03H  
; 003CH, must be initialized to 0  
; 003DH, must be initialized to 0  
; 003EH, enable LVR (2.3 V)  
; 003FH, internal RC (3.2 MHz in V = 5 V)  
DD  
ORG  
0100H  
RESET:  
DI  
; Disable interrupt  
; Watchdog disable  
; Select non-divided CPU clock  
; Set stack pointer  
;
; P0.0–0.7 push-pull output  
; P1.0–P1.1 push-pull output  
;
LD  
LD  
LD  
LD  
LD  
LD  
LD  
LD  
BTCON,#10100011B  
CLKCON,#00011000B  
SP,#0C0H  
P0CONH,#10101010B  
P0CONL,#10101010B  
P1CON,#00001010B  
P2CONH,#01001010B  
P2CONL,#10101010B  
; P2.0–P2.6 push-pull output  
;--------------<< Timer 0 settings >>  
LD  
LD  
T0DATA,#50H  
T0CON,#01001010B  
; CPU = 11.0592 MHz, interrupt interval = 2 msec  
; f  
/256, Timer0 interrupt enable  
OSC  
·
·
·
EI  
; Enable interrupt  
; Start main loop  
;--------------<< Main loop >>  
MAIN:  
NOP  
·
·
·
CALL  
·
LED_DISPLAY  
JOB  
; Sub-block module  
·
·
CALL  
; Sub-block module  
·
·
·
JR  
T,MAIN  
;
10-11  
BASIC TIMER and TIMER 0  
S3C9444/F9444/C9454/F9454  
+
PROGRAMMING TIP1 – Configuring Timer 0 (Interval Mode) (Continued)  
LED_DISPLAY: NOP  
;
;
;
;
;
·
·
·
RET  
JOB:  
NOP  
·
;
;
;
;
;
·
·
RET  
;--------------<< Interrupt Service Routines >>  
INT_9454:  
TM  
JR  
T0CON,#00000010B  
Z,NEXT_CHK1  
; Interrupt enable check  
;
TM  
JP  
T0CON,#00000001B  
NZ,INT_TIMER0  
; If timer 0 interrupt was occurred,  
; T0CON.0 bit would be set.  
NEXT_CHK1:  
INT_TIMER0:  
·
; Interrupt enable bit and pending bit check  
·
;
;
;
·
IRET  
; Timer 0 interrupt service routine  
·
·
·
AND  
IRET  
T0CON,#11110110B  
;
;
Pending bit clear  
·
·
END  
;
10-12  
S3C9444/F9444/C9454/F9454  
8-BIT PWM  
11 8-BIT PWM (PULSE WIDTH MODULATION)  
OVERVIEW  
This microcontroller has the 8-bit PWM circuit. The operation of all PWM circuit is controlled by a single control  
register, PWMCON.  
The PWM counter is a 8-bit incrementing counter. It is used by the 8-bit PWM circuits. To start the counter and  
enable the PWM circuits, you set PWMCON.2 to "1". If the counter is stopped, it retains its current count value;  
when re-started, it resumes counting from the retained count value. When there is a need to clear the counter you  
set PWMCON.3 to "1".  
You can select a clock for the PWM counter by set PWMCON.6–.7. Clocks which you can select are f  
/64,  
OSC  
f
/8, f  
/2, f  
/1.  
OSC  
OSC  
OSC  
FUNCTION DESCRIPTION  
PWM  
The 8-bit PWM circuits have the following components:  
— 6-bit comparator and extension cycle circuit  
— 6-bit reference data register (PWMDATA.7–.2)  
— 2-bit extension data register (PWMDATA.1–.0)  
— PWM output pins (P0.6/PWM)  
PWM counter  
To determine the PWM module's base operating frequency, the upper 6-bits of counter is compared to the PWM  
data (PWMDATA.7–.2). In order to achieve higher resolutions, the lower 2-bits of the counter can be used to  
modulate the "stretch" cycle. To control the "stretching" of the PWM output duty cycle at specific intervals, the  
lower 2-bits of counter value is compared with the PWMDATA.1–.0.  
11-1  
8-BIT PWM  
S3C9444/F9444/C9454/F9454  
PWM data and extension registers  
PWM (duty) data registers, located in F2H, determine the output value generated by each 8-bit PWM circuit.  
To program the required PWM output, you load the appropriate initialization values into the 6-bit reference data  
register (PWMDATA.7–.2) and the 2-bit extension data register (PWMDATA.1–.0). To start the PWM counter, or  
to resume counting, you set PWMCON.2 to "1".  
A reset operation disables all PWM output. The current counter value is retained when the counter stops. When  
the counter starts, counting resumes at the retained value.  
PWM clock rate  
The timing characteristics of PWM output is based on the f  
determined by the setting of PWMCON.6–.7.  
clock frequency. The PWM counter clock value is  
OSC  
Table 11-1. PWM Control and Data Registers  
Register Name  
Mnemonic  
PWMDATA.7–.2  
PWMDATA.1–.0  
PWMCON  
Address  
F2H.7–.2  
F2H.1–.0  
F3H  
Function  
PWM data registers  
6-bit PWM basic cycle frame value  
2-bit extension ("stretch") value  
PWM control registers  
PWM counter stop/start (resume), and  
PWM counter clock settings  
PWM function Description  
The PWM output signal toggles to Low level whenever the lower 6-bit of counter matches the reference data  
register (PWMDATA.7–.2). If the value in the PWMDATA.7–.2 register is not zero, an overflow of the lower 6-bits  
of counter causes the PWM output to toggle to High level. In this way, the reference value written to the reference  
data register determines the module's base duty cycle.  
The value in the upper 2-bits of counter is compared with the extension settings in the 2-bit extension data register  
(PWMDATA.1–.0). This lower 2-bits of counter value, together with extension logic and the PWM module's  
extension data register , is then used to "stretch" the duty cycle of the PWM output. The "stretch" value is one  
extra clock period at specific intervals, or cycles (see Table 11-2).  
If, for example, the value in the extension data register is '01B', the 2nd cycle will be one pulse longer than the  
other 3 cycles. If the base duty cycle is 50 %, the duty of the 2nd cycle will therefore be "stretched" to  
