S1F76610M2E0 [SEIKO]

IC,DC/DC CONVERTER,-18V,CMOS,SOP,16PIN;
S1F76610M2E0
型号: S1F76610M2E0
厂家: SEIKO EPSON CORPORATION    SEIKO EPSON CORPORATION
描述:

IC,DC/DC CONVERTER,-18V,CMOS,SOP,16PIN

光电二极管
文件: 总29页 (文件大小:617K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
S1F76610M2E  
Technical Manual  
Rev.1.1  
NOTICE  
No part of this material may be reproduced or duplicated in any form or by any means without the written  
permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice.  
Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material  
or due to its application or use in any product or circuit and, further, there is no representation that this material  
is applicable to products requiring high level reliability, such as, medical products. Moreover, no license to  
any intellectual property rights is granted by implication or otherwise, and there is no representation or warranty  
that anything made in accordance with this material will be free from any patent or copyright infringement of a  
third party. This material or portions thereof may contain technology or the subject relating to strategic  
products under the control of the Foreign Exchange and Foreign Trade Law of Japan and may require an export  
license from the Ministry of Economy, Trade and Industry or other approval from another government agency.  
All other product names mentioned herein are trademarks and/or registered trademarks of their respective  
companies.  
©SEIKO EPSON CORPORATION 2008, All rights reserved.  
Configuration of product number  
DEVICES  
S1  
F
76610 M 2E0  
000  
Packing specifications  
Specifications  
Shape  
(M : SOP, SSOP)  
Model number  
Model name  
(F : Power Supply)  
Product classification  
(S1:Semiconductors)  
Table of Contents  
1. DESCRIPTION ................................................................................................................1  
2. FEATURES......................................................................................................................1  
3. BLOCK DIAGRAM..........................................................................................................2  
4. PIN DESCRIPTION .........................................................................................................3  
4.1 Pin assignment .............................................................................................................................3  
4.2 Pin functions.................................................................................................................................3  
5. FUNCTIONAL DESCRIPTION ........................................................................................4  
6. ELECTRICAL CHARACTERISTICS...............................................................................7  
6.1 Absolute maximum ratings..........................................................................................................7  
6.2 Recommended operating conditions..........................................................................................8  
6.3 Electrical characteristics..............................................................................................................9  
6.4 Measuring circuits ......................................................................................................................10  
7. CHARACTERISTIC DATA SHEETS .............................................................................12  
8. APPLIED-CIRCUIT EXAMPLES...................................................................................17  
S1F76610M2E Technical Manual (Rev.1.1)  
EPSON  
i
1. DESCRIPTION  
1. DESCRIPTION  
The S1F76610 is a CMOS DC-DC converter with high efficiency and low power consumption.  
It consists of two major components: a booster and a stabilizer. The booster assures double boosting output  
(-3.6 to -12V) or triple boosting output (-5.4 to -18V) for input voltage (-1.8 to -6V).  
The stabilizer sets any output voltage. It also provides three types of negative temperature gradients for  
stabilization output, and it is appropriate for LCD power.  
The S1F76610 enables you to drive an IC (liquid crystal driver, analog IC, etc.) that would usually require  
another power supply in addition to the logic main power, using a single power supply. Therefore, it is suitable  
for supplying micro-power to compact electrical devices such as hand-held computers with low power  
consumption.  
2. FEATURES  
(1) CMOS DC-DC converter with high efficiency and low power consumption  
(2) Easy conversion from input voltage VIN (-5V) to four types of positive/negative voltages  
Output + | VIN | (+5V), +2 |VIN | (+10V), 2VIN (-10V), and 3VIN (-15V) from input VIN (-5V)  
(3) Output voltage stabilizer built-in  
Any output voltage settable with external resistor  
(4) Output current ꢁꢁꢁꢁꢁꢁꢁꢁꢁ Max. 20 mA (VIN = -5V)  
(5) Power conversion efficiency ꢁꢁꢁꢁꢁꢁꢁꢁꢁ Typ. 95%  
(6) Temperature gradient selectable for LCD power  
3 types: -0.05%/°C, -0.30%/°C and -0.50%/°C  
