S1D15E06D00A [SEIKO]

LIQUID CRYSTAL DISPLAY DRIVER, UUC412, DIE-412;
S1D15E06D00A
型号: S1D15E06D00A
厂家: SEIKO EPSON CORPORATION    SEIKO EPSON CORPORATION
描述:

LIQUID CRYSTAL DISPLAY DRIVER, UUC412, DIE-412

驱动
文件: 总85页 (文件大小:773K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MF1393-04  
S1D15E05 Series  
Rev. 1.3  
“Seiko Epson is neither licensed nor authorized to license its customers under one or more patents held by  
Motif Corporation to use this integrated circuit in the manufacture of liquid crystal display modules. Such  
license, however, may be obtained directly from MOTIF by writing to: Motif, Inc., c/o In Focus Systems, Inc.,  
27700A SW Parkway Avenue, Wilsonville, OR 97070-9215, Attention: Vice President Corporate  
Development.”  
SEIKO EPSON CORPORATION 2002  
Rev. 1.3  
Contents  
1. DESCRIPTION .................................................................................................................................................. 1  
2. FEATURES........................................................................................................................................................ 1  
3. BLOCK DIAGRAM ............................................................................................................................................. 2  
4. PIN ASSIGNMENT ............................................................................................................................................ 4  
5. PIN DESCRIPTION ......................................................................................................................................... 11  
6. FUNCTIONAL DESCRIPTION ........................................................................................................................ 16  
7. COMMAND ...................................................................................................................................................... 34  
8. ABSOLUTE MAXIMUM RATINGS .................................................................................................................. 57  
9. DC CHARACTERISTICS................................................................................................................................. 59  
10. TIMING CHARACTERISTICS ......................................................................................................................... 68  
11. MPU INTERFACE (Reference example) ......................................................................................................... 76  
12. CONNECTION BETWEEN LCD DRIVERS (Reference example) .................................................................. 77  
13. LCD PANEL WIRING (Reference example) .................................................................................................... 78  
14. S1D15E05T00A TCP PIN LAYOUT ............................................................................................................. 79  
*
15. TCP DIMENSIONS (Reference example) ....................................................................................................... 80  
16. CAUTIONS ...................................................................................................................................................... 82  
– i –  
Rev. 1.3  
S1D15E05 Series  
1. DESCRIPTION  
2. FEATURES  
The S1D15E05 series is a single chip MLS driver for dot  
matrix liquid crystal displays which can be directly  
connected to the microcomputer bus. It accepts the 8-  
bit parallel or serial display data from the microcomputer  
to store the data in the on-chip display data RAM, and  
issues liquid crystal drive signals independently of the  
microcomputer.  
• Direct RAM data display by display data RAM  
• 4 gray-scale display  
(Normally white in normal display mode)  
RAM bit data (high order and low order)  
(1,1) : gray-scale 3, black  
(1,0) : gray-scale 2  
(0,1) : gray-scale 1  
The S1D15E05 series provides both 4 gray-scale display  
and binary display. It incorporates a display data RAM  
(132 × 160 × 2 bits). In the case of 4 gray-scale display,  
2 bits of the on-chip RAM respond to one-dot pixels,  
while in the case of binary display, 1 bit of the on-chip  
RAM respond to one-dot pixels.  
(0,0) : gray-scale 0, white  
• Binary display  
(Normally white display is in normal mode)  
RAM bit data  
“1” : On and black  
“0” : Off and white  
The S1D15E05 series features 132 common output  
circuits and 160 segment output circuits. A single chip  
provides a display of 10 characters by 8 lines with 132  
× 160 dots (16 × 16 dots) and display of 13 characters by  
11 lines by the 12 × 12 dot-character font.  
Display data RAM read/write operations do not require  
operation clock from outside, thereby ensuring operation  
with the minimum current consumption. Furthermore,  
it incorporates a LCD-drive power supply characterized  
by low power consumption and a CR oscillator circuit  
for display clock; therefore, the display system of a  
handy and high-performance instrument can be realized  
by use of the minimum current consumption and  
minimum chip configuration.  
• RAM capacity  
132 × 160 × 2 = 42,240 bits  
• Liquid crystal drive circuit  
132 common outputs and 160 segment outputs  
• High-speed 8-bit MPU interface (directly connectable  
to the MPUs of both 80/68 series) /serial interface  
possible  
• A variety of command functions  
Area scroll display, partial display, n-line reversal,  
display data RAM address control, contrast control,  
display ON/OFF, display normal/reverse rotation,  
display all lighting ON/OFF, liquid crystal drive  
power supply circuit control, display clock built-in  
oscillator circuit control  
• Lower power MLS drive technology  
Built-in high precision voltage regulation function  
• High precision CR oscillator circuit incorporated  
• Very low power consumption  
• Power supply  
Logic power supply: VDD – VSS = 1.7 to 3.6 V  
Liquid crystal drive power supply: V2 – VSS = 3.4 V  
to 14.0 V (S1D15E05), V3 – VSS = 3.4 to 14.0 V  
(S1D15E06)  
• Wide operation temperature range: –40 to 85°C  
• CMOS process  
• Shipping form : Bare chips, TCP  
• Light and radiation proof measures are not taken in  
designing.  
Series specifications  
Product name  
Bias  
Duty (Max.) Form of shipping Chip thickness  
S1D15E05D00B  
S1D15E05D00E  
S1D15E05T00A  
1/4  
1/4  
1/4  
1/7  
1/7  
1/7  
1/100  
1/100  
1/100  
1/132  
1/132  
1/132  
Bare chip  
Bare chip  
TCP  
Bare chip  
Bare chip  
TCP  
0.400mm  
0.625mm  
0.400mm  
0.625mm  
*
*
*
S1D15E06D00B  
*
S1D15E06D00E  
S1D15E06T00A  
*
*
Rev. 1.3  
EPSON  
1
S1D15E05 Series  
3. BLOCK DIAGRAM  
3.1 S1D15E05D00B  
*
• • • • • • • • • • • • • • • • • • • •  
• • • • • • • • • • • • • • • • •  
VDD  
VSS  
V2  
V
1
SEG Drivers  
COM Drivers  
VC  
MV1  
MV2  
(VSS)  
Decode circuit  
CAP1+  
CAP1–  
CAP2+  
CAP2–  
Display data latch circuit  
FR  
CA  
F1  
VOUT  
CAP3+  
CAP3–  
CAP4+  
CAP4–  
CPP+  
Display data RAM  
160 x 132 x 2  
F2  
CL  
DOF  
M/S  
CPP–  
CPM+  
CPM–  
Column address  
CLS  
Bus holder  
Command decoder  
Status  
MPU Interface  
2
EPSON  
Rev. 1.3  
S1D15E05 Series  
3.2 S1D15E06D00B  
*
V
DD  
SS  
V
V
3
V
V
2
1
V
C
SEG Drivers  
COM Drivers  
MV  
MV  
1
2
MV3 (VSS)  
Decode circuit  
Display data latch circuit  
CAP1+  
CAP1–  
CAP2+  
CAP2–  
FR  
CA  
F1  
Display data RAM  
160 x 132 x 2  
V
OUT  
F2  
CAP3+  
CAP3–  
CAP4+  
CAP4–  
CL  
DOF  
M/S  
Column address  
CLS  
Bus holder  
Command decoder  
Status  
MPU Interface  
Rev. 1.3  
EPSON  
3
S1D15E05 Series  
4. PIN ASSIGNMENT  
4.1 Chip Assignment  
98  
1
99  
412  
345  
D15E5D0B  
Die No.  
S1D15E05 Series  
(0, 0)  
166  
167  
344  
* Die No. is D15E6D1B for S1D15E06D00B .  
*
Size  
Unit  
Item  
X
Y
Chip size  
Chip thickness  
Bump pitch  
10.26  
×
3.98  
mm  
mm  
µm  
0.4/0.625  
50 (Min.)  
Bump size PAD No.1 to 98  
70  
116  
61  
×
×
×
×
92  
33  
61  
116  
µm  
µm  
µm  
µm  
PAD No.99 to 166, 345 to 412  
PAD No.167 to 175, 336 to 344  
PAD No.176 to 335  
33  
Bump height  
22.5 (Typ.)  
µm  
4.2 Alignment mark  
Alignment coordinate  
1(–4761.4, 1830.0) µm  
2( 4926.0, –1819.1) µm  
Mark size  
b
a
a = 80 µm  
b = 20 µm  
4
EPSON  
Rev. 1.3  
S1D15E05 Series  
4.3 Pad Center Coordinates  
4.3.1 S1D15E05D00B  
*
Unit: µm  
PAD  
No.  
1
2
3
4
5
6
7
Pin  
Name  
NC  
PAD  
No.  
51  
Pin  
Name  
D4  
PAD  
No.  
Pin  
Name  
X
Y
X
Y
X
Y
4494 1830  
4402  
170 1830  
262  
101 COM64 4958 1575  
NC  
52  
D5  
102 COM63  
103 COM62  
104 COM61  
105 COM60  
106 COM59  
107 COM58  
108 COM57  
109 COM56  
110 COM55  
111 COM54  
112 COM53  
113 COM52  
114 COM51  
115 COM50  
116 COM49  
117 COM48  
118 COM47  
119 COM46  
120 COM45  
121 COM44  
122 COM43  
123 COM42  
124 COM41  
125 COM40  
126 COM39  
127 COM38  
128 COM37  
129 COM36  
130 COM35  
131 COM34  
132 COM33  
133 COM32  
134 COM31  
135 COM30  
136 COM29  
137 COM28  
138 COM27  
139 COM26  
140 COM25  
141 COM24  
142 COM23  
143 COM22  
144 COM21  
145 COM20  
146 COM19  
147 COM18  
148 COM17  
149 COM16  
150 COM15  
1525  
1475  
1425  
1375  
1325  
1275  
1225  
1175  
1125  
1075  
1025  
975  
925  
875  
825  
775  
725  
675  
625  
575  
525  
475  
425  
375  
325  
275  
225  
175  
125  
75  
25  
25  
TEST0 4310  
TEST1 4218  
TEST2 4126  
TEST3 4034  
TEST4 3942  
TEST5 3850  
53 D6, SCL 354  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
D7, SI  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VOUT  
VOUT  
CAP1+ 1274  
CAP1+ 1366  
CAP1– –1458  
CAP1– –1550  
CAP2– –1642  
CAP2– –1734  
CAP2+ 1826  
CAP2+ 1918  
CAP3+ 2010  
CAP3+ 2102  
CAP3– –2194  
CAP3– –2286  
CAP4– –2378  
CAP4– –2470  
CAP4+ 2562  
CAP4+ 2654  
446  
538  
630  
722  
814  
906  
998  
1090  
1182  
8
9
VSS  
3742  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
TEST6 3634  
TEST7 3542  
TEST8 3450  
TEST9 3358  
TEST10 3266  
TEST11 3174  
TEST12 3082  
TEST13 2990  
TEST14 2898  
TEST15 2806  
TEST16 2714  
TEST17 2622  
TEST18 2530  
VSS  
FR  
CL  
DOF  
F1  
2422  
2314  
2222  
2130  
2038  
1946  
1854  
1762  
1670  
1578  
1486  
1394  
F2  
CA  
V2  
V2  
V2  
V2  
V1  
V1  
VC  
VC  
2746  
2838  
2930  
3022  
3114  
3206  
3298  
3390  
3482  
3574  
3666  
3758  
3850  
3942  
VSS  
TEST  
CS1  
RES  
A0  
75  
35 WR, R/W 1302  
125  
175  
225  
275  
325  
375  
425  
475  
525  
575  
625  
675  
725  
775  
825  
875  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
RD, E  
CS2  
VDD  
M/S  
VSS  
CLS  
VDD  
C86  
VSS  
P/S  
VDD  
D0  
1210  
1118  
1026  
934  
842  
750  
658  
566  
474  
382  
290  
198  
106  
14  
MV1  
MV1  
MV2  
MV2  
MV2  
MV2  
CPP+ 4034  
CPP– –4126  
CPM+ 4218  
CPM– –4310  
NC  
NC  
NC  
4402  
4494  
4958 1675  
D1  
D2  
D3  
78  
100 COM65  
1625  
Rev. 1.3  
EPSON  
5
S1D15E05 Series  
Unit: µm  
PAD  
No.  
Pin  
Name  
PAD  
No.  
Pin  
Name  
PAD  
No.  
Pin  
Name  
X
Y
X
Y
X
Y
151 COM14 4958 925  
201 SEG25 2725 1818  
202 SEG26 2675  
203 SEG27 2625  
204 SEG28 2575  
205 SEG29 2525  
206 SEG30 2475  
207 SEG31 2425  
208 SEG32 2375  
209 SEG33 2325  
210 SEG34 2275  
211 SEG35 2225  
212 SEG36 2175  
213 SEG37 2125  
214 SEG38 2075  
215 SEG39 2025  
216 SEG40 1975  
217 SEG41 1925  
218 SEG42 1875  
219 SEG43 1825  
220 SEG44 1775  
221 SEG45 1725  
222 SEG46 1675  
223 SEG47 1625  
224 SEG48 1575  
225 SEG49 1525  
226 SEG50 1475  
227 SEG51 1425  
228 SEG52 1375  
229 SEG53 1325  
230 SEG54 1275  
231 SEG55 1225  
232 SEG56 1175  
233 SEG57 1125  
234 SEG58 1075  
235 SEG59 1025  
236 SEG60 975  
237 SEG61 925  
238 SEG62 875  
239 SEG63 825  
240 SEG64 775  
241 SEG65 725  
242 SEG66 675  
243 SEG67 625  
244 SEG68 575  
245 SEG69 525  
246 SEG70 475  
247 SEG71 425  
248 SEG72 375  
249 SEG73 325  
250 SEG74 275  
251  
252  
253  
254  
255  
256  
257  
258  
259  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
275  
SEG75 225 1818  
SEG76 175  
SEG77 125  
152 COM13  
153 COM12  
154 COM11  
155 COM10  
975  
1025  
1075  
1125  
1175  
1225  
1275  
1325  
1375  
1425  
1475  
1525  
1575  
1625  
1675  
4704 1846  
4621  
4539  
4456  
4374  
4291  
4209  
4126  
4044  
SEG78  
SEG79  
SEG80  
SEG81  
SEG82  
SEG83  
SEG84  
SEG85  
SEG86  
SEG87  
SEG88  
SEG89  
SEG90  
SEG91  
SEG92  
SEG93  
SEG94  
SEG95  
SEG96  
SEG97  
SEG98  
SEG99  
75  
25  
25  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
COM9  
COM8  
COM7  
COM6  
COM5  
COM4  
COM3  
COM2  
COM1  
COM0  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
75  
125  
175  
225  
275  
325  
375  
425  
475  
525  
575  
625  
675  
725  
775  
825  
875  
925  
975  
NC  
SEG0 3975 1818  
SEG1 3925  
SEG2 3875  
SEG3 3825  
SEG4 3775  
SEG5 3725  
SEG6 3675  
SEG7 3625  
SEG8 3575  
SEG9 3525  
276 SEG100 1025  
277 SEG101 1075  
278 SEG102 1125  
279 SEG103 1175  
280 SEG104 1225  
281 SEG105 1275  
282 SEG106 1325  
283 SEG107 1375  
284 SEG108 1425  
285 SEG109 1475  
286 SEG110 1525  
287 SEG111 1575  
288 SEG112 1625  
289 SEG113 1675  
290 SEG114 1725  
291 SEG115 1775  
292 SEG116 1825  
293 SEG117 1875  
294 SEG118 1925  
295 SEG119 1975  
296 SEG120 2025  
297 SEG121 2075  
298 SEG122 2125  
299 SEG123 2175  
300 SEG124 2225  
186 SEG10 3475  
187 SEG11 3425  
188 SEG12 3375  
189 SEG13 3325  
190 SEG14 3275  
191 SEG15 3225  
192 SEG16 3175  
193 SEG17 3125  
194 SEG18 3075  
195 SEG19 3025  
196 SEG20 2975  
197 SEG21 2925  
198 SEG22 2875  
199 SEG23 2825  
200 SEG24 2775  
6
EPSON  
Rev. 1.3  
S1D15E05 Series  
Unit: µm  
PAD  
No.  
Pin  
Name  
PAD  
No.  
Pin  
Name  
PAD  
No.  
Pin  
Name  
X
Y
X
Y
X
Y
301 SEG125 2275 1818  
302 SEG126 2325  
303 SEG127 2375  
304 SEG128 2425  
305 SEG129 2475  
306 SEG130 2525  
307 SEG131 2575  
308 SEG132 2625  
309 SEG133 2675  
310 SEG134 2725  
311 SEG135 2775  
312 SEG136 2825  
313 SEG137 2875  
314 SEG138 2925  
315 SEG139 2975  
316 SEG140 3025  
317 SEG141 3075  
318 SEG142 3125  
319 SEG143 3175  
320 SEG144 3225  
321 SEG145 3275  
322 SEG146 3325  
323 SEG147 3375  
324 SEG148 3425  
325 SEG149 3475  
326 SEG150 3525  
327 SEG151 3575  
328 SEG152 3625  
329 SEG153 3675  
330 SEG154 3725  
331 SEG155 3775  
332 SEG156 3825  
333 SEG157 3875  
334 SEG158 3925  
335 SEG159 3975  
351 COM71 4958 1375  
401 COM121 4958 1125  
352 COM72  
353 COM73  
354 COM74  
355 COM75  
356 COM76  
357 COM77  
358 COM78  
359 COM79  
360 COM80  
361 COM81  
362 COM82  
363 COM83  
364 COM84  
365 COM85  
366 COM86  
367 COM87  
368 COM88  
369 COM89  
370 COM90  
371 COM91  
372 COM92  
373 COM93  
374 COM94  
375 COM95  
376 COM96  
377 COM97  
378 COM98  
379 COM99  
380 COM100  
381 COM101  
382 COM102  
383 COM103  
384 COM104  
385 COM105  
386 COM106  
387 COM107  
388 COM108  
389 COM109  
390 COM110  
391 COM111  
392 COM112  
393 COM113  
394 COM114  
395 COM115  
396 COM116  
397 COM117  
398 COM118  
399 COM119  
400 COM120  
1325  
1275  
1225  
1175  
1125  
1075  
1025  
975  
925  
875  
825  
775  
725  
675  
625  
575  
525  
475  
425  
375  
325  
275  
225  
175  
125  
75  
25  
25  
75  
125  
175  
225  
275  
325  
375  
425  
475  
525  
575  
625  
675  
725  
402 COM122  
403 COM123  
404 COM124  
405 COM125  
406 COM126  
407 COM127  
408 COM128  
409 COM129  
410 COM130  
411 COM131  
1175  
1225  
1275  
1325  
1375  
1425  
1475  
1525  
1575  
1625  
1675  
412  
NC  
336  
337  
338  
339  
340  
341  
342  
343  
344  
345  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
4044 1846  
4126  
4209  
4291  
4374  
4456  
4539  
4621  
4704  
775  
825  
875  
925  
975  
1025  
1075  
4958 1675  
1625  
1575  
1525  
1475  
1425  
346 COM66  
347 COM67  
348 COM68  
349 COM69  
350 COM70  
Rev. 1.3  
EPSON  
7
S1D15E05 Series  
4.3.2 S1D15E06D00B  
*
Unit: µm  
PAD  
No.  
1
2
3
4
5
6
7
Pin  
Name  
NC  
PAD  
No.  
51  
Pin  
Name  
D4  
PAD  
No.  
Pin  
Name  
X
Y
X
Y
X
Y
4494 1830  
4402  
170 1830  
262  
101 COM64 4958 1575  
NC  
52  
D5  
102 COM63  
103 COM62  
104 COM61  
105 COM60  
106 COM59  
107 COM58  
108 COM57  
109 COM56  
110 COM55  
111 COM54  
112 COM53  
113 COM52  
114 COM51  
115 COM50  
116 COM49  
117 COM48  
118 COM47  
119 COM46  
120 COM45  
121 COM44  
122 COM43  
123 COM42  
124 COM41  
125 COM40  
126 COM39  
127 COM38  
128 COM37  
129 COM36  
130 COM35  
131 COM34  
132 COM33  
133 COM32  
134 COM31  
135 COM30  
136 COM29  
137 COM28  
138 COM27  
139 COM26  
140 COM25  
141 COM24  
142 COM23  
143 COM22  
144 COM21  
145 COM20  
146 COM19  
147 COM18  
148 COM17  
149 COM16  
150 COM15  
1525  
1475  
1425  
1375  
1325  
1275  
1225  
1175  
1125  
1075  
1025  
975  
925  
875  
825  
775  
725  
675  
625  
575  
525  
475  
425  
375  
325  
275  
225  
