LV5254LG [SANYO]

Bi-CMOS LSI Inverting Charge Pump Regulator IC; BI -CMOS LSI反相电荷泵稳压器IC
LV5254LG
型号: LV5254LG
厂家: SANYO SEMICON DEVICE    SANYO SEMICON DEVICE
描述:

Bi-CMOS LSI Inverting Charge Pump Regulator IC
BI -CMOS LSI反相电荷泵稳压器IC

稳压器 信息通信管理 泵
文件: 总14页 (文件大小:136K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Ordering number : ENA0584  
Bi-CMOS LSI  
LV5254LG  
Inverting Charge Pump Regulator IC  
Overview  
The LV5254LG is an inverting charge pump regulator IC.  
Functions  
Inverting charge pump regulator  
Specifications  
Absolute Maximum Ratings at Ta = 25°C, SGND and PGND = 0V  
Parameter  
Symbol  
Conditions  
Ratings  
Unit  
V
Input supply voltage  
V
max  
SV  
DD  
= PV  
DD  
6.5  
6.5  
DD  
VS pin input voltage  
VS max  
V
STBY pin input voltage  
S1 and S2 pin input voltage  
Maximum output current  
Operating temperature  
Storage temperature  
STBY max  
S1, S2 max  
6.5  
V
6.5  
V
I
110  
mA  
°C  
°C  
OUT  
Topr  
Tstg  
-20 to +85  
-40 to +125  
Recommended Operating Conditions at Ta = 25°C, SGND and PGND = 0V  
Parameter  
Symbol  
Conditions  
Ratings  
Unit  
V
Input supply voltage  
V
SV  
DD  
= PV  
DD  
3.5 to 6  
1 to 4.5  
100  
DD  
VS pin input voltage  
Output current  
VS  
V
I
mA  
OUT  
Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to  
"standard application", intended for the use as general electronics equipment (home appliances, AV equipment,  
communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be  
intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace  
instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety  
equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case  
of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee  
thereof. If you should intend to use our products for applications outside the standard applications of our  
customer who is considering such use and/or outside the scope of our intended standard applications, please  
consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our  
customer shall be solely responsible for the use.  
Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate  
the performance, characteristics, and functions of the described products in the independent state, and are not  
guarantees of the performance, characteristics, and functions of the described products as mounted in the  
customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent  
device, the customer should always evaluate and test devices mounted in the customer  
's products or  
equipment.  
31407 MS PC 20060915-S00004 No.A0584-1/14  
LV5254LG  
Electrical Characteristics  
(a) Electrical Characteristics  
Ta = 25°C, SV  
DD  
and PV  
DD  
= 4.6V, SGND and PGND = 0V, CLK = 2MHz, unless otherwise specified.  
Ratings  
Parameter  
Symbol  
Conditions  
C2, C5 = 1μF, I = 60mA  
Unit  
min  
typ  
max  
Output ripple  
Standby mode V  
Vrp  
20  
mVp-p  
μA  
O
current  
I
stby  
dd  
1
DD  
Operating V  
Operating V  
current 1  
current 2  
I
ope1  
ope2  
I
I
= 0mA  
2.2  
3.2  
mA  
mA  
%
DD  
DD  
dd  
O
O
I
= 60mA  
dd  
Power efficiency  
Peff  
V
= 4.6V, V  
OUT  
= -2.8V, I  
= 60mA  
OUT  
57.5  
DD  
Reference voltage  
V
I
1.262  
115  
1.300  
1.339  
V
REF  
Overcurrent protection threshold  
current  
mA  
OCP  
Overcurrent protection latch off wait  
time  
t
Fclk = 2MHz  
Fclk = 2MHz  
6
ms  
OCP  
Regulator output on time  
tregon  
fclk  
3.5  
2
ms  
MHz  
°C  
Internal clock frequency*  
Thermal shutdown circuit operating  
temperature  
TSD  
Design guarantee  
170  
V
discharge resistance  
RDIS  
RVS  
650  
280  
170  
Ω
kΩ  
kΩ  
V
OUT  
VS pin input resistance  
180  