(7) Power-off operation by external signal  
Static current for power-off: Max. 2µA  
(8) Serial connection enabled (VIN = -5V, VOUT = -20V using two ICs)  
(9) Low voltage operation: Appropriate for battery drive  
(10) CR oscillation circuit built-in  
(11) SSOP2-16 pin  
(12) This IC is not designed for strong radiation activity proof.  
S1F76610M2E Technical Manual (Rev.1.1)  
EPSON  
1
3. BLOCK DIAGRAM  
3. BLOCK DIAGRAM  
VDD  
CR  
OSC1  
OSC2  
oscillation  
circuit  
TC1  
TC2  
VIN  
Voltage  
converter  
(1)  
CAP1-  
CAP1+  
CAP2-  
CAP2+  
Voltage  
converter  
(2)  
XPOFF  
RV  
VREG  
VOUT  
Booster  
Stabilizer  
Fig.3.1 Block diagram  
2
EPSON  
S1F76610M2E Technical Manual (Rev.1.1)  
4. PIN DESCRIPTION  
4. PIN DESCRIPTION  
4.1 Pin assignment  
VDD  
16  
CAP1+  
1
2
15  
14  
13  
OSC1  
(NC)  
CAP1-  
(NC)  
3
CAP2+  
OSC2  
4
5
6
7
8
12  
CAP2-  
XPOFF  
RV  
TC1  
TC2  
11  
10  
9
VREG  
VOUT  
VIN  
Fig.4.1 SSOP2-16 pin assignment  
4.2 Pin functions  
Pin No.  
Pin name  
Function  
1
CAP1+  
CAP1-  
CAP2+  
CAP2-  
Positive pin connected to pump-up capacitor for double boosting  
Negative pin connected to pump-up capacitor for double boosting  
Next-stage clock for serial connection  
2
4
5
Positive pin connected to pump-up capacitor for triple boosting  
Negative pin connected to pump-up capacitor for triple boosting  
Output pin for double boosting (shorted with VOUT)  
6
7
TC1  
TC2  
VIN  
VOUT  
VREG  
Temperature gradient selection pin  
8
Power supply pin (Negative side, system GND)  
Output pin for triple boosting  
9
10  
Stabilizing voltage output pin  
Stabilizing voltage adjustment pin  
Adjusts the VREG output voltage by connecting an intermediate tap  
of the external volume (3-pin resistor) connected between the VDD  
and VREG pins to the RV pin.  
11  
RV  
VREG output ON/OFF control pin  
12  
13  
XPOFF  
OSC2  
Controls S1F76610 power-off (VREG output power off) by inputting  
a control signal from the system to this pin.  
Pin connected to oscillation resistor  
Opened for external clock operation.  
Pin connected to oscillation resistor  
15  
16  
OSC1  
VDD  
Functions as a clock input pin for external clock operation  
Power supply pin (Positive side, system VCC)  
S1F76610M2E Technical Manual (Rev.1.1)  
EPSON  
3
5. FUNCTIONAL DESCRIPTION  
5. FUNCTIONAL DESCRIPTION  
1 CR oscillation circuit  
The S1F76610 is equipped with a CR oscillation circuit as an internal oscillation circuit, connecting external  
resistor ROSC for oscillation between the OSC1 and OSC2 pins. (Fig.5.1)  
OSC1  
OSC1  
OSC2  
(Note 1)  
External clock  
OSC  
R
Open  
OSC2  
Fig.5.1 CR oscillation circuit  
Fig.5.2 External clock operation  
Note 1) The oscillation frequency varies depending on the wiring capacity, so the wire between OSC1, OSC2,  
and ROSC must be short as possible.  
To set the external resistor ROSC, first obtain the oscillation frequency fOSC that satisfies the maximum  
efficiency in Fig.7.12 and 7.13, and then obtain ROSC corresponding to the fOSC in Fig.7.1. The relation  
between ROSC and fOSC shown in Fig.7.1 is expressed with the following formula, concerning only the straight  
part (500k< ROSC < 2M).  
A = Constant :VDD = 0V, VIN = -5V  
1
A = 2.0 × 1010 (Hz)  
ROSC= A・  
fOSC  
Therefore, the ROSC value is obtained from the relational expression above.  
(Recommended oscillation frequency: 10kHz to 30kHz (ROSC: 2Mto 680k)  
For external clock operation, as shown in Fig.5.2, open the OSC2 pin and input external clocks (duty 50%)  
from the OSC1 pin.  
4
EPSON  
S1F76610M2E Technical Manual (Rev.1.1)  
5. FUNCTIONAL DESCRIPTION  
2 Voltage converters (I) and (II)  
Voltage converters (I) and (II) perform double boosting and triple boosting for input power voltage VIN using  
clocks generated in the CR oscillation circuit.  
For double boosting, the double input voltage VIN is obtained from the CAP2- pin by connecting an external  
pump-up capacitor between CAP1+ and CAP1- and an external smoothing capacitor between VIN, CAP2, and  
CAP2-. For triple boosting, the triple input voltage VIN is obtained from the VOUT pin by connecting an  
external pump-up capacitor between CAP1+ and CAP1- and between CAP2+ and CAP2-, and connecting an  
external smoothing capacitor between VIN and VOUT.  
Fig.4.3 and 4.4 show the relationships between input and output voltages, using VDD = 0V and VIN = -5V.  
VCC  
VDD=0V  
VIN=-5V  
VDD=0V  
VIN=-5V  
(+5V)  
GND  
(-5V)  
CAP2-=-2VIN=-10V  
System power Note 2)  
VOUT=3VIN=-15V  
Fig.5.3 Relationships between  
double boosting voltages  
Fig.5.4 Relationships between  
triple boosting voltages  
Note 1) In triple boosting, the double boosting output (-10V) cannot be obtained from the CAP2- pin.  
Note 2) When connecting to the system power, CAP2- = -5V is obtained for double boosting output and  
VOUT = -10V is obtained for triple boosting by setting VIN = system power GND; VDD = system  
power VCC = +5V.  
3 Reference voltage generator, voltage stabilizer  
The reference voltage generator generates a reference voltage required to operate the voltage stabilizer, and  
