SIM6800M [SANKEN]

500V / 600V High Voltage 3-phase Motor Driver ICs;
SIM6800M
型号: SIM6800M
厂家: SANKEN ELECTRIC    SANKEN ELECTRIC
描述:

500V / 600V High Voltage 3-phase Motor Driver ICs

文件: 总52页 (文件大小:2101K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
500V / 600V High Voltage 3-phase Motor Driver ICs  
SIM6800M Series  
Data Sheet  
Description  
Package  
The SIM6800M series are high voltage 3-phase motor  
driver ICs in which transistors, a pre-driver IC (MIC),  
and bootstrap circuits (diodes and resistors) are highly  
integrated.  
DIP40  
Mold Dimensions: 36.0 mm × 14.8 mm × 4.0 mm  
40  
These products can run on a 3-shunt current detection  
system and optimally control the inverter systems of  
small- to medium-capacity motors that require universal  
input standards.  
21  
1
Features  
Built-in Bootstrap Diodes with Current Limiting  
Resistors (60 )  
Leadform 2971  
Not to scale  
20  
CMOS-compatible Input (3.3 V or 5 V)  
Bare Lead Frame: Pb-free (RoHS Compliant)  
Isolation Voltage: 1500 V (for 1 min)  
UL-recognized Component (File No.: E118037)  
(SIM6880M UL Recognition Pending)  
Fault Signal Output at Protection Activation (FO Pin)  
High-side Shutdown Signal Input (SD Pin)  
Protections Include:  
Selection Guide  
Part  
Number  
VDSS/VCES  
IO  
2.0 A  
Feature  
SIM6811M  
Overcurrent Limit (OCL): Auto-restart  
Overcurrent Protection (OCP): Auto-restart  
Undervoltage Lockout for Power Supply  
High-side (UVLO_VB): Auto-restart  
Low-side (UVLO_VCC): Auto-restart  
Thermal Shutdown (TSD): Auto-restart  
500 V  
2.5 A Power MOSFET SIM6812M  
3.0 A  
3.0 A  
SIM6813M  
SIM6880M  
SIM6822M  
SIM6827M  
IGBT with FRD,  
low switching  
dissipation  
600 V  
5.0 A  
Typical Application (SIM681xM)  
VB1A  
21  
VCC  
VB1B  
VCC1  
17  
30  
20  
23  
Applications  
CBOOT1  
VB2  
VB3  
For motor drives such as:  
CBOOT2  
Refrigerator Compressor Motor  
Fan Motor and Pump Motor for Washer and Dryer  
Fan Motor for Air Conditioner, Air Purifier, and  
Electric Fan  
CBOOT3  
COM1  
HIN3  
HIN2  
HIN1  
SD  
16  
15  
14  
13  
12  
VDC  
HIN3  
HIN2  
HIN1  
VBB  
28  
U
V
31  
19  
OCL  
LIN3  
LIN2  
LIN1  
COM2  
VCC2  
FO  
10  
9
MIC  
LIN3  
LIN2  
LIN1  
V1  
V2  
W1  
W2  
26  
35  
M
8
7
5 V  
RFO  
6
24  
37  
5
4
OCP  
Fault  
3
LS1  
11  
2
CFO  
LS2  
LS2  
33  
40  
RO  
LS3A  
LS3B  
1
CS CDC  
RS  
CO  
GND  
SIM6800M-DSE Rev.1.5  
Jul. 18, 2018  
SANKEN ELECTRIC CO., LTD  
http://www.sanken-ele.co.jp/en  
1
© SANKEN ELECTRIC CO., LTD. 2014  
 
SIM6800M Series  
Contents  
Description ------------------------------------------------------------------------------------------------------1  
Contents ---------------------------------------------------------------------------------------------------------2  
1. Absolute Maximum Ratings-----------------------------------------------------------------------------4  
2. Recommended Operating Conditions -----------------------------------------------------------------5  
3. Electrical Characteristics--------------------------------------------------------------------------------6  
3.1 Characteristics of Control Parts------------------------------------------------------------------6  
3.2 Bootstrap Diode Characteristics -----------------------------------------------------------------7  
3.3 Thermal Resistance Characteristics -------------------------------------------------------------7  
3.4 Transistor Characteristics-------------------------------------------------------------------------8  
3.4.1  
3.4.2  
3.4.3  
3.4.4  
3.4.5  
3.4.6  
SIM6811M --------------------------------------------------------------------------------------9  
SIM6812M --------------------------------------------------------------------------------------9  
SIM6813M ------------------------------------------------------------------------------------ 10  
SIM6880M ------------------------------------------------------------------------------------ 10  
SIM6822M ------------------------------------------------------------------------------------ 11  
SIM6827M ------------------------------------------------------------------------------------ 11  
4. Mechanical Characteristics --------------------------------------------------------------------------- 12  
5. Insulation Distance-------------------------------------------------------------------------------------- 12  
6. Truth Table----------------------------------------------------------------------------------------------- 13  
7. Block Diagrams------------------------------------------------------------------------------------------ 14  
8. Pin Configuration Definitions------------------------------------------------------------------------- 15  
9. Typical Applications------------------------------------------------------------------------------------ 16  
10. Physical Dimensions ------------------------------------------------------------------------------------ 17  
11. Marking Diagram --------------------------------------------------------------------------------------- 18  
12. Functional Descriptions-------------------------------------------------------------------------------- 19  
12.1 Turning On and Off the IC---------------------------------------------------------------------- 19  
12.2 Pin Descriptions ----------------------------------------------------------------------------------- 19  
12.2.1 U, V, V1, V2, W1, and W2----------------------------------------------------------------- 19  
12.2.2 VB1A, VB1B, VB2, and VB3-------------------------------------------------------------- 19  
12.2.3 VCC1 and VCC2 ---------------------------------------------------------------------------- 20  
12.2.4 COM1 and COM2--------------------------------------------------------------------------- 20  
12.2.5 HIN1, HIN2, and HIN3; LIN1, LIN2, and LIN3 -------------------------------------- 21  
12.2.6 VBB -------------------------------------------------------------------------------------------- 21  
12.2.7 LS1, LS2, LS3A, and LS3B---------------------------------------------------------------- 22  
12.2.8 OCP and OCL ------------------------------------------------------------------------------- 22  
12.2.9 SD----------------------------------------------------------------------------------------------- 22  
12.2.10 FO ---------------------------------------------------------------------------------------------- 22  
12.3 Protection Functions------------------------------------------------------------------------------ 23  
12.3.1 Fault Signal Output------------------------------------------------------------------------- 23  
12.3.2 Shutdown Signal Input--------------------------------------------------------------------- 23  
12.3.3 Undervoltage Lockout for Power Supply (UVLO) ----------------------------------- 23  
12.3.4 Overcurrent Limit (OCL) ----------------------------------------------------------------- 24  
12.3.5 Overcurrent Protection (OCP) ----------------------------------------------------------- 25  
12.3.6 Thermal Shutdown (TSD) ----------------------------------------------------------------- 26  
13. Design Notes---------------------------------------------------------------------------------------------- 26  
13.1 PCB Pattern Layout ------------------------------------------------------------------------------ 26  
13.2 Considerations in Heatsink Mounting -------------------------------------------------------- 26  
13.3 Considerations in IC Characteristics Measurement --------------------------------------- 27  
14. Calculating Power Losses and Estimating Junction Temperatures--------------------------- 28  
14.1 IGBT------------------------------------------------------------------------------------------------- 28  
SIM6800M-DSE Rev.1.5  
SANKEN ELECTRIC CO., LTD  
2
Jul. 18, 2018  
http://www.sanken-ele.co.jp/en  
© SANKEN ELECTRIC CO., LTD. 2014  
 
SIM6800M Series  
14.1.1 IGBT Steady-state Loss, PON -------------------------------------------------------------- 28  
14.1.2 IGBT Switching Loss, PSW----------------------------------------------------------------- 28  
14.1.3 Estimating Junction Temperature of IGBT-------------------------------------------- 28  
14.2 Power MOSFET----------------------------------------------------------------------------------- 29  
14.2.1 Power MOSFET Steady-state Loss, PRON----------------------------------------------- 29  
14.2.2 Power MOSFET Switching Loss, PSW--------------------------------------------------- 29  
14.2.3 Body Diode Steady-state Loss, PSD ------------------------------------------------------- 30  
14.2.4 Estimating Junction Temperature of Power MOSFET------------------------------ 30  
15. Performance Curves------------------------------------------------------------------------------------ 31  
15.1 Transient Thermal Resistance Curves -------------------------------------------------------- 31  
15.2 Performance Curves of Control Parts--------------------------------------------------------- 32  
15.3 Performance Curves of Output Parts --------------------------------------------------------- 37  
15.3.1 Output Transistor Performance Curves------------------------------------------------ 37  
15.3.2 Switching Losses----------------------------------------------------------------------------- 39  
15.4 Allowable Effective Current Curves----------------------------------------------------------- 42  
15.4.1 SIM6811M ------------------------------------------------------------------------------------ 42  
15.4.2 SIM6812M ------------------------------------------------------------------------------------ 43  
15.4.3 SIM6813M ------------------------------------------------------------------------------------ 44  
15.4.4 SIM6880M ------------------------------------------------------------------------------------ 45  
15.4.5 SIM6822M ------------------------------------------------------------------------------------ 46  
15.4.6 SIM6827M ------------------------------------------------------------------------------------ 47  
15.5 Short Circuit SOAs (Safe Operating Areas) ------------------------------------------------- 48  
16. Pattern Layout Example------------------------------------------------------------------------------- 49  
17. Typical Motor Driver Application ------------------------------------------------------------------- 51  
Important Notes---------------------------------------------------------------------------------------------- 52  
SIM6800M-DSE Rev.1.5  
SANKEN ELECTRIC CO., LTD  
3
Jul. 18, 2018  
http://www.sanken-ele.co.jp/en  
© SANKEN ELECTRIC CO., LTD. 2014  
SIM6800M Series  
1. Absolute Maximum Ratings  
Current polarities are defined as follows: current going into the IC (sinking) is positive current (+); current coming  
out of the IC (sourcing) is negative current (−).  
Unless specifically noted, TA = 25 °C, COM1 = COM2 = COM.  
Parameter  
Symbol  
VDC  
Conditions  
VBB–LSx  
Rating  
400  
Unit  
V
Remarks  
SIM681xM  
SIM682xM  
SIM6880M  
SIM681xM  
SIM682xM  
SIM6880M  
Main Supply Voltage (DC)  
450  
450  
500  
VBB–LSx  
Main Power Voltage (Surge)  
VDC(SURGE)  
VDSS  
V
V
VCC = 15 V,  
ID = 1 µA, VIN = 0 V  
VCC = 15 V,  
IC = 1 mA, VIN = 0 V  
500  
SIM681xM  
IGBT / Power MOSFET  
Breakdown Voltage  
SIM682xM  
SIM6880M  
VCES  
VCC  
600  
20  
VCCx–COM  
VB1B–U,  
VB2–V,  
VB3–W1  
Logic Supply Voltage  
Output Current (1)  
V
A
VBS  
20  
2
SIM6811M  
SIM6812M  
SIM6813M  
SIM6880M  
SIM6822M  
SIM6827M  
2.5  
TC = 25 °C, Tj < 150 °C  
IO  
3
5
3
SIM6811M  
SIM6812M  
3.75  
TC = 25 °C,  
VCC = 15 V,  
PW 1 ms,  
single pulse  
SIM6813M  
SIM6880M  
SIM6822M  
SIM6827M  
Output Current (Pulse)  
Input Voltage  
IOP  
A
V
4.5  
7.5  
HINx–COM,  
LINx–COM  
VIN  
0.5 to 7  
FO–COM  
OCP–COM  
SD–COM  
FO Pin Voltage  
OCP Pin Voltage  
SD Pin Voltage  
VFO  
VOCP  
VSD  
0.5 to 7  
10 to 5  
0.5 to 7  
V
V
V
Operating Case  
Temperature(2)  
Junction Temperature(3)  
Storage Temperature  
TC(OP)  
30 to 100  
°C  
Tj  
150  
°C  
°C  
Tstg  
40 to 150  
Between surface of the  
case and each pin; AC,  
60 Hz, 1 min  
Isolation Voltage(4)  
VISO(RMS)  
1500  
V
(1) Should be derated depending on an actual case temperature. See Section 15.4.  
(2) Refers to a case temperature measured during IC operation.  
(3) Refers to the junction temperature of each chip built in the IC, including the controller IC (MIC), transistors, and fast  
recovery diodes.  
(4) Refers to voltage conditions to be applied between the case and all pins. All pins have to be shorted.  
SIM6800M-DSE Rev.1.5  
Jul. 18, 2018  
SANKEN ELECTRIC CO., LTD  
http://www.sanken-ele.co.jp/en  
4
© SANKEN ELECTRIC CO., LTD. 2014  
 
 
 
 
 
SIM6800M Series  
2. Recommended Operating Conditions  
Unless specifically noted, COM1 = COM2 = COM.  
Parameter  
Symbol  
VDC  
Conditions  
VBB–COM  
Min.  
Typ.  
300  
Max.  
400  
Unit  
V
Remarks  
Main Supply Voltage  
VCCx–COM  
VCC  
13.5  
15.0  
16.5  
V
VB1B–U,  
VB2–V,  
VB3–W1  
Logic Supply Voltage  
VBS  
VIN  
13.5  
0
16.5  
5.5  
V
V
Input Voltage  
(HINx, LINx, OCP, SD, FO)  
tIN(MIN)ON  
tIN(MIN)OFF  
tDEAD  
0.5  
0.5  
μs  
μs  
μs  
kΩ  
V
Minimum Input Pulse Width  
Dead Time of Input Signal  
FO Pin Pull-up Resistor  
FO Pin Pull-up Voltage  
FO Pin Noise Filter Capacitor  
Bootstrap Capacitor  
1.5  
RFO  
3.3  
10  
VFO  
3.0  
5.5  
0.01  
220  
CFO  
0.001  
1
μF  
μF  
CBOOT  
IP ≤ 3 A  
390  
270  
SIM6811M  
SIM6812M  
IP ≤ 3.75 A  
SIM6813M  
SIM6880M  
SIM6822M  
SIM6827M  
Shunt Resistor  
RS  
mΩ  
IP 4.5 A  
IP 7.5 A  
270  
150  
RC Filter Resistor  
RC Filter Capacitor  
RO  
CO  
100  
Ω
SIM6822M  
SIM6827M  
SIM6880M  
SIM6811M  
SIM6812M  
SIM6813M  
1000  
1000  
2200  
pF  
10000  
PWM Carrier Frequency  
fC  
20  
kHz  
°C  
Operating Case Temperature  
TC(OP)  
100  
SIM6800M-DSE Rev.1.5  
Jul. 18, 2018  
SANKEN ELECTRIC CO., LTD  
http://www.sanken-ele.co.jp/en  
5
© SANKEN ELECTRIC CO., LTD. 2014  
 
