SKHI22AH4R [SEMIKRON]

Half Bridge Based Peripheral Driver, Hybrid,;
SKHI22AH4R
型号: SKHI22AH4R
厂家: SEMIKRON INTERNATIONAL    SEMIKRON INTERNATIONAL
描述:

Half Bridge Based Peripheral Driver, Hybrid,

驱动 接口集成电路
文件: 总12页 (文件大小:323K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SKHI 21A (R) ...  
Absolute Maximum Ratings  
Symbol Conditions  
Values  
Units  
 
ꢉ)  #* ꢄꢓ#ꢎ!+ꢅ  ꢂꢃꢚ0  
&ꢔ )ꢎ ꢆꢃ+ꢔ!# ꢄꢓ#ꢎ0 ꢒ%ꢃ+ꢏꢕ  
ꢈ)ꢎ )ꢎ  ꢅ!- ꢙ)ꢂꢂꢅꢔꢎ  
ꢗ5  
 8 ꢘ7/  
5
ꢃ%  
&ꢓ)ꢎ9ꢋ2$  
&ꢓ)ꢎ2ꢐꢚ!:  
2
ꢈ)ꢎ )ꢎ !ꢄꢅꢂ!+ꢅ ꢙ)ꢂꢂꢅꢔꢎ  
ꢚ!:0 ꢆꢍꢃꢎꢙꢏꢃꢔ+ ,ꢂꢅ<)ꢅꢔꢙ*  
;ꢘ  
ꢚ2  
-%>  
,
=ꢘ  
ꢚ!:  
(ꢋ  
(ꢓ##ꢅꢙꢎꢓꢂ ꢅꢚꢃꢎꢎꢅꢂ ꢄꢓ#ꢎ!+ꢅ ꢆꢅꢔꢆꢅ !ꢙꢂꢓꢆꢆ  
ꢎꢏꢅ &?@ꢌ  
ꢗ'ꢘꢘ  
ꢁꢄ.ꢁꢎ  
ꢃꢆꢓ#&ꢈ  
3!ꢎꢅ ꢓ, ꢂꢃꢆꢅ !ꢔꢁ ,!## ꢓ, ꢄꢓ#ꢎ!+ꢅ ꢆꢅꢙꢓꢔꢁ!ꢂ*  
ꢎꢓ  ꢂꢃꢚ!ꢂ* ꢆꢃꢁꢅ  
=ꢘ  
-ꢐ.Aꢆ  
ꢐ!ꢙ  
TM  
&ꢆꢓ#!ꢎꢃꢓꢔ ꢎꢅꢆꢎ ꢄꢓ#ꢎ!+ꢅ  
'=ꢘꢘ  
SEMIDRIVER  
ꢃꢔ )ꢎ B ꢓ)ꢎ )ꢎ ꢒ' ꢆꢅꢙ0 2(ꢕ  
&ꢆꢓ#!ꢎꢃꢓꢔ ꢎꢅꢆꢎ ꢄꢓ#ꢎ!+ꢅ  
ꢃꢆꢓ#ꢗ'  
ꢗ=ꢘꢘ  
ꢓ)ꢎ )ꢎ  B ꢓ)ꢎ )ꢎ ' ꢒ' ꢆꢅꢙ0 2(ꢕ  
ꢇꢃꢔꢃꢚ)ꢚ ꢂ!ꢎꢃꢔ+ ,ꢓꢂ 3?ꢓꢔ  
ꢇꢃꢔꢃꢚ)ꢚ ꢂ!ꢎꢃꢔ+ ,ꢓꢂ 3?ꢓ,,  
ꢇ!:0 ꢂ!ꢎꢃꢔ+ ,ꢓꢂ ꢓ)ꢎ )ꢎ ꢙꢏ!ꢂ+ꢅ  ꢅꢂ  )#ꢆꢅ  
ꢈ ꢅꢂ!ꢎꢃꢔ+ ꢎꢅꢚ ꢅꢂ!ꢎ)ꢂꢅ  
Hybrid Dual MOSFET  
Driver  
3?ꢓꢔꢚꢃꢔ  
3?ꢓ,,ꢚꢃꢔ  
Cꢓ)ꢎ. )#ꢆꢅ  
 
/
/
6
6
ꢗꢕ  
;
A(  
D(  
SKHI 21A (R)  
B ;ꢘ 000 8 5=  
B ;ꢘ 000 8 5=  
ꢆꢎ+  
ꢉꢎꢓꢂ!+ꢅ ꢎꢅꢚ ꢅꢂ!ꢎ)ꢂꢅ  
D(  
 4 '= D(7 )ꢔ#ꢅꢆꢆ ꢓꢎꢏꢅꢂꢍꢃꢆꢅ ꢆ ꢅꢙꢃ,ꢃꢅꢁ  
Characteristics  
!
Features  
Symbol Conditions  
min.  
ꢗ;7;  
typ.  
ꢗ=  
max. Units  
ꢁꢂꢃꢄꢅꢆ ꢇꢈꢉꢊꢋꢌꢆ ꢍꢃꢎꢏ  
 
ꢉ)  #* ꢄꢓ#ꢎ!+ꢅ  ꢂꢃꢚ!ꢂ* ꢆꢃꢁꢅ  
ꢗ=71  
ꢚ2  
ꢚ2  
 ꢗꢘ   
&
ꢉ)  #* ꢙ)ꢂꢂꢅꢔꢎ  ꢂꢃꢚ!ꢂ* ꢆꢃꢁꢅ ꢒꢔꢓ #ꢓ!ꢁꢕ  
ꢉ)  #* ꢙ)ꢂꢂꢅꢔꢎ  ꢂꢃꢚ!ꢂ* ꢆꢃꢁꢅ ꢒꢚ!:0ꢕ  
&ꢔ )ꢎ ꢆꢃ+ꢔ!# ꢄꢓ#ꢎ!+ꢅ ꢓꢔ.ꢓ,,  
5ꢘ  
ꢑꢉꢒꢓꢔꢕ  
ꢉꢈ  
'Eꢘ  
ꢃꢆ ꢙꢓꢚ !ꢎꢃ"#ꢅ ꢎꢓ ꢓ#ꢁ ꢉ$%& 'ꢗ  
(ꢇꢈꢉ ꢙꢓꢚ !ꢎꢃ"#ꢅ ꢃꢔ )ꢎꢆ  
ꢉꢏꢓꢂꢎ ꢙꢃꢂꢙ)ꢃꢎ  ꢓꢎꢅꢙꢎꢃꢓꢔ "*   
 