175  
125  
75  
25  
25  
TEST0 4310  
TEST1 4218  
TEST2 4126  
TEST3 4034  
TEST4 3942  
TEST5 3850  
53 D6, SCL 354  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
D7, SI  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VOUT  
VOUT  
CAP1+ 1274  
CAP1+ 1366  
CAP1– –1458  
CAP1– –1550  
CAP2– –1642  
CAP2– –1734  
CAP2+ 1826  
CAP2+ 1918  
CAP3+ 2010  
CAP3+ 2102  
CAP3– –2194  
CAP3– –2286  
CAP4– –2378  
CAP4– –2470  
CAP4+ 2562  
CAP4+ 2654  
446  
538  
630  
722  
814  
906  
998  
1090  
1182  
8
9
VSS  
3742  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
TEST6 3634  
TEST7 3542  
TEST8 3450  
TEST9 3358  
TEST10 3266  
TEST11 3174  
TEST12 3082  
TEST13 2990  
TEST14 2898  
TEST15 2806  
TEST16 2714  
TEST17 2622  
TEST18 2530  
VSS  
FR  
CL  
DOF  
F1  
2422  
2314  
2222  
2130  
2038  
1946  
1854  
1762  
1670  
1578  
1486  
1394  
F2  
CA  
V3  
V3  
V2  
V2  
V1  
V1  
VC  
VC  
2746  
2838  
2930  
3022  
3114  
3206  
3298  
3390  
3482  
3574  
3666  
3758  
3850  
3942  
VSS  
TEST  
CS1  
RES  
A0  
75  
35 WR, R/W 1302  
125  
175  
225  
275  
325  
375  
425  
475  
525  
575  
625  
675  
725  
775  
825  
875  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
RD, E  
CS2  
VDD  
M/S  
VSS  
CLS  
VDD  
C86  
VSS  
P/S  
VDD  
D0  
1210  
1118  
1026  
934  
842  
750  
658  
566  
474  
382  
290  
198  
106  
14  
MV1  
MV1  
MV2  
MV2  
MV3  
MV3  
CPP+ 4034  
CPP– –4126  
CPM+ 4218  
CPM– –4310  
NC  
NC  
NC  
4402  
4494  
4958 1675  
D1  
D2  
D3  
78  
100 COM65  
1625  
8
EPSON  
Rev. 1.3  
S1D15E05 Series  
Unit: µm  
PAD  
No.  
Pin  
Name  
PAD  
No.  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
241  
242  
243  
244  
245  
246  
247  
248  
249  
250  
Pin  
Name  
PAD  
No.  
251  
252  
253  
254  
255  
256  
257  
258  
259  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
275  
Pin  
Name  
SEG75 225 1818  
SEG76 175  
SEG77 125  
X
Y
X
Y
X
Y
151 COM14 4958 925  
SEG25 2725 1818  
SEG26 2675  
SEG27 2625  
SEG28 2575  
SEG29 2525  
SEG30 2475  
SEG31 2425  
SEG32 2375  
SEG33 2325  
SEG34 2275  
SEG35 2225  
SEG36 2175  
SEG37 2125  
SEG38 2075  
SEG39 2025  
SEG40 1975  
SEG41 1925  
SEG42 1875  
SEG43 1825  
SEG44 1775  
SEG45 1725  
SEG46 1675  
SEG47 1625  
SEG48 1575  
SEG49 1525  
SEG50 1475  
SEG51 1425  
SEG52 1375  
SEG53 1325  
SEG54 1275  
SEG55 1225  
SEG56 1175  
SEG57 1125  
SEG58 1075  
SEG59 1025  
SEG60 975  
SEG61 925  
SEG62 875  
SEG63 825  
SEG64 775  
SEG65 725  
SEG66 675  
SEG67 625  
SEG68 575  
SEG69 525  
SEG70 475  
SEG71 425  
SEG72 375  
SEG73 325  
SEG74 275  
152 COM13  
153 COM12  
154 COM11  
155 COM10  
975  
1025  
1075  
1125  
1175  
1225  
1275  
1325  
1375  
1425  
1475  
1525  
1575  
1625  
1675  
SEG78  
SEG79  
SEG80  
SEG81  
SEG82  
SEG83  
SEG84  
SEG85  
SEG86  
SEG87  
SEG88  
SEG89  
SEG90  
SEG91  
SEG92  
SEG93  
SEG94  
SEG95  
SEG96  
SEG97  
SEG98  
SEG99  
75  
25  
25  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
COM9  
COM8  
COM7  
COM6  
COM5  
COM4  
COM3  
COM2  
COM1  
COM0  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
75  
125  
175  
225  
275  
325  
375  
425  
475  
525  
575  
625  
675  
725  
775  
825  
875  
925  
975  
4704 1846  
4621  
4539  
4456  
4374  
4291  
4209  
4126  
4044  
NC  
SEG0 3975 1818  
SEG1 3925  
SEG2 3875  
SEG3 3825  
SEG4 3775  
SEG5 3725  
SEG6 3675  
SEG7 3625  
SEG8 3575  
SEG9 3525  
276 SEG100 1025  
277 SEG101 1075  
278 SEG102 1125  
279 SEG103 1175  
280 SEG104 1225  
281 SEG105 1275  
282 SEG106 1325  
283 SEG107 1375  
284 SEG108 1425  
285 SEG109 1475  
286 SEG110 1525  
287 SEG111 1575  
288 SEG112 1625  
289 SEG113 1675  
290 SEG114 1725  
291 SEG115 1775  
292 SEG116 1825  
293 SEG117 1875  
294 SEG118 1925  
295 SEG119 1975  
296 SEG120 2025  
297 SEG121 2075  
298 SEG122 2125  
299 SEG123 2175  
300 SEG124 2225  
186 SEG10 3475  
187 SEG11 3425  
188 SEG12 3375  
189 SEG13 3325  
190 SEG14 3275  
191 SEG15 3225  
192 SEG16 3175  
193 SEG17 3125  
194 SEG18 3075  
195 SEG19 3025  
196 SEG20 2975  
197 SEG21 2925  
198 SEG22 2875  
199 SEG23 2825  
200 SEG24 2775  
Rev. 1.3  
EPSON  
9
S1D15E05 Series  
Unit: µm  
PAD  
No.  
Pin  
Name  
PAD  
No.  
Pin  
Name  
PAD  
No.  
Pin  
Name  
X
Y
X
Y
X
Y
301 SEG125 2275 1818  
302 SEG126 2325  
303 SEG127 2375  
304 SEG128 2425  
305 SEG129 2475  
306 SEG130 2525  
307 SEG131 2575  
308 SEG132 2625  
309 SEG133 2675  
310 SEG134 2725  
311 SEG135 2775  
312 SEG136 2825  
313 SEG137 2875  
314 SEG138 2925  
315 SEG139 2975  
316 SEG140 3025  
317 SEG141 3075  
318 SEG142 3125  
319 SEG143 3175  
320 SEG144 3225  
321 SEG145 3275  
322 SEG146 3325  
323 SEG147 3375  
324 SEG148 3425  
325 SEG149 3475  
326 SEG150 3525  
327 SEG151 3575  
328 SEG152 3625  
329 SEG153 3675  
330 SEG154 3725  
331 SEG155 3775  
332 SEG156 3825  
333 SEG157 3875  
334 SEG158 3925  
335 SEG159 3975  
351 COM71 4958 1375  
401 COM121 4958 1125  
352 COM72  
353 COM73  
354 COM74  
355 COM75  
356 COM76  
357 COM77  
358 COM78  
359 COM79  
360 COM80  
361 COM81  
362 COM82  
363 COM83  
364 COM84  
365 COM85  
366 COM86  
367 COM87  
368 COM88  
369 COM89  
370 COM90  
371 COM91  
372 COM92  
373 COM93  
374 COM94  
375 COM95  
376 COM96  
377 COM97  
378 COM98  
379 COM99  
380 COM100  
381 COM101  
382 COM102  
383 COM103  
384 COM104  
385 COM105  
386 COM106  
387 COM107  
388 COM108  
389 COM109  
390 COM110  
391 COM111  
392 COM112  
393 COM113  
394 COM114  
395 COM115  
396 COM116  
397 COM117  
398 COM118  
399 COM119  
400 COM120  
1325  
1275  
1225  
1175  
1125  
1075  
1025  
975  
925  
875  
825  
775  
725  
675  
625  
575  
525  
475  
425  
375  
325  
275  
225  
175  
125  
75  
25  
25  
75  
125  
175  
225  
275  
325  
375  
425  
475  
525  
575  
625  
675  
725  
402 COM122  
403 COM123  
404 COM124  
405 COM125  
406 COM126  
407 COM127  
408 COM128  
409 COM129  
410 COM130  
411 COM131  
1175  
1225  
1275  
1325  
1375  
1425  
1475  
1525  
1575  
1625  
1675  
412  
NC  
336  
337  
338  
339  
340  
341  
342  
343  
344  
345  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
4044 1846  
4126  
4209  
4291  
4374  
4456  
4539  
4621  
4704  
775  
825  
875  
925  
975  
1025  
1075  
4958 1675  
1625  
1575  
1525  
1475  
1425  
346 COM66  
347 COM67  
348 COM68  
349 COM69  
350 COM70  
10  
EPSON  
Rev. 1.3  
S1D15E05 Series  
5. PIN DESCRIPTION  
5.1 Power Pin  
5.1.1 S1D15E05D00B  
*
Number of  
pins  
Pin name  
I/O  
Description  
VDD  
Power Connect to MPU power pin VCC.  
supply  
6
VSS  
Power Connect to system GND.  
supply It connected to MV2 inside.  
8
V2, V1, VC Power A liquid crystal drive multi-level power supply. The voltages  
MV1, MV2 supply determined by the liquid crystal cell are impedance-converted  
14  
(V2, MV2,  
4 each,  
V1, MV1,  
2 each)  
(=VSS)  
by resistive divider and operational amplifier for application.  
The following order must be maintained:  
V2 V1 VC MV1 MV2 (=VSS)  
Master operation: When power supply is turned on, the following  
voltage is applied to each pin by the built-in power supply circuit.  
MV2 is connected to VSS inside the IC chip.  
V1  
VC  
MV1  
3/4 V2  
2/4 V2  
1/4 V2  
5.1.2 S1D15E06D00B  
*
Number of  
pins  
Pin name  
I/O  
Description  
VDD  
Power Connect to system MPU power supply pin VCC.  
supply  
6
VSS  
Power Connect to the system GND.  
supply MV3 is short circuited with MV3 inside the IC chip.  
8
V3, V2, V1, Power A liquid crystal drive multi-level power supply. The voltages  
14  
(2 each)  
VC, MV1,  
MV2, MV3,  
(=VSS)  
supply determined by the liquid crystal cell are impedance-converted by  
resistive divider and operational amplifier for application.  
The following order must be maintained:  
V3 V2 V1 VC MV1 MV2 MV3 (=VSS)  
Master operation: When power supply is turned on, the following  
voltage is applied to each pin by the built-in power supply circuit.  
MV3 is connected to with VSS inside the IC chip.  
V2  
V1  
VC  
MV1  
MV2  
11/14 V3  
9/14 V3  
7/14 V3  
5/14 V3  
3/14 V3  
Rev. 1.3  
EPSON  
11  
S1D15E05 Series  
5.2 LCD Power Supply Circuit Pin  
5.2.1 S1D15E05D00B  
*
Number of  
pins  
Pin name  
I/O  
Description  
CAP1+  
O
Pin connected to the positive side of the step-up capacitor.  
2
2
2
2
2
2
2
2
2
1
1
1
1
Connect the capacitor between this pin and CAP1pin.  
CAP1–  
CAP2+  
CAP2–  
VOUT  
O
O
O
O
O
O
O
O
O
O
O
O
Pin connected to the negative side of the step-up capacitor.  
Connect the capacitor between this pin and CAP1+ pin.  
Pin connected to the positive side of the step-up capacitor.  
Connect the capacitor between this pin and CAP2pin.  
Pin connected to the negative side of the step-up capacitor.  
Connect the capacitor between this pin and CAP2+ pin.  
Output pin for step-up.  
Connect the capacitor between this pin and VDD.  
Pin connected to the positive side of the step-up capacitor.  
Connect the capacitor between this pin and CAP3pin.  
Pin connected to the negative side of the step-up capacitor.  
Connect the capacitor between this pin and CAP3+ pin.  
Pin connected to the positive side of the step-up capacitor.  
Connect the capacitor between this pin and CAP4pin.  
Pin connected to the negative side of the step-up capacitor.  
Connect the capacitor between this pin and CAP4+ pin.  
Pin connected to the positive side of the step-down capacitor.  
Connect the capacitor between this pin and CPPpin.  
Pin connected to the negative side of the step-down capacitor.  
Connect the capacitor between this pin and CPP+ pin.  
Pin connected to the positive side of the step-down capacitor.  
Connect the capacitor between this pin and CMPpin.  
Pin connected to the negative side of the step-down capacitor.  
Connect the capacitor between this pin and CMP+ pin.  
CAP3+  
CAP3–  
CAP4+  
CAP4–  
CPP+  
CPP–  
CPM+  
CPM–  
5.2.2 S1D15E06D00B  
*
Number of  
pins  
Pin name  
I/O  
Description  
CAP1+  
O
Pin connected to the positive side of the step-up capacitor.  
2
2
2
2
2
2
2
2
2
Connect the capacitor between this pin and CAP1pin.  
CAP1–  
CAP2+  
CAP2–  
VOUT  
O
O
O
O
O
O
O
O
Pin connected to the negative side of the step-up capacitor.  
Connect the capacitor between this pin and CAP1+ pin.  
Pin connected to the positive side of the step-up capacitor.  
Connect the capacitor between this pin and CAP2pin.  
Pin connected to the negative side of the step-up capacitor.  
Connect the capacitor between this pin and CAP2+ pin.  
Output pin for step-up.  
Connect the capacitor between this pin and VDD.  
Pin connected to the positive side of the step-up capacitor.  
Connect the capacitor between this pin and CAP3pin.  
Pin connected to the negative side of the step-up capacitor.  
Connect the capacitor between this pin and CAP3+ pin.  
Pin connected to the positive side of the step-up capacitor.  
Connect the capacitor between this pin and CAP4pin.  
Pin connected to the negative side of the step-up capacitor.  
Connect the capacitor between this pin and CAP4+ pin.  
CAP3+  
CAP3–  
CAP4+  
CAP4–  
CPP+  
CPP–  
CPM+  
CPM–  
O
O
O
O
Keep it open.  
Keep it open.  
Keep it open.  
Keep it open.  
1
1
1
1
12  
EPSON  
Rev. 1.3  
S1D15E05 Series  
5.3 System Bus Connection Pin  
Number of  
pins  
Pin name  
I/O  
Description  
D7 to D0  
I/O  
Connects to the 8-bit or 16-bit MPU data bus via the 8-bit  
bi-directional data bus.  
8
(SI)  
(SCL)  
When the serial interface is selected (P/S = LOW), D7 serves as the  
serial data input (SI) and D6 serves as the serial clock input (SCL),  
In this case, D0 through D5 go to a high impedance state. When the  
Chip select is inactive, D0 through D7 go to a high impedance state.  
A0  
I
Normally, the least significant bit MPU address bus is connected  
to distinguish between data and command.  
1
A0 = HIGH : indicates that D0 to D7 are display data or command parameters.  
A0 = LOW : indicates that D0 to D7 are control commands.  
RES  
I
I
I
When the RES is LOW, initialization is achieved.  
Resetting operation is done on the level of the RES signal.  
1
2
1
CS1  
CS2  
A chip select signal. When CS1 = LOW and CS2 = HIGH, signals  
are active, and data/command input/output are enabled.  
RD  
(E)  
When the 80 series MPU is connected.  
A pin for connection of the RD signal of the 80 series MPU.  
When this signal is LOW, the data bus of the S1D15E05 series  
is in the output state.  
When the 68 series MPU is connected.  
Serves as a 68 series MPU enable clock input pin.  
WR  
(R/W)  
I
When the 80 series MPU is connected.  
A pin for connection of the WR signal of the 80 series MPU.  
Signals on the data bus are latched at the leading edge of the  
WR signal.  
1
Serves as a read/write control signal input pin when the 68 series  
MPU is connected.  
R/W = HIGH : Read  
R/W = LOW : Write  
C86  
P/S  
I
I
A MPU interface switching pin.  
1
1
C86 = HIGH : 68 series MPU interface  
C86 = LOW : 80 series MPU interface  
Parallel data input/serial data input select pin  
P/S = HIGH : Parallel data input  
P/S = LOW : Serial data input  
The following Table shows the summary:  
P/S Data/Command  
Data  
Read/Write Serial clock  
HIGH  
LOW  
A0  
A0  
D0 to D7  
SI (D7)  
RD, WR  
Write only  
SCL (D6)  
When P/S = LOW, D0 to D5 are high impedance.  
D0 to D5 can be HIGH, LOW or open.  
RD(E) and WR(R/W) are locked to HIGH or LOW.  
The serial data input does not allow the RAM display data to be read.  
Rev. 1.3  
EPSON  
13  
S1D15E05 Series  
Number of  
pins  
Pin name  
I/O  
Description  
CLS  
I
A pin used to select Enable/Disable state of the built-in oscillator  
circuit for display clock.  
1
CLS = HIGH : Built-in oscillator circuit Enabled  
CLS = LOW : Built-in oscillator circuit Disabled (External input)  
When CLS is LOW, display clock is input from the CL pin. When  
the S1D15E05 series is used in the master/slave mode, each CLS  
pins must be set to the same level.  
Display clock  
Built-in oscillator circuit used  
External input  
Master  
HIGH  
LOW  
Slave  
HIGH  
LOW  
M/S  
I
A pin used to select the master/slave operation for S1D15E05 series.  
Liquid crystal display system is synchronized when the master  
operation outputs the timing signal required for liquid crystal  
display, while the slave operation inputs the timing signal required  
for liquid crystal display.  
1
M/S = HIGH : Master operation  
M/S = LOW : Slave operation  
The following Table shows the relation in conformance to the M/S and CLS:  
Oscillation  
circuit  
Power  
circuit  
FR, DOF,  
F1, F2, CA  
M/S CLS  
CL  
HIGH  
HIGH  
Enabled  
Disabled  
Enabled  
Enabled  
Output  
Input  
Output  
Output  
LOW  
HIGH Disabled  
Disabled  
Disabled  
Input  
Input  
Input  
Input  
LOW  
LOW  
Disabled  
The slave power supply circuit can also operate, but do not use it.  
CL  
I/O  
Display clock input/output pin.  
The following Table shows the relation in conformance to the M/S and CLS state:  
1
M/S CLS  
CL  
HIGH Output  
HIGH  
LOW  
LOW  
Input  
HIGH  
LOW  
Input  
Input  
When you want to use the S1D15E05 series in the master/slave  
mode, connect each CL pin.  
FR  
I/O  
I/O  
I/O  
A liquid crystal alternating current input/output pin.  
M/S = HIGH : Output  
M/S = LOW : Input  
When you want to use the S1D15E05 series in the master/slave  
mode, connect each FR pin.  
1
F1, F2,  
CA  
A liquid crystal sync signal input/output pin.  
M/S = HIGH : Output  
M/S = LOW : Input  
When you want to use the S1D15E05 series in the master/slave  
mode, connect each F1, F2 and CA pins.  
3
(1 each)  
DOF  
A liquid crystal blanking control pin.  
M/S = HIGH : Output  
1
M/S = LOW : Input  
When you want to use the S1D15E05 series in the master/slave  
mode, connect each DOF pin.  
14  
EPSON  
Rev. 1.3  
S1D15E05 Series  
5.4 Liquid crystal drive pin  
5.4.1 S1D15E05D00B  
*
Number of  
pins  
Pin name  
I/O  
Description  
SEG0 to  
SEG159  
O
Liquid crystal segment drive output pins. One of the V2, V1, VC,  
MV1, and MV2 (VSS) levels is selected by a combination of the  
display RAM content and FR/F1/F2 signals.  
160  
COM0 to  
COM131  
O
Liquid crystal common drive output pins. One of the V2, VC,  
MV2 (VSS) levels is selected by a combination of the scan data  
and FR/F1/F2 signals.  
132  
5.4.2 S1D15E6D00B  
*
Number of  
pins  
Pin name  
I/O  
Description  
SEG0 to  
SEG159  
O
Liquid crystal segment drive output pins. One of the V2, V1, VC,  
MV1, and MV2 levels is selected by a combination of the display  
RAM content and FR/F1/F2 signals.  
160  
COM0 to  
COM131  
O
Liquid crystal common drive output pins. One of the V3, VC,  
MV3 (VSS) levels is selected by a combination of the scan data  
and FR/F1/F2 signals.  
132  
5.5 Test pins  
Number of  
pins  
Pin name  
I/O  