approximately 51% duty. For example, if you write 10B to the extension data register, all odd-numbered pulses will  
be one cycle longer. If you write 11H to the extension data register, all pulses will be stretched by one cycle except  
the 4th pulse. PWM output goes to an output buffer and then to the corresponding PWM output pin. In this way,  
you can obtain high output resolution at high frequencies.  
11-2  
S3C9444/F9444/C9454/F9454  
8-BIT PWM  
Table 11-2. PWM output "stretch" Values for Extension Data Register (PWMDATA.1–.0)  
PWMDATA Bit (Bit1–Bit0)  
"Stretched" Cycle Number  
00  
01  
10  
11  
2
1, 3  
1, 2, 3  
0H  
40H  
80H  
PWM  
Clock:  
4 MHz  
000000xxB  
000001xxB  
250 ns  
250 ns  
PWM  
Data  
Register  
Values:  
(PWMDATA)  
100000xxB  
111111xxB  
8 ms  
8 ms  
250 ns  
Figure 11-1. 8-Bit PWM Basic Waveform  
11-3  
8-BIT PWM  
S3C9444/F9444/C9454/F9454  
0H  
40H  
PWM Clock: 4 MHz  
000010xxB  
500 ns  
PWMDATA  
: 0000 1001B  
Basic Extended  
waveform waveform  
1st 2nd 3th 4th 1st 2nd 3th 4th  
0H  
40H  
4 MHz  
750 ns  
Figure 11-2. 8-Bit Extended PWM Waveform  
11-4  
S3C9444/F9444/C9454/F9454  
8-BIT PWM  
PWM CONTROL REGISTER (PWMCON)  
The control register for the PWM module, PWMCON, is located at register address F3H. PWMCON is used the 8-  
bit PWM modules. Bit settings in the PWMCON register control the following functions:  
— PWM counter clock selection  
— PWM data reload interval selection  
— PWM counter clear  
— PWM counter stop/start (or resume) operation  
— PWM counter overflow (8-bit counter overflow) interrupt control  
A reset clears all PWMCON bits to logic zero, disabling the entire PWM module.  
PWM Control Register (PWMCON)  
F3H, Reset: 00H  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
PWM input clock  
selection bits:  
00 = fOSC/64  
01 = fOSC/8  
PWM OVF interrupt pending bit:  
0 = No interrupt pending  
0 = Clear pending condition (when write)  
1 = Interrupt pending  
10 = fOSC/2  
11 = fOSC/1  
PWM OVF interrupt enable bit:  
0 = Disable interrupt  
1 = Enable interrupt  
Not used for  
S3C9444/C9454  
PWM counter enable bit:  
0 = Stop counter  
1 = Start (resume countering)  
PWMDATA reload  
interval selection bit:  
0 : reload from 8-bit up  
counter overflow  
1: reload from 6-bit up  
counter overflow  
PWM counter clear bit:  
0 = No effect  
1 = Clear the PWM counter  
Figure 11-3. PWM Control Register (PWMCON)  
11-5  
8-BIT PWM  
S3C9444/F9444/C9454/F9454  
fOSC/8  
fOSC  
fOSC/64 fOSC/2  
MUX  
PWMCON.6-.7  
From 8-bit up counter (7:6)  
From 8-bit up counter (5:0)  
2-bit  
6-bit  
Counter  
Counter  
PWMCON.2  
"1" When REG > Count  
"1" When REG = Count  
6-bit  
Comparator  
P0.6/PWM  
6-bit Data  
Buffer  
Extension  
Control Logic  
Extension Data  
Buffer  
F2H  
bit7-2  
6-bit Data  
Register (F2H)  
F2H  
bit1-0  
PWM Extension  
Data Register  
PWMCON.3 (clear)  
8 or 6-bit up counter overflow  
DATA BUS (7:0)  
Figure 11-4. PWM Functional Block Diagram  
11-6  
S3C9444/F9444/C9454/F9454  
8-BIT PWM  
+
PROGRAMMING TIP — Programming the PWM Module to Sample Specifications  
;--------------<< Interrupt Vector Address >>  
ORG  
0000H  
VECTOR  
00H,INT_9454  
; S3C9454 has only one interrupt vector  
;--------------<< Smart Option >>  
ORG  
003CH  
DB  
00H  
00H  
0E7H  
03H  
; 003CH, must be initialized to 0.  
; 003DH, must be initialized to 0.  
; 003EH, enable LVR (2.3 V)  
DB  
DB  
DB  
; 003FH, internal RC (3.2 MHz in V = 5 V)  
DD  
;--------------<< Initialize System and Peripherals >>  
ORG  
DI  
LD  
·
0100H  
RESET:  
; disable interrupt  
; Watchdog disable  
BTCON,#10100011B  
·
LD  
LD  
P0CONH,#10011010B  
PWMCON,#00000110B ; f  
; Configure P0.6 PWM output  
/64, counter/interrupt enable  
OSC  
LD  
·
PWMDATA,#80H  
;
·
EI  
; Enable interrupt  
;--------------<< Main loop >>  
MAIN:  
;
;
;
;
;
;
·
·
·
·
JR  
t,MAIN  
;--------------<< Interrupt Service Routines >>  
INT_9454:  
·
; Interrupt enable bit and pending bit check  
TM  
JR  
TM  
JP  
PWMCON,#00000010B ; Interrupt enable check  
Z,NEXT_CHK1  
PWMCON,#00000001B ; Interrupt pending bit check  
NZ,INT_PWM ; PWMCON's pending bit set --> PWM interrupt  
;
NEXT_CHK1:  
·
·
·
IRET  
;
11-7  
8-BIT PWM  
S3C9444/F9444/C9454/F9454  
+
PROGRAMMING TIP — Programming the PWM Module to Sample Specifications (Continued)  
INT_PWM:  
; PWM interrupt service routine  
·
·
·
AND  
PWMCON,#11110110B ; pending bit clear  
IRET  
;
·
·
END  
11-8  
S3C9444/F9444/C9454/F9454  
A/D CONVERTER  
12 A/D CONVERTER  
OVERVIEW  
The 10-bit A/D converter (ADC) module uses successive approximation logic to convert analog levels entering at  
one of the nine input channels to equivalent 10-bit digital values. The analog input level must lie between the V  
DD  
and V values. The A/D converter has the following components:  
SS  
— Analog comparator with successive approximation logic  
— D/A converter logic  
— ADC control register (ADCON)  
— Nine multiplexed analog data input pins (ADC0–ADC8)  
— 10-bit A/D conversion data output register (ADDATAH/L):  
To initiate an analog-to-digital conversion procedure, you write the channel selection data in the A/D converter  