ꢗ= .   
ꢃꢌ8  
ꢃꢌB  
&ꢔ )ꢎ ꢎꢏꢂꢅꢆꢏꢓ#ꢁ ꢄꢓ#ꢎ!+ꢅ ꢒ%ꢃ+ꢏꢕ  
&ꢔ )ꢎ ꢎꢏꢂꢅꢆꢏꢓ#ꢁ ꢄꢓ#ꢎ!+ꢅ ꢒFꢓꢍꢕ  
&ꢔ )ꢎ ꢂꢅꢆꢃꢆꢎ!ꢔꢙꢅ  
ꢗ'7=  
(ꢋ  
;7=  
ꢚꢓꢔꢃꢎꢓꢂꢃꢔ+ !ꢔꢁ ꢆꢍꢃꢎꢙꢏ ꢓ,,  
ꢑꢂꢃꢄꢅ ꢃꢔꢎꢅꢂ#ꢓꢙ- ꢎꢓ  . "ꢓꢎꢎꢓꢚ  
&ꢆꢓ#!ꢎꢃꢓꢔ "* ꢎꢂ!ꢔꢆ,ꢓꢂꢚꢅꢂꢆ  
ꢉ)  #* )ꢔꢁꢅꢂꢄꢓꢎ!+ꢅ  
 ꢂꢓꢎꢅꢙꢎꢃꢓꢔ ꢒꢗ/ ꢐꢕ  
3ꢃꢔ  
ꢗꢘ  
8 ꢗ=  
-6  
?ꢒꢓꢔꢕ  
?ꢒꢓ,,ꢕ  
3?ꢋ  
ꢌ)ꢂꢔ ꢓꢔ +!ꢎꢅ ꢄꢓ#ꢎ!+ꢅ ꢓ)ꢎ )ꢎ  
ꢌ)ꢂꢔ ꢓ,, +!ꢎꢅ ꢄꢓ#ꢎ!+ꢅ ꢓ)ꢎ )ꢎ  
&ꢔꢎꢅꢂꢔ!# +!ꢎꢅBꢅꢚꢃꢎꢎꢅꢂ ꢂꢅꢆꢃꢆꢎ!ꢔꢙꢅ  
2ꢆꢃꢙ ꢆ*ꢆꢎꢅꢚ ꢆꢍꢃꢎꢙꢏꢃꢔ+ ,ꢂꢅ<)ꢅꢔꢙ*  
&ꢔ )ꢎBꢓ)ꢎ )ꢎ ꢎ)ꢂꢔBꢓꢔ  ꢂꢓ !+!ꢎꢃꢓꢔ ꢎꢃꢚꢅ  
&ꢔ )ꢎBꢓ)ꢎ )ꢎ ꢎ)ꢂꢔBꢓ,,  ꢂꢓ !+!ꢎꢃꢓꢔ ꢎꢃꢚꢅ  
ꢋꢂꢂꢓꢂ ꢃꢔ )ꢎBꢓ)ꢎ )ꢎ  ꢂꢓ !+!ꢎꢃꢓꢔ ꢎꢃꢚꢅ  
ꢋꢂꢂꢓꢂ ꢂꢅꢆꢅꢎ ꢎꢃꢚꢅ  
''  
5
-6  
ꢇ%>  
Aꢆ  
Aꢆ  
Aꢆ  
Aꢆ  
Aꢆ  
,
2ꢉ&(  
ꢋꢂꢂꢓꢂ #!ꢎꢙꢏ . ꢓ)ꢎ )ꢎ  
ꢁꢒꢓꢔꢕ&ꢈ  
ꢁꢒꢓ,,ꢕ&ꢈ  
ꢁꢒꢅꢂꢂꢕ  
ꢘ75=  
ꢘ75=  
ꢗ7ꢗ=  
ꢗ7ꢗ=  
Typical Applications  
ꢘ71  
E
ꢑꢂꢃꢄꢅꢂ ,ꢓꢂ ꢇꢈꢉꢊꢋꢌ ꢚꢓꢁ)#ꢅꢆ ꢃꢔ  
"ꢂꢃꢁ+ꢅ ꢙꢃꢂꢙ)ꢃꢎꢆ ꢃꢔ ꢃꢔꢁ)ꢆꢎꢂꢃ!#  
!  #ꢃꢙ!ꢎꢃꢓꢔꢆ  
 ꢋ333ꢋꢉꢋꢌ  
ꢌꢑ  
ꢌꢓ B@ꢓꢎ &ꢔꢎꢅꢂ#ꢓꢙ- ꢑꢅ!ꢁ ꢌꢃꢚꢅ  
3ꢅ,ꢅꢂꢅꢔꢙꢅ ꢄꢓ#ꢎ!+ꢅ ,ꢓꢂ (ꢋBꢚꢓꢔꢃꢎꢓꢂꢃꢔ+  
(ꢓ) #ꢃꢔ+ ꢙ! !ꢙꢃꢎ!ꢔꢙꢅ  ꢂꢃꢚ!ꢂ* ꢆꢅꢙꢓꢔꢁ!ꢂ*  
ꢇꢅ!ꢔ ꢌꢃꢚꢅ @ꢅꢎꢍꢅꢅꢔ ꢊ!ꢃ#)ꢂꢅ ! 4 ;ꢘD(  
;7/  
'ꢕ  
(ꢋꢆ!ꢎ  
=
ꢗꢘ  
(
ꢗ'  
 ꢊ  
ꢗꢘ1   
 ꢆ  
1)  
ꢆꢅꢅ ,ꢃ+0 1  
ꢇꢌ@ꢊ  
'7ꢘ  
2)  
2ꢎ 3(ꢋ 4 ꢗ5 -67 ((ꢋ 4 //ꢘ  ꢊ  
ꢍꢅꢃ+ꢏꢎ  
;=  
+
This technical information specifies semiconductor devices but promises no  
characteristics. No warranty or guarantee expressed or implied is made regarding  
delivery, performance or suitability.  
1
30-09-2008 MHW  
© by SEMIKRON  
SKHI 22 A / B (R) ...  
Absolute Maximum Ratings  
Symbol Conditions  
Values  
-4  
Units  
'
'
ꢕꢃ!!ꢅ# ꢊꢂꢅ"ꢍꢎꢆ !ꢈꢉꢓ0  
ꢏꢚ!ꢃ" ꢔꢉꢎꢚꢍꢅ ꢊꢂꢅ"0 ,ꢗꢉꢎꢌ/ ꢕꢖꢗꢏ ꢘꢘꢙ  
ꢕꢖꢗꢏ ꢘꢘꢑ  
'
' 9 76.  
'
ꢉꢗ  
: 9 76.  
4
'
ꢏꢂꢃ";(ꢙꢖ  
ꢏꢂꢃ"ꢙ'ꢓꢍ<  
ꢓꢍ<  
&ꢃ"!ꢃ" !ꢆꢍ*  ꢃꢈꢈꢆꢚ"  
&ꢃ"!ꢃ" ꢍꢊꢆꢈꢍꢎꢆ  ꢃꢈꢈꢆꢚ"  
ꢓꢍ<0 ꢔ)ꢉ" ꢌꢉꢚꢎ ꢋꢈꢆ>ꢃꢆꢚ #  
=7  
ꢓꢙ  
*ꢗ?  
'
:7  
'
$ꢂꢅꢅꢆ "ꢂꢈ ꢆꢓꢉ""ꢆꢈ ꢊꢂꢅ"ꢍꢎꢆ ꢔꢆꢚꢔꢆ ꢍ ꢈꢂꢔꢔ  
"ꢌꢆ ꢏꢐꢑꢒ  
-ꢘ77  
$(  