provides a temperature gradient to the reference voltage. There are three types of temperature gradients and  
the appropriate one is selected by a signal sent from the temperature gradient selection circuit. The voltage  
stabilizer stabilizes boosting output voltage VOUT and outputs any voltage. As shown in Fig.5.5, the VREG  
output voltage can be set to any voltage between the reference voltage VRV and VOUT by connecting the  
external resistor RRV and changing the voltage of the intermediate tap.  
VDD  
Control signal  
XPOFF  
RRV=100kto 1MΩ  
R1  
RV  
VREG  
RRV  
R1  
VREG=  
VRV  
Fig.5.5 Voltage stabilizer  
The voltage stabilizer, which is equipped with the power-off function, enables VREG output ON/OFF control  
at timings when the signal is sent from the system (microprocessor, etc.).  
When XPOFF = High (VDD), the VREG output is turned ON; when XPOFF = Low (VIN), it is turned OFF.  
If the VREG output ON/OFF control is not necessary, XPOFF is fixed to High (VDD).  
S1F76610M2E Technical Manual (Rev.1.1)  
EPSON  
5
5. FUNCTIONAL DESCRIPTION  
4 Temperature gradient selection circuit  
As shown in Table 5.1, the S1F76610 provides three appropriate temperature gradients for LCD driving to  
VREG output.  
Table 5.1 Correspondence between temperature gradients and VREG output ON/OFF  
Temperature  
gradient CT  
Note 2)  
-0.30%/°C  
-0.05%/°C  
-0.50%/°C  
-0.50%/°C  
CR  
oscillation  
circuit  
ON  
XPOFF  
TC2  
TC1  
VREG output  
Remarks  
Note 1)  
Note 1)  
Note 1)  
1 (VDD)  
1 (VDD)  
1 (VDD)  
1 (VDD)  
Low (VOUT)  
Low (VOUT)  
High (VDD)  
High (VDD)  
Low (VOUT)  
High (VDD)  
Low (VOUT)  
High (VDD)  
ON  
ON  
ON  
ON  
ON  
ON  
OFF  
Serial connection  
Note 4)  
0 (VIN)  
0 (VIN)  
0 (VIN)  
0 (VIN)  
Low (VOUT)  
Low (VOUT)  
High (VDD)  
Low (VDD)  
Low (VOUT)  
High (VDD)  
Low (VOUT)  
High (VDD)  
OFF(Hi-Z) Note 3)  
OFF(Hi-Z) Note 3)  
OFF(Hi-Z) Note 3)  
OFF(Hi-Z)  
OFF  
OFF  
OFF  
ON  
Boosting only  
Note 5)  
Note 1) The low voltage is different between the XPOFF, TC2, and TC1 pins.  
Note 2) The temperature gradient CT is defined in the following formula:  
| VREG(50)| | VREG(0)|  
500℃  
1
CT =  
×
(%/°C)  
| VREG(25)|  
Here, | VREG | means VDD - VREG. In Table 5.1, the negative sign assigned to each temperature gradient  
means that VDD - VREG = | VREG | reduces as the temperature rises.  
| VREG |(Ta) | VREG(Ta)| | VREG(25)|  
=
| VREG|  
| VREG(25)|  
| VREG |  
| VREG |  
Based on this formula, Fig.7.19 shows the relationships between  
and temperature Ta.  
In Fig.7.19, the inclination below indicates CT.  
| VREG |(50) | VREG |(0)  
=
(50°C - 0°C)  
/
| VREG |  
| VREG |  
Example: When CT = -0.5%/°C is selected;  
if VREG output at Ta = 25°C is VREG (25°C) = -8V,  
VREG / T = CT | VREG (25°C) | = -0.5 × 10-2 × 8 = -40mV/°C is obtained,  
the | VREG |value reduces 40mV each time the temperature rises 1°C.  
VREG (25°C) = -10V results in |VREG | / T = -50mV/°C.  
Note 3) When the power is off (VREG output: OFF, CR oscillation circuit: OFF), the VOUT output voltage is  
set to VIN +0.5V.  
Note 4) Selecting this mode for serial connection drives the next-stage IC with the first-stage clock, and  
reduces the power consumption of the next-stage IC. (See item 8 - (4).)  
Note 5) This mode is recommended for boosting. It minimizes the current consumption.  
6
EPSON  
S1F76610M2E Technical Manual (Rev.1.1)  
6. ELECTRICAL CHARACTERISTICS  
6. ELECTRICAL CHARACTERISTICS  
6.1 Absolute maximum ratings  
Standard value  
Item  
Symbol  
Unit  
Remarks  
Min.  
Max.  
Input power voltage  
VIN  
-20/N  
VDD+0.3  
V
VIN  
N = 2: Double boosting  
N = 3: triple boosting  
OSC1, XPOFF  
TC1, TC2, RV  
VOUT Note 3)  
VREG Note 3)  
CAP1+, CAP2+, OSC2  
CAP1-  
Input pin voltage  
Output voltage  
VI  
VIN-0.3  
VOUT-0.3  
-20  
VDD+0.3  
VDD+0.3  
VDD+0.3  
VDD+0.3  
VDD+0.3  
VDD+0.3  
VDD+0.3  
210  
V
V
V
V
V
V
V
VOUT  
VOUT  
Output pin voltage 1  
Output pin voltage 2  
Output pin voltage 3  
Allowable dissipation  
Operating temperature  
Storage temperature  
Soldering temperature and  
time  
VOC1  
VOC2  
VOC3  
Pd  
Topr  
Tstg  
VIN-0.3  
2×VIN-0.3  
3×VIN-0.3  
CAP2-  
mW SSOP2-16PIN  
-40  
-55  
85  
150  
26010  
°C  
°C  
Tsol  
°CS Lead part  
Note 1) Exceeding the absolute maximum ratings above may cause a permanent destruction of the IC.  
A long-term operation with the absolute maximum ratings may cause a significant reduction of  
reliability.  
Note 2) All the voltage values above are based on VDD.  
Note 3) The VOUT and VREG output pins output the boosted voltage and stabilized boosted-voltage. No  
external voltage should therefore be applied to these pins. When being compelled to apply external  
voltage to the pins for use, it must be in the allowable range of the rated voltages above.  
S1F76610M2E Technical Manual (Rev.1.1)  
EPSON  
7
6. ELECTRICAL CHARACTERISTICS  
6.2 Recommended operating conditions  
Standard value  
Item  
Symbol  
Unit  
Remarks  
Min.  
Max.  
Boosting start voltage  
