S1D10606T00 [SEIKO]

LIQUID CRYSTAL DISPLAY DRIVER, UUC, TCP;
S1D10606T00
型号: S1D10606T00
厂家: SEIKO EPSON CORPORATION    SEIKO EPSON CORPORATION
描述:

LIQUID CRYSTAL DISPLAY DRIVER, UUC, TCP

驱动 接口集成电路
文件: 总73页 (文件大小:510K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MF1323-04  
S1D10605 Series  
Rev.1.0a  
Contents  
1. DESCRIPTION .................................................................................................................................................. 1  
2. FEATURES........................................................................................................................................................ 1  
3. BLOCK DIAGRAM ............................................................................................................................................. 3  
4. PAD LAYOUT .................................................................................................................................................... 4  
5. PAD CENTER COORDINATES ........................................................................................................................ 5  
6. PIN DESCRIPTIONS ....................................................................................................................................... 11  
7. FUNCTION DESCRIPTION ............................................................................................................................. 15  
8. COMMAND DESCRIPTION ............................................................................................................................ 37  
9. COMMAND SETTING ..................................................................................................................................... 46  
10. ABSOLUTE MAXIMUM RATINGS .................................................................................................................. 51  
11. DC CHARACTERISTICS................................................................................................................................. 52  
12. THE MPU INTERFACE (REFERENCE EXAMPLES) ..................................................................................... 68  
13. CONNECTIONS BETWEEN LCD DRIVERS (REFERENCE EXAMPLE)....................................................... 69  
14. CONNECTIONS BETWEEN LCD DRIVERS (REFERENCE EXAMPLES) .................................................... 70  
15. CAUTIONS ...................................................................................................................................................... 71  
– i –  
Rev.1.0a  
S1D10605 Series  
• High-speed 8-bit MPU interface (The chip can be  
connected directly to the both the 80x86 series MPUs  
and the 6800 series MPUs)  
/Serial interfaces are supported.  
• Abundant command functions  
1. DESCRIPTION  
The S1D10605 Series is a series of single-chip dot  
matrix liquid crystal display drivers that can be connected  
directly to a microprocessor bus. 8-bit parallel or serial  
display data sent from the microprocessor is stored in  
the internal display data RAM and the chip generates a  
liquid crystal drive signal independent of the  
microprocessor. Because the chips in the S1D10605  
Series contain 65 × 132 bits of display data RAM and  
there is a 1-to-1 correspondence between the liquid  
crystal panel pixels and the internal RAM bits, these  
chips enable displays with a high degree of freedom.  
The S1D10606 Series chips contain 65 common output  
circuits and 132 segment output circuits, so that a single  
chip can drive a 65 × 132 dot display (capable of  
displaying 8 columns × 4 rows of a 16 × 16 dot kanji  
font). The S1D10607 Series chips contain 33 common  
output circuits and 132 segment output circuits, so that  
a single chip can drive 33 × 132 dot display (capable of  
displaying 8 columns × 2 rows of 16 × 16 dot kanji  
fonts). Thanks to the built-in 55 common output circuits  
and 132 segment output circuits, the S1D10608 Series  
is capable of displaying 55 × 132 dots (11 columns × 4  
lines using 11 × 12 dots Kanji font) with a single chip.  
The S1D10609 Series chips contain 53 common output  
circuits and 132 segment output circuits, so that a single  
chip can drive 53 × 132 dot display (capable of displaying  
11 columns × 4 rows of 11 × 12 dot kanji fonts).  
Moreover, the capacity of the display can be extended  
through the use of master/slave structures between  
chips.  
Display data Read/Write, display ON/OFF, Normal/  
Reverse display mode, page address set, display start  
line set, column address set, status read, display all  
points ON/OFF, LCD bias set, electronic volume,  
read/modify/write, segment driver direction select,  
power saver, static indicator, common output status  
select, V5 voltage regulation internal resistor ratio  
set.  
• Static drive circuit equipped internally for indicators.  
(1 system, with variable flashing speed.)  
• Low-power liquid crystal display power supply circuit  
equipped internally.  
Booster circuit (with Boost ratios of Double/Triple/  
Quad, where the step-up voltage reference power  
supply can be input externally)  
High-accuracy voltage adjustment circuit (Thermal  
gradient –0.05%/°C)  
V5 voltage regulator resistors equipped internally,  
V1 to V4 voltage divider resistors equipped internally,  
electronic volume function equipped internally,  
voltage follower.  
• CR oscillator circuit equipped internally (external  
clock can also be input)  
• Extremely low power consumption  
Operating power when the built-in power supply is  
used (an example)  
S1D10605D00B  
S1D10606D00B  
S1D10607D00B  
TBD µA (VDD – VSS = VDD –  
VSS2 = 3.0 V, Quad voltage, V5  
– VDD = – 11.0 V)  
TBD µA (VDD – VSS = VDD –  
VSS2 = 3.0 V, Triple voltage, V5  
– VDD = – 8.0 V)  
TBD µA (VDD – VSS = VDD –  
VSS2 = 3.0 V, Triple voltage, V5  
– VDD = – 8.0 V)  
*
*
*
The chips are able to minimize power consumption  
because no external operating clock is necessary for the  
display data RAM read/write operation. Furthermore,  
because each chip is equipped internally with a low-  
power liquid crystal driver power supply, resistors for  
liquid crystal driver power voltage adjustment and a  
display clock CR oscillator circuit, the S1D10605 Series  
chips can be used to create the lowest power display  
system with the fewest components for high-  
performance portable devices.  
S1D10608D00B  
/S1D10609D00B VSS2  
TBD µA (VDD – VSS = VDD –  
*
*
= 3.0 V, Triple voltage, V5 –  
2. FEATURES  
• Direct display of RAM data through the display data  
RAM.  
VDD = – 8.0 V)  
Conditions: When all displays are in white and the  
normal mode is selected (see page 60 *12 for details  
of the conditions).  
RAM bit data: “1” Display on  
“0” Display off  
• Power supply  
(during normal display)  
• RAM capacity  
65 × 132 = 8580 bits  
• Display driver circuits  
Operable on the low 1.8 voltage  
Logic power supply VDD – VSS = 1.8 V to –3.6 V  
Boost reference voltage: VDD – VSS2 = 1.8 V to  
–4.0 V  
S1D10605  
S1D10606  
S1D10607  
S1D10608  
S1D10609  
: 65 common output and 132  
segment outputs  
: 49 common output and 132  
segment outputs  
: 33 common outputs and 132  
segment outputs  
: 55 common outputs and 132  
segment outputs  
Liquid crystal drive power supply: VDD – V5 = –4.5  
V to –14.0 V  
• Wide range of operating temperatures: –40 to 85°C  
• CMOS process  
• Shipping forms include bare chip and TCP.  
• These chips not designed for resistance to light or  
resistance to radiation.  
*****  
*****  
*****  
*****  
*****  
: 53 common outputs and 132  
segment outputs  
Rev.1.0a  
EPSON  
1
S1D10605 Series  
Series Specifications  
Product  
Name  
Duty  
Bias  
SED Dr COM Dr VREG Temperature Shipping  
Chip  
Gradient  
Forms Thickness  
S1D10605D00B  
Bare Chip  
TCP  
625 µm  
*
1/65  
1/49  
1/9, 1/7  
1/8, 1/6  
65  
49  
S1D10605T00**  
** S1D10606D00B  
Bare Chip  
TCP  
625 µm  
*
** S1D10606T00**  
** S1D10607D00B  
132  
–0.05%/°C  
Bare Chip  
TCP  
625 µm  
*
1/33  
1/55  
1/53  
1/6, 1/5  
1/8, 1/6  
1/8, 1/6  
33  
55  
53  
** S1D10607T00**  
** S1D10608D00B  
Bare Chip  
Bare Chip  
TCP  
625 µm  
625 µm  
*
** S1D10609D00B  
*
** S1D10609T00**  
* * : Being Planned.  
2
EPSON  
Rev.1.0a  
S1D10605 Series  
3. BLOCK DIAGRAM  
Example: S1D10605*****  
• • • • • • • • • • • • • • • • • • • • • • • • •  
• • • • • • • • • •  
VSS  
VDD  
V1  
V2  
SEG Drivers  
COM Drivers  
V3  
V4  
V5  
COM output status  
select circuit  
CAP1+  
CAP1–  
CAP2+  
CAP2–  
CAP3+  
Display data latch circuit  
FRS  
FR  
CL  
Power  
supply  
circuit  
Display data RAM  
132 x 65  
VOUT  
DOF  
M/S  
VSS2  
VR  
VRS  
IRS  
HPM  
Column address circuit  
CLS  
Bus holder  
Command decoder  
MPU interface  
Status  
Rev.1.0a  
EPSON  
3
S1D10605 Series  
4. PAD LAYOUT  
99  
1
100  
309  
275  
S1D10605 Series  
(0, 0)  
Die No.  
134  
135  
274  
Item  
Size  
Unit  
X
Y
Chip Size  
7.93 × 2.25  
0.625  
50 (Min.)  
55 × 76  
mm  
Chip Thickness  
Bump Pitch  
Bump Size  
PAD No. 1 to 24  
PAD No. 25 to 82  
PAD No. 83 to 99  
PAD No. 100 to 134  
PAD No. 135 to 274  
PAD No. 275 to 309  
45 × 76  
55 × 76  
136 × 33  
33 × 126  
136 × 33  
17 (Typ.)  
–3590 × 980  
78 • 33  
Bump Height  
Alignment Mark  
Left Upper  
µm  
Alignment Coordinates  
Outside Diameter •  
Inside Diameter  
Alignment Mark  
Left Lower  
Alignment Coordinates  
Outside Diameter •  
Inside Diameter  
–3690 × –940  
78 • 33  
Alignment Mark  
Right Upper  
Alignment Mark  
Right Lower  
Alignment Coordinates  
Outside Diameter  
Alignment Coordinates  
Outside Diameter  
3635 × 980  
78  
3585 × –940  
78  
4
EPSON  
Rev.1.0a  
S1D10605 Series  
5. PAD CENTER COORDINATES  
Units: µm  
PAD  
PIN Name  
X
Y
X BUMP Y BUMP  
No. S1D10605 S1D10606 S1D10607 S1D10608 S1D10609  
Size  
Size  
1
2
3
4
5
6
7
8
DUMMY1 DUMMY1 DUMMY1 DUMMY1 DUMMY1  
3443  
3360  
3277  
3194  
3111  
3029  
2946  
2863  
2780  
2697  
2615  
2532  
2449  
2366  
2283  
2201  
2118  
2035  
1952  
1869  
1787  
1704  
1621  
1538  
1469  
1408  
1346  
1284  
1223  
1161  
1099  
1038  
976  
914  
853  
791  
729  
668  
606  
544  
483  
421  
359  
298  
236  
175  
113  
51  
–10  
983  
55  
76  
FRS  
FR  
FRS  
FR  
FRS  
FR  
FRS  
FR  
FRS  
FR  
CL  
CL  
CL  
CL  
CL  
DOF  
TEST0  
VSS  
DOF  
TEST0  
VSS  
DOF  
TEST0  
VSS  
DOF  
TEST0  
VSS  
DOF  
TEST0  
VSS  
CS1  
CS2  
VDD  
RES  
A0  
CS1  
CS2  
VDD  
RES  
A0  
CS1  
CS2  
VDD  
RES  
A0  
CS1  
CS2  
VDD  
RES  
A0  
CS1  
CS2  
VDD  
RES  
A0  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
VSS  
VSS  
VSS  
VSS  
VSS  
WR,R/W  
RD,E  
VDD  
WR,R/W  
RD,E  
VDD  
WR,R/W  
RD,E  
VDD  
D0  
WR,R/W  
RD,E  
VDD  
WR,R/W  
RD,E  
VDD  
D0  
D0  
D0  
D0  
D1  
D1  
D1  
D1  
D1  
D2  
D2  
D2  
D2  
D2  
D3  
D3  
D3  
D3  
D3  
D4  
D4  
D4  
D4  
D4  
D5  
D5  
D5  
D5  
D5  
D6,SCL  
D6,SCL  
D6,SCL  
D6,SCL  
D6,SCL  
D7,SI  
D7,SI  
D7,SI  
D7,SI  
D7,SI  
DUMMY2 DUMMY2 DUMMY2 DUMMY2 DUMMY2  
45  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS2  
VSS2  
VSS2  
VSS2  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS2  
VSS2  
VSS2  
VSS2  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS2  
VSS2  
VSS2  
VSS2  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS2  
VSS2  
VSS2  
VSS2  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS2  
VSS2  
VSS2  
VSS2  
DUMMY3 DUMMY3 DUMMY3 DUMMY3 DUMMY3  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
CAP3–  
CAP3–  
CAP3–  
CAP3–  
CAP3–  
CAP3–  
CAP3–  
CAP3–  
CAP3–  
CAP3–  
DUMMY4 DUMMY4 DUMMY4 DUMMY4 DUMMY4  
CAP1+  
CAP1+  
CAP1–  
CAP1–  
CAP2–  
CAP2–  
CAP2+  
CAP2+  
VSS  
CAP1+  
CAP1+  
CAP1–  
CAP1–  
CAP2–  
CAP2–  
CAP2+  
CAP2+  
VSS  
CAP1+  
CAP1+  
CAP1–  
CAP1–  
CAP2–  
CAP2–  
CAP2+  
CAP2+  
VSS  
CAP1+  
CAP1+  
CAP1–  
CAP1–  
CAP2–  
CAP2–  
CAP2+  
CAP2+  
VSS  
CAP1+  
CAP1+  
CAP1–  
CAP1–  
CAP2–  
CAP2–  
CAP2+  
CAP2+  
VSS  
–72  
–134  
–195  
–257  
–319  
VSS  
VSS  
VSS  
VSS  
VSS  
VRS  
VRS  
VRS  
VRS  
VRS  
VRS  
VRS  
VRS  
VRS  
VRS  
Rev.1.0a  
EPSON  
5
S1D10605 Series  
Unit : µm  
PAD  
PIN Name  
X
Y
X BUMP Y BUMP  
No. S1D10605 S1D10606 S1D10607 S1D10608 S1D10609  
Size  
Size  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
VDD  
VDD  
V1  
V1  
V2  
VDD  
VDD  
V1  
V1  
V2  
VDD  
VDD  
V1  
V1  
V2  
VDD  
VDD  
V1  
V1  
V2  
VDD  
VDD  
V1  
V1  
V2  
–380  
–442  
–504  
–565  
–627  
–689  
–750  
–812  
–874  
983  
45  
76  
V2  
V2  
V2  
V2  
V2  
DUMMY5 DUMMY5 DUMMY5 DUMMY5 DUMMY5  
V3  
V3  
V4  
V4  
V5  
V5  
V3  
V3  
V4  
V4  
V5  
V5  
V3  
V3  
V4  
V4  
V5  
V5  
V3  
V3  
V4  
V4  
V5  
V5  
V3  
V3  
V4  
V4  
V5  
V5  
–935  
–997  
–1058  
–1120  
–1182  
–1243  
–1305  
–1367  
–1428  
–1490  
–1552  
–1613  
–1675  
–1737  
–1798  
–1860  
–1922  
–1983  
–2045  
–2118  
–2201  
–2283  
–2366  
–2449  
–2532  
–2615  
–2697  
–2780  
–2863  
–2946  
–3029  
–3111  
–3194  
–3277  
–3360  
–3443  
–3794  
DUMMY6 DUMMY6 DUMMY6 DUMMY6 DUMMY6  
VR  
VR  
VDD  
VDD  
TEST1  
TEST1  
TEST2  
TEST2  
VR  
VR  
VDD  
VDD  
TEST1  
TEST1  
TEST2  
TEST2  
VR  
VR  
VDD  
VDD  
TEST1  
TEST1  
TEST2  
TEST2  
VR  
VR  
VDD  
VDD  
TEST1  
TEST1  
TEST2  
TEST2  
VR  
VR  
VDD  
VDD  
TEST1  
TEST1  
TEST2  
TEST2  
DUMMY7 DUMMY7 DUMMY7 DUMMY7 DUMMY7  
TEST3  
TEST3  
TEST4  
TEST4  
TEST3  
TEST3  
TEST4  
TEST4  
TEST3  
TEST3  
TEST4  
TEST4  
TEST3  
TEST3  
TEST4  
TEST4  
TEST3  
TEST3  
TEST4  
TEST4  
DUMMY8 DUMMY8 DUMMY8 DUMMY8 DUMMY8  
VDD  
M/S  
CLS  
VSS  
C86  
P/S  
VDD  
HPM  
VSS  
IRS  
VDD  
M/S  
CLS  
VSS  
C86  
P/S  
VDD  
HPM  
VSS  
IRS  
VDD  
M/S  
CLS  
VSS  
C86  
P/S  
VDD  
HPM  
VSS  
IRS  
VDD  
M/S  
CLS  
VSS  
C86  
P/S  
VDD  
HPM  
VSS  
IRS  
VDD  
M/S  
CLS  
VSS  
C86  
P/S  
VDD  
HPM  
VSS  
IRS  
55  
VDD  
VDD  
VDD  
VDD  
VDD  
TEST5  
TEST6  
TEST7  
TEST8  
TEST9  
TESTA  
TEST5  
TEST6  
TEST7  
TEST8  
TEST9  
TESTA  
TEST5  
TEST6  
TEST7  
TEST8  
TEST9  
TESTA  
TEST5  
TEST6  
TEST7  
TEST8  
TEST9  
TESTA  
TEST5  
TEST6  
TEST7  
TEST8  
TEST9  
TESTA  
DUMMY9 DUMMY9 DUMMY9 DUMMY9 DUMMY9  
865  
815  
765  
715  
665  
615  
565  
515  
465  
136  
33  
COM31  
COM30  
COM29  
COM28  
COM27  
COM26  
COM25  
COM24  
DUMMY10  
DUMMY11  
COM23  
DUMY12  
COM22  
DUMMY13  
COM21  
COM20  
COM15  
COM15  
COM14  
COM14  
COM13  
COM13  
COM12  
COM12  
DUMMY10 DUMMY10  
COM26 COM25  
DUMMY11 DUMMY11  
COM25  
COM24  
COM23  
COM22  
COM21  
COM24  
DUMMY12  
COM23  
COM22  
COM21  
6
EPSON  
Rev.1.0a  
S1D10605 Series  
Units : µm  
PAD  
PIN Name  
X
Y
X BUMP Y BUMP  
No. S1D10605 S1D10606 S1D10607 S1D10608 S1D10609  
Size  
Size  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
COM23  
COM22  
COM21  
COM20  
COM19  
COM18  
COM17  
COM16  
COM15  
COM14  
COM13  
COM12  
COM11  
COM10  
COM9  
COM8  
COM7  
COM6  
COM5  
COM4  
COM3  
COM2  
COM1  
COM19  
COM18  
COM17  
COM16  
COM15  
COM14  
COM13  
COM12  
COM11  
COM10  
COM9  
COM8  
COM7  
COM6  
COM5  
COM4  
COM3  
COM2  
COM1  
COM11  
COM11  
COM10  
COM10  
COM9  
COM9  
COM8  
COM8  
COM7  
COM7  
COM6  
COM6  
COM5  
COM5  
COM4  
COM4  
COM3  
COM3  
COM2  
COM2  
COM1  
COM1  
COM0  
COM0  
COMS  
COM20  
COM19  
COM18  
COM17  
COM16  
COM15  
COM14  
COM13  
COM12  
COM11  
COM10  
COM9  
COM8  
COM7  
COM6  
COM5  
COM4  
COM3  
COM2  
COM1  
COM20  
COM19  
COM18  
COM17  
COM16  
COM15  
COM14  
COM13  
COM12  
COM11  
COM10  
COM9  
COM8  
COM7  
COM6  
COM5  
COM4  
COM3  
COM2  
COM1  
–3794  
415  
365  
314  
264  
214  
164  
114  
64  
14  
136  
33  
–36  
–86  
–136  
–186  
–236  
–286  
–336  
–386  
–436  
–486  
–536  
–586  
–636  
–686  
–736  
–786  
–836  
–958  
DUMMY14  
COM0  
DUMMY15  
COMS  
DUMMY16  
DUMMY17  
DUMMY12 DUMMY13  
COM0 COM0  
DUMMY13 DUMMY14  
COMS COMS  
DUMMY14 DUMMY15  
COM0  
COMS  
134 DUMMY10 DUMMY18 DUMMY10 DUMMY15 DUMMY16  
135 DUMMY11 DUMMY19 DUMMY11 DUMMY16 DUMMY17  
136 DUMMY12 DUMMY20 DUMMY12 DUMMY17 DUMMY18  
137 DUMMY13 DUMMY21 DUMMY13 DUMMY18 DUMMY19  
138 DUMMY14 DUMMY22 DUMMY14 DUMMY19 DUMMY20  
–3478  
–3428  
–3378  
–3328  
–3278  
–3228  
–3178  
–3128  
–3077  
–3027  
–2977  
–2927  
–2877  
–2827  
–2777  
–2727  
–2677  
–2627  
–2577  
–2527  
–2477  
–2427  
–2377  
–2327  
–2277  
–2227  
–2177  
–2127  
33  
126  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
SEG0  
SEG1  
SEG2  
SEG3  
SEG4  
SEG5  
SEG6  
SEG7  
SEG8  
SEG0  
SEG1  
SEG2  
SEG3  
SEG4  
SEG5  
SEG6  
SEG7  
SEG8  
SEG0  
SEG1  
SEG2  
SEG3  
SEG4  
SEG5  
SEG6  
SEG7  
SEG8  
SEG0  
SEG1  
SEG2  
SEG3  
SEG4  
SEG5  
SEG6  
SEG7  
SEG8  
SEG0  
SEG1  
SEG2  
SEG3  
SEG4  
SEG5  
SEG6  
SEG7  
SEG8  
SEG9  
SEG9  
SEG9  
SEG9  
SEG9  
SEG10  
SEG11  
SEG12  
SEG13  
SEG14  
SEG15  
SEG16  
SEG17  
SEG18  
SEG19  
SEG20  
SEG21  
SEG22  
SEG23  
SEG10  
SEG11  
SEG12  
SEG13  
SEG14  
SEG15  
SEG16  
SEG17  
SEG18  
SEG19  
SEG20  
SEG21  
SEG22  
SEG23  
SEG10  
SEG11  
SEG12  
SEG13  
SEG14  
SEG15  
SEG16  
SEG17  
SEG18  
SEG19  
SEG20  
SEG21  
SEG22  
SEG23  
SEG10  
SEG11  
SEG12  
SEG13  
SEG14  
SEG15  
SEG16  
SEG17  
SEG18  
SEG19  
SEG20  
SEG21  
SEG22  
SEG23  
SEG10  
SEG11  
SEG12  
SEG13  
SEG14  
SEG15  
SEG16  
SEG17  
SEG18  
SEG19  
SEG20  
SEG21  
SEG22  
SEG23  
Rev.1.0a  
EPSON  
7
S1D10605 Series  
Units : µm  
PAD  
PIN Name  
X
Y
X BUMP Y BUMP  
No. S1D10605 S1D10606 S1D10607 S1D10608 S1D10609  
Size  
Size  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
215  
216  
SEG24  
SEG25  
SEG26  
SEG27  
SEG28  
SEG29  
SEG30  
SEG31  
SEG32  
SEG33  
SEG34  
SEG35  
SEG36  
SEG37  
SEG38  
SEG39  
SEG40  
SEG41  
SEG42  
SEG43  
SEG44  
SEG45  
SEG46  
SEG47  
SEG48  
SEG49  
SEG50  
SEG51  
SEG52  
SEG53  
SEG54  
SEG55  
SEG56  
SEG57  
SEG58  
SEG59  
SEG60  
SEG61  
SEG62  
SEG63  
SEG64  
SEG65  
SEG66  
SEG67  
SEG68  
SEG69  
SEG70  
SEG71  
SEG72  
SEG73  
SEG74  
SEG75  
SEG76  
SEG77  
SEG24  
SEG25  
SEG26  
SEG27  
SEG28  
SEG29  
SEG30  
SEG31  
SEG32  
SEG33  
SEG34  
SEG35  
SEG36  
SEG37  
SEG38  
SEG39  
SEG40  
SEG41  
SEG42  
SEG43  
SEG44  
SEG45  
SEG46  
SEG47  
SEG48  
SEG49  
SEG50  
SEG51  
SEG52  
SEG53  
SEG54  
SEG55  
SEG56  
SEG57  
SEG58  
SEG59  
SEG60  
SEG61  
SEG62  
SEG63  
SEG64  
SEG65  
SEG66  
SEG67  
SEG68  
SEG69  
SEG70  
SEG71  
SEG72  
SEG73  
SEG74  
SEG75  
SEG76  
SEG77  
SEG24  
SEG25  
SEG26  
SEG27  
SEG28  
SEG29  
SEG30  
SEG31  
SEG32  
SEG33  
SEG34  
SEG35  
SEG36  
SEG37  
SEG38  
SEG39  
SEG40  
SEG41  
SEG42  
SEG43  
SEG44  
SEG45  
SEG46  
SEG47  
SEG48  
SEG49  
SEG50  
SEG51  
SEG52  
SEG53  
SEG54  
SEG55  
SEG56  
SEG57  
SEG58  
SEG59  
SEG60  
SEG61  
SEG62  
SEG63  