ꢇꢊ+ꢇ"  
2ꢍ"ꢆ ꢂꢋ ꢈꢉꢔꢆ ꢍꢚꢇ ꢋꢍꢅꢅ ꢂꢋ ꢊꢂꢅ"ꢍꢎꢆ ꢔꢆ ꢂꢚꢇꢍꢈ#  
"ꢂ !ꢈꢉꢓꢍꢈ# ꢔꢉꢇꢆ  
:7  
*'+@ꢔ  
'ꢍ  
TM  
SEMIDRIVER  
'
ꢏꢔꢂꢅꢍ"ꢉꢂꢚ "ꢆꢔ" ꢊꢂꢅ"ꢍꢎꢆ  
ꢘ:77  
ꢉꢔꢂꢅꢏ&  
ꢉꢚ!ꢃ" A ꢂꢃ"!ꢃ" ,ꢘ ꢔꢆ 0 ꢙ$/  
ꢏꢔꢂꢅꢍ"ꢉꢂꢚ "ꢆꢔ" ꢊꢂꢅ"ꢍꢎꢆ  
'
-:77  
'
Hybrid Dual IGBT Driver  
ꢉꢔꢂꢅ-ꢘ  
ꢂꢃ"!ꢃ" - A ꢂꢃ"!ꢃ"  ,ꢘ ꢔꢆ 0 ꢙ$/  
%ꢉꢚꢉꢓꢃꢓ ꢈꢍ"ꢉꢚꢎ ꢋꢂꢈ 2ꢐꢂꢚ  
%ꢉꢚꢉꢓꢃꢓ ꢈꢍ"ꢉꢚꢎ ꢋꢂꢈ 2ꢐꢂꢋꢋ  
%ꢍ<0 ꢈꢍ"ꢉꢚꢎ ꢋꢂꢈ ꢂꢃ"!ꢃ"  ꢌꢍꢈꢎꢆ !ꢆꢈ !ꢃꢅꢔꢆ  
&!ꢆꢈꢍ"ꢉꢚꢎ "ꢆꢓ!ꢆꢈꢍ"ꢃꢈꢆ  
2ꢐꢂꢚꢓꢉꢚ  
2ꢐꢂꢋꢋꢓꢉꢚ  
Bꢂꢃ"+!ꢃꢅꢔꢆ  
ꢂ!  
.
.
5
5
-/  
SKHI 22 A / B (R)  
=
@$  
C$  
A =7 000 9 4:  
A =7 000 9 4:  
ꢔ"ꢎ  
ꢕ"ꢂꢈꢍꢎꢆ "ꢆꢓ!ꢆꢈꢍ"ꢃꢈꢆ  
C$  
 3 ꢘ: C$6 ꢃꢚꢅꢆꢔꢔ ꢂ"ꢌꢆꢈ)ꢉꢔꢆ ꢔ!ꢆ ꢉꢋꢉꢆꢇ  
Features  
Characteristics  
ꢁꢂꢃꢄꢅꢆ ꢇꢈꢉꢊꢆꢈ ꢋꢂꢈ ꢌꢍꢅꢋꢄꢈꢉꢇꢎꢆ  
ꢏꢐꢑꢒ ꢓꢂꢇꢃꢅꢆꢔ  
ꢕꢖꢗꢏ ꢘꢘꢙ ꢉꢔ  ꢂꢓ!ꢍ"ꢉꢄꢅꢆ "ꢂ  
ꢂꢅꢇ ꢕꢖꢗꢏ ꢘꢘ  
ꢕꢖꢗꢏ ꢘꢘꢑ ꢌꢍꢔ ꢍꢇꢇꢉ"ꢉꢂꢚꢍꢅ  
ꢋꢃꢚ "ꢉꢂꢚꢍꢅꢉ"#  
$%&ꢕ  ꢂꢓ!ꢍ"ꢉꢄꢅꢆ ꢉꢚ!ꢃ"ꢔ  
Symbol Conditions  
min.  
-=6=  
typ.  
-:  
max. Units  
'
ꢕꢃ!!ꢅ# ꢊꢂꢅ"ꢍꢎꢆ !ꢈꢉꢓꢍꢈ# ꢔꢉꢇꢆ  
-:61  
'
ꢓꢙ  
ꢓꢙ  
'
ꢕ&  
ꢕꢃ!!ꢅ#  ꢃꢈꢈꢆꢚ" !ꢈꢉꢓꢍꢈ# ꢔꢉꢇꢆ ,ꢚꢂ ꢅꢂꢍꢇ/  
ꢕꢃ!!ꢅ#  ꢃꢈꢈꢆꢚ" !ꢈꢉꢓꢍꢈ# ꢔꢉꢇꢆ ,ꢓꢍ<0/  
ꢏꢚ!ꢃ" ꢔꢉꢎꢚꢍꢅ ꢊꢂꢅ"ꢍꢎꢆ ꢕꢖꢗꢏ ꢘꢘꢙ ꢂꢚ+ꢂꢋꢋ  
ꢕꢖꢗꢏ ꢘꢘꢑ ꢂꢚ+ꢂꢋꢋ  
47  
ꢘD7  
'
-: + 7  
: + 7  
'
'
ꢏꢚ!ꢃ" "ꢌꢈꢆꢔꢌꢂꢅꢇ ꢊꢂꢅ"ꢍꢎꢆ ,ꢗꢉꢎꢌ/ ꢕꢖꢗꢏ ꢘꢘꢙ  
ꢕꢖꢗꢏ ꢘꢘꢑ  
-ꢘ6:  
.6D  
'
ꢉꢒ9  
'
ꢕꢌꢂꢈ"  ꢉꢈ ꢃꢉ" !ꢂ"ꢆ "ꢉꢂꢚ ꢄ# '  
$(  
'
ꢏꢚ!ꢃ" "ꢌꢈꢆꢔꢌꢂꢅꢇ ꢊꢂꢅ"ꢍꢎꢆ ,Eꢂ)/ ꢕꢖꢗꢏ ꢘꢘꢙ  
ꢕꢖꢗꢏ ꢘꢘꢑ  
=6:  
-6:  
'
ꢉꢒA  
ꢓꢂꢚꢉ"ꢂꢈꢉꢚꢎ ꢍꢚꢇ ꢔ)ꢉ" ꢌ ꢂꢋꢋ  
'
ꢁꢈꢉꢊꢆ ꢉꢚ"ꢆꢈꢅꢂ * "ꢂ! + ꢄꢂ""ꢂꢓ  
ꢏꢔꢂꢅꢍ"ꢉꢂꢚ ꢄ# "ꢈꢍꢚꢔꢋꢂꢈꢓꢆꢈꢔ  
ꢕꢃ!!ꢅ# ꢃꢚꢇꢆꢈꢊꢂ"ꢍꢎꢆ  
!ꢈꢂ"ꢆ "ꢉꢂꢚ ,-. '/  
2ꢉꢚ  
'
ꢏꢚ!ꢃ" ꢈꢆꢔꢉꢔ"ꢍꢚ ꢆ ꢕꢖꢗꢏ ꢘꢘꢙ  
-7  
.6.  
9 -:  
A F  
ꢘꢘ  
4
*5  
*5  
'
ꢕꢖꢗꢏ ꢘꢘꢑ  
ꢒꢃꢈꢚ ꢂꢚ ꢎꢍ"ꢆ ꢊꢂꢅ"ꢍꢎꢆ ꢂꢃ"!ꢃ"  
ꢒꢃꢈꢚ ꢂꢋꢋ ꢎꢍ"ꢆ ꢊꢂꢅ"ꢍꢎꢆ ꢂꢃ"!ꢃ"  
ꢏꢚ"ꢆꢈꢚꢍꢅ ꢎꢍ"ꢆAꢆꢓꢉ""ꢆꢈ ꢈꢆꢔꢉꢔ"ꢍꢚ ꢆ  
ꢙꢔꢉ  ꢔ#ꢔ"ꢆꢓ ꢔ)ꢉ" ꢌꢉꢚꢎ ꢋꢈꢆ>ꢃꢆꢚ #  
ꢏꢚ!ꢃ"Aꢂꢃ"!ꢃ" "ꢃꢈꢚAꢂꢚ !ꢈꢂ!ꢍꢎꢍ"ꢉꢂꢚ "ꢉꢓꢆ  
ꢏꢚ!ꢃ"Aꢂꢃ"!ꢃ" "ꢃꢈꢚAꢂꢋꢋ !ꢈꢂ!ꢍꢎꢍ"ꢉꢂꢚ "ꢉꢓꢆ  
(ꢈꢈꢂꢈ ꢉꢚ!ꢃ"Aꢂꢃ"!ꢃ" !ꢈꢂ!ꢍꢎꢍ"ꢉꢂꢚ "ꢉꢓꢆ  
(ꢈꢈꢂꢈ ꢈꢆꢔꢆ" "ꢉꢓꢆ  
