S1C05251 [SEIKO]

TELEPHONE CALLING NO IDENT CKT, PDSO28, PLASTIC, SOP2-28;
S1C05251
型号: S1C05251
厂家: SEIKO EPSON CORPORATION    SEIKO EPSON CORPORATION
描述:

TELEPHONE CALLING NO IDENT CKT, PDSO28, PLASTIC, SOP2-28

电信 光电二极管 电信集成电路
文件: 总39页 (文件大小:329K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MF1329-02  
CMOS CALLING NUMBER IDENTIFICATION RECEIVER IC  
S1C05251  
Technical Manual  
S1C05251 Technical Hardware  
NOTICE  
No part of this material may be reproduced or duplicated in any form or by any means without the written permission of Seiko  
Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko Epson does not assume any  
liability of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or  
circuit and, further, there is no representation that this material is applicable to products requiring high level reliability, such  
as medical products. Moreover, no license to any intellectual property rights is granted by implication or otherwise, and there  
is no representation or warranty that anything made in accordance with this material will be free from any patent or copyright  
infringement of a third party. This material or portions thereof may contain technology or the subject relating to strategic  
products under the control of the Foreign Exchange and Foreign Trade Law of Japan and may require an export license from  
the Ministry of International Trade and Industry or other approval from another government agency.  
All the product names mentioned herein are trademarks and/or registered trademarks of their respective owners.  
© SEIKO EPSON CORPORATION 2001 All rights reserved.  
The information of the product number change  
Starting April 1, 2001, the product number will be changed as listed below. To order from April 1,  
2001 please use the new product number. For further information, please contact Epson sales  
representative.  
Configuration of product number  
Devices  
S1  
C
63158  
F
0A01  
00  
00  
Packing specification  
Specification  
Package (D: die form; F: QFP)  
Model number  
Model name (C: microcomputer, digital products)  
Product classification (S1: semiconductor)  
Development tools  
S5U1 63000 A1  
C
1
Packing specification  
2
Version (1: Version 1  
)
1
)
Tool type (A1: Assembler Package  
Corresponding model number  
(63000: common to S1C63 Family)  
Tool classification (C: microcomputer use)  
Product classification  
(S5U1: development tool for semiconductor products)  
1: For details about tool types, see the tables below. (In some manuals, tool types are represented by one digit.)  
2: Actual versions are not written in the manuals.  
Comparison table between new and previous number  
S1C63 Family processors  
S1C63 Family peripheral products  
Previous No.  
E0C63158  
E0C63256  
E0C63358  
New No.  
S1C63158  
S1C63256  
S1C63358  
Previous No.  
E0C63467  
E0C63557  
E0C63558  
E0C63567  
New No.  
Previous No.  
E0C5250  
E0C5251  
New No.  
S1C05250  
S1C05251  
S1C63467  
S1C63557  
S1C63558  
S1C63567  
E0C63P366 S1C6P366  
E0C63404  
E0C63406  
E0C63408  
S1C63404  
S1C63406  
S1C63408  
E0C63F567 S1C6F567  
E0C63658  
E0C63666  
S1C63658  
S1C63666  
E0C63F408 S1C6F408  
E0C63F666 S1C6F666  
E0C63454  
E0C63455  
E0C63458  
E0C63466  
S1C63454  
S1C63455  
S1C63458  
S1C63466  
E0C63A08  
E0C63B07  
E0C63B08  
E0C63B58  
S1C63A08  
S1C63B07  
S1C63B08  
S1C63B58  
E0C63P466 S1C6P466  
Comparison table between new and previous number of development tools  
Development tools for the S1C63 Family  
Development tools for the S1C63/88 Family  
Previous No.  
ADP63366  
ADP63466  
ASM63  
New No.  
Previous No.  
New No.  
S5U1C63366X  
S5U1C63466X  
S5U1C63000A  
ADS00002  
S5U1C88000X1  
GWH00002 S5U1C88000W2  
URM00002 S5U1C88000W1  
GAM63001 S5U1C63000G  
ICE63 S5U1C63000H1  
PRC63001 S5U1C63001P  
PRC63002 S5U1C63002P  
PRC63004 S5U1C63004P  
PRC63005 S5U1C63005P  
PRC63006 S5U1C63006P  
PRC63007 S5U1C63007P  
URS63366 S5U1C63366Y  
CONTENTS  
CONTENTS  
1 Overview.......................................................................................................................1  
1.1 Features......................................................................................................................................................................1  
1.2 Block Diagram...........................................................................................................................................................2  
1.3 Pin Assignment.........................................................................................................................................................2  
1.4 Pin Description..........................................................................................................................................................3  
2 Power Supply Block and Initial Reset ...........................................................................6  
2.1 Power Supply............................................................................................................................................................6  
2.2 Initial Reset.................................................................................................................................................................6  
3 Functional Description..................................................................................................7  
3.1 Register Description................................................................................................................................................7  
3.2 Outputs from the #RDET, #IRQ and #DET Pins.......................................................................................12  
3.3 Input Amp Circuit...................................................................................................................................................13  
3.3.1 Differential Input..................................................................................................................................13  
3.3.2 Single End Input.................................................................................................................................14  
3.4 Ring/Line Reversal Signal Detection.............................................................................................................15  
3.5 FSK Demodulation...............................................................................................................................................15  
3.6 Dual-Tone Detection............................................................................................................................................16  
3.7 Off-Hook Detection...............................................................................................................................................16  
4 Precautions on Mounting............................................................................................17  
5 Electrical Characteristics ............................................................................................19  
5.1 Absolute Maximum Ratings..............................................................................................................................19  
5.2 Recommended Operating Conditions...........................................................................................................19  
5.3 DC Characteristics................................................................................................................................................19  
5.4 Current Consumption...........................................................................................................................................19  
5.5 Crystal Oscillation Characteristics...................................................................................................................20  
5.6 FSK Demodulation Circuit Characteristics...................................................................................................20  
5.6.1 FSK AC Characteristics....................................................................................................................20  
5.6.2 FSK Switching Characteristics.......................................................................................................20  
5.6.3 FSK Energy Detection Mode AC Characteristics...................................................................21  
5.6.4 FSK Energy Detection Mode Switching Characteristics......................................................21  
5.7 Dual-Tone (CAS) Detection Circuit Characteristics.................................................................................22  
5.7.1 CAS AC Characteristics...................................................................................................................22  