SEG64  
SEG65  
SEG66  
SEG67  
SEG68  
SEG69  
SEG70  
SEG71  
SEG72  
SEG73  
SEG74  
SEG75  
SEG76  
SEG77  
SEG24  
SEG25  
SEG26  
SEG27  
SEG28  
SEG29  
SEG30  
SEG31  
SEG32  
SEG33  
SEG34  
SEG35  
SEG36  
SEG37  
SEG38  
SEG39  
SEG40  
SEG41  
SEG42  
SEG43  
SEG44  
SEG45  
SEG46  
SEG47  
SEG48  
SEG49  
SEG50  
SEG51  
SEG52  
SEG53  
SEG54  
SEG55  
SEG56  
SEG57  
SEG58  
SEG59  
SEG60  
SEG61  
SEG62  
SEG63  
SEG64  
SEG65  
SEG66  
SEG67  
SEG68  
SEG69  
SEG70  
SEG71  
SEG72  
SEG73  
SEG74  
SEG75  
SEG76  
SEG77  
SEG24  
SEG25  
SEG26  
SEG27  
SEG28  
SEG29  
SEG30  
SEG31  
SEG32  
SEG33  
SEG34  
SEG35  
SEG36  
SEG37  
SEG38  
SEG39  
SEG40  
SEG41  
SEG42  
SEG43  
SEG44  
SEG45  
SEG46  
SEG47  
SEG48  
SEG49  
SEG50  
SEG51  
SEG52  
SEG53  
SEG54  
SEG55  
SEG56  
SEG57  
SEG58  
SEG59  
SEG60  
SEG61  
SEG62  
SEG63  
SEG64  
SEG65  
SEG66  
SEG67  
SEG68  
SEG69  
SEG70  
SEG71  
SEG72  
SEG73  
SEG74  
SEG75  
SEG76  
SEG77  
–2077  
–2027  
–1977  
–1927  
–1877  
–1826  
–1776  
–1726  
–1676  
–1626  
–1576  
–1526  
–1476  
–1426  
–1376  
–1326  
–1276  
–1226  
–1176  
–1126  
–1076  
–1026  
–976  
–926  
–876  
–826  
–776  
–726  
–676  
–626  
–575  
–525  
–475  
–425  
–375  
–325  
–275  
–225  
–175  
–125  
–75  
–958  
33  
126  
–25  
25  
75  
125  
175  
225  
275  
325  
375  
425  
475  
525  
575  
8
EPSON  
Rev.1.0a  
S1D10605 Series  
Units : µm  
PAD  
PIN Name  
X
Y
X BUMP Y BUMP  
No. S1D10605 S1D10606 S1D10607 S1D10608 S1D10609  
Size  
Size  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
241  
242  
243  
244  
245  
246  
247  
248  
249  
250  
251  
252  
253  
254  
255  
256  
257  
258  
259  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
SEG78  
SEG79  
SEG80  
SEG81  
SEG82  
SEG83  
SEG84  
SEG85  
SEG86  
SEG87  
SEG88  
SEG89  
SEG90  
SEG91  
SEG92  
SEG93  
SEG94  
SEG78  
SEG79  
SEG80  
SEG81  
SEG82  
SEG83  
SEG84  
SEG85  
SEG86  
SEG87  
SEG88  
SEG89  
SEG90  
SEG91  
SEG92  
SEG93  
SEG94  
SEG78  
SEG79  
SEG80  
SEG81  
SEG82  
SEG83  
SEG84  
SEG85  
SEG86  
SEG87  
SEG88  
SEG89  
SEG90  
SEG91  
SEG92  
SEG93  
SEG94  
SEG78  
SEG79  
SEG80  
SEG81  
SEG82  
SEG83  
SEG84  
SEG85  
SEG86  
SEG87  
SEG88  
SEG89  
SEG90  
SEG91  
SEG92  
SEG93  
SEG94  
SEG78  
SEG79  
SEG80  
SEG81  
SEG82  
SEG83  
SEG84  
SEG85  
SEG86  
SEG87  
SEG88  
SEG89  
SEG90  
SEG91  
SEG92  
SEG93  
SEG94  
626  
676  
726  
776  
826  
876  
926  
976  
–958  
33  
126  
1026  
1076  
1126  
1176  
1226  
1276  
1326  
1376  
1426  
1476  
1526  
1576  
1626  
1676  
1726  
1776  
1826  
1877  
1927  
1977  
2027  
2077  
2127  
2177  
2227  
2277  
2327  
2377  
2427  
2477  
2527  
2577  
2627  
2677  
2727  
2777  
2827  
2877  
2927  
2977  
3027  
3077  
3128  
3178  
3228  
3278  
SEG95  
SEG96  
SEG97  
SEG98  
SEG95  
SEG96  
SEG97  
SEG98  
SEG95  
SEG96  
SEG97  
SEG98  
SEG95  
SEG96  
SEG97  
SEG98  
SEG95  
SEG96  
SEG97  
SEG98  
SEG99  
SEG99  
SEG99  
SEG99  
SEG99  
SEG100  
SEG101  
SEG102  
SEG103  
SEG104  
SEG105  
SEG106  
SEG107  
SEG108  
SEG109  
SEG110  
SEG111  
SEG112  
SEG113  
SEG114  
SEG115  
SEG116  
SEG117  
SEG118  
SEG119  
SEG120  
SEG121  
SEG122  
SEG123  
SEG124  
SEG125  
SEG126  
SEG127  
SEG128  
SEG129  
SEG130  
SEG131  
SEG100  
SEG101  
SEG102  
SEG103  
SEG104  
SEG105  
SEG106  
SEG107  
SEG108  
SEG109  
SEG110  
SEG111  
SEG112  
SEG113  
SEG114  
SEG115  
SEG116  
SEG117  
SEG118  
SEG119  
SEG120  
SEG121  
SEG122  
SEG123  
SEG124  
SEG125  
SEG126  
SEG127  
SEG128  
SEG129  
SEG130  
SEG131  
SEG100  
SEG101  
SEG102  
SEG103  
SEG104  
SEG105  
SEG106  
SEG107  
SEG108  
SEG109  
SEG110  
SEG111  
SEG112  
SEG113  
SEG114  
SEG115  
SEG116  
SEG117  
SEG118  
SEG119  
SEG120  
SEG121  
SEG122  
SEG123  
SEG124  
SEG125  
SEG126  
SEG127  
SEG128  
SEG129  
SEG130  
SEG131  
SEG100  
SEG101  
SEG102  
SEG103  
SEG104  
SEG105  
SEG106  
SEG107  
SEG108  
SEG109  
SEG110  
SEG111  
SEG112  
SEG113  
SEG114  
SEG115  
SEG116  
SEG117  
SEG118  
SEG119  
SEG120  
SEG121  
SEG122  
SEG123  
SEG124  
SEG125  
SEG126  
SEG127  
SEG128  
SEG129  
SEG130  
SEG131  
SEG100  
SEG101  
SEG102  
SEG103  
SEG104  
SEG105  
SEG106  
SEG107  
SEG108  
SEG109  
SEG110  
SEG111  
SEG112  
SEG113  
SEG114  
SEG115  
SEG116  
SEG117  
SEG118  
SEG119  
SEG120  
SEG121  
SEG122  
SEG123  
SEG124  
SEG125  
SEG126  
SEG127  
SEG128  
SEG129  
SEG130  
SEG131  
Rev.1.0a  
EPSON  
9
S1D10605 Series  
Units : µm  
PAD  
PIN Name  
X
Y
X BUMP Y BUMP  
No. S1D10605 S1D10606 S1D10607 S1D10608 S1D10609  
271 DUMMY15 DUMMY23 DUMMY15 DUMMY20 DUMMY21  
272 DUMMY16 DUMMY24 DUMMY16 DUMMY21 DUMMY22  
273 DUMMY17 DUMMY25 DUMMY17 DUMMY22 DUMMY23  
274 DUMMY18 DUMMY26 DUMMY18 DUMMY23 DUMMY24  
275 DUMMY19 DUMMY27 DUMMY19 DUMMY24 DUMMY25  
Size  
33  
Size  
126  
3328  
3378  
3428  
3478  
3794  
–958  
–836  
–786  
–736  
–686  
–636  
–586  
–536  
–486  
–436  
–386  
–336  
–286  
–236  
–186  
–136  
–86  
–36  
14  
64  
114  
164  
214  
264  
314  
136  
33  
276  
277  
278  
279  
280  
281  
282  
283  
284  
285  
286  
287  
288  
289  
290  
291  
292  
293  
294  
295  
296  
297  
298  
299  
300  
301  
302  
303  
304  
305  
306  
307  
308  
COM32  
COM33  
COM34  
COM35  
COM36  
COM37  
COM38  
COM39  
COM40  
COM41  
COM42  
COM43  
COM44  
COM45  
COM46  
COM47  
COM48  
COM49  
COM50  
COM51  
COM52  
COM53  
COM54  
COM55  
COM56  
COM57  
COM58  
COM59  
COM60  
COM61  
COM62  
COM63  
COMS  
DUMMY28 COM16  
DUMMY29 COM16  
DUMMY25 DUMMY26  
COM27 COM26  
DUMMY26 DUMMY27  
COM28 COM27  
DUMMY27 DUMMY28  
COM24  
DUMMY30 COM17  
COM25 COM18  
DUMMY31 COM18  
COM17  
COM29  
COM30  
COM31  
COM32  
COM33  
COM34  
COM35  
COM36  
COM37  
COM38  
COM39  
COM40  
COM41  
COM42  
COM43  
COM44  
COM45  
COM46  
COM47  
COM48  
COM49  
COM50  
COM51  
COM52  
COM53  
COM28  
COM29  
COM30  
COM31  
COM32  
COM33  
COM34  
COM35  
COM36  
COM37  
COM38  
COM39  
COM40  
COM41  
COM42  
COM43  
COM44  
COM45  
COM46  
COM47  
COM48  
COM49  
COM50  
DUMMY29  
COM51  
COM26  
COM27  
COM28  
COM29  
COM30  
COM31  
COM32  
COM33  
COM34  
COM35  
COM36  
COM37  
COM38  
COM39  
COM40  
COM41  
COM42  
COM43  
COM44  
COM45  
COM46  
COM19  
COM19  
COM20  
COM20  
COM21  
COM21  
COM22  
COM22  
COM23  
COM23  
COM24  
COM24  
COM25  
COM25  
COM26  
COM26  
COM27  
COM27  
COM28  
COM28  
COM29  
365  
415  
465  
515  
565  
615  
665  
715  
DUMMY32 COM29  
COM47 COM30  
DUMMY33 COM30  
COMS COM31  
DUMMY34 COM31  
DUMMY35 COMS  
DUMMY28 DUMMY30  
COMS COMS  
DUMMY29 DUMMY31  
765  
815  
309 DUMMY20 DUMMY36 DUMMY20 DUMMY30 DUMMY32  
865  
10  
EPSON  
Rev.1.0a  
S1D10605 Series  
6. PIN DESCRIPTIONS  
Power Supply Pins  
No. of  
Pins  
Pin Name  
I/O  
Function  
VDD  
Power Shared with the MPU power supply terminal VCC.  
Supply  
13  
VSS  
VSS2  
VRS  
Power This is a 0V terminal connected to the system GND.  
Supply  
9
Power This is the reference power supply for the step-up voltage circuit for the  
Supply liquid crystal drive.  
4
2
Power This is the externally-input VREG power supply for the LCD power supply  
Supply voltage regulator.  
These are only enabled for the models with the VREG external input option.  
V1, V2,  
V3, V4,  
V5  
Power This is a multi-level power supply for the liquid crystal drive. The voltage  
Supply applied is determined by the liquid crystal cell, and is changed through the  
use of a resistive voltage divided or through changing the impedance using  
an op. amp. Voltage levels are determined based on VDD, and must  
maintain the relative magnitudes shown below.  
10  
VDD (= V0) V1 V2 V3 V4 V5  
Master operation: When the power supply turns ON, the internal power  
supply circuits produce the V1 to V4 voltages shown below. The voltage  
settings are selected using the LCD bias set command.  
S1D10605***** S1D10606***** S1D10607***** S1D10608***** S1D10609*****  
V1 1/9•V5 1/7•V5 1/8•V5 1/6•V5 1/6•V5 1/5•V5 1/8•V5 1/6•V5 1/8•V5 1/6•V5  
V2 2/9•V5 2/7•V5 2/8•V5 2/6•V5 2/6•V5 2/5•V5 2/8•V5 2/6•V5 2/8•V5 2/6•V5  
V3 7/9•V5 5/7•V5 6/8•V5 4/6•V5 4/6•V5 3/5•V5 6/8•V5 4/6•V5 6/8•V5 4/6•V5  
V4 8/9•V5 6/7•V5 7/8•V5 5/6•V5 5/6•V5 4/5•V5 7/8•V5 5/6•V5 7/6•V5 5/6•V5  
LCD Power Supply Circuit Terminals  
No. of  
Pins  
Pin Name  
I/O  
Function  
CAP1+  
O
DC/DC voltage converter. Connect a capacitor between this terminal and  
the CAP1– terminal.  
2
2
2
2
2
2
2
CAP1–  
CAP2+  
CAP2–  
CAP3–  
VOUT  
O
O
O
O
O
I
DC/DC voltage converter. Connect a capacitor between this terminal and  
the CAP1+ terminal.  
DC/DC voltage converter. Connect a capacitor between this terminal and  
the CAP2– terminal.  
DC/DC voltage converter. Connect a capacitor between this terminal and  
the CAP2+ terminal.  
DC/DC voltage converter. Connect a capacitor between this terminal and  
the CAP1+ terminal.  
DC/DC voltage converter. Connect a capacitor between this terminal and  
VSS.  
VR  
Output voltage regulator terminal. Provides the voltage between VDD and  
V5 through a resistive voltage divider.  
These are only enabled when the V5 voltage regulator internal resistors are  
not used (IRS = LOW).  
These cannot be used when the V5 voltage regulator internal resistors are  
used (IRS = HIGH).  
Rev.1.0a  
EPSON  
11  
S1D10605 Series  
System Bus Connection Terminals  
No. of  
Pins  
Pin Name  
I/O  
Function  
D7 to D0  
I/O  
This is an 8-bit bi-directional data bus that connects to an 8-bit or 16-bit  
standard MPU data bus.  
8
(SI)  
(SCL)  
When the serial interface is selected (P/S = LOW), then D7 serves as the  
serial data input terminal (SI) and D6 serves as the serial clock input  
terminal (SCL). At this time, D0 to D5 are set to high impedance.  
When the chip select is inactive, D0 to D7 are set to high impedance.  
A0  
I
This is connect to the least significant bit of the normal MPU address bus,  
and it determines whether the data bits are data or a command.  
A0 = HIGH: Indicates that D0 to D7 are display data.  
1
A0 = LOW: Indicates that D0 to D7 are control data.  
RES  
I
I
I
When RES is set to LOW, the settings are initialized.  
The reset operation is performed by the RES signal level.  
1
2
1
CS1  
CS2  
This is the chip select signal. When CS1 = LOW and CS2 = HIGH, then the  
chip select becomes active, and data/command I/O is enabled.  
RD  
(E)  
• When connected to an 8080 MPU, this is active LOW.  
This pin is connected to the RD signal of the 8080 MPU, and the  
S1D10605 series data bus is in an output status when this signal is LOW.  
• When connected to a 6800 Series MPU, this is active HIGH.  
This is the 6800 Series MPU enable clock input terminal.  
WR  
(R/W)  
I
• When connected to an 8080 MPU, this is active LOW.  
This terminal connects to the 8080 MPU WR signal. The signals on  
the data bus are latched at the rising edge of the WR signal.  
• When connected to a 6800 Series MPU:  
1
This is the read/write control signal input terminal.  
When R/W = HIGH: Read.  
When R/W = LOW: Write.  
C86  
P/S  
I
I
This is the MPU interface switch terminal.  
C86 = HIGH: 6800 Series MPU interface.  
C86 = LOW: 8080 MPU interface.  
1
1
This is the parallel data input/serial data input switch terminal.  
P/S = HIGH: Parallel data input.  
P/S = LOW: Serial data input.  
The following applies depending on the P/S status:  
P/S Data/Command  
Data  
Read/Write Serial Clock  
HIGH  
LOW  
A0  
A0  
D0 to D7  
SI (D7)  
RD, WR  
Write only  
SCL (D6)  
When P/S = LOW, D0 to D5 are HZ. D0 to D5 may be HIGH, LOW or  
Open.  
RD (E) and WR (P/W) are fixed to either HIGH or LOW.  
With serial data input, RAM display data reading is not supported.  
CLS  
I
Terminal to select whether or enable or disable the display clock internal  
oscillator circuit.  
1
CLS = HIGH: Internal oscillator circuit is enabled  
CLS = LOW: Internal oscillator circuit is disabled (requires external input)  
When CLS = LOW, input the display clock through the CL terminal.  
When using the S1D10605 Series as a master or slave, set respective  
CLS pins at the same level.  
Display clock  
Master  
Slave  
Built-in oscillator circuit used  
External input  
HIGH  
LOW  
HIGH  
LOW  
12  
EPSON  
Rev.1.0a  
S1D10605 Series  
No. of  
Pins  
Pin Name  
I/O  
Function  
M/S  
I
This terminal selects the master/slave operation for the S1D10605 Series  
chips. Master operation outputs the timing signals that are required for the  
LCD display, while slave operation inputs the timing signals required for the  
liquid crystal display, synchronizing the liquid crystal display system.  
M/S = HIGH: Master operation  
1
M/S = LOW: Slave operation  
The following is true depending on the M/S and CLS status:  
Power  
Supply  
Circuit  
Oscillator  
Circuit  
M/S CLS  
CL  
FR  
FRS  
DOF  
HIGH HIGH Enabled  
LOW Disabled  
Enabled  
Enabled  
Output Output Output Output  
Input Output Output Output  
LOW HIGH Disabled  
LOW Disabled  
Disabled  
Disabled  
Input  
Input  
Input Output Input  
Input Output Input  
CL  
I/O  
This is the display clock input terminal  
The following is true depending on the M/S and CLS status.  
1
M/S CLS CL  
HIGH HIGH Output  
LOW Input  
LOW HIGH Input  
LOW Input  
When the S1D10605 Series chips are used in master/slave mode, the  
various CL terminals must be connected.  
FR  
I/O  
I/O  
This is the liquid crystal alternating current signal I/O terminal.  
M/S = HIGH: Output  
M/S = LOW: Input  
When the S1D10605 Series chip is used in master/slave mode, the various  
FR terminals must be connected.  
1
1
DOF  
This is the liquid crystal display blanking control terminal.  
M/S = HIGH: Output  
M/S = LOW: Input  
When the S1D10605 Series chip is used in master/slave mode, the various  
DOF terminals must be connected.  
FRS  
IRS  
O
I
This is the output terminal for the static drive.  
This terminal is only enabled when the static indicator display is ON when  
in master operation mode, and is used in conjunction with the FR terminal.  
1
1
This terminal selects the resistors for the V5 voltage level adjustment.  
IRS = HIGH: Use the internal resistors  
IRS = LOW: Do not use the internal resistors. The V5 voltage level is  
regulated by an external resistive voltage divider attached to the VR  
terminal.  
This pin is enabled only when the master operation mode is selected.  
It is fixed to either HIGH or LOW when the slave operation mode is  
selected.  
HPM  
I
This is the power control terminal for the power supply circuit for liquid  
crystal drive.  
1
HPM = HIGH: Normal mode  
HPM = LOW: High power mode  
This pin is enabled only when the master operation mode is selected.  
It is fixed to either HIGH or LOW when the slave operation mode is  
selected.  
Rev.1.0a  
EPSON  
13  
S1D10605 Series  
Liquid Crystal Drive Terminals  
No. of  
Pins  
Pin Name  
I/O  
Function  
SEG0  
to  
SEG131  
O
These are the liquid crystal segment drive outputs. Through a combination 132  
of the contents of the display RAM and with the FR signal, a single level is  
selected from VDD, V2, V3, and V5.  
RAM DATA FR  
Output Voltage  
Normal Display Reverse Display  
HIGH  
HIGH  
HIGH  
LOW  
HIGH  
LOW  
VDD  
V5  
V2  
V3  
LOW  
V2  
VDD  
V5  
LOW  
V3  
Power save  
VDD  
COM0  
to  
O
These are the liquid crystal common drive outputs.  
Part No.  
Part No.  
COM  
COMn  
S1D10605*****  
S1D10606*****  
S1D10607*****  
S1D10608*****  
S1D10609*****  
64  
48  
32  
54  
52  
COM 0 ~ COM 63  
COM 0 ~ COM 47  
COM 0 ~ COM 31  
COM 0 ~ COM 53  
COM 0 ~ COM 51  
S1D10605*****  
S1D10606*****  
S1D10607*****  
S1D10608*****  
S1D10609*****  
Through a combination of the contents of the scan data and with the  
FR signal, a single level is selected from VDD, V1, V4, and V5.  
Scan Data  
HIGH  
FR Output Voltage  
HIGH  
LOW  
HIGH  
LOW  
V5  
VDD  
V1  
HIGH  
LOW  
LOW  
V4  
Power Save  
VDD  
COMS  
O
These are the COM output terminals for the indicator. Both terminals  
output the same signal.  
2
Leave these open if they are not used.  
When in master/slave mode, the same signal is output by both master and  
slave.  
Test Terminals  
No. of  
Pins  
Pin Name  
I/O  
Function  
TEST0 to 4  
TEST7 to A  
I/O  
These are terminals for IC chip testing.  
They are set to OPEN.  
12  
TEST5, 6  
I
These are terminals for IC chip testing.  
They are set to VDD or OPEN.  
2
Total: 289 pins for the S1D10605*****.  
273 pins for the S1D10606*****.  
257 pins for the S1D10607*****.  
279 pins for the S1D10608*****.  
277 pins for the S1D10609*****.  
14  
EPSON  
Rev.1.0a  
S1D10605 Series  
through a serial data input (SI). Through selecting the P/  
S terminal polarity to the HIGH or LOW it is possible to  
select either parallel data input or serial data input as  
shown in Table 1.  
7. FUNCTION DESCRIPTION  
The MPU Interface  
Selecting the Interface Type  
With the S1D10605 Series chips, data transfers are done  
through an 8-bit bi-directional data bus (D7 to D0) or  
Table 1  
P/S  
CS1 CS2  
CS1 CS2  
CS1 CS2  
A0  
RD  
RD  
WR C86  
D7  
D7  
SI  
D6  
D6  
D5~D0  
D5~D0  
(HZ)  
HIGH: Parallel Input  
LOW: Serial Input  
A0  
A0  
WR C86  
SCL  
“—” indicates fixed to either HIGH or to LOW  
8080-system MPU or a 6800 Series MPU (as shown in  
Table 2) by selecting the C86 terminal to either HIGH  
or to LOW.  
The Parallel Interface  
When the parallel interface has been selected (P/S =  
HIGH), then it is possible to connect directly to either an  
Table 2  
CS1 CS2  
HIGH: 6800 Series MPU Bus CS1 CS2  
LOW: 8080 MPU Bus CS1 CS2  
P/S  
A0  
A0  
A0  
RD  
E
WR  
R/W D7~D0  
WR D7~D0  
D7~D0  
RD  
Moreover, data bus signals are recognized by a  
combination of A0, RD (E), WR (R/W) signals, as  
shown in Table 3.  
Table 3  
8080 Series  
Shared 6800 Series  
Function  
A0  
1
R/W  
RD  
0
WR  
1
1
0
1
0
Reads the display data  
Writes the display data  
Status read  
1
1
0
0
0
1
0
1
0
Write control data (command)  
Rev.1.0a  
EPSON  
15  
S1D10605 Series  
The Serial Interface  
of the eighth serial clock for the processing.  
The A0 input is used to determine whether or the serial  
data input is display data or command data; when A0 =  
HIGH, the data is display data, and when A0 = LOW  
then the data is command data. The A0 input is read and  
used for detection every 8th rising edge of the serial  
clock after the chip becomes active.  
When the serial interface has been selected (P/S =  
LOW) then when the chip is in active state (CS1 = LOW  
and CS2 = HIGH) the serial data input (SI) and the serial  
clock input (SCL) can be received. The serial data is  
read from the serial data input pin in the rising edge of  
the serial clocks D7, D6 through D0, in this order. This  
data is converted to 8 bits parallel data in the rising edge  