ꢐ,ꢂꢚ/  
'
'
ꢐ,ꢂꢋꢋ/  
2ꢐ(  
*5  
%ꢗ?  
@ꢔ  
@ꢔ  
@ꢔ  
@ꢔ  
@ꢔ  
@ꢔ  
'
(ꢈꢈꢂꢈ ꢅꢍ" ꢌ + ꢂꢃ"!ꢃ"  
ꢙꢕꢏ$  
Typical Applications  
ꢁꢈꢉꢊꢆꢈ ꢋꢂꢈ ꢏꢐꢑꢒ ꢓꢂꢇꢃꢅꢆꢔ ꢉꢚ ꢄꢈꢉꢇꢎꢆ  
 ꢉꢈ ꢃꢉ"ꢔ ꢉꢚ ꢉꢚꢇꢃꢔ"ꢈꢉꢍꢅ ꢍ!!ꢅꢉ ꢍ"ꢉꢂꢚꢔ  
"
764:  
764:  
-
-6-:  
-6-:  
ꢇ,ꢂꢚ/ꢏ&  
"
-
ꢇ,ꢂꢋꢋ/ꢏ&  
"
761  
D
ꢇ,ꢆꢈꢈ/  
"
!(222(ꢕ(ꢒ  
1)  
ꢔꢆꢆ ꢋꢉꢎ0 1  
"
ꢒꢂ!Aꢑꢂ" ꢏꢚ"ꢆꢈꢅꢂ * ꢁꢆꢍꢇ ꢒꢉꢓꢆ ꢕꢖꢗꢏ ꢘꢘꢙ  
ꢕꢖꢗꢏ ꢘꢘꢑ  
=6.  
ꢒꢁ  
2)  
ꢙ" 2$( 3 -4 *56 $$( 3 ..7 !8  
ꢚꢂ ꢉꢚ"ꢆꢈꢅꢂ *  
=6F  
-7  
ꢘ/  
'
2ꢆꢋꢆꢈꢆꢚ ꢆ ꢊꢂꢅ"ꢍꢎꢆ ꢋꢂꢈ '$(Aꢓꢂꢚꢉ"ꢂꢈꢉꢚꢎ  
$ꢂꢃ!ꢅꢉꢚꢎ  ꢍ!ꢍ ꢉ"ꢍꢚ ꢆ !ꢈꢉꢓꢍꢈ# ꢔꢆ ꢂꢚꢇꢍꢈ#  
%ꢆꢍꢚ ꢒꢉꢓꢆ ꢑꢆ")ꢆꢆꢚ 8ꢍꢉꢅꢃꢈꢆ  3 =7C$  
:
$(ꢔꢍ"  
$
-ꢘ  
!8  
-71   
!ꢔ  
%ꢒꢑ8  
)
ꢘ67  
)ꢆꢉꢎꢌ"  
=:  
This technical information specifies semiconductor devices but promises no  
characteristics. No warranty or guarantee expressed or implied is made regarding  
delivery, performance or suitability.  
1
30-09-2008 MHW  
© by SEMIKRON  
SKHI 22 A / B H4 (R) ...  
Absolute Maximum Ratings  
Symbol Conditions  
Values  
.:  
Units  
(
(
ꢕꢃ""ꢅ$ ꢊꢂꢅ#ꢍꢎꢆ "ꢈꢉꢓ2  
(
ꢏꢚ"ꢃ# ꢔꢉꢎꢚꢍꢅ ꢊꢂꢅ#2 -ꢗꢉꢎꢌ0 ꢕꢖꢗꢏ ꢘꢘꢙ   
ꢕꢖꢗꢏ ꢘꢘꢑ   
( ; 17/  
(
ꢉꢗ  
< ; 17/  
:
(
ꢏꢂꢃ#=)ꢙꢖ  
ꢏꢂꢃ#ꢙ(ꢓꢍ>  
ꢓꢍ>  
'ꢃ#"ꢃ# "ꢆꢍ+ !ꢃꢈꢈꢆꢚ#  
'ꢃ#"ꢃ# ꢍꢊꢆꢈꢍꢎꢆ !ꢃꢈꢈꢆꢚ#  
ꢓꢍ>2 ꢔ*ꢉ#!ꢌꢉꢚꢎ ꢋꢈꢆ?ꢃꢆꢚ!$  
 1  
ꢓꢙ  
+ꢗ@  
(
<1  
(
%ꢂꢅꢅꢆ!#ꢂꢈ ꢆꢓꢉ##ꢆꢈ ꢊꢂꢅ#ꢍꢎꢆ ꢔꢆꢚꢔꢆ ꢍ!ꢈꢂꢔꢔ  
#ꢌꢆ ꢏꢐꢑꢒ  
.811  
%)  
ꢇꢊ,ꢇ#  
4ꢍ#ꢆ ꢂꢋ ꢈꢉꢔꢆ ꢍꢚꢇ ꢋꢍꢅꢅ ꢂꢋ ꢊꢂꢅ#ꢍꢎꢆ ꢔꢆ!ꢂꢚꢇꢍꢈ$  
#ꢂ "ꢈꢉꢓꢍꢈ$ ꢔꢉꢇꢆ  
<1  
+(,Aꢔ  
(ꢍ!  
TM  
SEMIDRIVER  
(
ꢏꢔꢂꢅꢍ#ꢉꢂꢚ #ꢆꢔ# ꢊꢂꢅ#ꢍꢎꢆ  
 111  
ꢉꢔꢂꢅꢏ'  
ꢉꢚ"ꢃ# B ꢂꢃ#"ꢃ# -ꢘ ꢔꢆ!2 ꢙ%0  
ꢏꢔꢂꢅꢍ#ꢉꢂꢚ #ꢆꢔ# ꢊꢂꢅ#ꢍꢎꢆ  
(
.<11  
(
Hybrid Dual IGBT Driver  
ꢉꢔꢂꢅ.ꢘ  
ꢂꢃ#"ꢃ# . B ꢂꢃ#"ꢃ#  -ꢘ ꢔꢆ!2 ꢙ%0  
&ꢉꢚꢉꢓꢃꢓ ꢈꢍ#ꢉꢚꢎ ꢋꢂꢈ 4ꢐꢂꢚ  
&ꢉꢚꢉꢓꢃꢓ ꢈꢍ#ꢉꢚꢎ ꢋꢂꢈ 4ꢐꢂꢋꢋ  
&ꢍ>2 ꢈꢍ#ꢉꢚꢎ ꢋꢂꢈ ꢂꢃ#"ꢃ# !ꢌꢍꢈꢎꢆ "ꢆꢈ "ꢃꢅꢔꢆ  
'"ꢆꢈꢍ#ꢉꢚꢎ #ꢆꢓ"ꢆꢈꢍ#ꢃꢈꢆ  
4ꢐꢂꢚꢓꢉꢚ  
4ꢐꢂꢋꢋꢓꢉꢚ  
Cꢂꢃ#,"ꢃꢅꢔꢆ  
ꢂ"  
/
/
6
6
.0  
SKHI 22 A / B H4 (R)  
 
