LC66E5316 [SANYO]

Four-Bit Single-Chip Microcontroller with 16 KB of On-Chip EPROM; 四位单芯片微控制器的片上EPROM 16 KB
LC66E5316
型号: LC66E5316
厂家: SANYO SEMICON DEVICE    SANYO SEMICON DEVICE
描述:

Four-Bit Single-Chip Microcontroller with 16 KB of On-Chip EPROM
四位单芯片微控制器的片上EPROM 16 KB

微控制器 外围集成电路 CD 可编程只读存储器 电动程控只读存储器 时钟
文件: 总27页 (文件大小:204K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CMOS LSI  
LC66E5316  
No. 5488  
Four-Bit Single-Chip Microcontroller  
with 16 KB of On-Chip EPROM  
Preliminary  
Overview  
The LC66E5316 is an on-chip EPROM version of the  
LC6653XX Series CMOS 4-bit single-chip  
microcontrollers. The LC66E5316 provides the same  
functions as the LC665316A, and is pin compatible with  
that product. Since the LC66E5316 is provided in a  
window package, it can be reprogrammed repeatedly and is  
thus optimal for program development.  
Package Dimensions  
unit: mm  
3225-DIC52S  
[LC66E5316]  
46.74  
52  
1
27  
26  
Features and Functions  
• On-chip EPROM capacity of 16 kilobytes, and an on-  
chip RAM capacity of 512 × 4 bits.  
41.94  
• Fully supports the LC66000 Series common instruction  
set (128 instructions).  
• I/O ports: 42 pins  
• A sub-oscillator circuit can be used (option)  
This circuit allows power dissipation to be reduced by  
operating at lower speeds.  
0.9  
0.46  
44.45  
1.778  
1.145  
SANYO: DIC52S  
• 8-bit serial interface: two circuits (can be connected in  
cascade to form a 16-bit interface)  
unit: mm  
3157-QFC48  
• Instruction cycle time: 0.95 to 10 µs (at 4.5 to 5.5 V)  
• Powerful timer functions and prescalers  
— Time limit timer, event counter, pulse width  
measurement, and square wave output using a 12-bit  
timer.  
[LC66E5316]  
20.0  
14.0  
1.0  
3.0  
0.35  
— Time limit timer, event counter, PWM output, and  
square wave output using an 8-bit timer.  
— Time base function using a 12-bit prescaler.  
• Powerful interrupt system with 8 interrupt factors and 8  
interrupt vector locations.  
1.5  
0.15  
25  
36  
37  
24  
— External interrupts: 3 factors/3 vector locations  
— Internal interrupts: 5 factors/5 vector locations  
• Flexible I/O functions  
13  
48  
16-value comparator inputs, 20-mA drive outputs,  
inverter circuits, pull-up and open-drain circuits  
selectable as options.  
• Optional runaway detection function (watchdog timer)  
• 8-bit I/O functions  
1
12  
2.2  
4.2  
4.77max  
SANYO: QFC48  
• Power saving functions using halt and hold modes.  
• Packages: DIC52S (window), QFC48 (window)  
• Evaluation LSIs: LC66599 (evaluation chip) +  
EVA800/850 - TB662YXX2  
SANYO Electric Co.,Ltd. Semiconductor Bussiness Headquarters  
TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110 JAPAN  
21097HA (OT) No. 5488-1/27  
LC66E5316  
Series Organization  
No. of  
pins  
RAM  
capacity  
Type No.  
ROM capacity  
Package  
QFP48E  
Features  
LC66304A/306A/308A  
LC66404A/406A/408A  
LC66506B/508B/512B/516B  
LC66354A/356A/358A  
LC66354S/356S/358S  
LC66556A/558A/562A/566A  
LC66354B/356B/358B  
LC66556B/558B/562B/566B  
LC66354C/356C/358C  
LC662104A/06A/08A  
42  
42  
64  
42  
42  
64  
42  
64  
42  
30  
42  
64  
4 K/6 K/8 KB  
4 K/6 K/8 KB  
512 W  
512 W  
DIP42S  
Normal versions  
4.0 to 6.0 V/0.92 µs  
DIP42S  
DIP64S  
DIP42S  
QFP48E  
QFP64A  
QFP48E  
QFP44M  
QFP64E  
QFP48E  
QFP64E  
QFP48E  
MFP30S  
QFP48E  
QFP64E  
6 K/8 K/12 K/16 KB 512 W  
4 K/6 K/8 KB  
4 K/6 K/8 KB  
512 W  
512 W  
Low-voltage versions  
2.2 to 5.5 V/3.92 µs  
6 K/8 K/12 K/16 KB 512 W  
4 K/6 K/8 KB 512 W  
6 K/8 K/12 K/16 KB 512 W  
DIP64S  
DIP42S  
DIP64S  
DIP42S  
DIP30SD  
DIP42S  
DIP64S  
Low-voltage high-speed versions  
3.0 to 5.5 V/0.92 µs  
4 K/6 K/8 KB  
4 K/6 K/8 KB  
512 W  
384 W  
2.5 to 5.5 V/0.92 µs  
On-chip DTMF generator versions  
3.0 to 5.5 V/0.95 µs  
LC662304A/06A/08A/12A/16A  
LC662508A/12A/16A  
4 K/6 K/8 K/12 K/16 KB 512 W  
8 K/12 K/16 KB 512 W  
Dual oscillator support  
3.0 to 5.5 V/0.95 µs  
LC665304A/06A/08A/12A/16A  
48  
4 K/6 K/8 K/12 K/16 KB 512 W  
DIP48S  
QFP48E  
DIC42S  
with window  
QFC48  
with window  
LC66E308  
LC66P308  
LC66E408  
LC66P408  
LC66E516  
42  
42  
42  
42  
64  
EPROM 8 KB  
OTPROM 8 KB  
EPROM 8 KB  
OTPROM 8 KB  
EPROM 16 KB  
512 W  
512 W  
512 W  
512 W  
512 W  
DIP42S  
QFP48E  
DIC42S  
with window  
QFC48  
with window  
Window and OTP evaluation versions  
4.5 to 5.5 V/0.92 µs  
DIP42S  
QFP48E  
DIC64S  
with window  
QFC64  
with window  
LC66P516  
64  
30  
OTPROM 16 KB  
EPROM 8 KB  
512 W  
384 W  
DIP64S  
QFP64E  
LC66E2108*  
DIC42S  
with window  
QFC48  
with window  
LC66E2316  
LC66E2516  
LC66E5316  
42  
64  
EPROM 16 KB  
EPROM 16 KB  
EPROM 16 KB  
512 W  
512 W  
512 W  
Window evaluation versions  
4.5 to 5.5 V/0.92 µs  
DIC64S  
with window  
QFC64  
with window  
DIC52S  
with window  
QFC48  
with window  
52/48  
LC66P2108*  
30  
42  
64  
48  
OTPROM 8 KB  
OTPROM 16 KB  
OTPROM 16 KB  
OTPROM 16 KB  
384 W  
512 W  
512 W  
512 W  
DIP30SD  
DIP42S  
DIP64S  
DIP48S  
MFP30S  
QFP48E  
QFP64E  
QFP48E  
LC66P2316*  
OTP  
4.0 to 5.5 V/0.95 µs  
LC66P2516  
LC66P5316  
Note: * Under development  
No. 5488-2/27  
LC66E5316  
Pin Assignments  
DIC52S  
P20/SI0/A0  
P21/SO0/A1  
1
2
52 P13/D7  
51 P12/D6  
3
4
5
6
50 P11/D5  
49 P10/D4  
48 P03/D3  
47 P02/D2  
P22/SCK0/A2  
P23/INT0/A3  
P30/INT1/A4  
P31/POUT0/A5  
P32/POUT1/A6  
7
46 P01/D1  
8
9
45 P00/D0  
V
SS  
44 PD3/AN4/INV4O  
43 PD2/AN3/INV4I  
42 PD1/AN2/INV3O  
41 PD0/AN1/INV3I  
40 PC3/INV2O/DASEC  
39 PC2/INV2I/CE  
38 PC1  
37 PC0  
36 P83  
35 P82  
34 P81/DS1  
33 P80/DS0  
32 P63/PIN1  
31 P62/SCK1  
30 P61/SO1  
29 P60/SI1  
OSC1  
OSC2  
LC66E5316  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
V
DD  
RES/V /OE  
PP  
PE0/XT1  
PE1/XT2  
TEST/EPMOD  
P33/HOLD  
P40/INV0I/A7  
P41/INV0O/A8  
P42/INV1I/A9  
P43/INV1O/A10  
P50/A11  
P51/A12  
P52/A13  
P53/INT2/TA  
N. C.  
28 N. C.  
27 N. C.  
N. C.  
QFC48  
36 35 34 33 32 31 30 29 28 27 26 25  
P02/D2 37  
P03/D3 38  
24 P81/DS1  
23 P80/DS0  
22 P63/PIN1  
21 P62/SCK1  
20 P61/SO1  
19 P60/SI1  
P10/D4 39  
P11/D5 40  
LC66E5316  
P12/D6 41  
P13/D7 42  
P20/SI0/A0 43  
P21/SO0/A1 44  
P22/SCK0/A2 45  
P23/INT0/A3 46  
P30/INT1/A4 47  
P31/POUT0/A5 48  
18 P53/INT2/TA  
17 P52/A13  
16 P51/A12  
15 P50/A11  
14 P43/INV1O/A10  
13 P42/INV1I/A9  
1
2 3 4 5 6 7 8 9 10 11 12  
Top view  
No. 5488-3/27  
LC66E5316  
Usage Notes  
The LC66E5316 was created for program development, product evaluation, and prototype development for products  
based on the LC6653XX Series microcontrollers. Keep the following points in mind when using this product.  
1. After a reset  
The RES pin must be held low for an additional 3 instruction cycles after the oscillator stabilization period has  
elapsed. Also, the port output circuit types are set up during the 9 instruction cycles immediately after RES is set  
high. Only then is the program counter set to 0 and program execution started from that location. (The port output  
circuits all revert to the open-drain type during periods when RES is low.)  
V
min  
DD  
V
DD  
OSC  
RES  
At least 3  
instruction  
At least 10 ms  
Oscillator  
stabilization  
Location Location  
Program execution (PC)  
Port output type  
0
1
Option switching  
period  
Option specification  
Open drain  
9 instruction  
cycles  
2. Notes on LC6653XX evaluation  
The high end of the EPROM area (locations 3FF0H to 3FFFH) are the option specification area. Option specification  
data must be programmed for and loaded into this area. The Sanyo specified cross assembler for this product is the  
program LC66S.EXE. Also, insert JMP instructions so that user programs do not attempt to execute addresses that  
exceed the capacity of the mask ROM, and write zeros (00H) to areas (other than 3FF0H to 3FFFH) that exceed the  
actual capacity of the mask ROM.  
3. Always apply an opaque seal to the window on the LC66E5316 package when actually using the device.  
Main differences between the LC66E5316, LC66P5316, and LC6653XX Series  
Item  
LC6653XX Series (mask version)  
–30 to +70°C  
LC66E5316  
+10 to +40°C  
LC66P5316  
–30 to +70°C  
Differences in the main  
characteristics  
• Operating temperature range  
3.0 to 5.5 V/0.95 to 10 µs  
(When the main oscillator is  
operating)  
4.5 to 5.5 V/0.95 to 10 µs  
(When the main oscillator is  
operating)  
4.0 to 5.5 V/0.95 to 10 µs  
(When the main oscillator is  
operating)  
• Operating supply voltage/operating  
frequency (cycle time)  
3.0 to 5.5 V/25 to 127 µs  
4.5 to 5.5 V/25 to 127 µs  
4.0 to 5.5 V/25 to 127 µs  
(When the sub-oscillator is operating) (When the sub-oscillator is operating) (When the sub-oscillator is operating)  
Typical: 10 µA  
Typical: 10 µA  
• Input high-level current (RES)  
• Input low-level current (RES)  
Maximum: 1 µA  
Maximum: 1 µA  
(normal operation and halt mode)  
Hold mode: 1 µA maximum  
(normal operation and halt mode)  
Hold mode: 1 µA maximum  
Typical: 100 µA  
Typical: 100 µA  
• Current drain  
(Operating at 4 MHz)  
(Operating at 32 kHz)  
(Halt mode at 4 MHz)  
(Halt mode at 32 kHz)  
(Hold mode)  
Larger than that for the mask versions Larger than that for the mask versions  
Typical: 10 nA, maximum: 10 µA  
Typical: 10 nA, maximum: 10 µA*  
Typical: 10 nA, maximum: 10 µA*  
The output type specified in  
the options  
Port output types at reset  
Package  