100  
1.6  
0
480  
300  
STBY pin pull-down resistance  
STBY pin control voltage  
RSHD  
V
H
L
V
th  
DD  
V
V
0.3  
V
th  
S1 and S2 pin control voltage  
H
0.7V  
V
V
th  
DD  
0
DD  
V
L
0.3  
V
th  
* : The charge pump operating frequency, Fcp, is the internal clock frequency divided by two, i.e. Fclk/2.  
(b) Output Characteristics  
Ta = 25°C, SV  
DD  
and PV = 4.6V, SGND and PGND = 0V, CLK = 2MHz, unless otherwise specified.  
DD  
Fixed Output Voltage (Vout = -2.8V) Mode  
Outputs a fixed voltage of -2.8V determined by an internal resistor.  
Ratings  
typ  
Parameter  
Symbol  
Conditions  
Unit  
min  
4.37  
max  
4.83  
Input supply voltage  
V
SV  
= PV  
DD DD  
V
V
DD  
Output voltage precision  
Maximum output current  
V
V
= +4.37 to +4.83V  
= 60mA  
-2.884  
-2.8  
-2.716  
OUT  
DD  
I
OUT  
I
V
V
= +4.37 to +4.83V  
= -2.8V  
70  
mA  
OUT  
DD  
OUT  
VS Mode  
Outputs a voltage that is -1 times the voltage VS input to the VS pin.  
Ratings  
typ  
Parameter  
Symbol  
VS  
Conditions  
Unit  
min  
1
max  
4.5  
-1  
VS pin input voltage  
V
V
V
V
VS pin output voltage range  
Output voltage precision  
Output voltage precision  
V
*1  
-4.5  
OUT  
VS = 1 to 2V, I  
= 0 to 60mA  
-1.05VS  
-1.03VS  
-VS  
-VS  
-0.95VS  
-0.97VS  
OUT  
VS = 2 to 4.5V, I  
= 0 to 60mA  
OUT  
No.A0584-2/14  
LV5254LG  
External Setting Mode  
Outputs a voltage determined by external resistors and the external reference voltage.  
See page 8, External Setting Mode Applications and the Output Voltage Setting Method for the method for setting the  
V
voltage.  
OUT  
Ratings  
typ  
Parameter  
Symbol  
Conditions  
Unit  
min  
-4.5  
-5  
max  
Output voltage range  
FB pin voltage  
V
*1  
V
-1  
V
OUT  
VFB  
IFB  
= 5V, I  
= 5V, I  
= 0 to 100mA  
= 0 to 100mA  
20  
mV  
nA  
DD  
OUT  
OUT  
FB pin current  
V
70  
200  
DD  
*1 : The V  
OUT  
range that can be set and the current drive capacity of the charge pump regulator are, in principle, determined by the relationship between the  
voltage and the set voltage. (See the "Relationship Between the Input and Output Voltages" ) Contact your SANYO Semiconductors  
values of the V  
DD  
representative for more detailed information.  
Logic Function Tables  
The pins S1 and S2 must be connected to V  
Mode  
(high) or ground (low) according to the mode to be used.  
DD  
Description  
S1  
S2  
Mode 1  
Mode 2  
Mode 3  
Outputs a fixed voltage of -2.8V determined by an internal resistor.  
High  
Low  
High  
Low  
High  
High  
Outputs a voltage that is -1 times the voltage VS input to the VS pin.  
Outputs a voltage determined by an external resistor and the external reference voltage.  
Package Dimensions  
unit : mm (typ)  
3330  
Pd max Ta  
Specified board : 50×40×0.8mm3  
0.8  
0.7  
0.6  
glass epoxy  
4-layer (2S2P)  
printed circuit board  
Top View  
3.0  
Bottom View  
0.5  
0.4  
0.2  
E
D
C
B
A
0.3  
0.5  
0
Side View  
20  
0
20  
40  
60  
80  
100  
Ambient temperature, Ta – °C  
SANYO : FLGA24(3.0X3.0)  
No.A0584-3/14  
LV5254LG  
Pin Assignment  
FLGA24 (3mm×3mm)  
E
D
C
B
A
S2  
SGND VREF  
1
2
3
4
5
6
7
9
5
4
8
3
2
1
24  
STBY  
S1  
FB  
VS  
22  
20  
16  
23  
SV  
TEST  
V
OUT  
DD  
DD  
21  
19  
18  
PV  
11  
12  
10  
13  
14  
+
-
C1  
PGND C1  
C2  
15  
17  
TOP VIEW  
Pin Descriptions  
Pin No.  
Pin  
Functions  
9
SV  
Small signal system V  
DD  
DD  
11  
1
PV  
Power system V  
DD  
DD  
SGND  
PGND  
Small signal system ground  
Power system ground  
15  
13  
17  
18  
21  
24  
22  
23  
2
+
C1  
Inversion capacitor connection (driver side)  
-
C1  
Inversion capacitor connection (charge transfer side)  