VSAT1  
-1.8  
ROSC = 1M, C3 10µF  
CL / C3 20  
Ta = -40 to 85°C, Note 1)  
ROSC = 1MΩ  
V
VSAT2  
VSTP  
-2.2  
Boosting stop voltage  
Output load resistance  
Output load current  
Oscillation frequency  
-1.8  
V
V
ROSC = 1MΩ  
RL  
IOUT  
RLim  
Note 2)  
20  
30  
fOSC  
10  
680  
3.3  
100  
mA  
kHz  
µF  
kΩ  
External resistor for  
oscillation  
Boosting capacitor  
ROSC  
2000  
C1, C2, C3  
RRV  
Stabilization-output  
adjusting resistor  
1000  
All the voltages are based on VDD = 0V.  
Note 1) For low-voltage (VIN = -1.8 to -2.2V) operation, the recommended circuit is as follows:  
Note 2) RLmin varies depending on the input voltage.  
+
-
16  
15  
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
8
C1=10µF  
C2=10µF  
ROSC=1MΩ  
CL  
+
-
RL  
-
+
C3=22µF  
D1 (VF (IF = 1mA)0.6V recommended)  
Fig.6.2.1 Recommended circuit for low-voltage operation  
8
EPSON  
S1F76610M2E Technical Manual (Rev.1.1)  
6. ELECTRICAL CHARACTERISTICS  
6.3 Electrical characteristics  
Ta = -40°C to +85°C VDD = 0V, VIN = -5V unless especially specified.  
Standard value  
Measuring  
circuit  
Item  
Symbol  
Unit  
Conditions  
Min.  
Typ.  
Max.  
Input power voltage  
Output voltage  
Stabilizer output  
voltage  
Stabilizer operating  
voltage  
Booster current  
consumption  
Stabilized circuit  
current consumption  
Static current  
VIN  
VOUT  
VREG  
-6.0  
-18.0  
-18.0  
-1.8  
VRV  
-7.0  
60  
V
V
V
RL = , RRV = 1M, VOUT = -18V  
d
VOUT  
Iopr1  
Iopr2  
IQ  
-18.0  
V
30  
10  
µA RL = , ROSC = 1MΩ  
c
d
f
20  
µA RL = , RRV = 1M, VOUT = -15V  
2
µA RL = , OSC1 = VDD,  
VOUT = -10V  
Oscillation frequency  
Output impedance  
Boosting power  
conversion efficiency  
Note 2)  
Stabilization output  
Voltage variation  
Stabilization output  
Note 3)  
Load change  
Stabilization output  
Note 4)  
Saturated resistance  
Reference voltage  
fOSC  
Rout  
Peff  
16  
90  
20  
120  
95  
24  
150  
kHz ROSC = 1MΩ  
c
c
c
IOUT = 10mA  
IOUT = 5mA  
%
VREG  
VOUTVREG  
0.1  
5.0  
%/V -18V < VOUT < -8V, VREG = -8V  
d
d
RL = , Ta = 25°C  
VOUT = -15V, VREG = -8V  
Ta = 25°C, 0 < IOUT < 10mA,  
TC2 = VDD, TC1=VOUT  
RSAT = (VREG - VOUT) / IOUT  
0 < IOUT < 10mA, RV = VDD, Ta =  
25°C  
VREG  
IOUT  
RSAT  
5.0  
d
VRV0  
VRV1  
VRV2  
CT0  
CT1  
CT2  
-4.0  
-2.5  
-1.3  
-0.15  
-0.40  
-0.60  
-3.0  
-2.0  
-1.1  
-0.05  
-0.30  
-0.50  
-2.0  
-1.5  
-1.0  
+0.10  
-0.15  
-0.40  
V
V
V
TC2 = VOUT, TC1 = VDD, Ta = 25°C  
TC2 = TC1 = VOUT, Ta = 25°C  
TC2 = VDD, TC1 = VOUT, Ta = 25°C  
d
d
e
Temperature gradient  
%/°C CT1,CT2,CT3=  
(( |VREG(50°C)|-|VREG (0°C |)  
%/°C  
%/°C  
/ (50°C - 0°C))  
× (1/|VREG (25°C)|) × 100  
Input leak current  
Input voltage  
ILKI  
VIH  
VIL  
2
µA XPOFF, TC1, TC2, OSC1, RV pin  
0.3VIN  
V
V
VIN = -1.8 to -6.0V, XPOFF pin  
VIN = -1.8 to -6.0V, XPOFF pin  
0.7VIN  
Note 1) All the voltages are based on VDD = 0V.  
Note 2) The values above indicate the conversion efficiency of the booster. When the stabilizer is active, the  
loss is (VREG - VOUT) × IOUT.  
We therefore recommend a method of reducing (VREG - VOUT) as much as possible.  
If (VREG - VOUT) × IOUT is high, the stabilizer characteristics vary as the IC temperature rises.  
Note 3) See Fig.7.15, 7.16, and 7.17.  
Note 4) RSAT indicates the inclination shown in Fig.7.18; VOUT + (VREG - VOUT) indicates the lower limit  
voltage of the VREG output.  
S1F76610M2E Technical Manual (Rev.1.1)  
EPSON  
9
6. ELECTRICAL CHARACTERISTICS  
6.4 Measuring circuits  
1 Booster characteristic measuring circuit  
10µF  
+
16  
15  
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
8
R
C1  
-
OSC  
R
=1MΩ  
V
V
OUT  
+
A
C2  
A
OUT  
I
-
10µF  
C3 10µF  
IN  
V =-5V  
C1, C2, C3: Tantalum electrolytic capacitor  
+
-
2 Stabilizer characteristic measuring circuit  
A
16  
15  
14  
13  
12  
11  
10  
9
1
2
RL  
R1  
R2  
V
3
OUT  
V
RV  
R
=
VIN=-5V  
4
5
6
7
8
1M  
A
OUT  
I
3 Input leak current characteristic measuring circuit  
16  
15  
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
8
-6V  
-18V  
LKI  
I
Connect to -18V for measurement  
of pins 6, 7, and 11.  
Connect to -6V for measurement of  
pins 12 and 15.  
A
10  
EPSON  
S1F76610M2E Technical Manual (Rev.1.1)  
6. ELECTRICAL CHARACTERISTICS  
4 Static-current characteristic measuring circuit  
VOUT=-15V VIN=-5V  
A
A
1
2
3
4
5
6
7
8
16  
15  
14  
13  
IQ  
IQ  
(VOUT power) (VIN power)  
12  
11  
10  
9
S1F76610M2E Technical Manual (Rev.1.1)  
EPSON  
11  
7. CHARACTERISTIC DATA SHEETS  
7. CHARACTERISTIC DATA SHEETS  
1000  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
Ta=25  
IN  
IN  
IN  
V
V
V
=-5v  
=-3v  
=-2v  
VIN =-5.0V  
VIN =-3.0V  
100  
10  
1
VIN =-2.0V  
-40  
-20  
0
20  
40  
60  
80  
100  
10  
100  
1000  
Rosc [kΩ]  
10000  
Ta [℃]  
Fig.7.1 Oscillation frequency -  
External resistor for oscillation  
Fig.7.2 Oscillation frequency - Temperature  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
Ta = 25  
Ta=25  
VIN =-5.0V  
fosc=40kHz  
fosc=20kHz  
-5  
-10  
-15  
Double boosting  
Triple boosting  
