LA76070 [SANYO]

NTSC Color Television IC; NTSC彩色电视IC
LA76070
型号: LA76070
厂家: SANYO SEMICON DEVICE    SANYO SEMICON DEVICE
描述:

NTSC Color Television IC
NTSC彩色电视IC

商用集成电路 电视 光电二极管
文件: 总27页 (文件大小:306K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Ordering number : ENN5844  
Monolithic Linear IC  
LA76070  
NTSC Color Television IC  
Overview  
Package Dimensions  
The LA76070 is an NTSC color television IC. In addition  
to providing IIC bus control based rationalization of IC  
control and the adjustment manufacturing process  
associated with the TV tube itself, it also includes all  
functions actually required in mass-produced television  
sets. As such, it is an extremely practical bus control IC.  
unit: mm  
3128-DIP52S  
[LA76070]  
52  
27  
* The LA7840/41 or LA7845N/46N is recommended as the vertical output  
IC for use with this product.  
1
26  
46.0  
Functions  
2
• I C bus control, VIF, SIF, Y, C, and deflection  
integrated on a single chip.  
0.75  
0.48  
1.05  
1.78  
SANYO: DIP52S  
Specifications  
Maximum Ratings at Ta = 25°C  
Parameter  
Symbol  
V4 max  
V26 max  
I21 max  
Pd max  
Topr  
Conditions  
Rating  
9.6  
Unit  
V
Maximum power supply voltage  
9.6  
25  
V
Maximum power supply current  
Allowable power dissipation  
Operating temperature  
mA  
W
Ta 65°C*  
1.3  
–10 to +65  
–55 to +150  
°C  
°C  
Storage temperature  
Tstg  
Note: *Provided on a printed circuit board: 83.2 × 86.0 × 1.6 mm, material: Bakelite  
Operating Conditions at Ta = 25°C  
Parameter  
Symbol  
V4  
Conditions  
Rating  
7.6  
Units  
V
Recommended power supply voltage  
Recommended power supply current  
Operating power supply voltage range  
Operating power supply current range  
V26  
7.6  
V
I21  
19  
mA  
V
V4 op  
V26 op  
121 op  
7.3 to 7.9  
7.3 to 7.9  
16 to 25  
V
mA  
Any and all SANYO products described or contained herein do not have specifications that can handle  
applications that require extremely high levels of reliability, such as life-support systems, aircraft’s  
control systems, or other applications whose failure can be reasonably expected to result in serious  
physical and/or material damage. Consult with your SANYO representative nearest you before using  
any SANYO products described or contained herein in such applications.  
SANYO assumes no responsibility for equipment failures that result from using products at values that  
exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other  
parameters) listed in products specifications of any and all SANYO products described or contained  
herein.  
SANYO Electric Co.,Ltd. Semiconductor Company  
TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110-8534 JAPAN  
70999 RM (OT) No. 5844-1/27  
LA76070  
Electrical Characteristics at Ta = 25°C, V = V4 = V26 = 7.6 V, I = I21 = 19 mA  
CC  
CC  
Ratings  
typ  
Parameter  
Symbol  
Conditions  
Unit  
min  
max  
[Circuit Voltages and Currents]  
Horizontal power supply voltage  
IF power supply current (V4)  
HVCC  
7.2  
7.6  
46  
8.0  
V
I4 (IFICC  
)
IF AGC: 5 V  
38  
54  
mA  
Video, chroma,  
and vertical power supply current (V26)  
I26 (YCVICC  
)
79.5  
93.5  
107.5  
mA  
[VIF Block]  
AFT output voltage with no signal  
Video output voltage with no signal  
APC pull-in range (U)  
VAFTn  
VOn  
With no input signal  
With no input signal  
2.8  
4.7  
1.0  
1.0  
7.7  
0
3.8  
4.9  
4.8  
5.1  
Vdc  
Vdc  
MHz  
MHz  
Vdc  
Vdc  
dBµ  
dBµ  
Vdc  
Vdc  
fPU  
After APC and PLL DAC adjustment  
After APC and PLL DAC adjustment  
CW = 91 dBµ, DAC = 0  
CW = 91 dBµ, DAC = 63  
DAC = 0  
APC pull-in range (L)  
fPL  
Maximum RF AGC voltage  
Minimum RF AGC voltage  
RF AGC Delay Pt (@DAC = 0)  
RF AGC Delay Pt (@DAC = 63)  
Maximum AFT output voltage  
Minimum AFT output voltage  
AFT detection sensitivity  
Video output amplitude  
Synchronization signal tip level  
Input sensitivity  
VRFH  
VRFL  
RFAGC0  
RFAGC63  
VAFTH  
VAFTL  
VAFTS  
VO  
8.2  
0.2  
9.0  
0.4  
96  
DAC = 63  
86  
7.6  
1.2  
CW = 93 dBµ, variable frequency  
CW = 93 dBµ, variable frequency  
CW = 93 dBµ, variable frequency  
93 dBµ, 87.5% Video MOD  
93 dBµ, 87.5% Video MOD  
Output at –3 dB  
6.2  
0.5  
33  
6.5  
0.9  
25  
2.0  
2.6  
43  
2.5  
2
17 mV/kHz  
1.8  
2.4  
2.2  
2.8  
46  
Vp-p  
Vdc  
dBµ  
VOtip  
Vi  
Video-to-sync ratio (@100 dBµ)  
Differential gain  
V/S  
100 dBµ, 87.5% Video MOD  
93 dBµ, 87.5% Video MOD  
93 dBµ, 87.5% Video MOD  
CW = 93 dBµ  
2.4  
55  
3.0  
10  
DG  
%
deg  
dB  
Differential phase  
DP  
2
10  
Video signal-to-noise ratio  
920 kHz beat level  
S/N  
58  
I920  
V3.58 MHz/V920 kHz  
–50  
dB  
[Video and Switching Block]  
External video gain  
AUXG  
AUXS  
AUXC  
INTO  
Stair step, 1 V p-p  
Stair step, 1 V p-p  
4.2 MHz, 1Vp-p  
5.5  
–0.2  
60  
6.0  
0.0  
6.5  
dB  
Vdc  
dB  
External video sync signal tip voltage  
External video crosstalk  
Internal video output level  
[SIF Block]  
+0.2  
93 dBµ, 87.5% Video MOD  
–0.1  
0.0  
+0.1  
Vp-p  
FM detector output voltage  
FM limiting sensitivity  
SOADJ  
SLS  
464  
50  
474  
484 mVrms  
Output at –3 dB  
Output at –3 dB  
50  
dBµ  
Hz  
FM detector output bandwidth  
SF  
100 k  
FM detector output total  
harmonic distortion  
STHD  
FM = ±25 kHz  
AM = 30 %  
0.5  
%
AM rejection ratio  
SAMR  
SSN  
40  
60  
dB  
dB  
SIF signal-to-noise ratio  
[Audio Block]  
Maximum gain  
AGMAX  
ARANGE  
AF  
1 kHz  
–2.5  
60  
0.0  
67  
+2.5  
+3.0  
0.5  
dB  
dB  
dB  
dB  
dB  
dB  
Adjustment range  
Frequency characteristics  
Muting  
20 kHz  
–3.0  
75  
AMUTE  
ATHD  
ASN  
20 kHz  
Total harmonic distortion  
Signal-to-noise ratio  
[Chroma Block]  
1 kHz, 400 m Vrms, Vo1: MAX  
DIN.Audio  
65  
75  
ACC amplitude characteristics 1  
ACC amplitude characteristics 2  
B-Y/Y amplitude ratio  
Color control characteristics 1  
Color control characteristics 2  
ACCM1  
ACCM2  
CLRBY  
CLRMN  
CLRMM  
Input: +6 dB/0 dB, 0 dB = 40 IRE  
Input: –14 dB/0 dB  
0.8  
0.7  
100  
1.6  
33  
1.0  
1.0  
125  
1.8  
40  
1.2  
1.1  
140  
2.1  
50  
times  
times  
%
Color MAX/NOM  
Color MAX/MIN  
times  
dB  
Continued on next page.  
No. 5844-2/27  
LA76070  
Continued from preceding page.  
Ratings  
typ  
Parameter  
Symbol  
Conditions  
Unit  
min  
max  
Color control sensitivity  
CLRSE  
TINCEN  
TINMAX  
TINMIN  
TINSE  
RB  
1
2
4
–3  
60  
%/bit  