Charge pump output  
C2  
V
Regulator output  
OUT  
VREF  
FB  
Band gap voltage output  
Feedback pin  
VS  
VS mode output setting  
STBY  
S1  
Standby mode control  
4
Sensing mode selection 1  
Sensing mode selection 2  
Test mode enable (normally not used)  
3
S2  
8
TEST  
* : The test mode enable pin must be left open. (There is a built-in pull-down resistor, and this pin should always be low.)  
No.A0584-4/14  
LV5254LG  
Block Diagram and Application Circuit Example 1 (Internal fixed-voltage mode)  
C4 = 10μF  
SV  
V
PV  
DD  
DD  
DD  
Charge  
Pump  
Thermal  
Shutdown  
OSC  
+
-
C1  
C1  
C1 = 1μF  
Clock  
Driver  
SGND  
PGND  
Discharge  
V
V
OUT  
OUT  
Overcurrent  
Protection  
C5 = 1μF  
C2  
Output Tr  
TEST  
C6  
Error Amplifier  
C2 = 1μF  
STBY  
+
VREF  
FB  
OFF ON  
VREF  
C3 = 0.1μF  
S1  
S2  
VS  
V
DD  
• Use ceramic capacitors for the external capacitors and connect them as close as possible to the IC. We recommend  
using class B devices with excellent temperature characteristics.)  
• Use capacitors with the same values for the charge pump capacitors C1 and C2.  
We recommend a capacitance of 1μF for C1 and C2. (See figure 4 on page 10)  
• SV  
and PV  
must be at the same potential. Short them together with the shortest possible line and use a ceramic  
DD  
DD  
capacitor with a value of 1μF or greater for C4 (which is inserted between this point and PGND). C4 must be mounted  
as close as possible to the IC.  
• C6 is a phase compensation capacitor. It is required for stable regulator operation.  
No.A0584-5/14  
LV5254LG  
Application Circuit Example 2 (VS mode)  
C4 = 10μF  
SV  
V
PV  
DD  
DD  
DD  
Charge  
Pump  
Thermal  
Shutdown  
OSC  
+
-
C1  
C1  
C1 = 1μF  
Clock  
Driver  
SGND  
PGND  
Discharge  
V
V
OUT  
OUT  
Overcurrent  
Protection  
C5 = 1μF  
C2  
Output Tr  
TEST  
C6  
Error Amplifier  
C2 = 1μF  
STBY  
+
VREF  
FB  
OFF ON  
VREF  
C3 = 0.1μF  
S1  
S2  
VS  
VS  
V
DD  
Application Circuit Example 3 (External setting mode)  
C4 = 10μF  
SV  
DD  
V
PV  
DD  
DD  
Charge  
Pump  
Thermal  
Shutdown  
OSC  
+
C1  
C1  
C1 = 1μF  
-
Clock  
Driver  
SGND  
PGND  
Discharge  
V
V
OUT  
OUT  
Overcurrent  
Protection  
C5 = 1μF  
C2  
Output Tr  
TEST  
C6  
R2  
R1  
Error Amplifier  
C2 = 1μF  
STBY  
+
VREF  
FB  
OFF ON  
VREF  
C3 = 0.1μF  
S1  
S2  
Vref_ext  
VS  
V
DD  
No.A0584-6/14  
LV5254LG  
Recommended Power On and Off Sequences  
V
DD  
SV  
(pin 9)  
DD  
(pin 11)  
PV  
DD  
VS (pin 23) : VS mode  
or  
VREF_ext  
(external reference voltage)  
External setting mode  
STBY (pin 2)  
CP CLK (1MHz)  
(1) (2) (3) (4)  
(5) (6)  
(7)  
(8) (9)  
CP output  
C2 (pin 18)  
-V  
DD  
tpre :  
0.5ms  
tsoft :  
2ms  
ton :  
1ms  
tregon :  
3.5ms  
Regulator output  
V
(pin 21)  
OUT  
V
OUT  
(1) Apply the V  
voltage to the SV  
DD  
and PV pins.  
DD  
DD  
(2) If VS mode is used, apply the VS voltage. If external setting mode is used, apply the external reference voltage.  
(3) Start pre-charging the flying capacitor with a high-level input to the STBY pin.  
(4) Start charging the pump-up capacitor with the charge pump sub-driver (soft start).  
(5) Switch to the charge pump driver. This starts charging of the pump-up capacitor by the main driver.  
(6) Regulator output starts.  
(7) Stop IC drive by applying a low-level input to the STBY pin to start V  
discharge transistor. (This operates when the STBY pin is low.)  
output discharge operation by the internal  
OUT  
(8) If VS mode is used, shut down the VS voltage, and if external setting mode is used, shut down the external reference  
voltage.  