Figure 1 is a serial interface signal chart.  
CS1  
CS2  
SI  
D7  
1
D6  
2
D5  
3
D4  
4
D3  
5
D2  
6
D1  
7
D0 D7  
D6  
10  
D5  
D4  
D3  
13  
D2  
14  
SCL  
8
9
11  
12  
A0  
Figure 1  
* When the chip is not active, the shift registers and the counter are reset to their initial states.  
* Reading is not possible while in serial interface mode.  
* Caution is required on the SCL signal when it comes to line-end reflections and external noise. We recommend that  
operation be rechecked on the actual equipment.  
LSIs is performed through the bus holder attached to the  
internal data bus.  
The Chip Select  
The S1D10605 Series chips have two chip select  
terminals: CS1 and CS2. The MPU interface or the  
serial interface is enabled only when CS1 = LOW and  
CS2 = HIGH.  
When the chip select is inactive, D0 to D7 enter a high  
impedance state, and the A0, RD, and WR inputs are  
inactive. When the serial interface is selected, the shift  
register and the counter are reset.  
For example, when the MPU writes data to the display  
data RAM, once the data is stored in the bus holder, then  
it is written to the display data RAM before the next data  
write cycle. Moreover, when the MPU reads the display  
data RAM, the first data read cycle (dummy) stores the  
read data in the bus holder, and then the data is read from  
the bus holder to the system bus at the next data read  
cycle.  
There is a certain restriction in the read sequence of the  
display data RAM. Please be advised that data of the  
specified address is not generated by the read instruction  
issued immediately after the address setup. This data is  
generated in data read of the second time. Thus, a  
dummy read is required whenever the address setup or  
write cycle operation is conducted.  
Accessing the Display Data RAM and the  
Internal Registers  
Data transfer at a higher speed is ensured since the MPU  
is required to satisfy the cycle time (tCYC) requirement  
alone in accessing the S1D10605 Series. Wait time may  
not be considered.  
And, in the S1D10605 Series chips, each time data is  
sent from the MPU, a type of pipeline process between  
This relationship is shown in Figure 2.  
16  
EPSON  
Rev.1.0a  
S1D10605 Series  
read instruction. If the cycle time (tCYC) is maintained,  
it is not necessary to check for this flag before each  
command. This makes vast improvements in MPU  
processing capabilities possible.  
The Busy Flag  
When the busy flag is “1” it indicates that the S1D10605  
Series chip is running internal processes, and at this  
time no command aside from a status read will be  
received. The busy flag is outputted to D7 pin with the  
Writing  
WR  
DATA  
N
N+1  
N+2  
N+3  
Latch  
N
N+1  
N+2  
N+3  
BUS Holder  
Write Signal  
Reading  
WR  
RD  
DATA  
N
N
n
n+1  
Address Preset  
Read Signal  
Column Address  
Bus Holder  
Preset N  
Increment N+1  
n
N+2  
N
n+1  
n+2  
Address Set  
#n  
Dummy  
Read  
Data Read  
#n  
Data Read  
#n+1  
Figure 2  
Rev.1.0a  
EPSON  
17  
S1D10605 Series  
the time of display data transfer when multiple S1D10605  
series chips are used, thus and display structures can be  
created easily and with a high degree of freedom.  
Moreover, reading from and writing to the display  
RAM from the MPU side is performed through the I/O  
buffer, which is an independent operation from signal  
reading for the liquid crystal driver. Consequently, even  
if the display data RAM is accessed asynchronously  
during liquid crystal display, it will not cause adverse  
effects on the display (such as flickering).  
Display Data RAM  
Display Data RAM  
The display data RAM is a RAM that stores the dot data  
for the display. It has a 65 (8 page × 8 bit +1) × 132 bit  
structure. It is possible to access the desired bit by  
specifying the page address and the column address.  
Because, as is shown in Figure 3, the D7 to D0 display  
data from the MPU corresponds to the liquid crystal  
display common direction, there are few constraints at  
D0 0 1 1 1  
D1 1 0 0 0  
D2 0 0 0 0  
D3 0 1 1 1  
D4 1 0 0 0  
0
0
0
0
0
COM0  
COM1  
COM2  
COM3  
COM4  
Display data RAM  
Liquid crystal display  
Figure 3  
Table 4  
The Page Address Circuit  
SEG  
Output  
As shown in Figure 6-4, page address of the display data  
RAM is specified through the Page Address Set  
Command. The page address must be specified again  
when changing pages to perform access.  
SEG0  
SEG 131  
ADC “0” 0 (H) Column Address 83 (H)  
(D0) “1” 83 (H) Column Address 0 (H)  
Page address 8 (D3, D2, D1, D0 = 1, 0, 0, 0) is the page  
for the RAM region used only by the indicators, and  
only display data D0 is used.  
The Line Address Circuit  
The line address circuit, as shown in Table 4, specifies  
the line address relating to the COM output when the  
contents of the display data RAM are displayed. Using  
the display start line address set command, what is  
normally the top line of the display can be specified (this  
is the COM0 output when the common output mode is  
normal, and the COM63 output for S1D10605 Series,  
COM47 output for S1D10606 Series, COM31 output  
for the S1D10607, COM53 output for the S1D10608  
and COM51 output for the S1D10609 Series when the  
common output mode is reversed. The display area is a  
65 line area for the S1D10605 Series, a 49 line area for  
the S1D10606, a 33 line area for the S1D10607, a 55 line  
area for the S1D10608 and a 53 line area for the  
S1D10609 from the display start line address.  
The Column Addresses  
As is shown in Figure 4, the display data RAM column  
address is specified by the Column Address Set  
command. The specified column address is incremented  
(+1) with each display data read/write command. This  
allows the MPU display data to be accessed continuously.  
Moreover, the incrementation of column addresses stops  
with 83H. Because the column address is independent  
of the page address, when moving, for example, from  
page 0 column 83H to page 1 column 00H, it is necessary  
to respecify both the page address and the column  
address.  
Furthermore, as is shown in Table 4, the ADC command  
(segment driver direction select command) can be used  
to reverse the relationship between the display data  
RAM column address and the segment output. Because  
of this, the constraints on the IC layout when the LCD  
module is assembled can be minimized.  
If the line addresses are changed dynamically using  
the display start line address set command, screen  
scrolling, page swapping, etc. can be performed.  
18  
EPSON  
Rev.1.0a  
S1D10605 Series  
When the  
common output  
mode is normal  
Page Address  
Line  
COM  
Data  
Address  
Output  
D3  
0
D2  
D1  
D0  
0
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
08H  
09H  
0AH  
0BH  
0CH  
0DH  
0EH  
0FH  
11H  
12H  
13H  
14H  
15H  
16H  
17H  
18H  
18H  
19H  
1AH  
1BH  
1CH  
1DH  
1EH  
1FH  
20H  
21H  
22H  
23H  
24H  
25H  
26H  
27H  
28H  
29H  
2AH  
2BH  
2CH  
2DH  
2EH  
2FH  
30H  
31H  
32H  
33H  
34H  
35H  
36H  
37H  
38H  
39H  
3AH  
3BH  
3CH  
3DH  
3EH  
3FH  
COM0  
COM1  
COM2  
COM3  
0
0
Page 0  
Page 1  
Page 2  
COM4  
COM5  
COM6  
COM7  
COM8  
COM9  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
COM16  
COM17  
COM18  
COM19  
COM20  
COM21  
COM22  
COM23  
COM24  
COM25  
COM26  
COM27  
COM28  
0
0
0
0
0
1
1
0
0
0
0
1
1
0
1
0
Page 3  
Page 4  
COM29  
COM30  
COM31  
COM32  
COM33  
COM34  
COM35  
COM36  
COM37  
COM38  
COM39  
COM40  
COM41  
COM42  
COM43  
COM44  
COM45  
COM46  
COM47  
COM48  
COM49  
COM50  
COM51  
COM52  
COM53  
COM54  
COM55  
COM56  
COM57  
COM58  
COM59  
COM60  
COM61  
COM62  
COM63  
COMS  
Start  
0
0
1
1
0
1
1
0
Page 5  
Page 6  
0
1
1
0
1
0
1
0
Page 7  
Page 8  
Regardless of the  
display start line  
address, the S1D10605  
Series accesses 65th  
line, the S1D10606  
Series accesses 49th  
line and the S1D10607  
Series accesses 33th  
line and the S1D10608  
Series accesses 55th  
line, the S1D10609  
Series accesses 53 lines.  
Figure 4  
Rev.1.0a  
EPSON  
19  
S1D10605 Series  
The Display Data Latch Circuit  
Display Timing Generator Circuit  
The display data latch circuit is a latch that temporarily  
stores the display data that is output to the liquid crystal  
driver circuit from the display data RAM.  
Because the display normal/reverse status, display ON/  
OFF status, and display all points ON/OFF commands  
control only the data within the latch, they do not change  
the data within the display data RAM itself.  
The display timing generator circuit generates the timing  
signal to the line address circuit and the display data  
latch circuit using the display clock. The display data is  
latched into the display data latch circuit synchronized  
with the display clock, and is output to the data driver  
output terminal. Reading to the display data liquid  
crystal driver circuits is completely independent of  
accesses to the display data RAM by the MPU.  
Consequently, even if the display data RAM is accessed  
asynchronously during liquid crystal display, there is  
absolutely no adverse effect (such as flickering) on the  
display.  
Moreover, the display timing generator circuit generates  
the common timing and the liquid crystal alternating  
current signal (FR) from the display clock. It generates  
a drive wave form using a 2 frame alternating current  
drive method, as is shown in Figure 5, for the liquid  
crystal drive circuit.  
The Oscillator Circuit  
This is a CR-type oscillator that produces the display  
clock. The oscillator circuit is only enabled when M/S  
= HIGH and CLS = HIGH.  
When CLS = LOW the oscillation stops, and the display  
clock is input through the CL terminal.  
Two-frame alternating current drive wave form (S1D10605*****)  
64 65  
1
2
3
4
5
6
60 61 62 63 64 65  
1
2
3
4
5
6
CL  
FR  
V
V
DD  
1
COM0  
COM1  
V
V
4
5
V
V
DD  
1
V
V
4
5
RAM  
DATA  
V
V
V
V
DD  
2
SEGn  
3
5
Figure 5  
20  
EPSON  
Rev.1.0a  
S1D10605 Series  
When multiple S1D10605 Series chips are used, the  
slave chips must be supplied the display timing signals  
(FR, CL, DOF) from the master chip[s].  
Table 5 shows the status of the FR, CL, and DOF  
signals.  
Table 5  
Operating Mode  
FR  
CL  
DOF  
Master (M/S = HIGH) The internal oscillator circuit is enabled (CLS = HIGH) Output Output Output  
The internal oscillator circuit is disabled (CLS = LOW) Output Input  
Output  
Slave (M/S = LOW) Set the CLS pin to the same level as with the master. Input  
Input  
Input  
Input  
Input  
Input  
The Common Output Status Select  
Circuit  
In the S1D10605 Series chips, the COM output scan  
direction can be selected by the common output status  
select command. (See Table 6.) Consequently, the  
constraints in IC layout at the time of LCD module  
assembly can be minimized.  
Table 6  
Status  
COM Scan Direction  
S1D10605***** S1D10606***** S1D10607***** S1D10608***** S1D10609*****  
Normal COM0 COM63 COM0 COM47 COM0 COM31 COM0 COM53 COM0 COM51  
Reverse COM63 COM0 COM47 COM0 COM31 COM0 COM53 COM0 COM51 COM0  
The Liquid Crystal Driver Circuits  
These are a 197-channel (S1D10605 Series), a 181-  
channel (S1D10606 Series) multiplexers 165-channel  
(S1D10607 Series), a 187-channel (S1D10608 Series).  
and a 185-channel (S1D10609 Series) that generate  
four voltage levels for driving the liquid crystal. The  
combination of the display data, the COM scan signal,  
and the FR signal produces the liquid crystal drive  
voltage output.  
Figure 6 shows examples of the SEG and COM output  
wave form.  
Rev.1.0a  
EPSON  
21  
S1D10605 Series  
COM0  
COM1  
COM2  
COM3  
COM4  
COM5  
COM6  
COM7  
V
V
DD  
SS  
FR  
V
V
V
DD  
1
2
COM0  
COM1  
COM2  
V3  
V4  
V5  
V
V
V
DD  
1
2
COM8  
V3  
V4  
V5  
COM9  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
V
V
V
DD  
1
2
V3  
V4  
V5  
V
V
V
DD  
1
2
SEG0  
SEG1  
SEG2  
V
V
V
3
4
5
V
V
V
DD  
1
2
V3  
V4  
V5  
V
V
V
DD  
1
2
V3  
V4  
V5  
V5  
V4  
V3  
V
V
V
2
1
COM0–SEG0  
–V  
1
2
–V  
–V3  
–V4  
–V5  
V5  
V4  
V3  
V
V
V
2
1
COM0–SEG1  
–V  
1
2
–V  
–V3  
–V4  
–V5  
V5  
V4  
V3  
V
V
V
2
1
COM0–SEG0  
–V  
1
2
–V  
–V3  
–V4  
–V5  
V5  
V4  
V3  
V
V
V
2
1
COM0–SEG1  
–V  
1
2
–V  
–V3  
–V4  
–V5  
Figure 6  
22  
EPSON  
Rev.1.0a  
S1D10605 Series  
The power supply circuits can turn the Booster circuits,  
the voltage regulator circuits, and the voltage follower  
circuits ON of OFF independently through the use of the  
Power Control Set command. Consequently, it is possible  
to make an external power supply and the internal  
power supply function somewhat in parallel. Table 7  
shows the Power Control Set Command 3-bit data  
control function, and Table 8 shows reference  
combinations.  
The Power Supply Circuits  
The power supply circuits are low-power consumption  
power supply circuits that generate the voltage levels  
required for the liquid crystal drivers. They comprise  
Booster circuits, voltage regulator circuits, and voltage  
follower circuits. They are only enabled in master  
operation.  
Table 7 The Control Details of Each Bit of the Power Control Set Command  
Status  
Item  
“1”  
“0”  
D2 Booster circuit control bit  
D1 Voltage regulator circuit (V regulator circuit) control bit  
D0 Voltage follower circuit (V/F circuit) control bit  
ON  
ON  
ON  
OFF  
OFF  
OFF  
Table 8 Reference Combinations  
Step-up  
voltage  
system  
terminal  
V
External  
voltage  
input  
Step-up  
circuit  
V/F  
circuit  
Use Settings  
D2 D1 D0  
regulator  
circuit  
1
2
Only the internal power supply is  
used  
Only the V regulator circuit and  
the V/F circuit are used  
Only the V/F circuit is used  
Only the external power supply is  
used  
1
0
1
1
1
1
O
X
O
O
O
O
VSS2  
Used  
VOUT, VSS2 Open  
3
4
0
0
0
0
1
0
X
X
X
X
O
X
V5, VSS2  
V1 to V5  
Open  
Open  
* The “step-up system terminals” refer CAP1+, CAP1–, CAP2+, CAP2–, and CAP3–.  
* While other combinations, not shown above, are also possible, these combinations are not recommended  
because they have no practical use.  
Double step-up: Connect capacitor C1 between CAP1+  
and CAP1–, and between VSS2 and VOUT,  
leave CAP2+ open, and short between  
CAP2–, CAP3– and VOUT to produce a  
voltage in the negative direction at the  
VOUT terminal that is twice the voltage  
between VDD and VSS2.  
The Step-up Voltage Circuits  
Using the step-up voltage circuits equipped within the  
S1D10605 Series chips it is possible to product a Quad  
step-up, a Triple step-up, and a Double step-up of the  
VDD – VSS2 voltage levels.  
Quad step-up: Connect capacitor C1 between CAP1+  
and CAP1–, between CAP2+ and CAP2–,  
between CAP1+ and CAP3–, and between  
VSS2 and VOUT, to produce a voltage level  
in the negative direction at the VOUT  
terminal that is 4 times the voltage level  
between VDD and VSS2.  
The step-up voltage relationships are shown in Figure 7.  
Triple step-up: Connect capacitor C1 between CAP1+  
and CAP1–, between CAP2+ and CAP2–  
and between VSS2 and VOUT, and short  
between CAP3– and VOUT to produce a  
voltage level in the negative direction at the  
VOUT terminal that is 3 times the voltage  
difference between VDD and VSS2.  
Rev.1.0a  
EPSON  
23  
S1D10605 Series  
V
SS2  
V
SS2  
V
SS2  
+
+
+
+
C1  
C
1
C
1
VOUT  
VOUT  
VOUT  
CAP3–  
CAP1+  
CAP3–  
CAP1+  
CAP3–  
CAP1+  
C
1
1
+
+
+
+
C
C
1
1
C1  
CAP1–  
CAP2–  
CAP1–  
CAP2–  
CAP1–  
CAP2–  
C1  
C
CAP2+  
CAP2+  
OPEN CAP2+  
4 x step-up voltage circuit  
3 x step-up voltage circuit  
2 x step-up voltage circuit  
V
DD = 0V  
V
DD = 0V  
V
DD = 0V  
SS2 = –4V  
V
SS2 = –3V  
VSS2 = –3V  
V
V
OUT = 3 x VSS2 = –9V  
3x step-up voltage relationships  
Figure 7  
V
OUT = 2 x VSS2 = –8V  
VOUT = 4 x VSS2 = –12V  
4x step-up voltage relationships  
2x step-up voltage relationships  
* The VSS2 voltage range must be set so that the VOUT terminal voltage does not exceed the absolute maximum rated  
value.  
* Low VDD - VSS voltage causes decrease in efficiency of step-up. Usage above 2.4V for VDD - VSS is recommended.  
The Voltage Regulator Circuit  
(A) When the V5 Voltage Regulator Internal  
Resistors Are Used  
The step-up voltage generated at VOUT outputs the  
liquid crystal driver voltage V5 through the voltage  
regulator circuit.  
Because the S1D10605 Series chips have an internal  
high-accuracy fixed voltage power supply with a 64-  
level electronic volume function and internal resistors  
for the V5 voltage regulator, systems can be constructed  
without having to include high-accuracy voltage  
regulator circuit components.  
Through the use of the V5 voltage regulator internal  
resistors and the electronic volume function the liquid  
crystal power supply voltage V5 can be controlled by  
commands alone (without adding any external resistors),  
making it possible to adjust the liquid crystal display  
brightness. The V5 voltage can be calculated using  
equation A-1 over the range where | V5 | < | VOUT |.  
Moreover, in the S1D10605 Series, thermal gradients  
have been prepared as VREG options: approximately -  
0.05%/°C.  
24  
EPSON  
Rev.1.0a  
S1D10605 Series  
Rb  
Ra  
V5 = 1+  
= 1+  
VEV  
Rb  
Ra  
α
1–  
VREG  
162  
α
VEV = 1−  
VREG  
(
)
(Equation A-1)  
[
]
162  
VDD  
VEV (constant voltage supply + electronic volume)  
Internal Ra  
Internal Rb  
+
V
5
Figure 8  
VREG is the IC-internal fixed voltage supply, and its  
voltage at Ta = 25°C is as shown in Table 9.  
Table 9  
Equipment Type  
Thermal Gradient  
Units  
VREG  
Units  
Internal Power Supply  
–0.05  
[%/°C ]  
–2.1  
[V]  
α is set to 1 level of 64 possible levels by the electronic  
volume function depending on the data set in the 6-bit  
electronic volume register. Table 10 shows the value for  
α depending on the electronic volume register settings.  
Rb/Ra is the V5 voltage regulator internal resistor ratio,  
and can be set to 8 different levels through the V5  
voltage regulator internal resistor ratio set command.  
The (1 + Rb/Ra) ratio assumes the values shown in  
Table 11 depending on the 3-bit data settings in the V5  
voltage regulator internal resistor ratio register.  
Table 10  
D5 D4 D3 D2 D1 D0  
α
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
63  
62  
61  
.
.
.
.
.
.
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
0
1
2
1
0
Rev.1.0a  
EPSON  
25  
S1D10605 Series  
V5 voltage regulator internal resistance ratio register  
value and (1 + Rb/Ra) ratio (Reference value)  
Table 11  
S1D10605*****  
S1D10606*****  
Register  
Equipment Type by Thermal Gradient [Units: %/  
°
C ] Equipment Type by Thermal Gradient [Units: %/°C ]  
D2 D1 D0  
–0.05  