deg  
deg  
deg  
Tint center  
TINT NOM  
–15  
30  
Tint control maximum  
TINT MAX  
TINT MIN  
45  
Tint control minimum  
–60  
0.7  
–45  
–30  
Tint control sensitivity  
2.0 deg/bit  
0.95  
Demodulator output ratio R-Y/B-Y  
Demodulator output ratio G-Y/B-Y  
Demodulator angle B-Y/R-Y  
Demodulator angle G-Y/B-Y  
Killer operating point  
0.75  
0.28  
92  
0.85  
0.33  
99  
GB  
0.38  
107  
ANGBR  
ANGGB  
KILL  
deg  
deg  
dB  
227  
–42  
–350  
350  
237  
–37  
247  
0 dB = 40 IRE  
–30  
Chrominance VCO free-running frequency  
Chrominance pull-in range (+)  
Chrominance pull-in range (–)  
Auto-flesh characteristic 73°  
Auto-flesh characteristic 118°  
Auto-flesh characteristic 163°  
[Video Block]  
CVCOF  
PULIN+  
PULIN–  
AF 073  
AF 118  
AF 163  
Deviation from 3.579545 MHz  
+350  
Hz  
Hz  
–350  
20  
Hz  
5
–7  
10  
0
deg  
deg  
deg  
+7  
–20  
–10  
–5  
Overall video gain  
(Contrast set to maximum)  
CONT63  
CONT32  
CONT0  
Yf0  
10  
–7.5  
–17  
12  
–6.0  
–14  
–3.5  
–20  
14  
–4.5  
–11  
0.0  
dB  
dB  
dB  
dB  
dB  
Contrast adjustment characteristic  
(Normal/maximum)  
Contrast adjustment characteristic  
(Minimum/maximum)  
Video frequency characteristic  
Trap & D = 0  
–6.0  
Chrominance trap level  
Trap & D = 1  
Ctrap  
DC propagation  
ClampG  
YDLY  
95  
100  
430  
13  
105  
%
ns  
Y delay, f0 = 1  
Maximum black stretching gain  
(normal)  
BKSTmax  
Sharp16  
Sharp31  
Sharp0  
6
4
20  
8
IRE  
dB  
dB  
dB  
V
6
Sharpness adjustment range (max)  
(min)  
9.0  
–6.0  
1.4  
11.5  
–3.5  
1.6  
14.0  
–1.0  
1.8  
Horizontal/vertical blanking output level  
[OSD Block]  
RGBBLK  
OSD fast switch threshold  
Red RGB output level  
Green RGB output level  
Blue RGB output level  
FSTH  
0.9  
220  
220  
220  
1.2  
250  
250  
250  
1.7  
280  
280  
280  
V
ROSDH  
GOSDH  
BOSDH  
IRE  
IRE  
IRE  
Analog OSD R output level  
gain matching  
RRGB  
LRRGB  
GRGB  
LGRGB  
BRGB  
1.5  
45  
1.9  
50  
2.3  
60  
Ratio  
%
Linearity  
Analog OSD G output level  
gain matching  
1.5  
45  
1.9  
50  
2.3  
60  
Ratio  
%
Linearity  
Analog OSD B output level  
gain matching  
1.5  
45  
1.9  
50  
2.3  
60  
Ratio  
%
Linearity  
LBRGB  
[RGB Output (cutoff and drive) Block]  
Brightness control (normal)  
High brightness (maximum)  
Low brightness (minimum)  
BRT64  
BRT127  
BRT0  
2.1  
15  
2.65  
20  
3.2  
25  
V
IRE  
IRE  
–25  
–20  
–15  
Continued on next page.  
No. 5844-3/27  
LA76070  
Continued from preceding page.  
Ratings  
typ  
Parameter  
Symbol  
Conditions  
Unit  
min  
2.1  
2.45  
max  
3.2  
(minimum)  
Vbias0  
Vbias127  
Vbiassns  
RBout127  
Gout127  
RBout0  
2.65  
3.0  
4
V
V
Cutoff control  
(Bias control)  
(maximum)  
Resolution  
3.55  
mV/Bit  
Vp-p  
Vp-p  
dB  
2.9  
2.4  
9
Maximum output  
Drive adjustment  
[Deflection Block]  
Output attenuation  
7
11  
Sync separator sensitivity  
Ssync  
fH  
3
15600  
±400  
0
8
13  
IRE  
Hz  
Hz  
V
Horizontal free-running frequency  
deviation  
15734  
15850  
Horizontal pull-in range  
fH PULL  
V Hsat  
Horizontal output pulse saturation  
voltage  
0.06  
0.4  
Horizontal output pulse phase  
HPHCEN  
9.5  
10.5  
±2  
11.5  
µs  
µs  
Horizontal position adjustment range  
HPHrange  
4 bits  
Horizontal position adjustment  
maximum variability  
HPHstep  
VXRAY  
530  
ns  
V
X-ray protection circuit operating  
voltage  
0.54  
0.64  
0.74  
[Vertical screen Size Adjustment]  
Vertical ramp output amplitude @32  
Vertical ramp output amplitude @0  
Vertical ramp output amplitude @63  
[Vertical screen Position Adjustment]  
Vertical ramp DC voltage @32  
Vertical ramp DC voltage @0  
Vsize32  
Vsize0  
VSIZE: 100000  
VSIZE: 000000  
VSIZE: 111111  
0.47  
0.13  
0.80  
0.82  
0.48  
1.15  
1.17  
0.83  
1.50  
Vp-p  
Vp-p  
Vp-p  
Vsize63  
Vdc32  
Vdc0  
VDC: 100000  
VDC: 000000  
VDC: 111111  
3.6  
3.2  
4.0  
3.8  
3.4  
4.2  
4.0  
3.6  
4.4  
Vdc  
Vdc  
Vdc  
Vertical ramp DC voltage @63  
Vdc63  
No. 5844-4/27  
LA76070  
LA76070 BUS: Initial Conditions  
Initial test conditions  
Register  
Initial test conditions  
Register  
(continued)  
T Enable  
0 HEX  
1 HEX  
0 HEX  
0 HEX  
4 HEX  
0 HEX  
0 HEX  
20 HEX  
Video SW  
PLL Tuning  
Audio Mute  
0 HEX  
40 HEX  
1 HEX  
20 HEX  
0 HEX  
20 HEX  
0 HEX  
0 HEX  
20 HEX  
00 HEX  
00 HEX  
00 HEX  
0 HEX  
7F HEX  
7F HEX  
0 HEX  
40 HEX  
0 HEX  
40 HEX  
0 HEX  
0 HEX  
0 HEX  
10 HEX  
0 HEX  
40 HEX  
0 HEX  
40 HEX  
0 HEX  
4 HEX  
10 HEX  
0 HEX  
0 HEX  
00 HEX  
Video Mute  
Sync Kill  
AFC Gain  
APC Det Adjust  
Horizontal Phase  
IF AGC SW  
V CD Mode  
Vertical DC  
Vertical Kill  
Col Kill  
AFT Defeat  
RF AGC Delay  
Vertical Size  
Red Bias  
Green Bias  
Blue Bias  
Blanking Defeat  
Red Drive  
Blue Drive  
Color Difference Mode Enable  
Brightness Control  
Contrast Test Enable  
Contrast Control  
Trap & Delay Enable SW  
Auto Flesh  
Black Stretch Defeat  
Sharpness Control  
Tint Test Enable  
Tint Control  
Color Test Enable  
Color Control  
Vertical Test  
Video Level  
FM Level  
BNI Enable  
Audio SW  
Volume Control  
No. 5844-5/27  
LA76070  
LA76070 BUS: Control Register Descriptions  
Control register descriptions  
Bits  
Register name  
T Enable  
General descriptions  
Disable the Test SW & enable Video Mute SW  
Disable video outputs  
1
1
1
1
3
1
1
6
1
7
1
6
1
6
1
1
6
7
7
7
1
6
1
6
1
7
1
7
1
1
1
5
1
7
1
7
3
3
5
1
1
6
Video Mute  
Sync Kill  
Force free-run mode  
AFC Gain  
Select horizontal first loop gain  
Align sync to flyback phase  
Disable IF and RF AGC  
Disable AFT output  
Horizontal Phase  
IF AGC SW  
AFT Defeat  
RF AGC Delay  
Video SW  
Align RF AGC threshold  
Select Video Signal (INT/EXT)  
Align IF VCO frequency  
Disable audio outputs  
PLL Tuning  
Audio Mute  
APC Det Adjust  
V Count Down Mode  
Vertical DC  
Align AFT crossover  
Select vertical countdown mode  
Align vertical DC bias  
Vertical Kill  
Disable vertical output  
Color Kill  
Enable Color Killer  
Vertical Size  
Red Bias  
Align vertical amplitude  
Align Red OUT DC level  
Align Green OUT DC level  
Align Blue OUT DC level  
Disable RGB output blanking  
Align Red OUT AC level  
Enable drive DAC test mode  
Align Blue OUT AC level  
Enable color difference mode  
Customer brightness control  
Enable Contrast DAC test mode  
Customer Contrast control  