SIM6800M Series  
3. Electrical Characteristics  
Current polarities are defined as follows: current going into the IC (sinking) is positive current (+); current coming  
out of the IC (sourcing) is negative current (−).  
Unless specifically noted, TA = 25 °C, VCC = 15 V, COM1 = COM2 = COM.  
3.1 Characteristics of Control Parts  
Parameter  
Symbol  
Conditions  
Min.  
Typ.  
Max.  
Unit  
Remarks  
Power Supply Operation  
VCCx–COM  
VCC(ON)  
VBS(ON)  
VCC(OFF)  
VBS(OFF)  
10.5  
9.5  
11.5  
10.5  
11.0  
10.0  
12.5  
11.5  
12.0  
11.0  
V
V
V
V
Logic Operation Start  
Voltage  
VB1B–U,  
VB2–V,  
VB3–W1  
VCCx–COM  
10.0  
9.0  
Logic Operation Stop  
Voltage  
VB1B–U,  
VB2–V,  
VB3–W1  
VCC1 = VCC2,  
VCC pin current in 3-phase  
operation  
VB1B–U or VB2–V or  
VB3–W1; HINx = 5 V;  
VBx pin current in 1-phase  
operation  
ICC  
3.2  
4.5  
mA  
Logic Supply Current  
IBS  
140  
400  
μA  
Input Signal  
High Level Input  
Threshold Voltage  
(HINx, LINx, SD, FO)  
Low Level Input  
Threshold Voltage  
(HINx, LINx, SD, FO)  
High Level Input  
Current (HINx, LINx)  
Low Level Input Current  
(HINx, LINx)  
VIH  
VIL  
2.0  
1.5  
2.5  
V
V
1.0  
VIN = 5 V  
VIN = 0 V  
IIH  
IIL  
230  
500  
2
μA  
μA  
Fault Signal Output  
FO Pin Voltage at Fault  
Signal Output  
FO Pin Voltage in  
Normal Operation  
VFO = 5 V, RFO = 10 kΩ  
VFO = 5 V, RFO = 10 kΩ  
VFOL  
VFOH  
0
0.5  
V
V
4.8  
Protection  
OCL Pin Output Voltage  
(L)  
OCL Pin Output Voltage  
(H)  
Current Limit Reference  
Voltage  
VOCL(L)  
VOCL(H)  
VLIM  
0
0.5  
5.5  
V
V
V
4.5  
0.6175 0.6500 0.6825  
OCP Threshold Voltage  
OCP Hold Time  
VTRIP  
tP  
0.9  
20  
1.0  
25  
2
1.1  
V
μs  
μs  
OCP Blanking Time  
tBK(OCP)  
Current Limit Blanking  
Time  
tBK(OCL)  
2
μs  
SIM6800M-DSE Rev.1.5  
Jul. 18, 2018  
SANKEN ELECTRIC CO., LTD  
http://www.sanken-ele.co.jp/en  
6
© SANKEN ELECTRIC CO., LTD. 2014  
 
 
 
 
 
 
 
 
 
 
 
 
SIM6800M Series  
Parameter  
Symbol  
TDH  
Conditions  
Min.  
135  
Typ.  
150  
Max.  
Unit  
°C  
Remarks  
TSD Operating  
Temperature  
TSD Releasing  
Temperature  
TDL  
105  
120  
°C  
3.2 Bootstrap Diode Characteristics  
Parameter  
Symbol  
ILBD  
Conditions  
VR = 500 V  
Min.  
Typ.  
Max.  
10  
Unit  
Remarks  
Bootstrap Diode Leakage  
Current  
μA  
Bootstrap Diode Forward  
Voltage  
Bootstrap Diode Series  
Resistor  
IFB = 0.15 A  
VFB  
45  
1.0  
60  
1.3  
75  
V
RBOOT  
Ω
3.3 Thermal Resistance Characteristics  
Parameter  
Symbol  
Rj-C  
Conditions  
Min.  
Typ.  
Max.  
3.6  
Unit  
Remarks  
All power MOSFETs  
operating  
°C/W SIM681xM  
Junction-to-Case Thermal  
Resistance(1)  
SIM682xM  
°C/W  
(2)  
R(j-C)Q  
All IGBTs operating  
3.6  
4.2  
25  
SIM6880M  
All freewheeling diodes  
operating  
All power MOSFETs  
operating  
SIM682xM  
SIM6880M  
(3)  
R(j-C)F  
°C/W  
Rj-A  
°C/W SIM681xM  
Junction-to-Ambient  
Thermal Resistance  
SIM682xM  
°C/W  
R(j-A)Q All IGBTs operating  
25  
SIM6880M  
All freewheeling diodes  
operating  
SIM682xM  
SIM6880M  
R(j-A)F  
29  
°C/W  
(1) Refers to a case temperature at the measurement point described in Figure 3-1, below.  
(2) Refers to steady-state thermal resistance between the junction of the built-in transistors and the case. For transient  
thermal characteristics, see Section 15.1.  
(3) Refers to steady-state thermal resistance between the junction of the built-in freewheeling diodes and the case.  
SIM6800M-DSE Rev.1.5  
Jul. 18, 2018  
SANKEN ELECTRIC CO., LTD  
http://www.sanken-ele.co.jp/en  
7
© SANKEN ELECTRIC CO., LTD. 2014  
 
 
 
 
 
 
 
SIM6800M Series  
Measurement point  
21  
40  
5 mm  
1
20  
Figure 3-1. Case Temperature Measurement Point  
3.4 Transistor Characteristics  
Figure 3-2 provides the definitions of switching characteristics described in this and the following sections.  
HINx/  
LINx  
0
trr  
toff  
ton  
td(off) tf  
td(on) tr  
ID / IC  
90%  
10%  
0
VDS  
/
VCE  
0
Figure 3-2. Switching Characteristics Definitions  
SIM6800M-DSE Rev.1.5  
Jul. 18, 2018  
SANKEN ELECTRIC CO., LTD  
http://www.sanken-ele.co.jp/en  
8
© SANKEN ELECTRIC CO., LTD. 2014  
 
 
 
SIM6800M Series  
3.4.1  
SIM6811M  
Parameter  
Symbol  
IDSS  
Conditions  
VDS = 500 V, VIN = 0 V  
ID = 1.0 A, VIN = 5 V  
Min.  
Typ.  
Max.  
100  
4.0  
Unit  
µA  
Ω
Drain-to-Source Leakage Current  
Drain-to-Source On Resistance  
RDS(ON)  
3.2  
Source-to-Drain Diode Forward  
Voltage  
ISD =1.0 A, VIN = 0 V  
VSD  
1.0  
1.5  
V
High-side Switching  
Source-to-Drain Diode Reverse  
Recovery Time  
trr  
td(on)  
tr  
td(off)  
tf  
150  
ns  
VDC = 300 V, IC = 1.0 A,  
inductive load,  
VIN = 05 V or 50 V,  
Tj = 25 °C  
Turn-on Delay Time  
Rise Time  
770  
70  
ns  
ns  
ns  
ns  
Turn-off Delay Time  
Fall Time  
690  
30  
Low-side Switching  
Source-to-Drain Diode Reverse  
Recovery Time  
trr  
150  
ns  
VDC = 300 V, IC = 1.0 A,  
inductive load,  
VIN = 05 V or 50 V,  
Tj = 25 °C  
Turn-on Delay Time  
Rise Time  
td(on)  
tr  
td(off)  
tf  
690  
90  
ns  
ns  
ns  
ns  
Turn-off Delay Time  
Fall Time  
650  
50  
3.4.2  
SIM6812M  
Parameter  
Symbol  
ICES  
Conditions  
VDS = 500 V, VIN = 0 V  
ID = 1.25 A, VIN = 5 V  
Min.  
Typ.  
Max.  
100  
2.4  
Unit  
µA  
Ω
Drain-to-Source Leakage Current  
Drain-to-Source On Resistance  
VCE(SAT)  
2.0  
Source-to-Drain Diode Forward  
Voltage  
ISD =1.25 A, VIN = 0 V  
VF  
1.0  
1.5  
V
High-side Switching  
Source-to-Drain Diode Reverse  
Recovery Time  
trr  
td(on)  
tr  
td(off)  
tf  
140  
ns  
V
DC = 300 V, IC = 1.25 A,  
Turn-on Delay Time  
Rise Time  
910  
100  
700  
40  
ns  
ns  
ns  
ns  
inductive load,  
VIN = 05 V or 50 V,  
Tj = 25 °C  
Turn-off Delay Time  
Fall Time  
Low-side Switching  
Source-to-Drain Diode Reverse  
Recovery Time  
trr  
155  
ns  
V
DC = 300 V, IC = 1.25 A,  
Turn-on Delay Time  
Rise Time  
td(on)  
tr  
td(off)  
tf  
875  
110  
775  
35  
ns  
ns  
ns  
ns  
inductive load,  
VIN = 05 V or 50 V,  
Tj = 25 °C  
Turn-off Delay Time  
Fall Time  
SIM6800M-DSE Rev.1.5  
Jul. 18, 2018  
SANKEN ELECTRIC CO., LTD  
http://www.sanken-ele.co.jp/en  
9
© SANKEN ELECTRIC CO., LTD. 2014  
 
 
SIM6800M Series  
3.4.3  
SIM6813M  
Parameter  
Symbol  
IDSS  
Conditions  
Min.  
Typ.  
Max.  
100  
1.7  
Unit  
µA  
Ω
Drain-to-Source Leakage Current  
Drain-to-Source On Resistance  
VDS = 500 V, VIN = 0 V  
RDS(ON) ID = 1.5 A, VIN = 5 V  
1.4  
Source-to-Drain Diode Forward  
Voltage  
VSD  
ISD =1.5 A, VIN = 0 V  
1.0  
1.5  
V
High-side Switching  
Source-to-Drain Diode Reverse  
Recovery Time  
trr  
td(on)  
tr  
td(off)  
tf  
170  
ns  
VDC = 300 V, IC = 1.5 A,  
inductive load,  
VIN = 05 V or 50 V,  
Tj = 25 °C  
Turn-on Delay Time  
Rise Time  
820  
100  
810  
50  
ns  
ns  
ns  
ns  
Turn-off Delay Time  
Fall Time  
Low-side Switching  
Source-to-Drain Diode Reverse  
Recovery Time  
trr  
180  
ns  
VDC = 300 V, IC = 1.5 A,  
inductive load,  
VIN = 05 V or 50 V,  
Tj = 25 °C  
Turn-on Delay Time  
Rise Time  
td(on)  
tr  
td(off)  
tf  
760  
130  
750  
50  
ns  
ns  
ns  
ns  
Turn-off Delay Time  
Fall Time  
3.4.4  
SIM6880M  
Parameter  
Symbol  
ICES  
Conditions  
Min.  
Typ.  
Max.  
1
Unit  
mA  
Collector-to-Emitter Leakage  
Current  
VCE = 300 V, VIN = 0 V  
Collector-to-Emitter Saturation  
Voltage  
VCE(SAT) IC = 3.0 A, VIN = 5 V  
1.85  
2.0  
2.30  
2.4  
V
V
Diode Forward Voltage  
High-side Switching  
Diode Reverse Recovery Time  
Turn-on Delay Time  
Rise Time  
VF  
IF = 3.0 A, VIN = 0 V  
trr  
td(on)  
tr  
100  
880  
120  
740  
210  
ns  
ns  
ns  
ns  
ns  
VDC = 300 V, IC = 3.0 A,  
inductive load,  
VIN = 05 V or 50 V,  
Tj = 25 °C  
Turn-off Delay Time  
Fall Time  
td(off)  
tf  
Low-side Switching  
Diode Reverse Recovery Time  
Turn-on Delay Time  
Rise Time  
trr  
td(on)  
tr  
100  
820  
140  
660  
200  
ns  
ns  
ns  
ns  
ns  
VDC = 300 V, IC = 3.0 A,  
inductive load,  
VIN = 05 V or 50 V,  
Tj = 25 °C  
Turn-off Delay Time  
Fall Time  
td(off)  
tf  
SIM6800M-DSE Rev.1.5  
Jul. 18, 2018  
SANKEN ELECTRIC CO., LTD  
http://www.sanken-ele.co.jp/en  
10  
© SANKEN ELECTRIC CO., LTD. 2014  
 
 
SIM6800M Series  
3.4.5  
SIM6822M  
Parameter  
Symbol  
ICES  
Conditions  
Min.  
Typ.  
Max.  
1
Unit  
mA  
Collector-to-Emitter Leakage  
Current  
VCE = 600 V, VIN = 0 V  
Collector-to-Emitter Saturation  
Voltage  
VCE(SAT) IC = 5 A, VIN = 5 V  
1.75  
2.0  
2.2  
2.4  
V
V
Diode Forward Voltage  
High-side Switching  
Diode Reverse Recovery Time  
Turn-on Delay Time  
Rise Time  
VF  
IF = 5 A, VIN = 0 V  
trr  
td(on)  
tr  
80  
740  
70  
ns  
ns  
ns  
ns  
ns  
VDC = 300 V, IC = 5 A,  
inductive load,  
VIN = 05 V or 50 V,  
Tj = 25 °C  
Turn-off Delay Time  
Fall Time  
td(off)  
tf  
570  
100  
Low-side Switching  
Diode Reverse Recovery Time  
Turn-on Delay Time  
Rise Time  
trr  
td(on)  
tr  
80  
ns  
ns  
ns  
ns  
ns  
690  
100  
540  
100  
VDC = 300 V, IC = 5 A,  
inductive load,  
VIN = 05 V or 50 V,  
Tj = 25 °C  
Turn-off Delay Time  
Fall Time  
td(off)  
tf  
3.4.6  
SIM6827M  
Parameter  
Symbol  
ICES  
Conditions  
Min.  
Typ.  
Max.  
1
Unit  
mA  
Collector-to-Emitter Leakage  
Current  
VCE = 600 V, VIN = 0 V  
Collector-to-Emitter Saturation  
Voltage  
VCE(SAT) IC = 5 A, VIN = 5 V  
1.75  
2.0  
2.2  
2.4  
V
V
Diode Forward Voltage  
High-side Switching  
Diode Reverse Recovery Time  
Turn-on Delay Time  
Rise Time  
VF  
IF = 5 A, VIN = 0 V  
trr  
td(on)  
tr  
100  
1030  
180  
ns  
ns  
ns  
ns  
ns  
VDC = 300 V, IC = 5 A,  
inductive load,  
VIN = 05 V or 50 V,  
Tj = 25 °C  
Turn-off Delay Time  
Fall Time  
td(off)  
tf  
590  
150  
Low-side Switching  
Diode Reverse Recovery Time  
Turn-on Delay Time  
Rise Time  
trr  
td(on)  
tr  
100  
1030  
240  
ns  
ns  
ns  
ns  
ns  
VDC = 300 V, IC = 5 A,  
inductive load,  
VIN = 05 V or 50 V,  
Tj = 25 °C  
Turn-off Delay Time  
Fall Time  
td(off)  
tf  
540  
150  
SIM6800M-DSE Rev.1.5  
Jul. 18, 2018  
SANKEN ELECTRIC CO., LTD  
http://www.sanken-ele.co.jp/en  
11  
© SANKEN ELECTRIC CO., LTD. 2014  
 