5.7.2 CAS Switching Characteristics......................................................................................................22  
5.8 Call Progress Mode (CPM) Detection Circuit Characteristics..............................................................23  
5.8.1 CPM AC Characteristics...................................................................................................................23  
5.8.2 CPM Switching Characteristics......................................................................................................23  
5.9 Serial Interface Circuit Characteristics..........................................................................................................24  
5.9.1 Serial Interface AC Characteristics..............................................................................................24  
5.9.2 FSK Demodulated Data Read Mode..........................................................................................25  
5.9.3 CAS Detection Circuit Control-Register Write Mode.............................................................25  
5.10 S1C05251 Timing Chart...................................................................................................................................26  
5.10.1 Bellcore On-Hook Data Transfer................................................................................................26  
5.10.2 Bellcore Off-Hook Data Transfer................................................................................................26  
5.10.3 BT Idle State CLI Service.............................................................................................................27  
5.10.4 BT Loop State CLI Service..........................................................................................................27  
S1C05251 TECHNICAL MANUAL  
EPSON  
i
CONTENTS  
5.11 External Wiring Diagram (Example)............................................................................................................28  
5.11.1 Example of Bellcore-Compatible Telephone Circuit...........................................................28  
5.11.2 Example of Bellcore-Compatible Auxiliary Circuit................................................................29  
6 Package...................................................................................................................... 30  
7 Pad Layout.................................................................................................................. 31  
7.1 Pad Layout Diagram............................................................................................................................................31  
7.2 Pad Coordinates...................................................................................................................................................31  
ii  
EPSON  
S1C05251 TECHNICAL MANUAL  
1
OVERVIEW  
1 Overview  
The S1C05251 (CAS + FSK IC), an upgraded version of the S1C05250, is a CMOS IC for calling number  
identification with the Call Waiting function.  
It provides an interface to various call information delivery services based on Bellcore GR-30-CORE, such as CND  
(Calling Number Delivery), CNAM (Calling Name Delivery), and CIDCW (Calling Identity on Call Waiting), as  
well as British Telecom’s CLIP (Calling Line Identification Service)andCableCommunications Association’s CDS  
(Caller Display Service).  
The S1C05251 incorporates power-down, ring detection, and carrier detection circuits, a synchronous receive data  
output function, and a clock-synchronized serial interface. All these features make itsuitablefor various applications  
such as those listed below.  
• Calling number delivery service with a Call Waiting function  
• Telephone sets and similar auxiliary equipment  
• Telephone answering equipment  
• Multifunction telephones  
• Facsimiles  
• Computer peripheral circuits  
• Message waiting telephones  
1.1 Features  
• Conforms to Bellcore GR-30-CORE and SR-TSV-002476 (same as S1C05250)  
• Conforms to British Telecom SIN227 and SIN242 (same as S1C05250)  
• Can detect Bellcore CPE alert signal (CAS) and British Telecom idle-tone alert signal using a programmable  
band-pass filter (same as S1C05250)  
• FSK demodulation circuit based on ITU-T V.23 and BELL202 (same as S1C05250)  
• Filter bypass mode to detect call progress mode (CPM) signal (same as S1C05250)  
• Programmable alert-signal detection level (same as S1C05250)  
• Carrier/ring detection output (same as S1C05250)  
• FSK energy mode to detect FSK signal in power-down mode (new function for S1C05251)  
• Supports CAS signal single-end input (new function for S1C05251)  
• Off-hook detection (new function for S1C05251)  
• Supports 3.57945 MHz crystal oscillator or external clock input (same as S1C05250)  
• Serial-receive data output (same as S1C05250)  
• Serial host interface (same as S1C05250)  
• Power-down mode (same as S1C05250)  
• Power supply voltage:  
2.7 V to 5.5 V (same as S1C05250)  
• Operating temperature range: -20°C to 70°C (same as S1C05250)  
• Current consumption:  
3 mA when operating (same as S1C05250)  
1 µA in zero-power mode (same as S1C05250)  
6 µA in FSK energy detection mode (new function for S1C05251)  
• Shipping form: SOP2-28pin package (plastic), DIP-28pin package (ceramic) or chip (package for S1C05251)  
S1C05251 TECHNICAL MANUAL  
EPSON  
1
1
OVERVIEW  
1.2 Block Diagram  
BPOUT  
CDIN  
Data/timing  
recovery  
circuit  
INN  
INP  
Band-pass  
filter  
FSK  
demodulator  
SDO  
Amp  
+
FB  
CAS tone  
filter  
Identification  
circuit  
Detection  
circuit  
#DET  
CASIN  
Amp  
+
#PQUAL  
#IRQ  
(MODE0 SEL)  
CASFB  
Interrupt  
control circuit  
V
REF  
VDD/2  
EXTREF  
HOOK  
Amp( )  
+
(MODE1)  
#RDET  
#RDRC  
RDIN  
V
DD  
To other blocks  
V
DD  
SS  
SDI  
Timing generator  
Control circuit  
V
#SCLK  
EXTCLK OSC3 OSC4 PDWN #RESET MODE0 MODE1  
Figure 1.2.1 Block diagram  
1.3 Pin Assignment  
SOP2-28pin  
DIP-28pin  
1
28  
1
28  
S1C05251  
S1C05251  
14  
15  
14  
15  
No.  
1
Pin name  
INP  
No.  
8
Pin name  
HOOK  
RDIN  
No.  
15  
16  
17  
18  
19  
20  
21  
Pin name  
OSC3  
No.  
22  
23  
24  
25  
26  
27  
28  
Pin name  
#IRQ  
2
INN  
9
OSC4  
#SCLK  
SDI  
3
FB  
10  
11  
12  
13  
14  
#RDRC  
#RDET  
PDWN  
#RESET  
VSS  
EXTCLK  
MODE0  
MODE1  
#PQUAL  
#DET  
4
CASIN  
CASFB  
VREF  
SDO  
5
CDIN  
BPOUT  
VDD  
6
7
EXTREF  
Figure 1.3.1 Pin assignment  
2
EPSON  
S1C05251 TECHNICAL MANUAL  
1
OVERVIEW  
1.4 Pin Description  
Note: The signal and pin names prefixed by # in this manual are those of active-low signals and pins.  
Table 1.4.1 Pin description  
Power-down  
Pin name Pin No.  
INP 1  
Type  
Description  
status  
Off/  
Input  
Analog  
+ Input: Non-inverting amplifier input. This pin is connected to the  
telephone wire through an input gain-setting resistor and a DC cut  
capacitor. Under the power down mode, this pin is functionary  
disconnected from the internal circuitry when the MODE1 pin is set to  
low level. When the MODE1 pin is set to high level, this pin stays  
active to detect FSK signal energy to send wake up signal to the host  
through the #IRQ pin. Do not connect any external components to this  
pin except gain setting resistors to this pin. Excess load may cause  
improper operation of the circuit.  
Active  
INN  
2
Input  
Analog  
Off/  
Active  
- Input: Inverting amplifier input. This pin is connected to the  
telephone wire through an input gain-setting resistor and a DC cut  
capacitor. Under the power down mode, this pin is functionary  
disconnected from the internal circuitry when the MODE1 pin is set to  
low level. When the MODE1 pin is set to high level, this pin stays  
active to detect FSK signal energy to send wake up signal to the host  
through the #IRQ pin. Do not connect any external components to this  
pin except gain setting resistors to this pin. Excess load may cause  
improper operation of the circuit.  
FB  
3
Output  
Analog  
High-Z/  
Active  
Amplifier Output: A feed back resistor is connected between this pin  
and the INN pin to set gain. Under the power down mode, this output  
pin is set to high impedance when the MODE1 pin is set to low level.  
When the MODE1 pin is set to high level in power down, this pinstays  
active to detect FSK signal energy to send wake up signal to the host  
through the #DET pin. Do not connect any external components to  
this pin except a gain setting resistor to this pin. Excess load may  
cause improper operation of the circuit.  
CASIN  
4
Input  
Analog  
Off  
CAS Tone Input: CAS tone amplifier input. For the telephone  
application, this pin is connected to the output of telephone hybrid  
circuit through input gain-setting resistor and a DC cut capacitor.  
Under the power down mode, this pin is functionary disconnected  