Description  
TEST,  
I
IC chip test pins. Lock them to LOW.  
5
TEST2 to 5  
TEST0, 1,  
6 to 18  
I/O  
IC chip test pins. Open them and make sure that the capacity is not  
consumed by wiring, etc.  
15  
Rev. 1.3  
EPSON  
15  
S1D15E05 Series  
6. FUNCTIONAL DESCRIPTION  
6.1 MPU Interface  
6.1.1 Selection of Interface Type  
S1D15E05 series allows data to be sent via the 8-bit bi-directional data buses (D7 to D0) or serial data input (SI). By  
setting the polarity of the P/S pin to HIGH or LOW, you can select either 8-bit parallel data input or serial data input,  
as shown in Table 6.1.  
Table 6.1  
P/S  
CS1  
CS2  
CS2  
CS2  
A0  
A0  
A0  
RD  
RD  
WR  
WR  
C86  
C86  
D7  
D7  
SI  
D6  
D6  
D5 to D0  
D5 to D0  
(HZ)  
HIGH : Parallel input CS1  
LOW : Serial input CS1  
SCL  
: Fixed to HIGH or LOW HZ: High impedance state  
6.1.2 parallel interface  
When the parallel interface is selected (P/S = HIGH), direction connection to the MPU bus of either 80 series MPU or  
68 series MPU is performed by setting the 86 pin to either HIGH or LOW, as shown in Table 6.2.  
Table 6.2  
P/S  
CS1  
CS1  
CS1  
CS2  
CS2  
CS2  
A0  
A0  
A0  
RD  
E
WR  
R/W  
WR  
D7 to D0  
D7 to D0  
D7 to D0  
HIGH : 68 series MPU bus  
LOW : 80 series MPU bus  
RD  
The data bus signals are identified by a combination of A0, RD (E), and WR (R/W) signals as shown in Table 6.3.  
Table 6.3  
Common 68 series  
80 series  
WR  
Function  
A0  
1
R/W  
RD  
0
1
0
1
1
0
0
Display data read, status read  
Display data write, command parameter write  
Command write  
1
1
0
1
6.1.3 Serial interface  
When the serial interface is selected (P/S =LOW), the chip is active (CS1 = LOW, CS2 = HIGH), and reception of serial  
data input (SI) and serial clock input (SCL) is enabled. Serial interface comprises a 8-bit shift register and 3-bit counter.  
The serial data are latched by the rising edge of serial clock signals in the order of D7, D6, .... and D0 starting from the  
serial data input pin. On the rising edge of 8th serial clock signal, they are converted into 8-bit parallel data to be  
processed.  
Whether serial data input is a display data or command is identified by A0 input. A0 = HIGH indicates display data,  
while A0 = LOW shows command data. The A0 input is read and identified at every 8 × n-th rising edge of the serial  
clock after the chip has turned active.  
Fig. 6.1 shows the serial interface signal chart.  
16  
EPSON  
Rev. 1.3  
S1D15E05 Series  
CS1  
CS2  
SI  
D7  
1
D6  
2
D5  
3
D4  
4
D3  
5
D2  
6
D1  
7
D0 D7  
D6  
10  
D5  
D4  
D3  
13  
D2  
14  
SCL  
8
9
11  
12  
A0  
Fig. 6.1  
* When the chip is inactive, the counter is reset to the initials state.  
* Reading is not performed in the case of serial interface.  
* For the SCL signal, a sufficient care must be taken against terminal reflection of the wiring and external noise.  
Recommend to use an actual equipment to verify the operation.  
processing via the bus holder accompanying the internal  
data bus.  
For example, when data is written to the display data  
RAM by the MPU, the data is once held by the bus  
holder. It is written to the display data RAM before the  
next data write cycle comes.  
On the other hand, when the MPU reads the content of  
the display data RAM, it is read in the first data read  
cycle (dummy), and the data is held in the bus holder.  
Then it is read onto on the system bus from the bus  
holder in the next data read cycle. Restrictions are  
imposed on the display data RAM read sequence. When  
the address has been set, specified address data is not  
output to the Read command immediately after that.  
The specified address data is output in the second data  
reading. This must be carefully noted. Therefore, one  
dummy read operation is mandatory subsequent to  
address setting or write cycle. Fig. 6.2 illustrates this  
relationship.  
6.1.4 Chip Selection  
The S1D15E05 series has two chip select pins; CS1 and  
CS2. MPU interface or serial interface is enabled only  
when CS1 = LOW and CS2 = HIGH.  
When the chip select pin is inactive, D0 to D5 are in the  
state of high impedance, while A0, RD and WR inputs  
are disabled. When serial interface is selected, the shift  
register and counter are reset.  
6.1.5 Access to display data RAM and  
internal register  
Access to S1D15E05 series viewed from the MPU side  
is enabled only if the cycle time requirements are kept.  
This does not required waiting time; hence, high-speed  
data transfer is allowed.  
Furthermore, at the time of data transfer with the MPU,  
S1D15E05 series provides a kind of inter-LSI pipe line  
Rev. 1.3  
EPSON  
17  
S1D15E05 Series  
Write  
A0  
WR  
Latch  
DATA  
White  
N
N+1  
N+2  
Command  
N
N+1  
N+2  
BUS Holder  
Write Signal  
Read  
A0  
WR  
RD  
DATA  
Read  
Dumy  
n
n+1  
Command  
Read Signal  
Column Address  
Preset N  
Read command code  
Increment N+1  
n
N+2  
Bus Holder  
n+1  
n+2  
Dummy Read  
Data Read  
Data Read  
Fig. 6.2  
RAM bit data (high order and low order)  
6.2 Display data RAM  
6.2.1 Display Data RAM  
(1,1) : gray-scale 3  
Black (when display is in  
normal mode)  
This is a RAM to store the display dot data, and comprises  
132 × 160 × 2 bits. Access to the desired bit is enabled  
by specifying the page address and column address.  
When the 4 gray-scale is selected by the Display Mode  
command, display data input for gray-scale display are  
processed as a two-bit pair. Combination is as follows:  
(1,0) : gray-scale 2  
(0,1) : gray-scale 1  
(0,0) : gray-scale 0  
White (when display is in  
normal mode)  
When binary display is selected by the Display Mode  
command, the RAM 1 bit built in the one-dot pixel  
responds to it. When the RAM bit data is “1”, the  
display is black. If it is “0”, the display is given in white.  
RAM bit data  
(MSB, LSB) = (D1,D0), (D3,D2), (DS,D4), (D7,D6)  
When the RAM bit data is gray-scale 1 and 2, gray-scale  
display is realized according to the parameter of the  
Gray-scale Pattern Set command.  
“1” : Light On  
Black (when display is in  
normal mode)  
“0” : Light Off  
White (when display is in  
normal mode)  
18  
EPSON  
Rev. 1.3  
S1D15E05 Series  
Display data D7 to D0 from the MPU correspond to  
LCD common direction, as shown in Fig. 6.3 and 6.4.  
Therefore, less restrictions when multi-chip usage.  
Furthermore, read/write operations from the MPU to  
the RAM are carried out via the input/output buffer.  
The read operation from Display data RAM is designed  
as an independent operation. Accordingly, even if the  
MPU accesses the RAM asynchronously during LCD  
display, no adverse effect is given to display.  
(D1,D0) (0,0) (1,1) (1,1)  
(D3,D2) (1,1) (0,0) (0,0)  
(D5,D4) (0,0) (1,0) (0,1)  
(D7,D6) (0,0) (0,0) (0,0)  
(0,0)  
(0,0)  
(0,0)  
(0,0)  
COM0  
COM1  
COM2  
COM3  
Display data RAM  
LCD  
Fig. 6.3 4 gray-scale  
D0 0 1 1 1  
D1 1 0 0 0  
D2 0 0 0 0  
D3 0 1 1 1  
D4 1 0 0 0  
0
COM0  
COM1  
COM2  
COM3  
COM4  
0
0
0
0
Display data RAM  
LCD  
Fig. 6.4 Binary  
or read operation.  
6.2.2 Gray-scale display  
When the column direction is selected for address  
increment, the column address is increased by +1 for  
every write or read operation. After the column address  
has accessed up to 9FH, the page address is incremented  
by +1 and the column address shifts to 0H.  
When the page direction is selected for address  
increment, the page address is increased with the column  
address locked in position. When the page address has  
accessed up to 32H, the column address is incremented  
by +1, and the page address goes to 0H.  
Whichever direction is selected for address increment,  
the page address goes back to 0H and the column  
address to 0H after access up to the column address 9FH  
of page address 32H.  
As shown in Fig. 6.4, relationship between the display  
data RAM column address and segment output can be  
reversed by the Column Address Set Direction command.  
This will reduce restrictions on IC layout during LCD  
module assembling.  
When the 4 gray-scale is selected by the Display Mode  
command, gray-scale is represented by the FRM control  
carried out according to the gray-scale data written in  
the display data RAM.  
Of the 4 gray-scale, 2 gray-scale of halftones (gray-  
scale 2 and 1) has its level of contrast specified by the  
Gray-scale Set command. Gray-scale can be selected  
from 6 levels of contrast.  
6.2.3 Page address circuit/column address  
circuit  
The address of the display data RAM to be accessed is  
specified by the Page Address Set command and Column  
Address Set command, as shown in Fig. 6.5 and Fig. 6.6.  
For Address incremental direction, either the column  
direction or page direction can be selected by the Address  
Direction command. Whichever direction is chosen,  
increment is carried out by positive one (+1) after write  
Rev. 1.3  
EPSON  
19  
S1D15E05 Series  
Table 6.4  
SEG output  
SEG0  
SEG159  
ADC 0”  
0(H)Column Address 9F(H)  
9F(H)Column Address 0(H)  
(D0)  
1”  
dynamic modification of the line address, screen scroll  
and page change are enabled.  
6.2.4 Line address circuit  
The line address circuit specifies the line address  
corresponding to COM output when the contents of the  
display data RAM is displayed, as shown in Fig. 6.5 and  
6.6. Normally, the top line of the display (COM0 output  
in the case of normal rotation of the common output  
status and COM131 output in the case of reverse rotation)  
is specified by the Display Start Line Address Set  
command. The display area starts from the specified  
display start line address to cover the area corresponding  
to the lines specified by the DUTY Set command in the  
direction where the line address increments.  
6.2.5 Area scroll  
The display area can be divided into the display area  
fixed in the COM direction and scrollable area by the  
area scroll command. The scroll area is set by a scroll  
mode, scroll start line address (AS), scroll end address  
(AE), and scroll display line count (AL) as parameters  
for the area scroll command. Display start line address  
(DL) in the scroll area can be specified by the display  
start line address set command.  
If the display start line address set command is used for  
Fixed area  
Scrollable  
Fixed area  
Scrollable  
Scrollable  
Scrollable  
Fixed area  
Fixed area  
Mode 3  
Mode 0  
Mode 1  
Mode 2  
Scroll mode  
00H  
Upper fixed area  
Number of line : AS  
AS-1  
DL  
Scroll area  
Number of line : AL  
AE+1  
Lower fixed area  
Number of line  
Final line address  
middle of reading the scroll area, the line address to be  
read next will be 00H. When all the AL lines have been  
read, the address to be read next will be AE + 1. When  
reading is completed up to the final line address, the  
control goes back to the line address DL, and parameter  
AS is disabled. DL can be specified in the range from  
00H to AE.  
6.2.5.1 Mode 0 (full screen scroll)  
This mode releases the area scroll. Parameters AS, AE  
and AL are disabled,  
6.2.5.2 Mode 1 (Upper scroll )  
Reading starts from the line address DL to read AL lines  
as a scroll area. If the line address AE is read in the  
20  
EPSON  
Rev. 1.3  
S1D15E05 Series  
6.2.5.3 Mode 2 (lower scroll)  
6.2.6 Display data latch circuit  
Reading starts from line address 00H to reach the line  
address AS-1 in the continuous reading mode. Upon  
completion of reading of line address AS-1, the line  
address moves to the DL to read the area corresponding  
to AL lines from the line address DL as a scroll area. If  
the final line address is read in the middle of reading the  
scroll area, the line address to be read next will be AS.  
When all AL lines have been read, the control goes back  
to the line address 00H, and parameter AE is disabled.  
DL can be specified in the range from AS to the final line  
address.  
The display data latch circuit is a latch to temporarily  
latch the display data output from then display data  
RAM to the liquid crystal drive circuit. Display normal/  
reverse, display ON/OFF, and display all lighting ON/  
OFF commands control the data in this latch, without  
the data in the display data RAM being controlled.  
6.2.7 Partial display  
Partial display of the screen is provided by the partial  
display ON/OFF command. The partial area (display  
start line, number of display lines) are set by the partial  
display set command.  
The display start line of the parameter shows the line  
assigned in the COM direction of the liquid crystal  
screen. It is different from the line address given in Fig.  
6.5 and 6.6.  
6.2.5.4 Mode 3 (Center scroll)  
Reading starts from line address 00H to reach the line  
address AS-1 in the continuous reading mode.  
Upon completion of reading of line address AS-1, the  
line address moves to the DL to read the area  
corresponding to AL lines from the line address DL as  
a scroll area. If the final line address is read in the  
middle of reading the scroll area, the line address to be  
read next will be AS. When all AL lines have been read,  
the line address will be AE+1. When up to the final line  
address has been read, the control goes back to the line  
address 00H, DL can be specified in the range from AS  
to AE.  
Example: When the point is set at 1 (COM4 to 7) by the  
Duty Reset command, the display line is  
assigned as shown below. If the display start  
line 4 and display line count 3 are specified  
by the partial display set command, the display  
area is COM8 to COM10.  
Display line  
LCD panel  
0
1
2
3
4
COM4  
COM5  
COM6  
COM7  
COM8  
COM9  
COM10  
COM11  
COM12  
COM13  
COM14  
5
6
7
8
9
10  
Rev. 1.3  
EPSON  
21  
S1D15E05 Series  
Common  
Output state:  
Normal rotation  
4 gray-scale display  
COM  
Line  
Page Address  
Data  
Address  
Output  
D5  
0
D1 D0  
D4 D3  
D2  
When the display start line is set to 11H  
COM0  
COM1  
COM2  
COM3  
COM4  
COM4  
COM6  
COM7  
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
D1,D0  
D3,D2  
D5,D4  
D7,D6  
0
0
0
0
0
Page 0  
Page 1  
Page 2  
Page 3  
Page 4  
Page 5  
D1,D0  
D3,D2  
D5,D4  
D7,D6  
0
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
0
1
0
1
0
0
0
0
0
0
0
0
0
0
D1,D0  
D3,D2  
D5,D4  
D7,D6  
COM8  
COM9  
08H  
09H  
0AH  
0BH  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
COM16  
COM17  
COM18  
COM19  
COM20  
COM21  
COM22  
COM23  
D1,D0  
D3,D2  
D5,D4  
D7,D6  
0CH  
0DH  
0EH  
0FH  
10H  
11H  
12H  
13H  
14H  
15H  
16H  
17H  
D1,D0  
D3,D2  
D5,D4  
D7,D6  
D1,D0  
D3,D2  
D5,D4  
D7,D6  
Start  
7CH  
7DH  
7EH  
7FH  
D1,D0  
D3,D2  
D5,D4  
D7,D6  
COM124  
COM125  
COM126  
COM127  
COM128  
COM129  
COM130  
COM131  
Page 31  
Page 32  
1
0
1
0
0
1
1
0
1
0
1
0
80H  
81H  
82H  
83H  
D1,D0  
D3,D2  
D5,D4  
D7,D6  
Fig. 6.5 4 gray-scale  
22  
EPSON  
Rev. 1.3  
S1D15E05 Series  
Binary display  
Common  
output state:  
Normal mode  
Page Address  
Line  
Address  
COM  
Output  
Data  
When the display start line is set to 0CH  
D5 D4 D3 D2 D1 D0  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
08H  
09H  
0AH  
0BH  
0CH  
0DH  
0EH  
0FH  
10H  
11H  
12H  
13H  
14H  
15H  
16H  
17H  
18H  
19H  
1AH  
1BH  
1CH  
1DH  
1EH  
1FH  
20H  
21H  
22H  
23H  
24H  
25H  
26H  
27H  
28H  
29H  
2AH  
2BH  
2CH  
2DH  
2EH  
0
79H  
7AH  
7BH  
7CH  
7DH  
7EH  
7FH  
80H  
81H  
82H  
83H  
84H  
85H  
86H  
87H  
88H  
89H  
8AH  
8BH  
8CH  
8DH  
8EH  
8FH  
90H  
91H  
92H  
93H  
94H  
95H  
96H  
F9H  
FAH  
FBH  
FCH  
FDH  
FEH  
FFH  
100H  
101H  
102H  
103H  
104H  
105H  
106H  
107H  
COM0  
COM1  
COM2  
COM3  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
Page 0  
Page 1  
Page 2  
COM4  
COM5  
COM6  
COM7  
COM8  
COM9  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
COM16  
COM17  
COM18  
COM19  
COM20  
COM21  
COM22  
COM23  
COM24  
COM25  
COM26  
COM27  
COM28  
COM29  
COM30  
COM31  
COM32  
COM33  
COM34  
COM35  
COM36  
COM37  
COM38  
COM39  
COM40  
COM41  
COM42  
COM43  
COM44  
COM45  
COM46  
Start  
0
0
0
0
0
0
0
1
1
0
1
0
Page 3  
Page 4  
0
0
0
0
0
1
1
1
0
1
1
1
Page 5  
COM121  
COM122  
COM123  
COM124  
COM125  
COM126  
COM127  
COM128  
COM129  
COM130  
COM131  
Page 15  
0
0
1
1
0
0
0
0
0
0
0
1
Page 16  
Page 17  
Page 18  
Page 31  
0
0
1
1
0
1
0
1
1
1
0
1
Page 32  
1
0
0
0
0
0
Fig. 6.6 Binary display  
Rev. 1.3  
EPSON  
23  
S1D15E05 Series  
flicker.  
6.3 Oscillator circuit  
Furthermore, the display clock generates internal  
common timing, liquid crystal alternating signal(FR),  
field start signal (CA) and drive pattern signal (Fl and  
F2).  
The FR normally generates 2-frame alternating drive  