 
SIM6800M Series  
4. Mechanical Characteristics  
Parameter  
Heatsink Mounting  
Screw Torque  
Conditions  
Min.  
Typ.  
Max.  
0.441  
Unit  
Remarks  
*
0.294  
N∙m  
Flatness of Heatsink  
Attachment Area  
See Figure 4-1.  
0
60  
μm  
Package Weight  
5.2  
g
* When mounting a heatsink, it is recommended to use a metric screw of M2.5 and a plain washer of 6.0 mm (φ)  
together at each end of it. For more details about screw tightening, see Section 13.2.  
Heatsink  
Measurement position  
-
+
-
+
Heasink  
Figure 4-1. Flatness Measurement Position  
5. Insulation Distance  
Parameter  
Clearance  
Conditions  
Min.  
1.5  
Typ.  
Max.  
Unit  
mm  
mm  
Remarks  
2.1  
Between heatsink* and  
leads. See Figure 5-1.  
Creepage  
1.7  
* Refers to when a heatsink to be mounted is flat. If your application requires a clearance exceeding the maximum  
distance given above, use an alternative (e.g., a convex heatsink) that will meet the target requirement.  
Creepage  
Clearance  
Heatsink  
Figure 5-1. Insulation Distance Definitions  
SIM6800M-DSE Rev.1.5  
Jul. 18, 2018  
SANKEN ELECTRIC CO., LTD  
http://www.sanken-ele.co.jp/en  
12  
© SANKEN ELECTRIC CO., LTD. 2014  
 
 
 
 
SIM6800M Series  
6. Truth Table  
Table 6-1 is a truth table that provides the logic level definitions of operation modes.  
In the case where HINx and LINx signals in each phase are high at the same time, both the high- and low-side  
transistors become on (simultaneous on-state). Therefore, HINx and LINx signals, the input signals for the HINx and  
LINx pins, require dead time setting so that such a simultaneous on-state event can be avoided.  
After the IC recovers from a UVLO_VCC condition, the low-side transistors resume switching in accordance with  
the input logic levels of the LINx signals (level-triggered), whereas the high-side transistors resume switching at the  
next rising edge of an HINx signal (edge-triggered).  
After the IC recovers from a UVLO_VB condition, the high-side transistors resume switching at the next rising edge  
of an HINx signal (edge-triggered).  
Table 6-1. Truth Table for Operation Modes  
Mode  
HINx  
L
LINx  
L
High-side Transistor  
OFF  
ON  
Low-side Transistor  
OFF  
OFF  
ON  
H
L
L
Normal Operation  
H
H
L
OFF  
ON  
H
L
ON  
OFF  
ON  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
ON  
H
L
L
External Shutdown Signal Input  
FO = Low Level  
H
H
L
OFF  
ON  
H
L
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
ON  
Undervoltage Lockout for  
High-side Power Supply  
(UVLO_VB)  
H
L
L
H
H
L
H
L
ON  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
ON  
Undervoltage Lockout for  
Low-side Power Supply  
(UVLO_VCC)  
H
L
L
H
H
L
H
L
H
L
L
Overcurrent Protection (OCP)  
H
H
L
OFF  
ON  
H
L
OFF  
OFF  
OFF  
OFF  
OFF  
ON  
H
L
L
Overcurrent Limit (OCL)  
(OCL = SD)  
H
H
L
H
L
ON  
OFF  
OFF  
OFF  
OFF  
H
L
L
Thermal Shutdown (TSD)  
H
H
OFF  
ON  
H
SIM6800M-DSE Rev.1.5  
Jul. 18, 2018  
SANKEN ELECTRIC CO., LTD  
http://www.sanken-ele.co.jp/en  
13  
© SANKEN ELECTRIC CO., LTD. 2014  
 
 
SIM6800M Series  
7. Block Diagrams  
VB1B  
30  
21  
20  
23  
VB1A  
VB2  
VB3  
17  
VCC1  
UVLO  
UVLO  
UVLO  
UVLO  
28  
VBB  
15  
14  
13  
12  
16  
HIN3  
HIN2  
HIN1  
SD  
Input  
Logic  
High Side  
Level Shift Driver  
24  
19  
26  
31  
35  
37  
W1  
V
COM1  
V1  
U
10  
9
OCL  
LIN3  
LIN2  
LIN1  
V2  
W2  
Input Logic  
(OCP reset)  
8
Low  
Side  
7
Driver  
11  
33  
2
LS1  
6
COM2  
LS2  
5
4
VCC2  
FO  
UVLO  
LS2  
Thermal  
Shutdown  
40  
1
LS3B  
LS3A  
OCP and OCL  
3
OCP  
Figure 7-1. SIM681xM  
VB1B  
30  
21  
20  
23  
VB1A  
VB2  
VB3  
17  
VCC1  
UVLO  
UVLO  
UVLO  
UVLO  
28  
VBB  
15  
14  
13  
12  
16  
HIN3  
HIN2  
HIN1  
SD  
Input  
Logic  
High Side  
Level Shift Driver  
24  
19  
26  
31  
35  
37  
W1  
V
COM1  
V1  
U
10  
9
OCL  
LIN3  
LIN2  
LIN1  
V2  
W2  
Input Logic  
(OCP reset)  
8
Low  
Side  
7
Driver  
11  
33  
2
LS1  
6
COM2  
LS2  
5
4
VCC2  
FO  
UVLO  
LS2  
Thermal  
Shutdown  
40  
1
LS3B  
LS3A  
OCP and OCL  
3
OCP  
Figure 7-2. SIM682xM or SIM688xM  
SIM6800M-DSE Rev.1.5  
Jul. 18, 2018  
SANKEN ELECTRIC CO., LTD  
http://www.sanken-ele.co.jp/en  
14  
© SANKEN ELECTRIC CO., LTD. 2014  
 
SIM6800M Series  
8. Pin Configuration Definitions  
Top view  
40  
21  
20  
40  
1
1
21  
20  
Pin Number  
Pin Name  
LS3A  
LS2  
Description  
1
2
3
W-phase IGBT emitter, or power MOSFET source  
V-phase IGBT emitter, or power MOSFET source  
Overcurrent protection signal input  
OCP  
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
FO  
Fault signal output and shutdown signal input  
Low-side logic supply voltage input  
Low-side logic ground  
Logic input for U-phase low-side gate driver  
Logic input for V-phase low-side gate driver  
Logic input for W-phase low-side gate driver  
Overcurrent limit signal input  
U-phase IGBT emitter, or power MOSFET source  
High-side shutdown signal input  
Logic input for U-phase high-side gate driver  
Logic input for V-phase high-side gate driver  
Logic input for W-phase high-side gate driver  
High-side logic ground  
VCC2  
COM2  
LIN1  
LIN2  
LIN3  
OCL  
LS1  
SD  
HIN1  
HIN2  
HIN3  
COM1  
VCC1  
High-side logic supply voltage input  
(Pin removed)  
V-phase high-side floating supply voltage input, bootstrap capacitor connection  
for V-phase  
19  
V
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
VB2  
VB1A  
VB3  
W1  
NC  
V1  
V-phase high-side floating supply voltage input  
U-phase high-side floating supply voltage input  
(Pin removed)  
W-phase high-side floating supply voltage input  
W-phase output (connected to W2 externally)  
(No connection)  
V-phase output (connected to V2 externally)  
(Pin removed)  
Positive DC bus supply voltage  
(No connection)  
U-phase high-side floating supply voltage input  
U-phase output  
VBB  
NC  
VB1B  
U
LS2  
(Pin removed)  
(Pin trimmed) V-phase IGBT emitter, or power MOSFET source  
(Pin removed)  
V-phase output (connected to V1 externally)  
(No connection)  
W-phase output (connected to W1 externally)  
(Pin removed)  
(Pin removed)  
V2  
NC  
W2  
LS3B  
W-phase IGBT emitter, or power MOSFET source  
SIM6800M-DSE Rev.1.5  
Jul. 18, 2018  
SANKEN ELECTRIC CO., LTD  
http://www.sanken-ele.co.jp/en  
15  
© SANKEN ELECTRIC CO., LTD. 2014  
 
SIM6800M Series  
9. Typical Applications  
CR filters and Zener diodes should be added to your application as needed. This is to protect each pin against surge  
voltages causing malfunctions, and to avoid the IC being used under the conditions exceeding the absolute maximum  
ratings where critical damage is inevitable. Then, check all the pins thoroughly under actual operating conditions to  
ensure that your application works flawlessly.  
VB2  
20  
CBOOT2  
V
19  
VB1A  
VB3  
21  
23  
VCC  
VCC1  
17  
CBOOT3  
COM1  
HIN3  
HIN2  
HIN1  
SD  
W1  
V1  
GND  
16  
15  
14  
13  
12  
11  
10  
9
24  
26  
HIN3  
HIN2  
HIN1  
VDC  
VBB  
VB1B  
U
28  
LS1  
30  
31  
OCL  
LIN3  
LIN2  
LIN1  
COM2  
VCC2  
FO  
MIC  
LIN3  
LIN2  
LIN1  
M
8
CBOOT1  
LS2  
V2  
7
33  
35  
37  
5 V  
RFO  
6
5
W2  
4
CS CDC  
OCP  
LS2  
Fault  
3
CFO  
2
LS3A  
LS3B  
RO  
CO  
1
40  
RS  
Figure 9-1. SIM681xM Typical Application Using a Single Shunt Resistor  
VB2  
20  
CBOOT2  
V
19  
VB1A  
VB3  
21  
23  
VCC  
VCC1  
17  
CBOOT3  
COM1  
HIN3  
HIN2  
HIN1  
SD  
W1  
V1  
GND  
16  
15  
14  
13  
12  
11  
10  
9
24  
26  
HIN3  
HIN2  
HIN1  
VDC  
VBB  
VB1B  
U
28  
LS1  
30  
31  
OCL  
LIN3  
LIN2  
LIN1  
COM2  
VCC2  
FO  
MIC  
LIN3  
LIN2  
LIN1  
M
8
CBOOT1  
LS2  
V2  
7
33  
35  
37  
5 V  
RFO  
6
5
W2  
4
CS CDC  
OCP  
LS2  
Fault  
3
RO1  
RO2  
RO3  
2
CO1  
CO2  
CO3  
CFO  
LS3A  
LS3B  
1
40  
RS1 RS2 RS3  
Figure 9-2. SIM681xM Typical Application Using Three Shunt Resistors  
SIM6800M-DSE Rev.1.5  
Jul. 18, 2018  
SANKEN ELECTRIC CO., LTD  
http://www.sanken-ele.co.jp/en  
16  
© SANKEN ELECTRIC CO., LTD. 2014  
 
SIM6800M Series  
10. Physical Dimensions  
DIP40 Package  
+0.4  
-0.3  
7.6  
1.8±0.3  
2-R1.5  
21  
40  
Top view  
Pin 1 indicator  
1
20  
Gate burr  
1.8±0.1  
36±0.3  
+0.1  
0.52  
-0.05  
1.778 ±0.25  
33.782±0.3  
(Ends of pins)  
1
.
NOTES:  
- Dimensions in millimeters  
7
m
i
n
.
- Bare lead frame: Pb-free (RoHS compliant)  
- The leads illustrated above are for reference only, and may not be actual states of  
being bent.  
- Maximum gate burr height is 0.3 mm.  
Reference Through Hole Size and Layout  
40  
21  
φ1.1 typ.  
33.7  
0.04  
Center of screw hole  
1
20  
Pin pich: 1.778  
33.782  
Unit: mm  
SIM6800M-DSE Rev.1.5  
Jul. 18, 2018  
SANKEN ELECTRIC CO., LTD  
http://www.sanken-ele.co.jp/en  
17  
© SANKEN ELECTRIC CO., LTD. 2014  
 
SIM6800M Series  
11. Marking Diagram  
40  
21  
S I M 6 8 x x M  
Y M D D X  
Part Number  
1
20  
Lot Number:  
Y is the last digit of the year of manufacture (0 to 9)  
M is the month of the year (1 to 9, O, N, or D)  
DD is the day of the month (01 to 31)  
X is the control number  
SIM6800M-DSE Rev.1.5  
Jul. 18, 2018  
SANKEN ELECTRIC CO., LTD  
http://www.sanken-ele.co.jp/en  
18  
© SANKEN ELECTRIC CO., LTD. 2014  
 
SIM6800M Series  
12. Functional Descriptions  
12.2.2 VB1A, VB1B, VB2, and VB3  
Unless specifically noted, this section uses the  
following definitions:  
These pins are connected to bootstrap capacitors for  
the high-side floating supply.  
In actual applications, use either of the VB1A or  
VB1B pin because they are internally connected.  
Voltages across the VBx and these output pins should be  
maintained within the recommended range (i.e., the  
Logic Supply Voltage, VBS) given in Section 2.  
A bootstrap capacitor, CBOOTx, should be connected in  
each of the traces between the VB1A (VB1B) and U  
pins, the VB2 and V pins, the VB3 and W1 (W2) pins.  
For proper startup, turn on the low-side transistor first,  
then charge the bootstrap capacitor, CBOOTx, up to its  
maximum capacity.  
All the characteristic values given in this section are  
typical values.  
All the circuit diagrams listed in this section represent  
the type of IC that incorporates power MOSFETs. All  
the functional descriptions in this section are also  
applicable to the type of IC that incorporates IGBTs.  
For pin and peripheral component descriptions, this  
section employs a notation system that denotes a pin  
name with the arbitrary letter “x”, depending on  
context. Thus, “the VCCx pin” is used when referring  
to either or both of the VCC1 and VCC2 pins.  
For the capacitance of the bootstrap capacitors,  
CBOOTx, choose the values that satisfy Equations (1) and  
(2). Note that capacitance tolerance and DC bias  
characteristics must be taken into account when you  
The COM1 pin is always connected to the COM2 pin.  
12.1 Turning On and Off the IC  
choose appropriate values for CBOOTx  
.
The procedures listed below provide recommended  
startup and shutdown sequences. To turn on the IC  
properly, do not apply any voltage on the VBB, HINx,  
and LINx pins until the VCCx pin voltage has reached a  
stable state (VCC(ON) 12.5 V).  
(
)
CBOOTx µF > 800 × tL(OFF)  
(1)  
(2)  
1 µF CBOOTx 220 µF  
It is required to charge bootstrap capacitors, CBOOTx  
up to full capacity at startup (see Section 12.2.2).  
To turn off the IC, set the HINx and LINx pins to  
logic low (or “L”), and then decrease the VCCx pin  
voltage.  
,
In Equation (1), let tL(OFF) be the maximum off-time of  
the low-side transistor (i.e., the non-charging time of  
CBOOTx), measured in seconds.  
Even while the high-side transistor is not on, voltage  
across the bootstrap capacitor keeps decreasing due to  
power dissipation in the IC. When the VBx pin voltage  
decreases to VBS(OFF) or less, the high-side undervoltage  
lockout (UVLO_VB) starts operating (see Section  
12.3.3.1). Therefore, actual board checking should be  
done thoroughly to validate that voltage across the VBx  
pin maintains over 11.0 V (VBS > VBS(OFF)) during a low-  
frequency operation such as a startup period.  
As Figure 12-1 shows, a bootstrap diode, DBOOTx, and  
a current-limiting resistor, RBOOTx, are internally placed  
in series between the VCC1 and VBx pins.  
Time constant for the charging time of CBOOTx, τ, can  
be computed by Equation (3):  
12.2 Pin Descriptions  
12.2.1 U, V, V1, V2, W1, and W2  
These pins are the outputs of the three phases, and  
serve as the connection terminals to the 3-phase motor.  
The V1 and W1 pins must be connected to the V2 and  
W2 pins on a PCB, respectively.  
The U, V (V1) and W1 pins are the grounds for the  
VB1A (VB1B), VB2, and VB3 pins.  
The U, V and W1 pins are connected to the negative  
nodes of bootstrap capacitors, CBOOTx. The V pin is  
internally connected to the V1 pin.  
,
(3)  
τ = CBOOTx × RBOOTx  
Since high voltages are applied to these output pins  
(U, V, V1, V2, W1, and W2), it is required to take  
measures for insulating as follows:  
where CBOOTx is the optimized capacitance of the  
bootstrap capacitor, and RBOOTx is the resistance of the  
current-limiting resistor (60 Ω ± 25%).  
Keep enough distance between the output pins and  
low-voltage traces.  
Coat the output pins with insulating resin.  
SIM6800M-DSE Rev.1.5  
Jul. 18, 2018  
SANKEN ELECTRIC CO., LTD  
http://www.sanken-ele.co.jp/en  
19  
© SANKEN ELECTRIC CO., LTD. 2014  
 