A%  
D%  
B  1 222 ; :<  
B  1 222 ; :<  
ꢔ#ꢎ  
ꢕ#ꢂꢈꢍꢎꢆ #ꢆꢓ"ꢆꢈꢍ#ꢃꢈꢆ  
D%  
 5 ꢘ< D%7 ꢃꢚꢅꢆꢔꢔ ꢂ#ꢌꢆꢈ*ꢉꢔꢆ ꢔ"ꢆ!ꢉꢋꢉꢆꢇ  
Features  
Characteristics  
ꢁꢂꢃꢄꢅꢆ ꢇꢈꢉꢊꢆꢈ ꢋꢂꢈ ꢌꢍꢅꢋꢄꢈꢉꢇꢎꢆ  
ꢏꢐꢑꢒ ꢓꢂꢇꢃꢅꢆꢔ  
ꢕꢖꢗꢏ ꢘꢘꢙ  ꢉꢔ !ꢂꢓ"ꢍ#ꢉꢄꢅꢆ #ꢂ  
ꢂꢅꢇ ꢕꢖꢗꢏ ꢘꢘ   
ꢕꢖꢗꢏ ꢘꢘꢑ  ꢌꢍꢔ ꢍꢇꢇꢉ#ꢉꢂꢚꢍꢅ  
ꢋꢃꢚ!#ꢉꢂꢚꢍꢅꢉ#$  
%&'ꢕ !ꢂꢓ"ꢍ#ꢉꢄꢅꢆ ꢉꢚ"ꢃ#ꢔ  
ꢕꢌꢂꢈ# !ꢉꢈ!ꢃꢉ# "ꢈꢂ#ꢆ!#ꢉꢂꢚ ꢄ$ (  
Symbol Conditions  
min.  
. 7  
typ.  
.<  
max. Units  
(
ꢕꢃ""ꢅ$ ꢊꢂꢅ#ꢍꢎꢆ "ꢈꢉꢓꢍꢈ$ ꢔꢉꢇꢆ  
.<73  
(
ꢓꢙ  
ꢓꢙ  
(
ꢕ'  
ꢕꢃ""ꢅ$ !ꢃꢈꢈꢆꢚ# "ꢈꢉꢓꢍꢈ$ ꢔꢉꢇꢆ -ꢚꢂ ꢅꢂꢍꢇ0  
ꢕꢃ""ꢅ$ !ꢃꢈꢈꢆꢚ# "ꢈꢉꢓꢍꢈ$ ꢔꢉꢇꢆ -ꢓꢍ>20  
ꢏꢚ"ꢃ# ꢔꢉꢎꢚꢍꢅ ꢊꢂꢅ#ꢍꢎꢆ ꢕꢖꢗꢏ ꢘꢘꢙ  ꢂꢚ,ꢂꢋꢋ  
ꢕꢖꢗꢏ ꢘꢘꢑ  ꢂꢚ,ꢂꢋꢋ  
:1  
ꢘE1  
(
.< , 1  
< , 1  
(
(
ꢏꢚ"ꢃ# #ꢌꢈꢆꢔꢌꢂꢅꢇ ꢊꢂꢅ#2 -ꢗꢉꢎꢌ0 ꢕꢖꢗꢏ ꢘꢘꢙ   
ꢕꢖꢗꢏ ꢘꢘꢑ   
.ꢘ7<  
/7E  
(
ꢉꢒ;  
(
%)  
(
ꢏꢚ"ꢃ# #ꢌꢈꢆꢔꢌꢂꢅꢇ ꢊꢂꢅ#2 -Fꢂ*0 ꢕꢖꢗꢏ ꢘꢘꢙ   
ꢕꢖꢗꢏ ꢘꢘꢑ   
 7<  
.7<  
(
ꢉꢒB  
ꢓꢂꢚꢉ#ꢂꢈꢉꢚꢎ ꢍꢚꢇ ꢔ*ꢉ#!ꢌ ꢂꢋꢋ  
(
ꢁꢈꢉꢊꢆ ꢉꢚ#ꢆꢈꢅꢂ!+ #ꢂ" , ꢄꢂ##ꢂꢓ  
ꢏꢔꢂꢅꢍ#ꢉꢂꢚ ꢄ$ #ꢈꢍꢚꢔꢋꢂꢈꢓꢆꢈꢔ  
ꢕꢃ""ꢅ$ ꢃꢚꢇꢆꢈ ꢊꢂꢅ#ꢍꢎꢆ  
"ꢈꢂ#ꢆ!#ꢉꢂꢚ -./(0  
4ꢉꢚ  
(
ꢏꢚ"ꢃ# ꢈꢆꢔꢉꢔ#ꢍꢚ!ꢆ ꢕꢖꢗꢏ ꢘꢘꢙ   
ꢕꢖꢗꢏ ꢘꢘꢑ   
.1  
/7/  
; .<  
B 8  
ꢘꢘ  
:
+6  
+6  
(
ꢒꢃꢈꢚ ꢂꢚ ꢎꢍ#ꢆ ꢊꢂꢅ#ꢍꢎꢆ ꢂꢃ#"ꢃ#  
ꢒꢃꢈꢚ ꢂꢋꢋ ꢎꢍ#ꢆ ꢊꢂꢅ#ꢍꢎꢆ ꢂꢃ#"ꢃ#  
ꢏꢚ#ꢆꢈꢚꢍꢅ ꢎꢍ#ꢆBꢆꢓꢉ##ꢆꢈ ꢈꢆꢔꢉꢔ#ꢍꢚ!ꢆ  
ꢙꢔꢉ! ꢔ$ꢔ#ꢆꢓ ꢔ*ꢉ#!ꢌꢉꢚꢎ ꢋꢈꢆ?ꢃꢆꢚ!$  
ꢏꢚ"ꢃ#Bꢂꢃ#"ꢃ# #ꢃꢈꢚBꢂꢚ "ꢈꢂ"ꢍꢎꢍ#ꢉꢂꢚ #ꢉꢓꢆ  
ꢏꢚ"ꢃ#Bꢂꢃ#"ꢃ# #ꢃꢈꢚBꢂꢋꢋ "ꢈꢂ"ꢍꢎꢍ#ꢉꢂꢚ #ꢉꢓꢆ  
)ꢈꢈꢂꢈ ꢉꢚ"ꢃ#Bꢂꢃ#"ꢃ# "ꢈꢂ"ꢍꢎꢍ#ꢉꢂꢚ #ꢉꢓꢆ  
)ꢈꢈꢂꢈ ꢈꢆꢔꢆ# #ꢉꢓꢆ  
ꢐ-ꢂꢚ0  
(
(
ꢐ-ꢂꢋꢋ0  
4ꢐ)  
+6  
&ꢗ@  
Aꢔ  
Aꢔ  
Aꢔ  
Aꢔ  
Aꢔ  
Aꢔ  
(
)ꢈꢈꢂꢈ ꢅꢍ#!ꢌ , ꢂꢃ#"ꢃ#  
ꢙꢕꢏ%  
Typical Applications  
ꢁꢈꢉꢊꢆꢈ ꢋꢂꢈ ꢏꢐꢑꢒ ꢓꢂꢇꢃꢅꢆꢔ ꢉꢚ ꢄꢈꢉꢇꢎꢆ  
!ꢉꢈ!ꢃꢉ#ꢔ ꢉꢚ ꢉꢚꢇꢃꢔ#ꢈꢉꢍꢅ ꢍ""ꢅꢉ!ꢍ#ꢉꢂꢚꢔ  
ꢁ% ꢄꢃꢔ ꢊꢂꢅ#ꢍꢎꢆ ꢃ" #ꢂ .ꢘ11 (  
#
17:<  
17:<  
.
.7.<  
.7.<  
ꢇ-ꢂꢚ0ꢏ'  
#
.
ꢇ-ꢂꢋꢋ0ꢏ'  
#
173  
E
ꢇ-ꢆꢈꢈ0  
#
")444)ꢕ)ꢒ  
1)  
#
ꢒꢂ"Bꢑꢂ# ꢏꢚ#ꢆꢈꢅ2 ꢁꢆꢍꢇ ꢒꢉꢓꢆ ꢕꢖꢗꢏ ꢘꢘꢙ   
ꢕꢖꢗꢏ ꢘꢘꢑ   
 7/  
ꢒꢁ  
ꢔꢆꢆ ꢋꢉꢎ2 3  
ꢚꢂ ꢉꢚ#ꢆꢈꢅꢂ!+  
 78  
.1  
ꢘ0  
2)  
ꢙ# 4%) 5 /3 +67 %%) 5  81 "97  
(
4ꢆꢋꢆꢈꢆꢚ!ꢆ ꢊꢂꢅ#ꢍꢎꢆ ꢋꢂꢈ (%)Bꢓꢂꢚꢉ#ꢂꢈꢉꢚꢎ  
%ꢂꢃ"ꢅꢉꢚꢎ !ꢍ"ꢍ!ꢉ#ꢍꢚ!ꢆ "ꢈꢉꢓꢍꢈ$ ꢔꢆ!ꢂꢚꢇꢍꢈ$  
&ꢆꢍꢚ ꢒꢉꢓꢆ ꢑꢆ#*ꢆꢆꢚ 9ꢍꢉꢅꢃꢈꢆ  5  1D%  
<
%)ꢔꢍ#  
%
.ꢘ  
"9  
.13   
4 (%) 5 . +6  
"ꢔ  
&ꢒꢑ9  
*
ꢘ71  
*ꢆꢉꢎꢌ#  
 <  
This technical information specifies semiconductor devices but promises no  
characteristics. No warranty or guarantee expressed or implied is made regarding  
delivery, performance or suitability.  
1
30-09-2008 MHW  
© by SEMIKRON  
External Components  
Component  
RCE  
Function  
Reference voltage for VCE-monitoring  
10 RCE(kΩ)  
Recommended Value  
10kΩ < RCE < 100kΩ  
-----------------------------------  
VCEstat(V) =  
– 1,4  
(1)  
18kΩ for SKM XX 123 (1200V)  
36kΩ for SKM XX 173 (1700V)  
10 + RCE(kΩ)  
with RVCE = 1kΩ (1700V IGBT):  
10 RCE(kΩ)  
-----------------------------------  
VCEstat(V) =  
– 1,8  
(1.1)  
10 + RCE(kΩ)  
CCE  
CCE < 2,7nF  
Inhibit time for VCE - monitoring  
15 – VCEstat(V)  
0,33nF for SKM XX 123 (1200V)  
0,47nF for SKM XX 173 (1700V)  
---------------------------------------  
tmin = τCE ln  
(2)  
(3)  
10 – VCEstat(V)  
0,5μs < tmin < 10μs  
10 RCE(kΩ)  
-----------------------------------  
τCEs) = CCE(nF) ⋅  
10 + RCE(kΩ)  
RVCE  
Collector series resistance for 1700V  
IGBT-operation  
1kΩ / 0,4W  
RERROR  
Pull-up resistance at error output  
1kΩ < RERROR < 10kΩ  
UPull – Up  
-----------------------  
< 15mA  
RERROR  
RGON  
Turn-on speed of the IGBT 4)  
Turn-off speed of the IGBT 5)  
RGON > 3Ω  
RGOFF > 3Ω  
RGOFF  
4) Higher resistance reduces free-wheeling diode peak recovery current, increases IGBT turn-on time.  
5) Higher resistance reduces turn-off peak voltage, increases turn-off time and turn-off power dissipation  
© by SEMIKRON 30-09-2008  
Driver Electronic – PCB Drivers  
2
PIN array  
Fig. 2 shows the pin arrays. The input side (primary side) comprises 10 inputs (SKHI 22A / 21A 8 inputs), forming the  
interface to the control circuit (see fig.1).  
The output side (secondary side) of the hybrid driver shows two symmetrical groups of pins with 4 outputs, each forming  
the interface to the power module. All pins are designed for a grid of 2,54 mm.  
Primary side PIN array  
PIN No. Designation Explanation  
P14  
P13  
P12  
GND / 0V  
VS  
related earth connection for input signals  
+ 15V ± 4% voltage supply  
VIN1  
switching signal input 1 (TOP switch)  
positive 5V logic (for SKHI22A /21A, 15V logic)  
P11  
P10  
free  
not wired  
/ERROR  
error output, low = error; open collector output; max 30V / 15mA  
(for SKHI22A /21A, internal 10kΩ pull-up resistor versus VS)  
P9  
P8  
TDT2  
VIN2  
signal input for digital adjustment of interlocking time;  
SKHI22B: to be switched by bridge to GND (see fig. 3)  
SKHI22A /21A: to be switched by bridge to VS  
switching signal input 2 (BOTTOM switch);  
positive 5V logic (for SKHI22A /21A, 15V logic)  
P7  
P6  
GND / 0V  
SELECT  
related earth connection for input signals  
signal input for neutralizing locking function;  
to be switched by bridge to GND  
P5  
TDT1  
signal input for digital adjustment of locking time;  
to be switched by bridge to GND  
ATTENTION: Inputs P6 and P5 are not existing for SKHI 22A/ 21A. The contactor tracks of the digital input signals P5/  
P6/ P9 must not be longer than 20 mm to avoid interferences, if no bridges are connected.  
Secondary side PIN array  
PIN No. Designation Explanation  
S20  
S15  
S14  
S13  
S12  
S1  
VCE1  
CCE1  
GON1  
GOFF1  
E1  
collector output IGBT 1 (TOP switch)  
reference voltage adjustment with RCE and CCE  
gate 1 RON output  
gate 1 ROFF output  
emitter output IGBT 1 (TOP switch)  
collector output IGBT 2 (BOTTOM switch)  
reference voltage adjustment with RCE and CCE  
gate 2 RON output  
VCE2  
CCE2  
GON2  
GOFF2  
E2  
S6  
S7  
S8  
gate 2 ROFF output  
S9  
emitter output IGBT 2 (BOTTOM switch)  
ATTENTION: The connector leads to the power module should be as short as possible.  
3
Driver Electronic – PCB Drivers  
30-09-2008  
© by SEMIKRON  
© by SEMIKRON 30-09-2008  
Driver Electronic – PCB Drivers  
4
VCE  
OUT1  
CCE  
GON  
GND/0V  
VS  
GOFF  
V
E
IN1  
ERROR  
TDT2  
E
V
GOFF  
IN2  
GON  
CCE  
GND/0V  
SELECT  
TDT1  
OUT2  
VCE  
55  
±0.2  
detail "A" on scale 10 : 1  
0.25x0.5  
50.8  
±0.3  
measured from pin-centre to pin-centre  
A
18.25  
15.75  
S1  
P5  
P6  
S6  
S9  
S12  
S15  
P13  
P14  
A
A
S20  
Fig. 2 Dimension drawing and PIN array (P5 and P6 are not existing for SKHI22A/21A)  
5
Driver Electronic – PCB Drivers  
30-09-2008  
© by SEMIKRON  
SEMIDRIVERTM  
The driver is connected to a controlled + 15 V-supply  
voltage. The input signal level is 0/15 V for the SKHI 22A/  
21A and 0/5 V for the SKHI 22B.  
SKHI 22A / 22B und SKHI 21A  
In the following explanations the whole driver family will be  
designated as SKHI 22B. If a special type is referred to,  