(9) Shut down the V  
DD  
voltage.  
No.A0584-7/14  
LV5254LG  
Overcurrent Protection Operation  
This IC includes a function that protects against overcurrent in V  
current flows, the IC will latch and stop the output. To recover from this stopped state, set the STBY pin low and then  
. If the V  
output is shorted and a large  
OUT  
OUT  
set it high again.  
External Setting Mode Applications and the Output Voltage Setting Method  
In the LV5254's external setting mode, the output voltage is set by the external resistors R1 and R2 and by the external  
reference voltage, Vref_ext. In this mode, the output voltage is expressed by equation (1). The second term in equation  
(1) is the error amplifier's offset component and the third term is the offset component due to the feedback current. The  
voltage precision achieved by an application can be determined by considering the tolerances of the parameters in  
equation (1).  
Vref_ext  
FB  
VFB  
IFB  
C6  
V
OUT  
C5  
V
OUT  
R2  
= - Vref_ext+  
R1+R2  
R1  
VFB-R2IFB (1)  
V
OUT  
R1  
No.A0584-8/14  
LV5254LG  
Relationship Between the Input and Output Voltages  
Equation (2) gives the relationship between the input voltage and output voltage. In the LV5254, a charge pump circuit  
generates VC2, which is the V level inverted, and generates the output voltage V by regulating that inverted  
IN OUT  
voltage. In this case, due to the charge pump block impedance Ron, the voltage drop I × Ron (where I is the load  
O
O
current) is generated. (* Here we are ignoring the capacitor loss components in the charge pump capacitors C1 and C2.)  
The LV5254's current capacity is expressed by equation (3). At this time, the impedance Ron increases with  
temperature. Thus the current capacity decreases with increasing temperature.  
Input voltage  
CP output voltage  
VC2  
Regulator output  
V
V
IN  
OUT  
CP  
Regulator  
I
OUT  
Load current Iout  
Ron × I  
OUT  
ΔVreg  
Voltage drop due to the  
charge pump block impedance  
Voltage drop in the  
regulator block  
V
= VC2+ΔVreg = (-V +Ron×I  
)+ΔVreg (2)  
OUT  
: Output voltage, V : Input voltage, I : Load current, Ron : Charge pump block impedance,  
OUT  
IN OUT  
V
OUT  
IN  
ΔVreg : Regulator voltage drop  
[max] = (V +V -ΔVreg [min]) / Ron (3)  
IN OUT  
I
O
I
[max] : Maximum load current, ΔVreg [min] : Minimum regulator voltage drop  
O
Ron – Ta  
19  
V
= 5V  
DD  
18  
17  
16  
15  
14  
13  
12  
20  
0
20  
40  
60  
80  
90  
Ambient temperature, Ta – °C  
Figure 1 : Charge Pump Block Impedance Temperature Characteristics : Assumed Worst Case (C1, C2 = 1μF)  
No.A0584-9/14  
LV5254LG  
Next, consider figure 2, which shows the relationship between the input voltage V and the charge pump block  
IN  
impedance Ron at Ta = 85°C, which is the maximum temperature for which operation is guaranteed. At Ta = 85°C, if  
ΔVreg [min] = 0.3V (inferred worst case value), the LV5254's maximum output current can be expressed as equation  
(4).  
[max] = (V +V -0.3) / Ron (4)  
IN OUT  
I
O
The current capacity shown in figure 3 can be determined from the characteristics in figure 2 when V  
-3V.  
is set to be  
OUT  
Ron – V  
I
max – V  
IN  
Figure 2  
Figure 3  
IN  
O
25  
23  
21  
19  
120  
100  
80  
Ta = 85°C  
Ta = 85°C  
60  
40  
17  
15  
20  
0
3.5  
4
4.5  
5
5.5  
6
3.5  
4
4.5  
5
5.2  
Input voltage, V  
IN  
– V  
Input voltage, V – V  
IN  
Figure 2 : Charge Pump Block Impedance -  
Input Voltage Characteristics  
Figure 3 : Maximum Output Current - Input  
Voltage Characteristics when  
(Ta = 85°C) : Assumed Worst Case  
(C1, C2 = 1μF)  
V
= -3V (Ta = 85°C) :  
OUT  