control register ADCON to select one of the nine analog input pins (ADCn, n = 0–8) and set the conversion start or  
enable bit, ADCON.0. The read-write ADCON register is located at address F7H.  
During a normal conversion, ADC logic initially sets the successive approximation register to 200H (the  
approximate half-way point of an 10-bit register). This register is then updated automatically during each  
conversion step. The successive approximation block performs 10-bit conversions for one input channel at a time.  
You can dynamically select different channels by manipulating the channel selection bit value (ADCON.7–4) in the  
ADCON register. To start the A/D conversion, you should set a the enable bit, ADCON.0. When a conversion is  
completed, ACON.3, the end-of-conversion (EOC) bit is automatically set to 1 and the result is dumped into the  
ADDATA register where it can be read. The A/D converter then enters an idle state. Remember to read the  
contents of ADDATA before another conversion starts. Otherwise, the previous result will be overwritten by the  
next conversion result.  
NOTE  
Because the ADC does not use sample-and-hold circuitry, it is important that any fluctuations in the analog  
level at the ADC0–ADC8 input pins during a conversion procedure be kept to an absolute minimum. Any  
change in the input level, perhaps due to circuit noise, will invalidate the result.  
12-1  
A/D CONVERTER  
S3C9444/F9444/C9454/F9454  
USING A/D PINS FOR STANDARD DIGITAL INPUT  
The ADC module's input pins are alternatively used as digital input in port 0 and P2.6.  
A/D CONVERTER CONTROL REGISTER (ADCON)  
The A/D converter control register, ADCON, is located at address F7H. ADCON has four functions:  
— Bits 7-4 select an analog input pin (ADC0–ADC8).  
— Bit 3 indicates the status of the A/D conversion.  
— Bits 2-1 select a conversion speed.  
— Bit 0 starts the A/D conversion.  
Only one analog input channel can be selected at a time. You can dynamically select any one of the ten analog  
input pins (ADC0–ADC8) by manipulating the 4-bit value for ADCON.7–ADCON.4.  
A/D Converter Control Register (ADCON)  
F7H, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
A/D Conversion input pin selection bits  
Conversion start bit:  
0 = No effect  
1 = A/D conversion start  
0000  
ADC0 (P0.0)  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
...  
ADC1 (P0.1)  
ADC2 (P0.2)  
ADC3 (P0.3)  
ADC4 (P0.4)  
ADC5 (P0.5)  
ADC6 (P0.6)  
ADC7 (P0.7)  
ADC8 (P2.6)  
Conversion speed selection bits: (note)  
00 = fOSC/16 (fOSC < 10 MHz)  
01 = fOSC/8 (fOSC < 10 MHz)  
10 = fOSC/4 (fOSC < 10 MHz)  
11 = fOSC/1 (fOSC < 4 MHz)  
Connected with GND internally  
...  
1111  
Connected with GND internally  
End-of-conversion (ECO) status bit:  
0 = A/D conversion is in progress  
1 = A/D conversion complete  
NOTE:  
Maximum ADC clock input = 4 MHz  
Figure 12-1. A/D Converter Control Register (ADCON)  
12-2  
S3C9444/F9444/C9454/F9454  
A/D CONVERTER  
INTERNAL REFERENCE VOLTAGE LEVELS  
In the ADC function block, the analog input voltage level is compared to the reference voltage. The analog input  
level must remain within the range V to V  
SS  
DD.  
Different reference voltage levels are generated internally along the resistor tree during the analog conversion  
process for each conversion step. The reference voltage level for the first bit conversion is always 1/2 V  
DD.  
- A/D Converter Control Register  
ADCON (F7H)  
ADCON.0 (ADEN)  
ADCON.7-.4  
Control  
Circuit  
Clock  
Selector  
ADCON.3  
(EOC Flag)  
M
U
L
T
I
ADCON.2-.1  
ADC0/P0.0  
ADC1/P0.1  
ADC2/P0.2  
Successive  
+
-
Approximation  
Circuit  
Analog  
Comparator  
P
L
E
X
E
R
ADC7/P0.7  
ADC8/P2.6  
Conversion Result  
VDD  
VSS  
ADDATAH ADDATAL  
D/A Converter  
(F8H)  
(F9H)  
To data bus  
Figure 12-2. A/D Converter Circuit Diagram  
MSB  
.7  
-
.6  
-
.5  
-
.4  
-
.3  
-
.2  
-
.1  
.1  
.0  
.0  
LSB  
LSB  
ADDATAH  
ADDATAL MSB  
Figure 12-3. A/D Converter Data Register (ADDATAH/L)  
12-3  
A/D CONVERTER  
S3C9444/F9444/C9454/F9454  
ADC0N.0  
Conversion  
1
50 ADC clock  
Start  
ECO  
ADDATA  
9
8
7
6
5
4
3
2
1
0
Privious  
Value  
ADDATAH (8-bit) + ADDATAL (2-bit)  
Valid  
data  
Set-up time  
10 clock  
40 clock  
Figure 12-4. A/D Converter Timing Diagram  
CONVERSION TIMING  
The A/D conversion process requires 4 steps (4 clock edges) to convert each bit and 10 clocks to step-up A/D  
conversion. Therefore, total of 50 clocks are required to complete an 10-bit conversion: With an 10 MHz CPU  
clock frequency, one clock cycle is 400 ns (4/fosc). If each bit conversion requires 4 clocks, the conversion rate is  
calculated as follows:  
4 clocks/bit ´ 10-bits + step-up time (10 clock) = 50 clocks  
50 clock ´ 400 ns = 20 ms at 10 MHz, 1 clock time = 4/f  
(assuming ADCON.2–.1 = 10)  
OSC  
INTERNAL A/D CONVERSION PROCEDURE  
1. Analog input must remain between the voltage range of V and V  
SS  
DD.  
2. Configure the analog input pins to input mode by making the appropriate settings in P0CONH, P0CONL and  
P2CONH registers.  
3. Before the conversion operation starts, you must first select one of the nine input pins (ADC0–ADC8) by  
writing the appropriate value to the ADCON register.  