Select luma filter mode  
Green Bias  
Blue Bias  
Blanking Defeat  
Red Drive  
Drive Test  
Blue Drive  
Color Difference Mode Enable  
Brightness Control  
Contrast Test  
Contrast Control  
Trap & Delay-SW  
Auto Flesh Enable  
Black Stretch Defeat  
Sharpness Control  
Tint Test  
Enable autoflesh function  
Disable black stretch  
Customer sharpness control  
Enable tint DAC test mode  
Customer tint control  
Tint Control  
Color Test  
Enable color DAC test mode  
Customer color control  
Color Control  
Vertical Test  
Video Level  
Select vertical DAC test modes  
Align IF video level  
FM Level  
Align WBA output level  
BNI Enable  
Enable black noise inverter  
Select Audio Signal (INT/EXT)  
Customer volume control  
Audio SW  
Volume Control  
No. 5844-6/27  
LA76070  
LA76070 BUS: Control Register Truth Table  
Control register truth table  
Register name  
T Enable  
0 HEX  
Test Enable  
Active  
1 HEX  
Test Disable  
Mute  
Audio Mute  
Video Mute  
Active  
Mute  
Sync Kill  
Sync active  
Slow  
Sync Killed  
Fast  
AFC Gain  
IF AGC SW  
AGC active  
AFT active  
BNI active  
Standard  
Vrt active  
3.58 trap  
AF Off  
AGC Defeat  
AFT Defeat  
BNI Defeat  
Non-Stand  
Vrt Killed  
8.00 APF  
AF On  
AFT Defeat  
BNI Enable  
Count Down Mode  
Vertical Kill  
F0 Select  
Auto Flesh Enable  
Overload Enable  
Tint DAC Test  
Color DAC Test  
Contrast DAC Test  
Drive DAC Test  
Black Stretch Defeat  
Blanking Defeat  
Color Diff Mode Enable  
Vertical Test  
Ovld Off  
Normal  
Ovld On  
Test Mode  
Test Mode  
Test Mode  
Test Mode  
Blk Str Off  
No Blank  
C Diff Mode  
Ver Size Test  
Normal  
Normal  
Normal  
Blk Str On  
Blanking  
RGB Mode  
Normal  
No. 5844-7/27  
LA76070  
LA76070 Bit Map (‘96.08.01)  
IC address: BAH (101111010)  
Sub address  
D0....D7  
$00  
MSB  
DA0  
DATA  
DA3  
*
LSB  
DA7  
DA1  
DA2  
DA4  
DA5  
DA6  
*
*
*
T_Enable  
*
Vid_Mute  
Sync_Kill  
0
(tr0)  
0
1
H_Phase  
0
$01  
*
*
*
*
AFC Gain  
(tr1)  
0
1
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
$02  
IFAGC SW  
AFT DEF  
0
RF_AGC_Delay  
(tr2)  
0
1
0
1
1
1
0
0
0
1
1
0
0
0
0
0
0
0
0
0
1
1
0
0
1
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
$03  
VIDEO SW  
PLL TUNING  
(tr3)  
0
1
0
$04  
*
Aud_Mute  
APC DET ADJUST  
(tr4)  
1
0
$05  
V CD MODE  
*
Ver_dc  
(tr5)  
0
0
$06  
Ver_kill  
Col_kill  
0
Ver_Size  
(tr6)  
0
0
$07  
*
R_Bias  
(tr7)  
0
0
0
1
1
1
0
$08  
*
*
G_Bias  
(tr8)  
0
$09  
B_Bias  
(tr9)  
0
$0A  
BLK_DEF  
R_Drive  
(tr10)  
$0B  
0
1
Drv_Test  
B_Drive  
(tr11)  
$0C  
0
1
Bright  
0
C_Diff  
(tr12)  
$0D  
0
Cot_Test  
Contrast  
0
(tr13)  
$0E  
0
1
A Fresh  
0
0
Black ST  
0
0
Sharpness  
0
Trap & D_SW  
(tr14)  
$0F  
0
0
Tint  
0
Tint_Test  
(tr15)  
$10  
0
1
0
0
0
Col_Test  
Color  
0
(tr16)  
$11  
0
1
0
0
0
V_test  
0
*
*
*
*
*
(tr17)  
$12  
0
FM LEVEL  
0
VIDEO LEVEL  
(tr18)  
$13  
1
N/I SW  
0
0
0
0
1
0
0
VOLUME  
0
0
0
AUDIO SW  
0
(tr19)  
0
No. 5844-8/27  
LA76070  
Measurement Conditions at Ta = 25°C, V = V4 = V26 = 7.6 V, I = I = 19 mA  
CC  
CC  
21  
Measurement  
point  
Parameter  
Symbol  
Input signal  
Measurement method  
Bus conditions  
[Circuit Voltages and Currents]  
Horizontal power supply voltage  
Apply a 19mA current to pin 21 and  
measure the pin 21 voltage at that time  
HVCC  
I4  
Initial conditions  
Initial conditions  
Initial conditions  
21  
4
Apply a voltage of 7.6 V to pin 4 and  
measure (in mA) the DC current that flows into the IC.  
(Apply 5 V to the IF AGC.)  
IF power supply current (pin 4)  
No signal  
(IFICC  
)
Video/vertical power supply current  
(pin 26)  
I26  
(DEFICC  
Apply a voltage of 7.6 V to pin 26 and  
measure (in mA) the DC current that flows into the IC  
26  
)
No. 5844-9/27  
LA76070  
VIF Block Input Signals and Measurement Conditions  
1. All input signals are applied to PIF IN (pin 10) as shown in the measurement circuit diagrams.  
2. The input signal voltage values are all the value of VIF IN (pin 10) as shown in the measurement circuit diagrams.  
3. The table below lists the input signals and their levels.  
Input signal  
Waveform  
Condition  
SG1  
45.75 MHz  
SG2  
SG3  
SG4  
42.17 MHz  
41.25 MHz  
Variable frequency  
45.75 MHz  
87.5 % video modulation  
10-step staircase waveform  
(Subcarrier: 3.58 MHz)  
SG5  
SG6  
SG7  
45.75 MHz  
87.5 % video modulation  
Sweep signal  
(APL: 50 IRE  
Sweep signal level: 40 IRE)  
45.75 MHz  
87.5 % video modulation  
Flat field signal  
4. Perform the following D/A converter adjustments in the order listed before testing.  
Item  
APC DAC  
PLL DAC  
Measurement point  
Input signal  
No signal, IF.AGC.DEF = 1  
SG1, 93 dBµ  
Adjustment  
13  
13  
Set up the DAC value so that the pin 13 DC voltage is as close to 3.8 V as possible  
Set up the DAC value so that the pin 13 DC voltage is as close to 3.8 V as possible  
Video  
45  
SG7, 93 dBµ  
Set up the DAC value so that the pin 45 output level is as close to 2.0 V p-p as  
possible  
No. 5844-10/27  
LA76070  
Measurement  
point  
Parameter  
Symbol  
Input signal  
Measurement procedure  
Bus conditions  
[VIF Block]  
Measure the pin 13 DC voltage when  
IF.AGC. DEF is "1"  
After performing the adjustments  
described in section 4  
AFT output voltage with no signal  
Video output voltage with no signal  
VAFTn  
VOn  
No signal  
No signal  
13  
45  
Measure the pin 45 DC voltage when  
IF.AGC. DEF is "1"  
After performing the adjustments  
described in section 4  
Connect an oscilloscope to pin 45 and modify  
the SG4 signal to be a frequency above 45.75  
MHz so that the PLL circuit becomes unlocked.  
(Beating will occur in this state.) Gradually  
lower the SG4 frequency and measure the  
frequency at which the PLL circuit locks.  
Similarly, modify the frequency to a value  
below 45.75 MHz so that the PLL circuit  
becomes unlocked. Gradually raise the SG4  
frequency and measure the frequency at which  
the PLL circuit locks.  
SG4  
93 dBµ  
After performing the adjustments  
described in section 4  
APC pull-in range (U), (L)  
fPU, fPL  
45  
SG1  
91 dBµ  
Set the RF AGC DAC to 0 and measure the pin After performing the adjustments  
Maximum RF AGC voltage  
Minimum RF AGC voltage  
VRFH  
VRFL  
6
6
6 DC voltage  
described in section 4  
SG1  
91 dBµ  
Set the RF AGC DAC to 63 and measure the  
pin 6 DC voltage  
After performing the adjustments  