Assumed Worst Case  
(C1, C2 = 1μF)  
Caution : The characteristics values presented in this reference documentation are nothing other than inferred worst-case  
values. No guarantee or warranty is made with respect to these values.  
Loss in the Charge Pump Capacitors  
Voltage loss occurs in the pump capacitors C1 and C2 in the charge pump circuit. Figure 4 shows the charge pump  
output vs. load current characteristics (with the C1 and C2 value as a parameter) at room temperature when V  
= 5V.  
DD  
Note that the load regulation becomes worse as the value of the capacitors C1 and C2 is reduced. To minimize the loss  
in these capacitor, we recommend using a value of 1μF for C1 and C2.  
Charge Pump Output  
Load Current Characteristics  
3.6  
3.8  
4
4.2  
4.4  
4.6  
4.8  
5
0
20  
40  
60  
80  
100  
Load current, I – mA  
O
Figure 4 : Charge Pump Output - Load Current Characteristics when V  
purposes.  
= 5V, data provided for reference  
DD  
No.A0584-10/14  
LV5254LG  
IC start and stop  
1. Startup waveform (External setting mode)  
Ta = 27°C V  
= 5V I  
OUT  
= 0mA  
Ta = 27°C V  
= 5V I  
DD OUT  
= 60mA  
DD  
1
1
STBY  
VREF  
STBY  
VREF  
1.6V  
1.6V  
STBY  
2.00V/S  
STBY  
2.00V/S  
1
2
1
2
2
2
VREF  
VREF  
1.00V/S  
1.00V/S  
3,4  
V
3,4  
3
3
V
V
OUT  
2.00V/S  
OUT  
2.00V/S  
-2.9V  
-4.4V  
-2.9V  
-5V  
V
OUT  
OUT  
C2  
CP  
output  
C2  
CP  
output  
4
4
C2  
2.00V/S  
C2  
2.00V/S  
4msec  
4msec  
1ms/s  
1ms/s  
(a) No load - Startup waveform  
2. Falling waveform (External setting mode)  
(b) 50Ω - Startup waveform  
Ta = 27°C V  
= 5V I  
OUT  
= 0mA  
Ta = 27°C V = 5V I  
DD OUT  
= 60mA  
DD  
1
1
STBY  
2.00V/S  
STBY  
2.00V/S  
STBY  
VREF  
STBY  
VREF  
1
2
1
2
2
2
VREF  
VREF  
1.00V/S  
1.00V/S  
0V  
0V  
V
3,4  
V
3,4  
OUT  
OUT  
3
3
-2.9V  
V
V
-2.9V  
OUT  
2.00V/S  
OUT  
2.00V/S  
-4.4V  
-5V  
C2  
CP  
output  
C2  
CP  
output  
4
4
C2  
C2  
2.00V/S  
2.00V/S  
3msec  
3msec  
1ms/s  
1ms/s  
(a) No load - Falling waveform  
(b) 50Ω - Falling waveform  
Internal fixed mode - Regulator  
Load regulation - Internal fixed mode V  
= 4.6V  
Efficiency - Internal fixed mode V  
70  
= 4.6V  
DD  
DD  
DD  
2.7  
V
= 4.6V  
Room temperature  
2.725  
60  
50  
40  
30  
20  
Ta = 90°C  
Ta = -20°C  
2.75  
Room temperature  
Ta = -20°C  
Ta = 90°C  
2.775  
2.8  
2.825  
2.85  
10  
0
2.875  
2.9  
0
10  
20  
30  
40  
50  
60  
70  
0
10  
20  
30  
40  
50  
60  
70  
Load current, I  
– mA  
Load current, I  
– mA  
OUT  
OUT  
No.A0584-11/14  
LV5254LG  
VS mode - Regulator  
VS mode (VS = 1V) Load regulation V  
= 5V  
VS mode (VS = 2.5V) Load regulation V  
2.4  
= 5V  
DD  
DD  
0.9  
2.45  
0.95  
Ta = 30°C  
Ta = 60°C  
Ta = 0°C  
Ta = 30°C  
Ta = 60°C  
2.5  
1
Ta = 90°C  
Ta = 0°C  
Ta = -30°C  
Ta = 90°C  
Ta = -30°C  
2.55  
1.05  
2.6  
1.1  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
Load current, I  
OUT  
– mA  
Load current, I – mA  
OUT  
VS mode (VS = 3.3V) Load regulation V  
= 5V  
VS mode (VS = 4.5V) Load regulation V  
4.4  
= 6V  
DD  
DD  
3.2  
Ta = 60°C  
Ta = 30°C  
Ta = 0°C  
Ta = 60°C  
Ta = 30°C  
Ta = 0°C  
4.45  
3.25  
Ta = 90°C  
Ta = -30°C  
Ta = 90°C  
Ta = -30°C  
4.5  
3.3  
4.55  
3.35  
4.6  
3.4  
0
20  
40  
60  
80  
0
20  
40  
60  
80  
Load current, I  
OUT  
– mA  
Load current, I – mA  
OUT  
VS mode (VS = 2.5V) Line regulation characteristics I  
= 60mA  
VS mode (VS = 1V) Line regulation characteristics I  
0.95  
= 60mA  
OUT  
OUT  
2.45  
0.975  
2.475  
Ta = -30°C  
Ta = 90°C  
Ta = Room temperature  
Ta = -30°C  
Ta = 90°C  
1
2.5  
Ta = Room temperature  
1.025  
2.525  
2.55  