system drive waveform to the liquid crystal drive  
circuit. The n-line reverse alternating drive waveform  
is generated for each 4 × (a+1) line by setting data on the  
n-line reverse drive register. When there is a display  
quality problem including crosstalk,the problem may  
be solved using the n-line reverse alternating drive.  
Execute liquid crystal display to determine the number  
of lines “n” for alternation.  
A display clock is generated by the CR oscillator. The  
oscillator circuit is enabled only when M/S = HIGH and  
CLS = HIGH. Oscillation starts after input of the built-  
in oscillator circuit ON command input.  
When CLS = LOW, oscillation stops, and display clock  
is input from the CL pin.  
6.4 Display timing generation circuit  
Timing signals are generated from the display clock to  
the line address circuit and display data latch circuit.  
Synchronized with display clock, display data is latched  
in display data latch circuit, and is output to the segment  
drive output pin. Reading of the display data into the  
LCD drive circuit is completely independent of access  
from the MPU to the display data RAM. Accordingly,  
asynchronous access to the display data RAM during  
LCD display does not give any adverse effect; like as  
When you want to use the S1D15E05 series in multi-  
chip configuration, supply display timing signal (FR,  
CA, F1, F2, CL, DOF) to the slave side from the master  
side. Table 6.5 shows the statuses of FR, CA, F1, F2,  
CL, DOF.  
Table 6.5  
Operating mode  
CL  
FR, CA, F1, F2, DOF  
Master (M/S = HIGH) Built-in oscillator circuit enabled (CLS = HIGH) Output  
Built-in oscillator circuit disabled (CLS = LOW) Input  
Output  
Output  
Slave (M/S = LOW) Built-in oscillator circuit enabled (CLS = HIGH) Input  
Built-in oscillator circuit disabled (CLS = LOW) Input  
Input  
Input  
6.5 Liquid crystal drive circuit  
6.5.1 SEG Drivers  
6.5.2 COM Drivers  
6.5.2.1 S1D15E05D00B  
*
This is a COM output circuit. It selects three values of  
V2, VC and MV2(VSS) using the driver control signal  
determined by the decoder, and output them.  
6.5.1.1 S1D15E05D00B  
*
SEG output circuit selects five values of V2, V1, VC,  
MV1 and MV2(VSS) using the driver control signal  
determined by the decoder, and outputs them.  
6.5.2.2 S1D15E06D00B  
*
This is a COM output circuit. It selects three values of  
V3, VC and MV3(VSS) using the driver control signal  
determined by the decoder, and output them.  
SED15E series allows the COM output scanning  
direction to be set by the common output status select  
command. (See Table 6.6). This will reduce restrictions  
on IC layout during LCD module assembling.  
6.5.1.2 S1D15E06D00B  
*
This is a SEG output circuit. It selects the five values of  
V2, V1, VC, MV1 and MV2 using the driver control  
signal determined by the decoder, and output them.  
Table 6.6  
Status  
Direction of COM scanning  
Normal  
COM 0  
COM 131  
COM 0  
Reverse COM 131  
24  
EPSON  
Rev. 1.3  
S1D15E05 Series  
control of step-up circuit, voltage regulating circuit and  
liquid crystal drive potential generating circuit. This  
allows a combined use of the external power supply and  
part of built-in power supply functions. Table 6.7  
shows functions controlled by the 5-bit data of the  
control set command, and Table 6.8 shows reference  
combinations. The power supply circuit is enabled only  
during master operation.  
6.6 Power supply circuit  
This is a power supply circuit to generate voltage  
required for liquid crystal drive, and is characterized by  
a low power consumption. It consists of a step-up  
circuit, voltage regulating circuit and liquid crystal  
drive voltage generating circuit, and is enabled only  
during master operation. The power supply circuit uses  
the power control set command to provide an on/off  
Table 6.7 Control by 5-bit data of the control set command  
Item  
State  
“1”  
Triple Double Single  
“0”  
D4 Step-cut circuit scaling factor select bit 1  
1
1
1
0
0
1
D3 Step-cut circuit scaling factor select bit 2  
D2 Step-cut circuit control bit  
ON  
ON  
ON  
OFF  
OFF  
OFF  
D1 Voltage regulator circuit (VC regulator circuit) control bit  
D0 LCD driving potential generating circuit (LCDV circuit) control bit  
Table 6.8 Reference combination  
Circuits used  
D4 D3 D2 D1 D0 Step-up VC regulator  
LCDV  
circuit  
Eternal input  
power supply  
circuit  
circuit  
1Use of all built-in  
power supplies  
Triple step-up  
Double step-up  
VOUT = VDD  
1
1
0
1
0
1
1
1
1
1
1
1
1
1
1
1”  
1”  
1”  
1”  
1”  
1”  
1”  
1”  
1”  
×
2VC regulating circuit and  
0
0
0
1
1
0”  
1”  
1”  
VOUT  
LCDV circuit only  
×
×
×
×
3LCDV circuit only  
0
0
0
0
0
0
0
0
1
0
0”  
0”  
0”  
0”  
1”  
VC  
×
×
4-1 External power supply  
only (S1D15E05D00B )  
0”  
0”  
V2, V1, VC, MV1  
*
×
×
4-2 External power supply  
only (S1D15E06D00B )  
0
0
0
0
0
0”  
0”  
V3, V2, V1, VC,  
MV1, MV2  
*
* Any combinations other than the above are not available.  
*100ms or more should be kept from VC regulator circuit ON to LCDV circuit ON.  
Rev. 1.3  
EPSON  
25  
S1D15E05 Series  
6.6.1 Step-up circuit  
2When used by switching between the double step-up  
and VOUT = VDD using a command:  
Capacitors C1 are connected between CAP1+  
<-> CAP1 and between VDD <-> VOUT for use.  
3Only VOUT = VDD is used.  
VDD-VSS potential can be triple and double step-up by  
the step-up circuit built in the S1D15E05 series. The  
status of VOUT = VDD can be selected by stopping the  
operation of the triple and double step-up circuit using  
the command  
VDD pin and VOUT pin are connected for use.  
1When used by switching between the triple, double  
step-up and VOUT = VDD using a command:  
Capacitors C1 are connected between CAP1+  
<-> CAP1, between CAP2+ <-> CAP2 and  
between VDD <-> VOUT for use.  
VDD  
VDD  
VDD  
C1  
C1  
+
+
+
+
V
OUT  
V
OUT  
V
OUT  
CAP1+  
CAP1+  
OPEN  
OPEN  
OPEN  
CAP1+  
CAP1–  
CAP2–  
CAP2+  
C1  
C1  
C1  
CAP1–  
CAP2–  
CAP1–  
CAP2–  
CAP2+  
OPEN  
+
OPEN  
CAP2+  
1Triple, double step-up or  
2Double step-up or  
3VOUT = VDD (without step-up)  
VOUT = VDD  
VOUT = VDD  
Fig.6.7 shows the potential relationship for boosting.  
VOUT = 3 x VDD  
VOUT = 2 x VDD  
= 6V  
= 6V  
VOUT = VDD  
= 3.6V  
VDD = 3V  
VDD = 2V  
VSS = 0V  
VSS = 0V  
VSS = 0V  
Triple step-up potential relationship Double step-up potential relationship  
VOUT = VDD potential relationship  
Fig. 6.7  
* Set the VDD voltage range so that the VOUT pin voltage does not exceed the absolute maximum rating.  
26  
EPSON  
Rev. 1.3  
S1D15E05 Series  
only by the command without adding any external parts.  
The variable range of the VC voltage is from about 1.6  
to 7.0 [V]. When the internal step-up is used, or VOUT  
is input for use, the VOUT potential should be, in  
principle, the voltage 20% or more higher than the  
maximum voltage of the VC to be used, giving  
consideration to temperature characteristics.  
6.6.2 Voltage Regulating Circuit  
VOUT generated from the step-up circuit or VOUT input  
from the outside produces liquid crystal drive voltage  
VC via the voltage regulating circuit. The voltage  
regulating circuit is controlled by liquid crystal drive  
voltage change command and electronic volume.  
The S1D15E05 series has a high precision constant  
voltage source, and incorporates 4-step liquid crystal  
drive voltage change command and 128-step electronic  
volume functions. This makes it possible to provide a  
high precision liquid crystal drive voltage regulation  
Example: When VC output is 7 [V], VOUT 8.4 [V]  
(three times 2.8 [V], etc.)  
When VC output is 4 [V], VOUT 4.8 [V]  
(two times 2.4 [V], three times 1.8 [V])  
• Electronic volume  
α of Table 6.9 indicates an electronic volume command  
value. It takes one of 128 states when the data is set in  
the 7-bit electronic volume register.  
Table 6.9 shows the value of α by setting the data in the  
electronic volume register.  
Table 6.9  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
α
Voltage VC  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0
1
2
Small  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
0
1
125  
126  
127  
Large  
• Liquid crystal drive voltage selection  
The liquid drive voltage range can be selected from 3  
states by the liquid crystal drive voltage select command  
using the two-bit crystal drive voltage select command  
register.  
Table 6.10  
D1  
0
D0  
0
VC voltage output range  
1.77V to 3.50V  
1
0
2.53V to 5.00V  
1
1
3.54V to 7.00V  
Rev. 1.3  
EPSON  
27  
S1D15E05 Series  
Equation A-1 represents VC logical values. For the output voltage of VC, a manufacturing dispersion of up to ± 3%  
should be taken into account.  
Equation A-1  
Unit [V]  
Electronic  
LCD voltage selection  
VR  
D1  
0
D0  
0
D1  
1
D0  
0
D1  
1
D0  
1
α
VC (Max.) = 3.50V  
1.77 + 0.0195 × α  
VC (Max.) = 5.00V  
2.53 + 0.028 × α  
VC (Max.) = 7.00V  
3.54 + 0.039 × α  
0 to 31  
32 to 63  
64 to 95  
96 to 127  
2.39 + 0.0156 × (α 32)  
2.89 + 0.0117 × (α 64)  
3.26 + 0.0078 × (α 96)  
3.42 + 0.0223 × (α32)  
4.12 + 0.0167 × (α64)  
4.65 + 0.0112 × (α96)  
4.78 + 0.0313 × (α32)  
5.77 + 0.0234 × (α64)  
6.52 + 0.0156 × (α96)  
7
6
5
4
VC  
3
2
1
0
32  
64  
96  
127  
Value of electronic volume α  
Figure 6.8  
28  
EPSON  
Rev. 1.3  
S1D15E05 Series  
6.6.3 Liquid crystal drive voltage generation  
circuit  
6.6.3.2 S1D15E06D00B  
*
Voltage VC is stepped up in the IC to generate potential  
V3. Furthermore, voltages V3 and VC are converted by  
resistive divider to produce V2, V1, MV1 and MV2  
voltages. V2, V2, MV1 and MV2 voltages are impedance-  
converted by the voltage follower, and is supplied to the  
liquid crystal drive circuit.  
6.6.3.1 S1D15E05D00B  
*
The voltage VC is stepped up and down in the IC, and  
generates voltage V2, V1 and MV1 required for liquid  
crystal drive.  
Voltage V2 is output at the value double of the VC,  
voltage V1 at the value intermediate between V2 and  
VC, and potential MV1 at the value intermediate between  
VC and MV2(VSS).  
V2  
V1  
VC  
MV1  
MV2  
11/14 V3  
9/14 V3  
7/14 V3  
5/14 V3  
3/14 V3  
V1  
VC  
MV1  
3/4 V2  
2/4 V2  
1/4 V2  
Rev. 1.3  
EPSON  
29  
S1D15E05 Series  
An example of circuit around the power supply circuit  
(S1D15E05D00B )  
*
2
1Use of all built-in power supplies  
When used by switching between the triple, double  
step-up and VOUT = VDD using a command: (12 Cs)  
When used by switching between the double step-up  
and VOUT = VDD using a command: (11 Cs)  
+
+
CAP1+  
CAP1–  
CAP1+  
CAP1–  
C1  
C1  
CAP2–  
CAP2+  
CAP2–  
CAP2+  
C1  
+
+
+
V
V
OUT  
DD  
V
V
OUT  
DD  
C1  
C1  
+
+
V
V
DD  
VDD  
C1  
C1  
SS  
VSS  
+
+
CAP3+  
CAP3–  
CAP4–  
CAP4+  
CAP3+  
CAP3–  
CAP4–  
CAP4+  
C1  
C1  
C1  
C1  
+
+
+
+
CPP+  
CPP–  
CPM+  
CPM–  
CPP+  
CPP–  
CPM+  
CPM–  
C2  
C2  
C2  
C2  
+
+
+
+
+
+
+
+
+
+
V
V
V
MV  
MV  
2
1
C
V
V
V
MV  
MV  
2
1
C
C3 × 4  
C3 × 4  
1
2
1
2
(VSS  
)
(VSS)  
Only VOUT = VDD is used (9 Cs)  
2VC regulating circuit and LCDV circuit  
VOUT external output (10 Cs)  
CAP1+  
CAP1–  
CAP2–  
CAP2+  
CAP1+  
CAP1–  
CAP2–  
CAP2+  
V
OUT  
V
V
OUT  
DD  
V
V
OUT  
DD  
+
+
V
V
DD  
SS  
V
V
DD  
SS  
C1  
C1  
+
+
CAP3+  
CAP3–  
CAP4–  
CAP4+  
CAP3+  
CAP3–  
CAP4–  
CAP4+  
C1  
C1  
C1  
C1  
+
+
+
+
CPP+  
CPP–  
CPM+  
CPM–  
CPP+  
CPP–  
CPM+  
CPM–  
C2  
C2  
C2  
C2  
+
+
+
+
+
+
+
+
+
+
V
V
V
MV  
MV  
2
1
C
V
V
V
MV  
MV  
2
1
C
C3 × 4  
C3 × 4  
1
2
1
2
(VSS  
)
(VSS)  
30  
EPSON  
Rev. 1.3  
S1D15E05 Series  
3LCDV circuit only  
4External power supply only  
VC external input (9 Cs)  
external input (1 C)  
CAP1+  
CAP1+  
CAP1–  
CAP2–  
CAP2+  
CAP1–  
CAP2–  
CAP2+  
V
V
OUT  
DD  
V
V
OUT  
DD  
+
+
V
V
DD  
SS  
V
V
DD  
C1  
C1  
SS  
+
CAP3+  
CAP3–  
CAP4–  
CAP4+  
CAP3+  
CAP3–  
CAP4–  
CAP4+  
C1  
C1  
+
+
CPP+  
CPP–  
CPM+  
CPM–  
CPP+  
CPP–  
CPM+  
CPM–  
C2  
C2  
+
+
+
V
V
V
MV  
MV  
2
1
C
V
V
V
MV  
MV  
2
1
C
External  
Power  
Supply  
C3 × 4  
V
C
+
+
1
2
1
2
(VSS  
)
(VSS)  
An example of circuit around the power supply circuit  
(S1D15E06 D00B )  
1Use of all built-in power supplies  
*
When used by switching between the double step-up  
and VOUT = VDD: (11 Cs)  
When used by switching between the triple, double  
step-up and VOUT = VDD: (12 Cs)  
+
+
CAP1+  
CAP1–  
CAP1+  
CAP1–  
C1  
C1  
CAP2–  
CAP2+  
CAP2–  
CAP2+  
C1  
+
+
+
V
V
OUT  
DD  
V
V
OUT  
DD  
C1  
C1  
+
+
V
V
DD  
SS  
V
V
DD  
SS  
C1  
C1  
+
+
+
+
CAP3+  
CAP3–  
CAP4–  
CAP4+  
CAP3+  
CAP3–  
CAP4–  
CAP4+  
C1  
C1  
C1  
C1  
CPP+  
CPP–  
CPM+  
CPM–  
CPP+  
CPP–  
CPM+  
CPM–  
+
+
+
+
+
+
+
+
+
+
+
+
V
V
V
V
MV  
MV  
MV  
3
2
1
C
V
V
V
V
MV  
MV  
MV  
3
2
1
C
C3 × 6  
C3 × 6  
1
2
3
1
2
3
(VSS  
)
(VSS)  
Rev. 1.3  
EPSON  
31  
S1D15E05 Series  
Only VOUT = VDD is used: (9 Cs)  
2VC regulating circuit and LCDV circuit  
VOUT external input (10 Cs)  
CAP1+  
CAP1–  
CAP2–  
CAP2+  
CAP1+  
CAP1–  
CAP2–  
CAP2+  
V
OUT  
V
V
OUT  
DD  
V
V
OUT  
DD  
+
+
V
V
DD  
SS  
V
V
DD  
SS  
C1  
C1  
+
+
+
+
CAP3+  
CAP3–  
CAP4–  
CAP4+  
CAP3+  
CAP3–  
CAP4–  
CAP4+  
C1  
C1  
C1  
C1  
CPP+  
CPP–  
CPM+  
CPM–  
CPP+  
CPP–  
CPM+  
CPM–  
+
+
+
+
+
+
+
+
+
+
+
+
V
V
V
V
MV  
MV  
MV  
3
2
1
C
V
V
V
V
MV  
MV  
MV  
3
2
1
C
C3 × 6  
C3 × 6  
1
2
3
1
2
3
(VSS  
)
(VSS)  
4External power supply only  
3LCDV circuit only  
external input (1 C)  
VC external input (9 Cs)  
CAP1+  
CAP1–  
CAP2–  
CAP2+  
CAP1+  
CAP1–  
CAP2–  
CAP2+  
V
V
OUT  
DD  
V
V
OUT  
DD  
+
+
V
V
DD  
SS  
V
V
DD  
C1  
C1  
SS  
+
CAP3+  
CAP3–  
CAP4–  
CAP4+  
CAP3+  
CAP3–  
CAP4–  
CAP4+  
C1  
C1  
+
CPP+  
CPP–  
CPM+  
CPM–  
CPP+  
CPP–  
CPM+  
CPM–  
+
+
+
V
V
V
V
MV  
MV  
MV  
3
2
1
C
V
V
V
V
MV  
MV  
MV  
3
2
1
C
External  
Power  
Supply  
C3 × 6  
V
C
+
+
+
1
2
3
1
2
3
(VSS  
)
(VSS)  
32  
EPSON  
Rev. 1.3  
S1D15E05 Series  
Examples of common reference settings  
The optimum values for above-mentioned Cl, C2 and  
C3 vary according to the LCD panel to drive. Use the  
above-mentioned values as references. Actually verify  
the display of a pattern with big load to make a decision.  
Item  
C1  
Settings  
1.0 to 4.7  
0.47 to 1.0  
0.47 to 1.0  
Unit  
µF  
C2  
C3  
17. Partial display : OFF  
6.6.4 Temperature gradient select circuit  
18. Partial display start line : (D7, D6, D5, D4, D3, D2,  
D1, D0) = (0, 0, 0, 0, 0, 0, 0)  
Number of partial display lines : (D7, D6, D5, D4,  
D3, D2, D1, D0) = (0, 0, 0, 0, 0, 0, 0)  
19. Read modify write : OFF  
20. Built-in oscillation circuit : stop  
21. Oscillation frequency register : (D3, D2, D1,D0) =  
(0, 0, 0, 0) (120 kHz)  
22. Power control register : (D4, D3, D2, D1, D0) = (0,  
0, 0, 0, 0)  
23. Clock frequency for step-up/step-down  
Step-up : (D2, D1, D0) = (1, 0, 1)  
Step-down : (D6, D5, D4) = (1, 0, 1)  
24. Liquid crystal drive voltage selection register :  
(D1,D0) = (0, 0)  
This is a circuit to select the temperature gradient  
characteristics of the liquid crystal drive power supply  
voltage. Temperature gradient characteristics can be  
selected from eight states by the Temperature Gradient  
command. Selection of temperature gradient  
characteristics conforming to the temperature  
characteristics of the liquid crystal to be used makes it  
possible to configure a system without providing an  
external element for temperature characteristics  
compensation.  
6.7 Reset circuit  
When the RES input becomes LOW, this LSI is set to the  
initialized state.  
The following shows the initially set state:  
25. Electronic volume register : (D6, D5, D4, D3, D2,  
D1, D0) = (0, 0, 0, 0, 0, 0, 0)  
1. Display : OFF  
2. Display OFF mode : VSS output  
3. Display : normal mode  
26. Discharge : ON (only for when RES = LOW)  
27. Power save : OFF  
28. Temperature gradient resistor : (D2, D1, D0) = (0,  
0, 0) (0.06/°C)  
4. Display all lighting : OFF  
5. Common output status : normal  
6. Display start line : Set to 1st line  
7. Page address : Set to 0 page  
8. Column address : Set to 0 address  
9. Display data input direction : Column direction  
10. Column address direction : forward  
11. n-line a.c. reverse drive : OFF (reverse drive for  
each frame)  
29. Register data in the serial interface : Clear  
When the Reset command is used, only the above-  
mentioned inilialized items 7, 8 and 19 are executed.  
When power is turned on, initialization by the RES pin  
is necessary. After initialization by the RES pin, each  
input pin must be controlled correctly.  
12. n-line reverse drive register : (D4, D3, D2, D1, D0)  
= (0, 1, 1, 0, 0)  
Furthermore, when control signals from the MPU have  
a high impedance, the excessive current may flow to the  
IC.  