4. When conversion has been completed, (50 clocks have elapsed), the EOC flag is set to “1”, so that a check  
can be made to verify that the conversion was successful.  
5. The converted digital value is loaded to the output register, ADDATAH (8-bit) and ADDATAL (2-bit), then the  
ADC module enters an idle state.  
6. The digital conversion result can now be read from the ADDATAH and ADDATAL register.  
12-4  
S3C9444/F9444/C9454/F9454  
A/D CONVERTER  
VDD  
XIN  
Analog  
Input Pin  
ADC0-ADC8  
XOUT  
101  
S3C9444/C9454  
VSS  
Figure 12-5. Recommended A/D Converter Circuit for Highest Absolute Accuracy  
12-5  
A/D CONVERTER  
S3C9444/F9444/C9454/F9454  
+
Programming Tip– Configuring A/D Converter  
ORG 0000H  
VECTOR 00H,INT_9454  
; S3C9454 has only one interrupt vector  
ORG  
003CH  
DB  
DB  
DB  
DB  
00H  
00H  
0E7H  
03H  
; 003CH, must be initialized to 0  
; 003DH, must be initialized to 0  
; 003EH, enable LVR (2.3 V)  
; 003FH, internal RC (3.2 MHz in V = 5 V)  
DD  
ORG  
DI  
LD  
·
0100H  
RESET:  
; disable interrupt  
; Watchdog disable  
BTCON,#10100011B  
·
·
LD  
LD  
LD  
EI  
P0CONH,#11111111B  
P0CONL,#11111111B  
P2CONH,#00100000B  
; Configure P0.4–P0.7 AD input  
; Configure P0.0–P0.3 AD input  
; Configure P2.6 AD input  
; Enable interrupt  
;--------------<< Main loop >>  
MAIN:  
·
·
·
CALL  
AD_CONV  
; Subroutine for AD conversion  
·
·
·
JR  
t,MAIN  
;
AD_CONV:  
LD  
ADCON,#00000001B  
; Select analog input channel ® P0.0  
; select conversion speed ® f  
/16  
OSC  
; set conversion start bit  
NOP  
NOP  
; If you select conversion speed to f  
/16  
OSC  
NOP  
; at least three nop must be included  
12-6  
S3C9444/F9444/C9454/F9454  
A/D CONVERTER  
+
Programming Tip– Configuring A/D Converter (Continued)  
CONV_LOOP: TM  
ADCON,#00001000B  
Z,CONV_LOOP  
R0,ADDATAH  
; Check EOC flag  
JR  
LD  
; If EOC flag=0, jump to CONV_LOOP until EOC flag=1  
; High 8 bits of conversion result are stored  
; to ADDATAH register  
LD  
LD  
R1,ADDATAL  
; Low 2 bits of conversion result are stored  
; to ADDATAL register  
; Select analog input channel ® P0.1  
ADCON,#00010011B  
; Select conversion speed ® f  
/8  
OSC  
; Set conversion start bit  
CONV_LOOP2:TM  
ADCON,#00001000B  
Z,CONV_LOOP2  
R2,ADDATAH  
; Check EOC flag  
JR  
LD  
LD  
·
R3,ADDATAL  
·
·
RET  
;
INT_9454:  
·
; Interrupt enable bit and pending bit check  
·
;
·
; Pending bit clear  
;
IRET  
·
·
END  
12-7  
S3C9444/F9444/C9454/F9454  
ELECTRICAL DATA  
13 ELECTRICAL DATA  
OVERVIEW  
In this section, the following S3C9444/C9454 electrical characteristics are presented in tables and graphs:  
— Absolute maximum ratings  
— D.C. electrical characteristics  
— A.C. electrical characteristics  
— Input Timing Measurement Points  
— Oscillator characteristics  
— Oscillation stabilization time  
— Operating Voltage Range  
— Schmitt trigger input characteristics  
— Data retention supply voltage in Stop mode  
— Stop mode release timing when initiated by a RESET  
— A/D converter electrical characteristics  
— LVR circuit characteristics  
— LVR reset Timing  
13-1  
ELECTRICAL DATA  
S3C9444/F9444/C9454/F9454  
Table 13-1. Absolute Maximum Ratings  
°
(TA = 25 C)  
Parameter  
Symbol  
Conditions  
Rating  
Unit  
VDD  
VI  
Supply voltage  
Input voltage  
– 0.3 to + 6.5  
– 0.3 to VDD + 0.3  
– 0.3 to VDD + 0.3  
– 25  
V
All ports  
V
V
VO  
IOH  
Output voltage  
Output current high  
All output ports  
One I/O pin active  
mA  
All I/O pins active  
One I/O pin active  
– 80  
+ 30  
IOL  
Output current low  
mA  
All I/O pins active  
+ 150  
TA  
Operating temperature  
Storage temperature  
– 40 to + 85  
°C  
°C  
TSTG  
– 65 to + 150  
13-2  
S3C9444/F9444/C9454/F9454  
ELECTRICAL DATA  
Table 13-2. DC Electrical Characteristics  
(TA = – 25 C to + 85 C, VDD = 2.0 V to 5.5 V)  
°
°
Parameter  
Input high  
voltage  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
VIH1  
VDD= 2.0 to 5.5 V  
0.8 VDD  
VDD  
Ports 0, 1, 2 and  
RESET  
V
VIH2  
VIL1  
XIN and XOUT  
VDD- 0.1  
VDD= 2.0 to 5.5 V  
0.2 VDD  
Input low  
voltage  
Ports 0, 1, 2 and  
RESET  
V
VIL2  
VOH  
XIN and XOUT  
0.1  
IOH = – 10 mA  
VDD= 4.5 to 5.5 V  
VDD= 4.5 to 5.5 V  
VDD-1.5 VDD- 0.4  
Output high  
voltage  
V
V
ports 0, 1, 2  
IOL = 25 mA  
VOL  
Output low  
voltage  
0.4  
2.0  
1
port 0, 1, and 2  
All input except  
ILIH2  
ILIH1  
VIN = VDD  
Input high  
leakage current  
uA  
ILIH2  
ILIL1  
XIN, XOUT  
VIN = VDD  
IN = 0 V  
20  
–1  
V
Input low  
All input except  
uA  
ILIL2 and RESET  
leakage current  
ILIL2  
ILOH  
XIN, XOUT  
VIN = 0 V  
–20  
2
VOUT = VDD  
Output high  
leakage current  
All output pins  
uA  
uA  
kΩ  
ILOL  
RP  
VOUT = 0 V  
VDD = 5 V  
VDD = 5 V  
Output low  
leakage current  
All output pins  
VIN = 0 V  
–2  
100  
100  
10  
Pull-up resistors  
25  
25  
50  
50  
5
Ports 0, 1, 2  
VIN = 0 V  
RP  
Pull-down  
resistors  
Ports 1  
Run mode  
10 MHz CPU clock  
3 MHz CPU clock  
IDD1  
VDD = 4.5 to 5.5 V  
Supply current  
mA  
uA  
VDD = 2.0 V  
2
2
5
4
IDD2  
VDD = 4.5 to 5.5 V  
Idle mode  
10 MHz CPU clock  
3 MHz CPU clock  
VDD = 2.0 V  
0.5  
0.1  
1.5  
5
IDD3  
VDD = 4.5 to 5.5 V  
(LVR disable)  
Stop mode  
°
TA = 25 C  
DD = 4.5 to 5.5 V  
(LVR enable)  
V