described in section 4  
Set the RF AGC DAC to 0 and determine the  
input level such that the pin 6 DC voltage  
becomes 3.8 V ±0.5 V  
RF AGC Delay Pt  
(@DAC = 0)  
After performing the adjustments  
described in section 4  
RFAGC0  
RFAGC63  
VAFTH  
SG1  
SG1  
6
6
Set the RF AGC DAC to 63 and determine the  
input level such that the pin 4 DC voltage  
becomes 3.8 V ±0.5 V  
RF AGC Delay Pt  
(@DAC = 63)  
After performing the adjustments  
described in section 4  
Set the SG4 signal frequency to 44.75 MHz  
and input that signal. Measure the pin 13 DC  
voltage at that time.  
SG4  
93 dBµ  
After performing the adjustments  
described in section 4  
Maximum AFT output voltage  
Minimum AFT output voltage  
13  
13  
Set the SG4 signal frequency to 46.75 MHz  
and input that signal. Measure the pin 13 DC  
voltage at that time.  
SG4  
93 dBµz  
After performing the adjustments  
described in section 4  
VAFTL  
Modify the SG4 frequency to determine the  
SG4  
frequency deviation (f) such that the pin  
After performing the adjustments  
described in section 4  
AFT detection sensitivity  
VAFTS  
13  
93 dBµz 13 DC voltage changes from 2.5 V to 5.0 V.  
VAFTS = 2500/f [mV/kHz]  
SG7  
93 dBµ  
Observe pin 45 with an oscilloscope and  
measure the p-p value of the waveform  
After performing the adjustments  
described in section 4  
Video output amplitude  
VO  
45  
45  
SG1  
93 dBµ  
After performing the adjustments  
described in section 4  
Synchronization signal tip level  
VOtip  
Measure the pin 45 DC voltage  
Observe pin 45 with an oscilloscope and measure  
the peak-to-peak value of the waveform. Next,  
gradually lower the input level to determine the input  
level such that the output becomes –3 dB below the  
video signal amplitude VO.  
After performing the adjustments  
described in section 4  
Input sensitivity  
Vi  
SG7  
45  
45  
Observe pin 45 with an oscilloscope and  
determine the value of the Vy/Vs ratio by  
measuring the peak-to-peak value of the sync  
waveform (Vs) and the peak-to-peak value of the  
luminance signal (Vy).  
SG7  
100 dBµ  
After performing the adjustments  
described in section 4  
Video-to-sync ratio (@ 100 dBµ)  
V/S  
SG5  
93 dBµ  
After performing the adjustments  
described in section 4  
Differential gain  
DG  
DP  
Measure pin 45 with a vectorscope  
Measure pin 45 with a vectorscope  
45  
45  
SG5  
93 dBµ  
After performing the adjustments  
described in section 4  
Differential phase  
Pass the noise voltage that occurs on pin  
45 through a 10 kHz to 4 MHz bandpass filter,  
measure that voltage (Vsn) with an rms  
voltmeter. Use that value to calculate 20 × log  
(1.43/Vsn).  
SG1  
93 dBµ  
After performing the adjustments  
described in section 4  
Video signal-to-noise ratio  
S/N  
45  
Input SG1 at 93 dBµ and measure the pin  
12 DC voltage (V12).Mix three signals: SG1 at  
87 dBµ, SG2 at 82 dBµ, and SG3 at 63 dBµ,  
and input that signal to VIF IN. Now, apply the  
V12 voltage to pin 12 using an external power  
supply. Measure the difference between the  
3.58 MHz component and the 920 kHz  
SG1  
SG2  
SG3  
After performing the adjustments  
described in section 4  
920 kHz beat level  
I920  
45  
component with a spectrum analyzer.  
No. 5844-11/27  
LA76070  
Video Switch Block - Input Signals and Measurement Conditions  
1. Unless otherwise indicated, these measurements are to be performed with no signal applied to PIF IN (pin 10) and  
with the D/A converter IF.ACG.SW set to "1".  
2. The table below lists the input signals and their labels.  
Input signal  
Waveform  
Condition  
10-step staircase waveform  
1 V p-p  
SG8  
4.2 MHz  
1 Vp-p  
SG9  
Measurement  
point  
Parameter  
Symbol  
AUXG  
Input signal  
Measurement procedure  
Bus conditions  
[VIF Block]  
Observe pin 42 with an oscilloscope, measure  
the peak-to-peak value of the waveform, and  
perform the following calculation.  
Pin 1  
SG8  
External video gain  
VIDEO.SW = "1"  
42  
42  
AUXG = 20 × log (Vp-p) [dB]  
Observe pin 42 with an oscilloscope and  
measure the synchronizing signal tip voltage  
in the waveform.  
Determine the voltage difference between this  
measured value and synchronizing signal tip  
level (VOtip) measured in the VIF block.  
External video sync signal tip  
voltage  
Pin 1  
SG8  
AUXS  
VIDEO.SW = "1"  
VIDEO.SW = "0"  
Measure the 4.2 MHz component in the pin 42  
signal with a spectrum analyzer.Convert this  
measurement to a V peak-to-peak value and  
perform the following calculation.  
Pin 1  
SG8  
External video crosstalk  
Internal video output level  
AUXC  
INT0  
42  
42  
AUXG = 20 × log (1.4/Vp-p) [dB]  
Observe pin 45 with an oscilloscope and  
measure the peak-to-peak value of the  
waveform. Determine the difference between  
this measured value and the video output  
amplitude (VO) measured in the VIF block.  
After performing the adjustments  
described in section 4  
IF. AGC. SW = "0"  
Pin 10  
SG7  
(VIF block)  
93 dBµ  
VIDEO. SW = "0"  
No. 5844-12/27  
LA76070  
SIF Block (FM Block) - Input Signals and Measurement Conditions  
Unless otherwise indicated, set up the following conditions for each of the following measurements.  
1. Bus control condition: IF.AGC.DEF = 1  
2. SW: IF1 = off  
3. Apply the input signal to pin 49 and use a 4.5 MHz carrier signal.  
Measurement  
point  
Parameter  
Symbol  
Input signal  
Measurement procedure  
Bus conditions  
Adjust the DAC (FM.LEVEL) so that the pin 7  
FM detector output 1kHz component is as  
close to 474 mV rms as possible, and  
90 dBµ,  
fm = 1 kHz,  
FM detector output voltage  
SOADJ  
7
FM = ±25 kHz measure the output at that time in mV rms.  
Record this measurement as SV1.  
Determine the input level (in dBµ) such that  
fm = 1 kHz,  
FM limiting sensitivity  
SLS  
SF  
the pin 7 FM detector output 1kHz component  
FM = ±25 kHz  
FM.LEVEL = adjusted value  
FM.LEVEL = adjusted value  
FM.LEVEL = adjusted value  
7
7
7
is –3 dB down from the SV1 value  
Determine the modulation frequency  
90 dBµ,  
FM detector output bandwidth  
bandwidth (Hz) that is –3 dB or higher relative  
FM = ±25 kHz  
to the pin 7 FM detector output SV1 value  
90 dBµ,  
FM detector output total harmonic  
distortion  
Determine the total harmonic distortion in the  
fm = 1 kHz,  
STHD  
pin 7 FM detector output 1kHz component  
FM = ±25 kHz  