the concerned driver version will explicitly be named.  
Hybrid dual drivers  
The driver generation SKHI 22A/B and SKHI 21A will  
replace the hybrid drivers SKHI 21/22 and is suitable for all  
available low and medium power range IGBT and  
MOSFETs.  
Technical explanations1  
Description of the circuit block diagram and the  
functions of the driver  
The SKHI 22A (SKHI 21A) is a form-, fit- and mostly  
function-compatible replacement to its predecessor, the  
SKHI 22 (SKHI 21).  
The block diagram (fig.1) shows the inputs of the driver  
(primary side) on the left side and the outputs (secondary  
side) on the right.  
The SKHI 22B is recommended for any new development.  
It has two additional signal pins on the primary side with  
which further functions may be utilized.  
The following functions are allocated to the primary  
side:  
The SKHI 22A and SKHI 22B are available with standard  
isolation (isolation testing voltage 2500 VAC, 2sec.) as  
well as with an increased isolation voltage (type "H4")  
(isolation testing voltage 4000 VAC, 2sec.). The SKHI 21A  
is only offered with standard isolation features.  
Input-Schmitt-trigger, CMOS compatible, positive logic  
(input high = IGBT on)  
Interlock circuit and deadtime generation of the IGBT  
If one IGBT is turned on, the other IGBT of a halfbridge  
cannot be switched. Additionally, a digitally adjustable  
interlocking time is generated by the driver (see fig. 3),  
which has to be longer than the turn-off delay time of the  
IGBT. This is to avoid that one IGBT is turned on before  
the other one is not completely discharged. This  
protec-tion-function may be neutralized by switching the  
select input (pin6) (see fig. 3). fig. 3 documents possible  
interlock-times. "High" value can be achieved with no  
connection and connection to 5 V as well.  
Differences SKHI 22-22A (SKHI 21-21A)  
Compared to the old SKHI 22/21 the new driver  
SKHI 22A / 21A is absolutely compatible with regards to  
pins and mostly with regards to functions. It may be  
equivalently used in existing PCBs.  
The following points have to be considered when  
exchanging the drivers:  
• Leave out the two resistors RTD for interlocking  
dead time adjustment at pin 11 and pin 9.  
P6 ;  
P5 ;  
P9 ;  
interlock time  
• The interlocking time of the driver stages in  
halfbridge applications is adjusted to 3,25 µs. It may  
be increased up to 4,25 µs by applying a 15 V (VS)  
supply voltage at Pin 9 (TDT2) (wire bridge)  
SELECT  
TDT1  
TDT2  
t
TD /μs  
open / 5V  
open / 5V  
open / 5V  
open / 5V  
GND  
GND  
GND  
GND  
open / 5V  
GND  
1,3  
2,3  
open / 5V  
open / 5V  
X
3,3  
• The error reset time is typically 9µs.  
open / 5V  
X
4,3  
• The input resistance is 10 kΩ.  
no interlock  
Fig. 3 SKHI 22B - Selection of interlock-times:  
„High“-level can be achieved by no connection or  
connecting to 5 V  
As far as the SKHI 22A is concerned, the negative gate  
voltage required for turn-off of the IGBT is no longer -15V,  
but -7V.  
Short pulse suppression  
General description  
The integrated short pulse suppression avoids very short  
switching pulses at the power semiconductor caused by  
high-frequency interference pulses at the driver input  
signals. Switching pulses shorter than 500 ns are  
suppressed and not transmitted to the IGBT.  
The new driver generation SKHI 22A/B, SKHI 21A  
consists of a hybrid component which may directly be  
mounted to the PCB.  
All devices necessary for driving, voltage supply, error  
monitoring and potential separation are integrated in the  
driver. In order to adapt the driver to the used power  
module, only very few additional wiring may be necessary.  
Power supply monitoring (VS)  
A controlled 15 V-supply voltage is applied to the driver. If  
it falls below 13 V, an error is monitored and the error  
output signal switches to low level.  
The forward voltage of the IGBT is detected by an  
integrated short-circuit protection, which will turn off the  
module when a certain threshold is exceeded.  
1.The following descriptions apply to the use of the hybrid  
driver for IGBTs as well as for power MOSFETs. For the  
reason of shortness, only IGBTs will be mentioned in the  
following. The designations "collector" and "emitter" will refer  
to IGBTs, whereas for the MOSFETs "drain" and "source" are  
to be read instead.  
In case of short-circuit or too low supply voltage the  
integrated error memory is set and an error signal is  
generated.  
© by SEMIKRON 30-09-2008  
Driver Electronic – PCB Drivers  
6
Error monitoring and error memory  
IGBT is turned off. VCEstat is the steady-state value of VCEref  
and is adjusted to the required maximum value for each  
IGBT by an external resistor RCE to be connected between  
the terminals CCE (S6/S15) and E (S9/S12). It may not  
exceed 10 V. The time constant for the delay of VCEref may  
be increased by an external capacitor CCE, which is  
connected in parallel to RCE. It controls the time tmin which  
passes after turn-on of the IGBT before the  
The error memory is set in case of under-voltage or  
short-circuit of the IGBTs. In case of short-circuit, an error  
signal is transmitted by the VCE-input via the pulse  
transformers to the error memory. The error memory will  
lock all switching pulses to the IGBTs and trigger the error  
output (P10) of the driver. The error output consists of an  
open collector transistor, which directs the signal to earth  
in case of error. SEMIKRON recommends the user to  
provide for a pull-up resistor directly connected to the error  
evaluation board and to adapt the error level to the desired  
signal voltage this way. The open collector transistor may  
be connected to max. 30 V / 15 mA. If several SKHI 22Bs  
V
CE-monitoring is activated. This makes possible any  
adaptation to the switching behavior of any of the IGBTs.  
After tmin has passed, the VCE-monitoring will be triggered  
as soon as VCE > VCEref and will turn off the IGBT.  
are used in one device, the error terminals may also be External components and possible adjust-  
paralleled.  
ments of the hybrid driver  
ATTENTION: Only the SKHI 22A / 21A is equipped with  
Fig. 1 shows the required external components for  
an internal pull-up resistor of 10 kΩ versus VS. The  
adjustment and adaptation to the power module.  
SKHI 22B does not contain an internal pull-up resistor.  
VCE - monitoring adjustment  
The error memory may only be reset, if no error is pending  
The external components RCE and CCE are applied for  