fosc=10kHz  
0
10  
20  
IOUT [mA]  
30  
40  
-7  
-6  
-5  
-4  
V
-3  
[V]  
-2  
-1  
0
INꢀ  
Fig.7.3 Booster current consumption -  
Input voltage  
Fig.7.4 Output voltage - Output current  
12  
EPSON  
S1F76610M2E Technical Manual (Rev.1.1)  
7. CHARACTERISTIC DATA SHEETS  
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
0
Ta = 25  
VIN =-2.0V  
Ta = 25  
VIN =-3.0V  
-1  
-2  
-3  
-4  
-5  
-6  
Double boosting  
Double boosting  
Triple boosting  
Triple boosting  
0
10  
20  
30  
0
1
2
3
4
5
6
7
8
9
10  
IOUT [mA]  
IOUT [mA]  
Fig.7.5 Output voltage - Output current  
Fig.7.6 Output voltage - Output current  
Double boosting  
Pef f  
Double boosting  
Pef f  
100  
90  
81  
72  
63  
54  
45  
36  
27  
18  
9
100  
120  
108  
96  
84  
72  
60  
48  
36  
24  
12  
0
90  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Triple boosting  
Pef f  
80  
70  
60  
50  
40  
30  
20  
10  
0
Triple boosting  
Pef f  
Ta = 25  
Ta = 25  
VIN =-5.0V  
VIN =-3.0V  
Triple boosting  
IIN  
Triple boosting  
IIN  
Double boosting  
IIN  
Double boosting  
IIN  
0
0
5
10  
15  
20  
25  
30  
0
10  
20  
30  
40  
IOUT [mA]  
IOUT [mA]  
Fig.7.7 Power conversion efficiency -  
Output current  
Fig.7.8 Power conversion efficiency -  
Output current  
Input current - Output current  
Input current - Output current  
S1F76610M2E Technical Manual (Rev.1.1)  
EPSON  
13  
7. CHARACTERISTIC DATA SHEETS  
Double boosting  
Pef f  
400  
350  
300  
250  
200  
150  
100  
50  
100  
30  
27  
24  
21  
18  
15  
12  
9
Ta =25  
90  
Iout=6mA  
80  
70  
60  
50  
40  
30  
20  
10  
0
Triple boosting  
Pef f  
Ta = 25  
VIN =-2.0V  
Triple boosting  
IIN  
Triple boosting  
6
Double boosting  
IIN  
Double boosting  
3
0
0
-7  
-6  
-5  
-4  
V
-3  
[V]  
-2  
-1  
0
0
1
2
3
4
5
6
7
8
9
10  
IN  
IOUT [mA]  
Fig.7.9 Power conversion efficiency -  
Output current  
Fig.7.10 Output impedance - Input voltage  
Input current - Output current  
100  
400  
Iout=2mA  
Ta =25  
Iout=10mA  
350  
300  
250  
200  
150  
100  
50  
90  
Iout=5mA  
80  
Iout=10mA  
70  
Triple boosting  
Iout=20mA  
60  
50  
Iout=30mA  
Ta = 25  
Double boosting  
IN=-5.0V  
V
0
-7  
-6  
-5  
-4  
V
-3  
[V]  
-2  
-1  
0
1
10  
100 1000  
IN  
fosc [kHz]  
Fig.7.11 Output impedance - Input voltage  
Fig.7.12 Power conversion efficiency -  
Oscillation frequency  
14  
EPSON  
S1F76610M2E Technical Manual (Rev.1.1)  
7. CHARACTERISTIC DATA SHEETS  
100  
90  
80  
70  
60  
50  
100000  
Iout=0.5mA  
Iout=1.0mA  
Iout=2.0mA  
Iout=4.0mA  
10000  
1000  
100  
Ta = 25℃  
IN  
Ta=25℃  
-1.4  
V =-3.0V  
-2.2  
-2.0  
-1.8  
-1.6  
[V]  
-1.2  
1
10  
100  
1000  
IN  
V
fosc [kHz]  
Fig.7.13 Power conversion efficiency -  
Oscillation frequency  
Fig.7.14 Minimum load resistance - Input voltage  
-7.85  
-5.85  
Ta =25℃  
Vout=-9V  
Ta = 25℃  
Vout=-15V  
-5.90  
-5.95  
-6.00  
-7.90  
-7.95  
-8.00  
0.1  
1.0  
10.0  
100.0  
0.1  
1.0  
10.0  
100.0  
IOUT [mA]  
IOUT [mA]  
Fig.7.15 Output voltage - Output voltage  
Fig.7.16 Output voltage - Output voltage  
S1F76610M2E Technical Manual (Rev.1.1)  
EPSON  
15  
7. CHARACTERISTIC DATA SHEETS  
0.12  
0.11  
0.10  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0.00  
-2.85  
Ta = 25℃  
Vout=-6V  
Ta=25℃  
Vout=-5V  
Vout=-10V  
-2.90  
-2.95  
-3.00  
Vout=-15V  
0.1  
1.0  
10.0  
100.0  
0
5
10  
15  
20  
IOUT [mA]  
IOUT [mA]  
Fig.7.18 Stabilization output saturated resistance -  
Output current  
Fig.7.17 Output voltage - Output voltage  
50  
0
T0  
C
T1  
T2  
C
C
-50  
-40  
-20  
0
20  
40  
60  
80  
100  
Ta [℃]  
Fig.7.19 Output voltage - Temperature  
16  
EPSON  
S1F76610M2E Technical Manual (Rev.1.1)  
8. APPLIED-CIRCUIT EXAMPLES  
8. APPLIED-CIRCUIT EXAMPLES  
(1) Double boosting and Triple boosting  
Fig.8.1 shows a connection example for obtaining the triple boosting output for input voltage by running only  
the booster. For double boosting, remove capacitor C2 and short between the CAP2- (No.5) and VO (No.9)  
pins; double boosting (-10V) is obtained from VO (CAP2-).  
DD  
V
= 0V  
+
-
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
C1  
10µF  
OSC  
R
1MΩ  
+
-
C2  
10µF  
IN  
V
OUT  
V
= -5V  
= -15V  
+
-
C3 10µF  
Fig.8.1 Triple boosting  
S1F76610M2E Technical Manual (Rev.1.1)  
EPSON  
17  
8. APPLIED-CIRCUIT EXAMPLES  
(2) Triple boosting + Stabilizer  
1) Fig.8.1 shows an applied-circuit example for stabilizing the boosting output obtained by double boosting  
and triple boosting through the stabilizer and providing the temperature gradient to the VREG output through the  
temperature gradient selection circuit. This applied-circuit example can indicate two outputs from VO and  
VREG at the same time. Using the double boosting described in item (1) “Double Boosting and triple  
Boosting” enables double boosting + stabilizer.  
DD  
V
= 0V  
+
-
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
C1  
10µF  
Note 1)  
OSC  
R
RV  
R
R1  
R2  
+
-
1MΩ  
100k  
to 1MΩ  
C4  
10µF  
+
-
C2  
10µF  
REG  
V
= -8V  
IN  