Measure the pin 7 FM detector output 1kHz  
90 dBµ,  
fm = 1 kHz,  
AM = 30%  
component (in mV rms).  
AM rejection ratio  
SAMR  
SSN  
Record this measured value as SV2 and  
perform the following calculation.  
SAMR = 20 × log (SV1/SV2) [dB]  
FM.LEVEL = adjusted value  
FM.LEVEL = adjusted value  
7
7
Set SW1:IF1 to the "ON"  
Measure the pin 7 noise level (in mV rms).  
Record this measured value as SV3 and  
perform the following calculation.  
SSN = 20 × log (SV1/SV3) [dB]  
90 dBµ,  
CW  
SIF signal-to-noise ratio  
Audio Block - Input Signals and Test Conditions  
Measurement  
point  
Parameter  
Symbol  
Input signal  
Measurement procedure  
Bus conditions  
Measure the output pin 1kHz component  
(V1: mV rms) and perform the following  
400m Vrms calculation.  
AGMAX = 20 × log (V1/400) [dB]  
1 kHz, CW  
VOLUME = "111111"  
AUDIO.MUTE = "0"  
Maximum gain  
AGMAX  
51  
Measure the output pin 1kHz component  
(V2: mV rms) and perform the following  
400m Vrms calculation.  
AGMAX = 20 × log (V1/V2) [dB]  
1 kHz, CW  
VOLUME = "000001"  
AUDIO.MUTE = "0"  
Variability range  
ARANGE  
AF  
51  
51  
Measure the output pin 20kHz component  
20 kHz, CW (V3: mV rms) and perform the following  
400m Vrms calculation.  
VOLUME = "111111"  
AUDIO.MUTE = "0"  
Frequency characteristics  
AF = 20 × log (V3/V1) [dB]  
Measure the output pin 20kHz component  
20 kHz, CW (V4: mV rms) and perform the following  
400m Vrms calculation.  
VOLUME = "000000"  
AUDIO.MUTE = "0"  
Muting  
AMUTE  
ATHD  
ASN  
51  
51  
AMUTE = 20 × log (V3/V4) [dB]  
1 kHz, CW  
400m Vrms output pin 1kHz component  
Measure the noise level (DIN.AUDIO) on  
Determine the total harmonic distortion in  
VOLUME = "111111"  
AUDIO.MUTE = "0"  
Total harmonic distortion  
Signal-to-noise ratio  
the output pin (V5: mV rms) and perform the  
following calculation.  
VOLUME = "111111"  
AUDIO.MUTE = "0"  
No signal  
51  
ASN = 20 × log (V1/V5) [dB]  
No. 5844-13/27  
LA76070  
Chrominance Block - Input Signals and Measurement Conditions  
Unless otherwise indicated, set up the following conditions for each of the following measurements.  
1. VIF and SIF blocks: No signal  
2. Deflection block: Input a horizontal and vertical composite synchronizing signal, and assure that the deflection block  
is locked to the synchronizing signal. (Refer to the “Deflection Block - Input Signals and Measurement Conditions”  
section.)  
3. Bus control conditions: All conditions set to the initial conditions unless otherwise specified.  
4. Y input: No signal  
5. C input: The C1IN input (pin 40) must be used.  
6. The following describes the method for calculating the demodulation angle.  
B-Y axis angle = tan-1 (B (0)/B (270) + 270°  
R-Y axis angle = tan-1 (R (180)/R (90) + 90°  
G-Y axis angle = tan-1 (G (270)/G (180) + 180°  
R-Y axis  
B-Y axis  
G-Y axis  
7. The following describes the method for calculating the AF angle.  
BR ... The ratio between the B-Y and R-Y demodulator outputs.  
θ ...... ANGBR: The B-Y/R-Y demodulation angle  
R-Y/B-Y × BR-Cosθ  
AFXXX = tan-1  
]
[
Sinθ  
8. Attach a TV crystal externally to pin 15.  
No. 5844-14/27  
LA76070  
Chrominance Input Signals  
C-1  
X IRE signal (L-X)  
C-2  
C-3  
C-4  
(However, if a frequency is specified that frequency must be used.)  
C-5  
No. 5844-15/27  
LA76070  
Measurement  
point  
Parameter  
[Chroma Block]  
Symbol  
Input signal  
Measurement procedure  
Bus and other conditions  
Bout  
Measure the output amplitudes when the  
chrominance signal input is 0 dB and when  
that input is +6 dB and calculate the ratio.  
ACCM1 = 20 × log (+6 dBdata/0dBdata)  
C-1  
0 dB  
+6 dB  
ACC amplitude characteristic 1  
ACC amplitude characteristic 2  
ACCM1  
ACCM2  
30  
Bout  
Measure the output amplitude when the  
chrominance signal input is –14 dB and  
calculate the ratio.  
C-1  
–14 dB  
30  
30  
ACCM2 = 20 × log (–14 dBdata/0dBdata)  
YIN: L77  
C-1:  
No signal  
Measure the Y output level  
(Record this measurement as V1)  
Next, input a signal to CIN, and (with YIN a  
sync-only signal) measure the output level.  
(Record this measurement as V2)  
B-Y/Y amplitude ratio  
CLRBY  
C-2  
Calculate CLRBY from the following formula.  
CLRBY = 100 × (V2/V1) + 15%  
TR24:  
Measure V1: the output amplitude when the  
color control is maximum, and V2: the output  
amplitude when the color control is nominal.  
Calculate CLRMN as V1/V2.  
Saturation  
01111111  
Saturation  
01000000  
Color control characteristic 1  
Color control characteristic 2  
Color control sensitivity  
CLRMN  
CLRMN  
CLRSE  
C-3  
C-3  
C-3  
30  
30  
Measure V3: the output amplitude when the  
color control is minimum. Calculate CLRMM  
as CLRMN = 20 × log (V1/V3).  
TR28:  
Saturation  
00000000  
Measure V4: the output amplitude when the  
color control is 90, and V5: the output amplitude Saturation  
when the color control is 38. Calculate CLRSE 01011010  
from the following formula.  
CLRSE = 100 × (V4 – V5)/(V2 × 52)  
TR24:  
30  
30  
30  
Saturation  
00100110  
Measure all sections of the output waveform  
and calculate the B-Y axis angle  
TR23: Tint  
00111111  
Tint center  
TINCEN  
TINMAX  
C-1  
C-1  
Measure all sections of the output waveform,  
calculate the B-Y axis angle, and calculate  
TINMAX from the following formula.  
TR23: Tint  
01111111  
Tint control maximum  
TINMAX = <the B-Y axis angle> – TINCEN  
Measure all sections of the output waveform,  
calculate the B-Y axis angle, and calculate  
TINMIN from the following formula.  
TR23: Tint  
00000000  
Tint control minimum  
Tint control sensitivity  
TINMIN  
TINSE  
C-1  
C-1  
30  
30  
TINMIN = <the B-Y axis angle> – TINCEN  
Measure A1: the angle when the tint control is 85,  
and A2: the angle when the tint control is 42,  
and calculate TINSE from the following formula.  
TINSE = (A1 – A2) /43  
TR23: Tint  
01010101  
00101010  
30  
28  
Measure Vb: the BOUT output amplitude,  
and Vr: the ROUT output amplitude.  
Determine RB = Vr/Vb.  
TR24:  
Saturation  
01000000  
Demodulation output ratio  
R-Y/B-Y  
RB  
GB  
C-3  
C-3  
TR24:  
Saturation  
01000000  
Demodulation output ratio  
G-Y/B-Y  
Measure Vg: the GOUT output amplitude and  
determine GB = Vg/Vb  
29  
Continued on next page.  
No. 5844-16/27  
LA76070  
Continued from preceding page.  
Measurement  
point  
Parameter  
Symbol  
ANGBR  
Input signal  
C-1  