4.5  
1.05  
3.5  
5
5.5  
6
4
4.5  
5
5.5  
6
Intput voltage, V  
– V  
Intput voltage, V  
– V  
DD  
DD  
No.A0584-12/14  
LV5254LG  
External Setting Mode Applications and the Output Voltage Setting Method  
Load regulation characteristics  
Line regulation characteristics  
2.88  
2.89  
2.88  
2.89  
V
= 5V  
I
= 60mA  
DD  
OUT  
R1 = 82kΩ  
V
= 5V  
DD  
R2 = 240kΩ  
Vref_ext = 1V  
R1 = 82kΩ  
R2 = 240kΩ  
Vref_ext = 1V  
2.9  
2.91  
2.92  
2.93  
2.9  
2.91  
2.92  
2.93  
Ta = 0°C  
Ta = 60°C  
Ta = 30°C  
Ta = 30°C  
Ta = 60°C  
Ta = -30°C  
Ta = -30°C  
Ta = 90°C  
Ta = 90°C  
Ta = 0°C  
2.94  
2.95  
2.94  
2.95  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
4.5  
5
5.5  
6
Load current, I  
OUT  
– mA  
Intput voltage, V – V  
DD  
Overcurrent protection function detection current value  
Overcurrent protection - Ambient temperature dependence characteristics  
180  
V
= 6V  
DD  
V
= 5.5V  
170  
160  
150  
140  
130  
120  
110  
DD  
100  
20  
40  
0
20  
40  
60  
80  
100  
Ambient temperature, Ta °C  
No.A0584-13/14  
LV5254LG  
SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using  
products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition  
ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd.  
products described or contained herein.  
SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all  
semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or  
malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise  
to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt  
safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not  
limited to protective circuits and error prevention circuits for safe design, redundant design, and structural  
design.  
In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are  
controlled under any of applicable local export control laws and regulations, such products may require the  
export license from the authorities concerned in accordance with the above law.  
No part of this publication may be reproduced or transmitted in any form or by any means, electronic or  
mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise,  
without the prior written consent of SANYO Semiconductor Co.,Ltd.  
Any and all information described or contained herein are subject to change without notice due to  
product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the  
SANYO Semiconductor Co.,Ltd. product that you intend to use.  
Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed  
for volume production.  
Upon using the technical information or products described herein, neither warranty nor license shall be granted  
with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third  
party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's  
intellctual property rights which has resulted from the use of the technical information and products mentioned  
above.  
This catalog provides information as of March, 2007. Specifications and information herein are subject  
to change without notice.  
PS No.A0584-14/14  

相关型号:

LV5256GP

Bi-CMOS LSI Operating Mode Switching Type Step-Up/Down Converter
SANYO

LV5256GP_09

Operating Mode Switching Type Step-Up/Down Converter
SANYO

LV540A

OCTAL BUFFERS/DRIVERS WITH 3-STATE OUTPUTS
TI

LV5413

Visible LED, Clear
INFINEON

LV5413-AW

Visible LED, Clear
INFINEON

LV5413-BW

Visible LED, Clear
INFINEON

LV5413-BWDW

Visible LED, Clear
INFINEON

LV5413-CW

Visible LED, Clear
INFINEON

LV5413-V

Visible LED, Clear
INFINEON

LV5413-VBW

Visible LED, Clear
INFINEON

LV5413-VBW-35

Visible LED, Clear
INFINEON

LV5433

Hyper 5 mm (T1 ) LED, Non Diffused Hyper-Bright LED
OSRAM