–0.05  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.4  
3.0  
3.5  
4.0  
4.5  
5.0  
5.4  
5.9  
6.4  
S1D10607*****  
S1D10608*****/S1D10609*****  
Register  
Equipment Type by Thermal Gradient [Units: %/  
°
C ] Equipment Type by Thermal Gradient [Units: %/°C ]  
D2 D1 D0  
–0.05  
–0.05  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
3.0  
3.5  
4.0  
4.5  
5.0  
5.4  
5.9  
6.4  
3.0  
3.5  
4.0  
4.5  
5.0  
5.4  
5.9  
6.4  
For the internal resistance ratio, a manufacturing  
dispersion of up to ±7% should be taken into account.  
When not within the tolerance, adjust the V5 voltage by  
externally mounting Ra and Rb.  
Figs. 9 (for S1D10605 Series), Figs. 10 (for S1D10606  
Series) Figs. 11 (for S1D10607 Series), Figs.12 (for  
S1D 10608  
) and Figs. 13 (for S1D10609 Series).  
*****  
show V5 voltage measured by values of the internal  
resistance ratio resistor for V5 voltage adjustment and  
electric volume resister for each temperature grade  
model, when Ta = 25 °C.  
26  
EPSON  
Rev.1.0a  
S1D10605 Series  
–16  
–15  
–14  
–13  
–12  
–11  
–10  
–9  
S1D10605D00B  
*
1 1 1  
1 1 0  
1 0 1  
1 0 0  
0 1 1  
0 1 0  
0 0 1  
0 0 0  
–8  
–7  
–6  
–5  
–4  
The V5 voltage  
regulator internal  
resistance ratio  
registers  
–3  
–2  
(D2, D1, D0)  
–1  
0
Electric Volume  
Resister  
Figure 9: S1D10605D00B For Models Where the Thermal Gradient = –0.05%/°C  
*
The V5 voltage as a function of the V5 voltage regulator internal resistor ratio register and the electronic  
volume register.  
–16  
S1D10606D00B  
*
–15  
1 1 1  
1 1 0  
1 0 1  
1 0 0  
–14  
–13  
–12  
–11  
–10  
–9  
0 1 1  
0 1 0  
0 0 1  
0 0 0  
–8  
–7  
–6  
–5  
The V5 voltage  
–4  
regulator internal  
resistance ratio  
registers  
–3  
(D2, D1, D0)  
–2  
–1  
0
Electric Volume  
Resister  
Figure 10: S1D10606D00B For Models Where the Thermal Gradient = –0.05%/°C  
*
The V5 voltage as a function of the V5 voltage regulator internal resistor ratio register and the electronic  
volume register.  
Rev.1.0a  
EPSON  
27  
S1D10605 Series  
–16  
–15  
–14  
–13  
–12  
–11  
–10  
–9  
S1D10607D00B  
*
1 1 1  
1 1 0  
1 0 1  
1 0 0  
0 1 1  
0 1 0  
0 0 1  
–8  
–7  
0 0 0  
–6  
–5  
The V5 voltage  
–4  
regulator internal  
resistance ratio  
registers  
–3  
(D2, D1, D0)  
–2  
–1  
0
Electric Volume  
Resister  
Figure 11: S1D10607D00B For Models Where the Thermal Gradient = –0.05%/°C  
*
The V5 voltage as a function of the V5 voltage regulator internal resistor ratio register and the electronic  
volume register.  
–16  
S1D10608D00B  
*
1 1 1  
–15  
1 1 0  
–14  
–13  
1 0 1  
–12  
–11  
–10  
–9  
–8  
–7  
–6  
–5  
–4  
–3  
–2  
–1  
0
1 0 0  
0 1 1  
0 1 0  
0 0 1  
0 0 0  
The V5 voltage  
regulator internal  
resistance ratio  
registers  
(D2, D1, D0)  
Electric Volume  
Resister  
Figure 12: S1D10608D00B For Models Where the Thermal Gradient = –0.05%/°C  
*
The V5 voltage as a function of the V5 voltage regulator internal resistor ratio register and the electronic  
volume register.  
28  
EPSON  
Rev.1.0a  
S1D10605 Series  
–16  
–15  
–14  
–13  
–12  
–11  
–10  
–9  
S1D10609D00B  
1 1 1  
1 1 0  
*
1 0 1  
1 0 0  
0 1 1  
–8  
0 1 0  
0 0 1  
0 0 0  
–7  
–6  
–5  
–4  
The V5 voltage  
regulator internal  
resistance ratio  
registers  
–3  
–2  
(D2, D1, D0)  
–1  
0
Electric Volume  
Resister  
Figure 13: S1D10609D00B Temperature Gradient = –0.05%/°C Model  
*
The V5 voltage as a function of the V5 voltage regulator internal resistor ratio register and the electronic  
volume register.  
Setup example: When selecting Ta = 25°C and V5 = 7  
V for an S1D10607 model on which Temperature  
gradient = –0.05%/°C.  
At this time, the variable range and the notch width of  
the V5 voltage is, as shown Table 13, as dependent on  
the electronic volume.  
Using Figure 15 and the equation A-1, the following  
setup is enabled.  
Table 12  
Register  
Contents  
D5 D4 D3 D2 D1 D0  
For V5 voltage  
regulator  
Electronic Volume  
1
0
0
0
1
1
0
0
1
Table 13  
Typ.  
V5  
Min.  
Max.  
Units  
Variable Range  
Notch width  
–8.4 (63 levels)  
–6.8 (central value) –5.1 (0 level)  
51  
[V]  
[mV]  
Rev.1.0a  
EPSON  
29  
S1D10605 Series  
respectively. When this is done, the use of the electronic  
volume function makes it possible to adjust the brightness  
of the liquid crystal display by controlling the liquid  
crystal power supply voltage V5 through commands.  
In the range where | V5 | < | VOUT |, the V5 voltage can  
be calculated using equation B-1 based on the external  
resistances Ra’ and Rb’.  
(B) When an External Resistance is Used  
(i.e., The V5 Voltage Regulator Internal  
Resistors Are Not Used) (1)  
The liquid crystal power supply voltage V5 can also be  
set without using the V5 voltage regulator internal  
resistors (IRS terminal = LOW) by adding resistors Ra’  
and Rb’ between VDD and VR, and between VR and V5,  
Rb'  
V5 = 1+  
= 1+  
VEV  
Ra'  
Rb'  
Ra'  
α
1–  
VREG  
162  
α
VEV = 1−  
VREG  
(
)
( Equation B-1)  
[
]
162  
V
DD  
V
EV (fixed voltage power supply + electronic volume)  
External  
resistor Ra'  
+
V
5
External  
resistor Rb'  
Figure 14  
Setup example: When selecting Ta = 25°C and V5 = –  
7 V for an S1D10607 Series model where the temperature  
gradient = –0.05%/°C.  
When the central value of the electron volume register  
is (D5, D4, D3, D2, D1, D0) = (1, 0, 0, 0, 0, 0), then α  
= 31 and VREG = –2.1 V so, according to equation B-1,  
Consequently, by equations B-2 and B-3,  
Rb'  
= 3.12  
Ra'  
Ra' = 340kΩ  
Rb' = 1060kΩ  
Rb'  
Ra'  
α
V5 = 1+  
1−  
1−  
VREG  
2.1  
At this time, the V5 voltage variable range and notch  
width, based on the electron volume function, is as  
given in Table 14.  
162  
Rb'  
Ra'  
31  
11V = 1+  
(
)
(Equation B-2)  
162  
Moreover, when the value of the current running through  
Ra’ and Rb’ is set to 5 µA,  
(Equation B-3)  
Table 14  
Typ.  
Ra' +Rb' = 1.4MΩ  
V5  
Min.  
Max.  
Units  
Variable Range  
Notch width  
–8.6 (63 levels)  
–7.0 (central value) –5.3 (0 level)  
52  
[V]  
[mV]  
30  
EPSON  
Rev.1.0a  
S1D10605 Series  
the electronic volume function makes it possible to  
control the liquid crystal power supply voltage V5 by  
commands to adjust the liquid crystal display brightness.  
In the range where | V5 | < | VOUT | the V5 voltage can  
be calculated by equation C-1 below based on the R1  
and R2 (variable resistor) and R3 settings, where R2 can  
be subjected to fine adjustments (R2).  
(C) When External Resistors are Used  
(i.e. The V5 Voltage Regulator Internal  
Resistors Are Not Used). (2)  
When the external resistor described above are used,  
adding a variable resistor as well makes it possible to  
perform fine adjustments on Ra’ and Rb’, to set the  
liquid crystal drive voltage V5. In this case, the use of  
R3 + R2 − ∆R2  
V5 = 1+  
= 1+  
VEV  
R1 + ∆R2  
R3 + R2 − ∆R2  
R1 + ∆R2  
α
1–  
VREG  
162  
α
VEV = 1−  
VREG  
(Equation C-1)  
(
)
[
]
162  
V
DD  
V
EV (fixed voltage supply + electronic volume)  
External  
resistor R  
Ra'  
1
+
V5  
R2  
External  
resistor R  
2
VR  
External  
resistor R  
Rb'  
3
Figure 15  
When R2 = R2, in order to make V = –5 V,  
Setup example: When selecting Ta = 25°C and V5 = –  
5 to –9 V (using R2) for an S1D10607 model where the  
temperature gradient = –0.05%/°C.  
R3  
31  
5V = 1 +  
1 −  
2.1  
(
)
R + R2  
162  
1
When the central value for the electronic volume register  
is set at (D5, D4, D3, D2, D1, D0) = (1, 0, 0, 0, 0, 0),  
(Equation C-3)  
Moreover, when the current flowing VDD and V5 is set  
α
= 31  
to 5 µA,  
VREG = −2.1V  
R + R2 + R3 = 1.4MΩ  
(Equation C-4)  
1
so, according to equation C-1, when R2 = 0 , in order  
to make V5 = –9 V,  
With this, according to equation C-2, C-3 and C-4,  
R
= 264kΩ  
1
R3 + R2  
31  
9V = 1 +  
1 −  
2.1  
(
)
R2 = 211kΩ  
R3 = 925kΩ  
R
162  
1
(Equation C-2)  
At this time, the V5 voltage variable range and notch  
width based on the electron volume function is as shown  
in Table 15.  
Table 15  
Typ.  
V5  
Min.  
Max.  
Units  
Variable Range  
Notch width  
–8.7 (63 levels)  
–7.0 (central value) –5.3 (0 level)  
53  
[V]  
[mV]  
Rev.1.0a  
EPSON  
31  
S1D10605 Series  
* When the V5 voltage regulator internal resistors or  
the electronic volume function is used, it is necessary  
to at least set the voltage regulator circuit and the  
voltage follower circuit to an operating mode using  
the power control set commands. Moreover, it is  
necessary to provide a voltage from VOUT when the  
Booster circuit is OFF.  
* The VR terminal is enabled only when the V5 voltage  
regulator internal resistors are not used (i.e. the IRS  
terminal = LOW). When the V5 voltage regulator  
internal resistors are used (i.e. when the IRS terminal  
= HIGH), then the VR terminal is left open.  
High Power Mode  
The power supply circuit equipped in the S1D10605  
Series chips has very low power consumption (normal  
mode: HPM = HIGH). However, for LCDs or panels  
with large loads, this low-power power supply may  
cause display quality to degrade. When this occurs,  
setting the HPM terminal to LOW (high power mode)  
can improve the quality of the display. We recommend  
that the display be checked on actual equipment to  
determine whether or not to use this mode.  
Moreover, if the improvement to the display is inadequate  
even after high power mode has been set, then it is  
necessary to add a liquid crystal drive power supply  
externally.  
* Because the input impedance of the VR terminal is  
high, it is necessary to take into consideration short  
leads, shield cables, etc. to handle noise.  
The Internal Power Supply Shutdown  
Command Sequence  
The Liquid Crystal Voltage Generator Circuit  
The V5 voltage is produced by a resistive voltage  
divider within the IC, and can be produced at the V1, V2,  
V3, and V4 voltage levels required for liquid crystal  
driving. Moreover, when the voltage follower changes  
the impedance, it provides V1, V2, V3 and V4 to the  
liquid crystal drive circuit. 1/9 bias or 1/7 bias for  
S1D10605 Series, 1/8 bias or 1/6 bias for S1D10606  
Series, 1/6 bias or 1/5 bias for the S1D10607 Series 1/  
8 bias or 1/6 bias for S1D10608 Series and 1/8 bias or  
1/6 bias for S1D10609 Series can be selected.  
The sequence shown in Figure 16 is recommended for  
shutting down the internal power supply, first placing  
the power supply in power saver mode and then turning  
the power supply OFF.  
Sequence  
Details  
(Command, status)  
Command address  
D7 D6 D5 D4 D3 D2 D1 D0  
Power saver  
commands  
(compound)  
Step1  
Step2  
End  
Display OFF  
1
1
0
0
1
1
0
0
1
0
1
1
1
0
0
1
Display all points ON  
Internal power supply OFF  
Figure 16  
32  
EPSON  
Rev.1.0a  
S1D10605 Series  
Reference Circuit Examples  
Figure 17 shows reference circuit examples.  
1 When used all of the step-up circuit, voltage regulating circuit and V/F circuit  
(1) When the voltage regulator internal resistor  
is used.  
(2) When the voltage regulator internal resistor  
is not used.  
(Example where VSS2 = VSS, with 4x step-up)  
(Example where VSS2 = VSS, with 4x step-up)  
VDD  
VDD  
IRS M/S  
IRS M/S  
V
SS2  
V
SS2  
C
1
C
1
VOUT  
VOUT  
VSS  
VSS  
CAP3–  
CAP1+  
CAP1–  
CAP2+  
CAP2–  
CAP3–  
CAP1+  
CAP1–  
CAP2+  
CAP2–  
C
C
1
1
C
C
1
1
C1  
C1  
R
R
R
3
2
1
V
5
V
5
VR  
VR  
VDD  
VDD  
V
V
V
V
V
V
DD  
V
V
V
V
V
V
DD  
C2  
C2  
C2  
C2  
C2  
C
C
C
C
C
2
2
2
2
2
1
1
2
2
3
3
4
4
5
5
2 When the voltage regulator circuit and V/F  
circuit alone are used  
(2) When the V  
5
voltage regulator internal resistor  
(1) When the V  
5
voltage regulator internal resistor  
is used.  
is not used.  
V
DD  
V
DD  
SS  
IRS M/S  
IRS M/S  
V
SS2  
VSS2  
VOUT  
V
OUT  
VSS  
V
CAP3–  
CAP1+  
CAP1–  
CAP2+  
CAP2–  
CAP3–  
CAP1+  
CAP1–  
CAP2+  
CAP2–  
External  
power  
supply  
External  
power  
supply  
R
R
R
3
2
1
V
5
V
5
VR  
VR  
VDD  
VDD  
V
V
V
V
V
V
DD  
V
V
V
V
V
V
DD  
C
C
C
C
C
2
2
2
2
2
C2  
C2  
C2  
C2  
C2  
1
1
2
2
3
3
4
4
5
5
Rev.1.0a  
EPSON  
33  
S1D10605 Series  
3 When the V/F circuit alone is used  
4 When the built-in power is not used  
VDD  
VSS  
V
DD  
IRS M/S  
IRS M/S  
V
V
SS2  
V
V
SS2  
OUT  
OUT  
VSS  
CAP3–  
CAP1+  
CAP1–  
CAP2+  
CAP2–  
CAP3–  
CAP1+  
CAP1–  
CAP2+  
CAP2–  
External  
power  
supply  
V
V
5
V
V
5
R
R
V
DD  
VDD  
V
V
V
V
V
V
DD  
1
V
V
V
V
V
V
DD  
1
C2  
C2  
C2  
C2  
C2  
2
2
External  
power  
supply  
3
3
4
4
5
5
5 When the built-in power circuit is used to drive a  
liquid crystal panel heavily loaded with AC or DC, it  
is recommended to connect an external resistor to  
stabilize potentials of V1, V2, V3 and V4 which are  
output from the built-in voltage follower.  
Examples of shared reference settings  
When V5 can vary between –8 and 12 V  
Item  
Set value  
Units  
C1  
C2  
1.0 to 4.7  
0.01 to 1.0  
µF  
µF  
V
DD, V0  
R4  
R4  
C2  
V
V
V
V
1
2
3
4
Reference set value R4: 100Kto 1MΩ  
It is recommended to set an optimum  
resistance value R4 taking the liquid crystal  
display and the drive waveform.  
R4  
R4  
V
5
Figure 17  
* 1 Because the VR terminal input impedance is high, use short leads and shielded lines.  
* 2 C1 and C2 are determined by the size of the LCD being driven. Select a value that will stabilize the liquid crystal  
drive voltage.  
Example of the Process by which to Determine the Settings:  
• Turn the voltage regulator circuit and voltage follower circuit ON and supply a voltage to VOUT from the outside.  
• Determine C2 by displaying an LCD pattern with a heavy load (such as horizontal stripes) and selecting a C2 that  
stabilizes the liquid crystal drive voltages (V1 to V5). Note that all C2 capacitors must have the same capacitance  
value.  
• Next turn all the power supplies ON and determine C1.  
34  
EPSON  
Rev.1.0a  
S1D10605 Series  
* Precautions when installing the COG  
the resistance of ITO wiring is being inserted in  
series with the switching transistor, thus dominating  
the boosting ability.  
Consequently, the boosting ability will be hindered  
as a result and pay sufficient attention to the wiring  
to respective boosting capacitors.  
When installing the COG, it is necessary to duly consider  
the fact that there exists a resistance of the ITO wiring  
occurring between the driver chip and the externally  
connected parts (such as capacitors and resistors). By the  
influence of this resistance, non-conformity may occur  
with the indications on the liquid crystal display.  
Therefore, when installing the COG design the module  
paying sufficient considerations to the following three  
points.  
1. Suppress the resistance occurring between the driver  
chip pin to the externally connected parts as much as  
possible.  
2. Suppress the resistance connecting to the power  
supply pin of the driver chip.  
2. Connection of the smoothing capacitors for the  
liquid crystal drive  
The smoothing capacitors for the liquid crystal  
driving potentials (V1. V2, V3 and V4) are  
indispensable for liquid crystal drives not only for  
the purpose of mere stabilization of the voltage  
levels. If the ITO wiring resistance which occurs  
pursuant to installation of the COG is supplemented  
to these smoothing capacitors, the liquid crystal  
driving potentials become unstable to cause non-  
conformity with the indications of the liquid crystal  
display. Therefore, when using the COG module,  
we definitely recommend to connect reinforcing  
resistors externally.  
3. Make various COG module samples with different  
ITO sheet resistance to select the module with the  
sheet resistance with sufficient operation margin.  
Also, as for this driver IC, pay sufficient attention to the  
following points when connecting to external parts for  
the characteristics of the circuit.  
1. Connection to the boosting capacitors The boosting  
capacitors (the capacitors connecting to respective  
CAP pins and capacitor being inserted between  
VOUT and VSS2) of this IC are being switched over  
by use of the transistor with very low ON-resistance  
of about 10. However, when installing the COG,  
Reference value of the resistance is 100kto 1M.  
Meanwhile, because of the existence of these  
reinforcing resistors, current consumption will  
increase.  
Indicated below is an exemplary connection diagram of  
external resistors.  
Please make sufficient evaluation work for the display  
statuses with any connection tests.  
Exemplary connection diagram 1.  
Exemplary connection diagram 2.  
VDD  
VDD  
V
DD  
V
DD  
R4  
R4  
V
V
V
1
2
3
V
V
V
1
2
3
C2  
C2  
C2  
C2  
C2  
C2  
R4  
R4  
V
V
4
5
V
V
4
5
C
2
2
C
2
2
R4  
R4  
C
C
Rev.1.0a  
EPSON  
35  
S1D10605 Series  
The Reset Circuit  
When the RES input comes to the LOW level, these  
LSIs return to the default state. Their default states are  
as follows:  
1. Display OFF  
2. Normal display  
3. ADC select: Normal (ADC command D0 = LOW)  
4. Power control register: (D2, D1, D0) = (0, 0, 0)  
5. Serial interface internal register data clear  
6. LCD power supply bias rate:  
19. Test mode clear  
On the other hand, when the reset command is used, the  
above default settings from 11 to 19 are only executed.  
When the power is turned on, the IC internal state  
becomes unstable, and it is necessary to initialize it  
using the RES terminal. After the initialization, each  
input terminal should be controlled normally.  
Moreover, when the control signal from the MPU is in  
the high impedance, an overcurrent may flow to the IC.  
After applying a current, it is necessary to take proper  
measures to prevent the input terminal from getting into  
the high impedance state.  
If the internal liquid crystal power supply circuit is not  
used, it is necessary that RES is HIGH when the external  
liquid crystal power supply is turned on. This IC has the  
function to discharge V5 when RES is LOW, and the  
external power supply short-circuits to VDD when RES  
is LOW.  
S1D10605  
S1D10606  
10609  
*****  
S1D10607  
............................. 1/9 bias  
*****  
*****  
, 10608  
,
*****  
..................................... 1/8 bias  
............................. 1/6 bias  
*****  
7. All-indicator lamps-on OFF (All-indicator lamps  
ON/OFF command D0 = LOW)  
8. Power saving clear  
9. V5 voltage regulator internal resistors Ra and Rb  
separation  
(Internal resistors are connected while RES is  
LOW.)  
10. Output conditions of SEG and COM terminals  
SEG : V2/V3, COM : V1/V4  
(Both the SEG terminal and the COM terminal  
output the VDA level while RES is LOW.)  
11. Read modify write OFF  
While RES is LOW, the oscillator and the display  
timing generator stop, and the CL, FR, FRS and DOF  