from the internal circuitry. Do not connect any external components to  
this pin except gain setting resistors to this pin. Excess load may  
cause improper operation of the circuit.  
CASFB  
5
6
Output  
Analog  
High-Z  
High-Z/  
CAS Amplifier Output: A feed back resistor is connected between  
this pin and the CASIN pin to set CAS gain. Under the power down  
mode, this output pin is set to high impedance. Do not connect any  
external components to this pin except a gain setting resistor to this  
pin. Excess load may cause improper operation of the circuit.  
Reference Voltage Output: 1/2 VDD voltage output. This pin must be  
VREF  
Output  
Analog  
VDD/2 level bypassed to ground through 0.1 µF capacitor. During power down  
mode, this output pin is set to high impedance when the MODE1 pin  
is low level. When the MODE1 pin is set to high level in power down,  
this pin stays at VDD/2. Do not connect any external components to  
this pin except a jumper to VREF pin or a bypass capacitor to ground.  
Excess load may cause improper operation of the circuit.  
EXTREF  
HOOK  
RDIN  
7
8
9
Input  
Analog  
Active  
Active  
Active  
External Reference Voltage Input: External DC reference voltage is  
connected to this pin. This voltage set the off-hook detection threshold  
level.  
Input  
Analog  
Off-Hook Detection Input: Diode bridge output from the TIP/RING  
lines is connected to this pin through external resistor divider todetect  
off-hook/on-hook states.  
Schmitt  
trigger input  
Ring Detect Input: The attenuated ring signal is connected to this pin  
for the ring detection. This circuit is always active even if the device is  
in the power down mode.  
S1C05251 TECHNICAL MANUAL  
EPSON  
3
1
OVERVIEW  
Power-down  
status  
Pin name Pin No.  
Type  
Description  
#RDRC  
10  
Open-drain  
output  
Schmitt  
Active  
Ring Detect RC Terminal: RC network will be connected to this pin  
to set time delays for the ring signal detection. This circuit is always  
active even if the device is in the power down mode.  
trigger input  
Output  
#RDET  
11  
Active  
Active  
Ring Detect Output: When the MODE1 pin is set to low level, this pin  
is connected from output of a Schmitt trigger buffer which input is  
connected to the #RDRC pin. Low level at this pin indicates that the  
ring signal is detected. When the MODE1 pin bit is set to high level,  
this pin is connected from output of a hook detect circuit which input is  
connected from the HOOK pin. High level at this pinindicates on-hook  
condition and low level at this pin indicates off-hook condition.  
Power Down Input: This pin must be kept at low level for the normal  
operation. When it is set to high level, the device enters the power  
down mode. During power down mode, the OSC4 pin is set to high  
level, and the VREF, CASFB and FB pins are set to high impedance.  
(The FB and VREF pins are set to high impedance only when the  
MODE1 pin is at low level.)  
PDWN  
12  
13  
Input  
Input  
#RESET  
Active  
Off  
Reset Input: When this pin is set to low level, all internal host  
registers are reset to their default conditions. This pin must be set to  
high level to write data to the internal registers.  
VSS  
14  
15  
Power  
supply (-)  
Input  
Device Ground: This pin is connected to the system ground.  
OSC3  
Crystal Oscillator/External Clock Input: A crystal resonator is  
connected between this pin and the OSC4 pin. This pin may be driven  
from an external clock source. The proper value load capacitor must  
be connected between this pin and ground. During power down, this  
input pin is disconnected from internal circuits.  
OSC4  
16  
Output  
High level Crystal Oscillator Output: A crystal or ceramic resonator is  
connected between this pin and OSC3 pin. This pin must be kept  
open when the OSC3 pin is driven from an external clock source. The  
proper value load capacitor must be connected between this pin and  
ground. During power down, this output pin is set to high level.  
EXTCLK  
MODE0  
17  
18  
Input  
Input  
Active  
External Clock Input: Typically 32.768 kHz clock signal is applied to  
this pin from the host device to enable pre-qualification logic used in  
FSK energy detection circuitry.  
Active  
Mode0 Select Input: This pin select CAS or FSK/CPM mode. When  
this pin is set to high level, CAS mode is selected. In this mode, CAS  
detection is enabled and the FSK function is disabled. The host  
device also can write internal registers through the SDI and #SCLK  
pin. Before writing data into registers, this pin must be set to low level  
once to synchronize the serial interface circuit for data writing  
sequence. When this pin is set to low level, FSK/CPM mode is  
selected. In this mode, CAS detection is disabled and the FSK/CPM  
function is enabled. The host device also can read the received data  
from the SDO pin under this mode. Refer to Table 3.2.1 for more  
details.  
MODE1  
19  
20  
Input  
Active  
Mode1 Select Input: This pin enables FSK energy and off-hook  
detection mode. When this pin is set to high level, FSK energy and  
off-hook detection mode is enabled. When this pin is set to low level,  
FSK energy and off-hook detection mode is disabled. Refer to Table  
3.2.1 for more details.  
#PQUAL  
Output  
High level Pre-qualification Output: Early qualification output will be monitored  
at this pin. When no tones are detected, this pin stays at high level.  
4
EPSON  
S1C05251 TECHNICAL MANUAL  
1
OVERVIEW  
Power-down  
status  
Pin name Pin No.  
#DET  
Type  
Description  
21  
22  
23  
Output  
Active  
Detection Output: When the device is in the power down mode and  
the MODE1 pin is set to low level, low level at this pin indicates the  
presence of ring signal or phone line reversal. If the MODE1 pin is set  
to high level, low level at this pin indicates the presence of ring signal  
or FSK inbound signal. When in the power up mode and FSK mode is  
selected, low level at this pin indicates the presence of FSK inbound  
signal. If CPM mode is selected, pulses from this pin indicate the  
presence of CPM tone signal. If CAS mode is selected, low level at  
this pin indicates the presence of CAS tone signal. Refer to Table  
3.2.1 for more details.  
#IRQ  
Open-drain  
output  
Active  
Interrupt Request Output: When the device is in the power down  
mode, low level at this pin indicates the presence of ring signal or  
phone line reversal. When in the power up mode and FSK mode is  
selected, low level at this pin indicates that the received data is ready  
in the internal register for the host device to read. In this mode, this pin  
is set to high level after the first bit of the received data is read. If CPM  
mode is selected, low level at this pin indicates the presence of CPM.  
If CAS mode is selected, low level at this pin indicates that the CAS  
tone is detected. In this mode, this pin remains low level while CAS  
tones exist. Refer to Table 3.2.1 for more details.  
#SCLK  
Input  
Active  
Active  
Serial Clock Input: The host device supplies a clock to this pin to  
write internal registers or to read received data. The received data  
changes its state at falling edge of the clock supplied by the host  
device.  
SDI  
24  
25  
Input  
Serial Data Input: The host device writes control bits through this pin.  
SDO  
Output  
High level Serial Data Output: The host device reads the serial receive data  
from this pin. If asynchronous mode is selected, the asynchronous  
format serial data appears at this pin. If synchronous mode is  
selected, the received serial data is read from this pin by the host  
device with the serial clock supplied to the #SCLK pin. During the  
power down, CPM or CAS mode, this output pin is set to high level.  
CDIN  
26  
Input  
Analog  
VREF  
Capacitor Input: A 0.1 µF capacitor is connected between this pin  
and the BPOUT pin. The FSK signal can be applied from the FB pin  
to this pin through this 0.1 µF capacitor to bypass the band pass filter  
for internal testing purpose. Do not connect any external components  
except this capacitor to this pin. Excess load may cause improper  
operation of the circuit.  
BPOUT  
VDD  
27  
28  
Output  
Analog  
High-Z  
Capacitor Output: A 0.1 µF capacitor is connected between this pin  
and the CDIN pin. The band pass filter output is monitored at this pin  
for internal testing purpose. Do not connect any external components  
except this capacitor to this pin. Excess load may cause improper  
operation of the circuit.  
Power  
Device Power Supply: Positive power supply pin.  
supply (+)  
S1C05251 TECHNICAL MANUAL  
EPSON  
5
2
POWER SUPPLY BLOCK AND INITIAL RESET  
2 Power Supply Block and Initial Reset  
2.1 Power Supply  
The following shows the operating power supply voltage of the S1C05251.  