After VDD is applied, measures should be taken to  
ensure that the input pin does not have a high impedance.  
The S1D15E05 series discharges the electric charge of  
VOUT and liquid crystal drive voltage (V2, V1, VC,  
MV1) at the level of RES pin = LOW(V3, V2, V1,VC,  
13. Display mode : 4 gray-scale display  
14. Gray-scale pattern register : (D7, D6, D5, D4, D3,  
D2, D1, D0) = ( , 1, 0, 1, , 0, 1, 0)  
*
*
15. Area scroll :  
Scroll mode : (D1, D0) = (0, 0)  
Scroll start address : (D7, D6, D5, D4, D3, D2, D1,  
D0) = (0, 0, 0, 0, 0, 0, 0, 0)  
Scroll terminating address : (D7, D6, D5, D4, D3,  
D2, D1, D0) = (0, 0, 0, 0, 0, 0, 0, 0)  
MV1,MV2 as for S1D15E06D00B ). When liquid  
*
crystal drive external power supply is used, external  
power supply should not be supplied during the period  
of RES = LOW to prevent external power supply and  
VDD from being short circuited.  
Number of display lines : (D7, D6, D5, D4, D3, D2,  
D1, D0) = (0, 0, 0, 0, 0, 0, 0, 0)  
16. DUTY register : (D5, D4, D3, D2, D1, D0) = (1, 0,  
0, 0, 0, 0) (1/132 duty)  
Start spot (block) register : (D5, D4, D3, D2, D1,  
D0) = (0, 0, 0, 0, 0) (COM0)  
Rev. 1.3  
EPSON  
33  
S1D15E05 Series  
7. COMMAND  
The S1D15E05 series identifies data bus signals by a combination of A0, RD(E) and WR(R/W). Interpretation and  
execution of the command are executed by the internal timing alone which is independent of the external clock. This  
allows high-speed processing.  
The 80 series MPU interface allows the command to be started by entering the low pulse in the RD pin during reading  
and by entering the low pulse in the WR pin during writing.  
The 68 series MPU interface allows a read state to occur by entering HIGH in the R/W pin, and permits a write state  
to occur by entering LOW. It also allows the command to be started by entering the high pulse in the pin E. (For timing,  
see the description of 10. Timing characteristics).  
Accordingly, the 68 series MPU interface is different from 80 series MPU interface in that RD(E) is 1(H)in the case  
of display data/read shown in the Command Description and Command Table. The following describes the commands,  
based on the example of the 80 series MPU interface:  
When the serial interface is selected, enter data sequentially starting from D7.  
Command Description  
(1) Display ON/OFF  
This command sets the display ON/OFF.  
When display OFF is specified, segment and common drivers outputs the level selected by the display OFF Mode Select  
command.  
E
RD  
R/W  
WR  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0 Output level  
0
1
0
1
0
1
0
1
1
1
0
1
Display OFF  
Display ON  
(2) Display OFF Mode Select  
This command is used to set the output level of the segment and common driver when the display is off.  
* When D0 = 0 is selected in the case of S1D15E06D00B , the MV2 and common driver VSS level is output by segment  
*
driver when display is off. Select D0 = 1 to use the S1D15E06D00B .  
*
E
RD  
R/W  
WR  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0 Output level  
0
1
0
1
0
1
1
1
1
1
0
1
VSS  
VC  
(3) Display Normal/Reverse  
This command allows the display ON/OFF state to be reversed, without having to rewrite the contents of the display  
data RAM. In this case, contents of the display data RAM are maintained.  
E
RD  
R/W  
WR  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Setting  
0
1
0
1
0
1
0
0
1
1
0
RAM data = HIGH  
LCD ON Voltage  
(normal)  
1
RAM data = LOW  
LCD ON Voltage  
(reverse)  
34  
EPSON  
Rev. 1.3  
S1D15E05 Series  
(4) Display All Lighting ON/OFF  
This command forces all the displays to be turned on independently of the contents of the display data RAM. In this  
case, the contents of the display data RAM are maintained. Fully white display can also be made by a combination of  
the Display Reverse command.  
E
RD  
R/W  
WR  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
Setting  
0
1
0
1
0
1
0
0
1
0
Normal display status  
Display all lighting  
1
(5) Common Output Status Select  
This command allows the scanning direction of the COM output pin to be selected. For details, see the description of  
6.5.2 COM Driversin the Function Description.  
E
RD  
R/W  
A0  
WR D7 D6 D5 D4 D3 D2 D1 D0  
Selected state  
0
1
0
1
1
0
0
0
1
0
0
1
Normal  
COM0 COM131  
COM131 COM0  
Reverse  
(6) Display Start Line set (Parameter: 1 byte (4 gray-scale) and 2 bytes (binary))  
The parameter following this command specifies the display start line address of the display data RAM shown in Fig.  
6.5 and 6.6. When the Display Mode command is used to select 4 gray-scale display, a 1-byte parameter must be entered.  
When the binary display is selected, a 2-byte parameter must be entered.  
The display area is indicated in the direction where line address numbers are incremented, starting from the specified  
line address. If a dynamic change of the line address is made by this command, smooth scrolling in the longitudinal  
direction and page breaking are enabled. For details, see the description of 6.2.4 Line address circuitin the Function  
Description.  
E
RD  
R/W  
WR  
A0  
0
D7  
1
D6  
0
D5  
0
D4  
0
D3  
1
D2  
0
D1  
1
D0  
1
1
1
0
0
0
0
Mode setting  
1
P7  
*
P6  
*
P5  
*
P4  
*
P3  
*
P2  
*
P1  
*
P0 Register setting 1  
P8 Register setting 2  
1
(only binary display required)  
*: denote invalid bits.  
Rev. 1.3  
EPSON  
35  
S1D15E05 Series  
• Display Start Line Set command parameter  
(i) When the display mode is a 4 gray-scale mode:  
The one-byte parameter is used to specify the address.  
Line  
address  
P7  
0
P6  
0
P5  
0
P4  
0
P3  
0
P2  
0
P1  
0
P0  
0
00H  
01H  
02H  
0
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
1
1
0
0
0
0
0
0
0
0
0
0
1
1
0
1
82H  
83H  
Set to the line address 00H at the time of resetting.  
(ii) When the display mode is binary:  
To specify the address, continuous 2-byte data is necessary. The first byte D0 is LSB, and the second byte D0 is MLB.  
P7  
P6  
P5  
P4  
P3  
P2  
P1  
P0  
P8  
Line  
address  
1st byte  
2nd byte  
0
*
0
*
0
*
0
*
0
*
0
*
0
*
0
0
00H  
01H  
02H  
0
*
0
*
0
*
0
*
0
*
0
*
0
*
1
0
0
*
0
*
0
*
0
*
0
*
0
*
1
*
0
0
0
*
0
*
0
*
0
*
0
*
1
*
1
*
0
1
106H  
0
*
0
*
0
*
0
*
0
*
1
*
1
*
1
1
107H  
Set to line address 000H at the time of resetting. *: denote invalid bits.  
• Line address setting sequence  
Set Line Address Mode  
One byte for 4 gray-scale  
Two bytes for binary display  
Set Line Address Register  
Reset Line Address Mode  
No  
Change Completed?  
Yes  
Fig. 7.1  
36  
EPSON  
Rev. 1.3  
S1D15E05 Series  
(7) Page Address Set  
This command specifies the page address corresponding to row address when MPU access to the display data RAM  
shown in Fig. 6.5 and 6.6. For details, see the description of 6.2.2 Page address circuitin the Function Description.  
E
RD  
R/W  
WR  
A0  
0
D7  
1
D6  
0
D5  
1
D4  
1
D3  
0
D2  
0
D1  
0
D0  
Page address  
1
1
0
0
1
Command  
1
*
*
P5  
P4  
P3  
P2  
P1  
P0 Page address setting  
*: denote invalid bits.  
P5  
0
P4  
0
P3  
0
P2  
0
P1  
0
P0  
0
Page address  
0
1
0
0
0
0
0
1
0
1
1
0
1
0
1
0
1
0
1
0
31  
32  
(8) Column Address Set  
This command sets the display data RAM column address given in Fig. 6.5 and 6.6. For details, see the description of  
6.2.3 Column address circuitin the Function Description.  
E
RD  
R/W  
WR  
A0  
0
D7  
0
D6  
0
D5  
0
D4  
1
D3  
0
D2  
0
D1  
1
D0  
1
1
1
0
0
1
P7  
P6  
P5  
P4  
P3  
P2  
P1  
P0  
Column  
address  
P7  
0
P6  
0
P5  
0
P4  
0
P3  
0
P2  
0
P1  
0
P0  
0
0
1
0
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
2
1
1
0
0
0
0
0
1
0
1
0
1
1
1
0
1
158  
159  
(9) Display Data Write  
This command allows the 8-bit data to be written to the address specified by the display data RAM. After writing,  
column address or page address is automatically incremented +1 by the Display Data Input Direction Select command.  
This enables the MPU to write the display data continuously.  
E
RD  
R/W  
WR  
A0  
0
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
1
1
0
0
0
0
0
1
1
1
0
1
1
Write Data  
Rev. 1.3  
EPSON  
37  
S1D15E05 Series  
(10) Display Data Read  
This command allows the 8-bit data to be read from the address specified by the display data RAM. After reading,  
column address or page address is automatically incremented +1 by the Display Data Input Direction select command.  
This enables the MPU to read multiple word data continuously.  
It should be noted that one dummy reading is essential immediately after the column address or page address has been  
set. For details, see the description of 6.1.5 Access to display data RAM and internal registerin the Function  
Description. When the serial interface is used, display data cannot be read.  
E
RD  
R/W  
WR  
A0  
0
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
1
0
0
1
0
0
0
1
1
1
0
0
1
Read Data  
(11) Display Data Input Direction Select  
This command sets the direction where the display RAM address number is automatically incremented. For details,  
see the description of 6.2.3 Column address circuitin the Function Description.  
E
RD  
R/W  
WR  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
Direction  
Column  
Page  
0
1
0
1
0
0
0
0
1
0
1
(12) Column Address Set Direction  
This command can reverse the relationship between the display RAM data column address and segment driver output  
shown in Fig. 6.5 and 6.6. So you can reverse the sequence of segment driver output pins using this command. When  
the display data is written or read, the column address is incremented by (+1) according to the column address given  
in Fig. 6.4 and 6.5. For details, see the description of 6.2.3 Column address circuitin the Function Description.  
E
RD  
R/W  
WR  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
Setting  
Normal  
Reverse  
0
1
0
1
0
1
0
0
0
0
1
(13) n-line Inversion Drive Register Set  
This command sets the liquid crystal alternating drive reverse line count in the register to start line reverse driving  
operation. The line count to be set is 4 to 128 (32 states for each 4 lines. For details, see the description of 6.4 Display  
timing generation circuitin the Function Description.  
E
RD  
R/W  
WR  
A0  
0
D7  
0
D6  
0
D5  
1
D4  
1
D3  
0
D2  
1
D1  
1
D0 Reverse line count  
Command  
1
1
0
0
0
1
*
*
*
P4  
P3  
P2  
P1  
P0 Reverse line count  
*: denote invalid bits.  
P4  
0
P3  
0
P2  
0
P1  
0
P0 Reverse line count  
0
1
4 (1 × 4)  
8 (2 × 4)  
0
0
0
0
1
1
1
1
1
1
1
1
0
1
124 (31 × 4)  
128 (32 × 4)  
38  
EPSON  
Rev. 1.3  
S1D15E05 Series  
(14) N-line ON/OFF  
This command provides ON/OFF control of N-line inverting drive.  
E
RD  
R/W  
WR  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
N-line  
0
1
0
1
1
1
0
0
1
0
OFF  
ON  
1
(15) Display Mode  
This command sets the display mode. 4 gray-scale and binary display each have a different RAM configuration.  
For details, see the description of 6.2.1 Display Data RAMin the Function Description.  
E
RD  
R/W  
WR  
A0  
0
D7  
0
D6  
1
D5  
1
D4  
0
D3  
0
D2  
1
D1  
1
D0  
0
Display mode  
Command  
1
1
0
0
1
*
*
*
*
*
*
P1  
P0  
Display mode  
*: denote invalid bits.  
P1  
0
P0  
0
Display mode  
4gray-scale  
0
1
Binary value  
Set to 4 gray-scale (D1, D0) = (0, 0) at the time of resetting.  
(16) Gray-scale Pattern Set  
This command sets the level of gray-scale.  
E
RD  
R/W  
WR  
A0  
0
D7  
0
D6  
0
D5  
1
D4  
1
D3  
1
D2  
0
D1  
0
D0 Gray-scale pattern  
1
1
0
0
1
Command  
1
*
P6  
P5  
P4  
*
P2  
P1  
P0  
Selection of  
gray-scale level  
* (P6, P5, P4) : Selects the level of gray-scale bit (1, 0)  
* (P2, P1, P0) : Selects the level of gray-scale bit (0, 1)  
Gray-scale bit (1, 0)  
Gray-scale bit (0, 1)  
P6  
0
P5  
0
P4  
1
P2  
P1  
P0 Level of gray-scale  
White  
0
1
0
1
1
0
Black  
P6  
P5  
P4  
P2  
0
P1  
0
P0 Level of gray-scale  
1
0
White  
0
1
1
1
0
Black  
Rev. 1.3  
EPSON  
39  
S1D15E05 Series  
(17) Area Scroll Set  
This command sets the area scroll. When the binary display is selected by the Display Mode Set command, the scroll  
end line address becomes a two-byte parameter.  
14 gray-scale display  
E
RD  
R/W  
WR  
A0  
0
D7  
0
D6  
0
D5  
0
D4  
1
D3  
0
D2  
0
D1  
D0  
Area scroll  
Command  
1
1
1
1
1
0
0
0
0
0
0
0
1
*
*
*
*
*
*
P11 P10  
Scroll mode  
1
P27 P26 P25 P24 P23 P22 P21 P20  
P37 P36 P35 P34 P33 P32 P31 P30  
P47 P46 P45 P44 P43 P42 P41 P40  
Scroll start line address  
Scroll end line address  
Scroll display line count  
1
1
*: denote invalid bits.  
P11 P10  
Scroll mode  
0 (full screen)  
1 (Upper)  
0
0
1
1
0
1
0
1
2 (Lower)  
3 (Central)  
P27 P26 P25 P24 P23 P22 P21 P20 Scroll start line address  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
00H  
01H  
1
1
0
0
0
0
0
0
0
0
0
0
0
1
82H  
83H  
P37 P36 P35 P34 P33 P32 P31 P30 Scroll end line address  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
00H  
01H  
1
1
0
0
0
0
0
0
0
0
0
0
0
1
82H  
83H  
P47 P46 P45 P44 P43 P42 P41 P40 Scroll display line count  
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
1
2
1
1
0
0
0
0
0
0
0
0
0
1
1
0
131  
132  
40  
EPSON  
Rev. 1.3  
S1D15E05 Series  
2Binary display  
E
RD  
R/W  
WR  
A0  
0
D7  
0
D6  
0
D5  
0
D4  
1
D3  
0
D2  
0
D1  
D0  
Area scroll  
Command  
1
1
1
1
1
1
0
0
0
1
0
*
*
*
*
*
*
P11 P10  
Scroll mode  
1
0
P27 P26 P25 P24 P23 P22 P21 P20  
P37 P36 P35 P34 P33 P32 P31 P30  
Scroll start line address  
Scroll end line address  
1
0
1
0
*
*
*
*
*
*
*
P38  
1
0
P47 P46 P45 P44 P43 P42 P41 P40  
Scroll display line count  
*: denote invalid bits.  
Specifications on the parameters for scroll mode, scroll start line address and scroll display line count are the same  
as those on 4 gray-scale display.  
P37 P36 P35 P34 P33 P32 P31 P30 Scroll end line address  
P38  
Binary value  
1st byte  
2nd byte  
0
*
0
*
0
*
0
*
0
*
0
*
0
*
0
0
00H  
0
*
0
*
0
*
0
*
0
*
0
*
0
*
1
0
01H  
0
*
0
*
0
*
0
*
0
*
1
*
1
*
0
1
106H  
0
*
0
*
0
*
0
*
0
*
1
*
1
*
1
1
107H  
(18) Duty Set Command  
Liquid crystal drive at a lower power consumption is ensured by using this command to change the duty. Use of this  
command also allows display at a desired position on the panel (continuous COM pins on a 4-line basis).  
This command is used with a pair of the duty set parameter and start point (block) parameter, so be sure to set both  
parameters so that one of them will immediately follow the other.  
E
RD  
R/W  
WR  
A0  
0
D7  
0
D6  
1
D5  
D4  
D3  
D2  
D1  
D0  
Selected state  
Duty set command  
Duty set  
1
1
1
0
0
0
1
0
1
1
0
1
1
*
*
P15 P14 P13 P12 P11 P10  
P25 P24 P23 P22 P21 P20  
1
*
*
Start point set  
*: denote invalid bits.  
• Duty set  
Duty can be set in the range from 1/4 duty to 1/132 duty by 4 steps.  
Set to 1/132 duty after resetting.  
P15 P14 P13 P12 P11 P10  
Duty set  
1/4 duty set  
1/8 duty set  
1/12 duty set  
1/16 duty set  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
1
0
1
1
0
1
0
1
0
1
0
1
0
1/128 duty set  
1/132 duty set  
Rev. 1.3  
EPSON  
41  
S1D15E05 Series  
• Start point (block) register set parameter  
Use this parameter to set 6-bit data in the start point (block) register. Then one of 33 start point blocks will be determined.  
* Use the Display Start Line Set command (6) for display scroll. Do not use this command for display scroll.  
P25 P24 P23 P22 P21 P20  
Start piont setting  
0 (COM0 to 3)  
1 (COM4 to 7)  
2 (COM8 to 11)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0
1
1
0
1
0
1
0
1
0
1
0
31 (COM124 to 127)  
32 (COM128 to 131)  
Set to 0 block (D7 to D0: ***00000) at the time of resetting  
* Voltage optimum to liquid crystal drive is changed when the duty is changed. Use the electronic volume and set the  
voltage to get the optimum display.  
• Duty command setup example  
1. Duty 1/88 When 1 (COM4 to COM7) is specified as the start point (block)  
Display area COM4 to COM91  
2. Duty 1/68 When 26 (COM104 to COM107) is specified as the start point (block)  
Display area COM104 to COM131 and COM0 to COM39  
* If the COM pin is not shared by the master and slave in the master/slave 2-chip operation (for vertical drive such as  
SEG132, COM80+COM80), the same duty must be used on the master and slave. Otherwise, display contrast will  
be different on the master and slave. When you want to disable display on either the master and slave, use the display  
OFF Mode Select command to set the side you want to disable, so that VC level is output.  
(19) Partial Display ON/OFF  
The LCD partial display is turned on or off by this command.  
E
RD  
R/W  
WR  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
Partial display  
0
1
0
1
0
0
1
0
1
1
OFF  
ON  
1
(20) Partial Display Set  
This command sets the LCD partial display area. Duty is placed in the state selected by the Duty Set command. When  