terminals are fixed to HIGH. The terminals D0 to D7  
are not affected. The VDD level is output from the SEG  
and COM output terminals. This means that an internal  
resistor is connected between VDD and V5.  
12. Static indicator OFF  
Static indicator register : (D1, D2) = (0, 0)  
13. Display start line set to first line  
14. Column address set to Address 0  
15. Page address set to Page 0  
16. Common output status normal  
17. V5 voltage regulator internal resistor ratio set mode  
clear  
18. Electronic volume register set mode clear  
Electronic volume register : (D5, D4, D3, D2, D1,  
D0) = (1, 0. 0, 0, 0, 0)  
36  
EPSON  
Rev.1.0a  
S1D10605 Series  
8. COMMAND DESCRIPTION  
The S1D10605 Series chips identify the data bus signals by a combination of A0, RD (E), WR (R/W) signals. Command  
interpretation and execution does not depend on the external clock, but rather is performed through internal timing only,  
and thus the processing is fast enough that normally a busy check is not required.  
In the 8080 MPU interface, commands are launched by inputting a low pulse to the RD terminal for reading, and  
inputting a low pulse to the WR terminal for writing. In the 6800 Series MPU interface, the interface is placed in a read  
mode when an HIGH signal is input to the R/W terminal and placed in a write mode when a LOW signal is input to the  
R/W terminal and then the command is launched by inputting a high pulse to the E terminal. (See “11. Timing  
Characteristics” regarding the timing.) Consequently, the 6800 Series MPU interface is different than the 80x86 Series  
MPU interface in that in the explanation of commands and the display commands the status read and display data read  
RD (E) becomes “1(H)”. In the explanations below the commands are explained using the 8080 Series MPU interface  
as the example.  
When the serial interface is selected, the data is input in sequence starting with D7.  
<Explanation of Commands>  
(1) Display ON/OFF  
This command turns the display ON and OFF.  
E
R/W  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
Setting  
0
1
0
1
0
1
0
1
1
1
1
0
Display ON  
Display OFF  
When the display OFF command is executed when in the display all points ON mode, power saver mode is entered. See  
the section on the (20) “power saver” for details.  
(2) Display Start Line Set  
This command is used to specify the display start line address of the display data RAM shown in Figure 4. For further  
details see the 7. FUNCTION DESCRIPTION in “The Line Address Circuit”.  
E
R/W  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
Line address  
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0
1
2
1
1
1
1
1
1
1
1
1
1
0
1
62  
63  
(3) Page Address Set  
This command specifies the page address corresponding to the low address when the MPU accesses the display data  
RAM (see Figure 4). Specifying the page address and column address enables to access a desired bit of the display data  
RAM. Changing the page address does not accompany a change in the status display. See the “page address” circuit  
in the 7. Function Description for the detail.  
E
R/W  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
Page address  
0
1
0
1
0
1
1
0
0
0
0
0
0
0
0
1
0
1
0
0
1
2
0
1
1
0
1
0
1
0
7
8
Rev.1.0a  
EPSON  
37  
S1D10605 Series  
(4) Column Address Set  
This command specifies the column address of the display data RAM shown in Figure 4. The column address is split  
into two sections (the higher 4 bits and the lower 4 bits) when it is set (fundamentally, set continuously). Each time the  
display data RAM is accessed, the column address automatically increments (+1), making it possible for the MPU to  
continuously read from/write to the display data. The column address increment is topped at 83H. This does not change  
the page address continuously. See the 7. Function Description in “The Column Address Circuit,” for details.  
E
R/W  
Column  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0 A7 A6 A5 A4 A3 A2 A1 A0 address  
High bits  
Low bits →  
0
1
0
0
0
0
1 A7 A6 A5 A4 0  
0 A3 A2 A1 A0 0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0
1
2
1
1
0
0
0
0
0
0
0
0
0
0
1
1
0
1
130  
131  
(5) Status Read  
R/W  
E
A0 RD WR  
D7  
BUSY  
D6  
D5  
D4  
D3 D2 D1 D0  
0
0
1
ADC ON/OFF RESET  
0
0
0
0
BUSY  
When BUSY = 1, it indicates that either processing is occurring internally or a reset condition  
is in process. While the chip does not accept commands until BUSY = 0, if the cycle time can  
be satisfied, there is no need to check for BUSY conditions.  
ADC  
This shows the relationship between the column address and the segment driver.  
0: Reverse (column address 131-n SEG n)  
1: Normal (column address n SEG n)  
(The ADC command switches the polarity.)  
ON/OFF ON/OFF: indicates the display ON/OFF state.  
0: Display ON  
1: Display OFF  
(This display ON/OFF command switches the polarity.)  
RESET  
This indicates that the chip is in the process of initialization either because of a RES signal or  
because of a reset command.  
0: Operating state  
1: Reset in progress  
(6) Display Data Write  
This command writes 8-bit data to the specified display data RAM address. Since the column address is automatically  
incremented by “1” after the write, the MPU can write the display data.  
E R/W  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
1
1
0
Write data  
(7) Display Data Read  
This command reads 8-bit data from the specified display data RAM address. Since the column address is automatically  
incremented by “1” after the read, the CPU can continuously read multiple-word data. One dummy read is required  
immediately after the column address has been set. See the 7. Function Description in “Display Data RAM” for the  
explanation of accessing the internal registers. When the serial interface is used, reading of the display data becomes  
unavailable.  
E R/W  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
1
0
1
Read Data  
38  
EPSON  
Rev.1.0a  
S1D10605 Series  
(8) ADC Select (Segment Driver Direction Select)  
This command can reverse the correspondence between the display RAM data column address and the segment driver  
output. Thus, sequence of the segment driver output pins may be reversed by the command. See the 7. Function  
Description “column address circuit” for the detail. Increment of the column address (by “1”) accompanying the reading  
or writing the display data is done according to the column address indicated in Figure 4.  
E R/W  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
Setting  
0
1
0
1
0
1
0
0
0
0
0
1
Normal  
Reverse  
(9) Display Normal/Reverse  
This command can reverse the lit and unlit display without overwriting the contents of the display data RAM. When  
this is done the display data RAM contents are maintained.  
E R/W  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
Setting  
0
1
0
1
0
1
0
0
1
1
0
RAM Data HIGH  
LCD ON voltage (normal)  
RAM Data LOW  
1
LCD ON voltage (reverse)  
(10) Display All Points ON/OFF  
This command makes it possible to force all display points ON regardless of the content of the display data RAM. The  
contents of the display data RAM are maintained when this is done. This command takes priority over the display  
normal/reverse command.  
E R/W  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
Setting  
0
1
0
1
0
1
0
0
1
0
0
1
Normal display mode  
Display all points ON  
When the display is in an OFF mode, executing the display all points ON command will place the display in power save  
mode. For details, see the (20) “Power Save section”.  
(11) LCD Bias Set  
This command selects the voltage bias ratio required for the liquid crystal display.  
E R/W  
Select Status  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
S1D10605***** S1D10606***** S1D10607***** S1D10608***** S1D10609*****  
0
1
0
1
0
1
0
0
0
1
0
1
1/9 bias  
1/7 bias  
1/8 bias  
1/6 bias  
1/6 bias  
1/5 bias  
1/8 bias  
1/6 bias  
1/8 bias  
1/6 bias  
(12) Read/Modify/Write  
This command is used paired with the “END” command. Once this command has been input, the display data read  
command does not change the column address, but only the display data write command increments (+1) the column  
address. This mode is maintained until the END command is input. When the END command is input, the column  
address returns to the address it was at when the read/modify/write command was entered. This function makes it  
possible to reduce the load on the MPU when there are repeating data changes in a specified display region, such as when  
there is a blanking cursor.  
E R/W  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
0
1
0
1
1
1
0
0
0
0
0
* Even in read/modify/write mode, other commands aside from display data read/write commands can also be used.  
However, the column address set command cannot be used.  
Rev.1.0a  
EPSON  
39  
S1D10605 Series  
• The sequence for cursor display  
Page address set  
Column address set  
Read/modify/write  
Dummy read  
Data read  
Data process  
Data write  
No  
Change complete?  
Yes  
End  
Figure 18  
(13) End  
This command releases the read/modify/write mode, and returns the column address to the address it was at when the  
mode was entered.  
E R/W  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
0
1
0
1
1
1
0
1
1
1
0
Return  
Column address  
N
N+1  
N+2  
N+3  
• • •  
N+m  
N
Read/modify/write mode set  
End  
Figure 19  
(14) Reset  
This command initializes the display start line, the column address, the page address, the common output mode, the V5  
voltage regulator internal resistor ratio, the electronic volume, and the static indicator are reset, and the read/modify/  
write mode and test mode are released. There is no impact on the display data RAM. See the 7. Function Description  
in “Reset” for details.  
The reset operation is performed after the reset command is entered.  
E R/W  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
0
1
0
1
1
1
0
0
0
1
0
The initialization when the power supply is applied must be done through applying a reset signal to the RES terminal.  
The reset command must not be used instead.  
40  
EPSON  
Rev.1.0a  
S1D10605 Series  
(15) Common Output Mode Select  
This command can select the scan direction of the COM output terminal. For details, see the 7. Function Description  
in “Common Output Mode Select Circuit.”  
E
R/W  
Selected Mode  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
S
1D10605***** S1D10606***** S1D10607***** S1D10608***** S1D10609*****  
0
1
0
1
1
0
0
0
1
*
*
*
Normal COM0COM63COM0COM47 COM0COM31 COM0COM53COM0COM51  
Reverse COM63COM0 COM47COM0 COM31COM0 COM53COM0 COM51COM0  
* Disabled bit  
(16) Power Controller Set  
This command sets the power supply circuit functions. See the 7. Function Description in “The Power Supply Circuit,”  
for details  
E R/W  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
Selected Mode  
0
1
0
0
0
1
0
1
0
1
Booster circuit: OFF  
Booster circuit: ON  
0
1
Voltage regulator circuit: OFF  
Voltage regulator circuit: ON  
0
1
Voltage follower circuit: OFF  
Voltage follower circuit: ON  
[Translator’s Note: the abbreviations explained within these parentheses for V  
and V/F have been written out in the English translation and are therefore no  
longer necessary.]  
(17) V5 Voltage Regulator Internal Resistor Ratio Set  
This command sets the V5 voltage regulator internal resistor ratio. For details, see the 7. Function Description is “The  
Power Supply Circuits.”  
E R/W  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
Rb/Ra Ratio  
0
1
0
0
0
1
0
0
0
0
0
0
0
1
0
1
0
Small  
1
1
1
1
0
1
Large  
(18) The Electronic Volume (Double Byte Command)  
This command makes it possible to adjust the brightness of the liquid crystal display by controlling the liquid crystal  
drive voltage V5 through the output from the voltage regulator circuits of the internal liquid crystal power supply.  
This command is a two byte command used as a pair with the electronic volume mode set command and the electronic  
volume register set command, and both commands must be issued one after the other.  
• The Electronic Volume Mode Set  
When this command is input, the electronic volume register set command becomes enabled. Once the electronic volume  
mode has been set, no other command except for the electronic volume register command can be used. Once the  
electronic volume register set command has been used to set data into the register, then the electronic volume mode is  
released.  
E R/W  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
0
1
0
1
0
0
0
0
0
0
1
Rev.1.0a  
EPSON  
41  
S1D10605 Series  
• Electronic Volume Register Set  
By using this command to set six bits of data to the electronic volume register, the liquid crystal drive voltage V5 assumes  
one of the 64 voltage levels.  
When this command is input, the electronic volume mode is released after the electronic volume register has been set.  
E R/W  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
| V5 |  
0
0
0
1
1
1
0
0
0
*
*
*
*
*
*
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
1
Small  
0
0
1
1
0
0
*
*
*
*
1
1
1
1
1
1
1
1
1
1
0
1
Large  
* Inactive bit  
When the electronic volume function is not used, set this to (1, 0, 0, 0, 0, 0)  
• The Electronic Volume Register Set Sequence  
Electronic volume mode set  
Electronic volume register set  
Electronic volume mode clear  
No  
Changes complete?  
Yes  
Figure 20  
(19) Static Indicator (Double Byte Command)  
This command controls the static drive system indicator display. The static indicator display is controlled by this  
command only, and is independent of other display control commands.  
This is used when one of the static indicator liquid crystal drive electrodes is connected to the FR terminal, and the other  
is connected to the FRS terminal. A different pattern is recommended for the static indicator electrodes than for the  
dynamic drive electrodes. If the pattern is too close, it can result in deterioration of the liquid crystal and of the  
electrodes.  
The static indicator ON command is a double byte command paired with the static indicator register set command, and  
thus one must execute one after the other. (The static indicator OFF command is a single byte command.)  
• Static Indicator ON/OFF  
When the static indicator ON command is entered, the static indicator register set command is enabled. Once the static  
indicator ON command has been entered, no other command aside from the static indicator register set command can  
be used. This mode is cleared when data is set in the register by the static indicator register set command.  
E R/W  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
Static Indicator  
0
1
0
1
0
1
0
1
1
0
0
1
OFF  
ON  
42  
EPSON  
Rev.1.0a  
S1D10605 Series  
• Static Indicator Register Set  
This command sets two bits of data into the static indicator register, and is used to set the static indicator into a blinking  
mode.  
E R/W  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
Indicator Display State  
0
1
0
*
*
*
*
*
*
0
0
1
1
0
1
0
1
OFF  
ON (blinking at approximately one second intervals)  
ON (blinking at approximately 0.5 second intervals)  
ON (constantly on)  
* Disabled bit  
• Static Indicator Register Set Sequence  
Static indicator mode set  
Static indicator register set  
Static indicator  
mode clear  
No  
Changes complete?  
Yes  
Figure 21  
(20) Power Save (Compound Command)  
When the display all points ON is performed while the display is in the OFF mode, the power saver mode is entered,  
thus greatly reducing power consumption.  
The power saver mode has two different modes: the sleep mode and the standby mode. When the static indicator is OFF,  
it is the sleep mode that is entered. When the static indicator is ON, it is the standby mode that is entered.  
In the sleep mode and in the standby mode, the display data is saved as is the operating mode that was in effect before  
the power saver mode was initiated, and the MPU is still able to access the display data RAM.  
Refer to figure 22 for power save off sequence.  
Static indicator OFF  
Static indicator ON  
Power saver (compound command)  
Sleep mode  
Standby mode  
Power save OFF (compound command)  
Display all points OFF command  
Static indicator ON  
Power save OFF  
(Display all points OFF command)  
(2 bytes command)  
Sleep mode cancel  
Standby mode cancel  
Figure 22  
Rev.1.0a  
EPSON  
43  
S1D10605 Series  
• Sleep Mode  
This stops all operations in the LCD display system, and as long as there are no accesses from the MPU, the consumption  
current is reduced to a value near the static current. The internal modes during sleep mode are as follows:  
1
The oscillator circuit and the LCD power supply circuit are halted.  
All liquid crystal drive circuits are halted, and the segment in common drive outputs output a VDD level.  
2
• Standby Mode  
The duty LCD display system operations are halted and only the static drive system for the indicator continues to  
operate, providing the minimum required consumption current for the static drive. The internal modes are in the  
following states during standby mode.  
1
The LCD power supply circuits are halted. The oscillator circuit continues to operate.  
The duty drive system liquid crystal drive circuits are halted and the segment and common driver outputs output  
2
a VDD level. The static drive system does not operate.  
When a reset command is performed while in standby mode, the system enters sleep mode.  
* When an external power supply is used, it is recommended that the functions of the external power supply circuit  
be stopped when the power saver mode is started. For example, when the various levels of liquid crystal drive voltage  
are provided by external resistive voltage dividers, it is recommended that a circuit be added in order to cut the  
electrical current flowing through the resistive voltage divider circuit when the power saver mode is in effect. The  
S1D10605 series chips have a liquid crystal display blanking control terminal DOF. This terminal enters an LOW  
state when the power saver mode is launched. Using the output of DOF, it is possible to stop the function of an external  
power supply circuit.  
* When the master is turned on, the oscillator circuit is operable immediately after the powering on.  
(21) NOP  
Non-OPeration Command  
E R/W  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
0
1
0
1
1
1
0
0
0
1
1
(22) Test  
This is a command for IC chip testing. Please do not use it. If the test command is used by accident, it can be cleared  
by applying a LOW signal to the RES input by the reset command or by using an NOP.  