Power supply voltage: 2.7 V to 5.5 V  
The S1C05251 is operated in the above voltage range by a single power supply that is connected between VDD and  
VSS. The voltage required for internal operation (VREF = 1/2 VDD) is generated by the IC itself.  
VDD  
R
External  
power  
supply  
+
+
VREF  
VSS  
R
Figure 2.1.1 Power supply block  
2.2 Initial Reset  
The S1C05251 contains control registers that can be accessed by the external CPU through a serial interface. The  
control registers are initialized by an initial reset which is applied from the #RESET pin.  
Control register  
R
Write control circuit  
R
#RESET  
MODE0  
Figure 2.2.1 Initial reset circuit  
Specifically, the control registers are reset by pulling the #RESET pin to Low level (VSS) from outside of the IC.  
Then, the reset state is eliminated by releasing the #RESET pin back to High level (VDD). Also, the write control  
circuit for the control register is reset when the #RESET pin or MODE0 pin is at Low level. Before data can be  
written to the control register, both #RESET and MODE0 must be at High level.  
6
EPSON  
S1C05251 TECHNICAL MANUAL  
3
FUNCTIONAL DESCRIPTION  
3 Functional Description  
3.1 Register Description  
The S1C05251 contains eight 4-bit registers that can be accessed by the CPU.  
The CPU can access these CPU interface registers through the serial interface pins (SDI, #SCLK, andMODE0)and  
control the mode of the S1C05251. The CPU uses the first four bits of transmit data to specify the address A[3:0] of  
the internal register to be accessed. The data is transmitted beginning with the LSB (A0). The four bits that follow  
the LSB are data bits D[3:0] which are the data to be written to the specified register. This data is also transmitted  
beginning with the LSB (D0).  
Table 3.1.1 shows registers and control bit assignments.  
Table 3.1.1 Register structure  
Register  
name  
MDR  
GLR  
Address  
A[3:0]  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
Data bit  
Initial value  
D3  
TEST  
GL3  
GH3  
TL3  
X
D2  
SEL  
GL2  
GH2  
TL2  
X
D1  
BT  
D0  
SYNC  
GL0  
GH0  
TL0  
0000  
0100  
0100  
0110  
XXX1  
X011  
0001  
0001  
GL1  
GH1  
TL1  
X
GHR  
TLR  
THR  
TH0  
AV0  
WL0  
WH0  
AVR  
X
AV2  
WL2  
WH2  
AV1  
WL1  
WH1  
WLR  
WHR  
WL3  
WH3  
S1C05251 TECHNICAL MANUAL  
EPSON  
7
3
FUNCTIONAL DESCRIPTION  
Each register is detailed below.  
MDR: Mode Register (Address = 0h)  
Table 3.1.2 MDR register  
Description  
Initial  
value  
0
Bit  
D0  
Bit name  
SYNC  
Asynchronous/synchronous mode selection  
This bit is used to select asynchronous or synchronous mode.  
SYNC bit  
Mode  
0
1
Selects asynchronous mode  
Selects synchronous mode  
Asynchronous mode is selected by setting this bit to 0, in which case the 8-bit  
serial data output from the SDO pin is forwarded in asynchronous mode.  
Synchronous mode is selected by setting this bit to 1. When the FSK signal is  
received in FSK mode, serial data is output from the SDO pin and read by the  
CPU synchronously with the clock signal fed from the CPU to the #SCLK pin.  
Also, in synchronous mode, when the receive data is ready for output, the #IRQ  
pin changes to Low level, indicating that the CPU can read the data.  
Bellcore/BT selection  
D1  
BT  
0
This bit is used to select Bellcore or BT (British Telecom) mode.  
BT bit  
Mode  
0
1
Selects Bellcore mode  
Selects BT mode  
When this bit is set to 0, the gain in the dual-tone filter is set directly by the GLR  
and GHR registers.  
When this bit is set to 1, the value set by the GLR (Table 3.1.3) and GHR (Table  
3.1.4) registers plus 6 dB is set as the gain in the dual-tone filter.  
FSK/CPM mode selection  
D2  
SEL  
0
This bit is used to select FSK or CPM mode when the MODE0 pin is low.  
SEL bit  
Mode  
0
1
Selects FSK mode  
Selects CPM mode  
If this bit is set to 1 when the MODE0 pin is held at Low level (FSK/CPM mode),  
the receive filter is bypassed, and when the CPM tone is input to the INP/INN pin,  
the #IRQ pin goes to Low level. Also, since the pulse generated from the CPM  
tone signal is output from the #DET pin, the CPM (dial) tone can be identified by  
measuring the frequency of the pulse.  
If this bit is set to 0 when the MODE0 pin is held at Low level (FSK/CPM mode),  
the FSK function is enabled.  
If this bit is set to 1 when the MODE0 pin is high (CAS mode), the CAS signal can  
be input to the CASIN pin. If this bit is set to 0 when the MODE0 pin is high, the  
CAS signal can be input to the INP/INN pin.  
D3  
TEST  
0
Test mode selection  
This bit is used to test the IC. This bit normally must be fixed to 0.  
8
EPSON  
S1C05251 TECHNICAL MANUAL  
3
FUNCTIONAL DESCRIPTION  
GLR: Low-Tone Gain Setting Register (Address = 1h)  
Table 3.1.3 GLR register  
Initial  
value  
Bit  
Bit name  
Description  
D0  
D1  
D2  
D3  
GL0  
GL1  
GL2  
GL3  
0100 Low-tone filter gain selection  
These bits control gain in the 2,130-Hz tone filter.  
GL3 GL2 Gain (dB) GL1 GL0 Gain (dB)  
0
0
1
1
0
1
0
1
0
-4  
-8  
0
0
1
1
0
1
0
1
0
-1  
-2  
-3  
-12  
GL1 and GL0 change the gain in increments of 1 dB, whereas GL3 and GL2  
change the gain in increments of 4 dB. The alert-tone detection level is attenuated  
(sensitivity is lowered) by an amount equal to the total gain set here.  
GHR: High-Tone Gain Setting Register (Address = 2h)  
Table 3.1.4 GHR register  
Initial  
value  
Bit  
Bit name  
Description  
D0  
D1  
D2  
D3  
GH0  
GH1  
GH2  
GH3  
0100 High-tone filter gain selection  
These bits control gain in the 2,750-Hz tone filter.  
GH3 GH2 Gain (dB) GH1 GH0 Gain (dB)  
0
0
1
1
0
1
0
1
0
-4  
-8  
0
0
1
1
0
1
0
1
0
-1  
-2  
-3  
-12  
GH1 and GH0 change the gain in increments of 1 dB, whereas GH3 and GH2  
change the gain in increments of 4 dB. The alert-tone detection level is attenuated  
(sensitivity is lowered) by an amount equal to the total gain set here.  
S1C05251 TECHNICAL MANUAL  
EPSON  
9
3
FUNCTIONAL DESCRIPTION  
TLR, THR: Detection Threshold Setting Registers (Address = 3h, 4h)  
Table 3.1.5 TLR and THR registers  
Initial  
value  
Bit  
Bit name  
Description  
D0  
D1  
D2  
D3  
D0  
D1  
D2  
D3  
TL0  
TL1  
TL2  
TL3  
TH0  
X
0110 CAS detection threshold selection  
These bits control the minimum duration of tone with which the CAS tone is  
identified. TH0 (THR register bit 0) is the MSB of the threshold set.  
TH0 TL3 TL2 TL1 TL0 Threshold value (msec)  
XXX1  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
5
9
12  
16  
19  
21  
23  
26  
29  
32  
34  
36  
39  
43  
46  
48  
50  
53  
56  
59  
61  
64  
67  
70  
73  
76  
78  
81  
84  
87  
90  
X
X
Invalid (Cannot be set)  
The bit setting 10110 corresponds to Bellcore and British Telecom Loop State  
service; the bit setting 11001 corresponds to British Telecom Idle State service.  
AVR: Average Divide-Ratio Select Register (Address = 5h)  
Table 3.1.6 AVR register  
Initial  
value  
Bit  
Bit name  
Description  
D0  
D1  
D2  
D3  
AV0  
AV1  
AV2  
X
X011 Average counter divide-ratio selection  
These bits control the frequency divide ratio of the internal average counter.  
Setting to 011 is recommended.  
AV2 AV1 AV0  
Divide ratio  
1/1  
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1/2  
1/4  
1/8  
1/16  
1/32  
1/64  
10  
EPSON  
S1C05251 TECHNICAL MANUAL  
3
FUNCTIONAL DESCRIPTION  
WLR: Low-Tone Record Window Select Register (Address = 6h)  
Table 3.1.7 WLR register  
Initial  
value  
Bit  
Bit name  
Description  
D0  
D1  
D2  
D3  
WL0  
WL1  
WL2  
WL3  
0001 Low-tone window width selection  
These bits are used the low-tone record window width of the identification block.A  
tone can be identified when one cycle of it is within the specified range.  
WL3 WL2 WL1 WL0  
Window width (%)  
0.51, -0.50  
0.57, -0.56  
0.63, -0.62  
0.69, -0.68  
0.75, -0.74  
0.81, -0.80  
0.87, -0.85  
0.93, -0.91  
0.99, -0.97  
1.06, -1.03  
1.12, -1.09  
1.18, -1.15  
1.24, -1.20  
1.30, -1.26  
1.36, -1.32  
1.42, -1.38  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Bit setting 0001 is Bellcore’s default value. Bit setting 0010 corresponds to British  
Telecom Loop State service and setting 1100 corresponds to British Telecom Idle  
State service.  
WHR: High-Tone Record Window Select Register (Address = 7h)  
Table 3.1.8 WHR register  
Initial  
value  
Bit  
Bit name  
Description  
D0  
D1  
D2  
D3  
WH0  
WH1  
WH2  
WH3  
0001 High-tone window width selection  
These bits are used to select the high-tone record window width of the  
identification block. A tone can be identified when one cycle of it is within the  
specified range.  
WH3 WH2 WH1 WH0  
Window width (%)  
0.51, -0.49  
0.59, -0.56  
0.67, -0.64  
0.75, -0.71  
0.83, -0.79  
0.90, -0.86  
0.98, -0.94  
1.06, -1.02  
1.14, -1.09  
1.22, -1.17  
1.30, -1.24  
1.37, -1.32  
1.45, -1.39  