Measurement procedure  
Bus and other conditions  
Measure the BOUT and ROUT output levels,  
calculate the angles of the B-Y and R-Y axes,  
and determine ANGBR as  
30  
28  
Demodulation angle B-Y/R-Y  
<the R-Y angle> – <the B-Y angle>.  
Measure the GOUT output level, calculate the  
angle of the G-Y axis, and determine ANGBG  
as <the G-Y angle> – <the B-Y angle>  
Demodulation angle B-Y/G-Y  
Killer operating point  
ANGBG  
KILL  
C-1  
C-3  
29  
30  
15  
Gradually lower the input signal level, and  
measure the input signal level at the point the  
output level falls under 150 mV p-p  
Measure the oscillator frequency f, and  
determine CVCOF from the following formula.  
CVCOF = f – 3579545 (Hz)  
Chrominance VCO free-running  
frequency  
CIN  
No signal  
CVCOF  
Gradually lower the input signal subcarrier  
frequency starting from 3.57545 MHz +  
2000 Hz, and measure the frequency when  
the output waveform locks  
Chrominance pull-in range (+)  
Chrominance pull-in range (–)  
PULIN +  
PULIN –  
C–1  
C–1  
30  
Gradually raise the input signal subcarrier  
frequency starting from 3.57545 MHz –  
2000 Hz, and measure the frequency when the  
output waveform locks  
30  
30  
28  
30  
28  
30  
28  
With Auto Flesh = 0, measure the level that  
corresponds to 73° for the BOUT and ROUT  
output waveforms, and calculate the angle  
AF073A.  
With Auto Flesh = 1, determine the angle  
AF073B in the same way.  
TR22:  
Auto flesh:  
0*******  
TR22:  
Auto flesh:  
1*******  
Auto flesh characteristic 73°  
Auto flesh characteristic 118°  
Auto flesh characteristic 163°  
AF073  
AF118  
AF163  
C–4  
C–4  
C–4  
Calculate AF073 from the following formula.  
AF073 = AF073B – AF073A  
With Auto Flesh = 0, measure the level that  
corresponds to 118° for the BOUT and ROUT  
output waveforms, and calculate the angle  
AF118A.  
With Auto Flesh = 1, determine the angle  
AF118B in the same way.  
TR22:  
Auto flesh:  
0*******  
TR22:  
Auto flesh:  
1*******  
Calculate AF118 from the following formula.  
AF118 = AF118B – AF118A  
With Auto Flesh = 0, measure the level that  
corresponds to 163° for the BOUT and ROUT  
output waveforms, and calculate the angle  
AF163A.  
With Auto Flesh = 1, determine the angle  
AF163B in the same way.  
TR22:  
Auto flesh:  
0*******  
TR22:  
Auto flesh:  
1*******  
Calculate AF163 from the following formula.  
AF163 = AF163B – AF163A  
No. 5844-17/27  
LA76070  
Video Block - Input Signals and Measurement Conditions  
• C IN input signal * chrominance burst signal: 40 IRE  
• Y IN input signal 100 IRE: 714 mV  
*0 IRE signal (L-0): Standard NTSC synchronizing signal  
XIRE signal (L-X)  
CW signal (L-CW)  
Black stretch 0 IRE signal (L-BK)  
• R/G/B input signal  
RGB input signal 1 (O-1)  
RGB input signal 2 (O-2)  
No. 5844-18/27  
LA76070  
Measurement  
point  
Bus conditions and  
input signals  
Parameter  
[Video Block]  
Symbol  
Input signal  
Measurement procedure  
Measure the output signal 50 IRE amplitude  
(CNTHB V p-p) and calculate CONT127 as  
20 × log (CNTHB/0.357).  
Overall video gain  
(contrast: maximum)  
Contrast max  
1111111  
CONT127  
CONT63  
CONT0  
L–50  
L–50  
L–50  
30  
30  
30  
Contrast adjustment  
characteristics  
(normal/maximum)  
Measure the output signal 50 IRE amplitude  
(CNTCB V p-p) and calculate CONT63 as  
20 × log (CNTCB/CNTHB).  
Contrast center  
0111111  
Contrast adjustment  
characteristics  
(minimum/maximum)  
Measure the output signal 50 IRE amplitude  
(CNTLB V p-p) and calculate CONT0 as  
20 × log (CNTLB/CNTHB).  
Contrast min  
0000000  
Video frequency characteristics  
30  
Brightness min  
0000000  
Contrast max  
1111111  
Measure the output signal 0 IRE DC level  
(BRTPL V)  
L–0  
DC propagation  
ClampG  
YDLY  
30  
30  
30  
Measure the output signal 0 IRE DC level  
(DRVPH V) and the 100 IRE amplitude (DRVH 0000000  
V p-p), and calculate ClampG as  
100 × (1 + (DRVPH - BRTPL)/DRVH).  
Brightness min  
L–100  
Contrast max  
1111111  
Y delay  
Measure the output signal 0 IRE DC level at  
point A when the black stretch function is  
defeated (off). Record this value as BKST1 (V).  
BKST defeat on (1)  
Measure the output signal 0 IRE DC level at  
point A when the black stretch is enabled (on). BKST defeat off (0)  
Record this value as BKST2 (V).  
Maximum black stretching gain  
BKSTmax  
L–BK  
Calculate BKSTmax from the following formula.  
BKSTmax = 2 × 50 × (BKST1 – BKST2)/ CNTHB  
L–CW  
30  
30  
Sharpness (peaking)  
L–CW  
L–CW  
L–100  
Horizontal/vertical blanking  
output level  
Measure the output signal blanking period DC  
level. Record that value as RGBBLK V.  
RGBBLK  
No. 5844-19/27  
LA76070  
Measurement  
point  
Bus conditions and  
input signals  
Parameter  
[OSD Block]  
Symbol  
Input signal  
Measurement procedure  
Apply a voltage to pin 36 and determine the pin  
36 voltage when the output signal switches to  
the OSD signal  
L–0  
O–2  
OSD fast switch threshold  
Red RGB output level  
FSTH  
Pin 35: Apply O-2  
30  
28  
Measure the output signal 50 IRE amplitude  
(CNTCR V p-p)  
ROSDH  
L–50  
L–0  
O–2  
Measure the OSD output amplitude  
(OSDHR V p-p)  
Pin 36: 2.0 V  
Pin 33: Apply O-2  
Calculate ROSDH as 50 × (OSDHR/CNTCR)  
Measure the output signal 50 IRE amplitude  
(CNTCG V p-p)  
Green RGB output level  
Blue RGB output level  
GOSDH  
L–50  
29  
30  
L–0  
O–2  
Measure the OSD output amplitude  
(OSDHG V p-p)  
Pin 36: 2.0 V  
Pin 34: Apply O-2  
Calculate GOSDH as 50 × (OSDHG/CNTCG)  
Measure the output signal 50 IRE amplitude  
(CNTCB V p-p)  
BOSDH  
L–50  
L–0  
O–2  
Measure the OSD output amplitude  
(OSDHB V p-p)  
Pin 36: 2.0 V  
Pin 35: Apply O-2  
Calculate BOSDH as 50 × (OSDHB/CNTCB)  
Measure the amplitude of points A (the 0.35 V  
section in the input signal O-1) and B (the 0.7 V  
section in the input signal O-1) in the output  
signal and record those values as RGBLR and  
RGBHR V p-p, respectively  
L–0  
O–1  
Pin 36: 2.0 V  
Pin 33: Apply O-1  
Analog OSD R output level  
28  
29  
30  
Gain matching  
Linearity  
RRGB  
Calculate RRGB as RGBLR/CNTCR  
LRRGB  
Calculate LRRGB as 100 × (RGBLR/RGBHR)  
Measure the amplitude of points A (the 0.35 V  
section in the input signal O-1) and B (the 0.7 V  
section in the input signal O-1) in the output  
signal and record those values as RGBLG and  
RGBHG V p-p, respectively  