V
OUT  
= -5V  
V
= -15V  
+
-
C3 10µF  
Fig.8.2 Triple boosting + Stabilizer operation (Temperature gradient = -0.3%/°C)  
Note 1) The RV pin (No.11) has high input impedance. If the wire is long, use a shield wire to prevent a  
noise.  
To reduce the influence by a noise, lower the RRV value. (However, the RRV current consumption  
will increase.)  
Note 2) The VREG output voltage must be within | VO | - | VREG | 10V.  
The set voltage is obtained from the following formula:  
VREG = RRV × VRV  
R1  
18  
EPSON  
S1F76610M2E Technical Manual (Rev.1.1)  
8. APPLIED-CIRCUIT EXAMPLES  
(3) Parallel connection  
As shown in Fig.8.3, multi-connection reduces output impedance RO. Therefore, a configuration of n parallel  
connections lowers RO to 1/n. Smoothing capacitor C3, which is a single device, is shared by those connections.  
To obtain stabilization output after parallel connections, apply the connection shown in Fig.8.2 to only one of  
the n parallel connections shown in Fig.8.3.  
DD  
V
= 0V  
+
-
+
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
C1’  
10µF  
C1  
10µF  
RV  
R
-
L
R
OSC  
OSC  
R
R
100k+  
R1  
R2  
C4  
10µF  
1MΩ  
1MΩ  
to  
+
+
-
-
1MΩ  
C2  
C2’  
10µF  
-
A
O
10µF  
I
REG  
V
= -8V  
IN  
V
= -5V  
OUT  
V
= -15V  
+
-
C3 10µF  
Fig.8.3 Parallel connection  
0
Ta = 25°C  
-5  
-10  
-15  
0
10  
20  
30  
40  
REG  
I
[mA]  
Fig.8.4 Output voltage - Output current  
S1F76610M2E Technical Manual (Rev.1.1)  
EPSON  
19  
8. APPLIED-CIRCUIT EXAMPLES  
(4) Serial connection  
The serial connection in the S1F76610 (connecting VIN and VOUT in the pre-stage to VDD and VIN in the next  
stage respectively) further increases output voltage. However, the serial connection raises output impedance.  
Fig.8.5 shows a serial connection example for obtaining VOUT = -20V from VIN = -5V to stabilize output  
voltage.  
DD  
V
I
’ = V = -5V  
DD  
V
= 0V  
+
-
+
-
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
C1  
10µF  
C1’  
10µF  
RV  
R
L
R
ROSC  
100k  
R1  
R2  
+
-
1MΩ  
to  
1MΩ  
C4  
10µF  
+
C2’  
-
A
O
I
10µF  
VO =  
-10V = V ’  
REG  
V
= -13V  
I
IN  
V
= -5V  
OUT  
V
’ = -20V  
+
-
+
-
C3 10µF  
C3’ 10µF  
D1  
Fig.8.5 Serial connection  
0
Ta = 25°C  
-5  
-10  
-15  
-20  
0
10  
20  
REG  
I
[mA]  
Fig.8.6 Output voltage - Output current  
20  
EPSON  
S1F76610M2E Technical Manual (Rev.1.1)  
8. APPLIED-CIRCUIT EXAMPLES  
Note 1) <Notes on load connection>  
As shown in Fig.8.5, when connecting load between VDD (or other voltage above VDD’) and VREG in  
serial connection, take care of the following points:  
When the IC is activated or no normal output is generated at the VREG pin like VREG by the XPOFF  
signal, current is supplied from VDD (or other voltage above VDD’) to the VREG pin through the load.  
If the voltage exceeds the absolute maximum rating above VDD’ at the VREG pin, the IC may fail  
normal operation. For serial connection, as shown in Fig.8.5, connect diode D1 between VI’ and  
VREG so that the voltage above VDD’ is not applied to the VREG pin.  
Note 2) In Fig.8.5, the first stage is assigned to double boosting and the next-stage to triple boosting; however,  
triple boosting is available for both the first and next stages unless the input voltage VDD’ - VI’ in the  
next stage exceeds the standard value (6V). For serial connection, each IC must be designed in  
conformity with the standard (VDD - VI 6V, VDD - VO 18V). (See Fig.8.7.)  
DD  
V
V
I
DD  
V
Max. 6V  
O
V
I
V ’  
REG  
V
First stage Next stage  
O
V ’  
Fig.8.7 Power system in serial connection  
Note 3) When double boosting is provided in the first stage, the first-stage CAP1- output can be used as a  
next-stage clock; however, when triple boosting is provided, it cannot be used as a next-stage clock.  
Therefore, to obtain a next-stage clock, mount ROSC in the external side and use an internal oscillator.  
As shown in Table 5.1, the next-stage external clock operation by the pre-stage CAP1- output is  
available only for temperature gradient CT = -0.5%/°C. If another temperature gradient is required,  
use an internal oscillator like the above.  
Note 4) In serial connection, the temperature gradient is provided to the VDD - VREG voltage (VDD’ - VREG in  
Fig.8.7) of the IC in which the stabilizer is active. The VREG value changes depending on the  
temperature as follows:  
| VREG |  
VREG =  
= CT(VDD'VREG)(25))  
T  
S1F76610M2E Technical Manual (Rev.1.1)  
EPSON  
21  
8. APPLIED-CIRCUIT EXAMPLES  
(5) Positive-voltage exchange  
The S1F76610 converts input voltage to positive voltage for double boosting or triple boosting through the  
circuit shown in Fig.8.8. (For double boosting, remove capacitor C2 and short both ends of D3.)  
However, output voltage VO lowers by forward voltage VF of the diode. For example, as shown in Fig.8.8,  
VDD = 0V; VI = -5V; and VF = 0.6V results in VO = 10V -3 × 0.6V = 8.2V (5V -2 × 0.6V = 3.8V for double  
boosting).  
DD  
V
= 0V  
D1  
C1 10µF  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
+
-
D2  
OSC  
R
L
R
C2 10µF  