 
 
 
 
 
 
 
SIM6800M Series  
DBOOT1 RBOOT1  
DBOOT2 RBOOT2  
VB1B  
30  
HINx  
CBOOT1  
0
VB2  
VB3  
VBB  
20  
23  
28  
Set  
CBOOT2  
DBOOT3 RBOOT3  
0
Reset  
0
17  
VCC1  
CBOOT3  
VDC  
HO3  
5
HO2  
VCC2  
HO1  
VCC  
VBx–HSx  
VBS(OFF)  
31  
19  
26  
VBS(ON)  
U
V
MIC  
0
M
16  
6
Stays logic high  
V1  
COM1  
Q
COM2  
37  
24  
W2  
0
W1  
Figure 12-3. Waveforms at VBx–HSx Voltage Drop  
Figure 12-1. Bootstrap Circuit  
Figure 12-2 shows an internal level-shifting circuit. A  
high-side output signal, HOx, is generated according to  
an input signal on the HINx pin. When an input signal  
on the HINx pin transits from low to high (rising edge),  
a “Set” signal is generated. When the HINx input signal  
transits from high to low (falling edge), a “Reset” signal  
is generated. These two signals are then transmitted to  
the high-side by the level-shifting circuit and are input to  
the SR flip-flop circuit. Finally, the SR flip-flop circuit  
feeds an output signal, Q (i.e., HOx).  
Figure 12-3 is a timing diagram describing how noise  
or other detrimental effects will improperly influence the  
level-shifting process. When a noise-induced rapid  
voltage drop between the VBx and output pins (U, V or  
W1; hereafter “VBx–HSx”) occurs after the Set signal  
generation, the next Reset signal cannot be sent to the  
SR flip-flop circuit. And the state of an HOx signal stays  
logic high (or “H”) because the SR flip-flop does not  
respond. With the HOx state being held high (i.e., the  
high-side transistor is in an on-state), the next LINx  
signal turns on the low-side transistor and causes a  
simultaneously-on condition, which may result in  
critical damage to the IC. To protect the VBx pin against  
such a noise effect, add a bootstrap capacitor, CBOOTx, in  
each phase. CBOOTx must be placed near the IC, and be  
connected between the VBx and HSx pins with a  
minimal length of traces. To use an electrolytic capacitor,  
add a 0.01 μF to 0.1 μF bypass capacitor, CPx, in parallel  
near these pins used for the same phase.  
12.2.3 VCC1 and VCC2  
These are the power supply pins for the built-in  
control IC. The VCC1 and VCC2 pins must be  
externally connected on a PCB because they are not  
internally connected. To prevent malfunction induced by  
supply ripples or other factors, put a 0.01 μF to 0.1 μF  
ceramic capacitor, CVCC, near these pins. To prevent  
damage caused by surge voltages, put an 18 V to 20 V  
Zener diode, DZ, between the VCCx and COMx pins.  
Voltages to be applied between the VCCx and COMx  
pins should be regulated within the recommended  
operational range of VCC, given in Section 2.  
17  
VCC1  
5
MIC  
VCC2  
VCC  
CVCC  
DZ  
16  
COM1  
COM2  
6
Figure 12-4. VCCx Pin Peripheral Circuit  
U1  
12.2.4 COM1 and COM2  
VBx  
These are the logic ground pins for the built-in control  
IC. The COM1 and COM2 pins should be connected  
externally on a PCB because they are not internally  
connected. Varying electric potential of the logic ground  
can be a cause of improper operations. Therefore,  
connect the logic ground as close and short as possible  
to shunt resistors, RSx, at a single-point ground (or star  
ground) which is separated from the power ground (see  
Figure 12-5).  
HOx  
S
Q
R
Set  
Input  
logic  
Pulse  
generator  
HSx  
HINx  
Reset  
COM1  
16  
Figure 12-2. Internal Level-shifting Circuit  
SIM6800M-DSE Rev.1.5  
Jul. 18, 2018  
SANKEN ELECTRIC CO., LTD  
http://www.sanken-ele.co.jp/en  
20  
© SANKEN ELECTRIC CO., LTD. 2014  
 
 
 
 
 
SIM6800M Series  
slightly lower than the output voltage of the  
microcontroller.  
U1  
VDC  
28  
VBB  
CS  
Table 12-1. Input Signals for HINx and LINx Pins  
CDC  
Parameter High Level Signal  
Low Level Signal  
0 V < VIN < 0.5 V  
RS1  
Input  
COM1  
COM2  
16  
6
11  
2
LS1  
LS2  
3 V < VIN < 5.5 V  
RS2  
RS3  
Voltage  
Input  
1
LS3A  
Pulse  
Width  
≥0.5 μs  
≥0.5 μs  
PWM  
Create a single-point  
ground (a star ground)  
near RSx, but keep it  
separated from the  
power ground.  
OCP  
Carrier  
Frequency  
Dead  
20 kHz  
≥1.5 μs  
Connect COM1 and  
COM2 on a PCB.  
Time  
Figure 12-5. Connections to Logic Ground  
U1  
5 V  
2 kΩ  
2 kΩ  
HINx  
12.2.5 HIN1, HIN2, and HIN3;  
LIN1, LIN2, and LIN3  
(LINx)  
20 kΩ  
These are the input pins of the internal motor drivers  
for each phase. The HINx pin acts as a high-side  
controller; the LINx pin acts as a low-side controller.  
Figure 12-6 shows an internal circuit diagram of the  
HINx or LINx pin. This is a CMOS Schmitt trigger  
circuit with a built-in 20 kΩ pull-down resistor, and its  
input logic is active high.  
COM1  
(COM2)  
Figure 12-6. Internal Circuit Diagram of HINx or  
LINx Pin  
Input signals across the HINx–COMx and the LINx–  
COMx pins in each phase should be set within the  
ranges provided in Table 12-1, below. Note that dead  
time setting must be done for HINx and LINx signals  
because the IC does not have a dead time generator.  
The higher PWM carrier frequency rises, the more  
switching loss increases. Hence, the PWM carrier  
frequency must be set so that operational case  
temperatures and junction temperatures have sufficient  
margins against the absolute maximum ranges, specified  
in Section 1.  
U1  
RIN1x  
Input  
signal  
HINx/  
LINx  
RIN2x  
CINx  
SIM68xxM  
Controller  
Figure 12-7. Filter Circuit for HINx or LINx Pin  
If the signals from the microcontroller become  
unstable, the IC may result in malfunctions. To avoid  
this event, the outputs from the microcontroller output  
line should not be high impedance.  
Also, if the traces from the microcontroller to the  
HINx or LINx pin (or both) are too long, the traces may  
be interfered by noise. Therefore, it is recommended to  
add an additional filter or a pull-down resistor near the  
HINx or LINx pin as needed (see Figure 12-7).  
Here are filter circuit constants for reference:  
- RIN1x: 33 Ω to 100 Ω  
12.2.6 VBB  
This is the input pin for the main supply voltage, i.e.,  
the positive DC bus. All of the IGBT collectors (power  
MOSFET drains) of the high-side are connected to this  
pin. Voltages between the VBB and COMx pins should  
be set within the recommended range of the main supply  
voltage, VDC, given in Section 2.  
To suppress surge voltages, put a 0.01 μF to 0.1 μF  
bypass capacitor, CS, near the VBB pin and an  
electrolytic capacitor, CDC, with a minimal length of  
PCB traces to the VBB pin.  
- RINx: 1 kΩ to 10 kΩ  
- CINx: 100 pF to 1000 pF  
Care should be taken when adding RIN1x and RIN2x to  
the traces. When they are connected each other, the  
input voltage of the HINx and LINx pins becomes  
SIM6800M-DSE Rev.1.5  
Jul. 18, 2018  
SANKEN ELECTRIC CO., LTD  
http://www.sanken-ele.co.jp/en  
21  
© SANKEN ELECTRIC CO., LTD. 2014  
 
 
 
 
 
 
SIM6800M Series  
Overcurrent Pprotection (OCP)  
12.2.7 LS1, LS2, LS3A, and LS3B  
This function detects inrush currents larger than those  
detected by the OCL. When the OCP pin voltage  
exceeds the OCP Threshold Voltage, VTRIP, the IC  
operates as follows: the OCL pin = logic high, the low-  
side transistors = off, the FO pin = logic low.  
In addition, if the OCL pin is connected to the SD pin,  
the high-side transistors can be turned off. For a more  
detailed OCP description, see Section 12.3.5.  
These are the emitter (source) pins of the low-side  
IGBTs (power MOSFETs). For current detection, the  
LS1, LS2, and LS3 (LS3B) pins should be connected  
externally on a PCB via shunt resistors, RSx, to the  
COMx pin. In actual applications, use either of the  
LS3A or LS3B pin because they are internally connected.  
When connecting a shunt resistor, place it as near as  
possible to the IC with a minimum length of traces to the  
LSx and COMx pins. Otherwise, malfunction may occur  
because a longer circuit trace increases its inductance  
and thus increases its susceptibility to improper  
operations. In applications where long PCB traces are  
required, add a fast recovery diode, DRSx, between the  
LSx and COMx pins in order to prevent the IC from  
malfunctioning.  
12.2.9 SD  
When a 5 V or 3.3 V signal is input to the SD pin, the  
high-side transistors turn off independently of any HINx  
signals. This is because the SD pin does not respond to a  
pulse shorter than an internal filter of 3.3 μs (typ.).  
The SD-OCL pin connection, as described in Section  
12.2.8, allows the IC to turn off the high-side transistors  
at OCL or OCP activation. Also, connecting the FO and  
SD pins permits all the high- and low-side transistors to  
turn off owing to an inverted signal from the FO pin,  
even if the IC falls into an abnormal condition in which  
some or all of the protections (TSD, OCP, UVLO) are  
activated.  
U1  
28  
VBB  
VDC  
CS  
DRS1  
RS1  
RS2  
CDC  
11  
2
LS1  
LS2  
DRS2  
COM1  
COM2  
16  
6
DRS3  
RS3  
1
LS3A  
12.2.10 FO  
This pin operates as the fault signal output and the  
low-side shutdown signal input. Sections 12.3.1 and  
12.3.2 explain the two functions in detail, respectively.  
Figure 12-9 illustrates a schematic diagram of the FO  
pin and its peripheral circuit.  
Put a shunt resistor near  
the IC with a minimum  
length to the LSx pin.  
Add a fast recovery  
diode to a long trace.  
Figure 12-8. Connections to LSx Pin  
VFO  
5 V  
U1  
FO  
RFO  
1 MΩ  
3.0 µs (typ.)  
2 kΩ  
12.2.8 OCP and OCL  
Blanking  
filter  
INT  
The OCP pin serves as the input for the overcurrent  
protections which monitor the currents going through  
the output transistors.  
50 Ω  
QFO  
Output SW turn-off  
and QFO turn-on  
CFO  
In normal operation, the OCL pin logic level is low.  
In case one or more of the protections listed below are  
activated by an OCP input signal, the OCL pin logic  
level becomes high. If the OCL pin is connected to the  
SD pin so that the SD pin will respond to the OCL input  
signal, the high-side transistors can be turned off when  
the protections (OCP and OCL) are activated.  
COM  
Figure 12-9. Internal Circuit Diagram of FO Pin and  
Its Peripheral Circuit  
Because of its open-collector nature, the FO pin  
should be tied by a pull-up resistor, RFO, to the external  
power supply. The external power supply voltage (i.e.,  
the FO Pin Pull-up Voltage, VFO) should range from 3.0  
V to 5.5 V. When the pull-up resistor, RFO, has a too  
small resistance, the FO pin voltage at fault signal output  
becomes high due to the saturation voltage drop of a  
built-in transistor, QFO. Therefore, it is recommended to  
use a 3.3 kΩ to 10 kΩ pull-up resistor. To suppress noise,  
add a filter capacitor, CFO, near the IC with minimizing a  
Overcurrent Limit (OCL)  
When the OCP pin voltage exceeds the Current Limit  
Reference Voltage, VLIM, the OCL pin logic level  
becomes high. While the OCL is in working, the output  
transistors operate according to an input signal (HINx or  
LINx). If the OCL pin is connected to the SD pin, the  
high-side transistors can be turned off. For a more  
detailed OCL description, see Section 12.3.4.  
SIM6800M-DSE Rev.1.5  
Jul. 18, 2018  
SANKEN ELECTRIC CO., LTD  
http://www.sanken-ele.co.jp/en  
22  
© SANKEN ELECTRIC CO., LTD. 2014  
 
 
 
 
 