100  
30  
200  
60  
°
TA = 25 C  
DD = 2.6 V  
(LVR enable)  
V
°
TA = 25 C  
) current, current by ADC module is not included.  
DD2  
NOTE: In STOP (I  
), IDLE (I  
DD3  
13-3  
ELECTRICAL DATA  
S3C9444/F9444/C9454/F9454  
Table 13-3. AC Electrical Characteristics  
(TA = – 25 C to + 85 C, VDD = 2.0 V to 5.5 V)  
°
°
Parameter  
Symbol  
Conditions  
INT0, INT1  
VDD = 5 V ± 10 %  
Min  
Typ  
Max  
Unit  
tINTL  
Interrupt input  
low width  
200  
ns  
tRSL  
RESET input  
low width  
1
us  
Input  
VDD = 5 V ± 10 %  
t
INTL  
tINTH  
0.8 VDD  
0.2 VDD  
XIN  
Figure 13-1. Input Timing Measurement Points  
13-4  
S3C9444/F9444/C9454/F9454  
ELECTRICAL DATA  
Table 13-4. Oscillator Characteristics  
°
°
(T = – 25 C to + 85 C)  
A
Oscillator  
Clock Circuit  
Test Condition  
Min  
Typ  
Max  
Unit  
VDD = 4.5 to 5.5 V  
Main crystal or  
ceramic  
1
10  
MHz  
XIN  
C1  
XOUT  
C2  
V
V
DD = 2.7 to 4.5 V  
DD = 2.0 to 2.7 V  
1
1
1
6
3
MHz  
MHz  
MHz  
VDD = 4.5 to 5.5 V  
External clock  
(Main System)  
10  
XIN  
XOUT  
V
V
DD = 2.7 to 4.5 V  
DD = 2.0 to 2.7 V  
1
1
4
6
3
MHz  
MHz  
MHz  
VDD = 4.75 to 5.25 V  
Tolerance:10 %  
External RC  
oscillator  
V
DD = 4.75 to 5.25 V  
Internal RC  
Oscillator  
3.2  
0.5  
Table 13-5. Oscillation Stabilization Time  
(T = – 25 C to + 85 C, VDD = 3.0 V to 5.5 V)  
°
°
A
Oscillator  
Main crystal  
Test Condition  
Min  
Typ  
Max  
Unit  
fOSC > 1.0 MHz  
20  
10  
ms  
Oscillation stabilization occurs when VDD is  
equal to the minimum oscillator voltage range.  
Main ceramic  
ms  
X
IN input high and low width (tXH, tXL  
tWAIT when released by a reset (1)  
WAIT when released by an interrupt (2)  
)
External clock  
(main system)  
25  
216/fOSC  
500  
ns  
ms  
ms  
Oscillator  
stabilization  
wait time  
t
NOTES:  
1.  
f
is the oscillator frequency.  
OSC  
t
2. The duration of the oscillator stabilization wait time,  
settings in the basic timer control register, BTCON.  
, when it is released by an interrupt is determined by the  
WAIT  
13-5  
ELECTRICAL DATA  
S3C9444/F9444/C9454/F9454  
CPU Clock  
10 MHz  
6 MHz  
4 MHz  
3 MHz  
2 MHz  
1 MHz  
1
2
2.7 3  
4 4.5 5 5.5 6  
7
Supply Voltage (V)  
Figure 13-2. Operating Voltage Range  
VOUT  
VDD  
A = 0.2 VDD  
B = 0.4 VDD  
C = 0.6 VDD  
D = 0.8 VDD  
VSS  
A
B
C
D
VIN  
0.3 VDD  
0.7 VDD  
Figure 13-3. Schmitt Trigger Input Characteristics Diagram  
13-6  
S3C9444/F9444/C9454/F9454  
ELECTRICAL DATA  
Table 13-6. Data Retention Supply Voltage in Stop Mode  
°
°
(T = – 25 C to + 85 C, VDD = 2.0 V to 5.5 V)  
A
Parameter  
Symbol  
Conditions  
Stop mode  
Min  
Typ  
Max  
Unit  
VDDDR  
Data retention  
supply voltage  
2.0  
5.5  
V
IDDDR  
Stop mode; VDDDR = 2.0 V  
Data retention  
supply current  
0.1  
5
uA  
NOTE: Supply current does not include current drawn through internal pull-up resistors or external output current loads.  
RESET  
Oscillation  
Occurs  
Stabilization  
Time  
Stop Mode  
Data Retention Mode  
VDD  
Normal  
Operating  
Mode  
VDDDR  
Execution Of  
Stop Instrction  
RESET  
t
WAIT  
NOTE:  
tWAIT is the same as 4096 x 16 x 1/fOSC  
Figure 13-4. Stop Mode Release Timing When Initiated by a RESET  
13-7  
ELECTRICAL DATA  
S3C9444/F9444/C9454/F9454  
Table 13-7. A/D Converter Electrical Characteristics  
(T = – 25 C to + 85 C, VDD = 2.7 V to 5.5 V, VSS = 0 V)  
°
°
A
Parameter  
Symbol  
Test Conditions  
VDD = 5.12 V  
Min  
Typ  
Max  
Unit  
Total accuracy  
LSB  
± 3  
CPU clock = 10 MHz  
VSS = 0 V  
Integral linearity  
error  
ILE  
± 2  
± 1  
Differential linearity  
error  
DLE  
Offset error of top  
EOT  
EOB  
± 1  
± 1  
± 3  
± 2  
Offset error of  
bottom  
tCON  
VIAN  
RAN  
fOSC = 10 MHz  
Conversion  
time (1)  
VSS  
2
20  
VDD  
µs  
V
Analog input  
voltage  
Analog input  
impedance  
MΩ  
µA  
mA  
IADIN  
IADC  
VDD = 5 V  
VDD = 5 V  
VDD = 3 V  
Analog input  
current  
10  
3
Analog block  
current (2)  
1
0.5  
1.5  
V
DD = 5 V  
100  
500  
nA  
power down mode  
NOTES:  
1. “Conversion time” is the time required from the moment a conversion operation starts until it ends.  
2.  
I
is operating current during A/D conversion.  
ADC  
13-8  
S3C9444/F9444/C9454/F9454  
ELECTRICAL DATA  
Table 13-8. LVR Circuit Characteristics  
(T = – 25 C, VDD = 2.0 V to 5.5 V)  
°
A
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
VLVR  
Low voltage reset  
2.3  
3.0  
3.9  
V
VHYS  
tR  
LVR hysteresis voltage  
0.3  
V
(note)  
Power supply voltage  
rise time  
10  
us  
tOFF  
Power supply voltage  
off time  
0.5  
s
16  
NOTE:  
2 /fx ( = 6.55 ms at fx = 10 MHz)  
t
OFF  
tR  
VDD  
VLVR,MAX  
V
HYS  
HYS  
VLVR  
V
VLVR,MIN  
Figure 13-5. LVR Reset Timing  
13-9  
S3C9444/F9444/C9454/F9454  
MECHANICAL DATA  
14 MECHANICAL DATA  
OVERVIEW  
The S3C9454 is available in a 20-pin DIP package (Samsung: 20-DIP-300A), a 20-pin SOP package (Samsung:  
20-SOP-375), a 16-pin DIP package (Samsung: 16-DIP-300A). Package dimensions are shown in Figure 15-1,  
15-2, and 15-3.  
The S3C9444 is available in a 8-pin DIP package (SAMSUNG 8-DIP-300A), a 8-pin SOP package (SAMSUNG 8-  
SOP-225).  
Package dimensions are shown in figure 14-4 and 14-5.  
#20  
#11  
0-15  
20-DIP-300A  
#1  
#10  
26.80 MAX  
26.40  
±