L–0  
O–1  
Pin 36: 2.0 V  
Pin 34: Apply O-1  
Analog OSD G output level  
Gain matching  
Linearity  
GRGB  
Calculate GRGB as RGBLG/CNTCG  
LGRGB  
Calculate LGRGB as 100 × (RGBLG/RGBHG)  
Measure the amplitude of points A (the 0.35 V  
section in the input signal O-1) and B (the 0.7 V  
section in the input signal O-1) in the output  
signal and record those values as RGBLB and  
RGBHB V p-p, respectively  
L–0  
O–1  
Pin 36: 2.0 V  
Pin 35: Apply O-1  
Analog OSD B output level  
Gain matching  
Linearity  
BRGB  
Calculate BRGB as RGBLB/CNTCB  
LBRGB  
Calculate LBRGB as 100 × (RGBLB/RGBHB)  
Measurement  
point  
Bus conditions and  
input signals  
Parameter  
Symbol  
Input signal  
Measurement procedure  
[RGB Output Block] (Cutoff and Drive Blocks)  
Measure the output signal 0 IRE DC levels for  
the R output (28), G output (29), and B output  
(30). Record these values as BRTPCR,  
BRTPCG, and BRTPCB V, respectively.  
28  
29  
30  
Contrast max  
1111111  
BRT63  
L–0  
Brightness control (normal)  
Calculate BRT63 as  
(BRTPCR + BRTPCG + BRTPCB)/3  
(max)  
(min)  
BRT127  
BRT0  
Measure the output signal 0 IRE DC levels for  
the B output (30). Record this value as BRTPHB. 1111111  
Brightness max  
Calculate BRT127 as  
50 × (BRTPHB  
BRTPCB)/CNTHB  
30  
Measure the output signal 0 IRE DC levels for  
the B output (30). Record this value as BRTPLB. 0000000  
Brightness min  
Calculate BRT0 as  
50  
× (BRTPLB – BRTPCB)/CNTHB  
No. 5844-20/27  
LA76070  
Measurement  
point  
Parameter  
Symbol  
Input signal  
L–50  
Measurement procedure  
Bus and other conditions  
[RGB Output Block] (Cutoff and Drive Blocks)  
(minimum)  
(maximum)  
Vbias0  
Measure the output signal 0 IRE DC levels for  
the R output (pin 28), G output (pin 29), and B  
output (pin 30). Record these values as Vbias0  
*(V).Here, * is R, G, and B, respectively.  
Contrast max  
1111111  
Vbias127  
R bias max  
1111111  
G bias max  
1111111  
B bias max  
1111111  
Contrast max  
1111111  
Bias (cutoff) control  
Measure the output signal 0 IRE DC levels for  
the R output (pin 28), G output (pin 29), and B  
output (pin 30). Record these values as  
Vbias128*(V). Here, * is R, G, and B,  
respectively.  
28  
29  
30  
R bias:  
1010000  
G bias:  
1010000  
B bias:  
1010000  
Contrast max  
1111111  
Measure the output signal 0 IRE DC levels for  
the R output (pin 28), G output (pin 29), and B  
output (pin 30). Record these values as  
BAS80*.  
Here, * is R, G, and B, respectively.  
Bias (cutoff) control resolution  
Vbiassns  
R bias:  
0110000  
G bias:  
0110000  
B bias:  
0110000  
Contrast max  
1111111  
Measure the output signal 0 IRE DC levels for  
the R output (pin 28), G output (pin 29), and B  
output (pin 30). Record these values as  
BAS48*(V).  
Here, * is R, G, and B, respectively.  
Vbiassns* = (BAS80* – BAS48*)/32  
Drive adjustment: Maximum output RGBout127  
Contrast max  
1111111  
Brightness min  
0000000  
Measure the output signal 100 IRE amplitudes  
for the R output (pin 28), G output (pin 29), and  
B output (pin 30). Record these values as  
DRVH* (V p-p).  
Here, * is R, G, and B, respectively.  
28  
29  
30  
Output attenuation  
RGBout0  
Contrast max  
1111111  
L–100  
Measure the output signal 100 IRE amplitudes  
for the R output (pin 28), G output (pin 29), and  
B output (pin 30). Record these values as  
DRVL* (V p-p).  
Brightness min  
0000000  
R drive min  
0000000  
B drive min  
0000000  
Here, * is R, G, and B, respectively.  
RGBout0* = 20 × log (DRVH*/DRVL*)  
No. 5844-21/27  
LA76070  
Deflection Block - Input Signals and Measurement Conditions  
Unless otherwise indicated, set up the following conditions for each of the following measurements.  
1. VIF and SIF blocks: No signal  
2. C input: No signal  
3. SYNC input: Horizontal and vertical composite synchronizing signal (40 IRE and other conditions, such as timing,  
must conform to the FCC broadcast standards.)  
Caution: The burst and chrominance signals must not be below the pedestal level.  
4. Bus control conditions: All conditions set to the initial conditions unless otherwise specified.  
5. The delay between the rise of the horizontal output (the pin 23 output) and the rise of the F.B.P IN (the pin 24 input)  
must be 9 µs.  
6. Unless otherwise specified, pin 25 (the X-ray protection circuit input) must be connected to ground.  
Caution:  
Perform the following operation if horizontal pulse output has stopped.  
1. The bus data T_ENABLE bit must be temporarily set to 0 and then set to 1.  
(If the X-ray protection circuit operates, an IC internal latch circuit will be set. To reset that latch circuit, the  
T_ENABLE bit must be temporarily set to 0, even if there is no horizontal output signal being output.)  
Notes on Video Muting  
If horizontal pulse output has stopped, perform the operation described in item 1. above and then set the video mute bit  
set to 0.  
(This is because the video mute bit is forcibly set to the mute setting when the T_ENABLE bit is set to 0 or when the X-  
ray protection circuit operates. This also applies when power is first applied.)  
Measurement  
point  
Parameter  
[Deflection Block]  
Symbol  
Ssync  
fH  
Input signal  
Measurement procedure  
Bus conditions  
SYNC IN: Gradually lower the level of the synchronizing  
horizontal and signal input to Y IN (pin 37) and measure the  
Sync separator circuit sensitivity  
vertical  
level of the synchronizing signal at the point  
37  
synchronizing synchronization is lost  
signal  
Connect a frequency counter to the pin 23  
output (Hout) and measure the horizontal free-  
running frequency.  
Calculate the deviation from the following formula.  
fH = <measured value> – 15.734 kHz  
Horizontal free-running  
frequency deviation  
SYNC IN:  
No signal  
23  
37  
23  
SYNC IN:  
horizontal and  
vertical  
synchronizing  
signal  
Monitor the horizontal synchronizing signal input  
to Y IN (pin 37) and the pin 23 output (Hout),  
and measure the pull-in range by modifying the  
horizontal synchronizing signal frequency  
Horizontal pull-in range  
fH PULL  
V Hsat  
SYNC IN:  
horizontal and  
vertical  
synchronizing  
signal  
Horizontal pulse output  
saturation voltage  
Measure the voltage during the low-level period  
in the pin 23 horizontal output pulse  
No. 5844-22/27  
LA76070  
Measurement  