1MΩ  
+
-
D3  
A
: The Schottky diode with a low VF  
value is recommended for D1, D2,  
and D3.  
C3 10µF  
+
-
O
V
= 8.2V  
IN  
V
= -5V  
Fig.8.8 Positive-voltage conversion  
10  
Ta = 25°C  
5
0
0
10  
20  
30  
40  
O
I
[mA]  
Fig.8.9 Output voltage - Output current  
22  
EPSON  
S1F76610M2E Technical Manual (Rev.1.1)  
8. APPLIED-CIRCUIT EXAMPLES  
(6) Negative-voltage conversion + Positive-voltage conversion  
Combining the triple boosting (Fig.8.1) with the positive voltage conversion (Fig.8.8) generates the circuit  
shown in Fig.8.9, and outputs -15V and +8.2V from -5V input.  
In this case, the output impedance is higher than that for negative voltage conversion only or positive voltage  
conversion only.  
DD  
V
= 0V  
D1  
C1 10µF  
+
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
+
-
C4  
-
D2  
OSC  
R
10µF  
L
R
C2 10µF  
1MΩ  
+
+
-
C5  
10µF  
D3  
-
A
O
I
C3 10µF  
O1  
V
= -15V  
: The Schottky diode with a low VF  
value is recommended for D1, D2,  
and D3.  
+
-
O2  
V
= +8.2V  
+
-
C6 10µF  
IN  
V
= -5V  
Fig.8.9 Negative-voltage conversion + Positive-voltage conversion  
O2  
V
(+8.2V)  
DD  
V
V
(0V)  
IN  
(-5V)  
O1  
V
(-15V)  
Fig.8.10 Voltage relations at VDD = 0V and VIN = -5V  
0
10  
Ta = 25°C  
-5  
5
-10  
-15  
Ta  
=
0
0
10  
20  
30  
40  
0
10  
20  
30  
40  
O
I 1[mA]  
O
I 1 [mA]  
Fig.8.11 Output voltage - Output current  
S1F76610M2E Technical Manual (Rev.1.1)  
Fig.8.12 Output voltage - Output current  
EPSON  
23  
8. APPLIED-CIRCUIT EXAMPLES  
(7) Example of changing the temperature gradient with an external temperature sensor (thermistor)  
The S1F76610, which is equipped with the temperature gradient selection circuit in the stabilizer, enables you  
to select three types of temperature gradients (-0.05%/°C, -0.3%/°C, and -0.5%/°C as VREG output. If the  
other temperature gradient is required, as shown in Fig.8.13, connect a thermistor to resistor RRV (for output  
voltage adjustment) in series; you can change the temperature gradient to any value.  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
VDD  
R1  
R2  
RV  
T
R
P
R
R
Note 2)  
VREG  
Fig.8.13 Temperature gradient change example  
For a connection other than pins 10, 11, and 16, follow Fig.8.2. For pins 6 and 7, select a lower temperature  
gradient than the one to be changed from Table 5.1.  
Thermistor used  
10  
[Measurement conditions]  
8
VDD: 0V  
VIN: -5V  
6
RRV: 1M(Set to VREG = -8V)  
RT: 10k(0°C /50°C Ratio 9.06)  
4
Temperature gradient: Select -0.3%/°C.  
2
Thermistor not used  
0
-2  
-4  
-6  
-8  
-10  
0
10  
20  
30  
40  
50  
Ta [℃]  
Fig.8.14 Output voltage - Temperature  
Note 1) The relation between RT and VREG is indicated as follows:  
VDD VREG = RRV + RT ×(VDD VRV)  
R1  
Using a thermistor as RT increases the temperature gradient for VDD - VREG.  
Note 2) The temperature characteristics of the thermistor indicate the nonlinearity; however, connecting  
resistor RP to the thermistor in parallel changes nonlinear characteristics to linear characteristics.  
24  
EPSON  
S1F76610M2E Technical Manual (Rev.1.1)  
International Sales Operations  
AMERICA  
ASIA  
EPSON ELECTRONICS AMERICA, INC.  
HEADQUARTERS  
EPSON (CHINA) CO., LTD.  
23F, Beijing Silver Tower 2# North RD DongSanHuan  
ChaoYang District, Beijing, CHINA  
Phone: +86-10-6410-6655  
2580 Orchard Parkway  
San Jose , CA 95131,USA  
FAX: +86-10-6410-7320  
Phone: +1-800-228-3964  
FAX: +1-408-922-0238  
SHANGHAI BRANCH  
7F, High-Tech Bldg., 900, Yishan Road,  
Shanghai 200233, CHINA  
SALES OFFICES  
Northeast  
Phone: +86-21-5423-5522  
FAX: +86-21-5423-5512  
301 Edgewater Place, Suite 210  
Wakefield, MA 01880, U.S.A.  
Phone: +1-800-922-7667  
EPSON HONG KONG LTD.  
20/F., Harbour Centre, 25 Harbour Road  
Wanchai, Hong Kong  
Phone: +852-2585-4600  
Telex: 65542 EPSCO HX  
FAX: +1-781-246-5443  
FAX: +852-2827-4346  
EUROPE  
EPSON EUROPE ELECTRONICS GmbH  
HEADQUARTERS  
EPSON Electronic Technology Development (Shenzhen)  
LTD.  
Riesstrasse 15  
80992 Munich, GERMANY  
Phone: +49-89-14005-0  
12/F, Dawning Mansion, Keji South 12th Road,  
Hi- Tech Park, Shenzhen  
FAX: +49-89-14005-110  
Phone: +86-755-2699-3828  
FAX: +86-755-2699-3838  
EPSON TAIWAN TECHNOLOGY & TRADING LTD.  
14F, No. 7, Song Ren Road,  
Taipei 110  
Phone: +886-2-8786-6688  
FAX: +886-2-8786-6660  
EPSON SINGAPORE PTE., LTD.  
1 HarbourFront Place,  
#03-02 HarbourFront Tower One, Singapore 098633  
Phone: +65-6586-5500  
FAX: +65-6271-3182  
SEIKO EPSON CORPORATION  
KOREA OFFICE  
50F, KLI 63 Bldg., 60 Yoido-dong  
Youngdeungpo-Ku, Seoul, 150-763, KOREA  
Phone: +82-2-784-6027  
FAX: +82-2-767-3677  
GUMI OFFICE  
2F, Grand B/D, 457-4 Songjeong-dong,  
Gumi-City, KOREA  
Phone: +82-54-454-6027  
FAX: +82-54-454-6093  
SEIKO EPSON CORPORATION  
SEMICONDUCTOR OPERATIONS DIVISION  
IC Sales Dept.  
IC International Sales Group  
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN  
Phone: +81-42-587-5814  
FAX: +81-42-587-5117  
Document Code: 410059001  
First Issue January 2008  
Printed in JAPAN  
H