partial display is switched by this command, liquid crystal drive voltage need not be changed. For details, see the  
description of 6.2.7 Partial Displayin the Function Description.  
E
RD  
R/W  
WR  
A0  
0
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Partial display  
Command  
1
1
1
0
0
0
0
0
1
1
0
0
1
0
1
P17 P16 P15 P14 P13 P12 P11 P10  
P27 P26 P25 P24 P23 P22 P21 P20  
Display start line  
Display line count  
1
P17 P16 P15 P14 P13 P12 P11 P10  
Display start line  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
1
0
0
1
2
1
1
0
0
0
0
0
0
0
0
0
0
0
1
131  
132  
42  
EPSON  
Rev. 1.3  
S1D15E05 Series  
P17 P16 P15 P14 P13 P12 P11 P10  
Display start line  
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
2
1
1
0
0
0
0
0
0
0
0
0
1
1
0
1
0
131  
132  
* The result of display start line added to display line count exceeding 132 should be disregarded.  
(21) Read Modify Write  
This command is paired with end command for use. If this command is entered, the column address is not changed by  
the Display Data Read command. It can be incremented +1 by the Display Data Read command alone. This state s  
retained until the End command is input. If the End command is input, the column address goes back to the address  
when the Read Modify Write command is input. This function reduces the MPU loads when changing the data repeated  
in the specific display area such as blinking cursor.  
E
RD  
R/W  
WR  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
1
0
1
1
1
0
0
0
0
0
* A command other than display data Read/Write command can be used in the Read Modify Write mode. However,  
you cannot use the column address set command.  
• Sequence for cursor display  
Page Address Set  
Column Address Set  
Read Modify Write  
Dummy Read  
Data Read  
Data Manipulation  
Data Write  
No  
Change Completed?  
Yes  
End  
Fig. 7.2  
Rev. 1.3  
EPSON  
43  
S1D15E05 Series  
(22) End  
This command releases the read modify write mode and gets column address back to the initial address of the mode.  
E
RD  
R/W  
WR  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
1
0
1
1
1
0
1
1
1
0
Return  
Column address  
N
N+1  
N+2  
N+3  
• • •  
N+m  
N
End  
Set read-modify-write mode  
Fig. 7.3  
(23) Built-in Oscillator Circuit ON/OFF  
This command starts the built-in oscillator circuit operation. It is enabled only in the master operation mode (M/S =  
HIGH) when built-in oscillator circuit is valid (CLS = HIGH).  
When the built-in power supply is used, the Oscillator Circuit ON command must be executed before the Power Control  
Set command. (See the description of (16) power control command). If the built-in oscillator circuit is turned off  
when the built-in power supply is used, display failure may occur.  
E
RD  
R/W  
WR  
Built-in oscillator  
circuit  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
0
1
0
1
0
1
0
1
0
1
OFF  
ON  
1
44  
EPSON  
Rev. 1.3  
S1D15E05 Series  
(24) Built-in Oscillator Circuit Frequency Select  
This command sets the built-in oscillator circuit frequency. The frequency can be selected whether the built-in oscillator  
circuit is turned on or off.  
E
RD  
R/W  
WR  
A0  
0
D7  
0
D6  
1
D5  
0
D4  
1
D3  
1
D2  
1
D1  
1
D0  
fOSC kHz  
fCL kHz  
1
1
0
0
1
Command  
Command  
1
*
*
*
*
P3  
P2  
P1  
P0 Oscillation CL frequency  
frequency  
Oscillation CL frequency  
frequency  
fOSC kHz  
fCL kHz  
P3  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
P2  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
P1  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
P0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
120.0  
100.0  
88.0  
fOSC 120.0  
fOSC 100.0  
fOSC 88.0  
76.0  
fOSC 76.0  
120.0  
100.0  
88.0  
fOSC/2 = 60.0  
fOSC/2 = 50.0  
fOSC/2 = 44.0  
fOSC/2 = 38.0  
fOSC/4 = 30.0  
fOSC/4 = 25.0  
fOSC/4 = 22.0  
fOSC/4 = 19.0  
fOSC/8 = 15.0  
fOSC/8 = 12.5  
fOSC/8 = 11.0  
fOSC/8 = 9.5  
76.0  
120.0  
100.0  
88.0  
76.0  
120.0  
100.0  
88.0  
76.0  
(D7 to D0: ****0000) is set after resetting.  
* The above-mentioned value is a Typ. value at 25°C. There is a tolerance of ±12% at 25°C.  
Rev. 1.3  
EPSON  
45  
S1D15E05 Series  
(25) Power Control Set  
This command sets the built-in power supply circuit function. For details, see the description of 6.7 Power supply  
circuitin the Function Description.  
E
RD  
R/W  
WR  
A0  
0
D7  
0
D6  
0
D5  
1
D4  
0
D3  
0
D2  
1
D1  
0
D0  
1
Selected state  
Command  
1
1
0
0
1
0
0
0
P4  
P3  
P2  
P1  
P0  
Register set  
P4  
1
P3  
1
P2  
P1  
P0  
Selected state  
Triple step-up  
Double step-up  
VOUT = VDD  
1
0
0
1
0
1
Step-up: OFF  
Step-up: ON  
VC: OFF  
0
1
VC: ON  
0
1
LCD voltage: OFF  
LCD voltage: ON  
S1D15E05D00B : (LCD voltage: V2, V1, MV1)  
*
S1D15E06D00B : (LCD voltage: V3, V2, V1, MV1, MV2)  
*
An internal clock is required to operate the built-in power supply circuit. During the operation of the built-in power  
supply circuit, be sure that the internal clock is present inside.  
If the built-in oscillator circuit is used, execute the built-in oscillator circuit ON command before the power control  
set command. If an external oscillator circuit is used, operate the external oscillator circuit before the power control  
set command.  
If the internal clock is cut off during the operation of the built-in power supply circuit, display failure may occur. To  
avoid this, do not cut it off.  
In the slave operation mode, only the parameters (D7 to D0 : ***00000) can be used with the power control set  
command. Do not use any other parameter.  
100ms or more should be kept from VC regulator circuit ON to LCDV circuit ON.  
Built-in oscillator ON  
External oscillator input  
Power Control Set  
1. Step-up circuit ON  
2. V regulator circuit ON  
3. LCDV circuit ON*  
C
A built-in oscillator used  
An external oscillator used  
Fig. 7.4  
46  
EPSON  
Rev. 1.3  
S1D15E05 Series  
(26) Step-up CK Frequency Select  
This command selects the step-up CK and step-down CK frequencies.  
E
RD  
R/W  
WR  
A0  
0
D7  
0
D6  
1
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
1
1
1
0
0
Command  
1
*
P6  
P5  
P4  
*
P2  
P1  
P0  
Register  
*: denote invalid bits.  
(fosc/32) is set after resetting.  
Step-up CK  
P6  
P5  
P4  
P2  
0
P1  
1
P0  
1
Step-up CK  
fOSC/8  
1
0
0
fOSC/16  
1
0
1
fOSC/32  
1
1
0
fOSC/64  
1
1
1
fOSC/128  
It should not use the following. (P2, P1, P0) = (0, 0, 0) , (0, 0, 1) , (0, 1, 0)  
Step-down CK  
*
P6  
0
P5  
1
P4 *000 P2  
P1  
P0  
Step-down CK  
fOSC/8  
1
0
1
0
1
1
0
fOSC/16  
1
0
fOSC/32  
1
1
fOSC/64  
1
1
fOSC/128  
It should not use the following. (P6, P5, P4) = (0, 0, 0) , (0, 0, 1) , (0, 1, 0)  
* For S1D15E06D00B , the step-down CK register is disabled.  
*
(27) Liquid Crystal Drive Voltage Select  
The liquid crystal drive voltage range issued from the liquid crystal drive voltage regulating circuit is selected from 3  
states by this command.  
E
RD  
R/W  
WR  
VC voltage  
output range  
A0  
0
D7  
0
D6  
0
D5  
1
D4  
0
D3  
1
D2  
0
D1  
1
D0  
1
1
1
0
0
Command  
Register  
1
*
*
*
*
*
*
P1  
P0  
*: denote invalid bits.  
VC voltage  
output range  
P1  
0
P0  
0
1.77 to 3.50 V  
2.53 to 5.00 V  
3.54 to 7.00 V  
1
0
1
1
VC voltage output range, 1.77 to 3.50V, (D1, D0) = (0, 0) is set after resetting.  
Rev. 1.3  
EPSON  
47  
S1D15E05 Series  
(28) Electronic Volume  
This command controls liquid crystal drive voltage VC issued from the built-in liquid crystal power supply voltage  
regulating circuit, and adjusts the liquid crystal display density. For details, see the description of 6.6.2 Voltage  
Regulating Circuitin the Function Description.  
E
RD  
R/W  
WR  
A0  
0
D7  
1
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
1
1
1
0
0
Command  
Register  
1
*
P6  
P5  
P4  
P3  
P2  
P1  
P0  
*: denote invalid bits.  
• Electronic Volume Register Set  
When a 7-bit data to the electronic volume register is set by this command, liquid crystal drive voltage VC assumes one  
state out of voltage values in 128 states.  
After this command is input, and the electronic volume register is set, the electronic volume mode is reset.  
P6  
0
P5  
0
P4  
0
P3  
0
P2  
0
P1  
0
P0  
0
VC  
Smaller  
0
0
0
0
0
0
1
0
0
0
0
0
1
0
1
1
1
1
1
1
1
1
1
1
1
1
0
1
Larger  
*: denote invalid bits.  
• Electronic volume register set sequence  
Set Electronic Volume Mode  
Set Electronic Volume Register  
Reset Electronic Volume Mode  
Change Completed?  
No  
Yes  
Fig. 7.5  
48  
EPSON  
Rev. 1.3  
S1D15E05 Series  
(29) Discharge ON/OFF  
This command discharges the capacitors connected to the power supply circuit. This command is used when the system  
power of this IC (S1D15E05 series) is turned off, and the duty is changed. See the description of (3) Power Supply OFF  
and (4) Changing the Duty in the Instruction Setup: Reference.  
E
RD  
R/W  
WR  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
Setting  
0
1
0
1
1
1
0
1
0
1
Discharge OFF  
Discharge ON  
1
* If this command is executed when the external power supply is used, a large current may flow to damage the IC. If  
external power supply is used to drive liquid crystal, be sure to turn off the external power supply before executing  
this command.  
(30) Power Saving  
This command establishes the power save mode, thereby ensuring a substantial reduction of current consumption.  
E
RD  
R/W  
WR  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0 Power save mode  
0
1
0
1
0
1
0
1
0
0
0
1
OFF  
ON  
In the power save mode, display data and operation before power saving are maintained. Access to the display data  
RAM from the MPU is also possible. The current consumption is reduced to the value close to static current if all  
operations of the LCD display system are stopped and there is no access from the MPU.  
In the power save mode, the following occurs:  
Stop of oscillator circuit  
Stop of LCD power supply circuit  
Stop of all liquid crystal drive circuit (VSS level output is issued as the segment and common driver output).  
The power save OFF command releases the power save mode. The system goes back to the state before the power save  
mode.  
* When the external power supply is used, it is recommended to stop the external power supply circuit function when  
the power save mode is started. For example, when each level of the liquid crystal drive voltage is given from the  
external resistive divider circuit, it is recommended to add a circuit to cut off the current flowing to the resistive  
divider circuit when power save function is started. The S1D15E05 series has a liquid crystal display blanking  
control control pin DOF, and the level goes LOW when power save function is started. You can use the DOF output  
to stop the external power supply circuit function.  
Rev. 1.3  
EPSON  
49  
S1D15E05 Series  
(31) Temperature Gradient Set  
The 3-bit data of this command is used to set the temperature gradient characteristics of the liquid crystal drive voltage  
output from the built-in power supply circuit from eight states to one state. The temperature gradient of the liquid crystal  
drive voltage can be set according to the liquid crystal temperature gradient to be used. This eliminates the need of a  
temperature characteristics regulating circuit to be installed outside this IC (S1D15E05 series).  
E
RD  
R/W  
WR  
Temperature  
gradient [%/°C]  
A0  
0
D7  
0
D6  
1
D5  
0
D4  
0
D3  
1
D2  
1
D1  
1
D0  
0
1
1
0
0
Command  
Register  
1
*
*
*
*
*
P2  
P1  
P0  
*: denote invalid bits.  
Temperature  
gradient [%/°C]  
P2  
0
P1  
0
P0  
0
0.06  
0.08  
0.10  
0.11  
0.13  
0.15  
0.17  
0.18  
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
(D7 to D0: *****000) is set after resetting. *: denote invalid bits.  
(32) Status Read  
This command reads out the temperature gradient select bit set on the register.  
E
RD  
R/W  
WR  
Temperature  
gradient [%/°C]  
A0  
0
D7  
1
D6  
0
D5  
0
D4  
0
D3  
1
D2  
1
D1  
1
D0  
0
1
0
0
1
Command  
Register  
1
*
*
*
*
*
P2  
P1  
P0  
*: denote invalid bits.  
Temperature  
gradient [%/°C]  
P2  
0
P1  
0
P0  
0
0.06  
0.08  
0.10  
0.11  
0.13  
0.15  
0.17  
0.18  
1
0
0
0
1
0
1
1
0
0
0
1
1
0
1
0
1
1
1
1
1
50  
EPSON  
Rev. 1.3  
S1D15E05 Series  
(33) Reset  
This command resets the column address, page address, read modify write mode and test mode without giving adverse  
effect to the display data RAM. For details, see the description of 6.8 Resetin Function Description. Resetting is  
carried out after the reset command has been input.  
E
RD  
R/W  
WR  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
1
0
1
1
1
0
0
0
1
0
Initialization upon application of power supply is carried out by the reset signal to the RES pin. The reset command  
cannot be used for this purpose.  
(34) NOP  
This is a Non-Operation command.  
E
RD  
R/W  
WR  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
1
0
1
1
1
0
0
0
1
1
Note: S1D15E05 series maintains the operation status due to the command. However, when exposed to excessive  
external noise, internal status may be changed. This makes it necessary to take some measures which reduces  
noise generation in terms of installation or system configuration, or which protects the system against adverse  
effect of noise. To cope with sudden noise, it is recommended to refresh the operation status on a periodic basis.  
Rev. 1.3  
EPSON  
51  
S1D15E05 Series  
Table 7.1 Table of commands in SED15E0 series  
Command code  
Command  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
Function  
(1) Display ON/OFF  
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
0
0
0
0
1
0
1
1
1
1
0
0
0
1
0
0
0
0
1
1
0
0
0
1
1
1
1
1
1
0
1
1
1
0
0
1
0
1
0
1
0
1
0
1
LCD display ON/OFF control.  
0: OFF, 1: ON  
Output level when the display is OFF and in  
(2) Display OFF Mode  
Select  
(3) Display Normal  
/Reverse  
(4) Display All Lighting  
ON/OFF  
(5) Common Output  
Status Select  
the power save mode  
0: VSS, 1: VC  
LCD display normal/reverse  
0: Normal, 1: Reverse  
Display All Lighting  
0: Normal display, 1: All ON  
Selects COM output scan direction.  
0: Normal, 1: Reverse  
Sets display start line.  
When the display mode is binary,  
the parameter consists of two bytes.  
0
1
0
(6) Display Start Line Set  
0
1
1
1
1
1
0
0
0
1
Display start line address  
*
*
*
*
*
*
*
(7) Page Address Set  
(8) Column Address Set  
(9) Display Data Write  
(10) Display Data Read  
0
1
0
1
*
0
*
0
1
1
0
0
0
1
Sets the display RAM page address.  
Page address  
1
0
1
0
1
0
1
0
1
1
1
1
1
0
1
0
0
0
0
0
1
0
0
0
0
1
1
0
0
0
1
0
0
0
0
1
1
0
Sets the display RAM column  
address.  
Writes data to the display RAM.  
Column Address Set  
0
0
0
0
0
1
1
1
1
1
0
Writes data  
0
Reads data  
0
1
1
Reads data to the display RAM.  
(11) Display Data Input  
Direction Select  
(12) Column Address Set  
Direction  
0
0
0
1
0
1
Display RAM data input direction  
0: Column direction 1: Page direction  
Compatible with display RAM  
address SEG output  
0
1
0
1
0
0
0: Normal 1: Reverse  
(13) N-line inversion Drive  
Register Set  
0
1
1
1
0
0
0
*
0
*
1
*
1
0
1
1
0
Line invert drive.  
Sets the line count.  
Invert line count  
(14) N-line ON/OFF  
0
1
0
1
1
1
0
0
1
0
0
1
Resets the line invert drive.  
0: N-line OFF 1: N-line ON  
(15) Display Mode  
0
1
0
1
1
1
1
1
0
0
0
0
0
*
0
1
*
0
1
*
1
0
*
1
0
*
1
1
*
0
1
0
00: 4 gray-scale, 01: binary  
Mode  
0
(16) Gray-scale Pattern Set  
1
Selects the contrast of gray-scale  
bit (1,0) (0,1).  
Gray-scale pattern  
(17) Area Scroll  
Scroll Mode  
0
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
*
0
*
0
*
1
*
0
*
0
*
0
0
Mode  
When the display mode is binary,  
the end address consists of  
two bytes.  
Scroll Start address  
Scroll End address  
Display page count  
Start address  
End address  
Display page count  
(18) Duty Set Command  
Duty Set  
0
1
0
0
*
*
1
*
*
1
0
1
1
0
1
Duty count  
Static spot (block)  
Static spot (block) set  
(19) Partial Display  
ON/OFF  
(20) Partial Display Set  
Display Start line  
Display Line count  
(21) Read Modify Write  
0
0
1
1
0
0
1
0
0
1
0
1
1
0
1
Partial display ON/OFF  
0: OFF, 1: ON  
0
0
1
1
0
0
1
0
0
0
Start line  
Line count  
1
0
1
0
1
1
0
0
0
0
Increments the column address.  
Increments +1 in the write mode.  
Does not increment in the read mode.  
Resets read modify write functions.  
Built-in oscillator circuit operation  
0: OFF, 1: ON  
(22) End  
(23) Built-in Oscillator  
Circuit ON/OFF  
0
0
1
1
0
0
1
1
1
0
1
1
0
0
1
1
1
0
1
1
0
1
(24) Built-in Oscillator  
Circuit Frequency Select  
0
1
1
1
0
0
0
*
1
*
0
*
1
*
1
1
1
1
Frequency  
(25) Power Control Set  
0
1
1
1
0
0
0
*
0
*
1
0
0
1
0
1
Selects built-in power supply  