0.20  
0.46  
1.52  
±
±
0.10  
0.10  
2.54  
(1.77)  
NOTE: Dimensions are in millimeters.  
Figure 14-1. 20-DIP-300A Package Dimensions  
14-1  
MECHANICAL DATA  
S3C9444/F9444/C9454/F9454  
0-8  
#20  
#11  
20-SOP-375  
+ 0.10  
0.203 - 0.05  
#1  
#10  
13.14 MAX  
12.74 ±  
0.20  
0.10 MAX  
1.27  
(0.66)  
+ 0.10  
0.40 - 0.05  
NOTE: Dimensions are in millimeters.  
Figure 14-2. 20-SOP-375 Package Dimensions  
14-2  
S3C9444/F9444/C9454/F9454  
MECHANICAL DATA  
#16  
#9  
0-15  
16-DIP-300A  
#1  
#8  
19.80 MAX  
19.40 ± 0.20  
0.46 ± 0.10  
1.50 ± 0.10  
2.54  
(0.81)  
NOTE: Dimensions are in millimeters.  
Figure 14-3. 16-DIP-300A Package Dimensions  
14-3  
MECHANICAL DATA  
S3C9444/F9444/C9454/F9454  
#8  
#5  
0-15  
8-DIP-300  
#1  
#4  
9.60 MAX  
9.20  
±
0.20  
2.54  
(0.79)  
0.46  
1.52  
±
±
0.10  
0.10  
NOTE: Dimensions are in millimeters.  
Figure 14-4. 8-DIP-300 Package Dimensions  
14-4  
S3C9444/F9444/C9454/F9454  
MECHANICAL DATA  
0-8  
#8  
#5  
8-SOP-225  
+ 0.10  
0.15 - 0.05  
#1  
#4  
5.13 MAX  
4.92  
±
0.20  
0.10 MAX  
1.27  
(0.56)  
0.41 ± 0.10  
NOTE: Dimensions are in millimeters.  
Figure 14-5. 8-SOP-225 Package Dimensions  
14-5  
S3C9444/F9444/C9454/F9454  
S3F9444/F9454 MTP  
15 S3F9444/F9454 MTP  
OVERVIEW  
The S3F9444/F9454 single-chip CMOS microcontroller is the MTP (Multi Time Programmable) version of the  
S3C9444/C9454 microcontroller. It has an on-chip Flash ROM instead of masked ROM. The Flash ROM is  
accessed by serial data format.  
The S3F9444/F9454 is fully compatible with the S3C9444/C9454, in function, in D.C. electrical characteristics, and  
in pin configuration. Because of its simple programming requirements, the S3F9444/F9454 is ideal for use as an  
evaluation chip for the S3C9444/C9454.  
VDD/VDD  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
VSS/VSS  
XIN/P1.0  
XOUT/P1.1  
VPP/RESET/P1.2  
T0/P2.0  
P2.1  
1
2
3
4
5
6
7
8
9
10  
P0.0/ADC0/INT0/SCL  
P0.1/ADC1/INT1/SDA  
P0.2/ADC2  
P0.3/ADC3  
S3F9454  
P0.4/ADC4  
P0.5/ADC5  
P2.2  
P0.6/ADC6/PWM  
P0.7/ADC7  
P2.3  
P2.4  
P2.6/ADC8/CLO  
P2.5  
NOTE:  
The bolds indicate MTP pin name.  
Figure 15-1. Pin Assignment Diagram (20-Pin Package)  
15-1  
S3F9444/F9454 MTP  
S3C9444/F9444/C9454/F9454  
16  
15  
14  
13  
12  
11  
10  
9
VDD/VDD  
VSS/VSS  
XIN/P1.0  
1
2
3
4
5
6
7
8
P0.0/ADC0/INT0/SCL  
P0.1/ADC1/INT1/SDA  
P0.2/ADC2  
XOUT/P1.1  
VPP/RESET/P1.2  
T0/P2.0  
S3F9454  
P0.3/ADC3  
P0.4/ADC4  
P2.1  
P0.5/ADC5  
P2.2  
P0.6/ADC6/PWM  
P2.3  
NOTE:  
The bolds indicate MTP pin name.  
Figure 15-2. Pin Assignment Diagram (16-Pin Package)  
VDD/VDD  
SS/VSS  
1
2
3
4
8
7
6
5
V
P0.0/ADC0/INT0/SCL  
P0.1/ADC1/INT1/SDA  
P0.2/ADC2  
X
IN/P1.0  
S3F9444  
X
OUT/P1.1  
V
PP/RESET/P1.2  
NOTE:  
The bolds indicate MTP pin name.  
Figure 15-3. Pin Assignment Diagram (8-Pin Package)  
15-2  
S3C9444/F9444/C9454/F9454  
S3F9444/F9454 MTP  
Table 15-1. Descriptions of Pins Used to Read/Write the Flash ROM  
Main Chip  
Pin Name  
During Programming  
I/O  
Pin Name  
Pin No.  
18 (20-pin)  
Function  
P0.1  
SDA  
I/O  
Serial data pin (output when reading, Input  
when writing) Input and push-pull output port  
can be assigned  
14 (16-pin)  
P0.0  
SCL  
19 (20-pin)  
15 (16-pin)  
I
I
Serial clock pin (input only pin)  
V
4
Power supply pin for flash ROM cell writing  
(indicates that MTP enters into the writing  
mode). When 12.5 V is applied, MTP is in  
writing mode and when 5 V is applied,  
MTP is in reading mode. (Option)  
RESET, P1.2  
PP  
V
/V  
V
/V  
20 (20-pin), 16 (16-pin)  
1 (20-pin), 1 (16-pin)  
I
Logic power supply pin.  
DD SS  
DD SS  
Table 15-2. Comparison of S3F9444/F9454 and S3C9444/C9454 Features  
Characteristic  
S3F9444/F9454  
4 Kbyte Flash ROM  
2.0 V to 5.5 V  
S3C9444/C9454  
Program Memory  
2K/4K byte mask ROM  
2.0 V to 5.5 V  
Operating Voltage (V  
)
DD  
V
= 5 V, V = 12.5 V  
OTP Programming Mode  
DD  
PP  
Pin Configuration  
20 DIP/20 SOP/16 DIP/8 DIP/8 SOP  
User Program multi time Programmed at the factory  
EPROM Programmability  
OPERATING MODE CHARACTERISTICS  
When 12.5 V is supplied to the V pin of the S3F9444/F9454 Flash ROM programming mode is entered. The  
PP  
operating mode (read, write, or read protection) is selected according to the input signals to the pins listed in Table  
15-3 below.  
Table 15-3. Operating Mode Selection Criteria  
V
V
Address  
(A15–A0)  
R/W  
Mode  
REG/MEM  
DD  
PP  
5 V  
5 V  
0
0
0
1
0000H  
0000H  
0000H  
0E3FH  
1
0
1
0
Flash ROM read  
Flash ROM program  
Flash ROM verify  
12.5 V  
12.5 V  
12.5 V  
Flash ROM read protection  
NOTE: "0" means Low level; "1" means High level.  
15-3  
S3C9444/F9444/C9454/F9454  
DEVELOPMENT TOOLS  
16 DEVELOPMENT TOOLS  
OVERVIEW  
Samsung provides a powerful and easy-to-use development support system in turnkey form. The development  
support system is configured with a host system, debugging tools, and support software. For the host system, any  
standard computer that operates with MS-DOS as its operating system can be used. One type of debugging tool  
including hardware and software is provided: the sophisticated and powerful in-circuit emulator, SMDS2+, for  
S3C7, S3C9, S3C8 families of microcontrollers. The SMDS2+ is a new and improved version of SMDS2.  