SIM6800M Series  
trace length between the FO and COMx pins.  
Table 12-2. Shutdown Signals  
High Level Signal Low Level Signal  
To avoid the repetition of OCP activations, the  
external microcontroller must shut off any input signals  
to the IC within an OCP hold time, tP, which occurs after  
the internal transistor (QFO) turn-on. tP is 15 μs where  
minimum values of thermal characteristics are taken into  
account. (For more details, see Section 12.3.5.) Our  
recommendation is to use a 0.001 μF to 0.01 μF filter  
capacitor.  
Parameter  
Input Voltage 3 V < VIN < 5.5 V  
0 V < VIN < 0.5 V  
Input Pulse  
6 μs  
Width  
12.3.3 Undervoltage Lockout for  
Power Supply (UVLO)  
12.3 Protection Functions  
In case the gate-driving voltages of the output  
transistors decrease, their steady-state power dissipations  
increase. This overheating condition may cause  
permanent damage to the IC in the worst case. To  
prevent this event, the SIM6800M series has the  
undervoltage lockout (UVLO) circuits for both of the  
high- and low-side power supplies in the monolithic IC  
(MIC).  
This section describes the various protection circuits  
provided in the SIM6800M series. The protection  
circuits include the undervoltage lockout for power  
supplies (UVLO), the overcurrent protection (OCP), and  
the thermal shutdown (TSD). In case one or more of  
these protection circuits are activated, the FO pin  
outputs a fault signal; as a result, the external  
microcontroller can stop the operations of the three  
phases by receiving the fault signal. The external  
microcontroller can also shut down the IC operations by  
inputting a fault signal to the FO pin.  
12.3.3.1. Undervoltage Lockout for  
High-side Power Supply  
(UVLO_VB)  
In the following functional descriptions, “HOx”  
denotes a gate input signal on the high-side transistor,  
whereas “LOx” denotes a gate input signal on the low-  
side transistor..  
Figure 12-10 shows operational waveforms of the  
undervoltage lockout operation for high-side power  
supply (i.e., UVLO_VB).  
12.3.1 Fault Signal Output  
HINx  
In case one or more of the following protections are  
actuated, an internal transistor, QFO, turns on, then the  
FO pin becomes logic low (≤0.5 V).  
0
LINx  
0
1) Low-side undervoltage lockout (UVLO_VCC)  
2) Overcurrent protection (OCP)  
UVLO_VB  
operation  
VBx-HSx  
VBS(ON)  
3) Thermal shutdown (TSD)  
VBS(OFF)  
UVLO release  
While the FO pin is in the low state, all the low-side  
transistors turn off. In normal operation, the FO pin  
outputs a high signal of 5 V.. The fault signal output  
time of the FO pin at OCP activation is the OCP hold  
time (tP) of 25 μs (typ.), fixed by a built-in feature of the  
IC itself (see Section 12.3.5). The external  
microcontroller receives the fault signals with its  
interrupt pin (INT), and must be programmed to put the  
HINx and LINx pins to logic low within the  
predetermined OCP hold time, tP.  
0
HOx restarts at  
positive edge after  
About 3 µs  
UVLO_VB release.  
HOx  
0
LOx  
0
No FO output at  
FO  
UVLO_VB.  
0
12.3.2 Shutdown Signal Input  
Figure 12-10. UVLO_VB Operational Waveforms  
The FO pin also acts as the input pin of shutdown  
signals. When the FO pin becomes logic low, all the  
low-side transistors turn off.  
The voltages and pulse widths of the shutdown signals  
to be applied between the FO and COMx pins are listed  
in Table 12-2.  
When the voltage between the VBx and output pins  
(VBx–HSx shown in Figure 12-10) decreases to the  
Logic Operation Stop Voltage (VBS(OFF), 10.0 V) or less,  
the UVLO_VB circuit in the corresponding phase gets  
SIM6800M-DSE Rev.1.5  
Jul. 18, 2018  
SANKEN ELECTRIC CO., LTD  
http://www.sanken-ele.co.jp/en  
23  
© SANKEN ELECTRIC CO., LTD. 2014  
 
 
 
 
 
 
 
SIM6800M Series  
activated and sets an HOx signal to logic low. When the  
voltage between the VBx and HSx pins increases to the  
Logic Operation Start Voltage (VBS(ON), 10.5 V) or more,  
the IC releases the UVLO_VB condition. Then, the HOx  
signal becomes logic high at the rising edge of the first  
input command after the UVLO_VB release. The FO  
pin does not transmit any fault signals during the  
UVLO_VB operation. In addition, the VBx pin has an  
internal UVLO_VB filter of about 3 μs, in order to  
prevent noise-induced malfunctions.  
12.3.4 Overcurrent Limit (OCL)  
The overcurrent limit (OCL) is a protection against  
relatively low overcurrent conditions. Figure 12-12  
shows an internal circuit of the OCP and OCL pins;  
Figure 12-13 shows OCL operational waveforms.  
When the OCP pin voltage increases to the Current  
Limit Reference Voltage (VLIM, 0.6500 V) or more, and  
remains in this condition for a period of the Current  
Limit Blanking Time (tBK(OCP), 2 μs) or longer, the OCL  
circuit is activated. Then, the OCL pin goes logic high.  
During the OCL operation, the gate logic levels of the  
low-side transistors respond to an input command on the  
LINx pin. If the OCL and SD pins are connected on a  
PCB, the high-side transistors can be turned off even  
during the OCL operation. The SD pin has an internal  
filter of about 3.3 μs (typ.).  
When the OCP pin voltage falls below VLIM (0.6500  
V), the OCL pin logic level becomes low. After the OCL  
pin logic has become low, the high-side transistors  
remain turned off until the first low-to-high transition on  
an HINx input signal occurs (i.e., rising edge triggering).  
12.3.3.2. Undervoltage Lockout for  
Low-side Power Supply  
(UVLO_VCC)  
Figure 12-11 shows operational waveforms of the  
undervoltage lockout operation for low-side power  
supply (i.e., UVLO_VCC).  
When the VCC2 pin voltage decreases to the Logic  
Operation Stop Voltage (VCC(OFF), 11.0 V) or less, the  
UVLO_VCC circuit in the corresponding phase gets  
activated and sets both of HOx and LOx signals to logic  
low. When the VCC2 pin voltage increases to the Logic  
Operation Start Voltage (VCC(ON), 11.5 V) or more, the  
IC releases the UVLO_VCC condition. Then, the IC  
resumes the following transmissions: an LOx signal  
according to an LINx pin input command; an HOx  
signal according to the rising edge of the first HINx pin  
input command after the UVLO_VCC release. During  
the UVLO_VCC operation, the FO pin becomes logic  
low and sends fault signals. In addition, the VCC2 pin  
has an internal UVLO_VCC filter of about 3 μs, in order  
to prevent noise-induced malfunctions.  
U1  
2 kΩ  
10  
0.65 V  
Filter  
OCL  
2 kΩ  
3
6
OCP  
200 kΩ  
200 kΩ  
COM2  
Figure 12-12. Internal Circuit of OCP and OCL Pins  
HINx  
HINx  
0
0
LINx  
LINx  
0
0
OCP  
UVLO_VCC  
operation  
VLIM  
VCC2  
VCC(ON)  
VCC(OFF)  
0
0
tBK(OCP)  
OCL  
(SD)  
HOx  
0
HOx restarts at  
positive edge after  
OCL release.  
0
3.3 µs (typ.)  
HOx  
LOx responds to input signal.  
About 3 µs  
LOx  
0
0
LOx  
FO  
0
0
Figure 12-13. OCL Operational Waveforms  
(OCL = SD)  
Figure 12-11. UVLO_VCC Operational Waveforms  
SIM6800M-DSE Rev.1.5  
Jul. 18, 2018  
SANKEN ELECTRIC CO., LTD  
http://www.sanken-ele.co.jp/en  
24  
© SANKEN ELECTRIC CO., LTD. 2014  
 
 
 
 
SIM6800M Series  
are shorted to ground (ground fault). In case any of these  
pins falls into a state of ground fault, the output  
transistors may be destroyed.  
12.3.5 Overcurrent Protection (OCP)  
The overcurrent protection (OCP) is a protection  
against large inrush currents (i.e., high di/dt). Figure  
12-14 is an internal circuit diagram describing the OCP  
pin and its peripheral circuit.  
The OCP pin detects overcurrents with the input  
voltages across external shunt resistors, RSx. Because the  
OCP pin is internally pulled down, the OCP pin voltage  
increases proportionally to a rise in the currents running  
through the shunt resistors, RSx.  
Figure 12-15 is a timing chart that represents  
operation waveforms during OCP operation. When the  
OCP pin voltage increases to the OCP Threshold  
Voltage (VTRIP, 1.0 V) or more, and remains in this  
condition for a period of the OCP Blanking Time (tBK, 2  
μs) or longer, the OCP circuit is activated. The enabled  
OCP circuit shuts off the low-side transistors and puts  
the FO pin into a low state. Then, output current  
decreases as a result of the output transistors turn-off.  
Even if the OCP pin voltage falls below VTRIP, the IC  
holds the FO pin in the low state for a fixed OCP hold  
time (tP) of 25 μs (typ.). Then, the output transistors  
operate according to input signals.  
U1  
VTRIP  
2 kΩ  
VBB  
28  
-
+
OCP  
3
Blanking  
filter  
200 kΩ  
1.65 µs (typ.)  
CO  
Output SW turn-off  
and QFO turn-on  
COM2  
6
LSx  
RSx  
A/D  
ROx  
DRSx  
COM  
Figure 12-14. Internal Circuit Diagram of OCP Pin  
and Its Peripheral Circuit  
HINx  
The OCP is used for detecting abnormal conditions,  
such as an output transistor shorted. In case short-circuit  
conditions occur repeatedly, the output transistors can be  
destroyed. To prevent such event, motor operation must  
be controlled by the external microcontroller so that it  
can immediately stop the motor when fault signals are  
detected.  
0
LINx  
0
tBK  
tBK  
tBK  
OCP  
VTRIP  
VLIM  
For proper shunt resistor setting, your application  
must meet the following:  
0
Use the shunt resistor that has a recommended  
resistance, RSx (see Section 2).  
HOx responds to input signal.  
HOx  
Set the OCP pin input voltage to vary within the rated  
OCP pin voltages, VOCP (see Section 1).  
Keep the current through the output transistors below  
the rated output current (pulse), IOP (see Section 1).  
0
LOx  
0
FO restarts  
automatically after tP.  
FO  
It is required to use a resistor with low internal  
inductance because high-frequency switching current  
will flow through the shunt resistors, RSx. In addition,  
choose a resistor with allowable power dissipation  
according to your application.  
tP  
0
Figure 12-15. OCP Operational Waveforms  
When you connect a CR filter (i.e., a pair of a filter  
resistor, RO, and a filter capacitor, CO) to the OCP pin,  
care should be taken in setting the time constants of RO  
and CO. The larger the time constant, the longer the time  
that the OCP pin voltage rises to VTRIP. And this may  
cause permanent damage to the transistors.  
Consequently, a propagation delay of the IC must be  
taken into account when you determine the time  
constants. For RO and CO, their time constants must be  
set to the values listed in Table 12-3. And place CO as  
close as possible to the IC with minimizing a trace  
length between the OCP and COMx pins.  
Table 12-3. Reference Time Constants for CR Filter  
Time Constant  
Part Number  
(µs)  
SIM681x  
2  
SIM682x  
SIM688x  
0.2  
Note that overcurrents are undetectable when one or  
more of the U, V/V1/V2, and W1/W2 pins or their traces  
SIM6800M-DSE Rev.1.5  
Jul. 18, 2018  
SANKEN ELECTRIC CO., LTD  
http://www.sanken-ele.co.jp/en  
25  
© SANKEN ELECTRIC CO., LTD. 2014  
 
 
 
 
SIM6800M Series  
12.3.6 Thermal Shutdown (TSD)  
13. Design Notes  
The SIM6800M series incorporates  
a thermal  
shutdown (TSD) circuit. Figure 12-16 shows TSD  
operational waveforms. In case of overheating (e.g.,  
increased power dissipation due to overload, a rise in  
ambient temperature at the device, etc.), the IC shuts  
down the low-side output transistors.  
The TSD circuit in the monolithic IC (MIC) monitors  
temperatures (see Section 7). When the temperature of  
the monolithic IC (MIC) exceeds the TSD Operating  
Temperature (TDH, 150 °C), the TSD circuit is activated.  
When the temperature of the monolithic IC (MIC)  
13.1 PCB Pattern Layout  
Figure 13-1 shows a schematic diagram of a motor  
driver circuit. The motor driver circuit consists of  
current paths having high frequencies and high voltages,  
which also bring about negative influences on IC  
operation, noise interference, and power dissipation.  
Therefore, PCB trace layouts and component placements  
play an important role in circuit designing.  
Current loops, which have high frequencies and high  
voltages, should be as small and wide as possible, in  
order to maintain a low-impedance state. In addition,  
ground traces should be as wide and short as possible so  
that radiated EMI levels can be reduced.  
decreases to the TSD Releasing Temperature (TDL  
,
120 °C) or less, the shutdown condition is released. The  
output transistors then resume operating according to  
input signals.  
During the TSD operation, the FO pin becomes logic  
low and transmits fault signals.  
Note that junction temperatures of the output  
transistors themselves are not monitored; therefore, do  
not use the TSD function as an overtemperature  
prevention for the output transistors.  
VDC  
VBB  
28  
HINx  
U
31  
0
Ground traces  
should be wide  
and short.  
LINx  
MIC  
V1  
V2  
26  
35  
0
M
W1  
W2  
TSD operation  
24  
37  
TDH  
Tj(MIC)  
TDL  
0
LS1  
HOx  
11  
LS2  
2
1
0
LS3A  
LOx responds to input signals.  
LOx  
High-frequency, high-voltage  
current loops should be as  
small and wide as possible.  
0
FO  
Figure 13-1. High-frequency, High-voltage Current  
Paths  
0
Figure 12-16. TSD Operational Waveforms  
13.2 Considerations in Heatsink Mounting  
The following are the key considerations and the  
guidelines for mounting a heatsink:  
It is recommended to use a pair of a metric screw of  
M2.5 and a plain washer of 6.0 mm (φ). To tighten  
the screws, use a torque screwdriver. Tighten the two  
screws firstly up to about 30% of the maximum screw  
torque, then finally up to 100% of the prescribed  
maximum screw torque. Perform appropriate  
tightening within the range of screw torque defined in  
Section 4.  
SIM6800M-DSE Rev.1.5  
Jul. 18, 2018  
SANKEN ELECTRIC CO., LTD  
http://www.sanken-ele.co.jp/en  
26  
© SANKEN ELECTRIC CO., LTD. 2014  
 
 
 
 
 
 
SIM6800M Series  
When mounting a heatsink, it is recommended to use  
silicone greases. If a thermally conductive sheet or an  
electrically insulating sheet is used, package cracks  
may be occurred due to creases at screw tightening.  
Therefore, you should conduct thorough evaluations  
before using these materials.  
When applying a silicone grease, make sure that there  
must be no foreign substances between the IC and a  
heatsink. Extreme care should be taken not to apply a  
silicone grease onto any device pins as much as  
possible. The following requirements must be met for  
proper grease application:  
typical measurement circuits for breakdown voltage:  
Figure 13-3 shows the high-side transistor (Q1H) in the  
U-phase; Figure 13-4 shows the low-side transistor (Q1L)  
in the U-phase. And all the pins that are not represented  
in these figures are open.  
When measuring the high-side transistors, leave all  
the pins not be measured open. When measuring the  
low-side transistors, connect the LSx pin to be measured  
to the COMx pin, then leave other unused pins open.  
- Grease thickness: 100 µm  
- Heatsink flatness: ±100 µm  
VBB  
28  
- Apply silicone grease within the area indicated in  
Figure 13-2, below.  
V
Q1H  
Q2H Q3H  
31  
U
V
Screw hole  
Screw hole  
19  
26  
MIC  
V1  
COM1  
COM2  
16  
6
W1  
24  
35  
37  
7.4  
7.4  
V2  
Thermal silicone  
grease application area  
Q1L Q2L Q3L  
M2.5  
1.25  
W2  
M2.5  
1.25  
Heatsink  
31.3  
LS1  
11  
2
Unit: mm  
LS2  
LS2  
33  
40  
LS3A  
LS3B  
1
Figure 13-2. Reference Application Area for Thermal  
Silicone Grease  
Figure 13-3. Typical Measurement Circuit for High-  
side Transistor (Q1H) in U-phase  
13.3 Considerations in IC Characteristics  
Measurement  
When measuring the breakdown voltage or leakage  
current of the transistors incorporated in the IC, note that  
the gate and emitter (source) of each transistor should  
have the same potential. Moreover, care should be taken  
when performing the measurements, because each  
transistor is connected as follows:  
VBB  
28  
Q1H  
Q2H Q3H  
31  
U
V
19  
26  
All the high-side collectors (drains) are internally  
connected to the VBB pin.  
In the U-phase, the high-side emitter (source) and the  
low-side collector (drain) are internally connected,  
and are also connected to the U pin.  
V
MIC  
V1  
COM1  
COM2  
16  
6
W1  
24  
35  
37  
V2  
Q1L Q2L Q3L  
W2  
(In the V- and W-phases, the high- and low-side  
transistors are unconnected inside the IC.)  
LS1  
The gates of the high-side transistors are pulled down  
to the corresponding output (U, V/V1, and W1) pins;  
similarly, the gates of the low-side transistors are pulled  
down to the COM2 pin.  
11  
2
LS2  
LS2  
33  
40  
LS3A  
LS3B  
1
When measuring the breakdown voltage or leakage  
current of the transistors, note that all of the output (U,  
V/V1, and W1), LSx, and COMx pins must be  
appropriately connected. Otherwise the switching  
transistors may result in permanent damage.  
Figure 13-4. Typical Measurement Circuit for Low-  
side Transistor (Q1L) in U-phase  
The following are circuit diagrams representing  
SIM6800M-DSE Rev.1.5  
Jul. 18, 2018  
SANKEN ELECTRIC CO., LTD  
http://www.sanken-ele.co.jp/en  
27  
© SANKEN ELECTRIC CO., LTD. 2014  
 