E R/W  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
0
1
0
1
1
1
1
*
*
*
*
* Inactive bit  
Note: The S1D10605 Series chips maintain their operating modes until something happens to change them.  
Consequently, excessive external noise, etc., can change the internal modes of the S1D10605 Series chip. Thus  
in the packaging and system design it is necessary to suppress the noise or take measure to prevent the noise  
from influencing the chip. Moreover, it is recommended that the operating modes be refreshed periodically to  
prevent the effects of unanticipated noise.  
44  
EPSON  
Rev.1.0a  
S1D10605 Series  
Table 16 Table of S1D10605 Series Commands  
Command Code  
Command  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
Function  
(1) Display ON/OFF  
0
1
0
1
0
1
0
1
1
1
0
1
LCD display ON/OFF  
0: OFF, 1: ON  
(2) Display start line set  
(3) Page address set  
0
1
0
0
1
Display start address  
Sets the display RAM display  
start line address  
0
0
1
1
0
0
1
0
0
0
1
0
1
1
Page address  
Sets the display RAM page  
address  
Sets the most significant 4 bits  
of the display RAM column  
address.  
(4) Column address  
set upper bit  
Most significant  
column address  
Column address  
set lower bit  
0
1
0
0
0
0
0
Least significant  
column address  
Sets the least significant 4 bits of  
the display RAM column address.  
(5) Status read  
0
1
1
0
0
1
0
1
1
0
1
0
Status  
0
0
0
0
Reads the status data  
(6) Display data write  
(7) Display data read  
(8) ADC select  
Write data  
Read data  
Writes to the display RAM  
Reads from the display RAM  
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
1
1
0
0
1
0
1
0
1
Sets the display RAM address  
SEG output correspondence  
0: normal, 1: reverse  
(9) Display normal/  
reverse  
0
0
0
1
1
1
0
0
0
0
1
Sets the LCD display normal/  
reverse  
0: normal, 1: reverse  
(10) Display all points  
ON/OFF  
0
1
Display all points  
0: normal display  
1: all points ON  
(11) LCD bias set  
0
1
Sets the LCD drive voltage  
bias ratio  
S1D10605*****.... 0: 1/9, 1: 1/7  
S1D10606*****  
/S1D10608*****  
/S1D10609*****... 0: 1/8, 1: 1/6  
S1D10607*****.... 0: 1/6, 1: 1/5  
Column address increment  
At write: +1  
(12) Read/modify/write  
0
1
0
1
1
1
0
0
0
0
0
At read: 0  
(13) End  
0
0
0
1
1
1
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
0
1
0
*
1
1
*
0
0
*
Clear read/modify/write  
Internal reset  
(14) Reset  
(15) Common output  
mode select  
0
1
Select COM output scan  
direction  
0: normal direction,  
1: reverse direction  
(16) Power control set  
0
0
1
1
0
0
0
0
0
0
1
1
0
0
1
0
Operating  
mode  
Select internal power  
supply operating mode  
(17) V5 voltage  
regulator internal  
resistor ratio set  
Resistor ratio  
Select internal resistor ratio  
(Rb/Ra) mode  
(18) Electronic volume  
mode set  
0
0
1
1
0
0
1
*
0
*
0
0
0
0
0
1
Electronic volume  
register set  
Electronic volume value  
Set the V5 output voltage  
electronic volume register  
(19) Static indicator  
ON/OFF  
0
0
1
1
0
0
1
*
0
*
1
*
0
*
1
*
1
*
0
0
1
0: OFF, 1: ON  
Static indicator  
register set  
Mode  
Set the flashing mode  
(20) Power saver  
Display OFF and display all  
points ON compound command  
(21) NOP  
(22) Test  
0
0
1
1
0
0
1
1
1
1
1
1
0
1
0
*
0
*
1
*
1
*
Command for non-operation  
Command for IC test. Do not  
use this command  
(Note) *: disabled data  
Rev.1.0a  
EPSON  
45  
S1D10605 Series  
9. COMMAND DESCRIPTION  
Instruction Setup: Reference (reference)  
(1) Initialization  
Note: With this IC, when the power is applied, LCD driving non-selective potentials V2 and V3 (SEG pin) and V1  
and V4 (COM pin) are output through the LCD driving output pins SEG and COM. When electric charge is  
remaining in the smoothing capacitor connecting between the LCD driving voltage output pins (V1 to V5) and the  
VDD pin, the picture on the display may become totally dark instantaneously when the power is turned on. To  
avoid occurrence of such a failure, we recommend the following flow when turning on the power.  
1
When the built-in power is being used immediately after turning on the power:  
Turn ON the VDD-VSS power keeping the  
RES pin = LOW.  
When the power is stabilized  
Release the reset state. (RES pin = HIGH)  
Initialized state (Default) *1  
Function setup by command input (User setup)  
(11) LCD bias setting *2  
(8) ADC selection *3  
(15) Common output state selection *4  
Arrange to execute all the procedures  
from releasing the reset state through  
setting the power control within 5ms.  
Function setup by command input (User setup)  
(17) Setting the built-in resistance radio  
for regulation of the V5 voltage *5  
(18) Electronic volume control *6  
Function setup by command input (User setup)  
(16) Power control setting *7  
This concludes the initialization  
* The target time of 5ms will result to vary depending on the panel characteristics and the capacitance of the smoothing  
capacitor. Therefore, we suggest you to conduct an operation check using the actual equipment.  
Notes: Refer to respective sections or paragraphs listed below.  
*1: 7. Function description; “Resetting circuit”  
*2: 8. Command description; (11) “LCD bias setting”  
*3: 8. Command description; (8) “ADC selection”  
*4: 8. Command description; (15) “Common output state selection”  
*5: 7. Function description of functions; “Power circuit” & 8. Command description; (17) “Setting the  
built-in resistance radio for regulation of the V5 voltage”  
*6: 7. Function description; “Power circuit” & 8. Command description; (18) “Electronic volume control”  
*7: 7. Function description; “Power circuit” & 8. Command description; (16) “Power control setting”  
46  
EPSON  
Rev.1.0a  
S1D10605 Series  
2
When the built-in power is not being used immediately after turning on the power:  
Turn ON the VDD-VSS power keeping the  
RES pin = LOW.  
When the power is stabilized  
Release the reset state. (RES pin = HIGH)  
Arrange to be in the power saving  
state within 5ms after releasing the  
reset state.  
Initialized state (Default) *1  
Power saver START (multiple commands) *8  
Function setup by command input (User setup)  
(11) LCD bias setting *2  
(8) ADC selection *3  
(15) Common output state selection *4  
Function setup by command input (User setup)  
(17) Setting the built-in resistance radio  
for regulation of the V5 voltage *5  
(18) Electronic volume control *6  
Power saver OFF *8  
Arrange to start power control  
setting within 5ms after turning  
OFF the power saver.  
Function setup by command input (User setup)  
(16) Power control setting *7  
This concludes the initialization  
* The target time of 5ms will result to vary depending on the panel characteristics and the capacitance of the smoothing  
capacitor. Therefore, we suggest you to conduct an operation check using the actual equipment.  
Notes: Refer to respective sections or paragraphs listed below.  
*1: 7. Function description; “Resetting circuit”  
*2: 8. Command description; (11) “LCD bias setting”  
*3: 8. Command description; (8) “ADC selection”  
*4: 8. Command description; (15) “Common output state selection”  
*5: 7. Function description; “Power circuit” & 8. Command description; “Setting the built-in resistance  
radio for regulation of the V5 voltage”  
*6: 7. Function description; “Power circuit” & 8. Command description; “Electronic volume control”  
*7: 7. Function description; “Power circuit” & 8. Command description; “Power control setting”  
*8: The power saver ON state can either be in sleep state or stand-by state.  
8. Command description; Power saver START (multiple commands)  
Rev.1.0a  
EPSON  
47  
S1D10605 Series  
(2) Data Display  
End of initialization  
Function setup by command input (User setup)  
(2) Display start line set *9  
(3) Page address set *10  
(4) Column address set *11  
Notes: Reference items  
*9: 8. Command Description; (2) “Display  
Function setup by command input (User setup)  
(6) Display data write *12  
start line set”  
*10: 8. Command Description; (3) “Page address  
set”  
Function setup by command input (User setup)  
(1) Display ON/OFF *13  
*11: 8. Command Description; (4) “Column  
address set”  
*12: 8. Command Description; (6) “Display data  
End of data display  
write”  
*13: 8. Command Description; (1) “Display ON/  
OFF”  
(3) Power OFF *14  
Avoid displaying all the data at the data  
display start (when the display is ON) in  
white.  
Optional status  
Function setup by command input (User setup)  
(20) Power save *15  
Set the time (  
the VDD - VSS power (VDD - VSS = 1.8 V) longer  
than the time ( ) when the potential of V ~ V  
becomes below the threshold voltage  
(approximately 1 V) of the LCD panel.  
t
L) from reset active to turning off  
t
H
5
1
Reset active (RES pin = LOW)  
For  
event. When  
between V and VDD to reduce it.  
t
H
, refer to the <Reference Data> of this  
t
H
is too long, insert a resistor  
V
DD – VSS power OFF  
5
Notes: Reference items  
*14: The logic circuit of this IC’s power supply VDD - VSS controls the driver of the LCD power supply  
VDD - V5. So, if the power supply VDD - VSS is cut off when the LCD power supply VDD - V5 has  
still any residual voltage, the driver (COM. SEG) may output any uncontrolled voltage. When turning  
off the power, observe the following basic procedures:  
• After turning off the internal power supply, make sure that the potential V5 to V1 has become below  
the threshold voltage of the LCD panel, and then turn off this IC’s power supply (VDD - VSS).  
6. Description of Function, 6.7 Power Circuit  
*15: After inputting the power save command, be sure to reset the function using the RES terminal until the  
power supply VDD - VSS is turned off. 7. Command Description (20) “Power Save”  
48  
EPSON  
Rev.1.0a  
S1D10605 Series  
Refresh  
It is recommended that the operating modes and display contents be refreshed periodically to prevent the effect of  
unexpected noise.  
Refresh sequence  
NOP command  
Set all commands to the ready state  
(Including default state setting.)  
Refreshing of DRAM  
Precautions on Turning off the power  
Observe Paragraph 1) as the basic rule.  
<Turning the power (VDD - VSS) off>  
1) Power Save (The LCD powers (VDD - V5) are off.) Reset input Power (VDD - VSS) OFF  
• Observe tL > tH.  
• When tL < tH, an irregular display may occur.  
Set tL on the MPU according to the software. tH is determined according to the external capacity C2 (smoothing  
capacity of V5 to V1) and the driver’s discharging capacity.  
Power  
save Reset Power Off  
tL  
V
DD  
1.8 V  
RES  
V
V
DD  
DD  
SEG  
Since the power (VDD-VSS) is  
cut off, the output comes not  
to be fixed.  
COM  
V1  
V2  
V3  
V4  
V5  
About 1 V: Below Vth of the LCD panel  
For tH, see Figure 23.  
tH  
Rev.1.0a  
EPSON  
49  
S1D10605 Series  
<Turning the power (VDD - VSS) off : When command control is not possible.>  
2) Reset (The LCD powers (VDD - VSS) are off.) Power (VDD - VSS) OFF  
• Observe tL > tH.  
• When tL < tH, an irregular display may occur.  
For tL, make the power (VDD - VSS) falling characteristics longer or consider any other method. tH is  
determined according to the external capacity C2 (smoothing capacity of V5 to V1) and the driver’s discharging  
capacity.  
Reset  
Power Off  
t
L
V
DD  
1.8 V  
RES  
VDD  
SEG  
Since the power (VDD-VSS) is  
cut off, the output comes not  
be fixed.  
VDD  
COM  
V
V
V
V
V
1
2
3
4
5
About 1 V: Below Vth of the LCD panel  
t
H
For tH, see Figure 23.  
<Reference Data>  
V5 voltage falling (discharge) time (tH) after the process of operation power save reset.  
V5 voltage falling (discharge) time (tH) after the process of operation reset.  
100  
V
DD-VSS(V)  
1.8  
2.4  
3.0  
50  
0
0.5  
to V capacity (µF)  
1.0  
C
2: V  
1
5
Figure 23  
50  
EPSON  
Rev.1.0a  
S1D10605 Series  
10. ABSOLUTE MAXIMUM RATINGS  
Unless otherwise noted, VSS = 0 V  
Table 17  
Symbol  
Parameter  
Power Supply Voltage  
Conditions  
Unit  
V
VDD  
VSS2  
–0.3 to +6.0  
–4.0 to +0.3  
Power supply voltage (2) (VDD standard)  
Power supply voltage (3) (VDD standard)  
Power supply voltage (4) (VDD standard)  
Input voltage  
V
V5, VOUT  
V1, V2, V3, V4  
VIN  
–18.0 to +0.3  
V5 to +0.3  
V
V
–0.3 to VDD + 0.3  
–0.3 to VDD + 0.3  
–40 to +85  
V
Output voltage  
VO  
V
Operating temperature  
TOPR  
°C  
Storage temperature  
TCP  
Bare chip  
TSTR  
–55 to +100  
–55 to +125  
°C  
V
CC  
V
DD  
SS  
V
V
DD  
V
GND  
SS2, V1 to V4  
V
5, VOUT  
System (MPU) side  
S1D10605 Series side  
Figure 24  
Notes and Cautions  
1. The VSS2, V1 to V5 and VOUT are relative to the VDD = 0V reference.  
2. Insure that the voltage levels of V1, V2, V3, and V4 are always such that VDD V1 V2 V3 V4 V5.  
3. Permanent damage to the LSI may result if the LSI is used outside of the absolute maximum ratings. Moreover,  
it is recommended that in normal operation the chip be used at the electrical characteristic conditions, and use of  
the LSI outside of these conditions may not only result in malfunctions of the LSI, but may have a negative  
impact on the LSI reliability as well.  
Rev.1.0a  
EPSON  
51  
S1D10605 Series  
11. DC CHARACTERISTICS  
Unless otherwise specified, VSS = 0 V, VDD = 3.0 V ± 10%, Ta = –40 to 85°C  
Table 18  
Rating  
Typ.  
Applicable  
Pin  
Item  
Symbol  
Condition  
Units  
Min.  
Max.  
Operating Recom-  
Voltage (1) mended  
Voltage  
VDD  
2.7  
3.3  
V
VDD*1  
Possible  
1.8  
3.6  
V
VDD*1  
Operating  
Voltage  
Operating Recom-  
Voltage (2) mended  
Voltage  
VSS2  
VSS2  
(Relative to VDD)  
–3.3  
–4.0  
–2.7  
–1.8  
V
V
VSS2  
VSS2  
Possible  
(Relative to VDD)  
Operating  
Voltage  
Operating Possible  
Voltage (3) Operating  
Voltage  
V5  
(Relative to VDD)  
(Relative to VDD)  
(Relative to VDD)  
–14.0  
0.4 × V5  
V5  
–4.5  
VDD  
V
V
V
V5 *2  
V1, V2  
V3, V4  
Possible  
Operating  
Voltage  
Possible  
V1, V2  
V3, V4  
0.6 × V5  
Operating  
Voltage  
High-level Input  
Voltage  
Low-level Input  
Voltage  
VIHC  
VILC  
0.8 × VDD  
VDD  
V
V
*3  
*3  
VSS  
0.2 × VDD  
High-level Output  
Voltage  
Low-level Output  
Voltage  
VOHC  
VOLC  
IOH = –0.5 mA  
IOL = 0.5 mA  
0.8 × VDD  
VDD  
V
V
*4  
*4  
VSS  
0.2 × VDD  
Input leakage  
current  
Output leakage  
current  
ILI  
VIN = VDD or VSS  
–1.0  
–3.0  
1.0  
3.0  
µA  
µA  
*5  
*6  
ILO  
Liquid Crystal Driver  
ON Resistance  
RON  
Ta = 25°C  
(Relative To VDD) V5 = –8.0 V  
V5 = –14.0 V  
2.0  
3.2  
3.5  
5.4  
kΩ  
kΩ  
SEGn  
COMn *7  
Static Consumption  
Current  
Output Leakage  
Current  
ISSQ  
I5Q  
0.01  
5
µA  
VSS, VSS2  
V5 = –18.0 V  
(Relative To VDD)  
0.01  
15  
µA  
V5  
Input Terminal  
Capacitance  
CIN  
Ta = 25°C f = 1 MHz  
5
8
pF  
Oscillator  
Frequency Oscillator  
Internal  
fOSC  
fCL  
Ta = 25°C  
18  
18  
22  
22  
26  
26  
kHz  
kHz  
*8  
External  
Input  
CL  
S1D10605*****/10607*****  
Internal  
Oscillator  
External  
Input  
fOSC Ta = 25°C  
27  
14  
33  
17  
39  
20  
kHz  
kHz  
*8  
S1D10606*****/10608*****/  
fCL  
CL  
10609*****  
52  
EPSON  
Rev.1.0a  
S1D10605 Series  
Table 19  
Rating  
Typ.  
Applicable  
Item  
Symbol  
Condition  
Units  
Pin  
Min.  
Max.  
Input voltage  
VSS2 With Quad  
(Relative To VDD)  
–4.0  
–1.8  
V
VSS2  
Supply Step-up VOUT (Relative to VDD)  
output voltage  
Circuit  
–16.0  
–16.0  
–14.0  
V
VOUT  
Voltage regulator VOUT (Relative to VDD)  
Circuit Operating  
Voltage  
–6.0  
–4.5  
V
V
V
VOUT  
V5 *9  
*10  
Voltage Follower  
Circuit Operating  
Voltage  
V5  
(Relative to VDD)  
Base Voltage  
VREG0 Ta = 25°C  
–0.05%/°C –2.04 –2.10 –2.16  
Note: 1. VDD=0V is assumed for voltage VSS, V1 to V5, and VOUT.  
2. Voltage V1, V2, V3 and V4 must always keep up the condition of VDD V1 V2 V3 V4 V5.  
3. If the LSI exceeds its absolute maximum rating, it may cause permanent damage. It is desirable to use it  
under electrical conditions during general operation. Otherwise, a malfunction of the LSI may be caused  
and may affect LSI reliability.  
4. For the combined operating voltage of VDD and V5 systems, please refer to page 58, "Reference data 4,  
• Operating range of VDD and V5 systems."  
Rev.1.0a  
EPSON  
53  
S1D10605 Series  
• Dynamic Consumption Current (1), During Display, with the Internal Power Supply OFF  
Current consumed by total ICs when an external power supply is used.  
Table 20 Display Pattern OFF  
Ta = 25°C  
Rating  
Item  
Symbol  
Condition  
Units Notes  
Min. Typ. Max.  
IDD (1)  
VDD = 3.0 V, V5 – VDD = –11.0 V  
VDD = 3.0 V, V5 – VDD = –11.0 V  
VDD = 3.0 V, V5 – VDD = –8.0 V  
VDD = 3.0 V, V5 – VDD = –8.0 V  
VDD = 3.0 V, V5 – VDD = –8.0 V  
16  
13  
9
7
10  
27  
22  
15  
12  
17  
µA  
*11  
S1D10605*****  
S1D10606*****  
S1D10607*****  
S1D10608*****/  
S1D10609*****  
Table 21 Display Pattern Checker  
Condition  
Ta = 25°C  
Rating  
Item  
Symbol  
Units Notes  
Min. Typ. Max.  
IDD (1)  
VDD = 3.0 V, V5 – VDD = –11.0 V  
VDD = 3.0 V, V5 – VDD = –11.0 V  
VDD = 3.0 V, V5 – VDD = –8.0 V  
VDD = 3.0 V, V5 – VDD = –8.0 V  
VDD = 3.0 V, V5 – VDD = –8.0 V  
21  
17  
12  
10  
13  
35  
29  
20  
17  
22  
µA  
*11  
S1D10605*****  
S1D10606*****  
S1D10607*****  
S1D10608*****/  
S1D10609*****  
• Dynamic Consumption Current (2), During Display, with the Internal Power Supply ON  
Table 22 Display Pattern OFF  
Ta = 25°C  
Rating  
Item  
Symbol  
Condition  
Units Notes  
Min. Typ. Max.  
IDD (2)  
V
V
DD = 3.0 V, Quad step-up voltage. Normal Mode  
100 150 µA *12  
150 230  
59 99  
95 159  
91 152  
139 232  
55 92  
90 150  
58 97  
94 157  
S1D10605*****  
S1D10606*****  
5
– VDD = –11.0 V  
High-Power Mode  
V
V
DD = 3.0 V, Triple step-up voltage. Normal Mode  
5
– VDD = –8.0 V  
DD = 3.0 V, Quad step-up voltage. Normal Mode  
– VDD = –11.0 V  
DD = 3.0 V, Triple step-up voltage. Normal Mode  
High-Power Mode  
V
V
5
High-Power Mode  
V
S1D10607*****  
V5 – VDD = –8.0 V  
High-Power Mode  
Normal Mode  
VDD = 3.0 V, Triple step-up voltage.  
V5 – VDD = –8.0 V  
S1D10608*****/  
S1D10609*****  
High-Power Mode  
54  
EPSON  
Rev.1.0a  
S1D10605 Series  
Table 23 Display Pattern Checker  
Ta = 25°C  
Rating  
Min. Typ. Max.  
Item  
Symbol  
Condition  
Units Notes  
IDD (2)  
V
DD = 3.0 V, Quad step-up voltage. Normal Mode  
120 180 µA *12  
170 255  
67 112  
103 172  
105 175  
158 225  
60 100  
98 164  
67 112  
104 174  
S1D10605*****  
S1D10606*****  
V5 – VDD = –11.0 V  
High-Power Mode  
DD = 3.0 V, Triple step-up voltage. Normal Mode  
– VDD = –8.0 V  
DD = 3.0 V, Quad step-up voltage. Normal Mode  
– VDD = –11.0 V  
DD = 3.0 V, Triple step-up voltage. Normal Mode  
– VDD = –8.0 V  
DD = 3.0 V, Triple step-up voltage. Normal Mode  
– VDD = –8.0 V  
V
V
5