Samsung also offers support software that includes debugger, assembler, and a program for setting options.  
SHINE  
Samsung Host Interface for in-circuit Emulator, SHINE, is a multi-window based debugger for SMDS2+. SHINE  
provides pull-down and pop-up menus, mouse support, function/hot keys, and context-sensitive hyper-linked help.  
It has an advanced, multiple-windowed user interface that emphasizes ease of use. Each window can be sized,  
moved, scrolled, highlighted, added, or removed completely.  
SAMA ASSEMBLER  
The Samsung Arrangeable Microcontroller (SAM) Assembler, SAMA, is a universal assembler, and generates  
object code in standard hexadecimal format. Assembled program code includes the object code that is used for  
ROM data and required SMDS program control data. To assemble programs, SAMA requires a source file and an  
auxiliary definition (DEF) file with device specific information.  
SASM86  
The SASM86 is an relocatable assembler for Samsung's S3C9-series microcontrollers. The SASM86 takes a  
source file containing assembly language statements and translates into a corresponding source code, object  
code and comments. The SASM86 supports macros and conditional assembly. It runs on the MS-DOS operating  
system. It produces the relocatable object code only, so the user should link object file. Object files can be linked  
with other object files and loaded into memory.  
HEX2ROM  
HEX2ROM file generates ROM code from HEX file which has been produced by assembler. ROM code must be  
needed to fabricate a microcontroller which has a mask ROM. When generating the ROM code (.OBJ file) by  
HEX2ROM, the value "FF" is filled into the unused ROM area upto the maximum ROM size of the target device  
automatically.  
16-1  
DEVELOPMENT TOOLS  
TARGET BOARDS  
S3C9444/F9444/C9454/F9454  
Target boards are available for all S3C9-series microcontrollers. All required target system cables and adapters  
are included with the device-specific target board.  
MTPs  
Multi times programmable microcontrollers (MTPs) are under development for S3C9444/C9454 microcontroller.  
IBM-PC AT or Compatible  
RS-232C  
SMDS2+  
Target  
Application  
System  
PROM/OTP Writer Unit  
RAM Break/Display Unit  
Trace/Timer Unit  
Probe  
Adapter  
TB9444/9454  
POD  
Target  
Board  
SAM8 Base Unit  
EVA  
Chip  
Power Supply Unit  
Figure 16-1. SMDS Product Configuration (SMDS2+)  
16-2  
S3C9444/F9444/C9454/F9454  
DEVELOPMENT TOOLS  
TB9444/9454 TARGET BOARD  
The TB9444/9454 target board is used for the S3C9444/C9454 microcontrollers. It is supported by the SMDS2+  
development systems.  
TB9444/9454  
To User_VCC  
Off  
On  
RESET  
Idle  
+
Stop  
+
25  
CN1  
1
J101  
1
20  
128 QFP  
S3E9450  
EVA Chip  
1
24  
10  
11  
External  
Triggers  
8 pin DIP switch  
CH1  
CH2  
SMDS  
SMDS2+  
SM1333A  
Figure 16-2. TB9444/9454 Target Board Configuration  
16-3  
DEVELOPMENT TOOLS  
S3C9444/F9444/C9454/F9454  
Comments  
Table 16-1. Power Selection Settings for TB9444/9454  
Operating Mode  
"To User_Vcc" Settings  
The SMDS2+ main board  
To user_Vcc  
supplies V to the target  
CC  
off  
on  
External  
VCC  
TB9444/9454  
board (evaluation chip) and  
the target system.  
Target  
System  
VSS  
VCC  
SMDS2+  
The SMDS2+ main board  
To user_Vcc  
supplies V only to the target  
CC  
External  
VCC  
TB9444/9454  
off  
on  
board (evaluation chip). The  
target system must have its  
own power supply.  
Target  
System  
VSS  
VCC  
SMDS2+  
NOTE: The following symbol in the "To User_Vcc" Setting column indicates the electrical short (off) configuration:  
SMDS2+ Selection (SAM8)  
In order to write data into program memory that is available in SMDS2+, the target board should be selected to be  
for SMDS2+ through a switch as follows. Otherwise, the program memory writing function is not available.  
Table 16-2. The SMDS2+ Tool Selection Setting  
"SW1" Setting  
SMDS SMDS2+  
Operating Mode  
R/W*  
SMDS2+  
R/W*  
Target  
System  
16-4  
S3C9444/F9444/C9454/F9454  
DEVELOPMENT TOOLS  
Table 16-3. Using Single Header Pins as the Input Path for External Trigger Sources  
Target Board Part  
Comments  
Connector from  
External Trigger  
Sources of the  
External  
Triggers  
Application System  
Ch1  
Ch2  
You can connect an external trigger source to one of the two  
external trigger channels (CH1 or CH2) for the SMDS2+ breakpoint  
and trace functions.  
ON  
OFF  
3EH.7 3EH.6 3EH.5 3EH.4 3EH.3 3EH.2 3FH.1 3FH.0  
ON  
OFF  
Low  
High  
NOTE:  
About EVA chip, smart option is determined by DIP switch  
not software.  
Figure 16-3. DIP Switch for Smart Option  
16-5  
DEVELOPMENT TOOLS  
S3C9444/F9444/C9454/F9454  
J101  
VSS  
P1.0  
1
2
3
4
5
6
7
8
9
10  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
VDD  
P0.0/ADC0/INT0  
P0.1/ADC1/INT1  
P0.2/ADC2  
P1.1  
RESET/P1.2  
T0/P2.0  
P2.1  
P0.3/ADC3  
P0.4/ADC4  
P2.2  
P0.5/ADC5  
P2.3  
P0.6/ADC6/PWM  
P0.7/ADC7  
P2.4  
P2.5  
P2.6/ADC8/CLO  
Figure 16-4. 20-Pin Connector for TB9444/9454  
Target Board  
Target System  
J101  
20  
1
1
20  
Part Name: AS20D  
Order Cods: SM6304  
10 11  
10 11  
Figure 16-5. S3C9444/C9454 Probe Adapter for 20-DIP Package  
16-6  