 
 
 
SIM6800M Series  
DT is the duty cycle, which is given by  
14. Calculating Power Losses and  
Estimating Junction Temperatures  
(
)
1 + M × sin φ + θ  
DT =  
,
This section describes the procedures to calculate  
power losses in switching transistors, and to estimate a  
junction temperature. Note that the descriptions listed  
here are applicable to the SIM6800M series, which is  
controlled by a 3-phase sine-wave PWM driving  
strategy.  
For quick and easy references, we offer calculation  
support tools online. Please visit our website to find out  
more.  
2
M is the modulation index (0 to 1),  
cosθ is the motor power factor (0 to 1),  
IM is the effective motor current (A),  
α is the slope of the linear approximation in the  
VCE(SAT) vs. IC curve, and  
β is the intercept of the linear approximation in the  
VCE(SAT) vs. IC curve.  
DT0026: SIM682xM Calculation Tool  
http://www.semicon.sanken-ele.co.jp/en/calc-  
tool/sim682xm_caltool_en.html  
VCC = 15 V  
2.0  
125 °C  
1.8  
y = 0.2051x + 0.8859  
1.6  
DT0027: SIM681xM Calculation Tool  
http://www.semicon.sanken-ele.co.jp/en/calc-  
tool/sim681xm_caltool_en.html  
75 °C  
25 °C  
1.4  
1.2  
1.0  
0.8  
DT0030: SIM688xM Calculation Tool  
http://www.semicon.sanken-ele.co.jp/en/calc-  
tool/sim688xm_caltool_en.html  
0.0  
1.0  
2.0  
3.0  
IC (A)  
4.0  
5.0  
Figure 14-1. Linear Approximate Equation of  
CE(SAT) vs. IC Curve  
14.1 IGBT  
V
Total power loss in an IGBT can be obtained by  
taking the sum of steady-state loss, PON, and switching  
loss, PSW. The following subsections contain the  
mathematical procedures to calculate these losses (PON  
and PSW) and the junction temperature of all IGBTs  
operating.  
14.1.2 IGBT Switching Loss, PSW  
Switching loss in an IGBT can be calculated by  
Equation (5), letting IM be the effective current value of  
the motor:  
2
VDC  
14.1.1 IGBT Steady-state Loss, PON  
(5)  
P
SW  
=
× fC × αE × IM ×  
.
π
300  
Steady-state loss in an IGBT can be computed by  
using the VCE(SAT) vs. IC curves, listed in Section 15.3.1.  
As expressed by the curves in Figure 14-1, linear  
approximations at a range the IC is actually used are  
obtained by: VCE(SAT) = α × IC + β. The values gained by  
the above calculation are then applied as parameters in  
Equation (4), below. Hence, the equation to obtain the  
IGBT steady-state loss, PON, is:  
Where:  
fC is the PWM carrier frequency (Hz),  
VDC is the main power supply voltage (V), i.e., the  
VBB pin input voltage, and  
αE is the slope of the switching loss curve (see Section  
15.3.2).  
1
14.1.3 Estimating Junction Temperature  
of IGBT  
( )  
( )  
PON  
=
VCE(SAT) φ × IC φ × DT × dφ  
2π  
0
The junction temperature of all IGBTs operating, Tj,  
can be estimated with Equation (6):  
1
1
4
2
=
α ꢁ +  
M × cos θꢂ IM  
2
2
3π  
(4)  
2
1
π
{(  
)
}
× 6 + TC .  
SW  
T = R(j−C)Q  
j
×
PON + P  
(6)  
+
β ꢁ + M × cos θꢂ IM .  
π
2
8
Where:  
Where:  
R(j-C)Q is the junction-to-case thermal resistance  
(°C/W) of all the IGBTs operating, and  
TC is the case temperature (°C), measured at the point  
V
CE(SAT) is the collector-to-emitter saturation voltage of  
the IGBT (V),  
IC is the collector current of the IGBT (A),  
SIM6800M-DSE Rev.1.5  
Jul. 18, 2018  
SANKEN ELECTRIC CO., LTD  
http://www.sanken-ele.co.jp/en  
28  
© SANKEN ELECTRIC CO., LTD. 2014  
 
 
 
 
 
 
 
 
 
SIM6800M Series  
defined in Figure 3-1.  
VCC = 15 V  
8
7
6
5
4
3
2
1
0
y = 0.5281x + 5.6394  
125 °C  
14.2 Power MOSFET  
75 °C  
25 °C  
Total power loss in a power MOSFET can be  
obtained by taking the sum of the following losses:  
steady-state loss, PRON; switching loss, PSW; the steady-  
state loss of a body diode, PSD. In the calculation  
procedure we offer, the recovery loss of a body diode,  
PRR, is considered negligibly small compared with the  
ratios of other losses.  
The following subsections contain the mathematical  
procedures to calculate these losses (PRON, PSW, and PSD)  
and the junction temperature of all power MOSFETs  
operating.  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
ID (A)  
Figure 14-2. Linear Approximate Equation of  
RDS(ON) vs. ID Curve  
14.2.2 Power MOSFET Switching Loss,  
PSW  
14.2.1 Power MOSFET Steady-state Loss,  
PRON  
Switching loss in a power MOSFET can be calculated  
by Equation (8), letting IM be the effective current value  
of the motor:  
Steady-state loss in a power MOSFET can be  
computed by using the RDS(ON) vs. ID curves, listed in  
Section 15.3.1. As expressed by the curves in Figure  
14-2, linear approximations at a range the ID is actually  
used are obtained by: RDS(ON) = α × ID + β. The values  
gained by the above calculation are then applied as  
parameters in Equation (7), below. Hence, the equation  
to obtain the power MOSFET steady-state loss, PRON, is:  
VDC  
(8)  
P
SW  
= 2 × fC × αE × IM ×  
.
300  
Where:  
fC is the PWM carrier frequency (Hz),  
VDC is the main power supply voltage (V), i.e., the  
VBB pin input voltage, and  
αE is the slope of the switching loss curve (see Section  
15.3.2).  
1
( )2  
( )  
× RDS(ON) φ × DT  
PRON  
=
ID  
φ
2π  
0
× dφ  
1
3
3
= 22α ꢁ  
+
M × cos θꢂ IM  
3π 32  
(7)  
1
1
2
+2β ꢁ +  
M × cos θꢂ IM .  
8
3π  
Where:  
ID is the drain current of the power MOSFET (A),  
RDS(ON) is the drain-to-source on-resistance of the  
power MOSFET (Ω),  
DT is the duty cycle, which is given by  
(
)
1 + M × sin φ + θ  
DT =  
,
2
M is the modulation index (0 to 1),  
cosθ is the motor power factor (0 to 1),  
IM is the effective motor current (A),  
α is the slope of the linear approximation in the RDS(ON)  
vs. ID curve, and  
β is the intercept of the linear approximation in the  
RDS(ON) vs. ID curve.  
SIM6800M-DSE Rev.1.5  
Jul. 18, 2018  
SANKEN ELECTRIC CO., LTD  
http://www.sanken-ele.co.jp/en  
29  
© SANKEN ELECTRIC CO., LTD. 2014  
 
 
 
 
 
 
SIM6800M Series  
14.2.3 Body Diode Steady-state Loss, PSD  
14.2.4 Estimating Junction Temperature  
of Power MOSFET  
Steady-state loss in the body diode of a power  
MOSFET can be computed by using the VSD vs. ISD  
curves, listed in Section 15.3.1. As expressed by the  
curves in Figure 14-3, linear approximations at a range  
the ISD is actually used are obtained by: VSD = α × ISD + β.  
The values gained by the above calculation are then  
applied as parameters in Equation (9), below. Hence, the  
equation to obtain the body diode steady-state loss, PSD,  
is:  
The junction temperature of all power MOSFETs  
operating, Tj, can be estimated with Equation (10):  
{(  
)
SD  
}
T = Rj−C  
j
× PON + PSW + P × 6 + TC .  
(10)  
Where:  
Rj-C is the junction-to-case thermal resistance (°C/W)  
of all the power MOSFETs operating, and  
TC is the case temperature (°C), measured at the point  
defined in Figure 3-1.  
1
( )  
( )  
(
)
P
SD  
=
VSD φ × ISD φ × 1 DT × dφ  
2π  
0
1
2
1
4
2
=
α ꢁ M × cos θꢂ IM  
2
3π  
2
1
π
(9)  
+
β ꢁ M × cos θꢂ IM .  
π
2
8
Where:  
VSD is the source-to-drain diode forward voltage of the  
power MOSFET (V),  
ISD is the source-to-drain diode forward current of the  
power MOSFET (A),  
DT is the duty cycle, which is given by  
(
)
1 + M × sin φ + θ  
DT =  
,
2
M is the modulation index (0 to 1),  
cosθ is the motor power factor (0 to 1),  
IM is the effective motor current (A),  
α is the slope of the linear approximation in the VSD vs.  
ISD curve, and  
β is the intercept of the linear approximation in the  
VSD vs. ISD curve.  
VCC = 15 V  
2.5  
2.0  
125 °C  
y = 0.2888x + 0.8758  
1.5  
75 °C  
25 °C  
1.0  
0.5  
0.0  
0.0  
1.0  
2.0  
3.0  
ISD (A)  
4.0  
5.0  
Figure 14-3. Linear Approximate Equation of  
VSD vs. ISD Curve  
SIM6800M-DSE Rev.1.5  
Jul. 18, 2018  
SANKEN ELECTRIC CO., LTD  
http://www.sanken-ele.co.jp/en  
30  
© SANKEN ELECTRIC CO., LTD. 2014  
 
 
 
 
 
SIM6800M Series  
15. Performance Curves  
15.1 Transient Thermal Resistance Curves  
The following graphs represent transient thermal resistance (the ratios of transient thermal resistance), with steady-  
state thermal resistance = 1.  
1.00  
0.10  
0.01  
0.001  
0.01  
0.1  
Time (s)  
1
10  
Figure 15-1. Transient Thermal Resistance Curve: SIM681xM  
1.00  
0.10  
0.01  
0.001  
0.01  
0.1  
1
10  
Time (s)  
Figure 15-2. Transient Thermal Resistance Curve: SIM682xM  
1.00  
0.10  
0.01  
0.001  
0.01  
0.1  
1
10  
Time (s)  
Figure 15-3. Transient Thermal Resistance Curve: SIM6818M  
SIM6800M-DSE Rev.1.5  
Jul. 18, 2018  
SANKEN ELECTRIC CO., LTD  
http://www.sanken-ele.co.jp/en  
31  
© SANKEN ELECTRIC CO., LTD. 2014  
 
 
SIM6800M Series  
15.2 Performance Curves of Control Parts  
Figure 15-4 to Figure 15-28 provide performance curves of the control parts integrated in the SIM6800M series,  
including variety-dependent characteristics and thermal characteristics. Tj represents the junction temperature of the  
control parts.  
Table 15-1. Typical Characteristics of Control Parts  
Figure Number  
Figure 15-4  
Figure Caption  
Logic Supply Current, ICC vs. TC (INx = 0 V)  
Figure 15-5  
Figure 15-6  
Figure 15-7  
Figure 15-8  
Figure 15-9  
Figure 15-10  
Figure 15-11  
Figure 15-12  
Figure 15-13  
Figure 15-14  
Figure 15-15  
Figure 15-16  
Figure 15-17  
Figure 15-18  
Figure 15-19  
Figure 15-20  
Figure 15-21  
Figure 15-22  
Figure 15-23  
Figure 15-24  
Figure 15-25  
Figure 15-26  
Figure 15-27  
Figure 15-28  
Logic Supply Current, ICC vs. TC (INx = 5 V)  
VCCx Pin Voltage, VCC vs. Logic Supply Current, ICC curve  
Logic Supply Current (1-phase) IBS vs. TC (HINx = 0 V)  
Logic Supply Current (1-phase) IBS vs. TC (HINx = 5 V)  
VBx Pin Voltage, VB vs. Logic Supply Current IBS curve (HINx = 0 V)  
Logic Operation Start Voltage, VBS(ON) vs. TC  
Logic Operation Stop Voltage, VBS(OFF) vs. TC  
Logic Operation Start Voltage, VCC(ON) vs. TC  
Logic Operation Stop Voltage, VCC(OFF) vs. TC  
UVLO_VB Filtering Time vs. TC  
UVLO_VCC Filtering Time vs. TC  
High Level Input Threshold Voltage, VIH vs. TC  
Low Level Input Threshold Voltage, VIL vs. TC  
Input Current at High Level (HINx or LINx), IIN vs. TC  
High-side Turn-on Propagation Delay vs. TC (from HINx to HOx)  
Low-side Turn-on Propagation Delay vs. TC (from LINx to LOx)  
Minimum Transmittable Pulse Width for High-side Switching, tHIN(MIN) vs. TC  
Minimum Transmittable Pulse Width for Low-side Switching, tLIN(MIN) vs. TC  
SD Pin Filtering Time vs. TC  
FO Pin Filtering Time vs. TC  
Current Limit Reference Voltage, VLIM vs. TC  
OCP Threshold Voltage, VTRIP vs. TC  
OCP Hold Time, tP vs. TC  
OCP Blanking Time, tBK(OCP) vs. TC; Current Limit Blanking Time, tBK(OCL) vs. TC  
VCCx = 15 V, HINx = 0 V, LINx = 0 V  
VCCx = 15 V, HINx = 5 V, LINx = 5 V  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
-30  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Max.  
Typ.  
Min.  
Max.  
Typ.  
Min.  
-30  
0
30  
60  
90  
120  
150  
0
30  
60  
90  
120  
150  
TC (°C)  
TC (°C)  
Figure 15-4. Logic Supply Current, ICC vs. TC  
(INx = 0 V)  
Figure 15-5. Logic Supply Current, ICC vs. TC  
(INx = 5 V)  
SIM6800M-DSE Rev.1.5  
Jul. 18, 2018  
SANKEN ELECTRIC CO., LTD  
http://www.sanken-ele.co.jp/en  
32  
© SANKEN ELECTRIC CO., LTD. 2014  
 
 
 