Operation state operation state.  
52  
EPSON  
Rev. 1.3  
S1D15E05 Series  
Command code  
Command  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
Function  
(26) Step-up CK  
Frequency Select  
0
1
1
1
0
0
0
*
1
0
0
0
0
0
1
Frequency  
(27) Liquid Crystal Drive  
Voltage Select  
0
1
1
1
0
0
0
*
0
*
1
*
0
*
1
*
0
*
1
1
VC range  
(28) Electronic Volume  
Mode Set  
Electronic Volume  
Register Set  
(29) Discharge ON/OFF  
0
1
0
1
1
1
0
0
0
1
*
1
0
0
0
0
0
0
1
Electronic volume  
VC output voltage is set to the  
electronic volume register. 128 states  
Discharges Power supply circuit  
connection capacitor.  
0: OFF (normal), 1: ON  
1
1
0
1
0
1
0
1
(30) Power Save ON/OFF  
(31) Temperature  
Gradient Select  
0
0
1
1
1
1
0
0
0
1
0
*
0
1
*
1
0
*
0
0
*
1
1
*
0
1
0
1
0
0
Power Save 0: OFF, 1: ON  
Sets to 8 steps.  
Temperature gradient  
(32) Stator Read  
0
1
1
0
0
1
1
*
0
*
0
*
0
*
1
1
1
0
Issues the temperature gradient  
*Temperature gradient select bit.  
(33) Reset  
0
1
0
1
1
1
0
0
0
1
0
Resets the column, page and  
address registers.Resets the read  
modify write function.  
(34) NOP  
0
1
0
1
1
1
0
0
0
1
1
Non-operation command  
Rev. 1.3  
EPSON  
53  
S1D15E05 Series  
Instruction Setup Example (Reference)  
(1) Initial setup  
VDD - VSS power turns on when RES terminal = LOW.  
Stable power supply  
*1  
Release the reset state. (RES terminal = HIGH)  
Function setup by command entry (set by users)  
(12) Column address set direction  
(5) Common output status select  
(3) Display normal/reverse  
(4) Display all lighting ON/OFF  
(18) Set the duty  
(2) Display OFF mode select  
(27) LCD voltage select  
(28) Electronic volume  
(31) Temperature gradient set  
(When the n-line invert drive is not used)  
Function setup by command entry (set by users)  
(13) n-line invert drive register set  
(14) n-line ON/OFF  
(When the external oscillator circuit is used)  
Enter the external clock  
Function setup by command entry (set by users)  
(24) Built-in oscillator circuit frequency select  
(23) Built-in oscillator circuit ON/OFF  
(When the external LCD power supply circuit is used)  
External LCD power supply entry  
Function setup by command entry (set by users)  
(25) Power control set  
1. Step-up circuit ON  
2. VC regulator circuit ON  
3. LCDV circuit ON*2  
Initialization completed  
Note: *1 DDRAM contents are not determined even in the initialized state after resetting. See 6.7 Reset Circuit”  
in the 6. Function Description.  
*2 100ms or more should be kept from VC regulator circuit ON to LCDV circuit ON.  
* Numerals in the command parenthesis correspond to the numerals of the items in Command Description.  
54  
EPSON  
Rev. 1.3  
S1D15E05 Series  
(2) Data display  
End of initialization  
Function setup by command entry (set by users)  
(6) Display start line set  
(7) Page address set  
(8) Column address set  
Function setup by command entry (set by users)  
(9) Display data write  
Function setup by command entry (set by users)  
(1) Display ON/OFF command  
End of data display  
Note:  
* DDRAM contents are not determined after end of initialization. Write data to all the DDRAM used for  
display. See 9. Display data writein the 7. Command Description.  
(3) Power OFF  
A desired state  
Function setup by command entry (set by users)  
(30) Power save ON  
(When an external LCD power supply circuit is used)  
External LCD power supply OFF  
(When the built-in power supply circuit is used)  
Function setup by command entry (set by users)  
(29) Discharge ON/OFF  
Reset state (RES terminal = LOW)  
Set the time (t  
DD-VSS power supply liquid crystal drive potential (MV  
that it is longer than the time (t ) where it is reduced below the  
threshold value of the LCD panel.  
L
) between entry into the reset state and turning off of  
V
1
,V ,V ,V ) so  
C
1
2
H
V
DD - VSS power supply OFF  
Note:  
* This IC controls the circuit of the liquid crystal drive power supply system using the VDD-VSS power supply  
circuit. If the VDD-VSS power supply is cut off with voltage remaining in the liquid crystal drive power  
supply system, voltage not controlled will be issued from the SEG and COM pins, and this may result in  
display failure. To avoid this, follow the above-mentioned power off sequence.  
Rev. 1.3  
EPSON  
55  
S1D15E05 Series  
(4) How to change the duty  
A desired state  
Function setup by command entry (set by users)  
(1) Displya OFF  
Function setup by command entry (set by users)  
(30) Power save ON  
Function setup by command entry (set by users)  
(29) Discharge ON  
Function setup by command entry (set by users)  
(28) Electronic volume  
Secure an interval of  
30ms or more between  
discharge ON to  
(24) Built-in oscillator circuit frequency select  
(18) Duty set  
When the n-line reversing command is used :  
(13) n-line reverse drive register set  
discharge OFF .  
Function setup by command entry (set by users)  
(29) Discharge OFF  
Function setup by command entry (set by users)  
(30) Power save OFF  
End of duty change  
Note:  
* Execution of the above sequence causes display to be turned off temporarily (for the time from Power  
Saving command ON to Power Saving command OFF plus 200 ms (frame frequency 60Hz) upon switching  
of the duty. Temporary display failure may occur if Duty Change command is executed during liquid  
crystal display without executing the above-mentioned setup example. Follow the setup example when the  
duty is changed as discussed above.  
(5) Refresh  
It is recommended that the operating modes and display contents be refreshed periodically to prevent the effect of  
unexpected noise.  
Refresh sequence  
NOP command  
Set all commands to the ready state  
(Including default state setting.)  
Refreshing of DRAM  
56  
EPSON  
Rev. 1.3  
S1D15E05 Series  
8. ABSOLUTE MAXIMUM RATINGS  
8.1 S1D15E05D00B  
Table 8.1  
*
VSS = 0V unless otherwise specified.  
Item  
Power voltage (1)  
Symbol  
Specified value  
0.3 to +4.0  
0.3 to +17.0  
0.3 to V2  
Unit  
VDD  
V2, VOUT  
V1, VC, MV1  
VIN  
V
Power voltage (2)  
Power voltage (3)  
Input voltage  
0.3 to VDD+0.3  
0.3 to VDD+0.3  
40 to +85  
Output voltage  
VO  
Operating temperature  
Storage temperature  
TOPR  
°C  
TCP  
TSTR  
55 to +100  
55 to +125  
bare chip  
V2  
VOUT  
VC  
V1, MV1  
V
CC  
V
DD  
SS  
GND  
V
System (MPU) side  
S1D15E05 side  
Fig. 8.1  
Notes: 1. Voltages V2, V1, VC, MV1 and MV2 (VSS) must always meet the conditions of V2V1VCMV1MV2  
(VSS).  
2. Voltage VOUT must always meet the conditions of VOUTVDD and VOUTVC.  
3. If the LSI has been used in excess of the absolute maximum rating, it may be subjected to permanent  
breakdown. So in the normal operation, the LSI is preferred to be used under the condition of electrical  
characteristics. If this condition is not met, LSI operation error may occur and LSI reliability may be  
deteriorated.  
Rev. 1.3  
EPSON  
57  
S1D15E05 Series  
8.2 S1D15E06D00B  
Table 8.2  
*
VSS = 0V unless otherwise specified.  
Item  
Power voltage (1)  
Power voltage (2)  
Power voltage (3)  
Input voltage  
Symbol  
Specified value  
0.3 to +4.0  
0.3 to +17.0  
0.3 to V3  
Unit  
VDD  
V
V3, VOUT  
V2, V1, VC, MV1, MV2  
VIN  
VO  
0.3 to VDD+0.3  
0.3 to VDD+0.3  
40 to +85  
Output voltage  
Operating temperature  
Storage temperature  
TOPR  
TSTR  
°C  
TCP  
55 to +100  
55 to +125  
bare chip  
V
3
V
OUT  
V
C
V2, V1,MV1,MV2  
V
CC  
V
V
DD  
SS  
GND  
System (MPU) side  
S1D15E06 side  
Fig. 8.2  
Notes: 1. Voltages V3, V2, V1, VC, MV1, MV2 and MV3 (VSS) must always meet the conditions of  
V3V2V1VCMV1MV2MV3 (VSS).  
2. Voltage VOUT must always meet the conditions of VOUTVDD and VOUTVC.  
3. If the LSI has been used in excess of the absolute maximum rating, it may be subjected to permanent  
breakdown. So in the normal operation, the LSI is preferred to be used under the condition of electrical  
characteristics. If this condition is not met, LSI operation error may occur and LSI reliability may be  
deteriorated.  
58  
EPSON  
Rev. 1.3  
S1D15E05 Series  
9. DC CHARACTERISTICS  
VSS = 0V, VDD = 2.7V ± 10% and Ta = 40 to +85°C unless otherwise specified.  
Table 9.1  
Specified value  
Applicable  
Item  
Symbol  
Conditions  
Unit  
pin  
Min.  
Typ.  
Max.  
Working voltage (1) Operation enabled VDD  
Working voltage (2) Operation recommended VOUT  
1.7  
3.6  
V
VDD *1  
VOUT  
VDD  
14.0  
Working voltage (3) Operation enabled  
Operation enabled  
V2  
VC  
V1  
Applicable to  
S1D15E05  
3.4  
1.7  
VC  
14.4  
7.2  
V2  
V2 *2  
VC  
V1  
Operation enabled  
Operation enabled MV1  
VSS  
VC  
MV1  
Working voltage (4) Operation enabled  
V3  
VC  
V2  
V1  
Applicable to  
S1D15E06  
3.4  
1.7  
VC  
VC  
VSS  
VSS  
14.4  
7.2  
V3  
V3  
VC  
V3 *3  
VC  
V2  
V1  
MV1  
MV2  
Operation enabled  
Operation enabled  
Operation enabled  
Operation enabled MV1  
Operation enabled MV2  
VC  
High-level input voltage  
Low-level input voltage  
VIHC VDD=1.8V to 3.3V  
VILC  
0.8×VDD  
VSS  
VDD  
0.2×VDD  
*4  
*4  
High-level output voltage  
Low-level output voltage  
VOHC VDD=1.8V  
I
OH=0.25mA 0.8×VDD  
VDD  
0.2×VDD  
*5  
*5  
VOLC  
to 3.3V  
IOL=0.25mA  
VSS  
Input leak current  
Output leak current  
ILI  
ILO  
VIN=VDD or VSS  
1.0  
3.0  
1.0  
3.0  
µA  
kΩ  
kΩ  
µA  
µA  
*6  
*7  
LCD driver ON resistance (1)  
(S1D15E05)  
RON  
RON  
Ta=25°C V2=7.2V  
1.5  
3.0  
2.3  
4.6  
SEGn  
COMn *8  
V2=4.8V  
LCD driver ON resistance (2)  
(S1D15E06)  
Ta=25°C V3=7.2V  
1.5  
3.0  
2.3  
4.6  
SEGn  
COMn *8  
V3=4.8V  
Static current consumption (1)  
(S1D15E05)  
IDDQ Ta=25°C VDD=3.3V  
I2Q V2=10.0V  
0.2  
1.0  
5.0  
5.0  
VDD  
V2  
Static current consumption (2)  
(S1D15E06)  
IDDQ Ta=25°C VDD=3.3V  
I3Q  
0.2  
1.0  
5.0  
5.0  
VDD  
V3  
V3=14.0V  
Input pin capacity  
CIN  
Ta=25°C, f=1MHz  
20  
25  
pF  
Oscillation  
frequency  
Built-in oscillation  
fOSC Ta=25°C  
Max. frequency  
110  
120  
130  
kHz  
*9  
[* See the description on P.67.]  
Rev. 1.3  
EPSON  
59  
S1D15E05 Series  
Table 9.2  
Specified value  
Applicable  
pin  
Item  
Symbol  
Conditions  
Unit  
Min.  
Typ.  
Max.  
Input voltage  
VDD  
VDD  
Double step-up  
Triple step-up  
1.7  
1.7  
3.6  
3.6  
V
VDD  
Boosted output voltage  
VOUT  
VC  
14.0  
7.0  
VOUT  
Working voltage for voltage  
control circuit  
1.8  
VC *10  
Dynamic current consumption (1): Built-in power is turned on during display.  
Ta=25°C  
This is the current consumed by the entire IC including the built-in power supply.  
Display mode in 4 gray-scale at fFR = 80Hz  
Table 9.3.1 Display entirely in white (S1D15E05)  
Code: ISS (1)  
DUTY  
1/100 DUTY 1/64  
VDD Boosting V2 Voltage  
Unit Remarks  
µA *11  
Typ.  
36  
Max.  
60  
Typ.  
Max.  
57  
1.8V  
2.7V  
3.6V  
Double  
Triple  
6V  
8V  
6V  
8V  
6V  
8V  
34  
50  
35  
40  
40  
50  
52  
86  
84  
Double  
46  
76  
58  
51  
85  
67  
None  
50  
83  
68  
Double  
61  
101  
84  
Table 9.3.2 Display entirely in white (S1D15E06)  
Code: ISS (1)  
1/132 DUTY 1/100 DUTY  
VDD Boosting V3 Voltage  
Unit Remarks  
Typ.  
68  
Max.  
112  
134  
121  
154  
Typ.  
67  
Max.  
111  
117  
104  
137  
2.7V  
Triple  
10V  
12V  
10V  
12V  
µA  
*11  
81  
71  
3.6V  
Double  
Triple  
73  
63  
93  
83  
[* See the description on P.67.]  
60  
EPSON  
Rev. 1.3  
S1D15E05 Series  
Display mode in 4 gray-scale at fFR = 80Hz  
Table 9.4.1 Display: Heavy load display (S1D15E05D00B )  
*12 Code: ISS (1)  
*
1/100 DUTY 1/64  
DUTY  
VDD Boosting V2 Voltage  
Unit Remarks  
µA *11  
Typ.  
101  
160  
122  
142  
92  
Max. Typ.  
Max.  
114  
194  
154  
177  
117  
150  
1.8V  
2.7V  
3.6V  
Double  
Triple  
6V  
8V  
6V  
8V  
6V  
8V  
167  
265  
202  
235  
154  
235  
68  
116  
93  
Double  
107  
70  
None  
Double  
142  
90  
Table 9.4.2 Display: Heavy load display (S1D15E06D00B )  
Code: ISS (1)  
*
1/132 DUTY 1/100 DUTY  
VDD Boosting V3 Voltage  
Unit Remarks  
Typ.  
241  
373  
189  
380  
Max.  
400  
619  
313  
630  
Typ.  
187  
313  
146  
314  
Max.  
310  
519  
242  
521  
2.7V  
3.6V  
Triple  
10V  
12V  
10V  
12V  
µA  
*11  
Double  
Triple  
Display mode in binary at fFR = 60Hz  
Table 9.5.1 Display entirely in white (S1D15E05) Code: ISS (1)  
1/100 DUTY 1/64  
DUTY  
Max.  
42  
VDD Boosting V2 Voltage  
Unit Remarks  
µA *11  
Typ.  
26  
Max. Typ.  
1.8V  
2.7V  
3.6V  
Double  
Triple  
6V  
8V  
6V  
8V  
6V  
8V  
43  
66  
51  
58  
54  
68  
25  
38  
29  
33  
26  
40  
40  
47  
48  
55  
44  
67  
Double  
31  
35  
None  
32  
Double  
41  
Table 9.5.2 Display entirely in white (S1D15E06) Code: ISS (1)  
1/132 DUTY 1/100 DUTY  
VDD Boosting V3 Voltage  
Unit Remarks  
Typ.  
65  
Max.  
108  
120  
95  
Typ.  
50  
Max.  
83  
2.7V  
3.6V  
Triple  
10V  
12V  
10V  
12V  
µA  
*11  
72  
56  
93  
Double  
Triple  
57  
44  
73  
82  
136  
63  
104  
[* See the description on P.67.]  
Rev. 1.3  
EPSON  
61  
S1D15E05 Series  
Display mode in binary at fFR = 60Hz  
Table 9.6.1 Display Heavy load display (S1D15E05) Code: ISS (1)  
1/100 DUTY 1/64  
DUTY  
Max.  
87  
VDD Boosting V2 Voltage  
Unit Remarks  
µA *11  
Typ.  
58  
Max. Typ.  
1.8V  
2.7V  
3.6V  
Double  
Triple  
6V  
8V  
6V  
8V  
6V  
8V  
96  
52  
93  
52  
63  
46  
78  
102  
68  
170  
112  
136  
100  
152  
155  
86  
Double  
82  
104  
77  
None  
60  
Double  
92  
130  
Table 9.6.2 Display Heavy load display (S1D15E06) Code: ISS (1)  
1/132 DUTY 1/100 DUTY  
VDD Boosting V3 Voltage  
Unit Remarks  
Typ.  
188  
313  
150  
322  
Max.  
312  
520  
249  
534  
Typ.  
135  
226  
108  
232  
Max.  
224  
300  
143  
308  
2.7V  
3.6V  
Triple  
10V  
12V  
10V  
12V  
µA *11  
Double  
Triple  
Current consumption under power saving mode: VSS = 0V, VDD = 3.3V, Ta = 25°C  
Table 9.7.1 (S1D15E05)  
Specified value  
Min. Typ. Max.  
Item  
Symbol  
Condition  
Condition  
Unit Remarks  
Sleep state  
IDDS1  
0.2  
5
µA  
Table 9.7.2 (S1D15E06)  
Specified value  
Min. Typ. Max.  
Item  
Symbol  
Unit Remarks  
Sleep state  
IDDS1  
0.2  
5
µA  
[* See the description on P.67.]  
62  
EPSON  
Rev. 1.3  
S1D15E05 Series  
[Reference Data 1]  
Dynamic current consumption (1)-1 during LCD display when internal power is used (S1D15E05)  
Conditions:  
Built-in power supply ON”  
1/100DUTY  
fFR = 80Hz  
Indication pattern: Totally white / Checker  
Ta = 25°C  
Remarks: *11  
Fig. 9.1  
Dynamic current consumption (1)-2 during LCD display when internal power is used (S1D15E06)  
Conditions:  
Built-in power supply ON”  
1/132DUTY  
fFR = 80Hz  
Triple boosting  
4 gray-scale  
Display mode :  
Indication pattern: Totally white / Checker  
Ta = 25°C  
Remarks: *11  
Fig. 9.2  
[* See the description on P.67.]  
Rev. 1.3  
EPSON  
63  
S1D15E05 Series  
[Reference Data 2]  
Dynamic current consumption (2)-1 during LCD display when internal power is used (S1D15E05)  
Conditions:  
VDD = 2.7V  
Built-in power supply ON”  
Double boosting  
fFR = 80Hz  
Display mode :  
4 gray-scale  
Indication pattern: Totally white / Checker  
Ta = 25°C  
Remarks: *11  
Fig. 9.3  
Dynamic current consumption (2)-2 during LCD display when internal power is used (S1D15E06)  
Conditions:  
VDD = 2.7V  
Built-in power supply ON”  
Triple boosting  
fFR = 80Hz  
Display mode :  
4 gray-scale  
Indication pattern : Totally white / Checker  
Ta = 25°C  
Remarks: *11  
Fig. 9.4  
[* See the description on P.67.]  
64  
EPSON  
Rev. 1.3  
S1D15E05 Series  
[Reference Data 3]  
Dynamic current consumption (3)-1 during access  
(S1D15E05)  
Indicates the current consumption when the checker  
pattern is always written by fCYC. When not  
accessed, only ISS(1) remains.  
10  
1
Conditions: Built-in voltage used  
Double boosting  
V2= 8.0V, VDD = 2.7V  
Ta = 25°C  
fFR=80Hz 1/100 Duty  
0.1  
0.01  
0.001  
0.01  
0.1  
1
10  
f
CYC [MHz]  
Fig. 9.5  
Dynamic current consumption (3)-2 during access  
(S1D15E06)  
Indicates the current consumption when the checker  
pattern is always written by fCYC. When not  
accessed, only ISS(1) remains.  
10  
1
Conditions: Built-in voltage used  
Triple boosting  
V3= 12.0V, VDD = 2.7V  
Ta = 25°C  
fFR=80Hz 1/132 Duty  
0.1  
0.01  
0.001  
0.01  
0.1  
1
10  
f
CYC [MHz]  
Fig. 9.6  
Rev. 1.3  
EPSON  
65  
S1D15E05 Series  
[Reference Data 4]  
VDD and V2 system operating voltage range  
(S1D15E05)  
14.0  
Remarks: *2  
10.5  
Operating range  
7.0  
3.5  
3.4  
0
1.7  
3.6  
0
1
2
3
4
VDD [V]  
Fig. 9.7  
VDD and V3 system operating voltage range  
(S1D15E06)  
14.0  
Remarks: *3  
10.5  
Operating range  
7.0  
3.5  
3.4  
0
1.7  
3.6  
0
1
2
3
4
VDD [V]  
Fig. 9.8  
[* See the description on P.67.]  
66  
EPSON  
Rev. 1.3  
S1D15E05 Series  