相关型号:

S1F76610M2E0000

SWITCHED CAPACITOR CONVERTER, 24kHz SWITCHING FREQ-MAX, PDSO16, SSOP2-16
SEIKO

S1F76620D0A0

SWITCHED CAPACITOR CONVERTER, 30kHz SWITCHING FREQ-MAX, UUC17, DIE-17
SEIKO

S1F76620M0A0

SWITCHED CAPACITOR CONVERTER, 30kHz SWITCHING FREQ-MAX, PDSO8, SOP4-8
SEIKO

S1F76620M0C0000

SWITCHED CAPACITOR CONVERTER, 30kHz SWITCHING FREQ-MAX, PDSO8, SOP3B-8
SEIKO

S1F76640M0C0000

0.02A SWITCHED CAPACITOR REGULATOR, 30kHz SWITCHING FREQ-MAX, PDSO16, PLASTIC, SSOP2-16
SEIKO

S1F76980F0C000

POWER SUPPLY SUPPORT CKT, QCC24, 4 X 4 MM, 0.85 MM, QFN-24
SEIKO

S1F77200Y1B0

1-CHANNEL POWER SUPPLY SUPPORT CKT, PSSO3, PLASTIC, SOT-89, 3 PIN
SEIKO

S1F77200Y1N0

Power Supply Support Circuit, Fixed, 1 Channel, CMOS, PSSO3, PLASTIC, SOT-89, 3 PIN
SEIKO

S1F77200Y1T0

1-CHANNEL POWER SUPPLY SUPPORT CKT, PSSO3, PLASTIC, SOT-89, 3 PIN
SEIKO

S1F77200Y1V0

1-CHANNEL POWER SUPPLY SUPPORT CKT, PSSO3, PLASTIC, SOT-89, 3 PIN
SEIKO

S1F77210Y120

1-CHANNEL POWER SUPPLY SUPPORT CKT, PSSO3, PLASTIC, SOT-89, 3 PIN
SEIKO

S1F77210Y1F0

1-CHANNEL POWER SUPPLY SUPPORT CKT, PSSO3, PLASTIC, SOT-89, 3 PIN
SEIKO