adjusting the steady-state threshold and the short-circuit  
monitoring dynamic. RCE and CCE are connected in  
parallel to the terminals CCE (S15/ S6) and E (S12/ S9) .  
and both cycle signal inputs are set to low for > 9 μs at the  
same time.  
Pulse transformer set  
8
7
6
The transformer set consists of two pulse transformers  
one is used bidirectional for turn-on and turn-off signals of  
the IGBT and the error feedback between primary and  
secondary side, the other one for the DC/DC-converter.  
The DC/DC-converter serves as potential-separation and  
power supply for the two secondary sides of the driver.  
The isolation voltage for the "H4"-type is 4000 VAC and  
2500 VAC for all other types.  
1200V (min)  
1200V (typ)  
1200V (max)  
1700V (min)  
1700V (typ)  
1700V (max)  
5
4
3
2
1
0
The secondary side consists of two symmetrical  
driver switches integrating the following components:  
10  
20  
30  
40  
50  
RCE / kOhm  
Supply voltage  
Fig. 4 VCEstat in dependence of RCE (Tamb = 25°C)  
The voltage supply consists of a rectifier, a capacitor, a  
voltage controller for - 7 V and + 15 V and a + 10 V  
reference voltage.  
Dimensioning of RCE and CCE can be done in three steps:  
Gate driver  
1. Calculate the maximum forward voltage from the  
datasheet of the used IGBT and determine VCEstat  
The output transistors of the power drivers are MOSFETs.  
The sources of the MOSFETs are separately connected to  
external terminals in order to provide setting of the turn-on 2. Calculate approximate value of RCE according to  
and turn-off speed by the external resistors RON and ROFF  
.
equation (1) or (1.1) from VCEstat or determine RCE by  
using fig.4.  
Do not connect the terminals S7 with S8 and S13 with  
S14, respectively. The IGBT is turned on by the driver at +  
15 V by RON and turned off at - 7 V by ROFF. RON and ROFF  
may not chosen below 3 Ω. In order to ensure locking of  
the IGBT even when the driver supply voltage is turned off,  
a 22 kΩ-resistor versus the emitter output (E) has been  
3. Determine tmin and calculate CCE according to  
equations (2) and (3).  
Typical values are  
integrated at output GOFF  
CE-monitoring  
The VCE-monitoring controls the collector-emitter voltage  
.
for 1200 V IGBT:  
V
CEstat = 5 V; tmin = 1,45 μs,  
CE = 18 kΩ, CCE = 330 pF  
CEstat = 6 V; tmin = 3 μs,  
CE = 36 kΩ, CCE = 470 pF  
Adaptation to 1700 V IGBT  
V
R
for 1700 V IGBT:  
V
V
CE of the IGBT during its on-state. VCE is internally limited  
R
to 10 V. If the reference voltage VCEref is exceeded, the  
IGBT will be switched off and an error is indicated. The  
reference voltage VCEref may dynamically be adapted to  
the IGBTs switching behaviour. Immediately after turn-on When using 1700 V IGBTs it is necessary to connect a  
of the IGBT, a higher value is effective than in the steady 1 kΩ / 0,4 W adaptation resistor between the VCE-terminal  
state. This value will, however, be reset, when the  
(S20/ S1) and the respective collector.  
7
Driver Electronic – PCB Drivers  
30-09-2008  
© by SEMIKRON  
Adaptation to error signal level  
SEMIKRON recommends to start-up operation using the  
values recommended by SEMIKRON and to optimize the  
values gradually according to the IGBT switching  
behaviour and overvoltage peaks within the specific  
circuitry.  
An open collector transistor is used as error terminal,  
which, in case of error, leads the signal to earth. The signal  
has to be adapted to the evaluation circuit's voltage level  
by means of an externally connected pull-up resistor. The  
maximum load applied to the transistor shall be 30 V / 15  
mA.  
Driver performance and application limits  
The drivers are designed for application with halfbridges  
and single modules with a maximum gate charge QGE  
<
As for the SKHI 22A / 21A a 10 kΩ pull-up resistor versus  
VS (P13) has already been integrated in the driver.  
4
μC (see fig. 6).  
The charge necessary to switch the IGBT is mainly  
depending on the IGBT's chip size, the DC-link voltage  
and the gate voltage.  
IGBT switching speed adjustment  
The IGBT switching speed may be adjusted by the  
resistors RON and ROFF. By increasing RON the turn-on  
speed will decrease. The reverse peak current of the  
This correlation is also shown in the corresponding  
module datasheet curves.  
free-wheeling  
diode  
will  
diminish.  
SEMIKRON  
recommends to adjust RON to a level that will keep the  
It should, however, be considered that the SKHI 22B is  
turned on at + 15 V and turned off at - 7 V. Therefore, the  
gate voltage will change by 22 V during every switching  
procedure.  
turn-on delay time td(on) of the IGBT < 1 μs.  
By increasing ROFF the turn-off speed of the IGBT will  
decrease. The inductive peak overvoltage during turn-off  
will diminish.  
Unfortunately, most datasheets do not indicate negative  
gate voltages. In order to determine the required charge,  
the upper leg of the charge curve may be prolonged to  
The minimum gate resistor value for ROFF and RON is 3 Ω.  
Typical values for RON and ROFF recommended by  
SEMIKRON are given in fig. 5  
+
22 V for determination of approximate charge per  
switch.  
RGon RGoff  
CCE  
pF  
RCE  
kΩ  
RVCE  
kΩ  
The medium output current of the driver is determined by  
the switching frequency and the gate charge. For the SKHI  
22B the maximum medium output current is IoutAVmax < ±  
40 mA.  
SK-IGBT-Modul  
Ω
22  
22  
15  
12  
12  
10  
8,2  
6,8  
Ω
22  
22  
15  
12  
12  
10  
8,2  
6,8  
SKM 50GB123D  
SKM 75GB123D  
SKM 100GB123D  
SKM 145GB123D  
SKM 150GB123D  
SKM 200GB123D  
SKM 300GB123D  
SKM 400GA123D  
330  
330  
330  
330  
330  
330  
330  
330  
18  
18  
18  
18  
18  
18  
18  
18  
0
0
0
0
0
0
0
0
The maximum switching frequency fMAX may be calculated  
with the following formula, the maximum value however  
being 50 kHz due to switching reasons:  
4 104  
QGE(nC)  
----------------------  
fMAX(kHz) =  
Fig. 6 shows the maximum rating for the output charge per  
pulse for different gate resistors.  
SKM 75GB173D  
SKM 100GB173D  
SKM 150GB173D  
SKM 200GB173D  
15  
12  
10  
8,2  
15  
12  
10  
8,2  
470  
470  
470  
470  
36  
36  
36  
36  
1
1
1
1
SKHI 22 A/B maximum rating for output charge per  
pulse  
4,50  
4,00  
3,50  
Rg=24 OHM; 3,86µC  
Fig. 5 Typical values for external components  
3,00  
Rg=18 OHM; 3,52µC  
2,50  
Rg=12 OHM; 3,07µC  
Rg=6 OHM, 2,50µC  
Rg=3 OHM, 2,18µC  
Interlocking time adjustment  
2,00  
1,50  
1,00  
0,50  
0,00  
Fig. 3 shows the possible interlocking times between  