Relationship between oscillation frequency fOSC, display clock frequency fCL and liquid crystal frame fFR  
Table 9.8  
Item  
fCL  
Display mode  
fFR  
Built-in oscillator  
circuit used  
See p. 31  
Binary display  
4 gray-scale  
(fCL × DUTY)/4  
(fCL × DUTY)/8  
Built-in oscillator circuit  
not used  
External input (fCL)  
Binary display  
4 gray-scale  
(fCL × DUTY)/4  
(fCL × DUTY)/8  
(fFR indicates the cycle of rewriting one screen; it does not indicate FR signal cycle.)  
[Asterisked references]  
*1.  
*2.  
Does not guarantee if there is an abrupt voltage variation during MPU access.  
For VDD and V2 system operating voltage range, see Fig. 9.5.  
Applicable when the external power supply is used.  
*3.  
*4.  
For VDD and V3 system operating voltage range, see Fig. 9.6.  
Applicable when the external power supply is used.  
A0, D0 to D5, D6(SCL), D7(SI), RD(E), WR(R/W), CS1, CS2, CLS, CL, FR, F1, F2, CA, M/S, C86, P/S, DOF,  
RES and TEST pins  
*5.  
*6.  
*7.  
*8.  
D0 to D7, FR, DOF, CL, F1, F2 and CA pins  
A0, RD(E), WR(R/W), CS1, CS2, CLS, M/S, C86, P/S, RES and TEST pins  
Applicable when D0 to D5, D6(SCL), D7(S1), CL, FR, DOF, F1, F2 and CA pins have a high impedance.  
Indicates the resistance when 0.1V voltage is applied between the output pin SEGn or COMn and each power  
supply (V2, V1, VC, MV1, MV2).  
RON =0.1V/I (where I denotes current when 0.1V is applied when power is on).  
For the relationship between oscillation frequency and frame frequency, see Table 9.6. The standard values of  
the external input item are recommended ones.  
*9.  
*10. The VC voltage regulating circuit should be adjusted within the electronic volume operation range.  
*11. Indicates the current consumed by a single IC when display is on. Use the electronic volume for voltage  
regulation. Also use the internal oscillator circuit. The current due to LCD panel capacity and wiring capacity  
is not included. Applicable when there is access from the MPU.  
*12. Heavy load indicates the load where the maximum current is consumed as a display pattern.  
Rev. 1.3  
EPSON  
67  
S1D15E05 Series  
10. TIMING CHARACTERISTICS  
(1) System path read/write characteristics 1 (80 system MPU)  
A0  
t
AW8  
t
AH8  
CS1  
(CS2=1)  
t
CYC8  
*1  
t
CCLR, tCCLW  
WR, RD  
t
CCHR, tCCHW  
CS1  
(CS2=1)  
t
f
t
r
*2  
WR, RD  
t
DS8  
t
DH8  
D0 to D7  
(Write)  
t
ACC8  
t
OH8  
D0 to D7  
(Read)  
Fig. 10.1  
Table 10.1.1  
[VDD = 3.0V to 3.6V, Ta = 40 to +85°C]  
Specified value  
Parameter  
Signal Symbol  
Condition  
Unit  
Min.  
Max.  
Address hold time  
Address setup time  
A0  
tAH8  
tAW8  
0
0
ns  
System write cycle time  
System read cycle time  
WR  
RD  
tWCYC8  
tRCYC8  
200  
300  
Control LOW-pulse width (Write)  
WR  
RD  
WR  
RD  
tCCLW  
tCCLR  
tCCHW  
tCCHR  
60  
100  
60  
Control LOW-pulse width (Read)  
Control HIGH-pulse width (Write)  
Control HIGH-pulse width (Read)  
100  
Data setup time  
Data hold time  
D0 to D7  
tDS8  
tDH8  
20  
10  
RD access time  
Output disable time  
tACC8  
tOH8  
CL=100pF  
10  
80  
80  
68  
EPSON  
Rev. 1.3  
S1D15E05 Series  
Table 10.1.2  
[VDD = 2.4V to 3.0V, Ta = 40 to +85°C]  
Specified value  
Parameter  
Signal Symbol  
Condition  
Unit  
Min.  
Max.  
Address hold time  
Address setup time  
A0  
tAH8  
tAW8  
0
0
ns  
System write cycle time  
System read cycle time  
WR  
RD  
tWCYC8  
tRCYC8  
300  
400  
Control LOW-pulse width (Write)  
Control LOW-pulse width (Read)  
Control HIGH-pulse width (Write)  
Control HIGH-pulse width (Read)  
WR  
RD  
WR  
RD  
tCCLW  
tCCLR  
tCCHW  
tCCHR  
80  
200  
80  
200  
Data setup time  
Data hold time  
D0 to D7  
tDS8  
tDH8  
30  
15  
RD access time  
Output disable time  
tACC8  
tOH8  
CL=100pF  
10  
120  
120  
Table 10.1.3  
Parameter  
[VDD = 1.7V to 2.4V, Ta = 40 to +85°C]  
Specified value  
Signal Symbol  
Condition  
Unit  
Min.  
Max.  
Address hold time  
Address setup time  
A0  
tAH8  
tAW8  
0
0
ns  
System write cycle time  
System read cycle time  
WR  
RD  
tWCYC8  
tRCYC8  
400  
600  
Control LOW-pulse width (Write)  
Control LOW-pulse width (Read)  
Control HIGH-pulse width (Write)  
Control HIGH-pulse width (Read)  
WR  
RD  
WR  
RD  
tCCLW  
tCCLR  
tCCHW  
tCCHR  
100  
250  
140  
250  
Data setup time  
Data hold time  
D0 to D7  
tDS8  
tDH8  
40  
20  
RD access time  
Output disable time  
tACC8  
tOH8  
CL=100pF  
10  
200  
200  
*1. This is in case of making the access by WR and RD, setting the CS1 = LOW.  
*2. This is in case of making the access by CS1, setting the WR, RD = LOW.  
*3. Input signal rise and fall time (tr, tf) must not exceed 15 ns. When the system cycle time is used at a high speed,  
it is specified by (tr + tf) (tCYC8 tCCLW tCCHW) or (tr + tf) (tCYC8 tCCLR tCCHR).  
*4. Timing is entirely specified with reference to 20% or 80% of VDD.  
*5. tCCLW and tCCLR are specified in terms of the overlapped period when CS1 is at LOW (CS2 = HIGH) level and  
WR and RD are at LOW level.  
Rev. 1.3  
EPSON  
69  
S1D15E05 Series  
(2) System path read/write characteristics 2 (68 system MPU)  
A0  
R/W  
tAW6  
tAH6  
CS1  
(CS2=1)  
tCYC6  
*1  
tEWHR, tEWHW  
E
tEWLR, tEWLW  
CS1  
(CS2=1)  
*2  
tf  
tr  
E
tDS6  
tDH6  
D0 to D7  
(Write)  
tACC6  
tOH6  
D0 to D7  
(Read)  
Fig. 10.2  
Table 10.2.1  
[VDD = 3.0V to 3.6V, Ta = 40 to +85°C]  
Specified value  
Parameter  
Signal Symbol  
Condition  
Unit  
Min.  
Max.  
Address hold time  
Address setup time  
A0  
E
tAH6  
tAW6  
tWCYC6  
tRCYC6  
0
0
ns  
System write cycle time  
System read cycle time  
200  
300  
Data setup time  
Data hold time  
D0 to D7  
tDS6  
tDH6  
20  
10  
Access time  
Output disable time  
tACC6  
tOH6  
CL=100pF  
10  
80  
80  
Enable HIGH-pulse width Read  
Write  
E
E
tEWHR  
tEWHW  
tEWLR  
tEWLW  
100  
60  
Enable LOW-pulse width Read  
Write  
100  
60  
70  
EPSON  
Rev. 1.3  
S1D15E05 Series  
Table 10.2.2  
[VDD = 2.4V to 3.0V, Ta = 40 to +85°C]  
Specified value  
Parameter  
Signal Symbol  
Condition  
Unit  
Min.  
Max.  
Address hold time  
Address setup time  
A0  
E
tAH6  
tAW6  
tWCYC6  
tRCYC6  
0
0
ns  
System write cycle time  
System read cycle time  
300  
400  
Data setup time  
Data hold time  
D0 to D7  
tDS6  
tDH6  
30  
15  
Access time  
Output disable time  
tACC6  
tOH6  
CL=100pF  
10  
120  
120  
Enable HIGH-pulse width Read  
Write  
E
E
tEWHR  
tEWHW  
tEWLR  
tEWLW  
150  
80  
Enable LOW-pulse width Read  
Write  
150  
80  
Table 10.2.3  
Parameter  
[VDD = 1.7V to 2.4V, Ta = 40 to +85°C]  
Specified value  
Signal Symbol  
Condition  
Unit  
Min.  
Max.  
Address hold time  
Address setup time  
A0  
E
tAH6  
tAW6  
tWCYC6  
tRCYC6  
0
0
ns  
System write cycle time  
System read cycle time  
400  
600  
Data setup time  
Data hold time  
D0 to D7  
tDS6  
tDH6  
40  
20  
Access time  
Output disable time  
tACC6  
tOH6  
CL=100pF  
10  
200  
200  
Enable HIGH-pulse width Read  
Write  
E
E
tEWHR  
tEWHW  
250  
100  
Enable LOW-pulse width Read  
Write  
tEWLR  
250  
140  
tEWLW  
*1 This is in case of making the access by E, setting the CS1 = LOW.  
*2 This is in case of making the access by CS1, setting the E = HIGH.  
*3 The rise time and the fall time (tr & tf) of the input signals should be set to 15ns or less. When it is necessary to  
use the system cycle time at high speed, the rise time and the fall time should be so set to conform  
to (tr+tf) (tCVC6-tEWLW-tEWHW) or (tr+tf) (tCYC6-tEWLR-tEWHR).  
*4 All the timing should basically be set to 20% and 80% of the VDD.  
*5 tEWLW, tEWLR should be set to the overlapping zone where the CS1 is on the LOW level (CS2 = HIGH level) and  
where the E is on the HIGH level.  
Rev. 1.3  
EPSON  
71  
S1D15E05 Series  
(3) Serial interface  
CS1  
tCSS  
tCSH  
(CS2=1)  
tSAS  
tSAH  
A0  
tSCYC  
tSLW  
SCL  
tSHW  
tf  
tr  
tSDS  
tSDH  
SI  
Figure 10.3  
Table 10.3.1  
[VDD = 3.0V to 3.6V, Ta = 40 to +85°C]  
Specified value  
Parameter  
Signal Symbol  
Condition  
Unit  
Min.  
Max.  
Serial clock period  
SCL HIGH pulse width  
SCL LOW pulse width  
SCL  
tSCYC  
tSHW  
tSLW  
100  
40  
40  
ns  
Address setup time  
Address hold time  
A0  
SI  
tSAS  
tSAH  
tSDS  
tSDH  
80  
80  
Data setup time  
Data hold time  
20  
20  
CS-SCL time  
CS  
tCSS  
tCSH  
80  
150  
72  
EPSON  
Rev. 1.3  
S1D15E05 Series  
Table 10.3.2  
[VDD = 2.4V to 3.0V, Ta = 40 to +85°C]  
Specified value  
Parameter  
Signal Symbol  
Condition  
Unit  
Min.  
Max.  
Serial clock period  
SCL HIGH pulse width  
SCL LOW pulse width  
SCL  
tSCYC  
tSHW  
tSLW  
125  
50  
50  
ns  
Address setup time  
Address hold time  
A0  
SI  
tSAS  
tSAH  
tSDS  
tSDH  
100  
100  
Data setup time  
Data hold time  
30  
30  
CS-SCL time  
CS  
tCSS  
tCSH  
100  
200  
Table 10.3.3  
Parameter  
[VDD = 1.7V to 2.4V, Ta = 40 to +85°C]  
Specified value  
Signal Symbol  
Condition  
Unit  
Min.  
Max.  
Serial clock period  
SCL HIGH pulse width  
SCL LOW pulse width  
SCL  
tSCYC  
tSHW  
tSLW  
154  
60  
60  
ns  
Address setup time  
Address hold time  
A0  
SI  
tSAS  
tSAH  
tSDS  
tSDH  
120  
140  
Data setup time  
Data hold time  
40  
40  
CS-SCL time  
CS  
tCSS  
tCSH  
120  
350  
*1. Input signal rise and fall time (tr, tf) must not exceed 15 ns.  
*2. Timing is entirely specified with reference to 20% or 80% of VDD.  
Rev. 1.3  
EPSON  
73  
S1D15E05 Series  
(4) Display control output timing  
CL  
(OUT)  
t
DFR  
FR  
F1, F2  
CA  
t
DF1,F2  
t
DCA  
Fig. 10.4  
Table 10.4.1  
Parameter  
[VDD = 3.0V to 3.6V, Ta = 40 to +85°C]  
Specified value  
Unit  
Signal Symbol  
Condition  
Min.  
Typ.  
125  
125  
125  
Max.  
312  
312  
312  
FR delay time  
F1, F2 delay time  
CA delay time  
FR  
F1, F2 tDF1, tF2  
CA tDCA  
tDFR  
CL = 50pF  
ns  
ns  
ns  
Table 10.4.2  
Parameter  
[VDD = 2.3V to 2.8V, Ta = 40 to +85°C]  
Specified value  
Unit  
Signal Symbol  
Condition  
Min.  
Typ.  
150  
150  
150  
Max.  
360  
360  
360  
FR delay time  
F1, F2 delay time  
CA delay time  
FR  
F1, F2 tDF1, tF2  
CA tDCA  
tDFR  
CL = 50pF  
ns  
ns  
ns  
Table 10.4.3  
Parameter  
[VDD = 1.8V to 2.3V, Ta = 40 to +85°C]  
Specified value  
Unit  
Signal Symbol  
Condition  
Min.  
Typ.  
225  
225  
225  
Max.  
514  
514  
514  
FR delay time  
F1, F2 delay time  
CA delay time  
FR  
F1, F2 tDF1, tF2  
CA tDCA  
tDFR  
CL = 50pF  
ns  
ns  
ns  
*1. Valid only in master operation  
*2. Timing is entirely specified with reference to 20% or 80% of VDD.  
74  
EPSON  
Rev. 1.3  
S1D15E05 Series  
(5) Reset input timing  
t
RW  
RES  
t
R
Internal state  
During resetting  
Fig. 10.5  
End of resetting  
Table 10.5.1  
Parameter  
[VDD = 3.0V to 3.6V, Ta = 40 to +85°C]  
Specified value  
Unit  
Signal Symbol  
Condition  
Min.  
Typ.  
Max.  
Reset time  
tR  
0.5  
µs  
Reset LOW pulse width  
RES  
tRW  
0.5  
Table 10.5.2  
Parameter  
[VDD = 2.4V to 3.0V, Ta = 40 to +85°C]  
Specified value  
Unit  
Signal Symbol  
Condition  
Min.  
Typ.  
Max.  
Reset time  
tR  
1.0  
µs  
Reset LOW pulse width  
RES  
tRW  
1.0  
Table 10.5.3  
Parameter  
[VDD = 1.7V to 2.4V, Ta = 40 to +85°C]  
Specified value  
Unit  
Signal Symbol  
Condition  
Min.  
Typ.  
Max.  
Reset time  
tR  
1.5  
µs  
Reset LOW pulse width  
RES  
tRW  
1.5  
*1. Timing is entirely specified with reference to 20% or 80% of VDD.  
Rev. 1.3  
EPSON  
75  
S1D15E05 Series  
11. MPU INTERFACE (Reference Example)  
The S1D15E05 series can be connected to the 80 series MPU and 68 series MPU. Use of a serial interface allows  
operation with a smaller number of signal lines.  
You can expand the display area using the S1D15E05 series as a multi-chip. In this case, the IC to be accesses can be  
selected individually by the chip select signal. After initialization by the RES pin, each input terminal of the S1D15E05  
series must be placed under normal control.  
(1) 80 series MPU  
VDD  
V
CC  
VDD  
C86  
P/S  
A0  
A0  
A1 to A7  
IORQ  
CS1  
CS2  
Decoder  
RESET  
D0 to D7  
RD  
D0 to D7  
RD  
WR  
RES  
WR  
RES  
GND  
VSS  
V
SS  
Fig. 11.1  
(2) 68 series MPU  
VDD  
V
CC  
VDD  
C86  
P/S  
A0  
A0  
A1 to A15  
VMA  
CS1  
CS2  
Decoder  
RESET  
D0 to D7  
E
D0 to D7  
E
R/W  
R/W  
RES  
RES  
GND  
V
SS  
V
SS  
Fig. 11.2  
(3) Serial interface  
Fig. 11.3  
V
DD  
VCC  
VDD  
C86  
A0  
A0  
VDD or VSS  
CS1  
CS2  
A1 to A7  
Decoder  
RESET  
Port 1  
Port 2  
RES  
SI  
SCL  
RES  
P/S  
GND  
V
SS  
VSS  
76  
EPSON  
Rev. 1.3  
S1D15E05 Series  
12. CONNECTION BETWEEN LCD DRIVERS (Reference example)  
You can easily expand the liquid crystal display area using the S1D15E05 series as a multi-chip. In this case, use the  
same model (S1D15E05*****/S1D15E05*****) or (S1D15E06*****/S1D15E06*****) as the master and  
slave systems.  
S1D15E05 (Master)  
S1D15E05 (Slave)  
V
DD  
V
SS  
V
DD  
M/S  
M/S  
CL  
FR  
DOF  
F1  
CL  
FR  
DOF  
F1  
F2  
F2  
CA  
CA  
CLS  
CLS  
V
V
2
1
V
V
V
2
1
C
V
C
MV  
(VSS) MV  
1
2
MV  
MV  
1
2
(VSS  
)
Fig. 12 Master/slave connection example (S1D15E05)  
Rev. 1.3  
EPSON  
77  
S1D15E05 Series  
13. LCD PANEL WIRING (Reference example)  
You can easily expand the liquid crystal display area using the S1D15E05 series as a multi-chip. In the case of multi-  
chip configuration, use the same models.  
(1) Single chip configuration example  
160 x 132 Dots  
COM  
SEG  
COM  
S1D15E06  
Master  
Fig. 13.1 Single chip configuration example (S1D15E06)  
(2) Double chip configuration example  
320 x 132 Dots  
COM  
SEG  
SEG  
COM  
S1D15E06 Series  
Master  
S1D15E06 Series  
Slave  
Fig. 13.2 Double chip configuration example (S1D15E06)  
78  
EPSON  
Rev. 1.3  
S1D15E05 Series  
14. S1D15E05T00A TCP PIN LAYOUT  
*
Note: This does not specify the TCP outside shape.  
Reference  
COM131  
COM130  
VSS  
FR  
CL  
COM129  
COM128  
DOF  
F1  
F2  
CA  
TEST  
CS1  
RES  
A0  
WR, R/W  
RD, E  
CS2  
M/S  
COM 67  
COM 66  
CLS  
C86  
P/S  
SEG 159  
SEG 158  
D0  
D1  
D2  
D3  
D4  
D5  
D6, SCL  
D7, SI  
V
SS  
DD  
OUT  
V
V
SEG 1  
CAP1+  
CAP1–  
CAP2–  
CAP2+  
CAP3+  
CAP3–  
CAP4–  
CAP4+  
SEG 0  
COM 0  
COM 1  
COM 2  
COM 3  
V
2
V1  
VC  
MV1  
(VSS)MV  
2
CPP+  
CPP–  
CPM+  
CPM–  
COM 64  
COM 65  
Rev. 1.3  
EPSON  
79  
S1D15E05 Series  
15. TCP DIMENSIONS (Reference example)  
80  
EPSON  
Rev. 1.3  
S1D15E05 Series  
Rev. 1.3  
EPSON  
81  
S1D15E05 Series  
16. CAUTIONS  
Cautions must be exercised on the following points when using this Development Specification:  
1. This Development Specification is subject to change for engineering improvement.  
2. This Development Specification does not guarantee execution of the industrial proprietary rights or other rights, or  
grant a license. Examples of applications described in This Development Specification are intended for your  
understanding of the Product. We are not responsible for any circuit problem or the like arising from the use of them.  
3. Reproduction or copy of any part or whole of this Development Specification without permission of our company,  
or use thereof for other business purposes is strictly prohibited.  
For the use of the semi-conductor,cautions must be exercised on the following points:  
[Cautions against Light]  
The semiconductor will be subject to changes in characteristics when light is applied. If this IC is exposed to light,  
operation error may occur. To protect the IC against light, the following points should be noted regarding the substrate  
or product where this IC is mounted:  
(1) Designing and mounting must be provided to get a structure which ensures a sufficient resistance of the IC to  
light in practical use.  
(2) In the inspection process, environmental configuration must be provided to ensure a sufficient resistance of the  
IC to light.  
(3) Means must be taken to ensure resistance to light on all the surfaces, backs and sides of the IC  
82  
EPSON  
Rev. 1.3  

相关型号:

S1D15E06D00B

LIQUID CRYSTAL DISPLAY DRIVER, UUC412, DIE-412
SEIKO

S1D15E06D00E

LIQUID CRYSTAL DISPLAY DRIVER, UUC412, DIE-412
SEIKO

S1D15E06D01B000

Direct RAM data display by display data RAM
EPSON

S1D15E06D01E000

Direct RAM data display by display data RAM
EPSON

S1D15E06D03B000

Direct RAM data display by display data RAM
EPSON

S1D15E06D03E000

Direct RAM data display by display data RAM
EPSON

S1D15E06T00A00A

Direct RAM data display by display data RAM
EPSON

S1D15G10D08B000

LCD drivers equipped with the liquid crystal drive power circuit
EPSON

S1D16006D00A

LIQUID CRYSTAL DISPLAY DRIVER, UUC100, DIE-100
SEIKO

S1D16006D00B

LIQUID CRYSTAL DISPLAY DRIVER, UUC100, DIE-100
SEIKO

S1D16006D01A

LIQUID CRYSTAL DISPLAY DRIVER, UUC100, DIE-100
SEIKO

S1D16006D01B

LIQUID CRYSTAL DISPLAY DRIVER, UUC100, DIE-100
SEIKO