Open-drain outputs  
Open-drain outputs  
• DIP48S  
• QFP48E  
• DIC52S window package  
• QFC48 window package  
• DIP48S  
• QFP48E  
Note: * Although the microcontroller will remain in hold mode if the RES pin is set low while it is in hold mode, always use the reset start sequence (after  
switching HOLD from low to high, switch RES from low to high) when clearing hold mode. Also a current of about 100 µA flows from the RES pin  
when it is low. This increases the hold mode current drain by about 100 µA.  
See the data sheets for the individual products for details on other differences.  
No. 5488-4/27  
LC66E5316  
System Block Diagram  
RAM STACK  
(512W)  
EPROM  
EPROM  
control  
A0 to A  
D0 to D  
(16KB)  
RES  
C
Z
TEST  
FLAG  
SYSTEM  
CONTROL  
CE  
DASEC  
/OE  
OSC1  
OSC2  
HOLD  
V
PP  
E
M
R
DD DD  
P P P P  
H L X Y  
ALU  
EPMOD  
TA  
PC  
SP  
E
A
XT1  
XT2  
POUT0  
SI0  
MPX  
TIMER0  
SERIAL I/O 0  
SO0  
PRESCALER  
MPX  
AN1 to 4  
ADC  
PE  
SCK0  
INT0  
INT1, INT2  
INTERRUPT  
CONTROL  
SI1  
PD  
MPX  
TIMER1  
P5  
SERIAL I/O 1  
SO1  
SCK1  
PIN1, POUT1  
PC  
INVxO  
DS1  
INVxI  
(x=0 to 4)  
P0  
P1  
P2  
P3  
P4  
P6  
P8  
DS0  
Pin Function Overview  
State after a Standby mode  
Pin  
I/O  
Overview  
Output driver type  
Options  
reset  
operation  
I/O ports P00 to P03  
Hold mode:  
Output off  
P00/D0  
P01/D1  
P02/D2  
P03/D3  
• Input or output in 4-bit or 1-bit units  
• P00 to P03 support the halt mode  
control function (This function can be  
specified in bit units.)  
• Pull-up MOS or  
Nch OD output  
• Output level on  
reset  
• Pch: Pull-up MOS type  
• Nch: Intermediate sink current  
type  
High or low  
(option)  
I/O  
Halt mode:  
Output  
retained  
• Used as data pins in EPROM mode  
Hold mode:  
Output off  
P10/D4  
P11/D5  
P12/D6  
P13/D7  
• Pull-up MOS or  
Nch OD output  
• Output level on  
reset  
I/O ports P10 to P13  
• Input or output in 4-bit or 1-bit units  
• Used as data pins in EPROM mode  
• Pch: Pull-up MOS type  
• Nch: Intermediate sink current  
type  
High or low  
(option)  
I/O  
Halt mode:  
Output  
retained  
I/O ports P20 to P23  
• Input or output in 4-bit or 1-bit units  
• P20 is also used as the serial input SI0  
pin.  
Hold mode:  
Output off  
P20/SI0/A0  
P21/SO0/A1  
P22/SCK0/  
A2  
• P21 is also used as the serial output  
SO0 pin.  
• P22 is also used as the serial clock  
SCK0 pin.  
• Pch: CMOS type  
• Nch: Intermediate sink current  
type  
CMOS or Nch OD  
output  
I/O  
H
P23/INT0/A3  
• P23 is also used as the INT0 interrupt  
request pin, and also as the timer 0  
event counting and pulse width  
measurement input.  
Hold mode:  
Output off  
• Used as address pins in EPROM mode  
Continued on next page.  
No. 5488-5/27  
LC66E5316  
Continued from preceding page.  
State after a Standby mode  
Pin  
I/O  
Overview  
Output driver type  
Options  
reset  
operation  
I/O ports P30 to P32  
• Input or output in 3-bit or 1-bit units  
• P30 is also used as the INT1 interrupt  
request.  
• P31 is also used for the square wave  
output from timer 0.  
• P32 is also used for the square wave  
and PWM output from timer 1.  
• P31 and P32 also support 3-state  
outputs.  
Hold mode:  
Output off  
P30/INT1/A4  
P31/POUT0/  
A5  
P32/POUT1/  
A6  
• Pch: CMOS type  
• Nch: Intermediate sink current  
type  
CMOS or Nch OD  
output  
I/O  
H
Halt mode:  
Output  
retained  
• Used as address pins in EPROM mode  
Hold mode control input  
• Hold mode is set up by the HOLD  
instruction when HOLD is low.  
• In hold mode, the CPU is restarted by  
setting HOLD to the high level.  
• This pin can be used as input port P33  
along with P30 to P32.  
P33/HOLD  
I
• When the P33/HOLD pin is at the low  
level, the CPU will not be reset by a  
low level on the RES pin. Therefore,  
applications must not set P33/HOLD  
low when power is first applied.  
Hold mode:  
Port output  
off, inverter  
output off  
I/O ports P40 to P43  
• Input or output in 4-bit or 1-bit units  
• Input or output in 8-bit units when used • Pch: Pull-up MOS type  
in conjunction with P50 to P53.  
• Can be used for output of 8-bit ROM  
data when used in conjunction with  
P50 to P53.  
• Dedicated inverter circuit (option)  
• Used as address pins in EPROM mode  
P40/INV0I/  
A7  
P41/INV0O/  
A8  
P42/INV1I/  
A9  
P43/INV1O/  
A10  
• High or  
low  
(option)  
• Inverter  
I/O is set  
to the  
• Pull-up MOS or  
Nch OD output  
• Output level on  
reset  
• CMOS type when the inverter  
circuit option is selected  
• Nch: Intermediate sink current  
type  
I/O  
Halt mode:  
Port output  
retained,  
inverter  
• Inverter circuit  
output off  
state.  
output  
continues  
I/O ports P50 to P53  
Hold mode:  
Output off  
• Input or output in 4-bit or 1-bit units  
• Input or output in 8-bit units when used  
in conjunction with P40 to P43.  
• Can be used for output of 8-bit ROM  
data when used in conjunction with  
P40 to P43.  
• P53 is also used as the INT2 interrupt  
request.  
• Used as address pins in EPROM mode  
P50/A11  
P51/A12  
P52/A13  
• Pull-up MOS or  
Nch OD output  
• Output level on  
reset  
• Pch: Pull-up MOS type  
• Nch: Intermediate sink current  
type  
High or low  
(option)  
I/O  
P53/INT2/TA  
Halt mode:  
Output  
retained  
I/O ports P60 to P63  
Hold mode:  
Output off  
• Input or output in 4-bit or 1-bit units  
• P60 is also used as the serial input SI1  
pin.  
• P61 is also used as the serial output  
SO1 pin.  
• P62 is also used as the serial clock  
SCK1 pin.  
• P63 is also used for the event count  
input to timer 1.  
P60/SI1  
P61/SO1  
P62/SCK1  
P63/PIN1  
• Pch: CMOS type  
• Nch: Intermediate sink current  
type  
• CMOS or Nch OD  
output  
I/O  
H
Halt mode:  
Output  
retained  
Continued on next page.  
No. 5488-6/27  
LC66E5316  
Continued from preceding page.  
State after a Standby mode  
Pin  
I/O  
Overview  
Output driver type  
Options  
reset  
operation  
Hold mode:  
Output off  
Dedicated output ports P80 to P83  
• Output in 4-bit or 1-bit units  
• The contents of the output latch are  
input using input instructions.  
• P80 is a data shaper input (options)  
• P81 is a data shaper output (options)  
• CMOS or Pch OD  
output  
• Output level at  
reset  
• Data shaper  
circuit  
P80/DS0  
P81/DS1  
P82  
• Pch: CMOS type  
• Nch: Intermediate sink current  
type  
High or low  
(option)  
O
Halt mode:  
Output  
retained  
P83  
Hold mode:  
Output off  
PC0  
PC1  
PC2/INV2I/  
CE  
PC3/INV2O/  
DASEC  
I/O ports PC0 to PC3  
• Output in 4-bit or 1-bit units  
• Dedicated inverter circuits (option)  
• Used as the control CE and DASEC  
pin in EPROM mode.  
• Pch: CMOS type  
• Nch: Intermediate sink current  
type  
• CMOS or Nch OD  
output  
• Inverter circuits  
I/O  
H
Halt mode:  
Output  
retained  
PD0/AN1/  
INV3I  
PD1/AN2/  
INV3O  
PD2/AN3/  
INV4I  
PD3/AN4/  
INV4O  
Inverter  
• Only when the inverter circuit  
option is selected:  
• Pch: CMOS type  
• Nch: Intermediate sink current  
type  
Dedicated input ports PD0 to PD3  
• Can be switched in software to function  
as 16-value analog inputs.  
• Hold mode:  
Output off  
• Halt mode:  
Output  
Normal  
input  
I
Inverter circuits  
• Dedicated inverter circuits (option)  
continues  
PE0/XT1  
PE1/XT2  
Dedicated input ports and sub-oscillator  
connections  
Sub-oscillator/port  
PE selection  
Option  
selection  
I
I
Hold  
OSC stop  
OSC1  
OSC2  
System clock oscillator connections  
Ceramic oscillator  
or external clock  
selection  
Option  
selection  
When an external clock is used, leave  
OSC2 open and connect the clock signal  
to OSC1.  
Halt  
OSC cont  
O
System reset input  
• When the P33/HOLD pin is at the high  
level, a low level input to the RES pin  
will initialize the CPU.  
• Used as the VPP/OE pin in EPROM  
mode.  
RES/V  
OE  
/
PP  
I
I
CPU test pin  
TEST/  
EPMOD  
This pin must be connected to V  
SS  
during normal operation.  
Power supply pins  
V
DD  
V
SS  
Note: Pull-up MOS type: The output circuit includes a MOS transistor that pulls the pin up to V  
CMOS output: Complementary output.  
.
DD  
OD output: Open-drain output.  
Continued on next page.  
No. 5488-7/27  
LC66E5316  
User Options  
1. Port 0, 1, 4, 5, and 8 output level at reset option  
The output levels at reset for I/O ports 0, 1, 4, 5, and 8, in independent 4-bit groups, can be selected from the  
following two options.  
Option  
Conditions and notes  
1. Output high at reset  
2. Output low at reset  
The four bits of ports 0, 1, 4, 5, or 8 are set in a group  
The four bits of ports 0, 1, 4, 5, or 8 are set in a group  
2. Oscillator circuit options  
• Main clock  
Option  
Circuit  
Conditions and notes  
OSC1  
1. External clock  
The input has Schmitt characteristics  
C1  
OSC1  
OSC2  
Ceramic oscillator  
C2  
2. Ceramic oscillator  
Note: There is no RC oscillator option.  
• Sub-clock  
Option  
Circuit  
Conditions and notes  
DSB  
1. Ports PE0 and PE1  
Input data  
C1  
XT1  
2 Sub-oscillator  
(crystal oscillator)  
Crystal oscillator  
C2  
XT2  
3. Watchdog timer option  
A runaway detection function (watchdog timer) can be selected as an option.  
4. Port output type options  
• The output type of each bit (pin) in ports P0, P1, P2, P3 (except for the P33/HOLD pin), P4, P5, P6, and PC can be  