SIM6800M Series  
HINx = 0 V, LINx = 0 V  
VBx = 15 V, HINx = 0 V  
250  
200  
150  
100  
50  
3.8  
3.6  
3.4  
3.2  
3.0  
2.8  
2.6  
Max.  
Typ.  
Min.  
125°C  
25°C  
30°C  
0
12  
13  
14  
15  
16  
17  
18  
19  
20  
-30  
0
30  
60  
90  
120  
150  
VCC (V)  
TC (°C)  
Figure 15-6. VCCx Pin Voltage, VCC vs. Logic  
Supply Current, ICC curve  
Figure 15-7. Logic Supply Current (1-phase) IBS vs. TC  
(HINx = 0 V)  
VBx = 15 V, HINx = 5 V  
300  
VBx = 15 V, HINx = 0 V  
180  
250  
200  
150  
100  
50  
160  
140  
Max.  
Typ.  
Min.  
120  
125°C  
100  
25°C  
80  
30°C  
60  
0
40  
-30  
0
30  
60  
90  
120  
150  
12  
13  
14  
15  
16  
17  
18  
19  
20  
TC (°C)  
VB (V)  
Figure 15-8. Logic Supply Current (1-phase) IBS vs.  
TC (HINx = 5 V)  
Figure 15-9. VBx Pin Voltage, VB vs. Logic Supply  
Current IBS curve (HINx = 0 V)  
11.0  
10.8  
11.5  
Max.  
11.3  
11.1  
10.9  
10.7  
10.5  
10.3  
10.1  
9.9  
Max.  
10.6  
10.4  
10.2  
10.0  
9.8  
Typ.  
Min.  
Typ.  
Min.  
9.6  
9.4  
9.2  
9.7  
9.0  
9.5  
-30  
0
30  
60  
90  
120  
150  
-30  
0
30  
60  
90  
120  
150  
TC (°C)  
TC (°C)  
Figure 15-10. Logic Operation Start Voltage, VBS(ON)  
vs. TC  
Figure 15-11. Logic Operation Stop Voltage, VBS(OFF)  
vs. TC  
SIM6800M-DSE Rev.1.5  
Jul. 18, 2018  
SANKEN ELECTRIC CO., LTD  
http://www.sanken-ele.co.jp/en  
33  
© SANKEN ELECTRIC CO., LTD. 2014  
 
 
 
 
 
 
SIM6800M Series  
12.5  
12.3  
12.1  
11.9  
11.7  
11.5  
11.3  
11.1  
10.9  
10.7  
10.5  
12.0  
11.8  
11.6  
11.4  
11.2  
11.0  
10.8  
10.6  
10.4  
10.2  
10.0  
Max.  
Max.  
Typ.  
Min.  
Typ.  
Min.  
-30  
0
30  
60  
90  
120  
150  
-30  
0
30  
60  
90  
120  
150  
TC (°C)  
TC (°C)  
Figure 15-12. Logic Operation Start Voltage, VCC(ON)  
vs. TC  
Figure 15-13. Logic Operation Stop Voltage, VCC(OFF)  
vs. TC  
5.0  
4.5  
4.0  
5.0  
4.5  
4.0  
Max.  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Max.  
Typ.  
Min.  
Typ.  
Min.  
-30  
0
30  
60  
90  
120  
150  
-30  
0
30  
60  
90  
120  
150  
TC (°C)  
TC (°C)  
Figure 15-14. UVLO_VB Filtering Time vs. TC  
Figure 15-15. UVLO_VCC Filtering Time vs. TC  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
2.0  
1.8  
Max.  
1.6  
1.4  
1.2  
1.0  
0.8  
Max.  
Typ.  
Min.  
Typ.  
Min.  
-30  
0
30  
60  
90  
120  
150  
-30  
0
30  
60  
90  
120  
150  
TC (°C)  
TC (°C)  
Figure 15-16. High Level Input Threshold Voltage,  
VIH vs. TC  
Figure 15-17. Low Level Input Threshold Voltage, VIL  
vs. TC  
SIM6800M-DSE Rev.1.5  
Jul. 18, 2018  
SANKEN ELECTRIC CO., LTD  
http://www.sanken-ele.co.jp/en  
34  
© SANKEN ELECTRIC CO., LTD. 2014  
 
 
 
 
 
 
SIM6800M Series  
INHx or INLx = 5 V  
800  
700  
600  
500  
400  
300  
200  
100  
0
400  
350  
300  
250  
200  
150  
100  
50  
Max.  
Typ.  
Min.  
Max.  
Typ.  
Min.  
0
-30  
0
30  
60  
90  
120  
150  
-30  
0
30  
60  
90  
120  
150  
TC (°C)  
TC (°C)  
Figure 15-18. Input Current at High Level (HINx or  
LINx), IIN vs. TC  
Figure 15-19. High-side Turn-on Propagation Delay vs.  
TC (from HINx to HOx)  
400  
700  
600  
350  
300  
250  
200  
150  
100  
50  
Max.  
Max.  
500  
400  
300  
200  
100  
0
Typ.  
Min.  
Typ.  
Min.  
0
-30  
0
30  
60  
90  
120  
150  
-30  
0
30  
60  
90  
120  
150  
TC (°C)  
TC (°C)  
Figure 15-20. Low-side Turn-on Propagation Delay  
vs. TC (from LINx to LOx)  
Figure 15-21. Minimum Transmittable Pulse Width for  
High-side Switching, tHIN(MIN) vs. TC  
400  
6
5
4
350  
300  
250  
200  
150  
100  
50  
Max.  
Typ.  
Min.  
Max.  
3
2
1
0
Typ.  
Min.  
0
-30  
0
30  
60  
90  
120  
150  
-30  
0
30  
60  
90  
120  
150  
TC (°C)  
TC (°C)  
Figure 15-22. Minimum Transmittable Pulse Width  
for Low-side Switching, tLIN(MIN) vs. TC  
Figure 15-23. SD Pin Filtering Time vs. TC  
SIM6800M-DSE Rev.1.5  
Jul. 18, 2018  
SANKEN ELECTRIC CO., LTD  
http://www.sanken-ele.co.jp/en  
35  
© SANKEN ELECTRIC CO., LTD. 2014  
 
 
 
 
 
 
SIM6800M Series  
6
5
4
3
2
1
0
0.750  
0.725  
0.700  
0.675  
0.650  
0.625  
0.600  
0.575  
0.550  
Max.  
Typ.  
Min.  
Max.  
Typ.  
Min.  
-30  
0
30  
60  
90  
120  
150  
-30  
0
30  
60  
90  
120  
150  
TC (°C)  
TC (°C)  
Figure 15-24. FO Pin Filtering Time vs. TC  
Figure 15-25. Current Limit Reference Voltage, VLIM vs.  
TC  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
1.10  
1.08  
1.06  
1.04  
1.02  
1.00  
0.98  
0.96  
0.94  
0.92  
0.90  
Max.  
Typ.  
Max.  
Typ.  
Min.  
Min.  
0
-30  
0
30  
60  
90  
120  
150  
-30  
0
30  
60  
TC (°C)  
90  
120  
150  
TC (°C)  
Figure 15-26. OCP Threshold Voltage, VTRIP vs. TC  
Figure 15-27. OCP Hold Time, tP vs. TC  
4.0  
3.5  
3.0  
Max.  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Typ.  
Min.  
-30  
0
30  
60  
90  
120  
150  
TC (°C)  
Figure 15-28. OCP Blanking Time, tBK(OCP) vs. TC;  
Current Limit Blanking Time, tBK(OCL) vs. TC  
SIM6800M-DSE Rev.1.5  
Jul. 18, 2018  
SANKEN ELECTRIC CO., LTD  
http://www.sanken-ele.co.jp/en  
36  
© SANKEN ELECTRIC CO., LTD. 2014  
 
 
 
 
 
SIM6800M Series  
15.3 Performance Curves of Output Parts  
15.3.1 Output Transistor Performance Curves  
15.3.1.1. SIM6811M  
VCC = 15V  
8
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
7
25°C  
75°C  
125°C  
6
5
75°C  
4
3
25°C  
125°C  
2
1
0
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
ISD (A)  
ID (A)  
Figure 15-29. Power MOSFET RDS(ON) vs. ID  
Figure 15-30. Power MOSFET VSD vs. ISD  
15.3.1.2. SIM6812M  
VCC = 15 V  
VCC = 15 V  
5
1.2  
1
125°C  
4
25°C  
75°C  
0.8  
0.6  
0.4  
0.2  
0
3
25°C  
2
75°C  
125°C  
1
0
0.0  
0.5  
1.0  
1.5  
ID (A)  
2.0  
2.5  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
ISD (A)  
Figure 15-31. Power MOSFET RDS(ON) vs. ID  
Figure 15-32. Power MOSFET VSD vs. ISD  
SIM6800M-DSE Rev.1.5  
Jul. 18, 2018  
SANKEN ELECTRIC CO., LTD  
http://www.sanken-ele.co.jp/en  
37  
© SANKEN ELECTRIC CO., LTD. 2014  
 
 
SIM6800M Series  
15.3.1.3. SIM6813M  
VCC = 15 V  
VCC = 15 V  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
1.2  
1
125°C  
25°C  
75°C  
25°C  
0.8  
0.6  
0.4  
0.2  
0
75°C  
125°C  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
ID (A)  
ISD (A)  
Figure 15-33. Power MOSFET RDS(ON) vs. ID  
Figure 15-34. Power MOSFET VSD vs. ISD  
15.3.1.4. SIM6880M  
VCC = 15 V  
VCC = 15 V  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
2.0  
125°C  
1.8  
25°C  
1.6  
75°C  
1.4  
1.2  
1.0  
0.8  
25°C  
75°C  
125°C  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
IF (A)  
IC (A)  
Figure 15-35. IGBT VCE(SAT) vs. IC  
Figure 15-36. FRD VF vs. IF  
15.3.1.5. SIM6822M and SIM6827M  
VCC = 15 V  
125°C  
VCC = 15 V  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
25°C  
75°C  
25°C  
75°C  
125°C  
0.0  
1.0  
2.0  
3.0  
IC (A)  
4.0  
5.0  
0.0  
1.0  
2.0  
3.0  
IF (A)  
4.0  
5.0  
Figure 15-37. IGBT VCE(SAT) vs. IC  
Figure 15-38. FRD VF vs. IF  
SIM6800M-DSE Rev.1.5  
Jul. 18, 2018  
SANKEN ELECTRIC CO., LTD  
http://www.sanken-ele.co.jp/en  
38  
© SANKEN ELECTRIC CO., LTD. 2014  
SIM6800M Series  
15.3.2 Switching Losses  
Conditions: VBB = 300 V, half-bridge circuit with inductive load.  
Switching Loss, E, is the sum of turn-on loss and turn-off loss.  
15.3.2.1. SIM6811M  
VB = 15 V  
VCC = 15 V  
250  
200  
150  
100  
50  
250  
200  
150  
100  
50  
Tj = 125°C  
Tj = 125°C  
Tj = 25°C  
Tj = 25°C  
0
0
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
ID (A)  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
ID (A)  
Figure 15-39. High-side Switching Loss  
Figure 15-40. Low-side Switching Loss  
15.3.2.2. SIM6812M  
VB = 15 V  
VCC = 15 V  
250  
200  
250  
200  
150  
100  
50  
Tj = 125°C  
Tj = 125°C  
150  
100  
50  
Tj = 25°C  
Tj = 25°C  
0
0
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
ID (A)  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
ID (A)  
Figure 15-41. High-side Switching Loss  
Figure 15-42. Low-side Switching Loss  
SIM6800M-DSE Rev.1.5  
Jul. 18, 2018  
SANKEN ELECTRIC CO., LTD  
http://www.sanken-ele.co.jp/en  
39  
© SANKEN ELECTRIC CO., LTD. 2014  
 
SIM6800M Series  
15.3.2.3. SIM6813M  
VB = 15 V  
VCC = 15 V  
300  
250  
200  
300  
250  
200  
150  
100  
50  
Tj = 125°C  
Tj = 125°C  
150  
100  
50  
Tj = 25°C  
Tj = 25°C  
0
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
ID (A)  
2.0  
2.5  
3.0  
ID (A)  
Figure 15-43. High-side Switching Loss  
Figure 15-44. Low-side Switching Loss  
15.3.2.4. SIM6880M  
VB = 15 V  
VB = 15 V  
300  
250  
300  
250  
200  
150  
100  
50  
Tj = 125°C  
Tj = 125°C  
200  
150  
100  
50  
Tj = 25°C  
2.0  
Tj = 25°C  
2.0  
0
0
0.0  
0.5  
1.0  
1.5  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
2.5  
3.0  
IC (A)  
IC (A)  
Figure 15-45. High-side Switching Loss  
Figure 15-46. Low-side Switching Loss  
SIM6800M-DSE Rev.1.5  
Jul. 18, 2018  
SANKEN ELECTRIC CO., LTD  
http://www.sanken-ele.co.jp/en  
40  
© SANKEN ELECTRIC CO., LTD. 2014  
SIM6800M Series  
15.3.2.5. SIM6822M  
VB = 15 V  
VCC = 15 V  
400  
350  
300  
250  
400  
350  
300  
250  
200  
150  
100  
50  
Tj = 125°C  
Tj = 125°C  
200  
150  
100  
50  
Tj = 25°C  
Tj = 25°C  
0
0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
IC (A)  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
IC (A)  
Figure 15-47. High-side Switching Loss  
Figure 15-48. Low-side Switching Loss  
15.3.2.6. SIM6827M  
VCC = 15 V  
VB = 15 V  
450  
400  
350  
450  
400  
350  
300  
250  
200  
150  
100  
50  
300  
Tj = 125°C  
Tj = 125°C  
250  
200  
150  
100  
50  
Tj = 25°C  
Tj = 25°C  
0
0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
IC (A)  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
IC (A)  
Figure 15-49. High-side Switching Loss  
Figure 15-50. Low-side Switching Loss  
SIM6800M-DSE Rev.1.5  
Jul. 18, 2018  
SANKEN ELECTRIC CO., LTD  
http://www.sanken-ele.co.jp/en  
41  
© SANKEN ELECTRIC CO., LTD. 2014  
SIM6800M Series  
15.4 Allowable Effective Current Curves  
The following curves represent allowable effective currents in 3-phase sine-wave PWM driving with parameters such  
as typical RDS(ON) or VCE(SAT), and typical switching losses.  
Operating conditions: VBB pin input voltage, VDC = 300 V; VCC pin input voltage, VCC = 15 V; modulation index,  
M = 0.9; motor power factor, cosθ = 0.8; junction temperature, Tj = 150 °C.  
15.4.1 SIM6811M  
fC = 2 kHz  
2.0  
1.5  
1.0  
0.5  
0.0  
25  
50  
75  
100  
125  
150  
TC (°C)  
Figure 15-51. Allowable Effective Current (fC = 2 kHz): SIM6811M  
fC = 16 kHz  
2.0  
1.5  
1.0  
0.5  
0.0  
25  
50  
75  
100  
125  
150  
TC (°C)  
Figure 15-52. Allowable Effective Current (fC = 16 kHz): SIM6811M  
SIM6800M-DSE Rev.1.5  
Jul. 18, 2018  
SANKEN ELECTRIC CO., LTD  
http://www.sanken-ele.co.jp/en  
42  
© SANKEN ELECTRIC CO., LTD. 2014  
 