相关型号:

S3F9454XX-DK

Microcontroller, 8-Bit, FLASH, SAM88RCRI CPU, 10MHz, CMOS, PDIP20
SAMSUNG

S3F9454XX-SK

Microcontroller, 8-Bit, FLASH, SAM88RCRI CPU, 10MHz, CMOS, PDSO20
SAMSUNG

S3F9488

8-bit CMOS Microcontroller Revision 1
SAMSUNG

S3F9488XX-QZ

Microcontroller, 8-Bit, FLASH, SAM88RCRI CPU, 8MHz, CMOS, PQFP44
SAMSUNG

S3F9488XX-SO

Microcontroller, 8-Bit, FLASH, SAM88RCRI CPU, 8MHz, CMOS, PDSO32
SAMSUNG

S3F9498

8-BIT CMOS MICROCONTROLLER
SAMSUNG

S3F9498-AO

Microcontroller, 8-Bit, FLASH, SAM88RCRI CPU, 8MHz, CMOS, PDIP32
SAMSUNG

S3F9498-SO

暂无描述
SAMSUNG

S3F94A5

8-BIT CMOS MICROCONTROLLER
SAMSUNG

S3F94A5-AO5

Microcontroller, 8-Bit, FLASH, SAM88RCRI CPU, 12MHz, CMOS, PDIP32
SAMSUNG

S3F94C4

S3 Family 8-Bit Microcontrollers
ZILOG

S3F94C4EZZ-DK94

S3 Family 8-Bit Microcontrollers
ZILOG