High-Power Mode  
V
V
5
High-Power Mode  
V
S1D10607*****  
V
5
High-Power Mode  
V
S1D10608*****/  
V
5
S1D10609*****  
High-Power Mode  
• Consumption Current at Time of Power Saver Mode, VSS = 0 V, VDD = 3.0 V ± 10%  
Table 24  
Ta = 25°C  
Rating  
Min. Typ. Max.  
Item  
Sleep mode  
Symbol  
Condition  
Units Notes  
IDDS1  
IDDS2  
IDDS1  
IDDS2  
IDDS1  
IDDS2  
IDDS1  
0.01  
4
5
8
5
8
5
6
5
µA  
S1D10605*****  
Standby Mode S1D10605*****  
Sleep mode  
0.01  
4
S1D10606*****  
Standby Mode S1D10606*****  
Sleep mode  
0.01  
3
S1D10607*****  
Standby Mode S1D10607*****  
S1D10608*****/  
Sleep mode  
0.01  
S1D10609*****  
IDDS2  
4
8
Standby Mode S1D10608*****/  
S1D10609*****  
Rev.1.0a  
EPSON  
55  
S1D10605 Series  
Reference Data 1  
• Dynamic Consumption Current (1) During LCD Display Using an External Power Supply  
40  
Conditions: Internal power supply OFF  
External power supply in use  
S1D10605/S1D10606 (–11.0V):  
V5 – VDD = –11.0 V  
S1D10606 (–8.0V)/S1D10607/  
S1D10608/S1D10609:  
V5 – VDD = –8.0 V  
Display pattern: OFF  
30  
20  
10  
0
S1D10605(-11V)  
S1D10606(-11V)  
Ta = 25°C  
S1D10607(-8V)  
S1D10606(-8V)  
S1D10608/S1D10609(-8V)  
Note: *11  
0
2
4
Figure 25  
40  
30  
20  
10  
0
Conditions: Internal power supply OFF  
External power supply in use  
S1D10605/S1D10606 (–11.0V):  
V5 – VDD = –11.0 V  
S1D10606 (–8.0V)/S1D10607/  
S1D10608/S1D10609:  
V5 – VDD = –8.0 V  
S1D10605(-11V)  
S1D10606(-11V)  
Display pattern: Checker  
Ta = 25°C  
S1D10607(-8V)  
S1D10606(-8V)  
Note: *11  
S1D10608/S1D10609(-8V)  
0
2
4
Figure 26  
56  
EPSON  
Rev.1.0a  
S1D10605 Series  
Reference Data 2  
• Dynamic Consumption Current (2) During LCD display using the internal power supply  
Conditions: Internal power supply ON  
S1D10605/S1D10606 (×4, –11.0V):  
4× step-up voltage: V – VDD = –11.0 V  
140  
120  
100  
80  
5
S1D10606 (×3, –8.0V)/S1D10607/  
S1D10608/S1D10609:  
S1D10605(-11V)  
S1D10606(-11V)  
3× step-up voltage: V  
Normal mode  
5 – VDD = –8.0 V  
Display pattern: OFF  
Ta = 25°C  
S1D10606(-8V)  
S1D10608/S1D10609(-8V)  
60  
S1D10607(-8V)  
40  
20  
Note: *12  
0
0
2
4
Figure 27  
Conditions: Internal power supply ON  
S1D10605/S1D10606 (×4, –11.0V):  
4× step-up voltage: V – VDD = –11.0 V  
5
S1D10606 (×3, –8.0V)/S1D10607/  
S1D10608/S1D10609:  
3× step-up voltage: V5 – VDD = –8.0 V  
Normal mode  
Display pattern: Checker  
140  
120  
100  
80  
S1D10605(-11V)  
S1D10606(-11V)  
Ta = 25°C  
Note: *12  
S1D10606(-8V)  
S1D10608/S1D10609(-8V)  
S1D10607(-8V)  
60  
40  
20  
0
0
2
4
Figure 28  
Rev.1.0a  
EPSON  
57  
S1D10605 Series  
Reference Data 3  
• Dynamic Consumption Current (3) During access  
10  
This figure indicates the consumption  
current while the checker pattern is  
constantly written through fCYC  
If there is no access, then only (1) remains.  
.
S1D10605  
S1D10606/S1D10608/S1D10609  
S1D10607  
Conditions: Internal power supply OFF,  
external power supply used  
S1D10605:  
1
VDD – VSS = 3.0 V, V5=–11.0 V  
S1D10606/S1D10607/S1D10608/  
S1D10609:  
VDD – VSS = 3.0 V, V  
5=–8.0 V  
Ta = 25°C  
0.1  
0.01  
0.001  
0.01  
0.1  
1
10  
f
CYC[MHz]  
Figure 29  
Reference Data 4  
• Operating voltage range of VSS and V5 systems  
–20  
S1D10605 Series Note: *2  
Temperature condition :  
VDD – VSS = 1.8 to 2.2V : Ta = –10 to 85°C  
VDD – VSS = 2.2 to 3.6V : Ta = –40 to 85°C  
–15  
–14  
–10  
–7.2  
Operating  
range  
–5  
0
–4.5  
1.8  
3.0  
3.6  
1
2
3
4
5
0
VDD[V]  
Figure 30  
58  
EPSON  
Rev.1.0a  
S1D10605 Series  
• The Relationship Between Oscillator Frequency fOSC, Display Clock Frequency fCL and the Liquid Crystal Frame  
Rate Frequency fFR  
Table 25  
Item  
fCL  
fFR  
When the internal oscillator circuit is used  
fOSC  
fOSC  
S1D10605*****  
S1D10606*****  
S1D10607*****  
S1D10608*****  
S1D10609*****  
____  
_____  
×
65  
4
4
When the internal oscillator circuit is not used  
When the internal oscillator circuit is used  
When the internal oscillator circuit is not used  
When the internal oscillator circuit is used  
When the internal oscillator circuit is not used  
When the internal oscillator circuit is used  
When the internal oscillator circuit is not used  
When the internal oscillator circuit is used  
When the internal oscillator circuit is not used  
External input (fCL)  
fCL  
____  
260  
fOSC  
fOSC  
____  
_____  
×
8
8
49  
External input (fCL)  
fCL  
____  
196  
fOSC  
fOSC  
____  
_____  
×
8
8
33  
External input (fCL)  
fCL  
____  
264  
fOSC  
fOSC  
____  
_____  
×
8
8
55  
External input (fCL)  
fCL  
____  
220  
fOSC  
fOSC  
____  
_____  
×
8
8
53  
External input (fCL)  
fCL  
____  
212  
(fFR is the liquid crystal alternating current period, and not the FR signal period.)  
References for items market with *  
*1 While a broad range of operating voltages is guaranteed, performance cannot be guaranteed if there are  
sudden fluctuations to the voltage while the MPU is being accessed.  
*2 The operating voltage range for the VDD system and the V5 system is as shown in Figure 30. This applies  
when the external power supply is being used.  
*3 The A0, D0 to D5, D6 (SCL), D7 (SI), RD (E), WR (R/W), CS1, CS2, CLS, CL, FR, M/S, C86, P/S, DOF,  
RES, IRS, and HPM terminals.  
*4 The D0 to D7, FR, FRS, DOF, and CL terminals.  
*5 The A0, RD (E), WR (R/W), CS1, CS2, CLS, M/S, C86, P/S, RES, IRS, and HPM terminals.  
*6 Applies when the D0 to D5, D6 (SCL), D7 (SI), CL, FR, and DOF terminals are in a high impedance state.  
*7 These are the resistance values for when a 0.1 V voltage is applied between the output terminal SEGn or  
COMn and the various power supply terminals (V1, V2, V3, and V4). These are specified for the operating  
voltage (3) range.  
RON = 0.1 V/I (Where I is the current that flows when 0.1 V is applied while the power supply is ON.)  
*8 See Table 9-7 for the relationship between the oscillator frequency and the frame rate frequency.  
*9 The V5 voltage regulator circuit regulates within the operating voltage range of the voltage follower.  
*10 This is the internal voltage reference supply for the V5 voltage regulator circuit. In the S1D10605 Series  
chips, the temperature range can come in three types as VREG options: (1) approximately –0.05%/°C, (2) –  
0.2%/°C, and (3) external input.  
*11, 12 It indicates the current consumed on ICs alone when the internal oscillator circuit and display are turned  
on.  
The S1D10605 is 1/9 biased, S1D10606/S1D10608/S1D10609 is 1/8 biased and S1D10607 is 1/6 biased.  
Does not include the current due to the LCD panel capacity and wiring capacity.  
Applicable only when there is no access from the MPU.  
*12 It is the value on a model having the VREG option temperature gradient is –0.05%/°C when the V5 voltage  
regulator internal resistor is used.  
Rev.1.0a  
EPSON  
59  
S1D10605 Series  
Timing Characteristics  
System Bus Read/Write Characteristics 1 (For the 8080 Series MPU)  
A0  
t
AW8  
t
AH8  
CS1  
(CS2="1")  
t
CYCL8  
t
CYCH8  
t
CCLR, tCCLW  
WR, RD  
t
CCHR, tCCHW  
t
CCLR, tCCLW  
t
DS8  
t
DH8  
D0 to D7  
(Write)  
t
ACC8  
t
OH8  
D0 to D7  
(Read)  
Figure 31  
Table 26  
Symbol  
(VDD = 2.7 V to 3.6 V, Ta = –40 to 85°C )  
Rating  
Item  
Signal  
Condition  
Units  
Min.  
Max.  
Address hold time  
Address setup time  
A0  
tAH8  
tAW8  
0
0
ns  
ns  
System cycle time 1  
System cycle time 2  
A0  
tCYCL8  
tCYCH8  
300  
300  
ns  
ns  
Control LOW pulse width (Write)  
Control LOW pulse width (Read)  
Control HIGH pulse width (Write)  
Control HIGH pulse width (Read)  
WR  
RD  
WR  
RD  
tCCLW  
tCCLR  
tCCHW  
tCCHR  
60  
120  
60  
ns  
ns  
ns  
ns  
60  
Data setup time  
Data hold time  
D0 to D7 tDS8  
tDH8  
40  
15  
ns  
ns  
RD access time  
Output disable time  
tACC8  
tOH8  
CL = 100 pF  
10  
140  
100  
ns  
ns  
60  
EPSON  
Rev.1.0a  
S1D10605 Series  
Table 27  
Symbol  
(VDD = 2.4 V to 3.0 V, Ta = –40 to 85°C )  
Rating  
Item  
Signal  
Condition  
Units  
Min.  
Max.  
Address hold time  
Address setup time  
A0  
tAH8  
tAW8  
0
0
ns  
ns  
System cycle time 1  
System cycle time 2  
A0  
tCYCL8  
tCYCH8  
450  
450  
ns  
ns  
Control LOW pulse width (Write)  
Control LOW pulse width (Read)  
Control HIGH pulse width (Write)  
Control HIGH pulse width (Read)  
WR  
RD  
WR  
RD  
tCCLW  
tCCLR  
tCCHW  
tCCHR  
90  
180  
90  
ns  
ns  
ns  
ns  
90  
Data setup time  
Data hold time  
D0 to D7 tDS8  
tDH8  
60  
20  
ns  
ns  
RD access time  
Output disable time  
tACC8  
tOH8  
CL = 100 pF  
10  
230  
150  
ns  
ns  
Table 28  
(VDD = 1.8 V to 2.4 V, Ta = –40 to 85°C )  
Rating  
Item  
Signal  
Symbol  
Condition  
Units  
Min.  
Max.  
Address hold time  
Address setup time  
A0  
tAH8  
tAW8  
0
0
ns  
ns  
System cycle time 1  
System cycle time 2  
A0  
tCYCL8  
tCYCH8  
600  
600  
ns  
ns  
Control LOW pulse width (Write)  
Control LOW pulse width (Read)  
Control HIGH pulse width (Write)  
Control HIGH pulse width (Read)  
WR  
RD  
WR  
RD  
tCCLW  
tCCLR  
tCCHW  
tCCHR  
120  
240  
120  
120  
ns  
ns  
ns  
ns  
Data setup time  
Data hold time  
D0 to D7 tDS8  
tDH8  
80  
30  
ns  
ns  
RD access time  
Output disable time  
tACC8  
tOH8  
CL = 100 pF  
10  
280  
200  
ns  
ns  
*1 The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is  
extremely fast, (tr + tf) (tCYCL (H) 8 tCCLW tCCHW) for (tr + tf) (tCYCL (H) 8 tCCLR tCCHR) are specified.  
*2 All timing is specified using 20% and 80% of VDD as the reference.  
*3 tCCLW and tCCLR are specified as the overlap between CS1 being LOW (CS2 = HIGH) and WR and RD  
being at the LOW level.  
Rev.1.0a  
EPSON  
61  
S1D10605 Series  
System Bus Read/Write Characteristics 2 (6800 Series MPU)  
A0  
R/W  
t
AW6  
t
AH6  
CS1  
(CS2="1")  
t
CYCH6  
t
CYCL6  
t
EWHR, tEWHW  
E
t
EWLR, tEWLW  
t
EWHR, tEWHW  
t
DS6  
t
DH6  
D0 to D7  
(Write)  
t
ACC6  
t
OH6  
D0 to D7  
(Read)  
Figure 32  
Table 29  
(VDD = 2.7 V to 3.6 V, Ta = –40 to 85°C )  
Rating  
Item  
Signal  
Symbol  
Condition  
Units  
Min.  
Max.  
Address hold time  
Address setup time  
A0  
tAH6  
tAW6  
0
0
ns  
ns  
System cycle time 1  
System cycle time 2  
A0  
tCYCH6  
tCYCL6  
300  
300  
ns  
ns  
Data setup time  
Data hold time  
D0 to D7  
tDS6  
tDH6  
40  
15  
ns  
ns  
Access time  
Output disable time  
tACC6  
tOH6  
CL = 100 pF  
10  
140  
100  
ns  
ns  
Enable HIGH pulse Read  
time Write  
Enable LOW pulse Read  
time Write  
E
E
tEWHR  
tEWHW  
tEWLR  
tEWLW  
120  
60  
ns  
ns  
60  
60  
ns  
ns  
62  
EPSON  
Rev.1.0a  
S1D10605 Series  
Table 30  
(VDD = 2.4 V to 3.0 V, Ta = –40 to 85°C )  
Rating  
Item  
Signal  
Symbol  
Condition  
Units  
Min.  
Max.  
Address hold time  
Address setup time  
A0  
tAH6  
tAW6  
0
0
ns  
ns  
System cycle time 1  
System cycle time 2  
A0  
tCYCH6  
tCYCL6  
450  
450  
ns  
ns  
Data setup time  
Data hold time  
D0 to D7  
tDS6  
tDH6  
60  
20  
ns  
ns  
Access time  
Output disable time  
tACC6  
tOH6  
CL = 100 pF  
10  
230  
150  
ns  
ns  
Enable HIGH pulse Read  
E
E
tEWHR  
tEWHW  
tEWLR  
tEWLW  
180  
90  
ns  
ns  
time  
Enable LOW pulse Read  
time Write  
Write  
90  
90  
ns  
ns  
Table 31  
(VDD = 1.8 V to 2.4 V, Ta = –40 to 85°C )  
Rating  
Item  
Signal  
Symbol  
Condition  
Units  
Min.  
Max.  
Address hold time  
Address setup time  
A0  
tAH6  
tAW6  
0
0
ns  
ns  
System cycle time 1  
System cycle time 2  
A0  
tCYCH6  
tCYCL6  
600  
600  
ns  
ns  
Data setup time  
Data hold time  
D0 to D7  
tDS6  
tDH6  
80  
30  
ns  
ns  
Access time  
Output disable time  
tACC6  
tOH6  
CL = 100 pF  
10  
280  
200  
ns  
ns  
Enable HIGH pulse Read  
time Write  
Enable LOW pulse Read  
time Write  
E
E
tEWHR  
tEWHW  
tEWLR  
tEWLW  
240  
120  
ns  
ns  
120  
120  
ns  
ns  
*1 The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is  
extremely fast, (tr + tf) (tCYCH (L) 6 tEWLW tEWHW) for (tr + tf) (tCYCH (L) 6 tEWLR tEWHR) are specified.  
*2 All timing is specified using 20% and 80% of VDD as the reference.  
*3 tEWLW and tEWLR are specified as the overlap between CS1 being LOW (CS2 = HIGH) and E.  
Rev.1.0a  
EPSON  
63  
S1D10605 Series  
The Serial Interface  
t
CSS  
t
CSH  
CS1  
(CS2="1")  
t
SAS  
t
SAH  
A0  
t
SCYC  
t
SLW  
SCL  
t
SHW  
t
f
t
r
t
SDS  
t
SDH  
SI  
Figure 33  
Table 32  
(VDD = 2.7 V to 3.6 V, Ta = –40 to 85°C )  
Rating  
Item  
Signal  
Symbol  
Condition  
Units  
Min.  
Max.  
Serial Clock Period  
SCL HIGH pulse width  
SCL LOW pulse width  
SCL  
tSCYC  
tSHW  
tSLW  
250  
100  
100  
ns  
ns  
ns  
Address setup time  
Address hold time  
A0  
SI  
tSAS  
tSAH  
tSDS  
tSDH  
150  
150  
ns  
ns  
Data setup time  
Data hold time  
100  
100  
ns  
ns  
CS-SCL time  
CS  
tCSS  
tCSH  
150  
150  
ns  
ns  
64  
EPSON  
Rev.1.0a  
S1D10605 Series  
Table 33  
(VDD = 2.4 V to 3.0 V, Ta = –40 to 85°C )  
Rating  
Item  
Signal  
Symbol  
Condition  
Units  
Min.  
Max.  
Serial Clock Period  
SCL HIGH pulse width  
SCL LOW pulse width  
SCL  
tSCYC  
tSHW  
tSLW  
300  
125  
125  
ns  
ns  
ns  
Address setup time  
Address hold time  
A0  
SI  
tSAS  
tSAH  
tSDS  
tSDH  
200  
200  
ns  
ns  
Data setup time  
Data hold time  
125  
125  
ns  
ns  
CS-SCL time  
CS  
tCSS  
tCSH  
200  
200  
ns  
ns  
Table 34  
(VDD = 1.8 V to 2.4 V, Ta = –40 to 85°C )  
Rating  
Item  
Signal  
Symbol  
Condition  
Units  
Min.  
Max.  
Serial Clock Period  
SCL HIGH pulse width  
SCL LOW pulse width  
SCL  
tSCYC  
tSHW  
tSLW  
400  
150  
150  
ns  
ns  
ns  
Address setup time  
Address hold time  
A0  
SI  
tSAS  
tSAH  
tSDS  
tSDH  
250  
250  
ns  
ns  
Data setup time  
Data hold time  
150  
150  
ns  
ns  
CS-SCL time  
CS  
tCSS  
tCSH  
250  
250  
ns  
ns  
*1 The input signal rise and fall time (tr, tf) are specified at 15 ns or less.  
*2 All timing is specified using 20% and 80% of VDD as the standard.  
Rev.1.0a  
EPSON  
65  
S1D10605 Series  
Display Control Output Timing  
CL  
(OUT)  
t
DFR  
FR  
Figure 34  
Table 35  
(VDD = 2.7 V to 3.6 V, Ta = –40 to 85°C)  
Rating  
Units  
Item  
FR delay time  
Signal Symbol  
FR  
Condition  
CL = 50 pF  
Min.  
Typ.  
Max.  
tDFR  
15  
60  
ns  
Table 36  
(VDD = 2.4 V to 3.0 V, Ta = –40 to 85°C)  
Rating  
Units  
Item  
FR delay time  
Signal Symbol  
FR  
Condition  
Min.  
Typ.  
Max.  
tDFR  
CL = 50 pF  
20  
80  
ns  
Table 37  
(VDD = 1.8 V to 2.4 V, Ta = –40 to 85°C)  
Rating  
Units  
Item  
FR delay time  
Signal Symbol  
FR  
Condition  
Min.  
Typ.  
Max.  
tDFR  
CL = 50 pF  
30  
120  
ns  
*1 Valid only when the master mode is selected.  
*2 All timing is based on 20% and 80% of VDD.  
66  
EPSON  
Rev.1.0a  
S1D10605 Series  
Reset Timing  
t
RW  
RES  
t
R
Internal  
status  
During reset  
Reset complete  
Figure 35  
Table 38  
(VDD = 2.7 V to 3.6 V, Ta = –40 to 85°C)  
Rating  
Units  
Item  
Signal Symbol  
Condition  
Min.  
Typ.  
Max.  
1
Reset time  
tR  
µs  
µs  
Reset LOW pulse width  
RES  
tRW  
1
Table 39  
(VDD = 2.4 V to 3.0 V, Ta = –40 to 85°C)  
Rating  
Units  
Item  
Signal Symbol  
Condition  
Min.  
Typ.  
Max.  
1.3  
Reset time  
tR  
µs  
µs  
Reset LOW pulse width  
RES  
tRW  
1.3  
Table 40  
(VDD = 1.8 V to 2.4 V, Ta = –40 to 85°C)  
Rating  
Units  
Item  
Signal Symbol  
Condition  
Min.  
Typ.  
Max.  
1.5  
Reset time  
tR  
µs  
µs  
Reset LOW pulse width  
RES  
tRW  
1.5  
*1 All timing is specified with 20% and 80% of VDD as the standard.  
Rev.1.0a  
EPSON  
67  
S1D10605 Series  
12. THE MPU INTERFACE (REFERENCE EXAMPLES)  
The S1D10605 Series can be connected to either 80 × 86 Series MPUs or to 6800 Series MPUs. Moreover, using the  
serial interface it is possible to operate the S1D10605 series chips with fewer signal lines.  
The display area can be enlarged by using multiple S1D10605 Series chips. When this is done, the chip select signal  
can be used to select the individual ICs to access.  
(1) 8080 Series MPUs  
V
DD  
V
CC  
VDD  
C86  
P/S  
A0  
A0  
A1 to A7  
IORQ  
CS1  
CS2  
Decoder  
RESET  
D0 to D7  
RD  
D0 to D7  
RD  
WR  
RES  
WR  
RES  
GND  
VSS  
V
SS  
Figure 36  
(2) 6800 Series MPUs  
V
DD  
V
CC  
VDD  
C86  
P/S  
A0  
A0  
A1 to A15  
VMA  
CS1  
CS2  
Decoder  
RESET  
D0 to D7  
E
D0 to D7  
E
R/W  
R/W  
RES  
RES  
GND  
VSS  
VSS  
Figure 37  
(3) Using the Serial Interface  
V
DD or  
V
SS  
V
CC  
VDD  
C86  
P/S  
A0  
A0  
CS1  
CS2  
A1 to A7  
Decoder  
RESET  
Port 1  
Port 2  
RES  
SI  
SCL  
RES  
GND  
V
SS  
VSS  
Figure 38  
68  
EPSON  
Rev.1.0a  
S1D10605 Series  
13. CONNECTIONS BETWEEN LCD DRIVERS (REFERENCE EXAMPLE)  
The liquid crystal display area can be enlarged with ease through the use of multiple S1D10605 Series chips. Use a same  
equipment type.  
(1) S1D10605 (master) S1D10605 (slave)  
VDD  
M/S  
M/S  
FR  
CL  
FR  
CL  
DOF  
DOF  
Output  
Input  
VSS  
Figure 39  
Rev.1.0a  
EPSON  
69  
S1D10605 Series  
14. CONNECTIONS BETWEEN LCD DRIVERS (REFERENCE EXAMPLES)  
The liquid crystal display area can be enlarged with ease through the use of multiple S1D10605 Series chips.  
Use a same equipment type, in the composition of these chips.  
(1) Single-chip Structure  
132 x 65 Dots  
COM  
SEG  
S1D10605 Series  
COM  
Master  
Figure 40  
(2) Double-chip Structure, #1  
264 x 65 Dots  
COM  
SEG  
SEG  
COM  
S1D10605 Series  
Master  
S1D10605 Series  
Slave  
Figure 41  
70  
EPSON  
Rev.1.0a  
S1D10605 Series  
15. CAUTIONS  
Please note the following:  
1. The content of this material is subject to change without notice for revision purposes.  
2. No license to any intellectual property rights or any other warrants or rights pertaining to implementation is granted  
by this material.  
Examples of application indicated in this material are for referential purposes only, and Seiko Epson does not assume  
any liability of any kind regarding any inconveniences caused by applied circuits.  
Numeric values indicated in characteristic charts of this material follow the linear order of the numeric values.  
3. No parts of this material may be reproduced or duplicated in any form or by any means without the written permission  
of Seiko Epson.  
Please note following when using semiconductor devices:  
"Cautions pertaining to light"  
Semiconductor devices are highly sensitive to light, causing changes in their properties. Malfunctions may occur when  
light is applied to the IC. To avoid such malfunctions, please consider the following when installing to circuit boards  
or any other products.  
(1) Make sure the IC is installed in a light-resistant structure.  
(2) IC should be inspected under a light-resistant environment.  
(3) Make sure no light will be applied to all four surfaces of the IC chip.  
Rev.1.0a  
EPSON  
71  