selected individually from the following two options.  
Option  
Circuit  
Conditions and notes  
Output data  
Input data  
The port P2, P3, P5, and P6 inputs have Schmitt  
characteristics.  
1. Open-drain output  
DSB  
Output data  
Input data  
The port P2, P3, P5, and P6 inputs have Schmitt  
characteristics.  
2. Output with built-in pull-up  
resistor  
The CMOS outputs (ports P2, P3, P6, and PC)  
and the pull-up MOS outputs (P0, P1, P4, and  
P5) are distinguished by the drive capacity of the  
p-channel transistor.  
DSB  
No. 5488-8/27  
LC66E5316  
• One of the following two options can be selected for P8, in bit units.  
Option  
Circuit  
Conditions and notes  
Output data  
Output data  
1. Open-drain output  
DSB  
2. Output with built-in pull-  
down resistor  
(CMOS output)  
DSB  
5. Inverter array circuit option  
One of the following options can be selected for each of the following port sets: P40/P41, P42/P43, PC2/PC3,  
PD0/PD1, and PD2/PD3. (PDs do not use option 1 because they are dedicated to inputs)  
Option  
Circuit  
Conditions and notes  
Output data  
Input data  
When the open-drain output type is selected  
DSB  
1. Normal port I/O circuit  
Output data  
Input data  
When the built-in pull-up resistor output type is  
selected.  
The CMOS outputs (PC) and the pull-up MOS  
outputs (P4) are distinguished by the drive  
capacity of the p-channel transistor.  
DSB  
Input  
Output data  
high  
Input data  
If this option is selected, the I/O circuit is disabled  
by the DSB signal.  
DSB  
2. Inverter I/O circuit  
Also note that the open-drain port output type  
option and the high level at reset option must be  
selected.  
Output  
Output data  
high  
Input data  
DSB  
No. 5488-9/27  
LC66E5316  
6. Buffer array circuit option  
In addition to normal port output, one of the following two options may also be selected for P80 and P81.  
Option  
Circuit  
Conditions and notes  
Output data  
Output data  
When the open-drain output type is selected  
DSB  
1. Normal port output  
When the built-in pull-down resistor output type is  
selected (CMOS output)  
DSB  
Output data  
low  
P80  
If this option is selected, the I/O circuit is disabled  
by the DSB signal.  
Also note that the open-drain port output type  
option and the low level at reset option must be  
selected.  
2. Buffer input (P80) and  
buffer output (P81) circuits  
Output data  
low  
DSB  
P81  
P80  
Output data  
low  
If this option is selected, the I/O circuit is disabled  
by the DSB signal.  
Also note that the open-drain port output type  
option and the low level at reset option must be  
selected.  
3. Buffer input (P80) and  
buffer output (P81) circuits  
with built-in zero-cross  
detection circuits  
Output data  
low  
DSB  
P81  
No. 5488-10/27  
LC66E5316  
LC665316 Series Option Data Area and Definitions  
ROM area  
Bit  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
Option specified  
Output level at reset  
Option/data relationship  
0 = high level, 1 = low level  
P5  
P4  
Sub-oscillator option  
Oscillator option  
P8  
0 = port PE, 1 = crystal oscillator  
0 = external clock, 1 = ceramic oscillator  
3FF0H  
P1  
Output level at reset  
0 = low level, 1 = high level  
0 = none, 1 = yes (present)  
P0  
Watchdog timer option  
P13  
P12  
Output type  
P11  
0 = OD, 1 = PU  
0 = OD, 1 = PU  
P10  
P03  
3FF1H  
3FF2H  
3FF3H  
3FF4H  
3FF5H  
3FF6H  
P02  
Output type  
P01  
P00  
Unused  
P32  
This bit must be set to 0.  
0 = OD, 1 = PU  
P31  
P30  
P23  
P22  
P21  
P20  
P53  
P52  
P51  
P50  
P43  
P42  
P41  
P40  
Output type  
Output type  
0 = OD, 1 = PU  
Output type  
Output type  
0 = OD, 1 = PU  
0 = OD, 1 = PU  
Unused  
This bit must be set to 0.  
P63  
P62  
P61  
P60  
Output type  
0 = OD, 1 = PU  
Unused  
This bit must be set to 0.  
P83  
P82  
P81  
P80  
Output type  
0 = OD, 1 = PD  
Unused  
Unused  
This bit must be set to 0.  
This bit must be set to 0.  
Continued on next page.  
LC66E5316  
Continued from preceding page.  
ROM area  
Bit  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
Option specified  
Option/data relationship  
Unused  
This bit must be set to 0.  
3FF7H  
PC3  
PC2  
Output type  
0 = OD, 1 = PU  
PC1  
PC0  
Unused  
This bit must be set to 1.  
0 = used, 1 = none  
Buffer output  
Buffer output with zero-cross bias input  
0 = used, 1 = none  
PD3  
PD1  
3FF8H  
3FF9H  
3FFAH  
3FFBH  
3FFCH  
3FFDH  
PC3  
P43  
P41  
Inverter output  
0 = inverter output, 1 = none  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
This bit must be set to 0.  
This bit must be set to 0.  
This bit must be set to 0.  
This bit must be set to 0.  
This bit must be set to 0.  
This bit must be set to 0.  
This bit must be set to 0.  
This bit must be set to 0.  
This data is generated by the assembler.  
If the assembler is not used, set this data to ‘00’.  
Reserved. Must be set to predefined data values.  
Continued on next page.  
No. 5488-12/27  
LC66E5316  
Continued from preceding page.  
ROM area  
Bit  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
Option specified  
Option/data relationship  
This data is generated by the assembler.  
If the assembler is not used, set this data to ‘00’.  
3FFEH  
Reserved. Must be set to predefined data values.  
This data is generated by the assembler.  
If the assembler is not used, set this data to ‘00’.  
3FFFH  
Reserved. Must be set to predefined data values.  
Usage Notes  
1. Option specification  
When using a Sanyo cross assembler with the LC66E5316, use the version called “LC66S.EXE” and specify the  
actual microcontroller to be evaluated with the CPU pseudo instruction in the source file. The port options must be  
specified in the source file. The cross assembler will create an option code list in the option specification area  
(locations 3FF0H to 3FFFH). It is also possible to directly set up data in the option specification area. If this is done,  
the options must be specified according to the option code creation table shown on the following page.  
2. Writing the EPROM  
Use a special-purpose writing conversion board (the W66EP5316D for the DIP package, and the W66EP5316Q for  
the QFP package) to allow the EPROM programmers listed below to be used when writing the data created by the  
cross assembler to the LC66E5316.  
• The EPROM programmers listed below can be used.  
Manufacturer  
Models that can be used  
Advantest  
Ando  
R4945, R4944A, R4943, or equivalent products  
AF9704  
AVAL  
Minato Electronics  
MODEL1890A  
• The “27512 (V 12.5 V) Intel high-speed write” technique must be used to write the EPROM. Set the address  
PP  
range to location 0 to 3FFFH. The DASEC jumper must be off.  
3. Using the data security function  
The data security function sets up the microcontroller in advance so that data that was written to the microcontroller  
EPROM cannot be read out.  
Use the following procedure to enable the LC66E5316 data security function.  
• Set the write conversion board DASEC jumper to the on position.  
• Write the data to the EPROM once again.  
At this time, since this function will operate, the EPROM programmer will issue an error. However, this error does  
not indicate that there was a problem in either the programmer or the LSI.  
Notes: 1. If the data at all addresses was “FF” at step 2, the data security function will not be activated.  
Notes: 2. The data security function will not be activated at step 2 if the “blank program verify” operation  
sequence is used.  
Notes: 3. Always return the jumper to the off position after the data security function has been activated.  
No. 5488-13/27  
LC66E5316  
4. Erase procedure  
Use a general-purpose EPROM eraser to erase data written to the EPROM.  
LC66E5316 (DIC)  
LC66E5316 (QFC)  
Cut corner  
Pin 1  
SW  
DASEC  
Pin 1  
Aligned to the top  
SW DASEC  
Pin 1  
O
Write board (W66EP5316D)  
Write board (W66EP5316Q)  
Specifications  
Absolute Maximum Ratings at Ta = 25°C, V = 0 V  
SS  
Parameter  
Maximum supply voltage  
Symbol  
Conditions  
Ratings  
Unit  
V
Note  
V
max  
V
–0.3 to +7.0  
DD  
DD  
P2, P3 (except for the P33/HOLD pin),  
P61, and P63  
V
1
–0.3 to +7.0  
V
V
1
2
1
2
3
4
4
IN  
Input voltage  
V
2
All other inputs  
–0.3 to V  
+ 0.3  
IN  
DD  
P2, P3 (except for the P33/HOLD pin),  
P61, and P63  
V
V
1
–0.3 to +7.0  
V
OUT  
Output voltage  
2
All other inputs  
–0.3 to V  
+ 0.3  
20  
2
V
OUT  
DD  
P0, P1, P2, P3 (except for the P33/HOLD pin),  
P4, P5, P6, P8, PC, PD1, PD3  
I
1
mA  
mA  
mA  
ON  
–I  
–I  
–I  
1
P0, P1, P4, P5  
OP  
Output current per pin  
P2, P3 (except for the P33/HOLD pin),  
P6,P8, and PC  
2
3
4
OP  
OP  
P41, P43, PC3, PD1, PD3, P81  
P4, P5, P6, P8, PC  
10  
75  
mA  
mA  
4
3
Σ I  
Σ I  
Σ I  
Σ I  
1
ON  
P0, P1, P2, P3 (except for the P33/HOLD pin),  
PD1, PD3  
2
1
2
75  
25  
25  
mA  
mA  
mA  
3
4
4
ON  
Total pin current  
P4, P5, P6, P8, PC  
OP  
P0, P1, P2, P3 (except for the P33/HOLD pin),  
PD1, PD3  
OP  
Allowable power dissipation  
Operating temperature  
Storage temperature  
Pd max  
Topr  
Ta = –30 to +70°C: DIC42S (QFC48)  
600 (430)  
+10 to +40  
–55 to +125  
mW  
°C  
Tstg  
°C  
Note: 1. Applies to pins with open-drain output specifications. For pins with other than open-drain output specifications, the ratings in the pin column for that  
pin apply.  
2. For the oscillator input and output pins, levels up to the free-running oscillation level are allowed.  
3. Sink current (Applies to P8 and PD when either the CMOS output specifications or the inverter array specifications have been selected.)  
4. Source current (Applies to all pins except P8 and PD for which the pull-up output specifications, the CMOS output specifications, or the inverter  
array specifications have been selected. Applies to PD pins for which the inverter array specifications have been selected.) Contact your Sanyo  
representative for the electrical characteristics when the inverter array or buffer array options are specified  
No. 5488-14/27  
LC66E5316  
Allowable Operating Ranges at Ta = +10 to +40°C, V = 0 V, V = 4.5 to 5.5 V, unless otherwise specified.  
SS  
DD  
Parameter  
Symbol  
Conditions  
min  
4.5  
1.8  
typ  
max  
Unit  
V
Note  
Operating supply voltage  
Memory retention supply voltage  
V
V
V
5.5  
5.5  
DD  
DD  
DD  
V
H
: During hold mode  
V
DD  
P2, P3 (except for the P33/HOLD pin),  
P61, and P63: N-channel output transistor off  
V
1
2
3
0.8 V  
+7.0  
V
V
V
1
2
IH  
IH  
IH  
DD  
DD  
DD  
P33/HOLD, RES, OSC1:  
N-channel output transistor off  
Input high-level voltage  
Input low-level voltage  
V
V
0.8 V  
0.8 V  
V
DD  
P0, P1, P4, P5, PC, PD, PE:  
N-channel output transistor off  
V
DD  
P2, P3 (except for the P33/HOLD pin), P6,  
RES, and OSC1: N-channel output transistor off  
V
V
V
1
2
3
V
V
V
0.2 V  
V
V
V
IL  
SS  
DD  
P33/HOLD: V  
= 1.8 to 5.5 V  
0.2 V  
0.2 V  
IL  
DD  
SS  
DD  
P0, P1, P4, P5, PC, PD, PE, TEST:  
N-channel output transistor off  
2
IL  
SS  
DD  
0.4  
(10)  
4.2  
(0.95)  
MHz  
(µs )  
When the main oscillator is operating  
When the sub-oscillator is operating  
Operating frequency  
(instruction cycle time)  
fop  
(Tcyc)  
30  
(133.2)  
32.768  
(122)  
100  
(40)  
kHz  
(µs)  
[External clock input conditions]  
Frequency  
OSC1: Defined by Figure 1. Input the clock  
signal to OSC1 and leave OSC2 open.  
(External clock input must be selected as the  
oscillator circuit option.)  
f
0.4  
4.20  
MHz  
ns  
ext  
OSC1: Defined by Figure 1. Input the clock  
signal to OSC1 and leave OSC2 open.  
(External clock input must be selected as the  
oscillator circuit option.)  
Pulse width  
t
t
, t  
100  
extH extL  
OSC1: Defined by Figure 1. Input the clock  
signal to OSC1 and leave OSC2 open.  
(External clock input must be selected as the  
oscillator circuit option.)  
Rise and fall times  
, t  
30  
ns  
extR extF  
Note: 1. Applies to pins with open-drain specifications. However, V 2 applies to the P33/HOLD pin.  
IH  
When ports P2, P3, and P6 have CMOS output specifications they cannot be used as input pins.  
2. PC port pins with CMOS output specifications cannot be used as input pins.  
Contact your Sanyo representative for the allowable operating ranges for P4, PC, and PD when the inverter array is used, and for P8 when the  
buffer array is used.  
3. Applies to pins with open-drain specifications. However, V 2 applies to the P33/HOLD pin.  
IL  
P2, P3, and P6 port pins with CMOS output specifications cannot be used as input pins.  
No. 5488-15/27  
LC66E5316  
Electrical Characteristics at Ta = +10 to +40°C, V = 0 V, V = 4.5 to 5.5 V unless otherwise specified.  
SS  
DD  
Parameter  
Symbol  
Conditions  
min  
typ  
max  
5.0  
Unit  
µA  
Note  
1
P2, P3 (except for the P33/HOLD pin),  
P61, and P63: V = +10.0 V, with the output  
I
I
1
IH  
IH  
IN  
Nch transistor off  
P0, P1, P4, P5, P6, PC, OSC1, and P33/HOLD  
(Does not apply to PD, PE, PC2, and PC3):  
2
1.0  
1.0  
µA  
µA  
1
1
V
= V , with the output Nch transistor off  
DD  
IN  
PD, PC2, PC3, PE0 (When used as a port; does  
not apply when the sub-oscillator option is  
selected.): V = V , with the output Nch  
Input high-level current  
I
3
IH  
IN  
DD  
transistor off  
I
I
4
5
RES: V = V , operating, halt mode  
10  
µA  
µA  
1
1
IH  
IN  
DD  
RES: V = V , hold mode  
1.0  
1.0  
IH  
IN  
DD  
PE1 (When used as a port; does not apply when  
the sub-oscillator option is selected.) V = V  
I
6
µA  
µA  
1
2
IH  
IN  
DD  
Input ports other than PD, PE, PC2, and PC3:  
= V , with the output Nch transistor off  
I
1
2
–1.0  
IL  
V
IN  
SS  
PD, PC2, PC3, PE0 (When used as a port; does  
not apply when the sub-oscillator option is  
selected.): V = V , with the output Nch  
I
–1.0  
µA  
2
IL  
Input low-level current  
IN  
SS  
transistor off  
RES: V = V  
SS  
I
I
3
4
100  
20  
µA  
µA  
1
1
IL  
IN  
PE1 (When used as a port; does not apply when  
the sub-oscillator option is selected.): V = V  
IL  
IN  
SS  
P2, P3 (except for the P33/HOLD pin),  
P6, P8, and PC: I = –1 mA  
V
V
– 1.0  
DD  
DD  
OH  
Output high-level voltage  
Value of the output pull-up resistor  
Output low-level voltage  
V
V
1
V
3
OH  
P2, P3 (except for the P33/HOLD pin),  
– 0.5  
30  
P6, P8, and PC: I  
= –0.1 mA  
OH  
R
P0, P1, P4, P5  
100  
150  
0.4  
k
4
5
PO  
P0, P1, P2, P3, P4, P5, P6, P8, and PC  
(except for the P33/HOLD pin): I = 1.6 mA  
OL  
1
V
OL  
OL  
P0, P1, P2, P3, P4, P5, P6, P8, and PC  
(except for the P33/HOLD pin): I = 8 mA  
OL  
V
I
2
1
1.5  
5.0  
1.0  
V
P2, P3, P61, P63: V = +7.0 V  
IN  
µA  
µA  
µA  
6
6
7
OFF  
Does not apply to P2, P3, P61, P63, and P8.:  
Output off leakage current  
I
I
2
3
OFF  
V
= V  
DD  
IN  
P8: V = V  
–1.0  
OFF  
IN  
SS  
[Schmitt characteristics]  
Hysteresis voltage  
V
0.1 V  
V
V
V
HYS  
DD  
High-level threshold voltage  
Low-level threshold voltage  
[Ceramic oscillator]  
Vt  
P2, P3, P5, P6, OSC1 (EXT), RES  
0.5 V  
0.2 V  
0.8 V  
H
L
DD  
DD  
Vt  
0.5 V  
DD  
DD  
Oscillator frequency  
f
OSC1, OSC2: Figure 2, 4 MHz  
Figure 3, 4 MHz  
4.0  
MHz  
ms  
CF  
Oscillator stabilization time  
[Crystal oscillator]  
f
10.0  
5.0  
CFS  
XT1, XT2: Figure 2, when the sub-oscillator  
option is selected, 32 kHz  
Oscillator frequency  
f
32.768  
1.0  
kHz  
s
XT  
Figure 3, when the sub-oscillator option is  
selected, 32 kHz  
Oscillator stabilization time  
[Serial clock]  
f
XTS  
Input  
0.9  
2.0  
0.4  
1.0  
µs  
Tcyc  
µs  
Cycle time  
Output  
t
CKCY  
SCK0, SCK1: With the timing of Figure 4 and  
the test load of Figure 5.  
Input  
t
Low-level and high-level  
pulse widths  
CKL  
Output  
Output  
t
Tcyc  
µs  
CKH  
Rise an fall times  
[Serial input]  
t
, t  
0.1  
CKR CKF  
Data setup time  
Data hold time  
t
0.3  
0.3  
µs  
µs  
SI0, SI1: With the timing of Figure 4.  
Stipulated with respect to the rising edge () of  
SCK0 or SCK1.  
ICK  
t
CKI  
Continued on next page.  
No. 5488-16/27  
LC66E5316  
Continued from preceding page.  
Parameter  
Symbol  
Conditions  
min  
typ  
max  
Unit  
µs  
Note  
[Serial output]  
SO0, SO1: With the timing of Figure 5 and  
the test load of Figure 5. Stipulated with respect  
to the falling edge () of SCK0 or SCK1.  
Output delay time  
[Pulse conditions]  
t
0.3  
CKO  
INT0: Figure 6, conditions under which the INT0  
interrupt can be accepted, conditions under  
which the timer 0 event counter or pulse width  
measurement input can be accepted  
INT0 high and low-level  
t
, t  
2
Tcyc  
IOH IOL  
High and low-level pulse widths  
for interrupt inputs other than INT0  
INT1, INT2: Figure 6, conditions under which  
the corresponding interrupt can be accepted  
t
, t  
2
2
3
Tcyc  
Tcyc  
Tcyc  
IIH IIL  
PIN1 high and low-level  
pulse widths  
PIN1: Figure 6, conditions under which the  
timer 1 event counter input can be accepted  
t
, t  
PINH PINL  
RES high and low-level  
pulse widths  
RES: Figure 6, conditions under which reset  
can be applied.  
t
, t  
RSH RSL  
V
V
V
V
: 4-MHz ceramic oscillator  
: 4-MHz external clock  
6.0  
6.0  
4
12  
12  
mA  
mA  
mA  
µA  
DD  
DD  
DD  
DD  
Operating current drain  
I
8
DD OP  
: 4-MHz ceramic clock  
8
Halt mode current drain  
Hold mode current drain  
I
: 32 kHz (main oscillator stopped),  
100  
500  
DDHALT  
sub-oscillator: crystal  
I
V
: V = 1.8 to 5.5 V  
0.01  
10  
µA  
DDHOLD  
DD DD  
Note: 1. With the output Nch transistor off in shared I/O ports with the open-drain output specifications. These pins cannot be used as input pins if the  
CMOS output specifications are selected.  
2. With the output Nch transistor off in shared I/O ports with the open-drain output specifications. The rating for the pull-up output specification pins is  
stipulated in terms of the output pull-up current IPO. These pins cannot be used as input pins if the CMOS output specifications are selected.  
3. With the output Nch transistor off for CMOS output specification pins. (Also applies when the Pch open-drain option is selected for P8.)  
4. With the output Nch transistor off for pull-up output specification pins.  
5. When CMOS output specifications are selected for P8.  
6. With the output Nch transistor off for pull-up output specification pins.  
7. With the output Pch transistor off for open-drain output specification pins.  
8. Reset state  
Comparator Characteristics at Ta = –30 to +70°C, V = 0 V  
SS  
Parameter  
Absolute precision  
Symbol  
Conditions  
min  
typ  
max  
±1  
Unit  
LSB  
V
Note  
1
V
AN1 to AN4: V  
= 4.5 to 5.5 V  
±1/2  
CECM  
DD  
Threshold voltage  
Input voltage  
V
V
= 4.5 to 5.5 V  
V
V
THCM  
DD  
SS  
DD  
V
AN1 to AN4: V  
= 4.5 to 5.5 V  
V
V
V
INCM  
DD  
SS  
DD  
Conversion time  
T
V
= 4.5 to 5.5 V  
DD  
30  
µs  
CCM  
Note: 1. Does not include the quantization error.  
V
DD  
0.8V  
DD  
0.2V  
DD  
OSC1  
(OSC2)  
OPEN  
V
SS  
t
t
extH  
extL  
External clock  
t
t
extF  
extR  
1/fext  
Figure 1 External Clock Input Waveform  
No. 5488-17/27  
LC66E5316  
V
DD  
Operating V  
minimum value  
DD  
0V  
OSC1  
XT1  
OSC2  
Rd  
XT2  
OSC  
Rd  
C2  
Stable oscillation  
Ceramic  
oscillator  
Crystal  
oscillatorI  
C1  
C2  
C1  
Oscillator  
unstable period  
t
CFS  
Figure 2 Ceramic Oscillator Circuit  
Figure 3 Oscillator Stabilization Period  
Table 1 Guaranteed Ceramic Oscillator Constants External capacitor type  
External capacitor type  
C1 = 33 pF ± 10%  
Built-in capacitor type  
4 MHz  
4 MHz  
(Murata Mfg. Co., Ltd.)  
CSA4.00MG  
C2 = 33 pF ± 10%  
Rd = 220 ± 5%  
C1 = 33 pF ± 10%  
C2 = 33 pF ± 10%  
Rd = 0  
(Murata Mfg. Co., Ltd.)  
CST4.00MG  
Rd = 220 ± 5%  
4 MHz  
(Kyocera Corporation)  
KBR4.0MS  
4 MHz  
(Kyocera Corporation)  
KBR4.0MES  
Table 2 Guaranteed Crystal Oscillator Constants  
C1 = 18 pF ± 10%  
32 kHz  
(Seiko Epson)  
C-002RX  
C2 = 18 pF ± 10%  
Rd = 470 k ± 5%  
t
CKCY  
t
CKR  
t
t
t
CKH  
CKF  
CKL  
SCK0  
0.8V  
V
DD (input)  
-1  
SCK1  
0.2V  
DD (output)  
DD (input)  
0.4V  
DD (output)  
t
t
ICK CKI  
SI0  
0.8V  
0.2V  
DD  
DD  
SI1  
R=1k  
t
CK0  
TEST  
point  
SO0  
SO1  
V
DD  
0.4V  
-1  
DD  
C=50pF  
Figure 4 Serial I/O Timing  
Figure 5 Timing Load  
t
t
I0H  
I1H  
t
t
PINH  
RSH  
0.8V  
DD  
0.2V  
DD  
t
t
I0L  
I1L  
t
t
PINL  
RSL  
Figure 6 Input Timing for the INT0, INT1, INT2, PIN1, and RES pins  
No. 5488-18/27  
LC66E5316  
LC66XXXX Series Instruction Table (by function)  
Abbreviations:  
AC:  
E:  
Accumulator  
E register  
CF:  
ZF:  
HL:  
XY:  
M:  
Carry flag  
Zero flag  
Data pointer DPH, DPL  
Data pointer DPX, DPY  
Data memory  
M (HL): Data memory pointed to by the DPH, DPL data pointer  
M (XY): Data memory pointed to by the DPX, DPY auxiliary data pointer  
M2 (HL): Two words of data memory (starting on an even address) pointed to by the DPH, DPL data pointer  
SP:  
Stack pointer  
M2 (SP): Two words of data memory pointed to by the stack pointer  
M4 (SP): Four words of data memory pointed to by the stack pointer  
in:  
t2:  
n bits of immediate data  
Bit specification  
t2  
11  
10  
01  
00  
3
2
1
0
Bit  
2
2
2
2
PCh:  
PCm:  
PCl:  
Fn:  
Bits 8 to 11 in the PC  
Bits 4 to 7 in the PC  
Bits 0 to 3 in the PC  
User flag, n = 0 to 15  
TIMER0: Timer 0  
TIMER1: Timer 1  
SIO:  
P:  
Serial register  
Port  
P (i4):  
INT:  
Port indicated by 4 bits of immediate data  
Interrupt enable flag  
( ), [ ]: Indicates the contents of a location  
:  
:
Transfer direction, result  
Exclusive or  
:
Logical and  
:
Logical or  
+:  
–:  
—:  
Addition  
Subtraction  
Taking the one's complement  
No. 5488-19/27  
LC66E5316  
Instruction code  
Affected  
status  
bits  
Mnemonic  
Operation  
Description  
Note  
D
D
D
D
D D D D  
4 3 2 1 0  
7
6
5
[Accumulator manipulation instructions]  
AC 0  
(Equivalent to LAI 0.)  
Has a vertical  
skip function.  
CLA  
DAA  
Clear AC  
1
0
0
0
0
0
0
0
1
2
1
2
Clear AC to 0.  
ZF  
ZF  
Decimal adjust AC  
in addition  
1
0
1
0
0
1
0
0
1
0
1
1
1
1
1
0
AC (AC) + 6  
(Equivalent to ADI 6.)  
Add six to AC.  
Add 10 to AC.  
AC (AC) + 10  
(Equivalent to  
ADI 0AH.)  
Decimal adjust AC  
in subtraction  
1
0
1
0
0
1
0
0
1
1
1
0
1
1
1
0
DAS  
2
2
ZF  
CLC  
STC  
Clear CF  
Set CF  
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
1
1
1
1
1
CF 0  
CF 1  
Clear CF to 0.  
Set CF to 1.  
CF  
CF  
Take the one’s complement  
of AC.  
CMA  
Complement AC  
0
0
0
1
1
0
0
0
1
1
AC (AC)  
ZF  
IA  
Increment AC  
Decrement AC  
0
0
0
0
0
1
1
0
0
0
1
1
0
0
0
0
1
1
1
1
AC (AC) + 1  
AC (AC) – 1  
Increment AC.  
Decrement AC.  
ZF, CF  
ZF, CF  
DA  
AC (CF),  
ACn (ACn + 1),  
3
Rotate AC right  
through CF  
RAR  
RAL  
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
1
1
1
1
Shift AC (including CF) right. CF  
CF (AC )  
0
AC (CF),  
0
Rotate AC left  
through CF  
ACn + 1 (ACn),  
Shift AC (including CF) left.  
CF, ZF  
CF (AC )  
3
TAE  
TEA  
Transfer AC to E  
Transfer E to AC  
0
0
1
1
0
0
0
0
0
0
1
1
0
1
1
0
1
1
1
1
E (AC)  
AC (E)  
Transfer the contents of AC to E.  
Transfer the contents of E to AC. ZF  
Exchange the contents of  
AC and E.  
XAE  
Exchange AC with E  
0
1
0
0
0
1
0
0
1
1
(AC) (E)  
[Memory manipulation instructions]  
M (HL) ←  
[M (HL)] + 1  
IM  
Increment M  
Decrement M  
0
0
0
1
0
0
1
0
1
1
2
2
1
1
1
1
2
2
1
1
Increment M (HL).  
Decrement M (HL).  
ZF, CF  
M (HL) ←  
[M (HL)] – 1  
DM  
0
1
0
1
1
0
0
0
0
0
0
1
1
1
0
1
ZF, CF  
ZF, CF  
ZF, CF  
IMDR i8 Increment M direct  
DMDR i8 Decrement M direct  
SMB t2 Set M data bit  
M (i8) [M (i8)] + 1 Increment M (i8).  
M (i8) [M (i8)] – 1 Decrement M (i8).  
I
I
I
I
I
I
I
I
7
6
5
4
3
2
1
0
1
1
0
0
0
0
1
1
I
I
I
I
I
I
I
I
7
6
5
4
3
2
1
0
Set the bit in M (HL) specified  
by t0 and t1 to 1.  
0
0
0
0
1
1
t
t
t
[M (HL), t2] 1  
[M (HL), t2] 0  
1
0
Clear the bit in M (HL)  
specified by t0 and t1 to 0.  
RMB t2 Reset M data bit  
0
0
1
0
1
1
t
ZF  
1
0
[Arithmetic, logic and comparison instructions]  
Add the contents of AC and  
M (HL) as two’s complement  
values and store the result  
in AC.  
AC (AC) +  
[M (HL)]  
AD  
Add M to AC  
0
0
0
0
0
1
1
0
1
0
0
1
1
2
1
2
1
1
2
1
2
1
ZF, CF  
ZF, CF  
ZF, CF  
ZF  
Add the contents of AC and  
M (i8) as two’s complement  
values and store the result  
in AC.  
1
1
0
0
ADDR i8 Add M direct to AC  
AC (AC) + [M (i8)]  
I
I
I
I
I
I
I
I
7
6
5
4
3
2
1
0
Add the contents of AC,  
M (HL) and C as two’s  
complement values and  
store the result in AC.  
AC (AC) +  
[M (HL)] + (CF)  
ADC  
Add M to AC with CF  
0
0
0
0
0
0
1
0
Add the contents of AC and  
the immediate data as two’s  
complement values and store  
the result in AC.  
Add immediate data  
to AC  
1
0
1
0
0
1
0
0
1
1
1
1
AC (AC) +  
I , I , I , I  
3 2 1 0  
ADI i4  
SUBC  
I
I
I
I
3
2
1
0
Subtract the contents of AC  
and CF from M (HL) as two’s  
complement values and store  
the result in AC.  
CF will be zero if  
there was a  
borrow and one  
otherwise.  
Subtract AC from M  
with CF  
AC [M (HL)] –  
(AC) – (CF)  
0
0
0
1
0
1
1
1
ZF, CF  
Take the logical and of AC  
and M (HL) and store the  
result in AC.  
And M with AC then  
store AC  
AC (AC)  
[M (HL)]  
ANDA  
ORA  
0
0
0
0
0
0
0
0
0
0
1
1
1
0
1
1
1
1
1
1
ZF  
ZF  
Take the logical or of AC and  
M (HL) and store the result  
in AC.  
Or M with AC then  
store AC  
AC (AC)  
[M (HL)]  
Continued on next page.  
No. 5488-20/27  
LC66E5316  
Continued from preceding page.  
Instruction code  
Affected  
status  
bits  
Mnemonic  
Operation  
Description  
Note  
D
D
D
D
D D D D  
4 3 2 1 0  
7
6
5
[Arithmetic, logic and comparison instructions]  
Take the logical exclusive or  
of AC and M (HL) and store  
the result in AC.  
Exclusive or M with  
AC then store AC  
AC (AC)  
[M (HL)]  
EXL  
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
1
1
1
1
1
1
1
ZF  
ZF  
ZF  
Take the logical and of AC  
and M (HL) and store the  
result in M (HL).  
And M with AC then  
store M  
M (HL) (AC)  
[M (HL)]  
ANDM  
ORM  
0
0
0
1
1
0
1
0
Take the logical or of AC and  
M (HL) and store the result  
in M (HL).  
Or M with AC then  
store M  
M (HL) (AC)  
[M (HL)]  
Compare the contents of AC  
and M (HL) and set or clear CF  
and ZF according to the result.  
Magnitude  
CF ZF  
CM  
Compare AC with M  
0
0
0
1
0
1
1
0
1
1
[M (HL)] + (AC) + 1  
ZF, CF  
comparison  
[M (HL)] > (AC)  
[M (HL)] = (AC)  
[M (HL)] < (AC)  
0
1
1
0
1
0
Compare the contents of AC  
and the immediate data  
I
I I I and set or clear CF  
3
2 1 0  
and ZF according to the result.  
Magnitude  
CF ZF  
Compare AC with  
immediate data  
1
1
1
0
0
1
0
0
1 1 1 1  
CI i4  
2
2
I
I
I I + (AC) + 1  
2 1 0  
ZF, CF  
3
comparison  
I
I
I
I
3
2
1
0
I
I
I
I
I
I
I
I
I
I
I
I
> AC  
= AC  
< AC  
0
1
1
0
1
0
3
3
3
2
2
2
1
1
1
0
0
0
ZF 1  
Compare the contents of DP  
with the immediate data.  
Set ZF if identical and clear  
ZF if not.  
L
Compare DP with  
L
immediate data  
1
1
1
0
0
1
0
1
1
1
1
1
if (DP ) = I  
I
I
I
I
I
I
L
3
2
1
0
CLI i4  
2
2
2
2
ZF  
ZF  
I
I
I
I
ZF 0  
3
2
1
0
if (DP ) - I  
L
3
2
1
0
ZF 1  
if (AC, t2) = [M (HL), Compare the corresponding  
t2]  
ZF0  
Compare AC bit with  
M data bit  
1
1
1
1
0
0
0
1
1
0
1
0
1
1
bits specified by t0 and t1 in  
AC and M (HL). Set ZF if  
CMB t2  
t
t
1
0
if (AC, t2) - [M (HL), identical and clear ZF if not.  
t2]  
[Load and store instructions]  
Load AC and E from  
M2 (HL)  
AC M (HL),  
E M (HL + 1)  
Load the contents of M2 (HL)  
into AC, E.  
LAE  
0
1
0
1
1
1
0
0
1
1
2
1
1
1
1
2
1
1
Load AC with  
LAI i4  
Load the immediate data  
into AC.  
Has a vertical  
skip function  
1
1
0
1
0
0
0
0
I
I
I
I
AC I I I I  
3 2 1 0  
ZF  
ZF  
3
2
1
0
immediate data  
Load AC from M  
0
0
0
1
Load the contents of M (i8)  
into AC.  
LADR i8  
direct  
AC [M (i8)]  
I
I
I
I
I
I
I
I
7
6
5
4
3
2
1
0
Store the contents of AC into  
M (HL).  
S
Store AC to M  
0
1
0
0
0
1
1
1
M (HL) (AC)  
Store AC and E to  
M2 (HL)  
M (HL) (AC)  
M (HL + 1) (E)  
Store the contents of AC, E  
into M2 (HL).  
SAE  
0
0
1
1
0
0
1
0
1
1
1
0
1
0
0
Load the contents of M (reg)  
into AC.  
The reg is either HL or XY  
depending on t .  
0
Load AC from  
M (reg)  
LA reg  
t
1
1
AC [M (reg)]  
ZF  
0
reg  
T
0
HL  
XY  
0
1
Continued on next page.  
No. 5488-21/27  
LC66E5316  
Continued from preceding page.  
Instruction code  
D D  
1 0  
Affected  
status  
bits  
Mnemonic  
Operation  
Description  
Note  
D
D
D
D
D
D
7
6
5
4
3
2
[Load and store instructions]  
Load the contents of M (reg)  
into AC. (The reg is either HL  
or XY.) Then increment the  
ZF is set  
according to the  
result of  
AC [M (reg)]  
Load AC from M (reg)  
LA reg, I  
0
1
0
0
1
0
t
1
1
1
2
2
DP (DP ) + 1  
contents of either DP or DP . ZF  
0
L
L
L Y  
then increment reg  
or DP (DP ) + 1 The relationship between t  
incrementing  
DP or DP .  
Y
Y
0
and reg is the same as that  
for the LA reg instruction.  
L
Y
Load the contents of M (reg)  
into AC. (The reg is either HL  
or XY.) Then decrement the  
contents of either DP or DP . ZF  
ZF is set  
according to the  
result of  
AC [M (reg)]  
Load AC from M (reg)  
LA reg, D  
0
1
0
1
1
0
t
1
DP (DP ) – 1  
0
L
L
L
Y
then decrement reg  
or DP (DP ) – 1 The relationship between t  
decrementing  
DP or DP .  
Y
Y
0
and reg is the same as that  
L
Y
for the LA reg instruction.  
Exchange the contents of  
M (reg) and AC.  
The reg is either HL or XY  
depending on t .  
0
Exchange AC with  
XA reg  
M (reg)  
0
1
0
0
1
1
t
0
1
1
(AC) [M (reg)]  
0
reg  
T
0
HL  
XY  
0
1
Exchange the contents of  
M (reg) and AC. (The reg is  
either HL or XY.) Then  
increment the contents of  
either DP or DP . The  
ZF is set  
according to the  
result of  
Exchange AC with  
XA reg, I M (reg) then  
increment reg  
(AC) [M (reg)]  
DP (DP ) + 1  
0
1
0
0
1
1
t
1
1
2
ZF  
0
L
L
L
Y
or DP (DP ) + 1  
incrementing  
DP or DP .  
Y
Y
relationship between t and  
0
L
Y
reg is the same as that for  
the XA reg instruction.  
Exchange the contents of  
M (reg) and AC. (The reg is  
either HL or XY.) Then  
ZF is set  
according to the  
result of  
Exchange AC with  
XA reg, D M (reg) then  
decrement reg  
(AC) [ [M (reg)]  
DP (DP ) – 1  
decrement the contents of  
either DP or DP . The  
0
1
1
1
0
0
1
0
1
1
1
0
t
1
0
1
2
ZF  
0
L
L
L
Y
or DP (DP ) – 1  
decrementing  
DP or DP .  
Y
Y
relationship between t and  
0
L
Y
reg is the same as that for  
the XA reg instruction.  
Exchange AC with  
XADR i8  
0
I
Exchange the contents of AC  
and M (i8).  
2
2
2
2
(AC) [ [M (i8)]  
E I  
M direct  
I
I
I
I
I
I
I
7
6
5
4
3
2
1
0
Load E & AC with  
LEAI i8  
1
1
0
0
0
1
1
I
0
I
I I  
Load the immediate data i8  
into E, AC.  
7
6 5 4  
immediate data  
I
I
I
I
I
I
I
AC I I I I  
7
6
5
4
3
2
1
0
3 2 1 0  
Load into E, AC the ROM data  
at the location determined by  
[ROM (PCh, E, AC)] replacing the lower 8 bits of  
the PC with E, AC.  
Read table data from  
RTBL  
E, AC ←  
0
1
0
1
1
0
1
0
1
1
2
2
program ROM  
Output from ports 4 and 5 the  
ROM data at the location  
Read table data from  
RTBLP program ROM then  
output to P4, 5  
Port 4, 5 ←  
0
1
0
1
1
0
1
0
0
0
determined by replacing the  
[ROM (PCh, E, AC)]  
lower 8 bits of the PC with  
E, AC.  
[Data pointer manipulation instructions]  
Load DP with zero  
H
and DP with  
immediate data  
respectively  
DP 0  
Load zero into DP and the  
H
L
H
LDZ i4  
0
1
I
I
I
I
1
1
3
2
1
0
DPL I  
I
I I  
2 1 0  
immediate data i4 into DP .  
3
L
Load DP with  
H
immediate data  
1
0
1
0
0
0
0
0
1
1
1
1
Load the immediate data i4  
into DP .  
H
LHI i4  
LLI i4  
2
2
2
2
2
2
2
2
DP I  
I I I  
3 2 1 0  
H
I
I
I
I
3
2
1
0
Load DP with  
L
immediate data  
1
0
1
0
0
0
0
1
1
1
1
1
Load the immediate data i4  
into DP .  
L
DP I  
I I I  
2 1 0  
L
3
I
I
I
I
3
2
1
0
Load DP , DP with  
1
1
0
0
0
0
0
0
DP I  
I I I  
6 5 4  
Load the immediate data into  
DL , DP .  
H
L
H
7
LHLI i8  
LXYI i8  
immediate data  
I
I
I
I
I
I
I
I
DP I  
I
I
I
7
6
5
4
3
2
1
0
L
3
2
1
0
H
L
Load DP , DP with  
1
1
0
0
0
0
0
0
DP I  
I
I
I
I
I
I
Load the immediate data into  
DL , DP .  
X
Y
X
7
3
6
2
5
1
4
0
immediate data  
I
I
I
I
I
I
I
I
DP I  
7
6
5
4
3
2
1
0
Y
X
Y
Continued on next page.  
No. 5488-22/27  
LC66E5316  
Continued from preceding page.  
Instruction code  
Affected  
status  
bits  
Mnemonic  
Operation  
Description  
Note  
D
D
D
D
D D D D  
4 3 2 1 0  
7
6
5
[Data pointer manipulation instructions]  
Increment the contents  
of DP .  
L
IL  
Increment DP  
0
0
0
0
0
0
0
0
0
1
0
0
0
1
1
1
1
1
2
2
1
2
2
1
2
2
1
2
2
1
1
1
1
1
2
2
1
2
2
1
2
2
1
2
2
1
DP (DP ) + 1  
ZF  
ZF  
ZF  
ZF  
L
L
L
Decrement the contents  
of DP .  
L
DL  
Decrement DP  
1
0
1
0
1
0
0
0
0
0
0
0
0
1
1
1
1
1
DP (DP ) – 1  
L L  
L
Increment the contents  
of DP .  
Y
IY  
Increment DP  
DP (DP ) + 1  
Y Y  
Y
Decrement the contents  
of DP .  
Y
DY  
Decrement DP  
DP (DP ) – 1  
Y Y  
Y
1
1
1
1
0
1
0
1
1
0
1
0
1
0
1
0
Transfer the contents of AC  
to DP .  
H
TAH  
THA  
XAH  
TAL  
TLA  
XAL  
TAX  
TXA  
XAX  
TAY  
TYA  
XAY  
Transfer AC to DP  
DP (AC)  
H
H
1
1
1
1
0
1
0
0
1
0
1
0
1
0
1
0
Transfer the contents of DP  
to AC.  
H
Transfer DP to AC  
H
AC (DP )  
ZF  
ZF  
ZF  
ZF  
H
Exchange AC  
with DP  
H
Exchange the contents of AC  
and DP .  
H
0
1
0
0
0
0
0
0
(AC) (DP )  
H
1
1
1
1
0
1
0
1
1
0
1
0
1
0
1
1
Transfer the contents of AC  
to DP .  
L
Transfer AC to DP  
L
DP (AC)  
L
1
1
1
1
0
1
0
0
1
0
1
0
1
0
1
1
Transfer the contents of DP  
L
to AC.  
Transfer DP to AC  
L
AC (DP )  
L
Exchange AC  
with DP  
L
Exchange the contents of AC  
and DP .  
L
0
1
0
0
0
0
0
1
(AC) (DP )  
L
1
1
1
1
0
1
0
1
1
0
1
0
1
1
1
0
Transfer the contents of AC  
to DP .  
X
Transfer AC to DP  
X
DP (AC)  
X
1
1
1
1
0
1
0
0
1
0
1
0
1
1
1
0
Transfer the contents of DP  
X
to AC.  
Transfer DP to AC  
X
AC (DP )  
X
Exchange AC  
with DP  
X
Exchange the contents of AC  
and DP .  
X
0
1
0
0
0
0
1
0
(AC) (DP )  
X
1
1
1
1
0
1
0
1
1
0
1
0
1
1
1
1
Transfer the contents of AC  
to DP .  
Y
Transfer AC to DP  
Y
DP (AC)  
Y
1
1
1
1
0
1
0
0
1
0
1
0
1
1
1
1
Transfer the contents of DP  
Y
to AC.  
Transfer DP to AC  
Y
AC (DP )  
Y
Exchange AC  
with DP  
Y
Exchange the contents of AC  
and DP .  
Y
0
1
0
0
0
0
1
1
(AC) (DP )  
Y
[Flag manipulation instructions]  
SFB n4 Set flag bit  
Set the flag specified  
by n4 to 1.  
0
0
1
0
1
1
1
1
n
n
n
n
1
1
1
1
Fn 1  
Fn 0  
3
3
2
2
1
1
0
0
Reset the flag specified  
by n4 to 0.  
RFB n4 Reset flag bit  
n
n
n
n
ZF  
[Jump and subroutine instructions]  
This becomes  
PC12 + (PC12)  
immediately  
following a BANK  
instruction.  
PC13, 12 ←  
PC13, 12  
PC11 to 0 ←  
Jump to the location in the  
same bank specified by the  
immediate data P12.  
JMP  
addr  
Jump in the current  
bank  
1
1
1
0
P
P
P
P
P P  
11 10  
9
8
0
2
1
2
1
P
P
P
P
P P  
7
6
5
4
3
2
1
P
to P  
8
11  
PC13 to 8 ←  
PC13 to 8,  
PC7 to 4 (E),  
PC3 to 0 (AC)  
Jump to the location  
determined by replacing the  
lower 8 bits of the PC  
by E, AC.  
Jump to the address  
stored at E and AC  
in the current page  
JPEA  
0
0
1
0
0 1 1 1  
PC13 to 11 0,  
PC10 to 0 ←  
CAL  
addr  
0
1
0
1
0 P  
P
P
P
P
P
to P ,  
10  
9
1
8
0
10 0  
Call subroutine  
2
2
Call a subroutine.  
P
P
P
P
P
P
M4 (SP) ←  
7
6
5
4
3
2
(CF, ZF, PC13 to 0),  
SP (SP)-4  
PC13 to 6,  
PC10 0,  
CZP  
addr  
Call subroutine in the  
zero page  
PC5 to 2 P to P , Call a subroutine on page 0  
3 0  
1
0
0
0
1
0
0
1
P
P
P
P
1
1
2
1
3
2
1
0
M4 (SP) ←  
in bank 0.  
(CF, ZF, PC12 to 0),  
SP SP-4  
Change the memory bank  
and register bank.  
BANK  
Change bank  
1 0 1 1  
Continued on next page.  
No. 5488-23/27  
LC66E5316  
Continued from preceding page.  
Instruction code  
Affected  
status  
bits  
Mnemonic  
Operation  
Description  
Note  
D
D
D
D
D D D D  
4 3 2 1 0  
7
6
5
[Jump and subroutine instructions]  
Store the contents of reg in  
M2 (SP). Subtract 2 from SP  
after the store.  
reg  
i
i
0
1
PUSH  
reg  
1
1
1
1
0
1
0
1
1
1
1
1
1
0
M2 (SP) (reg)  
SP (SP) – 2  
Push reg on M2 (SP)  
2
2
2
2
i
i
HL  
XY  
AE  
0
0
1
1
0
1
0
1
1
0
Illegal value  
Add 2 to SP and then load the  
contents of M2(SP) into reg.  
The relation between i1i0 and  
reg is the same as that for the  
PUSH reg instruction.  
POP  
reg  
1
1
1
1
0
1
0
0
1
1
1
1
1
0
SP (SP) + 2  
reg [M2 (SP)]  
Pop reg off M2 (SP)  
i
i
1
0
Return from a subroutine or  
interrupt handling routine. ZF  
and CF are not restored.  
Return from  
subroutine  
SP (SP) + 4  
PC [M4 (SP)]  
RT  
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
1
1
1
2
2
SP (SP) + 4  
PC [M4 (SP)]  
Return from a subroutine or  
interrupt handling routine. ZF ZF, CF  
CF, ZF [M4 (SP)] and CF are restored.  
Return from interrupt  
routine  
RTI  
[Branch instructions]  
PC7 to 0 ←  
Branch to the location in the  
same page specified by P to  
BAt2  
addr  
1
1
0
1
0
0
t
P
t
P
P
P
P
P
P
P
P
P
1
0
7
3
6
2
5
4
7
Branch on AC bit  
2
2
2
2
P
P
P
P
P
P
P if the bit in AC specified by  
7
6
5
4
3
2
1
0
1
0
0
if (AC, t2) = 1  
the immediate data t t is one.  
1 0  
PC7 to 0 ←  
Branch to the location in the  
BNAt2  
addr  
1
0
0
1
0
0
t
P
t
P
P
P
P
P
P
P
P
same page specified by P to  
P if the bit in AC specified by  
0
1
0
7
3
6
2
5
4
7
Branch on no AC bit  
Branch on M bit  
P
P
P
P
P
P
P
7
6
5
4
3
2
1
0
1
0
if (AC, t2) = 0  
the immediate data t t is zero.  
1 0  
PC7 to 0 ←  
Branch to the location in the  
P
P
P
P
P
P
P
P
same page specified by P to  
P if the bit in M (HL) specified  
0
7
3
6
2
5
4
7
BMt2  
addr  
1
1
0
1
0 1  
t
P
t
1
0
2
2
2
2
1
0
P
P
P
P
P
P
P
7
6
5
4
3
2
1
0
if [M (HL),t2]  
by the immediate data t  
t
1 0  
= 1  
is one.  
PC7 to 0 ←  
Branch to the location in the  
P
P
P
P
P
P
P
P
same page specified by P to  
P if the bit in M (HL) specified  
0
7
3
6
2
5
4
7
BNMt2  
addr  
1
0
0
1
0 1  
t
t
1
0
Branch on no M bit  
1
0
P
P
P
P
P
P P  
P
7
6
5
4
3
2
1
0
if [M (HL),t2]  
by the immediate data t  
t
1 0  
= 0  
is zero.  
Internal control  
registers can also  
be tested by  
executing this  
instruction  
immediately after  
a BANK  
instruction.  
PC7 to 0 ←  
Branch to the location in the  
P
P
P
P
P
P
P
P
same page specified by P to  
7
3
6
2
5
4
7
BPt2  
addr  
1
1
0
1
1
0
t
t
1
0
Branch on Port bit  
2
2
P if the bit in port (DP )  
0 L  
specified by the immediate  
1
0
P
P
P
P
P P P P  
7
6
5
4 3 2 1 0  
if [P (DP ), t2]  
= 1  
L
data t is one.  
t
0
1
However, this is  
limited to  
registers that can  
be read out.  
Internal control  
registers can also  
be tested by  
executing this  
instruction  
immediately after  
a BANK  
instruction.  
PC7 to 0 ←  
Branch to the location in the  
same page specified by P to  
P if the bit in port (DP )  
0 L  
P
P
P
P
P
P
P
P
7
7
6
2
5
4
BNPt2  
addr  
1
0
0
1
1
0
t
t
1
0
Branch on no Port bit  
2
2
3
1
0
P
P
P
P
P P P P  
7
6
5
4 3 2 1 0  
if [P (DP ), t2]  
= 0  
specified by the immediate  
data t is zero.  
L
t
0
1
However, this is  
limited to  
registers that can  
be read out.  
Continued on next page.  
No. 5488-24/27  
LC66E5316  
Continued from preceding page.  
Instruction code  
Affected  
status  
bits  
Mnemonic  
Operation  
Description  
Note  
D
D
D
D
D
D
D
D
7
6
5
4
3
2
1
0
[Branch instructions]  
PC7 to 0 ←  
Branch to the location in the  
1
1
0
1
1
1
0
0
P
P
P
P
P
P
P
P
7
3
6
2
5
4
0
BC addr Branch on CF  
2
2
2
2
2
2
2
2
same page specified by P to  
7
P
P
P
P
P P P P  
7
7
7
7
6
6
6
6
5
5
5
5
4
4
4
4
3
3
3
3
2
2
2
2
1
1
1
1
0
0
0
0
1
P
if CF is one.  
0
if (CF) = 1  
PC7 to 0 ←  
Branch to the location in the  
BNC  
1
0
0
1
1
P
1
0
0
P
P
P
P
P
P
P
P
7
3
6
2
5
4
0
Branch on no CF  
addr  
same page specified by P to  
7
P
P
P
P
P
P
P
1
P
if CF is zero.  
0
if (CF) = 0  
PC7 to 0 ←  
Branch to the location in the  
1
1
0
1
1
P
1
0
1
P
P
P
P
P
P
P
P
7
3
6
2
5
4
0
BZ addr Branch on ZF  
same page specified by P to  
7
P
P
P
P
P
P
P
1
P
if ZF is one.  
0
if (ZF) = 1  
PC7 to 0 ←  
Branch to the location in the  
BNZ  
1
0
0
1
1
P
1
0
1
P
P
P
P
P
P
P
P
7
3
6
2
5
4
0
Branch on no ZF  
addr  
same page specified by P to  
7
P
P
P
P
P
P
P
1
P
if ZF is zero.  
0
if (ZF) = 0  
Branch to the location in the  
PC7 to 0 ←  
same page specified by P to  
0
BFn4  
1
1
1
1
n
P
n
P
n
P
n
P
P
P
P
P
P
P
P
P
3
2
1
0
7
3
6
2
5
4
0
Branch on flag bit  
addr  
2
2
2
2
P if the flag (of the 16 user  
7
P
P
P
P
7
6
5
4
3
2
1
0
1
flags) specified by n  
n n n  
3
2 1 0  
if (Fn) = 1  
is one.  
Branch to the location in the  
same page specified by P to  
PC7 to 0 ←  
0
BNFn4  
1
0
1
1
n
n
n
n
P
P
P
P
P
P
P
P
3
2
1
0
7
3
6
2
5
4
0
Branch on no flag bit  
addr  
P if the flag (of the 16 user  
7
P
P
P
P
P P P P  
3 2 1 0  
7
6
5
4
1
flags) specified by n  
is zero.  
n n n  
2 1 0  
3
if (Fn) = 0  
[I/O instructions]  
Input the contents of port  
0 to AC.  
IP0  
IP  
Input port 0 to AC  
Input port to AC  
Input port to M  
0
0
1
0
0
0
0
0
1
1
1
1
AC (P0)  
AC [P (DP )]  
ZF  
ZF  
Input the contents of port  
P (DP ) to AC.  
L
0
0
0
0
1
0
0
1
0
1
1
0
L
Input the contents of port  
P (DP ) to M (HL).  
L
IPM  
1
1
0
1
0
1
1
1
1
2
1
2
M (HL) [P (DP )]  
L
Input port to  
AC direct  
1
0
1
1
0
1
0
0
Input the contents of  
P (i4) to AC.  
IPDR i4  
AC [P (i4)]  
ZF  
I
I
I
I
3
2
1
0
Input the contents of ports  
P (4) and P (5) to E and AC  
respectively.  
Input port 4, 5 to  
E, AC respectively  
1
1
1
1
0
0
0
1
1
0
1
1
1
0
1
0
E [P (4)]  
AC [P (5)]  
IP45  
2
2
Output the contents of AC to  
port P (DP ).  
L
OP  
Output AC to port  
Output M to port  
0
0
0
0
1
0
0
1
0
1
0
1
1
1
2
1
1
2
P (DP ) (AC)  
L
Output the contents of M (HL)  
to port P (DP ).  
L
OPM  
1
1
0
1
1
1
0
1
P (DP ) [M (HL)]  
L
Output AC to  
port direct  
1
0
1
1
0
1
0
1
Output the contents of AC  
to P (i4).  
OPDR i4  
P (i4) (AC)  
I
I
I
I
3
2
1
0
Output the contents of E and  
AC to ports P (4) and P (5)  
respectively.  
Output E, AC to port  
4, 5 respectively  
1
1
1
1
0
0
0
1
1
0
1
1
1
0
1
1
P (4) (E)  
P (5) (AC)  
OP45  
2
1
1
2
1
1
Set to one the bit in port  
SPB t2  
RPB t2  
Set port bit  
0
0
1
0
0
1
0
1
0
0
0
0
1
1
0
0
0
1
t
t
[P (DP ), t2] 1  
P (DP ) specified by the  
1
1
0
L
L
immediate data t t .  
1
0
Clear to zero the bit in port  
Reset port bit  
t
t
[P (DP ), t2] 0  
P (DP ) specified by the  
ZF  
ZF  
0
L
L
immediate data t t .  
1
0
Take the logical AND of P (P  
3
And port with  
immediate data then  
output  
P (P to P ) ←  
3
0
ANDPDR  
i4, p4  
0
1
to P ) and the immediate data  
0
2
2
2
2
[P (P to P )]  
3 0  
I
I
I
I
P
P
P
P
I I I I and output the result  
3 2 1 0  
3
2
1
0
3
2
1
0
I
to I  
0
3
to P (P to P ).  
3
0
Take the logical OR of P (P  
3
Or port with  
immediate data then  
output  
P (P to P ) ←  
3 0  
ORPDR  
i4, p4  
1
1
0
0
0
1
0
0
to P ) and the immediate data ZF  
0
[P (P to P )]  
3
0
I
I
I
I
P
P
P
P
I I I I and output the result  
3 2 1 0  
3
2
1
0
3
2
1
0
I
to I  
3
0
to P (P to P ).  
3
0
Continued on next page.  
No. 5488-25/27  
LC66E5316  
Continued from preceding page.  
Instruction code  
Affected  
status  
bits  
Mnemonic  
Operation  
Description  
Note  
D
D
D
D
D D D D  
4 3 2 1 0  
7
6
5
[Timer control instructions]  
WTTM0 Write timer 0  
Write the contents of M2 (HL),  
AC into the timer 0 reload  
register.  
TIMER0 [M2 (HL)],  
(AC)  
1
1
0
0
1
0
1
0
1
2
1
2
2
2
Write the contents of E, AC  
TIMER1 (E), (AC) into the timer 1 reload  
1
1
1
1
0
1
0
1
1
0
1
1
1
0
1
0
WTTM1 Write timer 1  
register A.  
Read out the contents of the  
timer 0 counter into M2 (HL),  
AC.  
M2 (HL),  
AC (TIMER0)  
RTIM0  
RTIM1  
Read timer 0  
Read timer 1  
1
1
0
0
1
0
1
1
1
1
1
1
0
1
0
1
1
0
1
1
1
0
1
1
Read out the contents of the  
E, AC (TIMER1)  
2
2
2
2
2
2
2
2
2
2
timer 1 counter into E, AC.  
1
1
1
1
0
1
0
0
1
0
1
1
1
1
1
0
START0 Start timer 0  
START1 Start timer 1  
STOP0 Stop timer 0  
Start timer 0 counter Start the timer 0 counter.  
Start timer 1 counter Start the timer 1 counter.  
Stop timer 0 counter Stop the timer 0 counter.  
Stop timer 1 counter Stop the timer 1 counter.  
1
1
1
1
0
1
0
0
1
0
1
1
1
1
1
1
1
1
1
1
0
1
0
1
1
0
1
1
1
1
1
0
1
1
1
1
0
1
0
1
1
0
1
1
1
1
1
1
STOP1 Stop timer 1  
[Interrupt control instructions]  
Set interrupt master  
enable flag  
1
0
1
1
0
0
0
1
1
0
1
0
0
0
1
0
Set the interrupt master  
MSE 1  
MSET  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
enable flag to one.  
Reset interrupt  
MRESET  
1
1
1
0
0
0
0
1
1
0
1
0
0
0
1
0
Clear the interrupt master  
MSE 0  
master enable flag  
enable flag to zero.  
1
0
1
1
0
0
0
1
1
1
0
1
Set the interrupt enable flag  
to one.  
EIH i4  
EIL i4  
DIH i4  
DIL i4  
WTSP  
RSP  
Enable interrupt high  
Enable interrupt low  
Disable interrupt high  
Disable interrupt low  
Write SP  
EDIH (EDIH) i4  
I
I
I
I
3
2
1
0
1
0
1
1
0
0
0
0
1
1
0
1
Set the interrupt enable flag  
to one.  
EDIL (EDIL) i4  
I
I
I
I
3
2
1
0
1
1
1
0
0
0
0
1
1
1
0
1
Clear the interrupt enable  
EDIH (EDIH) i4  
ZF  
ZF  
I
I
I
I
flag to zero.  
3
2
1
0
1
1
1
0
0
0
0
0
1
1
0
1
Clear the interrupt enable  
EDIL (EDIL) i4  
I
I
I
I
flag to zero.  
3
1
1
2
1
0
1
1
1
0
1
0
1
1
1
1
0
0
0
1
Transfer the contents of E,  
AC to SP.  
SP (E), (AC)  
1
1
1
1
0
0
0
1
1
1
1
0
1
1
1
1
Transfer the contents of SP  
to E, AC.  
Read SP  
E, AC (SP)  
[Standby control instructions]  
1
1
1
1
0
0
0
1
1
1
1
1
1
1
1
0
HALT  
HOLD  
HALT  
HOLD  
2
2
2
2
HALT  
HOLD  
Enter halt mode.  
Enter hold mode.  
1
1
1
1
0
0
0
1
1
1
1
1
1
1
1
1
[Serial I/O control instructions]  
STARTS Start serial I O  
1
1
1
1
0
1
0
0
1
1
1
1
1
1
1
0
2
2
2
2
2
2
START SI O  
Start SIO operation.  
1
1
1
1
0
1
0
0
1
1
1
1
1
1
1
1
Write the contents of E,  
AC to SIO.  
WTSIO Write serial I O  
SIO (E), (AC)  
E, AC (SIO)  
1
1
1
1
0
1
0
1
1
1
1
1
1
1
1
1
Read out the contents of SIO  
into E, AC.  
RSIO  
Read serial I O  
[Other instructions]  
Consume one machine cycle  
without performing any  
operation.  
NOP  
No operation  
0
0
0
0
0
0
0
1
0
1
1
2
1
2
No operation  
1
1
1
1
0
0
0
0
1
0
1
0
SB i2  
Select bank  
PC13, PC12 I  
I
Specify the memory bank.  
1
0
I
I
0
1
No. 5488-26/27  
LC66E5316  
No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace  
equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of  
which may directly or indirectly cause injury, death or property loss.  
Anyone purchasing any products described or contained herein for an above-mentioned use shall:  
Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and  
distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all  
damages, cost and expenses associated with such use:  
Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on  
SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees  
jointly or severally.  
Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for  
volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied  
regarding its use or any infringements of intellectual property rights or other rights of third parties.  
This catalog provides information as of February, 1997. Specifications and information herein are subject to  
change without notice.  
No. 5488-27/27  

相关型号:

LC66E5316(48QFP)

4-Bit Microcontroller
ETC

LC66E5316(52DIP)

4-Bit Microcontroller
ETC

LC66F408

4K/6K/8K-BYTE ROM-CONTAINED SINGLE-CHIP 4-BIT MICROCOMPUTER FOR CONTROL-ORIENTED APPLICATIONS
SANYO

LC66P2108

Four-Bit Single-Chip Microcontrollers with 4, 6, and 8 KB of On-Chip ROM
SANYO

LC66P2316

Four-Bit Single-Chip Microcontroller with 16 KB of On-Chip OTP PROM
SANYO

LC66P2516

Four-Bit Single-Chip Microcontrollers with 4, 6, and 8 KB of On-Chip ROM
SANYO

LC66P308

4-bit Microcontroller with Built-in PROM
SANYO

LC66P408

4-bit Microcontroller with Built-in PROM
SANYO

LC66P516

4-bit Microcontroller with Built-in PROM
SANYO

LC66P5316

Four-Bit Single-Chip Microcontroller with 16 KB of On-Chip OTP PROM
SANYO

LC66PG5XX

EPROM-Mountable Type 4-bit Microcomputer Evaluation Chip for The LC665XX Series Microcomputers
SANYO

LC670Z

GREEN OVAL LAMP LED
SEOUL