1.53, -1.46  
1.61, -1.54  
1.69, -1.61  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Bit setting 0001 is Bellcore’s default value. Bit setting 0010 corresponds to British  
Telecom Loop State service and setting 1001 corresponds to British Telecom Idle  
State service.  
S1C05251 TECHNICAL MANUAL  
EPSON  
11  
3
FUNCTIONAL DESCRIPTION  
3.2 Outputs from the #RDET, #IRQ and #DET Pins  
The signals output from the #RDET, #IRQ, and #DET pins changes according to the operation mode. Table 3.2.1  
lists the corresponding between the operation mode and the pin function.  
Table 3.2.1 Pin functions in each operation mode  
SEL  
bit  
FSK  
CAS  
Power  
mode  
PDWN MODE1 MODE0  
Function  
#RDET  
#IRQ  
#DET  
input pin input pin  
0
0
0
0
1
0
0
0
0
1
0
0
0
0
0
1
1
1
1
1
0
0
1
1
X
0
0
1
1
X
0
RING detection  
FSK receiving  
CPM detection  
RING detection  
CAS detection  
RING detection  
CAS detection  
RING detection  
Zero-power mode  
RING detection  
FSK detection  
Hook detection  
CPM detection  
Hook detection  
CAS detection  
Hook detection  
CAS detection  
Hook detection  
FSK energy detection  
mode  
INP/INN  
INP/INN  
Off  
Off  
Off  
RING  
detection  
RING  
FSK receive FSK signal Power  
completion  
CPM  
detection  
CPM signal  
output  
on  
1
0
1
X
0
1
0
1
X
detection  
RING  
detection  
CAS  
INP/INN  
CASIN  
Off  
CAS  
detection  
RING  
detection  
CAS  
detection  
CAS  
Off  
detection  
RING  
detection  
RING  
detection  
RING  
Off  
Power  
down  
detection  
detection  
detection  
INP/INN  
INP/INN  
Off  
Off  
Off-hook FSK receive FSK signal Power  
detection  
Off-hook  
detection  
Off-hook  
detection  
Off-hook  
detection  
Off-hook  
detection  
completion  
CPM  
detection  
CPM signal  
output  
on  
Off  
detection  
CAS  
INP/INN  
CASIN  
Off  
CAS  
detection  
CAS  
detection  
CAS  
Off  
detection  
RING  
detection  
RING  
INP/INN  
Power  
down  
detection  
detection  
or  
RING detection  
Hook detection  
FSK energy detection  
FSK energy  
detection  
12  
EPSON  
S1C05251 TECHNICAL MANUAL  
3
FUNCTIONAL DESCRIPTION  
3.3 Input Amp Circuit  
3.3.1 Differential Input  
The amp at the input stage must have its circuit configured to allow gain to be set correctly. For this reason, it  
requires five to six external resistors.  
FB  
VREF  
R4  
R6  
R5  
INN  
INP  
R2  
R1  
TIP  
To filter  
Amp  
+
RING  
R3  
VREF  
VREF  
Figure 3.3.1 Input amp circuit  
The gain in the input amp can be set depending on values R1 to R6 as shown below. Note that R3 and R5 may be  
replaced by one resistor.  
R 5  
R 1  
R 6  
R 2  
G A MP =  
=
[times]  
(W hen R 1 = R 2, R 3 = R 4, R 5 = R 6)  
To set the FSK and CAS tone signal-detection levels, determine each resistance value with respect to VDD as shown  
below.  
R 5  
R 1  
R 6  
R 2  
VD D  
5
G A MP =  
=
=
× 0.562 [times]  
VDD is the power supply voltage fed to the VDD pin of the S1C05251. For R3 and R4, Seiko Epson recommends  
using a resistance of about 200 kfor noise prevention.  
Tables 3.3.1 and 3.3.2 show typical resistance values and amp gain for the case where VDD = 5 V and VDD = 3 V,  
respectively. Do not use resistors with lower values than those shown in the table below when the MODE1 pin isset  
to 1 (FSK detection during power down).  
Table 3.3.1 Resistance values and gain (VDD = 5 V)  
Value  
Parameter  
Condition  
Bellcore  
1000 k  
BT  
1000 kΩ  
R1, R2  
R3, R4  
R5, R6  
1%  
1%  
1%  
200 kΩ  
200 kΩ  
562 kΩ  
562 kΩ  
Input amp gain  
0.562 times (-5 dB)  
-43.0 dBm  
-45.0 dBm  
-35.9 dBm  
0.562 times (-5 dB)  
-45.2 dBV  
-47.2 dBV  
-44.1 dBV  
FSK/CPM - CD ON level (Typ.)  
FSK/CPM - CD OFF level (Typ.)  
CAS - CD ON level (Typ.)  
Tone filter gain = -4 dB  
Condition  
Table 3.3.2 Resistance values and gain (VDD = 3 V)  
Value  
Parameter  
Bellcore  
1000 kΩ  
200 kΩ  
338 kΩ  
BT  
R1, R2  
R3, R4  
R5, R6  
1000 kΩ  
200 kΩ  
338 kΩ  
1%  
1%  
1%  
Input amp gain  
0.3372 times (-9.4 dB) 0.3372 times (-9.4 dB)  
FSK/CPM - CD ON level (Typ.)  
FSK/CPM - CD OFF level (Typ.)  
CAS - CD ON level (Typ.)  
-43.0 dBm  
-45.0 dBm  
-35.9 dBm  
-45.2 dBV  
-47.2 dBV  
-44.1 dBV  
Tone filter gain = -4 dB  
S1C05251 TECHNICAL MANUAL  
EPSON  
13  
3
FUNCTIONAL DESCRIPTION  
3.3.2 Single End Input  
When the amp is used as single end input, two external resistors are required.  
CASFB  
R8  
CASIN  
R7  
HYBRID  
To filter  
Amp  
+
B
Figure 3.3.2 Input amp circuit  
The gain in the input amp can be set depending on values R7 and R8 as shown below.  
R8  
R7  
GAMP =  
[times]  
To set the FSK and CAS tone signal-detection levels at node B, determine each resistance value withrespect toVDD  
as shown below.  
R8  
R7  
VD D  
5
GAMP =  
=
× 0.562 [times]  
VDD is the power supply voltage fed to the VDD pin of the S1C05251.  
Tables 3.3.3 and 3.3.4 show typical resistance values and amp gain for the case where VDD = 5 V and VDD = 3 V,  
respectively.  
Table 3.3.3 Resistance values and gain (VDD = 5 V)  
Value  
Parameter  
Condition  
Bellcore  
1000 kΩ  
562 kΩ  
BT  
R7  
R8  
1000 kΩ  
562 kΩ  
-5.0 dB  
-44.1 dBV  
1%  
1%  
Input amp gain (Typ.)  
-5.0 dB  
CAS - CD ON level (Typ.)  
-35.9 dBm  
Tone filter gain = -4 dB  
Table 3.3.4 Resistance values and gain (VDD = 3 V)  
Value  
Parameter  
Condition  
Bellcore  
1000 kΩ  
338 kΩ  
BT  
R7  
1000 kΩ  
338 kΩ  
-9.4dB  
1%  
1%  
R8  
Input amp gain  
-9.4 dB  
CAS - CD ON level (Typ.)  
-35.9 dBm  
-44.1 dBV  
Tone filter gain = -4 dB  
14  
EPSON  
S1C05251 TECHNICAL MANUAL  
3
FUNCTIONAL DESCRIPTION  
3.4 Ring/Line Reversal Signal Detection  
Figure 3.4.1 shows a typical circuit used to detect the Bellcore ring signal andBritish Telecom Line Reversal signal.  
When the S1C05251 is in power-down mode, this circuit detects the ring signal or Line Reversal signal. The Line  
Reversal or ring signal causes the voltage on the RDIN pin to rise, which drives the Schmitt rigger outputhigh. This  
causes the Nch transistor to turn on and the #RDRC pin to change to Low level. Since the RDIN pin is normally at  
the VSS level, the #RDRC pin is at the High level. When the ring signal is input or the Line Reversal signal is  
generated, the capacitor of the #RDRC pin discharges, causing the #RDRC pin to change state from High to Low.  
The #RDET pin operates in the same way, except that in any mode other than power-down mode, the #RDET pin  
always responds to input on the RDIN pin.  
0.2 µF  
TIP  
470 kΩ  
RDIN  
VDD  
33 kΩ  
270 kΩ  
VDD  
RING  
#RDRC  
0.2 µF  
0.2 µF  
#RDET  
VDD  
#IRQ  
#DET  
Figure 3.4.1 Ring/line reversal signal detection circuit  
3.5 FSK Demodulation  
The received FSK-modulated signal, after being processed by the band-pass filter, is demodulated by the FSK  
demodulation circuit. If the FSK signal is input when the PDWN pin is set to Low level and FSK mode has been  
selected by the host CPU, the #DET pin changes to Low level. The received data is read out from the SDO pin by  
the host CPU. Also, the #IRQ pin is driven Low each time one byte is received. This demodulation circuitsupports a  
FSK-modulated signal that conforms to ITU-T V.23 or Bell202.  
Table 3.5.1 FSK data characteristics  
Parameter  
Mark frequency  
Bellcore  
1200 Hz ±1%  
2200 Hz ±1%  
BT  
1300 Hz ±1.5%  
2100 Hz ±1.5%  
Space frequency  
Receive signal level  
Mark: -32 dBm to -12 dBm Mark: -40 dBV to -14 dBV  
Space: -36 dBm to -12 dBm Space: -36 dBV to -8 dBV  
Signal distortion  
Transfer rate  
25 dB  
20 dB  
1200 baud ±1%  
1200 baud ±1%  
S1C05251 TECHNICAL MANUAL  
EPSON  
15  
3
FUNCTIONAL DESCRIPTION  
3.6 Dual-Tone Detection  
Dual tones (Bellcore CPE alert signal (CAS), British Telecom tone alert signal) are detected using two tone filters  
and digital identification circuits. If dual tones are received when the PDWN pin is set low and CAS mode has been  
selected by the host CPU, the #DET pin and the #IRQ pin changes to Low level.  
Table 3.6.1 Dual-tone characteristics  
Bellcore  
BT (tone alert signal)  
Line disconnected Line connected  
2130 Hz ±1.1% 2130 Hz ±0.6%  
Parameter  
(CPE alert signal)  
Low tone frequency  
High tone frequency  
Receive signal level  
2130 Hz ±0.5%  
2750 Hz ±0.5%  
-32 dBm to -14 dBm/tone,  
off-hook  
2750 Hz ±1.1%  
-40 dBV to -2 dBV/tone,  
on-hook  
2750 Hz ±0.6%  
-40 dBV to -8 dBV/tone,  
off-hook  
Rejection signal level  
Receive tone twist  
Tone output time  
Simultaneous voice  
reception  
-45 dBm  
-46 dBV  
0 to 6 dB  
0 to 7 dB  
0 to 7 dB  
75 msec to 85 msec  
Yes  
88 msec to 110 msec  
No  
80 msec to 85 msec  
Yes  
3.7 Off-Hook Detection  
Figure 3.7.1 shows an example of an off-hook detection circuit. Set the MODE1 pin to 1 to detect off-hook status.  
The example below can detect on-hook/off-hook status even if the device is in the power down mode. The hook  