相关型号:

S1D10607D03B000

Liquid Crystal Driver, 165-Segment, CMOS, DIE-309
SEIKO

S1D10607D04B000

LIQUID CRYSTAL DISPLAY DRIVER, UUC309, DIE-309
SEIKO

S1D10607T00

LIQUID CRYSTAL DISPLAY DRIVER, UUC, TCP
SEIKO

S1D10608D008

LIQUID CRYSTAL DISPLAY DRIVER, UUC309, DIE-309
SEIKO

S1D10608D00B

LIQUID CRYSTAL DISPLAY DRIVER, UUC309, DIE-309
SEIKO

S1D10608D00B000

LIQUID CRYSTAL DISPLAY DRIVER, UUC309, DIE-309
SEIKO

S1D10608D04B000

LIQUID CRYSTAL DISPLAY DRIVER, UUC309, DIE-309
SEIKO

S1D10609D00B

Liquid Crystal Driver, 185-Segment, CMOS, DIE-309
SEIKO

S1D10609D00B000

LIQUID CRYSTAL DISPLAY DRIVER, UUC309, DIE-309
SEIKO

S1D10609T00

LIQUID CRYSTAL DISPLAY DRIVER, UUC, TCP
SEIKO

S1D13305

LCD Controller ICs
EPSON

S1D13305D00A

LCD Controller ICs
EPSON