 
SIM6800M Series  
15.4.2 SIM6812M  
fC = 2 kHz  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
25  
50  
75  
100  
125  
150  
TC (°C)  
Figure 15-53. Allowable Effective Current (fC = 2 kHz): SIM6812M  
fC = 16 kHz  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
25  
50  
75  
100  
125  
150  
TC (°C)  
Figure 15-54. Allowable Effective Current (fC = 16 kHz): SIM6812M  
SIM6800M-DSE Rev.1.5  
Jul. 18, 2018  
SANKEN ELECTRIC CO., LTD  
http://www.sanken-ele.co.jp/en  
43  
© SANKEN ELECTRIC CO., LTD. 2014  
 
SIM6800M Series  
15.4.3 SIM6813M  
fC = 2 kHz  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
25  
50  
75  
100  
125  
150  
TC (°C)  
Figure 15-55. Allowable Effective Current (fC = 2 kHz): SIM6813M  
fC = 16 kHz  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
25  
50  
75  
100  
125  
150  
TC (°C)  
Figure 15-56. Allowable Effective Current (fC = 16 kHz): SIM6813M  
SIM6800M-DSE Rev.1.5  
Jul. 18, 2018  
SANKEN ELECTRIC CO., LTD  
http://www.sanken-ele.co.jp/en  
44  
© SANKEN ELECTRIC CO., LTD. 2014  
 
SIM6800M Series  
15.4.4 SIM6880M  
fC = 2 kHz  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
25  
50  
75  
100  
125  
150  
TC (°C)  
Figure 15-57. Allowable Effective Current (fC = 2 kHz): SIM6880M  
fC = 16 kHz  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
25  
50  
75  
100  
125  
150  
TC (°C)  
Figure 15-58. Allowable Effective Current (fC = 16 kHz): SIM6880M  
SIM6800M-DSE Rev.1.5  
Jul. 18, 2018  
SANKEN ELECTRIC CO., LTD  
http://www.sanken-ele.co.jp/en  
45  
© SANKEN ELECTRIC CO., LTD. 2014  
 
SIM6800M Series  
15.4.5 SIM6822M  
fC = 2 kHz  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
25  
50  
75  
100  
125  
150  
TC (°C)  
Figure 15-59. Allowable Effective Current (fC = 2 kHz): SIM6822M  
fC = 16 kHz  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
25  
50  
75  
100  
125  
150  
TC (°C)  
Figure 15-60. Allowable Effective Current (fC = 16 kHz): SIM6822M  
SIM6800M-DSE Rev.1.5  
Jul. 18, 2018  
SANKEN ELECTRIC CO., LTD  
http://www.sanken-ele.co.jp/en  
46  
© SANKEN ELECTRIC CO., LTD. 2014  
 
SIM6800M Series  
15.4.6 SIM6827M  
fC = 2 kHz  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
25  
50  
75  
100  
125  
150  
TC (°C)  
Figure 15-61. Allowable Effective Current (fC = 2 kHz): SIM6827M  
fC = 16 kHz  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
25  
50  
75  
100  
125  
150  
TC (°C)  
Figure 15-62. Allowable Effective Current (fC = 16 kHz): SIM6827M  
SIM6800M-DSE Rev.1.5  
Jul. 18, 2018  
SANKEN ELECTRIC CO., LTD  
http://www.sanken-ele.co.jp/en  
47  
© SANKEN ELECTRIC CO., LTD. 2014  
 
SIM6800M Series  
15.5 Short Circuit SOAs (Safe Operating Areas)  
This section provides the graphs illustrating the short circuit SOAs of the SIM6800M series devices whose output  
transistors consist of built-in IGBTs.  
Conditions: VDC ≤ 400 V, 13.5 V ≤ VCC ≤ 16.5 V, Tj = 125 °C, 1 pulse.  
40  
30  
20  
Short Circuit SOA  
10  
0
0
1
2
3
4
5
Pulse Width (µs)  
Figure 15-63. Short Circuit SOA: SIM6880M  
100  
75  
50  
25  
0
Short Circuit SOA  
0
1
2
3
4
5
Pulse Width (µs)  
Figure 15-64. Short Circuit SOA: SIM6822M, SIM6827M  
SIM6800M-DSE Rev.1.5  
Jul. 18, 2018  
SANKEN ELECTRIC CO., LTD  
http://www.sanken-ele.co.jp/en  
48  
© SANKEN ELECTRIC CO., LTD. 2014  
 
SIM6800M Series  
16. Pattern Layout Example  
This section contains the schematic diagrams of a PCB pattern layout example using an SIM6800M series device.  
For more details on through holes, see Section 10.  
Figure 16-1. Top View  
Figure 16-2. Bottom View  
SIM6800M-DSE Rev.1.5  
Jul. 18, 2018  
SANKEN ELECTRIC CO., LTD  
http://www.sanken-ele.co.jp/en  
49  
© SANKEN ELECTRIC CO., LTD. 2014  
 
SIM6800M Series  
20  
19  
17  
21  
23  
24  
VB2 VB1A  
C2  
C6  
V
VB3  
W1  
C7  
C3  
VCC1  
C8  
16  
15  
14  
13  
COM1  
HIN3  
HIN2  
26  
28  
30  
31  
33  
V1  
CN1  
1
CX1  
HIN1 VBB  
CN3  
12  
11  
10  
SD  
VB1B  
U
2
R1  
1
LS1  
OCL  
C5  
R2  
R3  
R4  
R5  
R6  
2
3
4
5
6
C1  
R17  
CN2  
9
8
7
LIN3  
LIN2  
LIN1  
LS2  
3
2
1
35  
37  
V2  
W2  
6
5
4
3
COM2  
VCC2  
FO  
C9  
CN4  
OCP  
R16  
R10  
10  
9
8
7
6
5
4
3
2
1
LS3B 40  
2
1
LS2  
LS3A  
R19  
R18  
R20  
Figure 16-3. Circuit Diagram of PCB Pattern Layout Example  
SIM6800M-DSE Rev.1.5  
Jul. 18, 2018  
SANKEN ELECTRIC CO., LTD  
http://www.sanken-ele.co.jp/en  
50  
© SANKEN ELECTRIC CO., LTD. 2014  
 
SIM6800M Series  
17. Typical Motor Driver Application  
This section contains the information on the typical motor driver application listed in the previous section, including  
a circuit diagram, specifications, and the bill of the materials used.  
Motor Driver Specifications  
IC  
Main Supply Voltage, VDC 300 VDC (typ.)  
Rated Output Power 500 W  
SIM6822M  
Circuit Diagram  
See Figure 16-3.  
Bill of Materials  
Symbol  
C1  
Part Type  
Ratings  
Symbol  
R3  
Part Type  
General  
Ratings  
100 Ω, 1/8 W  
Electrolytic  
Electrolytic  
Electrolytic  
Electrolytic  
Ceramic  
Ceramic  
Ceramic  
Ceramic  
Ceramic  
Ceramic  
Ceramic  
Ceramic  
Ceramic  
Ceramic  
Ceramic  
Ceramic  
Ceramic  
Ceramic  
Ceramic  
Ceramic  
Film  
47 μF, 50 V  
47 μF, 50 V  
47 μF, 50 V  
100 μF, 50 V  
0.1 μF, 50 V  
0.1 μF, 50 V  
0.1 μF, 50 V  
0.1 μF, 50 V  
0.1 μF, 50 V  
100 pF, 50 V  
100 pF, 50 V  
100 pF, 50 V  
100 pF, 50 V  
100 pF, 50 V  
100 pF, 50 V  
100 pF, 50 V  
100 pF, 50 V  
100 pF, 50 V  
0.01 μF, 50 V  
100 pF, 50 V  
0.033 μF, 630 V  
100 Ω, 1/8 W  
100 Ω, 1/8 W  
C2  
R4  
General  
100 Ω, 1/8 W  
100 Ω, 1/8 W  
100 Ω, 1/8 W  
0.15 Ω, 2 W  
0.15 Ω, 2 W  
0.15 Ω, 2 W  
100 Ω, 1/8 W  
3.3 kΩ, 1/8 W  
0 kΩ, 1/8 W  
100 Ω, 1/8 W  
100 Ω, 1/8 W  
100 Ω, 1/8 W  
Open  
C3  
R5  
General  
C4  
R6  
General  
C5  
R7*  
R8*  
R9*  
R10  
R16  
R17  
R18  
R19  
R20  
R21  
R22  
R23  
ZD1  
IPM1  
CN1  
CN2  
CN3  
CN4  
Metal plate  
Metal plate  
Metal plate  
General  
C6  
C7  
C8  
C9  
General  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
CX1  
R1  
General  
General  
General  
General  
General  
General  
Open  
General  
Open  
Zener diode  
IC  
VZ = 21 V (max.)  
SIM6822M  
Pin header  
Pin header  
Connector  
Connector  
Equiv. to B2P3-VH  
Equiv. to B2P5-VH  
Equiv. to MA06-1  
Equiv. to MA10-1  
General  
R2  
General  
* Refers to a part that requires adjustment based on operation performance in an actual application.  
SIM6800M-DSE Rev.1.5  
Jul. 18, 2018  
SANKEN ELECTRIC CO., LTD  
http://www.sanken-ele.co.jp/en  
51  
© SANKEN ELECTRIC CO., LTD. 2014  
 
SIM6800M Series  
Important Notes  
All data, illustrations, graphs, tables and any other information included in this document (the “Information”) as to Sanken’s  
products listed herein (the “Sanken Products”) are current as of the date this document is issued. The Information is subject to any  
change without notice due to improvement of the Sanken Products, etc. Please make sure to confirm with a Sanken sales  
representative that the contents set forth in this document reflect the latest revisions before use.  
The Sanken Products are intended for use as components of general purpose electronic equipment or apparatus (such as home  
appliances, office equipment, telecommunication equipment, measuring equipment, etc.). Prior to use of the Sanken Products,  
please put your signature, or affix your name and seal, on the specification documents of the Sanken Products and return them to  
Sanken. When considering use of the Sanken Products for any applications that require higher reliability (such as transportation  
equipment and its control systems, traffic signal control systems or equipment, disaster/crime alarm systems, various safety  
devices, etc.), you must contact a Sanken sales representative to discuss the suitability of such use and put your signature, or affix  
your name and seal, on the specification documents of the Sanken Products and return them to Sanken, prior to the use of the  
Sanken Products. The Sanken Products are not intended for use in any applications that require extremely high reliability such as:  
aerospace equipment; nuclear power control systems; and medical equipment or systems, whose failure or malfunction may result  
in death or serious injury to people, i.e., medical devices in Class III or a higher class as defined by relevant laws of Japan  
(collectively, the “Specific Applications”). Sanken assumes no liability or responsibility whatsoever for any and all damages and  
losses that may be suffered by you, users or any third party, resulting from the use of the Sanken Products in the Specific  
Applications or in manner not in compliance with the instructions set forth herein.  
In the event of using the Sanken Products by either (i) combining other products or materials or both therewith or (ii) physically,  
chemically or otherwise processing or treating or both the same, you must duly consider all possible risks that may result from all  
such uses in advance and proceed therewith at your own responsibility.  
Although Sanken is making efforts to enhance the quality and reliability of its products, it is impossible to completely avoid the  
occurrence of any failure or defect or both in semiconductor products at a certain rate. You must take, at your own responsibility,  
preventative measures including using a sufficient safety design and confirming safety of any equipment or systems in/for which  
the Sanken Products are used, upon due consideration of a failure occurrence rate and derating, etc., in order not to cause any  
human injury or death, fire accident or social harm which may result from any failure or malfunction of the Sanken Products.  
Please refer to the relevant specification documents and Sanken’s official website in relation to derating.  
No anti-radioactive ray design has been adopted for the Sanken Products.  
The circuit constant, operation examples, circuit examples, pattern layout examples, design examples, recommended examples, all  
information and evaluation results based thereon, etc., described in this document are presented for the sole purpose of reference of  
use of the Sanken Products.  
Sanken assumes no responsibility whatsoever for any and all damages and losses that may be suffered by you, users or any third  
party, or any possible infringement of any and all property rights including intellectual property rights and any other rights of you,  
users or any third party, resulting from the Information.  
No information in this document can be transcribed or copied or both without Sanken’s prior written consent.  
Regarding the Information, no license, express, implied or otherwise, is granted hereby under any intellectual property rights and  
any other rights of Sanken.  
Unless otherwise agreed in writing between Sanken and you, Sanken makes no warranty of any kind, whether express or implied,  
including, without limitation, any warranty (i) as to the quality or performance of the Sanken Products (such as implied warranty  
of merchantability, and implied warranty of fitness for a particular purpose or special environment), (ii) that any Sanken Product is  
delivered free of claims of third parties by way of infringement or the like, (iii) that may arise from course of performance, course  
of dealing or usage of trade, and (iv) as to the Information (including its accuracy, usefulness, and reliability).  
In the event of using the Sanken Products, you must use the same after carefully examining all applicable environmental laws and  
regulations that regulate the inclusion or use or both of any particular controlled substances, including, but not limited to, the EU  
RoHS Directive, so as to be in strict compliance with such applicable laws and regulations.  
You must not use the Sanken Products or the Information for the purpose of any military applications or use, including but not  
limited to the development of weapons of mass destruction. In the event of exporting the Sanken Products or the Information, or  
providing them for non-residents, you must comply with all applicable export control laws and regulations in each country  
including the U.S. Export Administration Regulations (EAR) and the Foreign Exchange and Foreign Trade Act of Japan, and  
follow the procedures required by such applicable laws and regulations.  
Sanken assumes no responsibility for any troubles, which may occur during the transportation of the Sanken Products including  
the falling thereof, out of Sanken’s distribution network.  
Although Sanken has prepared this document with its due care to pursue the accuracy thereof, Sanken does not warrant that it is  
error free and Sanken assumes no liability whatsoever for any and all damages and losses which may be suffered by you resulting  
from any possible errors or omissions in connection with the Information.  
Please refer to our official website in relation to general instructions and directions for using the Sanken Products, and refer to the  
relevant specification documents in relation to particular precautions when using the Sanken Products.  
All rights and title in and to any specific trademark or tradename belong to Sanken and such original right holder(s).  
DSGN-CEZ-16003  
SIM6800M-DSE Rev.1.5  
Jul. 18, 2018  
SANKEN ELECTRIC CO., LTD  
http://www.sanken-ele.co.jp/en  
52  
© SANKEN ELECTRIC CO., LTD. 2014  
 

相关型号:

SIM6811M

500V / 600V High Voltage 3-phase Motor Driver ICs
SANKEN

SIM6812M

500V / 600V High Voltage 3-phase Motor Driver ICs
SANKEN

SIM6813M

500V / 600V High Voltage 3-phase Motor Driver ICs
SANKEN

SIM6822M

500V / 600V High Voltage 3-phase Motor Driver ICs
SANKEN

SIM6827M

AC Motor Controller, 7.5A, DIP-40
SANKEN

SIM6827MLF2971

AC Motor Controller
SANKEN

SIM6827MLF2971

Brushless DC Motor Controller, 7.5A, PDIP30, DIP-40/30
ALLEGRO

SIM6827MV

AC Motor Controller,
SANKEN

SIM6880M

500V / 600V High Voltage 3-phase Motor Driver ICs
SANKEN

SIM700

Wireless Module Solutions
ETC

SIM700D

Wireless Module Solutions
ETC

SIM7020

SIMCom NB-IoT Module
ETC