status is detected by comparing the voltage values between the HOOK and EXTREF pins. When off-hook (HOOK  
pin voltage < EXTREF pin voltage) is detected, the #RDET pin outputs 0.  
TIP  
RING  
HOOK  
#RDET  
Amp( )  
EXTREF  
MODE1 = 1  
+
RING  
Figure 3.7.1 Off-hook detection circuit  
16  
EPSON  
S1C05251 TECHNICAL MANUAL  
4
PRECAUTIONS ON MOUNTING  
4 Precautions on Mounting  
<Oscillation Circuit>  
Oscillation characteristics change depending on conditions (board pattern, components used, etc.).  
In particular, when a crystal oscillator is used, use the oscillator manufacturer's recommended values for  
constants such as capacitance.  
Disturbances of the oscillation clock due to noise may cause a malfunction. Consider the following points to  
prevent this:  
(1) Components which are connected to the OSC3, OSC4 terminals, such as oscillators and capacitors, should  
be connected in the shortest line.  
(2) As shown in the right hand figure, make a VSS pattern as large as possible at circumscription of the OSC3,  
OSC4 terminals and the components connected to these terminals.  
Furthermore, do not use this VSS pattern for any purpose other than the oscillation system.  
Sample VSS pattern  
OSC4  
OSC3  
VSS  
(3) When supplying an external clock to the OSC3 terminal, the clock source should be connected to the OSC3  
terminal in the shortest line.  
Furthermore, do not connect anything else to the OSC4 terminal.  
In order to prevent unstable operation of the oscillation circuit due to current leak between OSC3 and VDD,  
please keep enough distance between OSC3 and VDD or other signals on the board pattern.  
<Power Supply Circuit>  
Sudden power supply variation due to noise may cause malfunction. Consider the following points to prevent  
this:  
(1) The power supply should be connected to the VDD, VSS and VREF terminals with patterns as short and large  
as possible.  
(2) When connecting between the VDD and VSS terminals with a bypass capacitor, the terminals should be  
connected as short as possible.  
Bypass capacitor connection example  
VDD  
VSS  
VDD  
VSS  
S1C05251 TECHNICAL MANUAL  
EPSON  
17  
4
PRECAUTIONS ON MOUNTING  
<Arrangement of Signal Lines>  
In order to prevent generation of electromagnetic induction noise caused by mutual inductance, do not arrange a  
large current signal line near the circuits that are sensitive to noise such as the oscillation unit.  
When a signal line is parallel with a high-speed line in long distance or intersects a high-speed line, noise may  
generated by mutual interference between the signals and it may cause a malfunction.  
Do not arrange a high-speed signal line especially near circuits that are sensitive to noise such as the oscillation  
unit.  
Prohibited pattern  
OSC4  
OSC3  
VSS  
Large current signal line  
High-speed signal line  
<Precautions for Visible Radiation (when bare chip is mounted)>  
Visible radiation causes semiconductor devices to change the electrical characteristics. It may cause this IC to  
malfunction. When developing products which use this IC, consider the following precautions to prevent  
malfunctions caused by visible radiations.  
(1) Design the product and implement the IC on the board so that it is shielded from visible radiation in actual  
use.  
(2) The inspection process of the product needs an environment that shields the IC from visible radiation.  
(3) As well as the face of the IC, shield the back and side too.  
18  
EPSON  
S1C05251 TECHNICAL MANUAL  
5
ELECTRICAL CHARACTERISTICS  
5 Electrical Characteristics  
5.1 Absolute Maximum Ratings  
Parameter  
Power supply voltage  
Input voltage  
Symbol  
VDD  
Rated value  
Unit  
V
-0.5 to 7  
VI  
-0.3 to VDD+0.3  
V
Total output current  
Power dissipation  
Storage temperature  
Solder temperature  
Soldering time  
ΣIVDD  
PD  
±10  
mA  
mW  
°C  
250  
TSTG  
TSOL  
tSOL  
TOPR  
-65 to 150  
255  
°C  
10  
Sec  
°C  
Operating temperature  
-20 to 70  
Electrostatic withstand voltage VE  
EIAJ test (C=200pF): 250V or more  
MIL test (C=100pF, R=1.5k): 1200V or more  
V
The voltages are referenced to the VSS pin as the ground level.  
5.2 Recommended Operating Conditions  
Parameter  
Symbol  
VDD  
Condition  
2.7 to 5.5  
3.579545  
±0.01  
Unit  
V
Power supply voltage  
Crystal/clock frequency  
Crystal/clock frequency error  
fCLK  
MHz  
%
fERR  
The voltages are referenced to the VSS pin as the ground level.  
5.3 DC Characteristics  
Unless otherwise noted: VDD=2.7V to 5.5V, VSS=0V, fCLK=3.579545MHz, Ta=-20 to 70°C  
Parameter Symbol Condition  
Min.  
Typ.  
Max. Unit  
High level input voltage (1) VIH1  
OSC3, MODE0, MODE1, #SCLK, 0.8VDD  
SDI, PDWN, #RESET, EXTCLK  
VDD  
V
High level input voltage (2) VIH2  
Low level input voltage (1) VIL1  
RDIN, #RDRC  
0.7VDD  
0
VDD  
V
V
OSC3, MODE0, MODE1, #SCLK,  
SDI, PDWN, #RESET, EXTCLK  
RDIN, #RDRC  
0.2VDD  
Low level input voltage (2) VIL2  
0
0
0.3VDD  
0.5  
V
High level input current  
IIH  
VIH=VDD  
VIL=VSS  
RDIN, OSC3, MODE0, MODE1,  
#SCLK, SDI, PDWN, #RESET,  
#IRQ, #RDRC (RDIN = Low),  
EXTCLK  
µA  
Low level input current  
IIL  
RDIN, OSC3, MODE0, MODE1,  
#SCLK, SDI, PDWN, #RESET,  
#RDRC, #IRQ, EXTCLK  
-0.5  
2.5  
0
µA  
High level output current  
Low level output current  
IOH  
IOL  
VOH=0.9VDD SDO, #DET, #RDET, #PQUAL  
VOL=0.1VDD SDO, #DET, #RDET, #PQUAL,  
#IRQ, #RDRC  
-1.5 mA  
mA  
VREF output voltage  
Input impedance  
VREF  
RIN  
VDD/2  
200  
V
MΩ  
INP, INN, HOOK, EXTREF, CASIN 10  
RCDIN  
CDIN  
140  
260 kΩ  
5.4 Current Consumption  
Unless otherwise noted: VDD=2.7V to 5.5V, VSS=0V, fCLK=3.579545MHz, Ta=-20 to 70°C  
Parameter  
Symbol  
Condition  
Zero-power mode (PDWN=High)  
FSK energy detection mode (PDWN=High)  
Power up mode (no signal inputs)  
Min.  
Typ. Max. Unit  
Current consumption IOP  
VDD=5V  
VDD=5V  
VDD=5V  
VDD=3V  
1.0  
8.0  
µA  
µA  
6.0  
3.0  
1.8  
mA  
mA  
S1C05251 TECHNICAL MANUAL  
EPSON  
19  
5
ELECTRICAL CHARACTERISTICS  
5.5 Crystal Oscillation Characteristics  
Unless otherwise noted: VDD=2.7V to 5.5V, VSS=0V, CG=CD=18pF, Ta=25°C  
Parameter  
Oscillation start time  
Symbol  
tsta  
Condition  
Min.  
Typ.  
Max.  
20  
Unit  
3.579545Mhz oscillator  
msec  
5.6 FSK Demodulation Circuit Characteristics  
5.6.1 FSK AC Characteristics  
Unless otherwise noted: VDD=5.0/3.0V, VSS=0V, fCLK=3.579545MHz, Ta=-20 to 70°C  
Parameter  
Symbol  
Condition  
Min.  
Typ.  
Max.  
Unit  
Transfer rate  
TRATE  
1188 1200 1212 Baud  
Bell 202 mark (logic 1) frequency  
Bell 202 space (logic 0) frequency  
ITU-T V.23 mark (logic 1) frequency  
fB1  
fB0  
fV1  
1188 1200 1212  
2178 2200 2222  
1280 1300 1320  
2068 2100 2132  
Hz  
Hz  
Hz  
Hz  
dB  
ITU-T V.23 space (logic 0) frequency fV2  
SN ratio  
SNR  
20  
Carrier-detect ON sensitivity  
(input level at TPI/RING)  
1
CDONFSK VDD=5V  
-45.0 -43.0 -41.0 dBm  
-47.2 -45.2 -43.2 dBV  
-45.0 -43.0 -41.0 dBm  
-47.2 -45.2 -43.2 dBV  
-47.0 -45.0 -43.0 dBm  
-49.2 -47.2 -45.2 dBV  
-47.0 -45.0 -43.0 dBm  
-49.2 -47.2 -45.2 dBV  
Input amp gain (GAMP)=-5dB  
VDD=3V  
Input amp gain (GAMP)=-9.4dB  
Carrier-detect OFF sensitivity  
1
CDOFFFSK VDD=5V  
Input amp gain (GAMP)=-5dB  
VDD=3V  
Input amp gain (GAMP)=-9.4dB  
1 When the gain in the input amp is set to GAMP (dB), the CDONFSK and CDOFFFSK values (Typ.) can be calculated  
from the equation below.  
CDONFSK [dBm] = -GAMP - 48.0 + 20log(VDD) [dBm], CDONFSK [dBV] = -GAMP - 50.2 + 20log(VDD) [dBV]  
5
5
CDOFFFSK [dBm] = -GAMP - 50.0 + 20log(VDD) [dBm], CDOFFFSK [dBV] = -GAMP - 52.2 + 20log(VDD) [dBV]  
5
5
5.6.2 FSK Switching Characteristics  
Unless otherwise noted: VDD=5.0/3.0V, VSS=0V, fCLK=3.579545MHz, Ta=-20 to 70°C, CL=50pF  
Parameter  
PDWN fall FSK  
Symbol  
Condition  
Min.  
Typ.  
Max.  
20  
Unit  
msec  
msec  
msec  
msec  
msec  
tSUPD  
Carrier detect start time  
Data end #DET rise  
tCDON  
tCDOFF  
tDOCH  
5
5
10  
10  
7
15  
15  
PDWN rise Oscillation start  
VDD=5V  
VDD=3V  
12  
10  
15  
1st RING  
2nd RING  
Input  
101010... 1 DATA  
V
V
IH2  
#RDRC  
#RDET  
PDWN  
#DET  
IL2  
t
SUPD  
t
CDON  
t
CDOFF  
SDO  
101010... 1 DATA  
t
DOCH  
OSC4  
Figure 5.6.1 FSK switching characteristics  
20  
EPSON  
S1C05251 TECHNICAL MANUAL  
5
ELECTRICAL CHARACTERISTICS  
5.6.3 FSK Energy Detection Mode AC Characteristics  
Unless otherwise noted: VDD=5.0/3.0V, VSS=0V, fCLK=3.579545MHz, Ta=-20 to 70°C  
Parameter  
Symbol  
Condition  
Min.  
Typ.  
Max.  
Unit  
Transfer rate  
TRATE  
1188 1200 1212 Baud  
Bell 202 mark (logic 1) frequency  
Bell 202 space (logic 0) frequency  
ITU-T V.23 mark (logic 1) frequency  
fB1  
fB0  
fV1  
1188 1200 1212  
2178 2200 2222  
1280 1300 1320  
2068 2100 2132  
Hz  
Hz  
Hz  
Hz  
dB  
ITU-T V.23 space (logic 0) frequency fV2  
SN ratio  
SNR  
20  
Carrier-detect ON sensitivity  
(input level at TPI/RING)  
1
CDONFSK VDD=5V  
-44.0 -41.0 -38.0 dBm  
-46.2 -43.2 -40.2 dBV  
-44.0 -41.0 -38.0 dBm  
-46.2 -43.2 -40.2 dBV  
Input amp gain (GAMP)=-5dB  
VDD=3V  
Input amp gain (GAMP)=-9.4dB  
1 When the gain in the input amp is set to GAMP (dB), the CDONFSK value (Typ.) can be calculated from the equation  
below.  
CDONFSK [dBm] = -GAMP - 46.0 + 20log(VDD) [dBm], CDONFSK [dBV] = -GAMP - 48.2 + 20log(VDD) [dBV]  
5
5
5.6.4 FSK Energy Detection Mode Switching Characteristics  
Unless otherwise noted: VDD=5.0/3.0V, VSS=0V, fCLK=3.579545MHz, Ta=-20 to 70°C, CL=50pF  
Parameter  
FSK energy detect capture time  
FSK end #IRQ rise  
Symbol  
Condition  
Min.  
Typ.  
12  
Max.  
20  
Unit  
msec  
msec  
tEGAQ  
tEGIH  
VDD=5V  
VDD=5V  
24  
40  
FSK  
#IRQ  
tEGAQ  
tEGIH  
Figure 5.6.2 FSK energy detection mode switching characteristics  
S1C05251 TECHNICAL MANUAL  
EPSON  
21  
5
ELECTRICAL CHARACTERISTICS  
5.7 Dual-Tone (CAS) Detection Circuit Characteristics  
5.7.1 CAS AC Characteristics  
Unless otherwise noted: VDD=5.0/3.0V, VSS=0V, fCLK=3.579545MHz, Ta=-20 to 70°C  
Parameter  
Symbol  
Condition  
VDD=5V, Bellcore mode  
Input amp gain (GAMP)=-5dB  
Tone filter gain=-4dB  
Min.  
Typ.  
Max.  
-31.9  
Unit  
Carrier-detect sensitivity  
(input level at TPI/RING)  
1
CDONTONE  
-39.9  
-35.9  
dBm  
VDD=5V, BT mode 2  
nput amp gain (GAMP)=-5dB  
Tone filter gain=-4dB  
-48.1  
-39.9  
-48.1  
-44.1  
-35.9  
-44.1  
-40.1  
-31.9  
-40.1  
dBV  
dBm  
dBV  
VDD=3V, BT mode 2  
nput amp gain (GAMP)=-9.4dB  
Tone filter gain=-4dB  
VDD=3V, BT mode 2  
nput amp gain (GAMP)=-9.4dB  
Tone filter gain=-4dB  
Low tone frequency  
High tone frequency  
fLTONE  
fHTONE  
Bellcore (±0.5%)  
2119.35 2130  
2110 2130  
2140.65  
2150  
Hz  
Hz  
Hz  
Hz  
Hz  
Hz  
BT line disconnected  
BT line connected (±0.6%)  
Bellcore (±0.5%)  
2117.22 2130  
2736.25 2750  
2142.78  
2763.75  
2780  
BT line disconnected  
2720  
2750  
BT line connected (±0.6%)  
2733.50 2750  
2766.50  
1 When the gain in the input amp is set to GAMP (dB), the CDONTONE value (Typ.) can be calculated from the  
equation below.  
(When the internal tone filter gain = 4 dB)  
CDONTONE [dBm] = -GAMP - 40.9 + 20log(VDD) [dBm], CDONTONE [dBV] = -GAMP - 49.1 + 20log(VDD) [dBV]  
5
5
2 BT mode is selected by setting the mode register (address = 0h) bit 2 to 1. By this setting, the gain in each dual-  
tone filter is raised +6 dB for adjustment to the British Telecom CD level.  
5.7.2 CAS Switching Characteristics  
Unless otherwise noted: VDD=5.0/3.0V, VSS=0V, fCLK=3.579545MHz, Ta=-20 to 70°C, CL=50pF  
Parameter  
CAS detect capture time  
CAS end #DET rise  
CAS width  
Symbol  
tCASAQ  
tCASDH  
tCASW  
Min.  
Typ.  
2.8×(N+2)+16.9  
2.8×(31-N)+13.1  
80  
Max.  
85  
Unit  
msec  
msec  
msec  
75  
N = TH0 × 16 + TL3 × 8 + TL2 × 4 + TL1 × 2 + TL0  
tCASW  
CAS  
#DET  
tCASAQ  
tCASDH  
Figure 5.7.1 CAS switching characteristics  
22  
EPSON  
S1C05251 TECHNICAL MANUAL  
5
ELECTRICAL CHARACTERISTICS  
5.8 Call Progress Mode (CPM) Detection Circuit Characteristics  
5.8.1 CPM AC Characteristics  
Unless otherwise noted: VDD=5.0/3.0V, VSS=0V, fCLK=3.579545MHz, Ta=-20 to 70°C  
Parameter  
Carrier-detect ON sensitivity  
(input level at TPI/RING)  
Symbol  
Condition  
Min.  
-45.0  
-47.2  
-45.0  
-47.2  
-47.0  
-49.2  
-47.0  
-49.2  
Typ.  
-43.0  
-45.2  
-43.0  
-45.2  
-45.0  
-47.2  
-45.0  
-47.2  
Max.  
Unit  
1
CDONCPM VDD=5V  
-41.0 dBm  
-43.2 dBV  
-41.0 dBm  
-43.2 dBV  
-43.0 dBm  
-45.2 dBV  
-43.0 dBm  
-45.2 dBV  
Input amp gain (GAMP)=-5dB  
VDD=3V  
Input amp gain (GAMP)=-9.4dB  
Carrier-detect OFF sensitivity  
1
CDOFFCPM VDD=5V  
Input amp gain (GAMP)=-5dB  
VDD=3V  
Input amp gain (GAMP)=-9.4dB  
1 When the gain in the input amp is set to GAMP (dB), the CDONCPM and CDOFFCPM values (Typ.) can be calculated  
from the equation below.  
CDONCPM [dBm] = -GAMP - 48.0 + 20log(VDD) [dBm], CDONCPM [dBV] = -GAMP - 50.2 + 20log(VDD) [dBV]  
5
5
CDOFFCPM [dBm] = -GAMP - 50.0 + 20log(VDD) [dBm], CDOFFCPM [dBV] = -GAMP - 52.2 + 20log(VDD) [dBV]  
5
5
5.8.2 CPM Switching Characteristics  
Unless otherwise noted: VDD=5.0/3.0V, VSS=0V, fCLK=3.579545MHz, Ta=-20 to 70°C, CL=50pF  
Parameter  
Symbol  
tCPMAQ  
tCPMIH  
Min.  
Typ.  
25  
Max.  
Unit  
CPM tone-detect capture time  
CPM tone end #IRQ rise  
msec  
msec  
30  
CPM  
#IRQ  
#DET  
tCPMAQ  
tCPMIH  
Figure 5.8.1 CPM switching characteristics  
S1C05251 TECHNICAL MANUAL  
EPSON  
23  
5
ELECTRICAL CHARACTERISTICS  
5.9 Serial Interface Circuit Characteristics  
5.9.1 Serial Interface AC Characteristics  
Unless otherwise noted: VDD=5.0/3.0V, VSS=0V, fCLK=3.579545MHz, Ta=-20 to 70°C, CL=50pF  
Parameter  
#SCLK frequency  
Symbol  
Min.  
Typ.  
Max.  
1
Unit  
MHz  
nsec  
nsec  
nsec  
nsec  
µsec  
µsec  
µsec  
µsec  
µsec  
fSCLK  
#SCLK pulse width  
SDI setup time  
tWSCLK  
tSSDI  
tHSDI  
tDSDO  
tSMH  
tHMH  
tSML  
400  
250  
500  
SDI hold time  
SDO delay time  
250  
MODE0 High setup time  
MODE0 High hold time  
MODE0 Low setup time  
MODE0 Low hold time  
MODE0 Low pulse width  
1
1
1
1
1
tHML  
tMDW  
SDI  
tSSDI  
tHSDI  
fSCLK  
#SCLK  
tHMH  
tMDW  
tSMH  
MODE0  
tWSCLK  
tWSCLK  
Figure 5.9.1 Serial interface input timing  
SDO  
tDSDO  
tDSDO  
#SCLK  
MODE0  
tHML  
tSML  
Figure 5.9.2 Serial interface output timing  
24  
EPSON  
S1C05251 TECHNICAL MANUAL  
5
ELECTRICAL CHARACTERISTICS  
5.9.2 FSK Demodulated Data Read Mode  
The FSK signal fed to the INP and INN pins is demodulated into 8-bit asynchronous (start-stop) data. The  
demodulated data is then sampled by the internal 8-bit shift register. When the data has been stored in the shift  
register, the #IRQ pin changes to Low level, indicating that the data can be read by the host CPU.  
If the MODE pin is set to Low level and synchronoµs mode has been selected (MDR[0] = 1), the host CPU reads  
out the 8-bit data synchronously with the clock signal fed from the host CPU to the #SCLK pin. Figure 5.9.3 shows  
the timing at which this data is read. Each bit of the 8-bit data is output from the SDO pin synchronously with  
falling edges of the #SCLK clock signal, beginning with bit 0. The host CPU latches each bit into the internal logic  
at rising edges of the #SCLK clock signal.  
If the MODE pin is set to Low level and asynchronous mode has been set (MDR[0] = 0), the data is output from the  
SDO pin at a transfer rate of 1,200 baud. The clock signal from the host CPU is unnecessary. The host CPU latches  
the data synchronously with the start bit.  
417 µsec  
Receive data  
SDO  
Stop bit  
High on rising edge of stop bit  
BIT0 BIT1 BIT2 BIT3 BIT4 BIT5 BIT6 BIT7  
#SCLK  
#IRQ  
#IRQ changes to High level on the first rise of #SCLK.  
CAS/write mode  
#IRQLow  
FSK/read mode  
MODE0  
Figure 5.9.3 Data read timing in synchronous mode  
SDO  
#SCLK  
#IRQ  
start  
stop  
BIT0 BIT1 BIT2 BIT3 BIT4 BIT5 BIT6 BIT7  
CAS/write mode  
FSK/read mode  
MODE0  
Figure 5.9.4 Data read timing in asynchronous mode  
5.9.3 CAS Detection Circuit Control-Register Write Mode  
The host CPU can write 4-bit data to the internal registers through the SDI pin in order to set each control bit. The  
host CPU must temporarily pull the MODE pin to Low level to initialize the write control circuit before it can write  
data. Then, after releasing the MODE pin back to High level, the host CPU must be held at High level whilewriting  
data to the internal register. The data input to the SDI pin is sampled at rising edges of the clock signal fed from the  
host CPU to the #SCLK pin. The first four bits of data sent from the host CPU are the address A[3:0] of the internal  
register to be accessed. The subsequent four bits are the data bits D[3:0] to be written to the specified register. The  
data is input beginning with the LSB.  
First data  
Second data  
nth data  
SDI  
#SCLK  
MODE0  
A0 A1 A2 A3 D0 D1 D2 D3 A0 A1 A2  
D3  
Low level  
FSK/read mode  
CAS/write mode  
Figure 5.9.5 Data write timing  
S1C05251 TECHNICAL MANUAL  
EPSON  
25  
5
ELECTRICAL CHARACTERISTICS  
5.10 S1C05251 Timing Chart  
5.10.1 Bellcore On-Hook Data Transfer  
INP/INN  
#RDRC  
#IRQ  
1st RING  
FSK data transfer  
2nd RING  
Power-down due to timeout  
Power-down  
PDWN  
MODE0  
#DET  
after receiving last data  
FSK/read mode  
Ring detection  
Ring detection  
No carrier  
Carrier detection  
SDI  
Receive data  
Serial clock  
SDO  
#SCLK  
OSC4  
Figure 5.10.1 Bellcore on-hook data transfer timing chart  
5.10.2 Bellcore Off-Hook Data Transfer  
CPEOff-Hook  
CPEReceiver muted  
CPEReceiver muting released  
INP/INN  
SAS  
CAS  
ACK  
FSK data transfer  
#RDRC  
#IRQ  
DTMF D transmitted from CPE  
Placed in CAS mode  
after receiving last data  
Power-on state maintained when receiver  
is off-hook to detect CAS tone  
PDWN  
MODE0  
#DET  
SDI  
CAS/write mode  
FSK/read mode  
FSK mode must be set to prevent failure in carrier detection after sending ACK  
CAS tone detection  
Carrier detection  
Control data bits written  
Receive data  
SDO  
Serial clock  
Serial clock  
#SCLK  
OSC4  
Figure 5.10.2 Bellcore off-hook data transfer timing chart  
26  
EPSON  
S1C05251 TECHNICAL MANUAL  
5
ELECTRICAL CHARACTERISTICS  
5.10.3 BT Idle State CLI Service  
Line Reversal  
INP/INN  
#RDRC  
#IRQ  
Alert signal  
FSK data transfer  
1st RING  
Power-down due to timeout  
Ring detection  
Power-down after receiving last data  
PDWN  
MODE0  
CAS/write mode  
FSK/read mode  
Carrier detection  
Line Reversal detection CAS tone detection  
#DET  
SDI  
Control data bits written  
Receive data  
SDO  
Serial clock  
Serial clock  
#SCLK  
OSC4  
Figure 5.10.3 BT Idle State CLI service timing chart  
5.10.4 BT Loop State CLI Service  
TEOff-hook  
TEReceiver muted  
TEReceiver muting released  
INP/INN  
Alert signal  
ACK  
FSK data transfer  
#RDRC  
#IRQ  
DTMF D transmitted from TE  
Placed in CAS mode  
after receiving last data  
Power-on state maintained when  
receiver is off-hook to detect CAS tone  
PDWN  
MODE0  
#DET  
SDI  
CAS/write mode  
FSK/read mode  
FSK mode must be set to prevent failure in carrier detection after sending ACK  
CAS tone detection  
Carrier detection  
Control data bits written  
Receive data  
SDO  
Serial clock  
Serial clock  
#SCLK  
OSC4  
Figure 5.10.4 BT Loop State CLI service timing chart  
S1C05251 TECHNICAL MANUAL  
EPSON  
27  
5
ELECTRICAL CHARACTERISTICS  
5.11 External Wiring Diagram (Example)  
5.11.1 Example of Bellcore-Compatible Telephone Circuit  
TIP  
Protective  
network  
RING  
R3  
R5  
S1C05251  
VDD  
500 pF  
500 pF  
R1  
R2  
R4  
R7  
INP  
VDD  
1 µF  
INN  
BPOUT  
CDIN  
0.1 µF  
R
6
8
FB  
CASIN  
CASFB  
SDO  
0.2 µF 0.2 µF  
R
SDI  
Hook  
switch  
V
REF  
#SCLK  
#IRQ  
270 kΩ  
EXTREF  
HOOK  
Communication  
network  
#DET  
Receiver  
RDIN  
#PQUAL  
MODE1  
MODE0  
EXTCLK  
OSC4  
OSC3  
470 kΩ  
#RDRC  
#RDET  
PDWN  
#RESET  
33 kΩ  
0.2 µF 0.1 µF  
18 pF  
VSS  
18 pF  
Mute control  
DTMF tone  
3.579545 MHz  
Figure 5.11.1 Example of Bellcore-compatible telephone circuit  
Note: The above circuit diagram is merely an example, and does not guarantee the operation of the  
circuit.  
See Section 3.3, "Input Amp Circuit", for the R1 to R8 values.  
28  
EPSON  
S1C05251 TECHNICAL MANUAL  
5
ELECTRICAL CHARACTERISTICS  
5.11.2 Example of Bellcore-Compatible Auxiliary Circuit  
TIP  
Protective  
network  
RING  
R3  
R5  
S1C05251  
VDD  
500 pF  
500 pF  
R
1
2
INP  
VDD  
To telephone  
1 µF  
R
INN  
BPOUT  
CDIN  
0.1 µF  
R6  
FB  
R4  
CASIN  
CASFB  
SDO  
0.2 µF 0.2 µF  
SDI  
Hook  
switch  
V
REF  
#SCLK  
#IRQ  
270 kΩ  
EXTREF  
HOOK  
DTMF  
interface  
#DET  
RDIN  
#PQUAL  
MODE1  
MODE0  
EXTCLK  
OSC4  
OSC3  
470 kΩ  
#RDRC  
#RDET  
PDWN  
#RESET  
33 kΩ  
0.2 µF 0.1 µF  
18 pF  
Mute control  
DTMF tone  
VSS  
18 pF  
3.579545 MHz  
Figure 5.11.2 Example of Bellcore-compatible auxiliary circuit  
Note: The above circuit diagram is merely an example, and does not guarantee the operation of the  
circuit.  
See Section 3.3, "Input Amp Circuit", for the R1 to R6 values.  
S1C05251 TECHNICAL MANUAL  
EPSON  
29  
6
PACKAGE  
6 Package  
SOP2-28pin Plastic Package  
Unit: mm (inch)  
18.1max  
0.712max)  
(
±0.1  
17.8  
0.701  
+0.003  
–0.004  
(
)
28  
15  
0°  
10°  
1
14  
±0.05  
0.15  
+0.001  
–0.002  
(
0.006  
)
1±0.3  
0.039  
±0.1  
0.4  
+0.012  
1.27  
0.05  
+0.003  
–0.011  
(
)
–0.004  
(
)
(
0.016  
)
1.7  
0.067  
(
)
DIP-28pin Ceramic Package  
Unit: mm (inch)  
37.4max  
(1.472max)  
±0.1  
36.7  
(1.445  
+0.003  
0.004  
)
28  
15  
1
14  
1.5  
(0.059)  
0.46±0.1  
(0.018)  
2.54  
(0.1)  
15.24  
(0.6)  
0°  
15°  
30  
EPSON  
S1C05251 TECHNICAL MANUAL  
7
PAD LAYOUT  
7 Pad Layout  
7.1 Pad Layout Diagram  
8
7
6
5
4
3
2
1
28  
Die No.  
9
10  
27  
26  
11  
12  
Y
X
13  
14  
25  
24  
(0, 0)  
15  
23  
16 17  
18 19  
20  
21 22  
2.12 mm  
Chip thickness: 400 µm  
Pad opening: 100 µm  
7.2 Pad Coordinates  
(Unit: µm)  
Pad No.  
Pad name X coordinate Y coordinate  
Pad No.  
Pad name X coordinate Y coordinate  
1
2
SD0  
CDIN  
BPOUT  
VDD  
879.9  
463.7  
348.2  
26.1  
1116.3  
1116.3  
1116.3  
1116.3  
1116.3  
1116.3  
1116.3  
1116.3  
850.5  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
#RDET  
PDWN  
#RESET  
VSS  
-879.8  
-879.8  
-764.3  
-401.0  
-285.5  
440.3  
764.4  
879.9  
879.9  
879.9  
879.9  
879.9  
879.9  
879.9  
-823.8  
-1116.4  
-1116.4  
-1116.4  
-1116.4  
-1116.4  
-1116.4  
-1116.4  
-823.8  
-365.3  
-74.7  
3
4
5
INP  
-89.4  
OSC3  
6
INN  
-418.1  
-533.6  
-879.8  
-879.8  
-879.8  
-879.8  
-879.8  
-879.8  
-879.8  
OSC4  
7
FB  
EXTCLK  
MODE0  
MODE1  
#PQUAL  
#DET  
8
CASIN  
CASFB  
VREF  
9
10  
11  
12  
13  
14  
735.0  
EXTREF  
HOOK  
RDIN  
#RDRC  
406.4  
290.9  
#IRQ  
420.8  
-37.8  
#SCLK  
SDI  
536.3  
-328.4  
976.1  
S1C05251 TECHNICAL MANUAL  
EPSON  
31  
International Sales Operations  
AMERICA  
ASIA  
EPSON ELECTRONICS AMERICA, INC.  
EPSON (CHINA) CO., LTD.  
28F, Beijing Silver Tower 2# North RD DongSanHuan  
ChaoYang District, Beijing, CHINA  
- HEADQUARTERS -  
1960 E. Grand Avenue  
EI Segundo, CA 90245, U.S.A.  
Phone: 64106655  
Fax: 64107319  
Phone: +1-310-955-5300  
Fax: +1-310-955-5400  
SHANGHAI BRANCH  
4F, Bldg., 27, No. 69, Gui Jing Road  
Caohejing, Shanghai, CHINA  
- SALES OFFICES -  
West  
Phone: 21-6485-5552  
Fax: 21-6485-0775  
150 River Oaks Parkway  
San Jose, CA 95134, U.S.A.  
Phone: +1-408-922-0200  
EPSON HONG KONG LTD.  
20/F., Harbour Centre, 25 Harbour Road  
Wanchai, Hong Kong  
Phone: +852-2585-4600 Fax: +852-2827-4346  
Telex: 65542 EPSCO HX  
Fax: +1-408-922-0238  
Fax: +1-815-455-7633  
Central  
101 Virginia Street, Suite 290  
Crystal Lake, IL 60014, U.S.A.  
Phone: +1-815-455-7630  
EPSON TAIWAN TECHNOLOGY & TRADING LTD.  
10F, No. 287, Nanking East Road, Sec. 3  
Taipei  
Northeast  
301 Edgewater Place, Suite 120  
Phone: 02-2717-7360  
Fax: 02-2712-9164  
Wakefield, MA 01880, U.S.A.  
Telex: 24444 EPSONTB  
Phone: +1-781-246-3600  
Fax: +1-781-246-5443  
HSINCHU OFFICE  
13F-3, No. 295, Kuang-Fu Road, Sec. 2  
HsinChu 300  
Southeast  
3010 Royal Blvd. South, Suite 170  
Alpharetta, GA 30005, U.S.A.  
Phone: +1-877-EEA-0020 Fax: +1-770-777-2637  
Phone: 03-573-9900  
Fax: 03-573-9169  
EPSON SINGAPORE PTE., LTD.  
No. 1 Temasek Avenue, #36-00  
EUROPE  
Millenia Tower, SINGAPORE 039192  
Phone: +65-337-7911  
Fax: +65-334-2716  
EPSON EUROPE ELECTRONICS GmbH  
SEIKO EPSON CORPORATION KOREA OFFICE  
50F, KLI 63 Bldg., 60 Yoido-dong  
Youngdeungpo-Ku, Seoul, 150-763, KOREA  
- HEADQUARTERS -  
Riesstrasse 15  
80992 Munich, GERMANY  
Phone: 02-784-6027  
Fax: 02-767-3677  
Phone: +49-(0)89-14005-0  
Fax: +49-(0)89-14005-110  
SALES OFFICE  
Altstadtstrasse 176  
51379 Leverkusen, GERMANY  
Phone: +49-(0)2171-5045-0  
SEIKO EPSON CORPORATION  
ELECTRONIC DEVICES MARKETING DIVISION  
Fax: +49-(0)2171-5045-10  
Electronic Device Marketing Department  
IC Marketing & Engineering Group  
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN  
UK BRANCH OFFICE  
Unit 2.4, Doncastle House, Doncastle Road  
Bracknell, Berkshire RG12 8PE, ENGLAND  
Phone: +81-(0)42-587-5816  
Fax: +81-(0)42-587-5624  
Phone: +44-(0)1344-381700  
Fax: +44-(0)1344-381701  
ED International Marketing Department Europe & U.S.A.  
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN  
FRENCH BRANCH OFFICE  
1 Avenue de l' Atlantique, LP 915 Les Conquerants  
Phone: +81-(0)42-587-5812  
Fax: +81-(0)42-587-5564  
Z.A. de Courtaboeuf 2, F-91976 Les Ulis Cedex, FRANCE  
ED International Marketing Department Asia  
Phone: +33-(0)1-64862350  
Fax: +33-(0)1-64862355  
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN  
Phone: +81-(0)42-587-5814  
Fax: +81-(0)42-587-5110  
BARCELONA BRANCH OFFICE  
Barcelona Design Center  
Edificio Prima Sant Cugat  
Avda. Alcalde Barrils num. 64-68  
E-08190 Sant Cugat del Vallès, SPAIN  
Phone: +34-93-544-2490  
Fax: +34-93-544-2491  
S1C05251  
Technical Manual  
ELECTRONIC DEVICES MARKETING DIVISION  
EPSON Electronic Devices Website  
http://www.epson.co.jp/device/  
First issue July, 2000  
M
Printed February, 2001 in Japan  
A

相关型号:

S1C05M00

SIP REED RELAY
ETC

S1C12M00

SIP REED RELAY
ETC

S1C17001

CMS 16-bit Single chip Microcontroller
EPSON

S1C17001B00E100

RISC MICROCONTROLLER
SEIKO

S1C17001B00E10A

RISC MICROCONTROLLER
SEIKO

S1C17001B00E10B

RISC MICROCONTROLLER
SEIKO

S1C17001B00E10C

RISC MICROCONTROLLER
SEIKO

S1C17001B00E10D

RISC MICROCONTROLLER
SEIKO

S1C17001B00E10E

RISC MICROCONTROLLER
SEIKO

S1C17001B00E10G

RISC MICROCONTROLLER
SEIKO

S1C17001B00E10H

RISC Microcontroller, CMOS
SEIKO

S1C17001B00E10K

RISC Microcontroller, CMOS
SEIKO