point  
Parameter  
Symbol  
Input signal  
Measurement procedure  
Bus conditions  
Measure the delay between the rise of the pin  
23 horizontal output pulse and the fall of the Y  
IN horizontal synchronizing signal  
SYNC IN:  
horizontal and  
vertical  
synchronizing  
signal  
23  
37  
Horizontal output pulse phase  
HPHCEN  
Measure the delay between the rise of the pin  
23 horizontal output pulse and the fall of the Y  
IN horizontal synchronizing signal when  
HPHASE is set to 0 and when it is set to 7,  
and calculate the difference between those  
SYNC IN: measurements and HPHCEN  
horizontal and  
vertical  
synchronizing  
signal  
Hphase:  
000  
Hphase:  
111  
23  
37  
Horizontal position adjustment  
range  
HPHrange  
Measure the delay between the rise of the pin  
23 horizontal output pulse and the fall of the  
SYNC IN horizontal synchronizing signal as  
HPHASE is set to each value from 0 to 7, and  
calculate the amount of the change at each step.  
SYNC IN: Find the step size with the largest change.  
horizontal and  
Hphase:  
000  
to  
Hphase:  
111  
23  
37  
Horizontal position adjustment  
maximum deviation  
HPHstep  
vertical  
synchronizing  
signal  
SYNC IN:  
horizontal and  
vertical  
synchronizing  
Connect a DC voltage source to pin 25 and  
gradually increase the voltage starting at 0 V.  
Measure the pin 25 DC voltage at the point that  
23  
25  
X-ray protection circuit  
operating voltage  
VXRAY  
the pin 23 horizontal pulse output stops.  
signal  
No. 5844-23/27  
LA76070  
Measurement  
point  
Parameter  
Symbol  
Input signal  
Measurement procedure  
Bus conditions  
[Vertical screen Size Adjustment]  
Monitor the pin 17 vertical ramp output and  
measure the voltages at the line 22 and line 262.  
Calculate Vsize32 from the following formula.  
SYNC IN:  
horizontal  
and  
Vertical ramp output amplitude  
@32  
Vsize32  
17  
17  
17  
vertical  
synchronizing  
signal  
Monitor the pin 17 vertical ramp output and  
measure the voltages at the line 22 and line 262.  
Calculate Vsize32 from the following formula.  
SYNC IN:  
horizontal  
and  
vertical  
synchronizing  
signal  
Vertical ramp output amplitude  
@0  
VSIZE:  
0000000  
Vsize0  
Monitor the pin 17 vertical ramp output and  
measure the voltages at the line 22 and line 262.  
Calculate Vsize32 from the following formula.  
SYNC IN:  
horizontal  
and  
vertical  
synchronizing  
signal  
VSIZE:  
1111111  
Vertical ramp output amplitude  
@63  
Vsize63  
No. 5844-24/27  
LA76070  
Measurement  
point  
Parameter  
Symbol  
Input signal  
Measurement procedure  
Bus conditions  
[Vertical screen Position Adjustment]  
Monitor the pin 17 vertical ramp output and  
measure the voltage at line 142  
SYNC IN:  
horizontal  
and  
vertical  
synchronizing  
signal  
Vertical ramp DC voltage @32  
Vertical ramp DC voltage @0  
Vertical ramp DC voltage @63  
Vdc32  
17  
17  
17  
Monitor the pin 17 vertical ramp output and  
measure the voltage at line 142  
SYNC IN:  
horizontal  
and  
vertical  
synchronizing  
signal  
Vdc0  
VDC: 0000000  
Monitor the pin 17 vertical ramp output and  
measure the voltage at line 142  
SYNC IN:  
horizontal  
and  
vertical  
synchronizing  
signal  
Vdc63  
VDC: 1111111  
No. 5844-25/27  
LA76070  
No. 5844-26/27  
LA76070  
Specifications of any and all SANYO products described or contained herein stipulate the performance,  
characteristics, and functions of the described products in the independent state, and are not guarantees  
of the performance, characteristics, and functions of the described products as mounted in the customer’s  
products or equipment. To verify symptoms and states that cannot be evaluated in an independent device,  
the customer should always evaluate and test devices mounted in the customer’s products or equipment.  
SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all  
semiconductor products fail with some probability. It is possible that these probabilistic failures could  
give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire,  
or that could cause damage to other property. When designing equipment, adopt safety measures so  
that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective  
circuits and error prevention circuits for safe design, redundant design, and structural design.  
In the event that any or all SANYO products (including technical data, services) described or contained  
herein are controlled under any of applicable local export control laws and regulations, such products must  
not be exported without obtaining the export license from the authorities concerned in accordance with the  
above law.  
No part of this publication may be reproduced or transmitted in any form or by any means, electronic or  
mechanical, including photocopying and recording, or any information storage or retrieval system,  
or otherwise, without the prior written permission of SANYO Electric Co., Ltd.  
Any and all information described or contained herein are subject to change without notice due to  
product/technology improvement, etc. When designing equipment, refer to the “Delivery Specification”  
for the SANYO product that you intend to use.  
Information (including circuit diagrams and circuit parameters) herein is for example only; it is not  
guaranteed for volume production. SANYO believes information herein is accurate and reliable, but  
no guarantees are made or implied regarding its use or any infringements of intellectual property rights  
or other rights of third parties.  
This catalog provides information as of July, 1999. Specifications and information herein are subject to  
change without notice.  
PS No. 5844-27/27  

相关型号:

LA76075

NTSC Color Television Sets
SANYO

LA76075

IC,TV/VIDEO SIGNAL PROCESSOR,BIPOLAR,SDIP,52PIN,PLASTIC
ONSEMI

LA7615

Single-Chip NTSC Color TV IC
SANYO

LA7620

Color TV Video, Chroma, Deflection Circuit
SANYO

LA7621

Color TV Video, Chroma, Deflection Circuit
SANYO

LA7625

Video, Chroma and Deflection Circuit for Color Television Sets
SANYO

LA7626

Video, Chroma and Deflection Circuit for Color Television Sets
SANYO

LA7629

Color TV/Video,Chroma,Deflection Circuit
SANYO

LA7640N

Chroma Circuit for SECAM-system Color Television Sets
SANYO

LA7642N

SECAM Format Color TV Chrominance Circuit
SANYO

LA7655N

1-Chip IC for Color TV Signal Processing
SANYO