output1 and output2. Interlocking times are adjusted by  
connecting the terminals TDT1 (P5), TDT2 (P9) and  
SELECT (P6) either to earth/ GND (P7 and P14)  
according to the required function or by leaving them  
open.  
0
10  
20  
30  
40  
50  
60  
f / kHz  
Fig. 6 Maximum rating for output charge per pulse  
Further application notes  
A typical interlocking time value is 3,25 μs (P9 = GND; P5  
and P6 open). For SKHI 22A / 21A the terminals TDT1  
(P5) and SELECT (P6) are not existing. The interlocking  
time has been fixed to 3,25 μs and may only be increased  
to 4,25 μs by connecting TDT2 (P9) to VS (P13).  
The CMOS-inputs of the hybrid driver are extremely  
sensitive to over-voltage. Voltages higher than VS  
+
0,3 V or below – 0,3 V may destroy these inputs.  
Therefore, control signal over-voltages exceeding the  
above values have to be avoided.  
ATTENTION: If the terminals TDT1 (P5), TDT2 (P9) and  
SELECT (P6) are not connected, eventually connected Please provide for static discharge protection during  
track on PC-board may not be longer than 20 mm in order handling. As long as the hybrid driver is not completely  
to avoid interferences.  
assembled, the input terminals have to be short-circuited.  
© by SEMIKRON 30-09-2008  
Driver Electronic – PCB Drivers  
8
If a PCB is directly plugged to IGBT modules, the PCB has  
to be fixed to the heat sink by thread bolts.  
Persons working with CMOS-devices have to wear a  
grounded bracelet. Any synthetic floor coverings must not  
be statically chargeable. Even during transportation the  
input terminals have to be short-circuited using, for  
example, conductive rubber. Worktables have to be  
grounded. The same safety requirements apply to  
MOSFET- and IGBT-modules!  
The temperature of the solder must not exceed 265°C,  
and solder time must not exceed 4 seconds. The ambient  
temperature must not exceed the specified maximum  
storage temperature of the driver.  
The driver is not suited for hot air reflow or infrared reflow  
soldering processes.  
The connecting leads between hybrid driver and the  
power module should be as short as possible, the driver  
leads should be twisted.  
Storage hints  
Any parasitic inductances within the DC-link have to be  
minimized. Over-voltages may be absorbed by C- or  
RCD-snubbers between the main terminals for PLUS and  
MINUS of the power module.  
- Store driver only in original packaging.  
- Avoid contamination of driver's surface during storage,  
handling and processing.  
- Please use the driver within one year after driver  
manufacturing date. The manufacturing date is marked on  
the driver. Usage of the driver beyond this shelf life could  
compromise product long term reliability.  
- Further storage conditions are indicated in the data  
sheet  
When first operating  
a
newly developed circuit,  
SEMIKRON recommends to apply low collector voltage  
and load current in the beginning and to increase these  
values gradually, observing the turn-off behaviour of the  
free-wheeling diode and the turn-off voltage spikes  
generated accross the IGBT. An oscillographic control will  
be necessary. In addition to that the case temperature of  
the module has to be monitored. When the circuit works  
correctly under rated operation conditions, short-circuit  
testing may be done, starting again with low collector  
voltage.  
Environmental conditions  
The driver is type tested under the environmental  
conditions below.  
It is important to feed any errors back to the control circuit  
and to switch off the device immediately in such events.  
Repeated turn-on of the IGBT into a short circuit with a  
high frequency may destroy the device.  
Thermal cycling test:  
- 100 cycle -40°C … +85°C  
Mechanical fixing on PCB:  
In applications with mechanical vibrations do not use a  
ty-rap for fixing the driver, but - after soldering and testing  
- apply special glue. Recommended types: CIBA GEIGY  
XP 5090 + 5091; PACTAN 5011; WACKER A33 (ivory) or  
N199 (transparent), applied around the case edge (forms  
a concave mould). The housing may not be pressed on the  
PCB; do not twist the PCB with the driver soldered on,  
otherwise the internal ceramics may crack. The driver is  
not suitable for big PCBs.  
Vibration test according DIN IEC 68-2-6:  
- Sinusoidal sweep: 10 Hz … 100 Hz  
-1 Octave / min.  
-Acceleration: 1,5 g  
-Axes: 3 (x, y, z)  
-26 sweeps per axis  
-Driver soldered on board SKPC 2006 (L x B x H = 97,0  
x 67,5 x 1,5mm)  
-Driver stuck with glue on printed circuit board (see  
application notes)  
Proven, within the scope of the product qualification, was  
the use of the driver with the printed circuit board  
SKPC 2006 ( L x B x H = 97,0 x 67,5 x 1,5 mm). During the  
test, the driver was stuck with glue on the printed circuit  
board. Based on this information the technical conclusion  
arises, that in an application with big printed circuit boards,  
this board must be supported and reinforced in the area of  
the driver.  
Shock test according DIN IEC 68-2-27:  
- Half-sinusoidal pulse  
-Peak acceleration: 5 g  
-Shock width: 18ms  
-3 shocks in each direction (±x, ±y und ±z)  
-18 shocks in total  
-Driver soldered on board SKPC 2006 (L x B x H = 97,0  
x 67,5 x 1,5mm)  
-Driver stuck with glue on printed circuit board (see  
application notes)  
9
Driver Electronic – PCB Drivers  
30-09-2008  
© by SEMIKRON  
Temperature humidity according IEC 60068-1 (climate):  
- 40/085/56 (40°C, 85% RH, 56h)  
- No condensation, no dripping water, non- corrosive  
Climate class 3K3  
All electrical and mechanical parameters should be  
validated by user´s technical experts for each application.  
For further details please contact SEMIKRON.  
This technical information specifies devices but promises no characteristics. No warranty or guarantee expressed or implied is made  
regarding delivery, performance or suitability.  
© by SEMIKRON 30-09-2008  
Driver Electronic – PCB Drivers  
10  

相关型号:

UL1042

UL1042 - Uk砤d zr體nowa縪nego mieszacza iloczynowego

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV201

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14

IC-SM-VIDEO AMP

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TA

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TC

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV302N16

IC-SM-4:1 MUX SWITCH

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV4089

VIDEO AMPLIFIER WITH DC RESTORATION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX