GS12341 [SEMTECH]

12G UHD-SDI Reclocking Adaptive Cable Equalizer;
GS12341
型号: GS12341
厂家: SEMTECH CORPORATION    SEMTECH CORPORATION
描述:

12G UHD-SDI Reclocking Adaptive Cable Equalizer

文件: 总109页 (文件大小:4169K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
GS12341  
12G UHD-SDI Reclocking  
Adaptive Cable Equalizer  
Key Features  
Additional Features  
75Ω cable input interface with on-chip termination  
Single 1.8V power supply for analog and digital core  
GSPI serial control and monitoring interface  
Four configurable GPIO pins for control or status monitoring  
Wide operating temperature range: -40ºC to +85ºC  
Small 6mm x 4mm 40-pin QFN  
SMPTE ST 2082-1, ST 2081-1, ST 424, ST 292-1 and ST 259  
compliant input/output  
Multi-standard operation from 1Mb/s to 11.88Gb/s  
In addition to standard SMPTE rates, the device also supports  
reclocking of DVB-ASI at 270Mb/s, and MADI at 125Mb/s  
Pin compatible with the GS12241, GS12141, GS12142, and  
GS3241  
3D Input Signal Eye Monitor  
PRBS generator and checker  
Automatic cable equalization—typical equalized cable  
lengths of Belden 1694A cable:  
Pb-free/Halogen-free/RoHS and WEEE compliant package  
Applications  
80m at 11.88Gb/s  
Next Generation 12G UHD-SDI infrastructures designed to  
support UHDTV1, UHDTV2, 4K D-Cinema and 3D HFR and HDR  
production image formats. Typical applications: Monitors,  
Switchers, Distribution Amplifiers and Routers.  
100m at 5.94Gb/s  
190m at 2.97Gb/s  
260m at 1.485Gb/s  
450m at 270Mb/s and 125Mb/s  
Cable equalizer features:  
Description  
Improved reach with stress patterns  
The GS12341 is a low-power, multi-rate reclocking Cable Equalizer  
supporting rates up to 12G UHD-SDI. It is designed to equalize and  
restore signals received over 80 meters coaxial cable at 12G,  
compensate for DC content of SMPTE pathological signals, and  
reclock the incoming data.  
Automatic power down on loss of signal  
Programmable carrier detect with squelch threshold  
adjustment  
Programmable launch swing compensation for  
non-compliant source  
The integrated eye monitor provides non-disruptive mission  
mode analysis of the post equalized input signal. The 256x128  
resolution scan matrix allows accurate signal analysis to speed up  
prototyping and enable field analysis.  
Built in macros enable customizable cross section analysis and  
quick horizontal and vertical eye opening measurements.  
With high phase consistency between scans and configurable  
space and time thresholds, algorithms can be deployed in the  
field to analyse long term signal quality variation (Bathtub Plot) to  
reduce costly system installation debug time for intermittent  
errors.  
The two independently controlled trace drivers feature highly  
configurable pre-emphasis and swing controls to compensate for  
long trace and connector losses. The pre-emphasis pulse width  
can be optimized to compensate for perturbations to frequency  
response of transmission lines due to vias connectors and stubs.  
The GS12341 is pin compatible with the GS12241 and GS12141  
single input, and GS12142 dual input, 12G UHD-SDI Multi-rate  
Reclocking Cable Equalizers. It is also pin compatible with the  
GS3241 3G-SDI Multi-rate Reclocking Cable Equalizer.  
Manual and automatic cable equalizer bypass  
Trace driver features:  
Integrated 100Ω, differential output termination  
Extends output DC-coupling support with 1.2V to 2.5V  
output supply range  
Trace driver data output pre-emphasis to compensate for  
up to 20FR4 at 11.88Gb/s  
Manual or automatic reclocker bypass  
Manual or automatic mute or disable on LOS  
Reclocker features:  
Manual or automatic rate modes  
Wide Loop bandwidth control  
Reclocking at the following data rates: 125Mb/s, 270Mb/s,  
1.485Gb/s, 2.97Gb/s, 5.94Gb/s, and 11.88Gb/s—this  
includes the f/1.001 rates  
Note: For the GS12341 to be pin compatible with the GS12142,  
careful design considerations are required. Contact for your local  
Semtech FAE for details.  
GS12341  
Final Data Sheet  
PDS-061928  
1 of 109  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.1  
August 2019  
GPIO2  
GPIO3  
GPIO4  
SDOUT  
GPIO1  
SCLK  
SDIN  
CS  
Control & Status  
DDO0  
Signal Selector  
Trace Driver  
PRBS  
Generator  
Data:  
(Reclocked/Bypassed)  
DDO0  
PRBS Generator  
Swing and Pre-emphasis  
Control  
Cable Equalizer  
Reclocker  
SDI  
DDO1  
Signal Selector  
Trace Driver  
Data:  
(Reclocked/Bypassed)  
PRBS  
Checker  
DDO1  
PRBS Generator  
Swing and Pre-emphasis  
Control  
EYE  
Monitor  
GS12341 Functional Block Diagram  
GS12341  
Final Data Sheet  
PDS-061928  
2 of 109  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.1  
August 2019  
Revision History  
Version  
ECO  
PCN  
Date  
Changes and/or Modifications  
Data Sheet status changed from Draft to Final. Updated Key  
Features, Description, DC Electrical Characteristics, and AC  
Electrical Characteristics.  
1
0
048049  
046248  
August 2019  
May 2019  
New Document.  
Contents  
1. Pin Out.................................................................................................................................................................5  
1.1 GS12341 Pin Assignment ................................................................................................................5  
1.2 GS12341 Pin Descriptions ...............................................................................................................6  
2. Electrical Characteristics................................................................................................................................9  
2.1 Absolute Maximum Ratings ...........................................................................................................9  
2.2 DC Electrical Characteristics ........................................................................................................ 10  
2.3 AC Electrical Characteristics ......................................................................................................... 12  
3. Input/Output Circuits.................................................................................................................................. 14  
4. Detailed Description.................................................................................................................................... 15  
4.1 Device Description .......................................................................................................................... 15  
4.1.1 Sleep Mode............................................................................................................................ 15  
4.2 Cable Equalizer ................................................................................................................................. 16  
4.2.1 Cable Equalizer Bypass...................................................................................................... 16  
4.2.2 Upstream Launch Swing Compensation.................................................................... 16  
4.2.3 Carrier Detect, Squelch Control, and Loss of Signal ............................................... 17  
4.3 Serial Digital Reclocker .................................................................................................................. 19  
4.3.1 PLL Loop Bandwidth Control.......................................................................................... 20  
4.3.2 Automatic and Manual Rate Detection....................................................................... 20  
4.3.3 Lock Time ............................................................................................................................... 21  
4.4 PRBS Checker .................................................................................................................................... 23  
4.4.1 Timed PRBS Check Measurement Procedure............................................................ 23  
4.4.2 Continuous PRBS Check Measurement Procedure................................................. 24  
4.5 EYE Monitor ....................................................................................................................................... 27  
4.5.1 Shape Scan and Measurement Time............................................................................ 28  
4.5.2 Matrix-Scan and Shape-Scan Operation..................................................................... 30  
4.6 PRBS Generator ................................................................................................................................ 36  
4.7 Output Drivers .................................................................................................................................. 38  
4.7.1 Bypassed Reclocker Signal Output Control ............................................................... 38  
4.7.2 Output Driver Polarity Inversion.................................................................................... 39  
4.7.3 Output Driver Data Rate Selection................................................................................ 39  
4.7.4 Amplitude and Pre-Emphasis Control ......................................................................... 39  
4.7.5 Trace Driver DC coupling requirements ..................................................................... 47  
GS12341  
Final Data Sheet  
3 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
4.7.6 Output State Control Modes........................................................................................... 48  
4.8 GPIO Controls .................................................................................................................................... 50  
4.9 GSPI Host Interface ......................................................................................................................... 50  
4.9.1 CS Pin....................................................................................................................................... 50  
4.9.2 SDIN Pin .................................................................................................................................. 50  
4.9.3 SDOUT Pin.............................................................................................................................. 51  
4.9.4 SCLK Pin .................................................................................................................................. 52  
4.9.5 Command Word 1 Description....................................................................................... 52  
4.9.6 GSPI Transaction Timing................................................................................................... 55  
4.9.7 Single Read/Write Access................................................................................................. 56  
4.9.8 Auto-increment Read/Write Access ............................................................................. 58  
4.9.9 Setting a Device Unit Address ........................................................................................ 59  
4.9.10 Default GSPI Operation................................................................................................... 60  
4.9.11 Clear Sticky Counts Through Four Way Handshake............................................. 61  
4.9.12 Device Power-up Sequence.......................................................................................... 61  
4.9.13 Host Initiated Device Reset ........................................................................................... 62  
5. Register Map................................................................................................................................................... 64  
5.1 Control Registers ............................................................................................................................. 64  
5.2 Status Registers ................................................................................................................................ 67  
5.3 Register Descriptions ..................................................................................................................... 68  
6. Application Information...........................................................................................................................104  
6.1 Typical Application Circuit .........................................................................................................104  
7. Package & Ordering Information ..........................................................................................................105  
7.1 Package Dimensions ....................................................................................................................105  
7.2 Recommended PCB Footprint ..................................................................................................106  
7.3 Packaging Data ..............................................................................................................................106  
7.4 Marking Diagram ...........................................................................................................................107  
7.5 Solder Reflow Profiles ..................................................................................................................107  
7.6 Ordering Information ...................................................................................................................108  
GS12341  
Final Data Sheet  
4 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
1. Pin Out  
1.1 GS12341 Pin Assignment  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
VEE_SDI  
SDI  
1
2
3
4
5
6
7
8
28  
27  
26  
25  
24  
23  
22  
21  
VEEO  
DDO0  
SDI_TERM  
VCC_SDI  
RSVD  
DDO0  
GS12341  
40-pin QFN  
6mm x 4mm  
VCCO_0  
VCCO_1  
DDO1/RCO  
DDO1/RCO  
VEEO  
RSVD  
RSVD  
VEE_SDI  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
Figure 1-1: GS12341 Pin Assignment  
GS12341  
Final Data Sheet  
5 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
1.2 GS12341 Pin Descriptions  
Table 1-1: GS12341 Pin Descriptions  
Pin Number  
Name  
Type  
Description  
Most negative power supply connection for the Cable Equalizer.  
Connect to ground.  
1, 8  
2
VEE_SDI  
SDI  
Power  
Input  
Single-ended CML input with internal 75Ω termination.  
Input Common Mode termination. Decouple to ground through  
resistor and capacitor. See Section 6.1 for recommended values.  
3
SDI_TERM  
Most positive power supply connection for the Cable Equalizer.  
4
VCC_SDI  
RSVD  
Power  
Connect to 1.8V and decouple to ground. See Section 6.1 for  
recommended values.  
These pins may be left floating. Please contact your Semtech FAE for  
additional information on circuit compatibility with the GS12281.  
5, 6, 7, 9, 30, 32  
Chip Select input for the Gennum Serial Peripheral Interface (GSPI)  
host control/status port.  
1.8V CMOS input with 100kΩ pull-up.  
Active-LOW input.  
10  
CS  
Digital Input  
Refer to Section 4.9.1 for more details.  
Serial digital data input for the Gennum Serial Peripheral Interface  
(GSPI) host control/status port.  
11  
12  
13  
SDIN  
SDOUT  
SCLK  
Digital Input  
Digital Output  
Digital Input  
1.8V CMOS input with 100kΩ pull-down.  
Refer to Section 4.9.2 for more details.  
Serial digital data output for the Gennum Serial Peripheral Interface  
(GSPI) host control/status port.  
1.8V CMOS output.  
Refer to Section 4.9.3 for more details.  
Burst-mode clock input for the Gennum Serial Peripheral Interface  
(GSPI) host control/status port.  
1.8V CMOS input with 100kΩ pull-down.  
Refer to Section 4.9.4 for more details.  
Most negative power supply for digital core logic.  
Connect to ground.  
14, 15  
16  
VSS  
Power  
Power  
Most positive power supply connection for digital core logic.  
VDD  
Connect to 1.8V and decouple to ground. See Section 6.1 for  
recommended values.  
Multi-function Control/Status Input/Output 0.  
Default function:  
Digital  
Input/Output  
Direction = Output  
Signal = High indicates LOS (Loss of Signal, inverse of Carrier Detect)  
17  
GPIO0  
Pin is 1.8V CMOS I/O, please refer to GPIO0_CFG for more information  
on how to configure GPIO0.  
GS12341  
Final Data Sheet  
PDS-061928  
6 of 109  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.1  
August 2019  
Table 1-1: GS12341 Pin Descriptions (Continued)  
Pin Number  
Name  
Type  
Description  
Multi-function Control/Status Input/Output 1.  
Default function:  
Digital  
Input/Output  
Direction = Output  
Signal = High indicates PLL is locked  
18  
GPIO1  
Pin is 1.8V CMOS I/O, please refer to GPIO1_CFG for more information  
on how to configure GPIO1.  
Most negative power supply connection for the analog core.  
Connect to ground.  
19, 31, 37, 38  
20  
VEE_CORE  
Power  
Power  
Most positive power supply connection for trace driver pre driver.  
Connect to 1.8V and decouple to ground. See Section 6.1 for  
recommended values.  
VCCO1P8_1  
Most negative power supply connection for the output drivers.  
Connect to ground.  
21, 28  
22, 23  
VEEO  
Power  
Differential CML output with two internal 50Ω pull-ups. The data  
signal or PRBS generator can be selected for this output. The PRBS  
generator can be configured to generate a PRBS7 or a clock pattern.  
DDO1/RCO,  
DDO1/RCO  
Output  
Most positive power supply connection for the DDO1/ DDO1 output  
driver.  
24  
25  
VCCO_1  
VCCO_0  
Power  
Power  
Connect to 1.2V – 2.5V and decouple to ground. See Section 6.1 for  
recommended values.  
Most positive power supply connection for the DDO0/DDO0 output  
driver.  
Connect to 1.2V – 2.5V and decouple to ground. See Section 6.1 for  
recommended values.  
Differential CML output with two internal 50Ω pull-ups. The data  
signal or PRBS generator can be selected for this output. The PRBS  
generator can be configured to generate a PRBS7 or a clock pattern.  
26, 27  
29  
DDO0/DDO0  
VCCO1P8_0  
Output  
Power  
Most positive power supply connection for trace driver pre driver.  
Connect to 1.8V and decouple to ground. See Section 6.1 for  
recommended values.  
Multi-function Control/Status Input/Output 2.  
Default function:  
Digital  
Input/Output  
Direction = Input  
Signal = Set HIGH to put device in sleep  
33  
GPIO2  
Pin is 1.8V CMOS I/O, please refer to GPIO2_CFG for more information  
on how to configure GPIO2.  
VCO filter capacitor connection. Decouple to ground. See Section 6.1  
for recommended values.  
34  
35  
VCO_FILT  
Passive  
Power  
Most positive power supply connection for the analog core.  
VCC_CORE  
Connect to 1.8V and decouple to ground. See Section 6.1 for  
recommended values.  
GS12341  
Final Data Sheet  
PDS-061928  
7 of 109  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.1  
August 2019  
Table 1-1: GS12341 Pin Descriptions (Continued)  
Pin Number  
Name  
Type  
Description  
Multi-function Control/Status Input/Output 3.  
Default function:  
Digital  
Input/Output  
Direction = Input  
Signal = Set HIGH to disable DDO1  
36  
GPIO3  
Pin is 1.8V CMOS I/O, please refer to GPIO3_CFG for more information  
on how to configure GPIO3.  
Loop filter capacitor connection. Connect to pin 40 through capacitor.  
See Section 6.1 for recommended values.  
39  
40  
LF+  
LF-  
Passive  
Passive  
Loop filter capacitor connection. Connect to pin 39 through capacitor.  
See Section 6.1 for recommended values.  
Central paddle can be connected to ground or left unconnected. Its  
purpose is to provide increased mechanical stability. It is not required  
for thermal dissipation. It is not recommended to connect device  
ground pins to the central paddle.  
Tab  
GS12341  
Final Data Sheet  
PDS-061928  
8 of 109  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.1  
August 2019  
2. Electrical Characteristics  
2.1 Absolute Maximum Ratings  
Table 2-1: Absolute Maximum Ratings  
Parameter  
Value  
Supply Voltage—Core  
(VCC_SDI, VCC_CORE, VDD)  
-0.5V to +2.2V  
Supply Voltage—Output Driver  
(VCCO_0, VCCO_1)  
-0.5V to +2.8V  
Input ESD Voltage (any pin)  
2kV HBM  
Storage Temperature Range (TS)  
-50°C to +125°C  
Input Voltage Range (SDI, SDI)  
-0.3 to (VCC_SDI +0.3)V  
-0.3 to (VCC_CORE +0.3)V  
Input Voltage Range (GPIO2, GPIO3)  
Input Voltage Range (CS, SDIN, SCLK, VSS,  
VDD, GPIO0, GPIO1)  
-0.3 to (VDD +0.3)V  
260°C  
Solder Reflow Temperature  
Note: Absolute Maximum Ratings are those values beyond which damage may occur.  
Functional operation outside of the ranges shown in the AC/DC electrical characteristics  
tables is not guaranteed.  
GS12341  
Final Data Sheet  
9 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
2.2 DC Electrical Characteristics  
Table 2-2: DC Electrical Characteristics  
TA = -40°C to +85°C, unless otherwise shown.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Units Notes  
VCC_SDI,  
VCC_CORE,  
VDD  
Supply Voltage  
1.71  
1.8  
1.89  
V
1.14  
1.71  
2.38  
1.2  
1.8  
2.5  
1.26  
1.89  
2.63  
V
V
V
Supply Voltage - Output  
Driver  
VCCO_0,  
VCCO_1  
VCCO_0 = 1.2V,  
Output Swing = 400mVppd  
405  
410  
430  
420  
mW  
mW  
mW  
mW  
1
1
1
1
VCCO_0 = 1.8V,  
Output Swing = 400mVppd  
Power—Mission Mode  
VCCO_0 = 1.8V,  
Output Swing = 800mVppd  
(DDO0/DDO0 enabled,  
DDO1/DDO1 disabled)  
PD  
VCCO_0 = 2.5V,  
Output Swing = 400mVppd  
VCCO_0 = 2.5V,  
Output Swing = 800mVppd  
440  
35  
9
50  
16  
mW  
mW  
mA  
1
PD  
Power—Sleep Mode  
Sleep  
VCCO = 1.2V,  
Output Swing = 400mVppd  
1, 3  
VCCO = 1.8V,  
Output Swing = 400mVppd  
9
16  
27  
16  
27  
32  
32  
mA  
mA  
mA  
mA  
mA  
mA  
1, 3  
1, 3  
1, 3  
1, 3  
1, 3  
1, 3  
VCCO = 1.8V,  
Output Swing = 800mVppd  
ICCO_0, ICCO_1  
Supply Current—Trace Driver  
18  
9
VCCO = 2.5V,  
Output Swing = 400mVppd  
VCCO = 2.5V,  
Output Swing = 800mVppd  
18  
25  
25  
VCCO1P8_0  
Output Swing = 800mVppd  
ICCO1P8_0  
ICCO1P8_1  
,
SupplyCurrent—TraceDriver  
Pre-driver  
VCCO1P8_1  
Output Swing = 800mVppd  
GS12341  
Final Data Sheet  
10 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
Table 2-2: DC Electrical Characteristics (Continued)  
TA = -40°C to +85°C, unless otherwise shown.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Units Notes  
CDR Locked to Rate  
124  
142  
mA  
mA  
CDR Unlocked During   
Rate Search  
182  
208  
Supply Current—Analog  
Core  
ICC_CORE  
PRBS Generator Enabled  
PRBS Checker Enabled  
Eye Monitor Enabled  
119  
55  
140  
94  
mA  
mA  
mA  
4,5  
4
50  
92  
4
Supply Current—Cable  
Equalizer  
ICC_SDI  
55  
15  
75  
18  
mA  
mA  
2
Supply Current—Digital  
Logic  
IDD  
DDO Output Common   
Mode Voltage  
V
-
CCO  
VCMOUT  
V  
/2  
DDO  
DDO  
Output Termination  
Differential  
100  
75  
Ω
Ω
V
2
SDI Input Termination  
Between SDI and GND  
0.65*  
VDD  
VIH  
VIL  
VIH  
VIL  
VDD  
Input Voltage—Digital Pins  
(CS, SDIN, SCLK, GPIO[0:1])  
0.35*  
VDD  
0
V
V
V
0.65*  
VCC_CORE  
VCC_CORE  
Input Voltage—Digital Pins  
(GPIO[2:3])  
0.35*  
VCC_CORE  
0
VDD -  
0.45  
VOH  
VOL  
VOH  
VOL  
IOH = -5mA  
IOL = +5mA  
IOH = -5mA  
IOL = +5mA  
0.45  
V
V
V
V
Output Voltage—Digital Pins  
(SDOUT, GPIO[0:1])  
VCC_CORE  
- 0.45  
Output Voltage—Digital Pins  
(GPIO[2:3])  
0.45  
Notes:  
1. Pre-emphasis is disabled.  
2. This applies for DDO0 and DDO1.  
3. The specifications provided are per symbol, not a combined value.  
4. Current listed is an increase to ICC_CORE when stated condition is true.  
5. Selected clock source = VCO free running.  
GS12341  
Final Data Sheet  
11 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
2.3 AC Electrical Characteristics  
Table 2-3: AC Electrical Characteristics  
VCC_SDI, VCC_CORE, VDD = 1.8V 5ꢀ and VCCO_0, VCCO_1 = +1.2/1.8/2.5V 5ꢀ, TA = -40°C to +85°C, unless otherwise shown.  
Parameter  
Symbol  
DRSDI  
Conditions  
Min  
0.001  
720  
Typ  
Max  
11.88  
880  
Units Notes  
Serial Input Data Rate  
Upstream Launch Swing  
Gb/s  
mVpp  
12  
3
VSDI  
800  
200  
mVppd  
mVppd  
200mV  
150  
250  
8
Differential Output   
Voltage Swing  
VDDO  
800mV  
600  
0.7  
0.8  
800  
0.85  
0.95  
1000  
9
12G  
UI  
UI  
Intrinsic Input Jitter Tolerance  
IIJT  
MADI/SD/HD/3G/6G  
PLL Lock Time—  
Asynchronous  
tALOCK  
tSLOCK  
triseDDO  
75  
ms  
5
SD  
10  
2
μs  
μs  
5
5
PLL Lock Time—Synchronous  
DDO, DDO, Rise/Fall Time  
HD/3G/6G/12G  
,
All rates  
40  
8
ps  
ps  
6,11  
6
tfallDDO  
DDO Mismatch in   
Rise/Fall Time  
DDO Duty Cycle Distortion  
10  
-17  
-12  
-8  
ps  
dB  
6,11  
1
5MHz to 1.485GHz  
1.485GHz to 2.97GHz  
2.97GHz to 5.94GHz  
5.94GHz to 11.88GHz  
Belden 1694A, 450m  
dB  
1
Input Return Loss  
dB  
1
-5  
dB  
1
tOJ(125Mb/s)  
tOJ(270Mb/s)  
tOJ(1.485Gb/s)  
tOJ(2.97Gb/s)  
tOJ(5.94Gb/s)  
tOJ(11.88Gb/s)  
UIpp  
0.01  
0.05  
2,10  
UIpp  
UIpp  
UIpp  
UIpp  
UIpp  
Belden 1694A, 450m  
Belden 1694A, 260m  
Belden 1694A, 190m  
Belden 1694A, 100m  
Belden 1694A, 80m  
0.05  
0.03  
0.05  
0.07  
0.07  
0.15  
0.10  
0.10  
0.15  
0.15  
2,10  
2,10  
2,10  
2,10  
10  
Serial Data Output Jitter  
DDO0, DDO0  
DDO1, DDO1  
GS12341  
Final Data Sheet  
12 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
Table 2-3: AC Electrical Characteristics (Continued)  
VCC_SDI, VCC_CORE, VDD = 1.8V 5ꢀ and VCCO_0, VCCO_1 = +1.2/1.8/2.5V 5ꢀ, TA = -40°C to +85°C, unless otherwise shown.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
10  
Max  
Units Notes  
Setting 0.0625x  
Setting 0.125x  
Setting 0.25x  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
MHz  
MHz  
kHz  
kHz  
MHz  
MHz  
MHz  
kHz  
MHz  
MHz  
MHz  
MHz  
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
20  
BWLOOP(125Mb/s)  
38  
Setting 0.5x (Default)  
Setting 1.0x  
76  
150  
20  
Setting 0.0625x  
Setting 0.125x  
Setting 0.25x  
40  
BWLOOP(270Mb/s)  
BWLOOP(1.485Gb/s)  
BWLOOP(2.97Gb/s)  
BWLOOP(5.94Gb/s)  
BWLOOP(11.88Gb/s)  
80  
Setting 0.5x  
160  
316  
110  
220  
440  
876  
1750  
220  
440  
880  
1.76  
3.5  
Setting 1.0x (Default)  
Setting 0.0625x  
Setting 0.125x  
Setting 0.25x  
Setting 0.5x (Default)  
Setting 1.0x  
PLL Loop Bandwidth  
Setting 0.0625x  
Setting 0.125x  
Setting 0.25x  
Setting 0.5x (Default)  
Setting 1.0x  
Setting 0.0625x  
Setting 0.125x  
Setting 0.25x  
440  
880  
1.76  
3.5  
Setting 0.5x (Default)  
Setting 1.0x  
7
Setting 0.0625x  
Setting 0.125x  
Setting 0.25x  
880  
1.76  
3.5  
Setting 0.5x (Default)  
Setting 1.0x  
7
14  
Table Notes:  
1. Values achieved with Semtech evaluation board and connector.  
2. Measured using a clean input source.  
3. Default value for CFG_EQ_INPUT_LAUNCH_SWING_COMP parameter in control register 0x18. The default parameter value is 80d (50h).  
4. Default trace driver swing Setting.  
5. Please see 4.3.3.1 for the further definition on Synchronous and Asynchronous Lock Time.  
6. This specification applies to and DDO1/DDO1 and DDO0/DDO0.  
7. Please see PLL_LOOP_ BANDWIDTH_ 0 for the full range of loop bandwidth settings.  
8. Output Driver Setting of 8.  
9. Output Driver Setting of 36.  
10.Max jitter occurs at the maximum cable length.  
11.Rise/fall time was measured between 80ꢀ and 20ꢀ.  
12.The rise/fall time of signals at source should not be more than 62ns.  
GS12341  
Final Data Sheet  
13 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
3. Input/Output Circuits  
2
VCCO_<n>  
VCCO_<n>  
VCCO_<n>  
VCC_SDI  
VCC_SDI  
VCC_SDI  
1kΩ  
50Ω  
50Ω  
75Ω  
RC  
SDI  
SDI_TERM  
DDO  
DDO  
RC  
3.5kΩ  
Note: The <n> in VCCO_<n> refers to the ouput power supply number. VCCO_1 is  
the power supply connection for DDO1/DDO1, and VCCO_0 is the power supply  
connection for DDO0/DDO0.  
Figure 3-1: SDI, SDI_TERM  
Figure 3-2: DDO1/DDO1, DDO0/DDO0  
VDD  
VDD  
VDD  
VDD  
VDD  
100kΩ  
SDIN,  
SCLK  
CS  
100kΩ  
Figure 3-3: SDIN, SCLK  
Figure 3-4:  
.
CS  
VCC_IO*  
VCC_IO*  
VCC_IO*  
1kΩ  
GPIO[0:3]  
100kΩ  
VDD  
VDD  
VCC_IO*  
SDOUT  
Note: VCC_IO makes reference to the following power supplies and pins:  
VCC_IO = VDD for GPIO[0:1]  
VCC_IO = VCC_CORE for GPIO[2:3]  
Figure 3-5: SDOUT  
Figure 3-6: GPIO[0:3]  
GS12341  
Final Data Sheet  
PDS-061928  
14 of 109  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.1  
August 2019  
4. Detailed Description  
4.1 Device Description  
The GS12341 features a 75Ω internally terminated Cable Equalizer, which can equalize  
up to TBD meters of Belden1694A cable at 12G. The device includes a Reclocker which  
will lock to and re-sample valid SMPTE, MADI, and DVB-ASI signals to produce extremely  
low output jitter, even at extended cable lengths. The Reclocker has extensive loop  
bandwidth control to enable jitter transfer optimization. To facilitate system testing, the  
device also includes 3D eye monitor, PRBS7 checker and generator. The two trace  
drivers have independent amplitude and pre-emphasis control which can compensate  
for 14dB of insertion loss at 5.94GHz. The pre-emphasis control is two dimensional in  
both drivers, where both pre-emphasis pulse amplitude and width adjustments can be  
made to help optimize for interconnect mismatches such as vias and connectors.  
4.1.1 Sleep Mode  
To enable low power operation, the GS12341 has manual and automatic sleep mode  
control.  
The default mode is automatic sleep mode on LOS (Loss Of Signal). The device can also  
be manually put into sleep mode. When the device is in sleep mode, all the core blocks  
are powered down, except the host interface and carrier detect circuits. The trace driver  
can be configured to be disabled or muted during sleep.  
The CTRL_AUTO_SLEEP and CTRL_MANUAL_SLEEP parameters in register 0x3,  
control the sleep mode of the device. The default value of the CTRL_AUTO_SLEEP  
parameter is 1 (auto sleep). While in auto sleep mode, the CTRL_MANUAL_SLEEP  
b
parameter has no effect. To enable host control of the sleep mode, set the  
CTRL_AUTO_SLEEP parameter to 0 manual sleep control. To prevent the device from  
b
entering sleep, set the CTRL_MANUAL_SLEEP parameter to 0 (not sleep). To manually  
b
configure the device to sleep, set the CTRL_MANUAL_SLEEP parameter to 1 (sleep).  
b
The device can also be manually made to sleep through the GPIO pins. The default GPIO  
pin to control sleep is GPIO2 (pin 33). Drive this pin HIGH to make the device sleep.  
Section 4.6 describes the PRBS generator function. If the device's PRBS generator is  
intended to be used without a valid input signal, the device should be manually set to  
not sleep as described above. Without a valid input signal, an LOS status will be  
generated and the device will enter sleep mode and the PRBS block will be disabled. For  
a description of LOS thresholds and settings, see Section 4.2.3.  
GS12341  
Final Data Sheet  
15 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
4.2 Cable Equalizer  
The GS12341 can automatically adjust its gain to equalize and restore SMPTE compliant  
signals received over different lengths of coaxial cable having loss characteristics similar  
to Belden 1694A, 4964R, or Canare L-5.5CUHD. With the default settings, the device will  
automatically equalize MADI at 125Mb/s and SMPTE compliant signals between SD at  
270Mb/s and UHD-SDI at 11.88Gb/s and bypass signals below 125Mb/s.  
The GS12341 features programmable Launch Swing Compensation, squelch threshold  
adjust, and bypass, all of which can be set through the device's host interface. The  
equalized or bypassed signal is then routed to the eye monitor and serial digital  
Reclocker block.  
4.2.1 Cable Equalizer Bypass  
With the default settings, the device will automatically bypass signals below 125Mb/s.  
During cable equalizer-bypass mode, the device supports low data rate and slow edge  
signals such as SMPTE310 and AES3id. The rise/fall times must not exceed 62ns. While in  
cable equalizer bypass mode, signal will not be reclocked.  
To force the device to bypass the cable equalizer, DC restoration stage, and Reclocker,  
the following two methods can be used:  
Host Interface Control:  
Set the following parameters in register 17 :  
h
CTRL_CEQ_AUTO_BYPASS = 0  
CTRL_CEQ_MANUAL_BYPASS = 1  
GPIO Control:  
1. Configure a GPIO as an input by writing 0 to the CFG_GPIO<n>_OUTPUT_ENA.  
h
2. Configure the GPIO function as “cable equalizer bypass enable,” by writing 84 to  
h
CFG_GPIO<n>_FUNCTION.  
3. Drive the selected GPIO pin HIGH.  
Note: The <n> in the control parameter names refers to the GPIO pin number.  
4.2.2 Upstream Launch Swing Compensation  
The GS12341 cable equalizer has an automatic gain control circuit, that is optimized on  
the assumption that the trace driver in the upstream device is SMPTE compliant and has  
a launch swing of 800mV  
10ꢀ. When the source amplitude is known to be  
pp  
non-SMPTE compliant, a compensation adjustment can be made in the GS12341. The  
GS12341 can adjust for launch swings in the range of 250mV to 1V in approximately  
50mV  
increments. Upstream launch swing compensation can be adjusted through  
ppd  
the CFG_EQ_INPUT_LAUNCH_SWING_COMP parameter in control register 0x18. The  
default parameter value is 80 (50 ), which corresponds to a nominal launch swing of  
d
h
800mV  
.
ppd  
GS12341  
Final Data Sheet  
16 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
4.2.3 Carrier Detect, Squelch Control, and Loss of Signal  
The GS12341 cable equalizer has highly configurable carrier detection and squelching  
capability. The carrier detection can be made more robust against spurious signals and  
noise at the inputs and the squelch control can be configured and enabled to reduce  
false outputs to low level signals such as crosstalk.  
The GS12341 reports two separate carrier detect parameters—STAT_PRI_CD and  
STAT_SEC_CD. They are described in Section 4.2.3.1 and Section 4.2.3.2 respectively.  
Note: The parameters referred to within Section 4.2.3 to Section 4.2.3.2 are linked to  
their respective registers in Table 4-1.  
4.2.3.1 Primary Carrier Detection (STAT_PRI_CD) Configuration  
Primary carrier detection (STAT_PRI_CD) can be configured for higher stability by  
filtering out longer transients or glitches. This can be achieved by increasing the  
sampling window over which the signal is sampled and the number of samples required  
to assert or de-assert it.  
There are three configuration parameters that control assertion or de-assertion of  
STAT_PRI_CD:  
CFG_CD_FILTER_SAMPLE_WIN  
CFG_FILTER_DEASSERT_CNT  
CFG_CD_FILTER_ASSERT_CNT  
See Figure 4-1 for a visual representation of the STAT_PRI_CD configuration  
parameters.  
With the default values in place:  
An assertion (setting HIGH) of STAT_PRI_CD will take place after a valid signal is  
present for ~6.5ms  
A de-assertion (setting LOW) of STAT_PRI_CD will take place after loss of a valid  
signal for ~96μs  
If the application requires any adjustment of the sampling window, assertion count, or  
de-assertion count, please consult the following equations to calculate the associated  
time to assert or de-assert STAT_PRI_CD.  
STAT_PRI_CD de-assert time:  
(1.6μs) * (CFG_CD_FILTER_SAMPLE_WIN + 1) * CFG_CD_FILTER_ DEASSERT_CNT  
STAT_PRI_CD assert time:  
(1.6ꢁs) * (CFG_CD_FILTER_SAMPLE_WIN + 1) * CFG_CD_FILTER_ASSERT_CNT  
GS12341  
Final Data Sheet  
17 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
= ASSERT Threshold  
CFG_CD_FILTER_ASSERT_CNT =n  
n=1  
n=2  
n=3  
Time in clock cycles  
CFG_CD_FILTER_SAMPLE_WIN  
= DEASSERT Threshold  
CFG_CD_FILTER_DEASSERT_CNT =n  
n=1  
n=2  
n=3  
Time in clock cycles  
CFG_CD_FILTER_SAMPLE_WIN  
Figure 4-1: STAT_PRI_CD Configuration Parameters  
4.2.3.2 Secondary Carrier Detection (STAT_SEC_CD) Configuration  
The secondary carrier detection signal acts as an additional carrier detection which can  
be further filtered through squelch controls. It also serves as the control signal for Mute  
on LOS (Loss Of Signal) and Disable on LOS. Please refer to Section 4.7.6 to  
Section 4.7.6.2 for further information on this.  
If the application requires the use of squelch settings, start by setting the following:  
CFG_SEC_CD_INCL_CLI_SQUELCH = 1  
Once this parameter is set, the device will apply squelch based off of the settings found  
within the following parameters:  
CFG_CLI_SQUELCH_THRESHOLD  
CFG_CLI_SQUELCH_HYSTERESIS  
The device will use these parameters to determine squelch status and set that within  
STAT_CLI_SQUELCH. Based off of this, secondary carrier detection can be described as:  
STAT_SEC_CD = inverse of (STAT_CLI_SQUELCH & STAT_PRI_CD).  
To help detail how the device determines the state of Squelch, we define the following  
variables:  
CLI = STAT_CABLE_LEN_INDICATION  
THR = CFG_CLI_SQUELCH_THRESHOLD  
HYS = CFG_CLI_SQUELCH_HYSTERESIS  
SQL = STAT_CLI_SQUELCH  
The following rules define the state of SQL. Note: If the cable equalizer is in bypass  
(STAT_CEQ_BYPASS = 1), the device will set SQL to 0.  
If CLI > (THR + HYS), the device will set SQL to 1, otherwise:  
If CLI < (THR - HYS), the device will set SQL to 0, otherwise:  
GS12341  
Final Data Sheet  
18 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
If CLI ≥ (THR - HYS) and CLI ≤ (THR + HYS), SQL remains unchanged  
If SQL = 1, the device will not indicate lock and the trace driver state will be  
defined by output state control parameters settings, see Section 4.7.6 for more  
details  
Table 4-1: Cable Equalizer Status and Configuration Parameters  
Register Address and Name  
Parameter Name  
CFG_SEC_CD_INCL_CLI_SQUELCH Enables or disables squelch control.  
Used to tune the squelch threshold based on the  
Parameter Description  
h
15,  
CARR_ DET_CFG  
CFG_CLI_SQUELCH_THRESHOLD  
CFG_CLI_SQUELCH_HYSTERESIS  
CFG_CD_FILTER_SAMPLE_WIN  
CFG_CD_FILTER_DEASSERT_CNT  
CFG_CD_FILTER_ASSERT_CNT  
STAT_CNT_PRI_CD_CHANGES  
STAT_CNT_SEC_CD_CHANGES  
STAT_CLI_SQUELCH  
tolerance requirements of the application.  
16,  
SQUELCH_ PARAMETERS  
Used to tune the squelch hysteresis based on the  
tolerance requirements of the application.  
20,  
Primary carrier detect sampling window size.  
Primary carrier detect de-assertion count.  
Primary carrier detect assertion count.  
CD_FILTER_ DELAYS_0  
21,  
CD_FILTER_ DELAYS_1  
22,  
CD_FILTER_ DELAYS_2  
A counter showing the number of times the primary  
Carrier Detect signal changed.  
84,  
STICKY_ COUNTS_0  
A counter showing the number of times the secondary  
Carrier Detect signal changed.  
86,  
Cable equalizer Squelch status.  
CURRENT_ STATUS_0  
Primary filtered carrier detect of the analog carrier detect  
signal.  
STAT_PRI_CD  
87,  
CURRENT_ STATUS_1  
Secondary filtered carrier detect of the analog carrier  
detect signal.  
STAT_SEC_CD  
88,  
STAT_CABLE_LEN_INDICATION  
SDI cable length indicator.  
EQ_GAIN_IND  
4.3 Serial Digital Reclocker  
The GS12341 includes an integrated Reclocker, whose purpose is to lock to a valid  
incoming signal from the cable equalizer stage and produce a lower jitter signal at the  
cable or trace driver outputs. The Reclocker will attempt to lock to any of the following  
data rates: MADI (125Mb/s), SD-SDI (270Mb/s), HD-SDI (1.485Gb/s), 3G-SDI (2.97Gb/s),  
6G-SDI (5.94Gb/s) and 12G-SDI (11.88Gb/s). This includes the f/1.001 rates. The default  
settings of the Reclocker block are optimal for most applications. However, the  
following controls allow for customized behaviour of the Reclocker: loop bandwidth  
control, Automatic and Manual Rate Detection. Please see Section 4.3.1 to Section 4.3.2  
for a description of these functionalities.  
GS12341  
Final Data Sheet  
19 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
Note: The parameters referred to within Section 4.3.1 to Section 4.3.2 are linked to their  
respective registers in Table 4-3. For a complete list of registers and functions, please see  
Section 5.  
4.3.1 PLL Loop Bandwidth Control  
The ratio of output peak-to-peak jitter to input peak-to-peak jitter of the Reclocker can  
be represented by a low-pass jitter transfer function, with a bandwidth equal to the PLL  
loop bandwidth. Although the default loop bandwidth settings for the GS12341  
Reclocker are ideal for most SDI signals, the GS12341 allows the user to adjust the loop  
bandwidth for each supported rate.  
Registers 0x0A through 0x0C contain the following parameters which allow the user to  
configure rate dependent loop bandwidth: CFG_PLL_LBW_12G, CFG_PLL_LBW_6G,  
CFG_PLL_LBW_3G, CFG_PLL_LBW_HD, CFG_PLL_LBW_SD, and  
CFG_PLL_LBW_MADI. The loop bandwidth settings are defined in terms of ratios of the  
nominal loop bandwidth. For each rate, where '1.0x' is the nominal loop bandwidth, the  
following ratios are available: 0.0625x, 0.125x, 0.25x, 0.5x, and 1.0x. Table 2-3 provides  
the specific loop bandwidths for each data rate and loop bandwidth setting. Lowering  
the loop bandwidth will lower the jitter amplitude above the loop bandwidth  
frequency. Although lower output jitter is desirable, the lower loop bandwidth may  
reduce the device’s IJT to very high jitter that may be present outside the loop  
bandwidth.  
4.3.2 Automatic and Manual Rate Detection  
With the default rate detect setting, the Reclocker will automatically attempt to lock to  
any of following data rates: MADI (125Mb/s), SD-SDI (270Mb/s), HD-SDI (1.485Gb/s),  
3G-SDI (2.97Gb/s), 6G-SDI (5.94Gb/s) and 12G-SDI (11.88Gb/s). This includes the f/1.001  
rates. However, the Reclocker can be configured to only lock to a single rate, by setting  
the CFG_AUTO_RATE_DETECT_ENA and CFG_MANUAL_RATE parameters in register  
0x06.  
The STAT_LOCK parameter in register 0x86 will indicate that the Reclocker is locked  
when its value is 1 and unlocked when its value is 0 . The lock status can also be  
b
b
monitored externally on any GPIO pin, however it is the default mode for GPIO1, pin 18.  
The STAT_DETECTED_RATE parameter in register 0x87 will indicate the data rate at  
which the Reclocker is locked to. A value of 0 in the STAT_DETECTED_RATE parameter  
d
indicates that the device is not locked, while values between 1 and 6 will indicate that  
d
d
the device is locked to one of the six available rates between MADI at 125Mb/s and  
UHD-SDI at 11.88Gb/s.  
GS12341  
Final Data Sheet  
20 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
Table 4-2: Detected Data Rates  
STAT_DETECTED_  
Detected Data Rate  
RATE [2:0]  
0
1
2
3
4
5
6
7
Unlocked  
MADI (125Mb/s)  
SD (270Mb/s)  
HD (1.485Gb/s)  
3G (2.97Gb/s)  
6G (5.94Gb/s)  
12G (11.88Gb/s)  
Reserved  
If the Reclocker cannot lock to any of the valid rates in automatic mode or the selected  
rate in manual mode, the signal can automatically be bypassed to the output. If the  
Reclocker does lock to the incoming signal, the reclocked and bypassed (if manual  
bypass control enabled) signals are available at the appropriate output. See the  
Section 4.7 for more details.  
4.3.3 Lock Time  
4.3.3.1 Synchronous and Asynchronous Lock Time  
Synchronous lock time is defined as the time it takes the device to re-lock to an existing  
signal that has been momentarily interrupted or to a new signal of the same data rate  
as the previous signal which has been quickly switched in.  
Asynchronous lock time is defined as the time it takes the device to lock when a signal  
is first applied to the serial digital inputs, or when the signal rate changes. The  
asynchronous and synchronous lock times are defined in Table 2-3.  
Note: To ensure synchronous lock times are met, the maximum interruption time of the  
signal is 10μs for an SD-SDI signal. HD, 3G, 6G, or 12G signals must have a maximum  
interruption time of 6μs. The new signal, after interruption, must have the same  
frequency as the original signal but may have an arbitrary phase.  
GS12341  
Final Data Sheet  
21 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
Table 4-3: Reclocker Control and Status Parameters  
Register Address  
and Name  
h
Parameter Name  
Description  
Enables or disables the automatic rate detection mode of the  
Reclocker.  
CFG_AUTO_RATE_DETECT_ENA  
CFG_MANUAL_RATE  
06,  
RATE_ DETECT_ MODE  
Select a single rate for Reclocker rate detection when  
CFG_AUTO_RATE_DETECT_ENA is 0b.  
0A,  
CFG_PLL_LBW_12G  
CFG_PLL_LBW_6G  
CFG_PLL_LBW_3G  
CFG_PLL_LBW_HD  
CFG_PLL_LBW_SD  
CFG_PLL_LBW_MADI  
Configures the Loop Bandwidth for 12G signals.  
Configures the Loop Bandwidth for 6G signals.  
Configures the Loop Bandwidth for 3G signals.  
Configures the Loop Bandwidth for HD signals.  
Configures the Loop Bandwidth for SD signals.  
Configures the Loop Bandwidth for MADI signals.  
PLL_LOOP_  
BANDWIDTH_ 0  
0B,  
PLL_LOOP_  
BANDWIDTH_ 1  
0C,  
PLL_LOOP_  
BANDWIDTH_ 2  
CFG_GPIO1_FUNCTION  
Sets the function of GPIO1.  
11,  
GPIO1_CFG  
CFG_GPIO1_OUTPUT_ ENA  
Sets the GPIO pin as either an output or an input.  
Counter showing the number of times the PLL lock status  
changed.  
STAT_CNT_PLL_LOCK_CHANGES  
STAT_CNT_RATE_CHANGES  
STAT_LOCK  
85,  
STICKY_ COUNTS_1  
Counter showing the number of times the PLL lock rate  
changed.  
86,  
The status of the PLL. Locked, or unlocked.  
The rate at which the PLL is locked to.  
CURRENT_ STATUS_0  
87,  
STAT_DETECTED_RATE  
CURRENT_ STATUS_1  
GS12341  
Final Data Sheet  
PDS-061928  
22 of 109  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.1  
August 2019  
4.4 PRBS Checker  
The GS12341 includes an integrated PRBS checker, which can error check a PRBS7 signal  
out of the cable equalizer input block.  
There are two modes of operation for the PRBS checker:  
Timed Mode: Used for precise measurements of up to ~3.334s.  
In timed mode, the host sets the measurement time and executes the checker  
operation. The device ends the PRBS error check measurement when the timer  
expires, and the host reads back the measurement status and error count.  
Continuous Mode: Can be used for longer measurements but with less precision in  
the time interval.  
In continuous mode, the host controls the starts and stops of the PRBS error  
checking operation then reads back the measurement status and error count.  
Note: When working with the PRBS Checker, please note the following:  
The parameters referred to in this Section 4.4.1 to Section 4.4.2 are briefly described  
and linked to their respective registers in Table 4-4. For a complete list of registers  
and functions, please see Section 5.  
The PRBS generator and checker can be active at the same time, however, the  
generator can not be looped back on itself for error checking.  
4.4.1 Timed PRBS Check Measurement Procedure  
For applications where measurement times are ~3.34s or less, the timed PRBS check  
mode is the most suitable. Alternatively, to achieve precise timing for lower BER signals,  
the timed PRBS check measurement can be repeated by the host and the total  
measurement time and error count is determined by summing the individual  
measurements.  
In timed mode, the host sets the total measurement time by setting the  
CFG_PRBS_CHECK_PREDIVIDER and the CFG_PRBS_CHECK_MEAS_TIME  
parameters to the required values to achieve the total measurement time required by  
the application.  
To perform a timed PRBS measurement, please complete the following steps:  
1. Set the appropriate settings within CFG_PRBS_CHECK_PREDIVIDER and  
CFG_PRBS_CHECK_MEAS_TIME to achieve the total measurement time required  
by the application. The TMT (Total Measurement Time) is determined by the  
following equation:  
TMT = CFG_PRBS_CHECK_PREDIVIDER * (CFG_PRBS_CHECK_MEAS_TIME  
*256+1) * (1/40MHz)  
Note: Using the default CFG_PRBS_CHECK_PREDIVIDER setting of 0 (pre-divider  
= 4) and CFG_PRBS_CHECK_MEAS_TIME setting of 3 (MEAS_TIME = 3), the TMT  
(total measurement time) is ~77μs per measurement.  
2. Follow the steps outlined in Figure 4-2: Timed PRBS Check Flow.  
GS12341  
Final Data Sheet  
23 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
4.4.2 Continuous PRBS Check Measurement Procedure  
As previously mentioned, the maximum measurement time for a timed PRBS error  
measurement is ~3.35 seconds. For links with very low error rates, this time is insufficient  
to capture an adequate number of errors. For these situations, the continuous PRBS  
check measurement is more appropriate.  
In continuous PRBS measurement mode, the measurement can run as long as required  
(assuming the device remains locked) to ensure the BER test level is met.  
To perform a continuous PRBS measurement, please follow the steps outlined in the  
flowchart found within Figure 4-3: Continuous PRBS Check Flow.  
Table 4-4: PRBS Checker Parameter Description  
Register Address  
and Name  
h
Parameter Name  
Description  
CFG_PRBS_CHECK_PREDIVIDER  
CFG_PRBS_CHECK_MEAS_TIME  
Selects pre-divider for PRBS check measurement timer.  
50,  
Selects PRBS check measurement interval for timed  
measurements.  
PRBS_ CHK_CFG  
Selects between timed and continuous type PRBS  
measurement.  
CTRL_PRBS_CHECK_TIMED_CONT_B  
TRL_PRBS_CHECK_START  
51,  
PRBS_CHK_ CTRL  
Used to start and stop PRBS measurements.  
PRBS error count storage location.  
89,  
STAT_PRBS_CHK_ERR_CNT  
PRBS_ CHK_ERR_CNT  
STAT_PRBS_CHECK_STATUS  
Status indication of PRBS checker.  
8A,  
PRBS_ CHK_STATUS  
STAT_PRBS_CHECK_LAST_ABORT  
Indication bit for PRBS successful completion or abort.  
GS12341  
Final Data Sheet  
PDS-061928  
24 of 109  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.1  
August 2019  
Note:  
Start Timed PRBS Check Measurement  
The host must not change ctrl_prbs_check_start  
during a PRBS timed check except as described in  
this diagram. There is no capability for the host to  
abort a timed PRBS check once requested.  
In particular, after setting ctrl_prbs_check_start to  
1 for a timed check, the host is not permitted to  
write ctrl_prbs_check_start back to 0 until the  
device sets stat_prbs_check_status to 2 or 3  
indicating completion or abort. Behaviour is  
undefined if it does so; it would lead to race  
conditions in the host <-> device handshake.  
Host sets  
CTRL_PRBS_CHECK_TIMED_CONT_B = 1  
CTRL_PRBS_CHECK_START = 1  
Device clears error count  
And attempts to start PRBS  
checker based on lock  
condition of device  
Device Sets  
STAT_PRBS_CHK_ERR_CNT = 0  
Loss of lock occurred during measurement  
or at the beginning of measurement  
initiation. Error count is invalid  
Resets PRBS  
checker.  
STAT_PRBS_CHECK_STATUS  
= 3  
Host sets  
CTRL_PRBS_CHECK_START = 0  
YES  
YES  
Prepares device  
for next  
operation  
NO  
NO  
Device Sets  
STAT_PRBS_CHECK_STATUS =  
0
STAT_PRBS_CHECK_STATUS  
= 1  
YES  
PRBS Checker is ready for new  
operation  
NO  
Status indicates that  
timer Expired, PRBS  
Timed Measurement  
Complete  
NO  
STAT_PRBS_CHECK_STATUS  
= 2  
Resets PRBS  
checker.  
YES  
Host sets  
CTRL_PRBS_CHECK_START = 0  
NO  
STAT_PRBS_CHECK_STATUS  
= 0  
YES  
PRBS Error Check Completed  
Successfully  
User reads Error count from  
STAT_PRBS_CHK_ERR_CNT  
Figure 4-2: Timed PRBS Check Flow  
GS12341  
Final Data Sheet  
25 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
Start Continuous PRBS Check  
Measurement  
Device clears error count  
And attempts to start PRBS  
checker based on lock  
condition of device  
Host sets  
CTRL_PRBS_CHECK_TIMED_CONT_B = 0  
CTRL_PRBS_CHECK_START = 1  
Device Sets  
STAT_PRBS_CHK_ERR_CNT = 0  
Loss of lock occurred during  
measurement or at the  
beginning of measurement  
initiation. Error count is invalid  
Resets PRBS  
checker.  
STAT_PRBS_CHECK_STATUS  
= 3  
Host sets  
CTRL_PRBS_CHECK_START = 0  
YES  
Prepares device  
for next  
operation  
NO  
Device Sets  
STAT_PRBS_CHECK_STATUS =  
0
STAT_PRBS_CHECK_STATUS  
= 1  
NO  
YES  
NO  
Host may terminate PRBS  
measurement at anytime  
by completing this action.  
PRBS Checker is ready for new  
operation  
Host sets  
CTRL_PRBS_CHECK_START  
=0  
YES  
YES  
NO  
STAT_PRBS_CHECK_STATUS  
= 0  
YES  
STAT_PRBS_CHECK_LAST_ABORT  
= 1  
This step is to ensure that an error did  
not occur between ending the PRBS  
measurement and the last polling of  
STAT_PRBS_CHECK_STATUS.  
NO  
PRBS Error Check Completed  
Successfully  
User reads Error count from  
STAT_PRBS_CHK_ERR_CNT  
Figure 4-3: Continuous PRBS Check Flow  
GS12341  
Final Data Sheet  
26 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
4.5 EYE Monitor  
The GS12341 includes an integrated eye monitor, which can scan the equalized signal  
from the cable equalizer block. The eye monitor is capable of performing a full 128h x  
256v matrix-scan or simply a 4 coordinate shape-scan of the equalized signal (See  
Figure 4-4).  
Note: If the eye monitor will be used during normal operation of the device (cable  
equalizer mission mode), the user must ensure that the Device Power-up Sequence in  
Section 4.9.12 is completed to prevent temporary signal disturbance when enabling the  
eye monitor.  
Figure 4-4: Full Matrix Scan (left) and 4-Point Shape Scan (right)  
The eye monitor is highly configurable, and the host can configure the offset, resolution,  
sample time, and error threshold parameters to control the depth and execution time of  
the scan. The EYE Monitor scans the signal from the cable equalizer block. Similar to the  
PRBS Checker, the eye monitor is controlled through a 4-way handshake mechanism.  
The following sections outline the scan parameters and procedure to configure the eye  
scan area, error threshold, and run a shape or full scan.  
GS12341  
Final Data Sheet  
27 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
4.5.1 Shape Scan and Measurement Time  
0
Max Horizontal Scan Resolution  
Default  
128  
Vertical  
Offset  
Start  
Vertical Offset Step = 1  
Phase Step = 1  
Vertical  
Offset Start  
Vertical  
Offset Stop  
Phase Start  
Phase Stop  
Vertical Offset Step = 2  
Phase Step = 1  
Default  
Vertical  
Offset  
Stop  
255  
0
127  
Default  
Default  
Phase  
Start  
Phase  
Stop  
Vertical Offset Step = 4  
Phase Step = 4  
Figure 4-5: Eye Scan Matrix Parameters  
Figure 4-5 shows a visual representation of the scan matrix and indicates the spatial  
parameters that determine the scan area and resolution. Running a scan using the  
default offset and step parameters, results in 32768 (128x256) samples. The number of  
samples and thus, the total scan time can be reduced to meet the needs of the  
application. The scan area can be reduced by reducing the span determined by the  
vertical and phase start and stop offsets, or the resolution can be reduced by increasing  
the step size between adjacent samples. On the right in Figure 4-5, there are three step  
settings used as examples, however there are a total of nine combinations possible. See  
Table 4-6 for the register addresses and parameter names of the spatial eye scan  
parameters.  
For example, by increasing the vertical and phase step size to 4, the resolution is  
2
reduced to (1/4) , thus reducing the number of samples down to 2048 (32768x1/16).  
GS12341  
Final Data Sheet  
28 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
The vertical and horizontal scan information is useful when adjusting pre-emphasis and  
equalization of a link. However, once this is accomplished, it may be sufficient to use the  
eye scanner to only monitor jitter by setting the offsets to simply slice the eye at the  
centre offset position, thus obtaining a simple 128 sample horizontal scan. A horizontal  
eye can be configured to run in just over a millisecond.  
In addition to the spatial parameters, the sample time, and thus the bit error rate  
resolution for the eye scan can be adjusted; longer scans can detect finer bit error rates.  
However, this proportionally increases the total scan time. The sample time in  
microseconds is determined by a 32-bit time-out value split across two 16 bit registers.  
See Table 4-6 for the register addresses and parameter names of the time-out eye scan  
parameters.  
For example, using the default spatial and temporal measurement scan parameters, the  
scan time is approximately 6.6 seconds (32768 x 2 x 100μs). However, by changing the  
vertical and horizontal step size to 4, the scan time can be reduced to 400ms  
(2048x2x100μs).  
The error count information can be used as is to determine the minimum inner contour  
based on the measurement time. However, the basic data can be post processed to  
determine things like error rate, and error threshold.  
The following equations provide guidance for user post-processing:  
Equation 4-1  
Equation 4-2  
Equation 4-3  
sample1error1count  
error1rate = -------------------------------------------------------------  
sample1time  
Contour maps can be created by defining error rate thresholds, and grouping sampled  
points that fall between thresholds.  
For example:  
sample1time  
sample1time  
-----------------------------------------------------------------------  
-----------------------------------------------------------------------  
sample1error1threshold   
error1rate1threshold11  
error1rate1threshold12  
Some sampling scopes provide eye maps with BER contours; similar limited BER contour  
approximations can be obtained from the eye scan by using BER threshold groups.  
For example:  
sample1time1x1data1rate  
error1rate1threshold11  
sample1time1x1data1rate  
error1rate1threshold12  
-------------------------------------------------------------------------------  
-------------------------------------------------------------------------------  
sample1error1threshold   
GS12341  
Final Data Sheet  
29 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
Table 4-5: Spatial Scan Configuration Parameters  
Register Address and Name  
Parameter Name  
Description  
h
CTRL_EYE_PHASE_START  
Horizontal phase start index  
Horizontal phase stop index  
Horizontal phase step size  
Vertical offset start index  
Vertical offset stop index  
Vertical offset step size  
5A, EYE_MON_ SCAN_CTRL_0  
5B, EYE_MON_ SCAN_CTRL_1  
5C, EYE_MON_ SCAN_CTRL_2  
CTRL_EYE_PHASE_STOP  
CTRL_EYE_PHASE_STEP  
CTRL_EYE_VERT_OFFSET_START  
CTRL_EYE_VERT_OFFSET_STOP  
CTRL_EYE_VERT_OFFSET_STEP  
The next section describes the implementation of the matrix-scan and shape-scan.  
4.5.2 Matrix-Scan and Shape-Scan Operation  
The previous section described the parameters used to adjust the spatial and temporal  
eye scan settings. Each sample of the eye scan can record up to 65536 errors. A full eye  
scan would require 64KB (256 x 128 x 2 Bytes) of memory to store the data of a full scan.  
The eye monitor was implemented to use device resources more efficiently by  
segmenting a full scan into several partial scan segments. Each partial scans segment  
can contain up to 512B of scan data.  
In the case of a full matrix-scan, there are 128 partial scan segments and each partial  
scan segment contains two complete scan lines (2 x 128 x 2B = 512B). In the case of a  
partial matrix-scan, each scan segment contains multiple partial scan lines including  
partial lines (see Figure 4-6).  
GS12341  
Final Data Sheet  
30 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
1st Partial Scan  
Error Count = Max  
0 <Error Count < Max  
Error Count = 0  
1st Partial Scan  
1st  
1 st  
Vertical Offset Start  
2nd  
2nd  
2nd  
2nd  
...  
...  
...  
...  
Last  
Last  
Vertical Offset Stop  
128th Partial Scan  
Phase Start  
Phase Stop  
Figure 4-6: Full Matrix Scan (left) and Partial Matrix Scan (right)  
Figure 4-6 illustrates an example of an eye scan, where the sampled eye data is not  
centred within the scan matrix. The eye scan data has an arbitrary centre phase relative  
to the centre of the matrix which is determined when the eye monitor is powered up.  
While the eye monitor remains powered, subsequent scans will maintain the same  
relative phase allowing for consecutive scans to be compared for changes.  
Although the scan data is not centred, a simple algorithm can be applied to the data to  
shift the eye data and extract the relevant information.  
In addition to the matrix-scan, the eye monitor includes a built-in function called a  
shape-scan. The shape-scan returns four coordinates corresponding to the horizontal  
and vertical extremes of the inner eye (Figure 4-7).  
GS12341  
Final Data Sheet  
31 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
Error Count = Max  
> error count threshold  
Error Count = 0  
Positive Edge  
(PE)  
Right Edge  
(RE)  
Left Edge  
(LE)  
Negative Edge  
(NE)  
Figure 4-7: 4-Point Scan Coordinates Relative to the Eye  
The four points obtained from the shape-scan can be used to quickly and easily  
calculate the eye height and width of the signal eye. The shape-scan alone will most  
likely meet the signal analysis requirements of most applications. Alternatively, the  
coordinates obtained from the shape-scan can be used to optimize the bounds of a  
partial matrix-scan. The four points returned from the shape-scan are determined by the  
error rate threshold set by the error threshold parameter and the time-out parameters  
previously discussed.  
Table 4-6: Time-out Eye Scan Parameters  
Register Address and Name  
Parameter Name  
Description  
h
56, EYE_MON_ INT_CFG_2  
54, EYE_MON_ INT_CFG_0  
55, EYE_MON_ INT_CFG_1  
CFG_EYE_BER_THRESHOLD  
CFG_EYE_MON_TIMEOUT_MS  
CFG_EYE_MON_TIMEOUT_LS  
Number of sample errors to determine fail  
MSB of measurement time in microseconds  
LSB of measurement time in microseconds  
This section provides a step-by-step procedure to run a matrix and shape-scan. The  
shape-scan procedure is described first.  
GS12341  
Final Data Sheet  
32 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
Shape-Scan Procedure:  
1. Ensure the offset and step parameters described in Table 4-5 are set to their default  
values.  
2. Configure the 4-point error rate threshold by setting each of the parameters listed  
in Table 4-6.  
3. Configure the eye monitor to run a shape-scan by setting  
CTRL_EYE_SHAPE_SCAN_B to 1.  
Start the scan and poll the scanner status register until the scan is complete. Please refer  
to the flow diagram in Figure 4-8.  
Please Note the Following:  
Run Shape Scan  
- While the eye monitor is  
powered-up, the cable equalizer  
only has partial adaptation  
enabled.  
Host powers up eye monitor and starts  
Shape Scan by setting:  
CTRL_EYE_MON_POWER_CTRL = 1  
CTRL_EYE_MON_START = 1  
Note: the host can write  
ctrl_eye_mon_power_ctrl = 1 and  
ctrl_eye_mon_start = 1 in the  
same GSPI write, i.e. at the same  
time. It is not necessary to set the  
power up first.  
- Status = STAT_EYE_MON_STATUS  
Host reads scan status from  
STAT_EYE_MON_STATUS  
3
1 or 0  
Status  
2
Host determines Eye Width and Eye Height by reading from  
the following 4 registers:  
le = STAT_EYE_SHAPE_LEFT_EDGE_PHASE  
re = STAT_EYE_SHAPE_RIGHT_EDGE_PHASE  
pe =STAT_EYE_SHAPE_POS_EDGE_OFFSET  
ne =STAT_EYE_SHAPE_NEG_EDGE_OFFSET  
if pe > ne:  
Scan Failed  
Reset Eye Scanner  
EyeHeight = (256 + ne - pe)  
else:  
EyeHeight = (ne - pe)  
if le > re:  
EyeWidtht = (128 + re - le)  
else:  
EyeWidtht = (re - le)  
Host Resets Eye Scanner for new scan by  
setting CTRL_EYE_MON_START = 0  
Or power down by setting  
CTRL_EYE_MON_POWER_CTRL = 0  
NO  
Status = 0?  
Shape Scan  
Complete  
Figure 4-8: Shape-Scan Flow Diagram  
GS12341  
Final Data Sheet  
33 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
Matrix-Scan Procedure:  
1. Set the bounds of the matrix-scan with the offset and step parameters described in  
Table 4-5. The default value results in a full matrix-scan. Alternatively, the  
shape-scan can be executed and the coordinates returned can be used to minimize  
the scan time and data size of the scan.  
2. Configure the 4-point error rate threshold by setting each of the parameters listed  
in Table 4-6.  
3. Configure the eye monitor to run a matrix-scan by setting  
CTRL_EYE_SHAPE_SCAN_B to 0.  
4. Start the scan and poll the scanner status register until the scan is complete. Please  
refer to the flow diagram in Figure 4-9.  
Read Eye Scan Buffer Procedure:  
1. Host reads image size from STAT_EYE_IMAGE_SIZE.   
Note: The matrix-scan is composed of multiple partial scan segments. The size (in  
Bytes) of the last partial scan segment is stored in STAT_EYE_IMAGE_SIZE.  
2. Host reads scan buffer data from register 0x6CC1 to (0x6CC1 + (size read from  
STAT_EYE_IMAGE_SIZE)/2).  
Address 0x6CC1 is the first header word corresponding to the last vertical offset  
position in the matrix that was read  
Address 0x6CC2 is the second header word corresponding to the image size.  
This value is a copy of the image size that was read from  
STAT_EYE_IMAGE_SIZE.  
Address 0x6CC3 to (0x6CC1 + (size read from STAT_EYE_IMAGE_SIZE)/2) is the  
eye scan data.  
The image data is 2 bytes per sample point  
Making reference to the Matrix shown in Figure 4-5, the eye scan data  
starting at 0x6CC3 is stored in order from left to right, top to bottom, from  
the last stored vertical/horizontal position in the matrix  
The number of samples contained in the scan buffer is equal to (size read from  
STAT_EYE_IMAGE_SIZE - 4)/2.  
GS12341  
Final Data Sheet  
34 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
Please Note the Following:  
Run Scan  
- While the eye monitor is powered-up,  
the cable equalizer only has partial  
adaptation enabled.  
YES  
Status = 0?  
Host powers up eye monitor and starts  
Matrix Scan by setting:  
CTRL_EYE_MON_POWER_CTRL = 1  
CTRL_EYE_MON_START = 1  
- Status = STAT_EYE_MON_STATUS  
Note: the host can write  
- Partial = STAT_EYE_SCAN_PARTIAL_OR_FULL  
ctrl_eye_mon_power_ctrl = 1 and  
ctrl_eye_mon_start = 1 in the  
same GSPI write, i.e. at the same  
time. It is not necessary to set the  
power up first.  
NO  
Host reads scan status from  
STAT_EYE_MON_STATUS  
3
1 or 0  
status  
2
Host preforms  
Read Buffer  
Scan  
Host Resets Eye Scanner for  
new scan by setting  
CTRL_EYE_MON_START = 0  
Scan Failed  
Reset Eye Scanner  
Eye Scan  
Data  
Procedure  
NO  
Partial = 1?  
YES  
Host Resets Eye Scanner for new scan by  
setting CTRL_EYE_MON_START = 0  
Or power down by setting  
CTRL_EYE_MON_POWER_CTRL = 0  
NO  
Status = 0?  
Full Eye Scan  
Complete  
Figure 4-9: Matrix-Scan Flow Diagram  
GS12341  
Final Data Sheet  
35 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
4.6 PRBS Generator  
The GS12341 includes an integrated PRBS generator which can produce a differential  
PRBS7 or a divided clock signal on either output for system testing.  
Note: When working with the PRBS Generator, please note the following.  
The PRBS generator and checker can be active at the same time, however, the  
generator can not be looped back on itself for error checking.  
If the application requires adjustments to the default output swing, please see  
Section 4.7.4.  
The parameters referred to within this section are linked to their respective  
registers in Table 4-7. For a complete list of registers and functions, please see  
Section 5.  
1. Select the PRBS generator as the source on the appropriate output:  
To switch DDO0/DDO0 from data mode to PRBS generator mode, set  
CTRL_OUTPUT0_SIGNAL_SEL = 1  
To switch DDO1/DDO1 from data mode to PRBS generator mode, set  
CTRL_OUTPUT1_SIGNAL_SEL = 1  
2. The default device settings are configured to power down the device on loss of  
input signal. If the PRBS generator is to be used without a valid input signal, then  
the following automatic setting parameters must be disabled. This must be done to  
ensure device is powered up and the outputs are active for the PRBS generator.  
The following settings are required for PRBS generator on either output:  
CTRL_AUTO_SLEEP = 0  
CTRL_MANUAL_SLEEP = 0  
The following settings are required when DDO1/DDO1 is selected as PRBS  
output:  
CTRL_OUTPUT1_AUTO_MUTE = 0  
CTRL_OUTPUT1_MANUAL_MUTE = 0  
CTRL_OUTPUT1_AUTO_DISABLE = 0  
CTRL_OUTPUT1_MANUAL_DISABLE = 0  
The following settings are required when DDO0/DDO0 is selected as PRBS  
output:  
CTRL_OUTPUT0_AUTO_MUTE = 0  
CTRL_OUTPUT0_MANUAL_MUTE = 0  
CTRL_OUTPUT0_AUTO_DISABLE = 0  
CTRL_OUTPUT0_MANUAL_DISABLE = 0  
3. Set the values within the following parameters which meet the needs of the  
application:  
CTRL_PRBS_GEN_SIGNAL_SELECT  
CTRL_PRBS_GEN_CLK_SRC  
CTRL_PRBS_GEN_DATA_RATE  
GS12341  
Final Data Sheet  
36 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
Note: If CTRL_PRBS_GEN_CLK_SRC is set to use a recovered clock, a valid  
signal that the Reclocker has locked to must be present for proper operation,  
and the PRBS generator will match this data rate regardless of what rate  
CTRL_PRBS_GEN_DATA_RATE is set to.  
CTRL_PRBS_GEN_CLK_DIVIDER  
CTRL_PRBS_GEN_INVERT  
4. Start the generator by setting CTRL_PRBS_GEN_ENABLE = 1.  
To stop the generator at any time, set CTRL_PRBS_GEN_ENABLE = 0. If the use of the  
PRBS generator is complete, revert any settings made in steps 1, 2 and/or 4 to return to  
normal operation.  
Table 4-7: PRBS Generator Parameter Descriptions  
Register Address  
and Name  
h
Parameter Name  
Description  
CTRL_AUTO_SLEEP  
Set the device to auto or manual sleep.  
3, CONTROL_ SLEEP  
Manually set the sleep setting of the device when auto  
sleep mode is turned off.  
CTRL_MANUAL_SLEEP  
Selects between data or PRBS generator as the driver  
source for DDO1/DDO1.  
CTRL_OUTPUT1_SIGNAL_SEL  
CTRL_OUTPUT0_SIGNAL_SEL  
CTRL_OUTPUT1_AUTO_MUTE  
CTRL_OUTPUT1_MANUAL_MUTE  
CTRL_OUTPUT0_AUTO_MUTE  
CTRL_OUTPUT0_MANUAL_MUTE  
CTRL_OUTPUT1_AUTO_DISABLE  
CTRL_OUTPUT1_MANUAL_DISABLE  
CTRL_OUTPUT0_AUTO_DISABLE  
CTRL_OUTPUT0_MANUAL_DISABLE  
48, OUTPUT_ SIG_SELECT  
Selects between data or PRBS generator as the driver  
source for DDO0/DDO0.  
Select automatic or manual mute control for  
DDO1/DDO1.  
Manually set the mute control for DDO1/DDO1 when  
auto mute mode is turned off.  
49, CONTROL_ OUTPUT_  
MUTE  
Select automatic or manual mute control for  
DDO0/DDO0.  
Manually set the mute control of the DDO0/DDO0 when  
auto mute mode is turned off.  
Selects automatic or manual disable control for  
DDO1/DDO1.  
Manually set the disable control of the DDO1/DDO1  
when auto disable mode is turned off.  
4A, CONTROL_ OUTPUT_  
DISABLE  
Selects automatic or manual disable control for  
DDO0/DDO0.  
Manually set the disable control of the DDO0/DDO0  
when auto disable mode is turned off.  
GS12341  
Final Data Sheet  
PDS-061928  
37 of 109  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.1  
August 2019  
Table 4-7: PRBS Generator Parameter Descriptions (Continued)  
Register Address  
and Name  
h
Parameter Name  
Description  
Selects between setting the output of the PRBS  
generator to being a clock or a PRBS test signal.  
CTRL_PRBS_GEN_SIGNAL_SELECT  
CTRL_PRBS_GEN_CLK_SRC  
CTRL_PRBS_GEN_CLK_DIVIDER  
CTRL_PRBS_GEN_INVERT  
Selects the clock source used by the PRBS generator.  
If a clock is selected as the PRBS output signal, this  
parameter sets the divide ratio of the clock.  
52, PRBS_GEN_ CTRL  
Allows the polarity of the PRBS signal to be inverted.  
If a PRBS test signal is selected as the output signal, this  
parameter sets the data rate of the PRBS7 signal.  
CTRL_PRBS_GEN_DATA_RATE  
CTRL_PRBS_GEN_ENABLE  
Used to enable or disable the PRBS generator.  
4.7 Output Drivers  
The GS12341 features two independently-configurable output drivers (see Figure 3-2),  
with data (reclocked or bypassed) available on both outputs. The two drivers provide  
highly-configurable amplitude and pre-emphasis control. The signal on the outputs can  
be inverted to help with signal polarity when layout requires trace inversion. The PRBS  
generator is available on both outputs. The LOS (Loss Of Signal) status from the  
equalizer stage can be used to automatically mute or disable the outputs on their  
assertion. The Loss of Lock status from the Reclocker block can be used to mute the  
outputs. The trace drivers can be configured to mute or disable during sleep. The sleep  
control modes takes precedence over the manual or automatic LOS and Loss of Lock  
output control modes.  
Note: The <n> in the control parameter names refers to the output number. Output 0 is  
DDO0/DDO0 and output 1 is DDO1/DDO1.  
4.7.1 Bypassed Reclocker Signal Output Control  
With the default power-up settings, the GS12341 outputs will automatically switch to  
the bypassed signal (non-reclocked) whenever the PLL is unlocked. Alternatively,  
manual reclocker bypass may be configured by setting the  
CTRL_OUTPUT<n>_RETIMER_ AUTO_BYPASS and  
CTRL_OUTPUT<n>_RETIMER_MANUAL_BYPASS parameters in register 0x4C to 0  
b
and 1 respectively via the host interface, in which case the PLL will remain bypassed for  
b
all rates.  
The reclocker bypass function, manual or automatic, does not affect the input  
equalization function of the device.  
If both outputs are manually disabled, then the device will power down the Reclocker  
block and features of the reclocker such as rate detect and lock detect will no longer be  
accessible in this mode.  
GS12341  
Final Data Sheet  
38 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
4.7.2 Output Driver Polarity Inversion  
While in data mode, the signal polarity may be inverted at the outputs through the  
CTRL_OUTPUT<n>_ DATA_ INVERT parameters in register 0x48. This may be useful to  
compensate for an inverted upstream signal or to facilitate board signal routing. To  
invert the polarity of either of the two output drivers, write 1 to control parameter  
b
CTRL_OUTPUT<n>_DATA_ INVERT.  
4.7.3 Output Driver Data Rate Selection  
By default, the GS12341 uses the SD trace driver output group settings for all data rates,  
regardless of Reclocker lock condition or data rate being applied. The following  
parameters are used to control the output for all data rates in the default condition:  
CFG_OUTPUT<n>_TD_SD_DRIVER_SWING  
CFG_OUTPUT<n>_TD_SD_PREEMPH_WIDTH  
CFG_OUTPUT<n>_TD_SD_PREEMPH_AMPL  
CFG_OUTPUT<n>_TD_SD_PREEMPH_PWRDWN  
If required, per-rate selection of the trace driver output group setting is possible by  
setting CTRL_OUTPUT<n>_TRDR_PER_RATE = 1. Once set, the trace driver output  
group will be determined by the rate to which the Reclocker is locked. For example, if  
the Reclocker is locked to 12G, the following parameters will be used to control the  
output drivers.  
CFG_OUTPUT<n>_TD_12G_DRIVER_SWING  
CFG_OUTPUT<n>_TD_12G_PREEMPH_WIDTH  
CFG_OUTPUT<n>_TD_12G_PREEMPH_AMPL  
CFG_OUTPUT<n>_TD_12G_PREEMPH_PWRDWN  
Note: If per-rate settings are being used, when the Reclocker is not locked the trace  
driver will use the 12G trace driver output group settings.  
4.7.4 Amplitude and Pre-Emphasis Control  
The two output drivers offer very granular amplitude and pre-emphasis control. For  
optimal loss compensation, both the pre-emphasis pulse amplitude and the  
pre-emphasis pulse width can be independently configured on both output drivers.  
This extra flexibility provides a mechanism to better shape the pre-emphasis gain to  
match the frequency loss response of interconnect composed of trace, connector and  
via losses. The swing and pre-emphasis can be independently configured for specific  
data rates.  
CFG_OUTPUT<n>_TD_SD_DRIVER_SWING (SD)  
CFG_OUTPUT<n>_TD_HD_DRIVER_SWING (HD)  
CFG_OUTPUT<n>_TD_3G_DRIVER_SWING (3G)  
CFG_OUTPUT<n>_TD_6G_DRIVER_SWING (6G)  
CFG_OUTPUT<n>_TD_12G_DRIVER_SWING (12G)  
GS12341  
Final Data Sheet  
39 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
The output pre-emphasis on the trace driver can be configured for the following five  
rates:  
CFG_OUTPUT<n>_TD_SD_PREEMPH_WIDTH (SD)  
CFG_OUTPUT<n>_TD_SD_PREEMPH_AMPL (SD)  
CFG_OUTPUT<n>_TD_HD_PREEMPH_WIDTH (HD)  
CFG_OUTPUT<n>_TD_HD_PREEMPH_AMPL (HD)  
CFG_OUTPUT<n>_TD_3G_PREEMPH_WIDTH (3G)  
CFG_OUTPUT<n>_TD_3G_PREEMPH_AMPL (3G)  
CFG_OUTPUT<n>_TD_6G_PREEMPH_WIDTH (6G)  
CFG_OUTPUT<n>_TD_6G_PREEMPH_AMPL (6G)  
CFG_OUTPUT<n>_TD_12G_PREEMPH_WIDTH (12G)  
CFG_OUTPUT<n>_TD_12G_PREEMPH_AMPL (12G)  
The trace driver swing can be adjusted in ≈25mV increments. The default swing value  
pp  
is 400mV  
into an external 100Ω differential load. Although an adequate swing and  
ppd  
pre-emphasis can be achieved with a 1.8V output supply, for long traces where  
maximum output swing and pre-emphasis range is desired, it is recommended that the  
device VCC_DDO output supply pin be connected to a 2.5V supply. The default  
pre-emphasis settings provide minimal insertion loss compensation.  
4.7.4.1 Pre-emphasis Optimization  
The goal of pre-emphasis is to open the eye at the downstream receiver as much as  
possible. This means minimizing ISI jitter while meeting sufficient inner eye amplitude  
to meet a receiver's input sensitivity.  
The only requirement of the trace driver pre-emphasis settings is to minimize ISI  
introduced by a lossy link and maximize the eye opening at the receiver. The  
Pre-emphasis compensation of the GS12341 output channel is a two-step process. The  
first step is to use the settings from Figure 4-10 to Figure 4-17 that best match the  
insertion loss of the link in the application, while the second step is a fine optimization  
procedure.  
In most cases, where the downstream device has a Reclocker, first step alone may meet  
the design target. However, if the downstream device is a non-reclocked buffer or  
crosspoint, it may be required to further optimize the settings to minimize the jitter  
thereby maximizing the system jitter budget. To do this, please see the Fine  
Optimization Procedure.  
In the remainder of this section the following abbreviations are used for clarity:  
DS = Driver Swing  
PPA = Pre-emphasis Pulse Amplitude  
PPW = Pre-emphasis Pulse Width  
Note: The <n> in the VCCO refers to the output power supply number. Where VCCO_1  
is the power supply connection for DDO1/DDO1, and VCCO_0 is the power supply  
connection for DDO0/DDO0.  
GS12341  
Final Data Sheet  
40 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
7
6
5
5
10 15  
3
5 10 15 10 15 20 10 15 20 15 20 25 15 20 25 20 25 30  
PPA  
4
7
8
11  
12  
15  
PPW  
Figure 4-10: Pre-emphasis settings for VCCO_<n> = 1.2V and DS = 7 (swing =  
200mVpp)  
4
3
10  
20  
15  
30  
PPA  
PPW  
Figure 4-11: Pre-emphasis settings for VCCO_<n> = 1.2V and DS = 16 (swing =  
400mVpp)  
12  
10  
8
6
5
10 15  
3
5 10 15 10 15 20 10 15 20 15 20 25 15 20 25 20 25 30 35 40 45 50  
PPA  
4
7
8
11  
12  
15  
PPW  
Figure 4-12: Pre-emphasis settings for VCCO_<n> = 1.8V and DS = 7 (swing =  
200mVpp)  
8
7
6
5
4
3
2
5
15 25  
3
5
15 25 10 20 30 10 20 30 15 25 35 15 25 35 20 30 40 45 50 PPA  
11 12 15  
4
7
8
PPW  
Figure 4-13: Pre-emphasis settings for VCCO_<n> = 1.8V and DS = 16 (swing =  
400mVpp)  
GS12341  
Final Data Sheet  
41 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
3.5  
3
2.5  
2
1.5  
10  
20  
30  
15  
40  
50  
PPA  
PPW  
Figure 4-14: Pre-emphasis settings for VCCO_<n> = 1.8V and DS = 35 (swing =  
800mVpp)  
13  
12  
11  
10  
9
8
7
6
5
10 15 5 10 15 10 15 20 10 15 20 15 20 25 15 20 25 20 25 30 35 40 45 50  
PPA  
3
4
7
8
11  
12  
15  
PPW  
Figure 4-15: Pre-emphasis settings for VCCO_<n> = 2.5V and DS = 7 (swing =  
200mVpp)  
8
7
6
5
4
3
5
15 25  
3
5 15 25 10 20 30 10 20 30 15 25 35 15 25 35 20 30 40 45 50  
PPA  
4
7
8
11  
12  
15  
PPW  
Figure 4-16: Pre-emphasis settings for VCCO_<n> = 2.5V and DS = 16 (swing =  
400mVpp)  
3.5  
3
2.5  
2
1.5  
40  
30  
15  
50  
10  
20  
PPA  
PPW  
Figure 4-17: Pre-emphasis settings for VCCO_<n> = 2.5V and DS = 35 (swing =  
800mVpp)  
GS12341  
Final Data Sheet  
42 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
Fine Optimization Procedure:  
The procedure requires access to the signal at the downstream device input, or  
non-reclocked device output. If there are multiple stages between the initial  
downstream device input and final measurement point, it is still possible to perform  
optimization; however link settings within the other stages must be fairly optimized.  
The pre-emphasis amplitude (PPA) and pre-emphasis width (PPW) settings can be  
optimized by sweeping the PPA and PPW settings in increments of 'a' and 'w' and  
selecting the setting which results in the lowest jitter. For the trace driver optimization,  
'a' and 'w' increments of 5 should be sufficient.  
The procedure has three steps.  
1. Pre-emphasis Amplitude (PPA) Optimization: Set the PPA and PPW to the values  
obtained from the graph selected out of Figure 4-10 to Figure 4-17, and then  
measure the downstream jitter. While keeping PPW constant, increment the PPA by  
'a'. If the jitter is lower after the first increment, continue to increment by 'a' until the  
jitter begins increasing or a setting of 50 is reached. If there was a setting which  
resulted in a lower jitter measurement than the initial setting, that is the Optimized  
Pre-emphasis Amplitude setting: PPAOptimal, and the PPA optimization procedure  
is complete.  
However, if the jitter increased after the first increment, decrement the setting by 'a'  
below the initial value. If the jitter is lower after the first decrement, continue to  
decrement by 'a' until the jitter begins increasing or a setting of 0 is reached. If there  
was a setting which resulted in a lower jitter measurement than the initial setting,  
that is the Optimized Pre-emphasis Amplitude: PPAOptimal.  
If incrementing the PPA or decrementing the PPA did not result in a setting with  
lower jitter, then the initial setting obtained from the graph selected out of  
Figure 4-10 to Figure 4-17 is the PPA optimized Pre-emphasis Amplitude setting:  
PPA  
Optimal.  
2. The second step is to set the PPA to the optimized setting PPA  
determined in  
Optimal  
step 1 and PPW to the values obtained from the graph selected out of Figure 4-10  
to Figure 4-17, then measure the downstream jitter. While keeping PPA constant,  
increment the PPW by 'w'. If the jitter is lower after the first increment, continue to  
increment by 'w' until the jitter begins increasing or a setting of 15 is reached. If  
there was a setting which resulted in a lower jitter measurement than the initial  
setting, that is the Optimized Pre-emphasis Width setting: PPW  
, and the  
Optimal  
optimization procedure is complete.  
However, if the jitter increased after the first increment, decrement the setting by  
'w' below the initial value. If the jitter is lower after the first decrement, continue to  
decrement by 1 until the jitter begins increasing or a value of 0 is reached. If there  
was a setting which resulted in a lower jitter measurement than the initial setting,  
that is the Optimized Pre-emphasis Width setting: PPW  
and the optimization  
Optimal,  
procedure is complete.  
If incrementing the PPW or decrementing the PPW did not result in a setting with  
lower jitter, then the initial setting value obtained from the graph selected out of  
Figure 4-10 to Figure 4-17 is the optimized Pre-emphasis Width setting: PPW  
.
Optimal  
GS12341  
Final Data Sheet  
43 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
3. Pre-emphasis pulse amplitude has a direct impact on swing amplitude. The third  
and final step is to readjust the driver swing until the swing amplitude design  
target is met. The fine optimization procedure maybe repeated to ensure that the  
PPA  
and PPW  
settings previously determined still hold with the new  
Optimal  
Optimal  
DS setting.  
Steps 1 and 2 are illustrated in Figure 4-18 and Figure 4-19 below.  
Parameter and Variable Definition  
PPAinit: Initial PPA value from equation result.  
PPWinit: Initial PPW value from equation result.  
DSinit: Measurement sweep Initial Driver Swing Setting = 9.  
PPAoptimal: Post measurement sweep Optimal Pre-emphasis Pulse Amplitude setting.  
PPWoptimal: Post measurement sweep Optimal Pre-emphasis Pulse Width setting.  
a: Measurement sweep PPA increment value.  
Start Optimization  
n: Measurement sweep test number value.  
Set  
PPA: Current Measurement Pre-emphasis Pulse Amplitude setting.  
PPW: Current Measurement Pre-emphasis Pulse Width setting.  
DS: Current Measurement Driver Swing Amplitude setting.  
PPA = PPAinit  
PPW = PPWinit  
DS = DSinit  
Recorded  
Jitter  
Measurement  
1, 2, 3, …, n  
Measure initial Jitter  
record results for  
measurement# n=0  
Record Data  
Read Data  
PPA Optimization  
Complete  
PPAoptimal = PPA(n-1)  
no  
no  
If (PPA – a) > 0  
yes  
If (PPA + a) < 50  
yes  
PPA = PPA + a  
n = n + 1  
PPA = PPA - a  
n = n + 1  
Measure Jitter  
record results for  
measurement# n  
Measure Jitter  
record results for  
measurement# n  
If n > 1  
Or  
PPA – (2*a) < 0  
PPA Optimization  
Complete  
PPAoptimal = PPA(n-1)  
yes  
no  
no  
PPA Optimization  
Complete  
PPAoptimal = PPA(n-1)  
no  
If Jitter(n) <  
jitter(n-1)  
Is Jitter(n) <  
jitter(n-1)  
PPA = PPAinit  
PPW = PPWinit  
yes  
yes  
Figure 4-18: PPA Optimization Flow Chart  
GS12341  
Final Data Sheet  
44 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
Parameter and Variable Definition  
PPWinit: Initial PPW value from equation result.  
DSinit: Measurement sweep Initial Driver Swing Setting = 9.  
PPAoptimal: Post measurement sweep Optimal Pre-emphasis Pulse Amplitude setting.  
PPWoptimal: Post measurement sweep Optimal Pre-emphasis Pulse Width setting.  
w: Measurement sweep PPW increment value.  
Start Optimization  
n: Measurement sweep test number value.  
Set  
PPA: Current Measurement Pre-emphasis Pulse Amplitude setting.  
PPW: Current Measurement Pre-emphasis Pulse Width setting.  
DS: Current Measurement Driver Swing Amplitude setting.  
PPA = PPAoptimal  
PPW = PPWinit  
DS = DSinit  
Recorded  
Jitter  
Measurement  
1, 2, 3, …, n  
Measure initial Jitter  
record results for  
measurement# n = 0  
Record Data  
Read Data  
PPW Optimization  
Complete  
PPWoptimal = PPW(n-1)  
no  
no  
If (PPW + w) <  
16  
If (PPW – w) > 0  
yes  
yes  
PPW = PPW + w  
n = n + 1  
PPW = PPW - w  
n = n + 1  
Measure Jitter  
record results for  
measurement# n  
Measure Jitter  
record results for  
measurement# n  
If n > 1  
Or  
PPW – (2*w) < 0  
PPW Optimization  
Complete  
PPWoptimal = PPW(n-1)  
yes  
no  
no  
PPW Optimization  
Complete  
PPWoptimal = PPW(n-1)  
no  
If Jitter(n) <  
jitter(n-1)  
Is Jitter(n) <  
jitter(n-1)  
PPW = PPWinit  
yes  
yes  
Figure 4-19: PPW Optimization Flow Chart  
GS12341  
Final Data Sheet  
45 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
Table 4-8: Output Swing and Pre-Emphasis Control Parameters  
Register Address  
and Name  
h
Parameter Name  
Description  
2B/29  
OUTPUT_ PARAM_TD_  
SD_3/  
OUTPUT_ PARAM_TD_  
SD_1  
Output amplitude configuration parameter for SD or all rates* on  
DDO0 and DDO1, where <n> is the output number.  
CFG_OUTPUT<n>_TD_SD_  
DRIVER_SWING  
Note: If CTRL_OUTPUT<n>_TRDR_PER_RATE = 0, this setting will  
be used for all data rates.  
Output pre-emphasis pulse width configuration parameter for  
SD or all rates* on DDO0 and DDO1, where <n> is the output  
number.  
CFG_OUTPUT<n>_TD_  
SD_PREEMPH_WIDTH  
Note: If CTRL_OUTPUT<n>_TRDR_PER_RATE = 0, this setting will  
be used for all data rates.  
2A/28  
OUTPUT_ PARAM_TD_  
SD_2/  
OUTPUT_ PARAM_TD_  
SD_0  
Output pre-emphasis power down configuration parameter for  
SD or all rates* on DDO0 and DDO1, where <n> is the output  
number.  
CFG_OUTPUT<n>_TD_  
SD_PREEMPH_PWRDWN  
Note: If CTRL_OUTPUT<n>_TRDR_PER_RATE = 0, this setting will  
be used for all data rates.  
Output amplitude configuration parameter for SD or all rates* on  
DDO0 and DDO1, where <n> is the output number.  
CFG_OUTPUT<n>_TD_  
SD_PREEMPH_AMPL  
Note: If CTRL_OUTPUT<n>_TRDR_PER_RATE = 0, this setting will  
be used for all data rates.  
2D/2F  
OUTPUT_ PARAM_  
TD_HD_1/  
OUTPUT_ PARAM_TD_  
HD_3  
Output amplitude configuration parameter for HD on DDO0 and  
DDO1, where <n> is the output number.  
CFG_OUTPUT<n>_TD_  
HD_DRIVER_SWING  
CFG_OUTPUT<n>_TD_  
HD_PREEMPH_WIDTH  
Output pre-emphasis pulse width configuration parameter for  
HD on DDO0 and DDO1, where <n> is the output number.  
2C/2E  
OUTPUT_ PARAM_TD_  
HD_0/  
OUTPUT_ PARAM_TD_  
HD_2  
CFG_OUTPUT<n>_TD_  
HD_PREEMPH_PWRDWN  
Output pre-emphasis power down configuration parameter for  
HD on DDO0 and DDO1, where <n> is the output number.  
CFG_OUTPUT<n>_TD_  
HD_PREEMPH_AMPL  
Output pre-emphasis pulse amplitude configuration parameter  
for HD on DDO0 and DDO1, where <n> is the output number.  
31/33  
OUTPUT_ PARAM_  
TD_3G_1/  
OUTPUT_ PARAM_  
TD_3G_3  
CFG_OUTPUT<n>_TD_  
3G_DRIVER_SWING  
Output amplitude configuration parameter for 3G on DDO0 and  
DDO1, where <n> is the output number.  
CFG_OUTPUT<n>_TD_  
3G_PREEMPH_WIDTH  
Output pre-emphasis pulse width configuration parameter for  
3G on DDO0 and DDO1, where <n> is the output number.  
30/32  
OUTPUT_ PARAM_  
TD_3G_0/  
OUTPUT_ PARAM_  
TD_3G_2  
CFG_OUTPUT<n>_TD_  
3G_PREEMPH_PWRDWN  
Output pre-emphasis power down configuration parameter for  
3G on DDO0 and DDO1, where <n> is the output number.  
CFG_OUTPUT<n>_TD_  
3G_PREEMPH_AMPL  
Output pre-emphasis pulse amplitude configuration parameter  
for 3G on DDO0 and DDO1, where <n> is the output number.  
GS12341  
Final Data Sheet  
PDS-061928  
46 of 109  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.1  
August 2019  
Table 4-8: Output Swing and Pre-Emphasis Control Parameters (Continued)  
Register Address  
and Name  
h
Parameter Name  
Description  
35/37  
OUTPUT_ PARAM_  
TD_6G_1/  
OUTPUT_ PARAM_  
TD_6G_3  
Output amplitude configuration parameter for 6G on DDO0 and  
DDO1, where <n> is the output number.  
CFG_OUTPUT<n>_TD_6G_  
DRIVER_SWING  
CFG_OUTPUT<n>_TD_6G_  
PREEMPH_WIDTH  
Output pre-emphasis pulse width configuration parameter for  
6G on DDO0 and DDO1, where <n> is the output number.  
34/36  
OUTPUT_ PARAM_  
TD_6G_0/  
OUTPUT_ PARAM_  
TD_6G_2  
CFG_OUTPUT<n>_TD_6G_  
PREEMPH_PWRDWN  
Output pre-emphasis power down configuration parameter for  
6G on DDO0 and DDO1, where <n> is the output number.  
CFG_OUTPUT<n>_TD_6G_  
PREEMPH_AMPL  
Output pre-emphasis pulse amplitude configuration parameter  
for 6G on DDO0 and DDO1, where <n> is the output number.  
39/3B  
OUTPUT_ PARAM_  
TD_12G_1/  
OUTPUT_ PARAM_  
TD_12G_3  
CFG_OUTPUT<n>_TD_12G_  
DRIVER_SWING  
Output amplitude configuration parameter for 12G on DDO0  
and DDO1, where <n> is the output number.  
CFG_OUTPUT<n>_TD_12G_  
PREEMPH_WIDTH  
Output pre-emphasis pulse width configuration parameter for  
12G on DDO0 and DDO1, where <n> is the output number.  
38/3A  
OUTPUT_ PARAM_  
TD_12G_0/  
OUTPUT_ PARAM_  
TD_12G_2  
CFG_OUTPUT<n>_TD_12G_  
PREEMPH_PWRDWN  
Output pre-emphasis power down configuration parameter for  
12G on DDO0 and DDO1, where <n> is the output number.  
CFG_OUTPUT<n>_TD_12G_  
PREEMPH_AMPL  
Output pre-emphasis pulse amplitude configuration parameter  
for 12G on DDO0 and DDO1, where <n> is the output number.  
4.7.5 Trace Driver DC coupling requirements  
Table 4-9 lists the required V (Driver Supply voltage) and DS (Driver Swing) required  
cco  
to achieve three common nominal VDDO  
(peak-to-peak differential output voltages)  
ppd  
and their associated nominal V  
(output common mode voltage).  
cmout  
In the DC-coupled case, where V is connected to the same supply as the input buffer  
cco  
supply voltage of the downstream device, V  
in Table 4-9 is the common mode  
cmount  
voltage at the output of the GS12341 driver. For short low loss transmission lines, this  
will also be the common mode voltage created at the input termination of the  
downstream input buffer. However, for long and lossy transmission lines, the amplitude  
will be attenuated at the downstream receiver and therefore the common mode  
voltage created at the input termination will be higher and must be measured or  
simulated for accuracy. For proper link operation, the common mode voltage created at  
the input termination of the downstream input buffer must be within the V  
specified by that device.  
range  
cmin  
GS12341  
Final Data Sheet  
47 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
In the AC-coupled case, V  
is the common mode voltage at the driver side of the  
cmout  
AC-coupling capacitor placed near the driver. In the AC-coupled case, V  
does not  
cmout  
need to be within the V  
range specified by the downstream device. However, the  
cmin  
capacitor should have a voltage rating that exceeds |V  
-V  
|. In addition to the  
cmout cmin  
voltage rating, the recommended value of the AC-coupling capacitor should be at least  
4.7ꢁF to meet the low cut-off frequency requirement of low transition density signals  
such as the check-field pattern defined in SMPTE RP-198. The capacitor should have a  
temperature rating that maintains the capacitance over the required operating range.  
Table 4-9: ΔV  
(mV ) and V  
(V) vs. DS Setting and V  
CCO  
DDO  
ppd  
CMOUT  
DC-Coupled  
AC-Coupled  
(V) vs. DS Setting  
ΔV  
(mV ) vs. DS Setting  
DDO  
ppd  
V
(V) vs. DS Setting  
V
CMOUT  
CMOUT  
V
(V)  
8
17  
37  
8
17  
37  
8
17  
37  
cco  
1.2  
200  
400  
400  
400  
1.15  
1.75  
2.45  
1.1  
1.7  
2.4  
1.6  
2.3  
1.1  
1.7  
2.4  
1
1.4  
2.1  
1.8  
2.5  
200  
200  
800  
800  
1.6  
2.3  
4.7.6 Output State Control Modes  
The GS12341 provides several output state control modes to meet specific application  
requirements. The trace driver has the following three output modes: operational,  
muted, or disabled. During non-sleep, if the control modes are configured such that  
multiple output modes are enabled, the priorities of the control modes from highest to  
lowest are the following: disabled, and then muted. Section 4.7.6.1 through  
Section 4.7.6.2 describe how to configure the output control modes that are enabled  
during non-sleep.  
If the device enters sleep, either manually or automatically, the sleep output control  
modes take precedence over the non-sleep control modes. The default trace driver  
configuration is for it to be disabled during sleep; however the trace driver can be  
configured to mute during sleep by setting the CFG_SLEEP_OUTPUT<n>_MUTE  
parameter in register 0x5 to 1 .  
b
GS12341  
Final Data Sheet  
48 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
4.7.6.1 Output Mute Control Mode  
Each of the outputs on the GS12341 have independent mute control modes, which can  
be configured through the host interface.  
The following are the four output mute control modes:  
1. The outputs automatically mute on LOS (default).  
2. The outputs automatically mute on LOS and during rate search.  
3. The outputs never mute.  
4. The outputs are always muted.  
The first mute control mode is the default power-up configuration for both output  
drivers (the CTRL_OUTPUT<n>_AUTO_MUTE control parameter in register 0x49 is set  
to 1b). In this mode, the outputs will automatically mute on the assertion of LOS. This  
includes LOS as a result of setting up Squelch Adjust (see Section 4.2.1 for more details).  
In addition to mute on LOS, with auto mute control mode configured, setting the  
CTRL_OUTPUT<n>_AUTO_MUTE_DURING_RATE_SEARCH control parameter in  
register 0x49 to 1 , will configure the outputs to also mute when the device loses lock  
b
and begins to rate search.  
The outputs can be manually configured to never mute by setting both the  
CTRL_OUTPUT<n>_AUTO_MUTE and CTRL_OUTPUT<n>_MANUAL_MUTE control  
parameters in register 0x49 to 0 . Alternatively, the outputs can be manually configured  
b
to always be muted by setting the CTRL_OUTPUT<n>_AUTO_MUTE and  
CTRL_OUTPUT<n>_ MANUAL_MUTE control parameters to 0 and 1 respectively.  
b
b
4.7.6.2 Output Disable Control Mode  
Each of the outputs on the GS12341 also have independent disable control modes,  
which can be configured through the host interface.  
The following are the three output disable control modes:  
1. The outputs are never disabled (default).  
2. The outputs are automatically disabled on LOS.  
3. The outputs are always disabled.  
The first disable control mode is the default power-up configuration for both output  
drivers (the CTRL_OUTPUT<n>_AUTO_DISABLE and  
CTRL_OUTPUT<n>_MANUAL_DISABLE control parameters in register 0x4A are both  
set to 0 ). In this mode, the outputs will never disable. By setting the  
b
CTRL_OUTPUT<n>_AUTO_DISABLE control parameter in register 0x4A to 1 , the  
b
outputs will automatically disable on the assertion of LOS. This includes LOS as a result  
of setting up Squelch Adjust (see Section 4.2.1 for more details).  
The output can be manually disabled by leaving the  
CTRL_OUTPUT<n>_AUTO_DISABLE control parameter set to 0 and setting the  
b
CTRL_OUTPUT<n>_MANUAL_DISABLE control parameter to 1 .  
b
The disable control mode takes precedence over the output mute control mode.  
GS12341  
Final Data Sheet  
49 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
4.8 GPIO Controls  
There are four configurable GPIO pins which can independently be configured as inputs  
or outputs. Each GPIO has a default function which can be re-configured through the  
host interface.  
If there is a conflict between the internal register configuration of a given device  
function and the logic-level applied to a GPIO pin that is configured to control that same  
device function, the GPIO logic-level takes precedence over the internal register  
configuration. The logic HIGH and LOW levels of the GPIO[3:0] pin to which LOS is  
connected are specified by the EIA/JESD8-5A standard for 1.8V operation.  
For a list of available functions and configuration details of GPIO[3:0], please refer to the  
GPIO Configuration registers in Section 5.  
4.9 GSPI Host Interface  
The GS12341 is configured via the Gennum Serial Peripheral Interface (GSPI).  
The GSPI host interface is comprised of a serial data input signal (SDIN pin), serial data  
output signal (SDOUT pin), an active-low chip select (CS pin) and a burst clock (SCLK pin).  
The GS12341 is a slave device, so the SCLK, SDIN and CS signals must be sourced by the  
application host processor.  
All read and write access to the device is initiated and terminated by the application  
host processor.  
4.9.1 CS Pin  
The Chip Select pin (CS) is an active-LOW signal provided by the host processor to the  
GS12341.  
The HIGH-to-LOW transition of this pin marks the start of serial communication to the  
GS12341.  
The LOW-to-HIGH transition of this pin marks the end of serial communication to the  
GS12341.  
Each device may use its own separate Chip Select signal from the host processor or up  
to 32 devices may be connected to a single Chip Select when making use of the Unit  
Address feature.  
Only those devices whose Unit Address matches the UNIT ADDRESS in GSPI Command  
Word 1 will respond to communication from the host processor (unless the B’CAST ALL  
bit in GSPI Command Word 1 is set to 1).  
4.9.2 SDIN Pin  
The SDIN pin is the GSPI serial data input pin of the GS12341.  
The 32-bit Command and 16-bit Data Words from the host processor or from the SDOUT  
pin of other devices are shifted into the device on the rising edge of SCLK when the CS  
pin is LOW.  
GS12341  
Final Data Sheet  
50 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
4.9.3 SDOUT Pin  
The SDOUT pin is the GSPI serial data output of the GS12341.  
All data transfers out of the GS12341 to the host processor or to the SDIN pin of other  
connected devices occur from this pin.  
By default at power up or after system reset, the SDOUT pin provides a non-clocked path  
directly from the SDIN pin, regardless of the CS pin state, except during the GSPI Data  
Word portion for read operations from the device. This allows multiple devices to be  
connected in Loop-Through configuration.  
For read operations, the SDOUT pin is used to output data read from an internal  
Configuration and Status Register (CSR) when CS is LOW. Data is shifted out of the  
device on the falling edge of SCLK, so that it can be read by the host processor or other  
downstream connected device on the subsequent SCLK rising edge.  
4.9.3.1 GSPI Link Disable Operation  
It is possible to disable the direct SDIN to SDOUT (Loop-Through) connection by writing  
a value of 1 to the GSPI_LINK_DISABLE bit in CONTROL_REG. When disabled, any data  
appearing at the SDIN pin will not appear at the SDOUT pin and the SDOUT pin is HIGH.  
Note: Disabling the Loop-Through operation is temporarily required when initializing  
the Unit Address for up to 32 connected devices.  
The time required to enable/disable the Loop-Through operation from assertion of the  
register bit is less than the GSPI configuration command delay as defined by the  
parameter t  
(4 SCLK cycles).  
cmd_GSPI_config  
Table 4-10: GSPI_LINK_DISABLE Bit Operation  
Bit State  
Description  
0
1
SDIN pin is looped through to the SDOUT pin  
Data appearing at SDIN does not appear at SDOUT, and SDOUT pin is HIGH.  
SDIN pin  
Configuration and  
Status Register  
SDOUT pin  
GSPI_LINK  
_DISABLE  
High-Z  
BUS_THROUGH_  
ENABLE  
CS pin  
Figure 4-20: GSPI_LINK_DISABLE Operation  
GS12341  
Final Data Sheet  
51 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
4.9.3.2 GSPI Bus-Through Operation  
Using GSPI Bus-Through operation, the GS12341 can share a common PCB trace with  
other GSPI devices for SDOUT output.  
When configured for Bus-Through operation, by setting GSPI_BUS_THROUGH_ENABLE  
bit to 1, the SDOUT pin will be high-impedance when the CS pin is HIGH.  
When the CS pin is LOW, the SDOUT pin will be driven and will follow regular read and  
write operation as described in Section 4.9.3.  
Multiple chains of GS12341 devices can share a single SDOUT bus connection to host by  
configuring the devices for Bus-Through operation. In such configuration, each chain  
requires a separate Chip Select (CS).  
SDIN pin  
Configuration and  
Status Register  
SDOUT pin  
GSPI_LINK  
_DISABLE  
High-Z  
BUS_THROUGH_  
ENABLE  
CS pin  
Figure 4-21: GSPI_BUS_THROUGH_ENABLE Operation  
4.9.4 SCLK Pin  
The SCLK pin is the GSPI serial data shift clock input to the device, and must be provided  
by the host processor.  
Serial data is clocked into the GS12341 SDIN pin on the rising edge of SCLK. Serial data  
is clocked out of the device from the SDOUT pin on the falling edge of SCLK (read  
operation). SCLK is ignored when CS is HIGH.  
The maximum interface clock rate is 27MHz.  
4.9.5 Command Word 1 Description  
All GSPI accesses are a minimum of 48 bits in length (two 16-bit Command Words  
followed by a 16-bit Data Word) and the start of each access is indicated by the  
HIGH-to-LOW transition of the chip select (CS) pin of the GS12341.  
The format of the Command Words and Data Word are shown in Figure 4-22.  
Data received immediately following this HIGH-to-LOW transition will be interpreted as  
a new Command Word.  
GS12341  
Final Data Sheet  
52 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
4.9.5.1 R/W bit—B15 Command Word 1  
This bit indicates a read or write operation.  
When R/W is set to 1, a read operation is indicated, and data is read from the register  
specified by the ADDRESS field of the Command Word.  
When R/W is set to 0, a write operation is indicated, and data is written to the register  
specified by the ADDRESS field of the Command Word.  
4.9.5.2 B'CAST ALL—B14 Command Word 1  
This bit is used in write operations to configure all devices connected in Loop-Through  
and Bus-Through configuration with a single command.  
When B’CAST ALL is set to 1, the following Data Word (AUTOINC = 0) or Data Words  
(AUTOINC = 1) are written to the register specified by the ADDRESS field of the  
Command Words (and subsequent addresses when AUTOINC = 1), regardless of the  
setting of the UNIT ADDRESS(es).  
When B’CAST ALL is set to 0, a normal write operation is indicated. Only those devices  
that have a Unit Address matching the UNIT ADDRESS field of Command Word 1 write  
the Data Word to the register specified by the ADDRESS field of the Command Words.  
4.9.5.3 EMEM—B13 Command Word 1  
The EMEM bit must be set to 1 in Command Word 1. When EMEM is set to 1, a 23-bit  
address split between Command Word 1 and Command Word 2 is used to access the  
registers in this device.  
4.9.5.4 AUTOINC—B12 Command Word 1  
When AUTOINC is set to 1, Auto-Increment read or write access is enabled.  
In Auto-Increment Mode, the device automatically increments the register address for  
each contiguous read or write access, starting from the address defined in the ADDRESS  
field of the Command Word.  
The internal address is incremented for each 16-bit read or write access until a  
LOW-to-HIGH transition on the CS pin is detected.  
When AUTOINC is set to 0, single read or write access is required.  
Auto-Increment write must not be used to update values in CONTROL_REG.  
4.9.5.5 UNIT ADDRESS—B11:B7 Command Word 1  
The 5 bits of the UNIT ADDRESS field of the Command Word are used to select one of 32  
devices connected on a single chip select in Loop-Through or Bus-Through  
configurations.  
Read and write accesses are only accepted if the UNIT ADDRESS field matches the  
programmed DEV_UNIT_ADDRESS in CONTROL_REG.  
By default at power-up or after a device reset, the DEV_UNIT_ADDRESS is set to 00 .  
h
GS12341  
Final Data Sheet  
53 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
4.9.5.6 ADDRESS—B6:B0 Command Word 1 and B15:B0 Command Word 2  
The Command and Data Word formats are shown in Figure 4-22 and Figure 4-23. As an  
example of the command word structure, reading register 0x90 from a device with unit  
address 3, that has AUTOINC = 0, and B’CAST ALL = 0 would be structured as follows:  
Command word 1: 1010 0001 1000 0000 (0xA180)  
Command word 2: 0000 0000 1001 0000 (0x90)  
Command Words  
MSB  
LSB  
UNIT ADDRESS  
ADDRESS[22:16]  
A19  
B’CAST  
ALL  
EMEM  
A13  
AUTOINC  
A12  
UA4  
A11  
UA3  
A10  
UA2  
A9  
UA1  
UA0  
A22  
A6  
A21  
A5  
A20  
A4  
A18  
A2  
A17  
A1  
A16  
R / W  
ADDRESS[15:0]  
A8 A7  
A15  
A14  
A3  
D3  
A0  
D0  
Data Word  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D2  
D1  
Figure 4-22: Command and Data Word Format  
Command Word 1  
MSB  
R / W  
LSB  
UNIT ADDRESS  
UA2  
ADDRESS[22:16]  
A19  
B’CAST  
ALL  
EMEM  
AUTOINC  
UA4  
UA3  
UA1  
UA0  
A22  
A21  
A20  
A18  
A17  
A16  
23-bit CSR address field.  
5-bit UNIT ADDRESS field providing up to  
32 devices to be connected on a single CS.  
Auto increment read/write access when set.  
Single read write access when reset.  
Extended memory mode. When set, the extended memory mode is  
enabled. When reset, normal GSPI addressing is enabled.  
When set, the UNIT ADDRESS field is ignored and  
all data accesses are actioned by the device.  
When reset, the Unit Address is used to  
manage data accesses in the device.  
Read access when this bit is set.  
Write access when this bit is reset.  
Command Word 2  
ADDRESS[15:0]  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
Figure 4-23: Command Word 1 and Command Word 2 Details  
Note: Please see Section 4.9.5.6 ADDRESS—B6:B0 Command Word 1 and B15:B0  
Command Word 2 for an example of the command word structure.  
GS12341  
Final Data Sheet  
54 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
4.9.6 GSPI Transaction Timing  
tcmd_GSPI_config  
tcmd  
t9  
SCLK  
CS  
X
X
SDIN  
SDOUT  
t0  
t1  
t2  
t4  
t7  
SCLK  
CSb  
t3  
t8  
R/W  
BCST  
EMEM  
Auto_Inc  
UA4  
UA3  
UA2  
UA1  
UA0  
A22  
A21  
A20  
A19  
A18  
A17  
A16  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDIN  
SDOUT  
R/W  
BCST  
EMEM  
Auto_Inc  
UA4  
UA3  
UA2  
UA1  
UA0  
A22  
A21  
A20  
A19  
A18  
A17  
A16  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D15  
D14  
D13  
D
12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDIN signal is looped out on SDOUT  
Write Mode  
t5  
t9  
SCLK  
CSb  
t6  
R/W  
RSV  
EMEM  
Auto_Inc  
UA4  
UA3  
UA2  
UA1  
UA0  
A22  
A21  
A20  
A19  
A18  
A17  
A16  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
SDIN  
SDOUT  
R/W  
RSV  
EMEM  
Auto_Inc  
UA4  
UA3  
UA2  
UA1  
UA0  
A22  
A21  
A20  
A19  
A18  
A17  
A16  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Read Data is output on SDOUT  
SDIN signal is looped out on SDOUT  
Read Mode  
Figure 4-24: GSPI External Interface Timing  
GS12341  
Final Data Sheet  
55 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
Table 4-11: GSPI Timing Parameters  
Equivalent  
SCLK  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Cycles  
SCLK Frequency  
t0  
1
1.7  
50  
27  
60  
MHz  
ns  
CS LOW Before SCLK Rising Edge  
SCLK Period  
t1  
t2  
37  
ns  
SCLK Duty Cycle  
40  
t3  
Input Data Setup Time  
SCLK Idle Time – Write  
SCLK Idle Time – Read  
Inter–Command Delay Time  
2.3  
ns  
t4  
1/SCLK  
138  
115  
ns  
t5  
3
ns  
tcmd  
ns  
Inter–Command Delay Time (after  
GSPI configuration write)  
1
4
139  
1.3  
0
6.4  
ns  
ns  
ns  
tcmd_GSPI_conf  
t6  
t7  
SDOUT After SCLK Falling Edge  
CS HIGH After Final SCLK Falling  
Edge  
t8  
t9  
Input Data Hold Time  
CS HIGH Time  
1.2  
58  
ns  
ns  
SDIN to SDOUT Combinatorial  
Delay  
3.4  
ns  
# of  
Max chips daisy-chained at max  
SCLK frequency (26 MHz)  
When host clocks in SDOUT  
data on falling edge of SCLK  
compatible  
Semtech  
devices  
8
Max frequency for 32   
daisy-chained devices  
When host clocks in SDOUT  
data on falling edge of SCLK  
7.5  
MHz  
Note:  
1. tcmd_GSPI_conf inter-command delay must be used whenever modifying CONTROL_REG register at address 0x00.  
4.9.7 Single Read/Write Access  
Single read/write access timing for the GSPI interface is shown in Figure 4-25 to  
Figure 4-29.  
When performing a single read or write access, one Data Word is read from/written to  
the device per access. Each access is a minimum of 48-bits long, consisting of two  
Command Words and a single Data Word. The read or write cycle begins with a  
HIGH-to-LOW transition of the CS pin. The read or write access is terminated by a  
LOW-to-HIGH transition of the CS pin.  
GS12341  
Final Data Sheet  
PDS-061928  
56 of 109  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.1  
August 2019  
The maximum interface clock rate is 27MHz and the inter-command delay time  
indicated in the figures as t , is a minimum of 3 SCLK clock cycles. After modifying  
cmd  
values in CONTROL_REG, the inter-command delay time, t  
, is a minimum  
cmd_GSPI_config  
of 4 SCLK clock cycles.  
For read access, the time from the last bit of Command Word 2 to the start of the data  
output, as defined by t , corresponds to no less than 4 SCLK clock cycles at 27MHz.  
5
t
cmd  
SCLK  
CS  
COMMAND WORD 1  
COMMAND WORD 1  
COMMAND WORD 2  
COMMAND WORD 2  
DATA WORD  
DATA WORD  
X
X
COMMAND WORD 1  
COMMAND WORD 1  
SDIN  
SDOUT  
Figure 4-25: GSPI Write Timing—Single Write Access with Loop-Through Operation (default)  
t
cmd  
SCLK  
CS  
SDIN  
COMMAND WORD 2  
COMMAND WORD 1  
DATA WORD  
X
COMMAND WORD 1  
SDOUT  
Figure 4-26: GSPI Write Timing—Single Write Access with GSPI Link-Disable Operation  
t
cmd  
SCLK  
CS  
COMMAND WORD 2  
COMMAND WORD 2  
COMMAND WORD 1  
COMMAND WORD 1  
DATA WORD  
DATA WORD  
X
High-z  
COMMAND WORD 1  
COMMAND WORD 1  
SDIN  
High-Z  
SDOUT  
Figure 4-27: GSPI Write Timing—Single Write Access with Bus-Through Operation  
SCLK  
t
5
CS  
COMMAND WORD 1  
COMMAND WORD 1  
COMMAND WORD 2  
COMMAND WORD 2  
SDIN  
DATA WORD  
SDOUT  
Figure 4-28: GSPI Read Timing—Single Read Access with Loop-Through Operation (default)  
SCLK  
t
5
CS  
SDIN  
COMMAND WORD  
COMMAND WORD  
1
1
COMMAND WORD  
COMMAND WORD  
2
2
High-z  
X
DATA WORD  
SDOUT  
Figure 4-29: GSPI Read Timing—Single Read Access with Bus-Through Operation  
GS12341  
Final Data Sheet  
57 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
4.9.8 Auto-increment Read/Write Access  
Auto-increment read/write access timing for the GSPI interface is shown in Figure 4-30  
to Figure 4-34.  
Auto-increment mode is enabled by the setting the AUTOINC bit of Command Word 1.  
In this mode, multiple Data Words can be read from/written to the device using only one  
starting address. Each access is initiated by a HIGH-to-LOW transition of the CS pin, and  
consists of two Command Words and one or more Data Words. The internal address is  
automatically incremented after the first read or write Data Word, and continues to  
increment until the read or write access is terminated by a LOW-to-HIGH transition of  
the CS pin.  
Note: Writing to CONTROL_REG using Auto-increment access is not allowed.  
The maximum interface clock rate is 27MHz and the inter-command delay time  
indicated in the diagram as t , is a minimum of 3 SCLK clock cycles.  
cmd  
For read access, the time from the last bit of the second Command Word to the start of  
the data output of the first Data Word as defined by t will be no less than 4 SCLK cycles  
5
at 27MHz. All subsequent read data accesses will not be subject to this delay during an  
Auto-Increment read.  
SCLK  
CS  
SDIN  
COMMAND WORD 1  
COMMAND WORD 1  
COMMAND WORD 2  
COMMAND WORD 2  
DATA 1  
DATA 1  
DATA 2  
DATA 2  
SDOUT  
Figure 4-30: GSPI Write Timing—Auto-Increment with Loop-Through Operation (default)  
SCLK  
CS  
COMMAND WORD 1  
COMMAND WORD 2  
DATA 1  
DATA 2  
SDIN  
SDOUT  
Figure 4-31: GSPI Write Timing—Auto-Increment with GSPI Link Disable  
Operation  
SCLK  
CS  
SDIN  
COMMAND WORD 2  
COMMAND WORD 2  
COMMAND WORD 1  
COMMAND WORD 1  
DATA 1  
DATA 1  
DATA 2  
DATA 2  
High-Z  
SDOUT  
Figure 4-32: GSPI Write Timing—Auto-Increment with Bus-Through Operation  
SCLK  
t
5
CS  
SDIN  
COMMAND WORD 1  
COMMAND WORD 1  
COMMAND WORD 2  
COMMAND WORD 2  
SDOUT  
DATA 1  
DATA 2  
Figure 4-33: GSPI Read Timing—Auto-Increment Read with Loop-Through Operation (default)  
GS12341  
Final Data Sheet  
58 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
SCLK  
CS  
t
5
SDIN  
COMMAND WORD 1  
COMMAND WORD 1  
COMMAND WORD 2  
COMMAND WORD 2  
High-z  
SDOUT  
X
DATA 1  
DATA 2  
Figure 4-34: GSPI Read Timing—Auto-Increment Read with Bus-through Operation  
4.9.9 Setting a Device Unit Address  
Multiple (up to 32) GS12341 devices can be connected to a common Chip Select (CS) in  
Loop-Through or Bus-Through operation.  
To ensure that each device selected by a common CS can be separately addressed, a  
unique Unit Address must be programmed by the host processor at start-up as part of  
system initialization or following a device reset.  
Note: By default at power up or after a device reset, the DEV_UNIT_ADDRESS of each  
device is set to 0 and the SDINSDOUT non-clocked loop-through for each device is  
h
enabled.  
These are the steps required to set the DEV_UNIT_ADDRESS of devices in a chain to  
values other than 0:  
1. Write to Unit Address 0 selecting CONTROL_REG (ADDRESS = 0), with the  
GSPI_LINK_DISABLE bit set to 1 and the DEV_UNIT_ADDRESS field set to 0. This  
disables the direct SDINSDOUT non-clocked path for all devices on chip select.  
2. Write to Unit Address 0 selecting CONTROL_REG (ADDRESS = 0), with the  
GSPI_LINK_DISABLE bit set to 0 and the DEV_UNIT_ADDRESS field set to a  
unique Unit Address. This configures DEV_UNIT_ADDRESS for the first device in  
the chain. Each subsequent such write to Unit Address 0 will configure the next  
device in the chain. If there are 32 devices in a chain, the last (32nd) device in the  
chain must use DEV_UNIT_ADDRESS value 0.  
3. Repeat step 2 using new, unique values for the DEV_UNIT_ADDRESS field in  
CONTROL_REG until all devices in the chain have been configured with their own  
unique Unit Address value.  
Note: t  
delay must be observed after every write that modifies  
cmd_GSPI_conf  
CONTROL_REG.  
All connected devices receive this command (by default the Unit Address of all devices  
is 0), and the Loop-Through operation will be re-established for all connected devices.  
Once configured, each device will only respond to Command Words with a   
UNIT ADDRESS field matching the DEV_UNIT_ADDRESS in CONTROL_REG.  
Note: Although the Loop-Through and Bus-Through configurations are compatible  
with previous generation GSPI enabled devices (backward compatibility), only devices  
supporting Unit Addressing can share a chip select. All devices on any single chip select  
must be connected in a contiguous chain with only the last device's SDOUT connected  
to the application host processor. Multiple chains configured in Bus-Through mode can  
have their final SDOUT outputs connected to a single application host processor input.  
GS12341  
Final Data Sheet  
59 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
4.9.10 Default GSPI Operation  
By default at power up or after a device reset, the GS12341 is set for Loop-Through  
Operation and the internal DEV_UNIT_ADDRESS field of the device is set to 0.  
Figure 4-35 shows a functional block diagram of the Configuration and Status Register  
(CSR) map in the GS12341.  
At power-up or after a device reset, DEV_UNIT_ADDRESS = 00h  
[15]  
R/W  
[14]  
[13]  
[12]  
[11:7]  
[6:0]  
bits  
BCAST  
ALL  
Auto  
Inc  
Unit Address  
32 devices  
Register Address  
Upper 7 bits  
EMEM  
COMMAND 1  
[15:0]  
bits  
COMMAND 2  
Lower 16 bits of Register Address  
[15:0]  
bits  
Compare  
DATA  
Data to be written / Read Data  
[4:0]  
[15]  
[14]  
[12:5]  
bits  
[13]  
Read/Write  
GSPI_BUS_  
THROUGH  
_ENABLE  
GSPI_LINK  
_DISABLE  
Reg 0  
RESERVED  
DEV_UNIT_ADDRESS  
RESERVED  
Configuration and Status Registers  
Figure 4-35: Internal Register Map Functional Block Diagram  
The steps required for the application host processor to write to the Configuration and  
Status Registers via the GSPI, are as follows:  
1. Set Command Word 1 for write access (R/W = 0); set Auto Increment; set the Unit  
Address field in the Command Word 1 to match the configured  
DEV_UNIT_ADDRESS which will be zero after power-up. Set the Register Address  
bits in Command Word 1 to match the upper 7 bits of the register address to be  
accessed. Set the bits in Command Word 2 to match the lower 16 bits of the register  
address to be accessed. Write Command Word 1 and Command Word 2.  
2. Write the Data Word to be written to the first register.  
3. Write the Data Word to be written to the next register in Auto Increment mode, etc.  
Read access is the same as the above with the exception of step 1, where the Command  
Word 1 is set for read access (R/W = 1).  
Note: The UNIT ADDRESS field of Command Word 1 must always match  
DEV_UNIT_ADDRESS for an access to be accepted by the device. Changing  
DEV_UNIT_ADDRESS to a value other than 0 is only required if multiple devices are  
connected to a single chip select (in Loop-Through or Bus-Through configuration).  
GS12341  
Final Data Sheet  
60 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
4.9.11 Clear Sticky Counts Through Four Way Handshake  
There are four sticky counters that keep count of changes in status of primary and  
secondary carrier detect, rate changes, and lock changes. The counters can be read from  
the following four parameters in register 0x84 and 0x85:  
STAT_CNT_PRI_CD_CHANGES, STAT_CNT_SEC_CD_CHANGES,  
STAT_CNT_RATE_CHANGES, and STAT_CNT_PLL_LOCK_CHANGES. The counters  
saturate at 255 (0xFF) and must be cleared before additional status changes can be  
counted. The following four way handshake procedures clears the counters.  
1. Poll STAT_CLEAR_COUNTS_STATUS parameter until equal to 0 (idle), then set  
CTRL_CLEAR_COUNTS = 1 (clear sticky counts).  
2. Poll STAT_CLEAR_COUNTS_STATUS parameter until equal to 2 (cleared), then  
reset CTRL_CLEAR_COUNTS to 0.  
The device will now reset STAT_CLEAR_COUNTS_STATUS to 0 (idle) and the clearing  
process can be repeated at any time.  
4.9.12 Device Power-up Sequence  
If all power supplies cannot be guaranteed to power up simultaneously, ensure that  
VCC_SDI powers up first. Please note that there is no minimum time requirement  
between power supply initializations after VCC_SDI is energized.  
Note: Please check with your local FAE (field applications engineer), as some devices  
may need updated configuration settings. If a configuration file has been provided by  
the FAE, see the timing information in the Serial Routing and Distribution Product  
Configuration Loading Procedure Application Note (PDS-061176).  
4.9.12.1 Power-Up Timing Sequence  
The following timing sequence must be observed after power-up when no external  
configuration loading is required. See Figure 4-36 for the timing requirements of Steps  
1 and 2 below.  
Step 1 – No GSPI Access Allowed  
a) Device supply reaches 90ꢀ of target. POR (Power On Reset) is activated.  
b) Internal blocks reset, default device configuration boot-up begins.  
c) Default device configuration boot-up process.  
Step 2 – GSPI Access Allowed  
a) Host sets EYE_MON_INT_CFG_3 (register address 0x57) to 0x8006.  
b) If there are multiple devices on the GSPI chain, the host should configure the unit  
address of each device. See Section 4.9.9 for further information on unit addressing.  
c) Host sets custom application specific settings.  
d) Normal operation begins.  
GS12341  
Final Data Sheet  
61 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
5.11 ms – no GSPI Access Allowed  
GSPI Access Allowed  
All blocks reset.  
After Completion of Reset, device  
automatically initiates default  
configuration boot-up.  
Eye Monitor  
Reset:  
Host  
writes 0x8006  
to register 0x57  
at unit address  
0.  
Normal Operation Begins.  
Host must reconfigure the unit addresses of  
devices that were reset to 0.  
After which, host may read/write any  
register of a specific device on the chain, or  
use broadcast write to concurrently write a  
command to all devices on the GSPI chain.  
All devices that  
received reset  
command will  
have their unit  
address reset to  
0.  
Command will  
be broadcast to  
all devices that  
were reset.  
Device Blocks  
Resetting.  
Device  
Configuration  
Booting.  
Application Defined GSPI Read/Write  
Access.  
GSPI Access..  
110 μs  
5 ms  
Host writes  
0xAD00 to  
Internal Reset  
Sequence  
Complete.  
Default  
Configuration  
Boot-Up  
Eye  
Monitor  
Reset.  
Register 0x007F  
to reset device.  
Host may reset  
all devices by  
using broadcast  
mode.  
Complete.  
Figure 4-36: Power-Up Sequence.  
4.9.13 Host Initiated Device Reset  
The GS12341 includes a reset function accessible via the device's host interface, which  
reverts all internal logic and register values to their default values.  
The device can be reset with a single write of AD00 to the RESET_CONTROL bits of the  
h
CONTROL_RESET register, which will assert and de-assert the device reset within the  
duration of the GSPI write access Data Word.  
The device can be placed and held in reset by writing AA00 to the RESET_CONTROL  
h
bits of the CONTROL_RESET register. Subsequent writes of DD00 to the  
h
RESET_CONTROL bits will de-assert device reset.  
The current state of user-initiated device reset can be read from the RESET_CONTROL  
bits of CONTROL_RESET register.  
While in reset, host interface access to any other register will not be functional and all  
logic and configuration registers will be in reset state. While in reset, output behaviour  
is undefined. The digital logic and registers within the device will exit the reset state 5ms  
after device reset is de-asserted.  
The following timing sequence must be observed to initiate a device reset.  
Note: Please check with your local FAE (field applications engineer), as some devices  
may need updated configuration settings. If a configuration file has been provided by  
the FAE, see the timing information in the Serial Routing and Distribution Product  
Configuration Loading Procedure Application Note (PDS-061176).  
GS12341  
Final Data Sheet  
62 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
4.9.13.1 Host Initiated Device Reset Timing Sequence  
The following timing sequence must be observed after a Host Initiated Device Reset  
when no external configuration loading is required. See Figure 4-37 for the timing  
requirements of the Steps 1 to 3 below.  
Step 1 – GSPI Access Allowed  
a) Host writes 0xAD00 to register 0x007F to reset selected devices, or all devices using  
broadcast.  
Step 2– No GSPI Access Allowed  
a) Internal blocks reset, default device configuration boot-up begins.  
b) Default device configuration boot-up completes.  
Step 3 – GSPI Access Allowed  
a) Host sets EYE_MON_INT_CFG_3 (register address 0x57) to 0x8006.  
b) If there are multiple devices on the GSPI chain, host must reconfigure unit address  
of each device that was reset. See Section 4.9.9 for further information on unit  
addressing.  
c) Host sets custom application specific settings.  
d) Normal operation begins.  
5.11 ms – No GSPI Access Allowed  
GSPI Access Allowed  
All blocks reset.  
After Completion of Reset, device  
automatically initiates default  
configuration boot-up.  
Eye Monitor  
Reset:  
Host  
writes 0x8006  
to register 0x57  
at unit address  
0.  
Normal Operation Begins.  
Host must reconfigure the unit addresses of  
devices that were reset to 0.  
After which, the host may read/write any  
register of specific device on the chain, or  
use broadcast write to concurrently write a  
command to all devices on the GSPI chain.  
All devices that  
received reset  
command will  
have their unit  
address reset to  
0.  
Command will  
be broadcast to  
all devices that  
were reset.  
Device Blocks  
Resetting.  
Device  
Configuration  
Booting.  
Application Defined GSPI Read/Write  
Access.  
GSPI Access.  
110 μs  
5 ms  
Host writes  
0xAD00 to  
Internal Reset  
Sequence  
Complete.  
Default  
Configuration  
Boot-Up  
Eye  
Monitor  
Reset.  
Register 0x007F  
to reset device.  
Host may reset  
all devices by  
using broadcast  
mode.  
Complete.  
Figure 4-37: Host Initiated Device Reset Timing Sequence.  
GS12341  
Final Data Sheet  
63 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
5. Register Map  
The host interface on the GS12341 provides users complete control of key features such  
as GPIO configuration, PLL loop bandwidth settings, reclock parameters, carrier  
detection, cable equalization, bypass modes, output swing controls, mute functions,  
pre-emphasis control and many others.  
It also includes a wide selection of Status registers which allow the user to read back  
several key metrics of information from the GS12341 to add more flexibility to their  
designs. Section 5.1 to Section 5.3 cover each Control and Status register in detail.  
5.1 Control Registers  
Table 5-1: Control Registers  
GSPI  
Address  
Register Name  
R/W  
h
0
1
CONTROL_ REG  
DEVICE_ID  
RW  
RO  
2
RSVD  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
7F  
3
CONTROL_ RESET  
CONTROL_ SLEEP  
MISC_CNTRL  
4
5
MISC_CFG  
6
RATE_ DETECT_ MODE  
RATE_ DETECT_ CFG  
7
Reclocker Configuration  
8
9
RSVD  
RW  
RW  
RW  
RW  
RW  
RW  
FACTORY_ CDR_ PARAMETERS  
PLL_LOOP_ BANDWIDTH_ 0  
PLL_LOOP_ BANDWIDTH_ 1  
PLL_LOOP_ BANDWIDTH_ 2  
RSVD  
0A  
0B  
0C  
0D to 0F  
GPIO Configuration  
10  
11  
12  
13  
GPIO0_CFG  
RW  
RW  
RW  
RW  
GPIO1_CFG  
GPIO2_CFG  
GPIO3_CFG  
GS12341  
Final Data Sheet  
64 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
Table 5-1: Control Registers (Continued)  
GSPI  
Address  
Register Name  
R/W  
h
Equalizer Configuration  
14  
15  
RSVD  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
CARR_ DET_CFG  
16  
SQUELCH_ PARAMETERS  
CABLE_ EQ_BYPASS_ MODE  
INPUT_ LAUNCH_ SWING_CFG  
RSVD  
17  
18  
19 to 1F  
20  
CD_FILTER_ DELAYS_0  
CD_FILTER_ DELAYS_1  
CD_FILTER_ DELAYS_2  
RSVD  
21  
22  
23 to 25  
Output Configuration  
26 to 27  
28  
RSVD  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
OUTPUT_ PARAM_TD_ SD_0  
OUTPUT_ PARAM_TD_ SD_1  
OUTPUT_ PARAM_TD_ SD_2  
OUTPUT_ PARAM_TD_ SD_3  
OUTPUT_ PARAM_TD_ HD_0  
OUTPUT_ PARAM_ TD_HD_1  
OUTPUT_ PARAM_TD_ HD_2  
OUTPUT_ PARAM_TD_ HD_3  
OUTPUT_ PARAM_ TD_3G_0  
OUTPUT_ PARAM_ TD_3G_1  
OUTPUT_ PARAM_ TD_3G_2  
OUTPUT_ PARAM_ TD_3G_3  
OUTPUT_ PARAM_ TD_6G_0  
OUTPUT_ PARAM_ TD_6G_1  
OUTPUT_ PARAM_ TD_6G_2  
OUTPUT_ PARAM_ TD_6G_3  
OUTPUT_ PARAM_ TD_12G_0  
OUTPUT_ PARAM_ TD_12G_1  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
GS12341  
Final Data Sheet  
65 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
Table 5-1: Control Registers (Continued)  
GSPI  
Address  
Register Name  
R/W  
h
3A  
3B  
OUTPUT_ PARAM_ TD_12G_2  
OUTPUT_ PARAM_ TD_12G_3  
RSVD  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
3C to 40  
41  
OUTPUT_ PARAM_ MUTE_1  
RSVD  
42  
43  
OUTPUT_ PARAM_ MUTE_3  
RSVD  
44 to 47  
Output Control  
48  
OUTPUT_ SIG_SELECT  
RW  
RW  
RW  
RW  
RW  
RW  
49  
CONTROL_ OUTPUT_ MUTE  
CONTROL_ OUTPUT_ DISABLE  
CONTROL_ OUTPUT_ SLEW  
CONTROL_ RETIMER_ BYPASS  
RSVD  
4A  
4B  
4C  
4D to 4F  
Test Functions  
50  
51  
PRBS_ CHK_CFG  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
PRBS_CHK_ CTRL  
PRBS_GEN_ CTRL  
RSVD  
52  
53  
54  
EYE_MON_ INT_CFG_0  
EYE_MON_ INT_CFG_1  
EYE_MON_ INT_CFG_2  
EYE_MON_ INT_CFG_3  
RSVD  
55  
56  
57  
58 to 59  
5A  
EYE_MON_ SCAN_CTRL_0  
EYE_MON_ SCAN_CTRL_1  
EYE_MON_ SCAN_CTRL_2  
EYE_MON_ SCAN_CTRL_3  
RSVD  
5B  
5C  
5D  
5E to 5F  
Factory Settings  
60 to 7E RSVD  
RW  
GS12341  
Final Data Sheet  
66 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
5.2 Status Registers  
Table 5-2: Status Registers  
GSPI  
Address  
Register Name  
R/W  
h
80  
81  
RSVD  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
VERSION_0  
82  
VERSION_1  
83  
VERSION_2  
84  
STICKY_ COUNTS_0  
STICKY_ COUNTS_1  
CURRENT_ STATUS_0  
CURRENT_ STATUS_1  
EQ_GAIN_IND  
85  
86  
87  
88  
89  
PRBS_ CHK_ERR_CNT  
PRBS_ CHK_STATUS  
EYE_MON_ SCAN_ SIZE_OUTPUT  
EYE_MON_ SHAPE_ OUTPUT_0  
EYE_MON_ SHAPE_ OUTPUT_1  
EYE_MON_ SHAPE_ OUTPUT_2  
EYE_MON_ SHAPE_ OUTPUT_3  
EYE_MON_ STATUS  
RSVD  
8A  
8B  
8C  
8D  
8E  
8F  
90  
91 to BF  
GS12341  
Final Data Sheet  
67 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
5.3 Register Descriptions  
Table 5-3: Control Register Descriptions  
Reset  
Value  
Register  
Name  
Bit  
Slice  
Address  
Parameter Name  
R/W  
Description  
h
h
Device Configuration And Control  
RSVD  
15  
RW  
0
Reserved do not modify.  
0 = Enable loop-through. SDIN pin is  
looped through to the SDOUT pin.  
1 = Disable loop-through. Data  
GSPI_LINK_DISABLE  
14  
RW  
0
appearing at SDIN does not appear at  
SDOUT, and SDOUT pin is HIGH.  
CONTROL_  
REG  
0
GSPI_BUS_THROUGH_  
ENABLE  
0 = Disable bus-through mode  
1 = Enable bus-through mode  
13  
RW  
RW  
0
0
RSVD  
12:5  
Reserved - do not modify.  
Device address programmed by  
application. See Section 4.9.10 for  
further information  
DEV_UNIT_ADDRESS  
4:0  
RW  
0
This register contains the device’s  
identification, including revision.  
Contact the local technical sales  
representative for more details.  
1
2
DEVICE_ID  
RSVD  
DEVICE_VERSION  
RSVD  
15:0  
15:0  
RO  
0
R/W  
Reserved - do not modify.  
Device Reset, Reverts all internal logic  
and register values to defaults.  
Write Values:  
AA00h = Asserts device reset  
DD00h = De-assert device reset  
AD00h = Assert/de-assert device reset in  
a single write  
CONTROL_  
RESET  
7F  
RESET_CONTROL  
15:0  
R/W  
DD00  
Read Values:  
AA00h = User-initiated reset is asserted  
DD00h = User-initiated reset is  
de-asserted  
See Section 4.9.13 for further  
information  
GS12341  
Final Data Sheet  
68 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
Table 5-3: Control Register Descriptions (Continued)  
Reset  
Value  
Register  
Name  
Bit  
Slice  
Address  
Parameter Name  
R/W  
Description  
h
h
RSVD  
15:2  
R/W  
0
Reserved - do not modify.  
Sleep manual mode control:  
0 = Never Sleep  
CTRL_MANUAL_SLEEP  
CTRL_AUTO_SLEEP  
1
R/W  
R/W  
0
1 = Always Sleep  
Controls sleep mode when auto sleep  
(CTRL_AUTO_SLEEP) is disabled.  
CONTROL_  
SLEEP  
Sleep auto mode control:  
3
0 = Disable auto sleep mode  
1 = Enable auto sleep mode  
If CTRL_AUTO_SLEEP = 0 (manual sleep  
mode), then CTRL_MANUAL_SLEEP  
controls sleep.  
0
1
If CTRL_AUTO_SLEEP = 1 (auto sleep  
mode), sleep is automatically entered  
on loss of signal.  
RSVD  
15:1  
0
R/W  
R/W  
0
0
Reserved - do not modify.  
Clear sticky counts control register.  
0 = no action  
1 = clear sticky counts.  
Part of a four way handshake with  
STAT_CLEAR_COUNTS_STATUS. See  
Section 4.9.11 for more details on  
implementing the four way handshake  
for this operation.  
4
MISC_CNTRL  
CTRL_CLEAR_COUNTS  
RSVD  
15:4  
3
R/W  
R/W  
0
0
Reserved - do not modify.  
Controls whether trace driver (DDO1) is  
muted or disabled (powered down)  
during sleep:  
CFG_SLEEP_OUTPUT1_  
MUTE  
0 = disable (power down) output during  
sleep.  
1 = mute output during sleep.  
5
MISC_CFG  
Controls whether trace driver (DDO0) is  
muted or disabled (powered down)  
during sleep:  
0 = disable (power down) output during  
sleep.  
CFG_SLEEP_OUTPUT0_  
MUTE  
2
R/W  
R/W  
0
1
1 = mute output during sleep.  
RSVD  
1:0  
Reserved - do not modify.  
GS12341  
Final Data Sheet  
69 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
Table 5-3: Control Register Descriptions (Continued)  
Reset  
Value  
Register  
Name  
Bit  
Slice  
Address  
Parameter Name  
R/W  
Description  
h
h
Reclocker Configuration  
RSVD  
15:5  
4:1  
R/W  
R/W  
1F0  
Reserved - do not modify.  
Manual rate selection. The Reclocker will  
only lock to the selected rate if  
CFG_AUTO_RATE_DETECT_ENA = 0:  
0 = Bypass cable equalizer and  
Reclocker for low data rates.  
1 = MADI  
CFG_MANUAL_RATE  
0
2 = SD  
3 = HD  
4 = 3G  
5 = 6G  
6 = 12G  
RATE_  
DETECT_  
MODE  
6
7 = Reserved - do not modify.  
Set or disable auto rate detection mode  
for the Reclocker.  
0 = Disable auto rate detection  
1 = Enable auto rate detection  
When automatic rate detection is  
disabled  
CFG_AUTO_RATE_  
DETECT_ENA  
0
R/W  
1
(CFG_AUTO_RATE_DETECT_ENA = 0),  
the rate is set by CFG_MANUAL_RATE.  
RSVD  
15:5  
4
R/W  
R/W  
0
0
Reserved - do not modify.  
Select data rate threshold between SD  
and MADI:  
0 = 181Mb/s  
CFG_RD_SD_MADI_  
THRESHOLD  
1 = 198Mb/s  
CFG_RD_SD_MADI_THRESHOLD and  
CFG_RD_MADI_LTMADI_DATADIV (bit  
slice [3:0]) determines the rate detection  
threshold between MADI and <MADI  
rates. The following threshold settings  
are available:  
0x0 = 53Mb/s  
0x2 = 32Mb/s  
0x3 = 79Mb/s (default)  
RATE_  
DETECT_  
CFG  
7
CFG_RD_MADI_  
LTMADI_DATADIV  
3:2  
R/W  
0
0x6 = 63Mb/s  
0x9 = 48Mb/s  
0xA = 95Mb/s  
0xC = 111Mb/s  
0x1, 0x4, 0x5, 0x7, 0x8, 0xB, 0xD, and 0xE  
= Reserved - do not use.  
CFG_RD_MADI_  
LTMADI_CLKDIV  
1:0  
R/W  
R/W  
3
3
See CFG_RD_MADI_ LTMADI_DATADIV.  
Reserved - do not modify.  
8
RSVD  
RSVD  
15:0  
GS12341  
Final Data Sheet  
70 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
Table 5-3: Control Register Descriptions (Continued)  
Reset  
Value  
Register  
Name  
Bit  
Slice  
Address  
Parameter Name  
R/W  
Description  
h
h
RSVD  
15:2  
R/W  
1C  
0
Reserved - do not modify.  
To maximize loop bandwidth of PLL and  
consequently IJT of the Reclocker, set  
this parameter to 0.  
FACTORY_  
CDR_  
PARAMETERS  
9
CFG_MIN_LBW  
1
R/W  
RSVD  
RSVD  
0
R/W  
R/W  
0
0
Reserved - do not modify.  
Reserved - do not modify.  
15:13  
Configure PLL loop bandwidth in terms  
of ratio to nominal loop bandwidth 'x'  
(see Table 2-3).   
11.88Gb/s (12G) loop bandwidth  
setting:  
0x00 = Reserved - do not use  
0x01 = 0.0625x  
0x02 = 0.125x  
0x03 = 0.1875x  
0x04 = 0.25x  
0x05 = 0.3125x  
0x06 = 0.375x  
0x07 = 0.4375x  
0x08 = 0.5x  
CFG_PLL_LBW_12G  
12:8  
R/W  
8
0x09 = 0.5625x  
0x0A = 0.625x  
0x0B = 0.6875x  
0x0C = 0.75x  
PLL_LOOP_  
BANDWIDTH_  
0
0A  
0x0D = 0.8125x  
0x0E = 0.875x  
0x0F = 0.9375x  
0x10 to 0x1B = Reserved - do not use  
0x1C = 1.0x (nominal)  
0x1D = 1.0625x  
0x1E = 1.125x  
0x1F = 1.1875x  
RSVD  
7:5  
4:0  
R/W  
R/W  
0
8
Reserved - do not modify.  
Configure 5.94Gb/s (6G) PLL loop  
bandwidth in terms of ratio to nominal  
loop bandwidth 'x' (see Table 2-3).   
See CFG_PLL_LBW_12G parameter for  
available settings.  
CFG_PLL_LBW_6G  
GS12341  
Final Data Sheet  
71 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
Table 5-3: Control Register Descriptions (Continued)  
Reset  
Value  
Register  
Name  
Bit  
Slice  
Address  
Parameter Name  
R/W  
Description  
h
h
RSVD  
15:13  
12:8  
7:5  
R/W  
0
Reserved - do not modify.  
Configure 2.97Gb/s (3G) PLL loop  
bandwidth in terms of ratio to nominal  
loop bandwidth 'x' (see Table 2-3).   
See CFG_PLL_LBW_12G parameter for  
available settings.  
CFG_PLL_LBW_3G  
RSVD  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
8
PLL_LOOP_  
BANDWIDTH_  
1
0B  
0
Reserved - do not modify.  
Configure 1.485Gb/s (HD) PLL loop  
bandwidth in terms of ratio to nominal  
loop bandwidth 'x' (see Table 2-3).   
See CFG_PLL_LBW_12G parameter for  
available settings.  
CFG_PLL_LBW_HD  
RSVD  
4:0  
8
15:13  
12:8  
7:5  
0
Reserved - do not modify.  
Configure 270Mb/s (SD) PLL loop  
bandwidth in terms of ratio to nominal  
loop bandwidth 'x' (see Table 2-3).   
See CFG_PLL_LBW_12G parameter for  
available settings.  
CFG_PLL_LBW_SD  
RSVD  
1C  
0
PLL_LOOP_  
BANDWIDTH_  
2
0C  
Reserved - do not modify.  
Configure 125Mb/s (MADI) PLL loop  
bandwidth in terms of ratio to nominal  
loop bandwidth 'x' (see Table 2-3).   
See CFG_PLL_LBW_12G parameter for  
available settings.  
CFG_PLL_LBW_MADI  
4:0  
8
0D  
RSVD  
RSVD  
RSVD  
RSVD  
15:0  
15:0  
R/W  
R/W  
8
0
Reserved - do not modify.  
Reserved - do not modify.  
0E to 0F  
GS12341  
Final Data Sheet  
72 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
Table 5-3: Control Register Descriptions (Continued)  
Reset  
Value  
Register  
Name  
Bit  
Slice  
Address  
Parameter Name  
R/W  
Description  
h
h
GPIO Configuration  
RSVD  
15:9  
R/W  
0
1
Reserved - do not modify.  
GPIO0 buffer mode control.  
0 = GPIO pin is configured as an input  
(tri-stated / high impedance).  
CFG_GPIO0_  
OUTPUT_ENA  
8
R/W  
1 = GPIO pin is configured as an output.  
Function select for GPIO0 pin.  
GPIO0 output functions:  
0x00 = Output driven LOW  
0x01 = Output driven HIGH  
0x02 = PLL lock status (HIGH — PLL  
locked)  
0x03 to 0x7F= Reserved - do not use.  
0x80 = LOS equivalent to inverse of  
STAT_SEC_CD (Default mode for GPIO0)  
0x81 = carrier detect status  
(STAT_SEC_CD)  
0x82 = Sleep mode status (HIGH —  
Device in sleep mode)  
0x83 = HIGH for SD, LOW for all other  
rates.  
0x84 = Rate detected [0]  
0x85 = Rate detected [1]  
10  
GPIO0_CFG  
0x86 = Rate detected [2]  
Note: To have full rate range using the  
GPIO rate detect function, one GPIO pin  
must be used for each Rate Detect bit  
[2:0]. Please see Table 4-2: Detected  
Data Rates for the indication values.  
CFG_GPIO0_FUNCTION  
7:0  
R/W  
80  
0x87 to 0xFF = Reserved - do not use.  
GPIO0 input functions:  
0x00 to 0x80 = Reserved - do not use.   
0x81 = DDO0 disable control (HIGH —  
disable)  
0x82 = DDO1 disable control (HIGH —  
disable)  
0x83 = Reserved - do not modify.  
0x84 = Cable equalizer bypass enable  
(HIGH — Bypass enabled)  
0x85 = Reclocker bypass enable (HIGH  
— Bypass enabled)  
0x86 = Sleep control (HIGH — Sleep)  
0x87 to 0xFF = Reserved - do not use.  
GS12341  
Final Data Sheet  
73 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
Table 5-3: Control Register Descriptions (Continued)  
Reset  
Value  
Register  
Name  
Bit  
Slice  
Address  
Parameter Name  
R/W  
Description  
h
h
RSVD  
15:9  
R/W  
0
Reserved - do not modify.  
GPIO1 buffer mode control.  
See GPIO0_CFG:  
CFG_GPIO0_OUTPUT_ENA parameter  
for description and available settings.  
Default mode: Output  
CFG_GPIO1_  
OUTPUT_ENA  
8
R/W  
1
11  
GPIO1_CFG  
Function select for GPIO1 pin.  
See GPIO0_CFG:  
CFG_GPIO1_FUNCTION  
RSVD  
7:0  
15:9  
8
R/W  
R/W  
R/W  
2
0
0
CFG_GPIO0_FUNCTION parameter for  
description and available settings.  
Default Function: 0x02 = PLL lock status  
Reserved - do not modify.  
GPIO2 buffer mode control.  
See GPIO0_CFG:  
CFG_GPIO0_OUTPUT_ENA parameter  
for description and available settings.  
Default mode: Input  
CFG_GPIO2_  
OUTPUT_ENA  
12  
GPIO2_CFG  
Function select for GPIO2 pin.  
See GPIO0_CFG:  
CFG_GPIO2_FUNCTION  
RSVD  
7:0  
15:9  
8
R/W  
R/W  
R/W  
86  
0
CFG_GPIO0_FUNCTION parameter for  
description and available settings.  
Default Function: 0x86 = Sleep control  
Reserved - do not modify.  
GPIO3 buffer mode control.  
See GPIO0_CFG:  
CFG_GPIO0_OUTPUT_ENA parameter  
for description and available settings.  
Default mode: Input  
CFG_GPIO3_  
OUTPUT_ENA  
0
13  
GPIO3_CFG  
Function select for GPIO3 pin.  
See GPIO0_CFG:  
CFG_GPIO0_FUNCTION parameter for  
description and available settings.  
Default Function: 0x82 = DDO1 disable  
control (HIGH disable)  
CFG_GPIO3_FUNCTION  
7:0  
R/W  
82  
GS12341  
Final Data Sheet  
74 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
Table 5-3: Control Register Descriptions (Continued)  
Reset  
Value  
Register  
Name  
Bit  
Slice  
Address  
Parameter Name  
R/W  
Description  
h
h
Cable Equalizer Configuration  
14  
RSVD  
RSVD  
RSVD  
15:0  
15:1  
R/W  
R/W  
303  
0
Reserved - do not modify.  
Reserved - do not modify.  
Enable or disable squelch control  
conditions for deriving secondary  
carrier detection (LOS) status for cable  
equalizer (SDI) input.  
CARR_  
DET_CFG  
15  
CFG_SEC_CD_  
INCL_CLI_SQUELCH  
0
R/W  
0
0 = Ignore CLI squelch.  
1 = Take into account CLI squelch.  
RSVD  
15  
R/W  
R/W  
0
Reserved - do not modify.  
Set the input signal squelch threshold.  
Range = 0 to 64d (64d is max cable reach  
determined for specific rate, cable type,  
and launch swing compensation).  
CFG_CLI_SQUELCH_  
THRESHOLD  
14:8  
40  
SQUELCH_  
PARAMETERS  
16  
RSVD  
7
R/W  
R/W  
R/W  
0
2
0
Reserved - do not modify.  
Set the input signal squelch hysteresis  
Range: 1 to 30d  
CFG_CLI_SQUELCH_  
HYSTERESIS  
6:0  
RSVD  
15:2  
Reserved - do not modify.  
Controls cable equalizer (CEQ) bypass  
when auto CEQ bypass is disabled  
(CTRL_CEQ_AUTO_BYPASS= 0).  
0 = Cable equalizer never bypassed  
1 = Cable equalizer always bypassed  
CTRL_CEQ_MANUAL_  
BYPASS  
1
0
R/W  
0
CABLE_  
EQ_BYPASS_  
MODE  
17  
Auto cable equalizer bypass mode  
control:  
0 = Disable auto mode  
CTRL_CEQ_AUTO_  
BYPASS  
R/W  
1
1 = Enable auto mode  
When CFG_CEQ_AUTO_BYPASS = 0,  
CEQ bypass is controlled by  
CFG_CEQ_BYPASS_MANUAL.  
RSVD  
15:7  
6:0  
R/W  
R/W  
0
Reserved - do not modify.  
Input launch swing compensation  
setting in units of 10 mVppd  
Default setting of 80d (0x50)  
corresponds to 800mV. Default for  
upstream SMPTE compliant cable  
drivers operating at 800mv 10ꢀ.  
INPUT_  
LAUNCH_  
SWING_CFG  
CFG_CEQ_INPUT_  
LAUNCH_SWING_  
COMP  
18  
50  
19  
1A  
1B  
1C  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
15:0  
15:0  
15:0  
15:0  
R/W  
R/W  
R/W  
R/W  
1
14  
1
Reserved - do not modify.  
Reserved - do not modify.  
Reserved - do not modify.  
Reserved - do not modify.  
4
GS12341  
Final Data Sheet  
75 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
Table 5-3: Control Register Descriptions (Continued)  
Reset  
Value  
Register  
Name  
Bit  
Slice  
Address  
Parameter Name  
R/W  
Description  
h
h
1D  
1E  
1F  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
15:0  
15:0  
15:0  
15:8  
R/W  
R/W  
R/W  
R/W  
0
4
Reserved - do not modify.  
Reserved - do not modify.  
Reserved - do not modify.  
Reserved - do not modify.  
43  
0
CEQ (Cable Equalizer) carrier detect filter  
sample window period in clock cycles.  
Sample window size is this value plus 1  
clock cycle.  
CD_FILTER_  
DELAYS_0  
20  
CFG_CD_FILTER_  
SAMPLE_WIN  
7:0  
R/W  
3
Valid Range: 0x03 to 0xFF  
See Section 4.2.3 for details.  
RSVD  
15:10  
9:0  
R/W  
R/W  
R/W  
R/W  
R/W  
0
F
Reserved - do not modify.  
Number of samples required for  
detecting CEQ (cable equalizer) carrier  
detect de-assertion:  
Valid Range: 0x00 to 0x3FF  
See Section 4.2.3 for details.  
CD_FILTER_  
DELAYS_1  
21  
22  
CFG_CD_FILTER_  
DEASSERT_CNT  
RSVD  
15:10  
9:0  
0
Reserved - do not modify.  
Number of samples required for  
detecting CEQ (cable equalizer) carrier  
detect assertion:  
Valid Range: 0x00 to 0x3FF  
See Section 4.2.3 for details.  
CD_FILTER_  
DELAYS_2  
CFG_CD_FILTER_  
ASSERT_CNT  
3FF  
0
23 to 25  
26 to 27  
RSVD  
RSVD  
RSVD  
15:0  
Reserved - do not modify.  
Output Configuration  
RSVD  
RSVD  
15:0  
R/W  
R/W  
0
0
Reserved - do not modify.  
Reserved - do not modify.  
15:13  
Configure the SD rate pre-emphasis  
pulse width on trace driver output1  
(DDO1).  
Range: 0 to 15d.  
Adjust the pre-emphasis pulse width to  
better match the channel loss response  
shape.  
Note: By default, the trace driver SD  
settings are applied for all rates (see  
CTRL_OUTPUT1_TRDR_PER_RATE for  
per rate setting).  
OUTPUT_  
PARAM_TD_  
SD_0  
CFG_OUTPUT1_TD_  
SD_PREEMPH_WIDTH  
28  
12:8  
R/W  
R/W  
2
0
RSVD  
7
Reserved - do not modify.  
GS12341  
Final Data Sheet  
76 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
Table 5-3: Control Register Descriptions (Continued)  
Reset  
Value  
Register  
Name  
Bit  
Slice  
Address  
Parameter Name  
R/W  
Description  
h
h
Power down the SD rate pre-emphasis  
on trace driver output1 (DDO1).   
0 = Pre-emphasis driver powered up  
(pre-emphasis enabled).  
1 = Pre-emphasis driver powered down  
(pre-emphasis disabled).  
Note: By default, the trace driver SD  
settings are applied for all rates (see  
CTRL_OUTPUT1_TRDR_PER_RATE for  
per rate setting).  
CFG_OUTPUT1_TD_  
SD_PREEMPH_  
PWRDWN  
6
R/W  
0
OUTPUT_  
PARAM_TD_  
SD_0  
28  
Configure the SD rate pre-emphasis  
amplitude on trace driver output1  
(DDO1).  
(Continued)  
(Continued)  
Range: 0 to 50d.  
Adjust the pre-emphasis pulse  
amplitude to better match the channel  
loss at Nyquist.  
CFG_OUTPUT1_TD_  
SD_PREEMPH_AMPL  
5:0  
R/W  
1
Note: By default, the trace driver SD  
settings are applied for all rates (see  
CTRL_OUTPUT1_TRDR_PER_RATE for  
per rate setting).  
RSVD  
15:14  
13:8  
7:0  
R/W  
R/W  
R/W  
0
Reserved - do not modify.  
Configure the SD rate amplitude on  
trace driver output1 (DDO1). amplitude.  
Range: 0 to 40d.  
Adjust the differential trace driver  
amplitude. The default value produces  
an amplitude of 400mVppd.  
Note: By default, the trace driver SD  
settings are applied for all rates (see  
CTRL_OUTPUT1_TRDR_PER_RATE for  
per rate setting).  
OUTPUT_  
PARAM_TD_  
SD_1  
CFG_OUTPUT1_TD_  
SD_DRIVER_SWING  
29  
11  
70  
RSVD  
Reserved - do not modify.  
GS12341  
Final Data Sheet  
77 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
Table 5-3: Control Register Descriptions (Continued)  
Reset  
Value  
Register  
Name  
Bit  
Slice  
Address  
Parameter Name  
R/W  
Description  
h
h
RSVD  
15:13  
R/W  
0
Reserved - do not modify.  
Configure the SD rate pre-emphasis  
pulse width on trace driver output0  
(DDO0).  
Range: 0 to 15d.  
Adjust the pre-emphasis pulse width to  
better match the channel loss response  
shape.  
CFG_OUTPUT0_TD_  
SD_PREEMPH_WIDTH  
12:8  
R/W  
2
Note: By default, the trace driver SD  
settings are applied for all rates (see  
CTRL_OUTPUT0_TRDR_PER_RATE for  
per rate setting).  
RSVD  
7
6
R/W  
R/W  
0
0
Reserved - do not modify.  
Power down the SD rate pre-emphasis  
on trace driver output0 (DDO0).   
0 = Pre-emphasis driver powered up  
(pre-emphasis enabled).  
1 = Pre-emphasis driver powered down  
(pre-emphasis disabled).  
Note: By default, the trace driver SD  
settings are applied for all rates (see  
CTRL_OUTPUT0_TRDR_PER_RATE for  
per rate setting).  
OUTPUT_  
PARAM_TD_  
SD_2  
2A  
CFG_OUTPUT0_TD_  
SD_PREEMPH_  
PWRDWN  
Configure the SD rate pre-emphasis  
amplitude on trace driver output0  
(DDO0).  
Range: 0 to 50d.  
Adjust the pre-emphasis pulse  
amplitude to better match the channel  
loss at Nyquist.  
CFG_OUTPUT0_TD_  
SD_PREEMPH_AMPL  
5:0  
R/W  
1
Note: By default, the trace driver SD  
settings are applied for all rates (see  
CTRL_OUTPUT0_TRDR_PER_RATE for  
per rate setting).  
RSVD  
15:14  
13:8  
7:0  
R/W  
R/W  
R/W  
0
Reserved - do not modify.  
Configure the SD rate amplitude on  
trace driver output0 (DDO0). amplitude.  
Range: 0 to 40d.  
Adjust the differential trace driver  
amplitude. The default value produces  
an amplitude of 400mVppd.  
Note: By default, the trace driver SD  
settings are applied for all rates (see  
CTRL_OUTPUT0_TRDR_PER_RATE for  
per rate setting).  
OUTPUT_  
PARAM_TD_  
SD_3  
CFG_OUTPUT0_TD_  
SD_DRIVER_SWING  
2B  
11  
70  
RSVD  
Reserved - do not modify.  
GS12341  
Final Data Sheet  
78 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
Table 5-3: Control Register Descriptions (Continued)  
Reset  
Value  
Register  
Name  
Bit  
Slice  
Address  
Parameter Name  
R/W  
Description  
h
h
RSVD  
15:13  
12:8  
R/W  
0
Reserved - do not modify.  
Configure the HD rate pre-emphasis  
pulse width on trace driver output1  
(DDO1).  
CFG_OUTPUT1_TD_  
HD_PREEMPH_WIDTH  
Range: 0 to 15d.  
R/W  
2
Adjust the pre-emphasis pulse width to  
better match the channel loss response  
shape.  
RSVD  
7
6
R/W  
R/W  
0
0
Reserved - do not modify.  
OUTPUT_  
PARAM_TD_  
HD_0  
Power down the HD rate pre-emphasis  
on trace driver output1 (DDO1)   
0 = Pre-emphasis driver powered up  
(pre-emphasis enabled).  
2C  
CFG_OUTPUT1_TD_  
HD_PREEMPH_  
PWRDWN  
1 = Pre-emphasis driver powered down  
(pre-emphasis disabled).  
Configure the HD rate pre-emphasis  
amplitude on trace driver output1  
(DDO1).  
CFG_OUTPUT1_TD_  
HD_PREEMPH_AMPL  
Range: 0 to 50d.  
5:0  
R/W  
1
Adjust the pre-emphasis pulse  
amplitude to better match the channel  
loss at Nyquist.  
RSVD  
15:14  
13:8  
7:0  
R/W  
R/W  
R/W  
0
Reserved - do not modify.  
Configure the HD rate amplitude on  
trace driver output1 (DDO1). amplitude.  
Range: 0 to 40d.  
Adjust the differential trace driver  
amplitude. The default value produces  
OUTPUT_  
PARAM_  
TD_HD_1  
CFG_OUTPUT1_TD_  
HD_DRIVER_SWING  
2D  
11  
70  
an amplitude of 400mVppd  
.
RSVD  
Reserved - do not modify.  
GS12341  
Final Data Sheet  
79 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
Table 5-3: Control Register Descriptions (Continued)  
Reset  
Value  
Register  
Name  
Bit  
Slice  
Address  
Parameter Name  
R/W  
Description  
h
h
RSVD  
15:13  
12:8  
R/W  
0
Reserved - do not modify.  
Configure the HD rate pre-emphasis  
pulse width on trace driver output0  
(DDO0).  
CFG_OUTPUT0_TD_  
HD_PREEMPH_WIDTH  
Range: 0 to 15d.  
R/W  
2
Adjust the pre-emphasis pulse width to  
better match the channel loss response  
shape.  
RSVD  
7
6
R/W  
R/W  
0
0
Reserved - do not modify.  
OUTPUT_  
PARAM_TD_  
HD_2  
Power down the HD rate pre-emphasis  
on trace driver output0 (DDO0)   
0 = Pre-emphasis driver powered up  
(pre-emphasis enabled).  
2E  
CFG_OUTPUT0_TD_  
HD_PREEMPH_  
PWRDWN  
1 = Pre-emphasis driver powered down  
(pre-emphasis disabled).  
Configure the HD rate pre-emphasis  
amplitude on trace driver output0  
(DDO0).  
CFG_OUTPUT0_TD_  
HD_PREEMPH_AMPL  
Range: 0 to 50d.  
5:0  
R/W  
1
Adjust the pre-emphasis pulse  
amplitude to better match the channel  
loss at Nyquist.  
RSVD  
15:14  
13:8  
7:0  
R/W  
R/W  
R/W  
0
Reserved - do not modify.  
Configure the HD rate amplitude on  
trace driver output0 (DDO0). amplitude.  
Range: 0 to 40d.  
Adjust the differential trace driver  
amplitude. The default value produces  
OUTPUT_  
PARAM_TD_  
HD_3  
CFG_OUTPUT0_TD_  
HD_DRIVER_SWING  
2F  
11  
70  
an amplitude of 400mVppd  
.
RSVD  
Reserved - do not modify.  
GS12341  
Final Data Sheet  
80 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
Table 5-3: Control Register Descriptions (Continued)  
Reset  
Value  
Register  
Name  
Bit  
Slice  
Address  
Parameter Name  
R/W  
Description  
h
h
RSVD  
15:13  
12:8  
R/W  
0
Reserved - do not modify.  
Configure the 3G rate pre-emphasis  
pulse width on trace driver output1  
(DDO1).  
CFG_OUTPUT1_TD_  
3G_PREEMPH_WIDTH  
Range: 0 to 15d.  
R/W  
2
Adjust the pre-emphasis pulse width to  
better match the channel loss response  
shape.  
RSVD  
7
6
R/W  
R/W  
0
0
Reserved - do not modify.  
OUTPUT_  
PARAM_  
TD_3G_0  
Power down the 3G rate pre-emphasis  
on trace driver output1 (DDO1)   
0 = Pre-emphasis driver powered up  
(pre-emphasis enabled).  
30  
CFG_OUTPUT1_TD_  
3G_PREEMPH_  
PWRDWN  
1 = Pre-emphasis driver powered down  
(pre-emphasis disabled).  
Configure the 3G rate pre-emphasis  
amplitude on trace driver output1  
(DDO1).  
CFG_OUTPUT1_TD_  
3G_PREEMPH_AMPL  
Range: 0 to 50d.  
5:0  
R/W  
1
Adjust the pre-emphasis pulse  
amplitude to better match the channel  
loss at Nyquist.  
RSVD  
15:14  
13:8  
7:0  
R/W  
R/W  
R/W  
0
Reserved - do not modify.  
Configure the 3G rate amplitude on  
trace driver output1 (DDO1). amplitude.  
Range: 0 to 40d.  
Adjust the differential trace driver  
amplitude. The default value produces  
OUTPUT_  
PARAM_  
TD_3G_1  
CFG_OUTPUT1_TD_  
3G_DRIVER_SWING  
31  
11  
70  
an amplitude of 400mVppd  
.
RSVD  
Reserved - do not modify.  
GS12341  
Final Data Sheet  
81 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
Table 5-3: Control Register Descriptions (Continued)  
Reset  
Value  
Register  
Name  
Bit  
Slice  
Address  
Parameter Name  
R/W  
Description  
h
h
RSVD  
15:13  
12:8  
R/W  
0
Reserved - do not modify.  
Configure the 3G rate pre-emphasis  
pulse width on trace driver output0  
(DDO0).  
CFG_OUTPUT0_TD_  
3G_PREEMPH_WIDTH  
Range: 0 to 15d.  
R/W  
2
Adjust the pre-emphasis pulse width to  
better match the channel loss response  
shape.  
RSVD  
7
6
R/W  
R/W  
0
0
Reserved - do not modify.  
OUTPUT_  
PARAM_  
TD_3G_2  
Power down the 3G rate pre-emphasis  
on trace driver output0 (DDO0)   
0 = Pre-emphasis driver powered up  
(pre-emphasis enabled).  
32  
CFG_OUTPUT0_TD_  
3G_PREEMPH_  
PWRDWN  
1 = Pre-emphasis driver powered down  
(pre-emphasis disabled).  
Configure the 3G rate pre-emphasis  
amplitude on trace driver output0  
(DDO0).  
CFG_OUTPUT0_TD_  
3G_PREEMPH_AMPL  
Range: 0 to 50d.  
5:0  
R/W  
1
Adjust the pre-emphasis pulse  
amplitude to better match the channel  
loss at Nyquist.  
RSVD  
15:14  
13:8  
7:0  
R/W  
R/W  
R/W  
0
Reserved - do not modify.  
Configure the 3G rate amplitude on  
trace driver output0 (DDO0). amplitude.  
Range: 0 to 40d.  
Adjust the differential trace driver  
amplitude. The default value produces  
OUTPUT_  
PARAM_  
TD_3G_3  
CFG_OUTPUT0_TD_  
3G_DRIVER_SWING  
33  
11  
70  
an amplitude of 400mVppd  
.
RSVD  
Reserved - do not modify.  
GS12341  
Final Data Sheet  
82 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
Table 5-3: Control Register Descriptions (Continued)  
Reset  
Value  
Register  
Name  
Bit  
Slice  
Address  
Parameter Name  
R/W  
Description  
h
h
RSVD  
15:13  
12:8  
R/W  
0
Reserved - do not modify.  
Configure the 6G rate pre-emphasis  
pulse width on trace driver output1  
(DDO1).  
CFG_OUTPUT1_TD_  
6G_PREEMPH_WIDTH  
Range: 0 to 15d.  
R/W  
2
Adjust the pre-emphasis pulse width to  
better match the channel loss response  
shape.  
RSVD  
7
6
R/W  
R/W  
0
0
Reserved - do not modify.  
OUTPUT_  
PARAM_  
TD_6G_0  
Power down the 6G rate pre-emphasis  
on trace driver output1 (DDO1)   
0 = Pre-emphasis driver powered up  
(pre-emphasis enabled).  
34  
CFG_OUTPUT1_TD_  
6G_PREEMPH_  
PWRDWN  
1 = Pre-emphasis driver powered down  
(pre-emphasis disabled).  
Configure the 6G rate pre-emphasis  
amplitude on trace driver output1  
(DDO1).  
CFG_OUTPUT1_TD_  
6G_PREEMPH_AMPL  
Range: 0 to 50d.  
5:0  
R/W  
1
Adjust the pre-emphasis pulse  
amplitude to better match the channel  
loss at Nyquist.  
RSVD  
15:14  
13:8  
7:0  
R/W  
R/W  
R/W  
0
Reserved - do not modify.  
Configure the 6G rate amplitude on  
trace driver output1 (DDO1). amplitude.  
Range: 0 to 40d.  
Adjust the differential trace driver  
amplitude. The default value produces  
an amplitude of 400mVppd  
OUTPUT_  
PARAM_  
TD_6G_1  
CFG_OUTPUT1_TD_  
6G_DRIVER_SWING  
35  
11  
70  
RSVD  
Reserved - do not modify.  
GS12341  
Final Data Sheet  
83 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
Table 5-3: Control Register Descriptions (Continued)  
Reset  
Value  
Register  
Name  
Bit  
Slice  
Address  
Parameter Name  
R/W  
Description  
h
h
RSVD  
15:13  
12:8  
R/W  
0
Reserved - do not modify.  
Configure the 6G rate pre-emphasis  
pulse width on trace driver output0  
(DDO0).  
CFG_OUTPUT0_TD_  
6G_PREEMPH_WIDTH  
Range: 0 to 15d.  
R/W  
2
Adjust the pre-emphasis pulse width to  
better match the channel loss response  
shape.  
RSVD  
7
6
R/W  
R/W  
0
0
Reserved - do not modify.  
OUTPUT_  
PARAM_  
TD_6G_2  
Power down the 6G rate pre-emphasis  
on trace driver output0 (DDO0)   
0 = Pre-emphasis driver powered up  
(pre-emphasis enabled).  
36  
CFG_OUTPUT0_TD_  
6G_PREEMPH_  
PWRDWN  
1 = Pre-emphasis driver powered down  
(pre-emphasis disabled).  
Configure the 6G rate pre-emphasis  
amplitude on trace driver output0  
(DDO0).  
CFG_OUTPUT0_TD_  
6G_PREEMPH_AMPL  
Range: 0 to 50d.  
5:0  
R/W  
1
Adjust the pre-emphasis pulse  
amplitude to better match the channel  
loss at Nyquist.  
RSVD  
15:14  
13:8  
7:0  
R/W  
R/W  
R/W  
0
Reserved - do not modify.  
Configure the 6G rate amplitude on  
trace driver output0 (DDO0). amplitude.  
Range: 0 to 40d.  
Adjust the differential trace driver  
amplitude. The default value produces  
OUTPUT_  
PARAM_  
TD_6G_3  
37  
CFG_OUTPUT0_TD_  
6G_DRIVER_SWING  
11  
70  
an amplitude of 400mVppd  
.
RSVD  
Reserved - do not modify.  
GS12341  
Final Data Sheet  
84 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
Table 5-3: Control Register Descriptions (Continued)  
Reset  
Value  
Register  
Name  
Bit  
Slice  
Address  
Parameter Name  
R/W  
Description  
h
h
RSVD  
15:13  
R/W  
0
Reserved - do not modify.  
Configure the 12G rate pre-emphasis  
pulse width on trace driver output1  
(DDO1).  
Range: 0 to 15d.  
Adjust the pre-emphasis pulse width to  
better match the channel loss response  
shape.  
Note: When per rate settings are  
chosen, the trace driver 12G settings are  
applied for all rates when the Reclocker  
is unlocked   
CFG_OUTPUT1_TD_  
12G_PREEMPH_WIDTH  
12:8  
R/W  
2
(see CTRL_OUTPUT1_TRDR_PER_RATE  
for per rate setting).  
RSVD  
7
6
R/W  
R/W  
0
0
Reserved - do not modify.  
Power down the 12G rate pre-emphasis  
on trace driver output1 (DDO1)   
0 = Pre-emphasis driver powered up  
(pre-emphasis enabled).  
1 = Pre-emphasis driver powered down  
(pre-emphasis disabled).  
OUTPUT_  
PARAM_  
TD_12G_0  
38  
CFG_OUTPUT1_TD_  
12G_PREEMPH_  
PWRDWN  
Note: When per rate settings are  
chosen, the trace driver 12G settings are  
applied for all rates when the Reclocker  
is unlocked   
(see CTRL_OUTPUT1_TRDR_PER_RATE  
for per rate setting).  
Configure the 12G rate pre-emphasis  
amplitude on trace driver output1  
(DDO1).  
Range: 0 to 50d.  
Adjust the pre-emphasis pulse  
amplitude to better match the channel  
loss at Nyquist.  
Note: When per rate settings are  
chosen, the trace driver 12G settings are  
applied for all rates when the Reclocker  
is unlocked   
CFG_OUTPUT1_TD_  
12G_PREEMPH_AMPL  
5:0  
R/W  
1
(see CTRL_OUTPUT1_TRDR_PER_RATE  
for per rate setting).  
GS12341  
Final Data Sheet  
85 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
Table 5-3: Control Register Descriptions (Continued)  
Reset  
Value  
Register  
Name  
Bit  
Slice  
Address  
Parameter Name  
R/W  
Description  
h
h
RSVD  
15:14  
R/W  
0
Reserved - do not modify.  
Configure the 12G rate amplitude on  
trace driver output1 (DDO1). amplitude.  
Range: 0 to 40d.  
Adjust the differential trace driver  
amplitude. The default value produces  
an amplitude of 400mVppd  
Note: When per rate settings are  
chosen, the trace driver 12G settings are  
applied for all rates when the Reclocker  
is unlocked   
OUTPUT_  
PARAM_  
TD_12G_1  
CFG_OUTPUT1_TD_  
12G_DRIVER_SWING  
39  
13:8  
R/W  
11  
(see CTRL_OUTPUT1_TRDR_PER_RATE  
for per rate setting).  
RSVD  
RSVD  
7:0  
R/W  
R/W  
70  
0
Reserved - do not modify.  
Reserved - do not modify.  
15:13  
Configure the 12G rate pre-emphasis  
pulse width on trace driver output0  
(DDO0).  
Range: 0 to 15d.  
Adjust the pre-emphasis pulse width to  
better match the channel loss response  
shape.  
Note: When per rate settings are  
chosen, the trace driver 12G settings are  
applied for all rates when the Reclocker  
is unlocked   
CFG_OUTPUT0_TD_  
12G_PREEMPH_WIDTH  
12:8  
R/W  
2
(see CTRL_OUTPUT0_TRDR_PER_RATE  
for per rate setting)  
OUTPUT_  
PARAM_  
TD_12G_2  
3A  
RSVD  
7
6
R/W  
R/W  
0
0
Reserved - do not modify.  
Power down the 12G rate pre-emphasis  
on trace driver output0 (DDO0)   
0 = Pre-emphasis driver powered up  
(pre-emphasis enabled).  
1 = Pre-emphasis driver powered down  
(pre-emphasis disabled).  
CFG_OUTPUT0_TD_  
12G_PREEMPH_  
PWRDWN  
Note: When per rate settings are  
chosen, the trace driver 12G settings are  
applied for all rates when the Reclocker  
is unlocked   
(see CTRL_OUTPUT0_TRDR_PER_RATE  
for per rate setting).  
GS12341  
Final Data Sheet  
86 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
Table 5-3: Control Register Descriptions (Continued)  
Reset  
Value  
Register  
Name  
Bit  
Slice  
Address  
Parameter Name  
R/W  
Description  
h
h
Configure the 12G rate pre-emphasis  
amplitude on trace driver output0  
(DDO0).  
Range: 0 to 50d.  
Adjust the pre-emphasis pulse  
amplitude to better match the channel  
loss at Nyquist.  
OUTPUT_  
PARAM_  
TD_12G_2  
(Continued)  
CFG_OUTPUT0_TD_  
12G_PREEMPH_AMPL  
3A  
(Continued)  
5:0  
R/W  
1
Note: When per rate settings are  
chosen, the trace driver 12G settings are  
applied for all rates when the Reclocker  
is unlocked   
(see CTRL_OUTPUT0_TRDR_PER_RATE  
for per rate setting).  
RSVD  
15:14  
13:8  
R/W  
R/W  
0
Reserved - do not modify.  
Configure the 12G rate amplitude on  
trace driver output0 (DDO0). amplitude.  
Range: 0 to 40d.  
Adjust the differential trace driver  
amplitude. The default value produces  
OUTPUT_  
PARAM_  
TD_12G_3  
an amplitude of 400mVppd  
.
CFG_OUTPUT0_TD_  
12G_DRIVER_SWING  
3B  
11  
Note: When per rate settings are  
chosen, the trace driver 12G settings are  
applied for all rates when the Reclocker  
is unlocked   
(see CTRL_OUTPUT0_TRDR_PER_RATE  
for per rate setting).  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
7:0  
15:0  
15:0  
15:0  
15:0  
15:0  
15:14  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
70  
342  
1C90  
342  
1C90  
340  
0
Reserved - do not modify.  
Reserved - do not modify.  
Reserved - do not modify.  
Reserved - do not modify.  
Reserved - do not modify.  
Reserved - do not modify.  
Reserved - do not modify.  
3C  
3D  
3E  
3F  
40  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
Controls the output mute differential  
latch voltage on output1 (DDO1) trace  
driver. Default is 8 = ~200mVdiff  
.
OUTPUT_  
PARAM_  
MUTE_1  
CFG_OUTPUT1_MUTE_  
DRIVER_SWING  
Increasing the setting may be required  
for noisy environment, but mute power  
increases proportionally to mute  
differential latch voltage.   
41  
42  
13:8  
R/W  
8
Range: 0 to 63d  
RSVD  
RSVD  
7:0  
R/W  
R/W  
50  
Reserved - do not modify.  
Reserved - do not modify.  
RSVD  
15:0  
340  
GS12341  
Final Data Sheet  
87 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
Table 5-3: Control Register Descriptions (Continued)  
Reset  
Value  
Register  
Name  
Bit  
Slice  
Address  
Parameter Name  
R/W  
Description  
h
h
RSVD  
15:14  
R/W  
0
Reserved - do not modify.  
Controls the output mute differential  
latch voltage on output0 (DDO0) trace  
driver. Default is 8=~200mVdiff  
.
OUTPUT_  
PARAM_  
MUTE_3  
CFG_OUTPUT0_MUTE_  
DRIVER_SWING  
Increasing the setting may be required  
for noisy environment, but mute power  
increases proportionally to mute  
differential latch voltage.   
43  
13:8  
R/W  
8
Range: 0 to 63d  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
7:0  
R/W  
R/W  
R/W  
R/W  
R/W  
50  
Reserved - do not modify.  
Reserved - do not modify.  
Reserved - do not modify.  
Reserved - do not modify.  
Reserved - do not modify.  
44  
45  
46  
47  
RSVD  
RSVD  
RSVD  
RSVD  
15:0  
15:0  
15:0  
15:0  
342  
1C90  
342  
1C90  
Output Control  
RSVD  
15:4  
R/W  
10  
0
Reserved - do not modify.  
Controls optional signal polarity  
inversion on trace driver output 0  
(DDO0) when data is selected  
(CTRL_OUTPUT0_SIGNAL_SEL = 0).  
CTRL_OUTPUT0_  
DATA_INVERT  
3
R/W  
Controls optional signal polarity  
inversion on trace driver output 0  
(DDO1) when data is selected  
(CTRL_OUTPUT1_SIGNAL_SEL = 0).  
CTRL_OUTPUT1_  
DATA_INVERT  
2
1
R/W  
R/W  
0
0
OUTPUT_  
SIG_SELECT  
48  
Select between data or PRBS generator  
on output 0 (DDO0).  
0 = Data  
CTRL_OUTPUT0_  
SIGNAL_SEL  
1 = PRBS generator output (PRBS7 or  
divided version of PRBS generator clock)  
Select between data or PRBS generator  
on output 1 (DDO1).  
0 = Data  
CTRL_OUTPUT1_  
SIGNAL_SEL  
0
R/W  
0
1 = PRBS generator output (PRBS7 or  
divided version of PRBS generator clock)  
GS12341  
Final Data Sheet  
88 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
Table 5-3: Control Register Descriptions (Continued)  
Reset  
Value  
Register  
Name  
Bit  
Slice  
Address  
Parameter Name  
R/W  
Description  
h
h
RSVD  
15:6  
R/W  
0
Reserved - do not modify.  
Selects if device is auto muted during  
rate search, based on loss of lock.  
1= Mutes DDO1 when the Reclocker is  
not locked to the applied signal.  
CTRL_OUTPUT1_  
AUTO_MUTE_DURING_  
RATE_SEARCH  
5
R/W  
0
0= Device does not auto mute.  
Note: If passing non-standard rates  
through the device or using the PRBS  
generator, set this parameter to 0.  
Selects if device is auto muted during  
rate search, based on loss of lock.  
1= Mutes DDO0 when the Reclocker is  
not locked to the applied signal.  
CTRL_OUTPUT0_  
AUTO_MUTE_DURING_  
RATE_SEARCH  
4
R/W  
0
0= Device does not auto mute.  
Note: If passing non-standard rates  
through the device or using the PRBS  
generator, set this parameter to 0.  
Controls mute for trace driver output1  
(DDO1) when auto mute  
(CTRL_OUTPUT1_AUTO_MUTE = 0) is  
disabled.  
0 = Unmute output driver  
1 = Mute output driver  
CTRL_OUTPUT1_  
MANUAL_MUTE  
CONTROL_  
OUTPUT_  
MUTE  
3
2
1
0
R/W  
R/W  
R/W  
R/W  
0
1
0
1
49  
Select automatic or manual mute  
control for trace driver output1 (DDO1).  
0 = Disable auto mute mode  
CTRL_OUTPUT1_  
AUTO_MUTE  
1 = Enable auto mute mode  
If CTRL_OUTPUT1_AUTO_MUTE = 0,  
then CTRL_OUTPUT1_MANUAL_MUTE  
controls mute for DDO1.  
Controls mute for trace driver output0  
(DDO0) when auto mute  
(CTRL_OUTPUT0_AUTO_MUTE = 0) is  
disabled.  
0 = Unmute output driver  
1 = Mute output driver  
CTRL_OUTPUT0_  
MANUAL_MUTE  
Select automatic or manual mute  
control for trace driver output0 (DDO0).  
0 = Disable auto mute mode  
CTRL_OUTPUT0_  
AUTO_MUTE  
1 = Enable auto mute mode  
If CTRL_OUTPUT0_AUTO_MUTE = 0,  
then CTRL_OUTPUT0_MANUAL_MUTE  
controls mute for DDO0.  
GS12341  
Final Data Sheet  
89 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
Table 5-3: Control Register Descriptions (Continued)  
Reset  
Value  
Register  
Name  
Bit  
Slice  
Address  
Parameter Name  
R/W  
Description  
h
h
RSVD  
15:4  
R/W  
0
Reserved - do not modify.  
Controls disable for trace driver output1  
(DDO1) when auto disable  
CTRL_OUTPUT1_  
MANUAL_DISABLE  
(CTRL_OUTPUT1_AUTO_DISABLE = 0) is  
disabled.  
0 = Enable output driver  
3
R/W  
R/W  
R/W  
R/W  
0
1 = Disable (power down) output driver.  
Select automatic or manual disable  
control for trace driver output1 (DDO1).  
0 = Disable auto disable mode  
1 = Enable auto disable mode  
If CTRL_OUTPUT1_AUTO_DISABLE = 0,  
then  
CTRL_OUTPUT1_  
AUTO_DISABLE  
2
1
0
0
0
0
CTRL_OUTPUT1_MANUAL_DISABLE  
controls mute for DDO1.  
CONTROL_  
OUTPUT_  
DISABLE  
4A  
Controls disable for trace driver output0  
(DDO0) when auto disable  
(CTRL_OUTPUT0_AUTO_DISABLE = 0) is  
disabled.  
0 = Enable output driver  
CTRL_OUTPUT0_  
MANUAL_DISABLE  
1 = Disable (power down) output driver.  
Select automatic or manual disable  
control for trace driver output0 (DDO0).  
0 = Disable auto disable mode  
1 = Enable auto disable mode  
If CTRL_OUTPUT0_AUTO_DISABLE = 0,  
then  
CTRL_OUTPUT0_  
AUTO_DISABLE  
CTRL_OUTPUT0_MANUAL_DISABLE  
controls mute for DDO0.  
GS12341  
Final Data Sheet  
90 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
Table 5-3: Control Register Descriptions (Continued)  
Reset  
Value  
Register  
Name  
Bit  
Slice  
Address  
Parameter Name  
R/W  
Description  
h
h
RSVD  
15:13  
R/W  
0
Reserved - do not modify.  
Controls whether common or per rate  
trace driver settings are used for  
output1 (DDO1):   
0 = Common trace driver settings:  
CFG_OUTPUT1_TD_SD_* settings are  
used for all rates.  
1 = Per rate trace driver settings:  
CFG_OUTPUT1_TD_<rate>_* are used  
when the Reclocker is locked to <rate>.  
CFG_OUTPUT1_TD_12G_* are  
used when the Reclocker is not locked.  
CTRL_OUTPUT1_  
TRDR_PER_RATE  
12  
R/W  
0
CONTROL_  
OUTPUT_  
SLEW  
4B  
RSVD  
11:5  
4
R/W  
R/W  
28  
0
Reserved - do not modify.  
Controls whether common or per rate  
trace driver settings are used for  
output1 (DDO0).  
CTRL_OUTPUT0_  
TRDR_PER_RATE  
Same description as  
CTRL_OUTPUT1_TRDR_PER_RATE.  
RSVD  
RSVD  
3:0  
R/W  
R/W  
5
0
Reserved - do not modify.  
Reserved - do not modify.  
15:4  
Controls reclocker bypass for trace  
driver output1 (DDO1), when auto  
mode is disabled  
(CTRL_OUTPUT1_RETIMER_AUTO_BYPA  
SS = 0).  
CTRL_OUTPUT1_  
RETIMER_MANUAL_  
BYPASS  
3
2
1
R/W  
R/W  
R/W  
0
1
0
0 = Disable reclocker bypass  
1 = Enable reclocker bypass  
Selects between auto and manual  
control of reclocker bypass for trace  
driver output1 (DDO1).  
0 = Disable auto mode  
1 = Enable auto mode  
CTRL_OUTPUT1_  
RETIMER_AUTO_  
BYPASS  
CONTROL_  
RETIMER_  
BYPASS  
4C  
Controls reclocker bypass for trace  
driver output0 (DDO0), when auto  
mode is disabled  
(CTRL_OUTPUT0_RETIMER_AUTO_BYPA  
SS = 0).  
CTRL_OUTPUT0_  
RETIMER_MANUAL_  
BYPASS  
0 = Disable reclocker bypass  
1 = Enable reclocker bypass  
Selects between auto and manual  
control of reclocker bypass for trace  
driver output0 (DDO0).  
0 = Disable auto mode  
1 = Enable auto mode  
CTRL_OUTPUT0_  
RETIMER_AUTO_  
BYPASS  
0
R/W  
R/W  
1
0
4D to 4F  
RSVD  
RSVD  
15:0  
Reserved - do not modify.  
GS12341  
Final Data Sheet  
91 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
Table 5-3: Control Register Descriptions (Continued)  
Reset  
Value  
Register  
Name  
Bit  
Slice  
Address  
Parameter Name  
R/W  
Description  
h
h
Diagnostic Control Features  
RSVD  
15  
R/W  
0
0
Reserved - do not modify.  
Adjusts the phase of the clock to the  
PRBS checker. Values are:  
0 = 0   
1 = 90   
2 = 180   
3 = 270   
CFG_PRBS_CHECK_  
PHASEADJUST  
14:13  
R/W  
Note: A setting of 0 is ideal for most  
applications. Adjustment is not  
expected.  
Optionally inverts the reclocked data at  
the input to the PRBS checker:  
0 = no inversion  
CFG_PRBS_CHECK_  
INVERT  
12  
R/W  
0
1 = data inverted  
PRBS_  
CHK_CFG  
50  
Selects pre-divider for PRBS check  
measurement timer:  
setting: pre-divider value  
0 = 4  
1 = 8  
2 = 16  
3 = 32  
4 = 64  
CFG_PRBS_CHECK_  
PREDIVIDER  
11:8  
R/W  
0
5 = 128  
6 = 256  
7 = 512  
8 = 1024  
9 = 2048  
Selects PRBS check measurement  
interval for timed measurements.  
See Section 4.4.1 for more details.  
CFG_PRBS_CHECK_  
MEAS_TIME  
7:0  
R/W  
R/W  
3
0
RSVD  
15:9  
Reserved - do not modify.  
Selects between timed and continuous  
PRBS check mode.  
0 = Selects continuous PRBS check  
CTRL_PRBS_CHECK_  
TIMED_CONT_B  
8
R/W  
R/W  
0
0
mode.  
1 = Selects timed PRBS check mode.  
RSVD  
7:1  
Reserved - do not modify.  
PRBS_CHK_  
CTRL  
51  
Set to 1 by host to start a timed  
operation.  
Set to 0 by host after completion or  
abort of the operation (by the device  
due to loss of lock) to tell the device that  
PRBS result has been read by the host.  
See Section 4.4 for more details on PRBS  
checker function.  
CTRL_PRBS_CHECK_  
START  
0
R/W  
0
GS12341  
Final Data Sheet  
92 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
Table 5-3: Control Register Descriptions (Continued)  
Reset  
Value  
Register  
Name  
Bit  
Slice  
Address  
Parameter Name  
R/W  
Description  
h
h
RSVD  
15:10  
R/W  
0
Reserved - do not modify.  
Selects whether the PRBS generator is  
enabled or not  
0 = PRBS Generator disabled  
1 = PRBS Generator enabled  
Note: enabling the PRBS generator does  
not automatically override other device  
modes such as auto sleep, auto output  
mute, auto output disable, etc. These  
continue to function normally. The  
user/host may need to adjust those  
settings to ensure the part will output  
the PRBS signal.  
CTRL_PRBS_GEN_  
ENABLE  
9
R/W  
0
Select output signal from PRBS  
generator as either PRBS7 or divided  
clock (divided version of the PRBS  
generator clock source):  
0 = clock divider (using ratio set by  
CTRL_PRBS_GEN_CLK_DIVIDER)  
1 = PRBS7  
CTRL_PRBS_GEN_  
SIGNAL_SELECT  
8
R/W  
R/W  
1
0
PRBS_GEN_  
CTRL  
52  
Selects clock source for PRBS generator:  
0 = VCO (free running)  
1 = Reserved  
CTRL_PRBS_GEN_  
CLK_SRC  
7:6  
2 = Reserved  
3 = Data reference PLL (Reclocker  
recovered clock)  
Selects clock divider ratio for when host  
selects divided clock to output on PRBS  
generator  
CTRL_PRBS_GEN_  
CLK_DIVIDER  
(CTRL_PRBS_GEN_SIGNAL_SELECT = 0):  
0 = divide by 2  
1 = divide by 4  
2 = divide by 8  
3 = divide by 16  
5:4  
R/W  
R/W  
0
0
Controls optional inversion of the  
generated PRBS pattern:  
0 = true sense  
CTRL_PRBS_GEN_  
INVERT  
3
1 = inverted  
GS12341  
Final Data Sheet  
93 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
Table 5-3: Control Register Descriptions (Continued)  
Reset  
Value  
Register  
Name  
Bit  
Slice  
Address  
Parameter Name  
R/W  
Description  
h
h
Select PRBS7 data rate when PRBS clock  
source not recovered clock  
(CTRL_PRBS_GEN_CLK_SRC 3)  
0 = Reserved - do not use.  
1 = MADI  
2 = SD  
3 = HD  
4 = 3G  
5 = 6G  
6 = 12G  
PRBS_GEN_  
CTRL  
(Continued)  
CTRL_PRBS_GEN_  
DATA_RATE  
52  
2:0  
R/W  
6
(Continued)  
7 = Reserved - do not use.  
If CTRL_PRBS_GEN_CLK_SRC = 3, then  
CTRL_PRBS_GEN_DATA_RATE setting  
has no effect and the Reclocker rate is  
used (based on automatic rate  
detection or manual rate selection).  
Additionally, if the device is locked to an  
input signal, only the same rate can be  
selected for the PRBS generator.  
53  
54  
RSVD  
RSVD  
15:0  
15:0  
R/W  
R/W  
0
0
Reserved - do not modify.  
CFG_EYE_MON_TIMEOUT[31:16] Most  
significant 16 bits of the measurement  
time. This is the time spent measuring  
bit errors at each point in the eye scan,  
i.e. the time to measure one point in the  
eye. Units are in microseconds. The Eye  
Scanner scans each point twice and  
there is some overhead, so the actual  
measurement time is twice the number  
entered.  
CFG_EYE_MON_  
TIMEOUT_MS  
EYE_MON_  
INT_CFG_0  
CFG_EYE_MONT_TIMEOUT[15:0] Least  
significant 16 bits of the measurement  
time.  
CFG_EYE_MON_  
TIMEOUT_LS  
EYE_MON_  
INT_CFG_1  
55  
56  
15:0  
15:0  
R/W  
R/W  
64  
64  
See CFG_EYE_MON_ TIMEOUT_MS  
Threshold of bit error counts to define  
good vs bad points in eye for shape  
scan.   
CFG_EYE_BER_  
THRESHOLD  
EYE_MON_  
INT_CFG_2  
See Section 4.5 for further details.  
GS12341  
Final Data Sheet  
94 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
Table 5-3: Control Register Descriptions (Continued)  
Reset  
Value  
Register  
Name  
Bit  
Slice  
Address  
Parameter Name  
R/W  
Description  
h
h
The vertical offset slice that will be used  
for eye shape queries. Offset values: 0 to  
255d. 0 represents the most negative  
slice since 128d is the 0V slice level and  
255d is the most positive slice level.  
Default is 128d  
CFG_EYE_DEFAULT_  
VERT_OFFSET  
15:8  
R/W  
80  
EYE_MON_  
INT_CFG_3  
57  
RSVD  
7:3  
2
R/W  
R/W  
0
0
Reserved - do not modify.  
Eye monitor initialization bit. Set HIGH  
during Device Power-up Sequence. See  
Section 4.9.12 for details.  
CFG_EYE_INIT_RESET  
RSVD  
RSVD  
RSVD  
RSVD  
1:0  
15:0  
15:0  
15  
R/W  
R/W  
R/W  
R/W  
2
D982  
100  
0
Reserved - do not modify.  
Reserved - do not modify  
Reserved - do not modify  
Reserved - do not modify.  
58  
59  
RSVD  
RSVD  
Starting phase offset.   
Valid range is 0 to 127d.  
Reset value must be used for shape  
scan.  
CTRL_EYE_PHASE_  
START  
14:8  
7
R/W  
R/W  
0
0
EYE_MON_  
SCAN_CTRL_0  
5A  
RSVD  
Reserved - do not modify.  
Phase offset limit. Valid range is 0 to  
127d. CTRL_EYE_PHASE_STOP must be  
greater or equal to  
CTRL_EYE_PHASE_START. Reset value  
must be used for shape scan.  
CTRL_EYE_PHASE_  
STOP  
6:0  
15  
R/W  
R/W  
7F  
0
RSVD  
Reserved - do not modify.  
Unsigned value for phase step size. Valid  
values are 1,2, and 4.  
Reset value must be used for shape  
scan.  
CTRL_EYE_PHASE_  
STEP  
14:8  
R/W  
1
Behaviour is undefined for other values.  
In order to use a step size of 2 or 4,  
CTRL_EYE_PHASE_START and  
CTRL_EYE_PHASE_STOP must be set to  
their default values.  
EYE_MON_  
SCAN_CTRL_1  
5B  
RSVD  
7
R/W  
R/W  
0
0
Reserved - do not modify.  
Starting voltage offset.  
Valid range is 0 to 255d.  
CTRL_EYE_VERT_  
OFFSET_START  
6:0  
GS12341  
Final Data Sheet  
95 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
Table 5-3: Control Register Descriptions (Continued)  
Reset  
Value  
Register  
Name  
Bit  
Slice  
Address  
Parameter Name  
R/W  
Description  
h
h
Voltage offset limit.  
Valid range is 0 to 255d.  
CTRL_EYE_VERT_  
OFFSET_STOP  
CTRL_EYE_VERT_OFFSET_STOP must be  
greater or equal to  
CTRL_EYE_VERT_OFFSET_START. Reset  
value must be used for shape scan.  
15:8  
7
R/W  
R/W  
FF  
0
RSVD  
Reserved - do not modify.  
EYE_MON_  
SCAN_CTRL_2  
5C  
Unsigned value for voltage offset step  
size.  
Valid values are 1,2, and 4.  
CTRL_EYE_VERT_  
OFFSET_STEP  
Behaviour is undefined for other values.  
In order to use a step size of 2 or 4,  
CTRL_EYE_VERT_ OFFSET_START and  
CTRL_EYE_VERT_ OFFSET_STOP must  
be set to their default values.  
6:0  
R/W  
1
RSVD  
15:9  
8
R/W  
R/W  
R/W  
0
0
0
Reserved - do not modify.  
Selects whether the eye monitor should  
perform an eye scan or eye shape  
capture:  
0 = Selects eye scan (new or continued).  
1 = Selects eye shape capture.  
CTRL_EYE_SHAPE_  
SCAN_B  
RSVD  
7:2  
Reserved - do not modify.  
Power control for the eye monitor:  
0 = Power down the eye monitor  
1 = Power up the eye monitor  
Host is permitted to change this any  
time between eye scans (but not  
between partial eye scans).  
This must be set to 1 to run an eye scan.  
Behaviour is undefined if host sets  
CTRL_EYE_MON_START = 1 without  
setting this bit to 1.  
CTRL_EYE_MON_  
POWER_CTRL  
1
R/W  
0
EYE_MON_  
SCAN_CTRL_3  
5D  
Part of a four way handshake with  
STAT_EYE_MON_STATUS:  
0 = Set by host to tell the device to clear  
the status bit.  
1 = Set by host only in order to  
begin/continue an eye scan or start an  
eye shape capture.  
See Section 4.5 for more details on  
implementing the four way hand shake  
for this operation.  
CTRL_EYE_MON_START  
0
R/W  
0
5E to 5F  
60 to 7E  
RSVD  
RSVD  
RSVD  
RSVD  
15:0  
Reserved.  
Factory Settings  
15:0  
Reserved.  
GS12341  
Final Data Sheet  
96 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
Table 5-4: Status Register Descriptions  
Reset  
Value  
Register  
Name  
Bit  
Slice  
Address  
Parameter Name  
R/W  
Description  
h
h
80  
RSVD  
RSVD  
15:0  
15:0  
RO  
Reserved.  
This register contains the first part of the  
device configuration version. Please  
contact your local technical sales  
representative for more details.  
81  
82  
83  
VERSION_0  
VERSION_1  
VERSION_2  
STAT_CONFIG_VER0  
STAT_CONFIG_VER1  
STAT_HW_VERSION  
RO  
RO  
RO  
This register contains the second part of  
the device configuration version. Please  
contact your local technical sales  
representative for more details.  
15:0  
15:0  
This register contains the devices  
identification, including revision. Please  
contact your local technical sales  
representative for more details.  
Count of primary carrier detection  
status changes (ignoring CLI squelch).  
The count saturates at 255d (0xFF).  
See Section 4.9.11 for procedure to clear  
the counts.  
STAT_CNT_PRI_CD_  
CHANGES  
15:8  
7:0  
RO  
RO  
Count of secondary carrier detection  
status changes (based on  
STAT_CLI_SQUELCH if CFG_SEC_CD_  
INCL_CLI_SQUELCH = 1; otherwise this  
parameter is based on STAT_PRI_CD).  
The count saturates at 255d (0xFF).   
STICKY_  
COUNTS_0  
84  
STAT_CNT_SEC_CD_  
CHANGES  
See Section 4.9.11 for procedure to clear  
the counts.  
Count of rate changes.  
The count saturates at 255d (0xFF).  
See Section 4.9.11 for procedure to clear  
the counts.  
STAT_CNT_RATE_  
CHANGES  
15:8  
7:0  
RO  
RO  
STICKY_  
COUNTS_1  
85  
Count of PLL lock status changes.  
The count saturates at 255d (0xFF).  
See Section 4.9.11 for procedure to clear  
the counts.  
STAT_CNT_PLL_  
LOCK_CHANGES  
GS12341  
Final Data Sheet  
97 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
Table 5-4: Status Register Descriptions (Continued)  
Reset  
Value  
Register  
Name  
Bit  
Slice  
Address  
Parameter Name  
R/W  
Description  
h
h
RSVD  
15  
RO  
Reserved  
Clear counts status:  
0 = Idle  
1 = Reserved  
2 = indicates device has cleared the  
sticky counts  
3 = Reserved.  
STAT_CLEAR_COUNTS_  
STATUS  
14:13  
RO  
Part of a four way handshake with  
CTRL_CLEAR_COUNTS.  
See Section 4.9.11 for more details on  
implementing the four way handshake  
for this operation.  
PLL lock status:  
STAT_LOCK  
STAT_SLEEP  
12  
11  
RO  
RO  
0 = PLL is unlocked  
1 = PLL is locked  
Sleep status:  
0 = Device is not in sleep  
1 = Device is currently in sleep  
CURRENT_  
STATUS_0  
RSVD  
RSVD  
10  
9
RO  
RO  
Reserved  
86  
Reserved  
Cable Equalizer Squelch status.  
STAT_CLI_SQUELCH  
8
RO  
0 = CLI squelch is de-asserted  
1 = CLI squelch is asserted  
Trace driver output1 (DDO1) output  
status:  
0 = Mission Trace Driver <= SD rate  
1 = Mission Trace Driver HD rate  
2 = Mission Trace Driver 3G rate  
3 = Mission Trace Driver 6G rate  
4 = Mission Trace Driver 12G   
5 = Reserved  
STAT_OUTPUT1_MODE  
7:4  
RO  
6 = Muted  
7 = Disabled  
Note: The device will only indicate 1 - 4  
if the per rate settings are enabled,  
otherwise, it will always indicate 0 if it is  
locked to a valid signal and the output is  
not muted or disabled. See Section 4.7.3  
for more details on per rate settings.  
GS12341  
Final Data Sheet  
98 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
Table 5-4: Status Register Descriptions (Continued)  
Reset  
Value  
Register  
Name  
Bit  
Slice  
Address  
Parameter Name  
R/W  
Description  
h
h
Trace driver output0 (DDO0) output  
status:  
0 = Mission Trace Driver <= SD rate  
1 = Mission Trace Driver HD rate  
2 = Mission Trace Driver 3G rate  
3 = Mission Trace Driver 6G rate  
4 = Mission Trace Driver 12G   
5 = Reserved  
CURRENT_  
STATUS_0  
(Continued)  
86  
STAT_OUTPUT0_MODE  
3:0  
RO  
6 = Muted  
7 = Disabled  
(Continued)  
Note: The device will only indicate 1 - 4  
if the per rate settings are enabled,  
otherwise, it will always indicate 0 if it is  
locked to a valid signal and the output is  
not muted or disabled. See Section 4.7.3  
for more details on per rate settings.  
Trace driver output1 (DDO1) disable  
status:  
STAT_OUTPUT1_  
DISABLE  
15  
14  
13  
12  
RO  
RO  
RO  
RO  
0 = DDO1 is not disabled  
1 = DDO1 is disabled  
Trace driver output0 (DDO0) disable  
status:  
STAT_OUTPUT0_  
DISABLE  
0 = DDO0 is not disabled  
1 = DDO0 is disabled  
Trace driver output1 (DDO1) mute  
status:  
STAT_OUTPUT1_  
MUTE  
0 = DDO1 is not muted  
1 = DDO1 is muted  
CURRENT_  
STATUS_1  
Trace driver output0 (DDO0) mute  
status:  
87  
STAT_OUTPUT0_MUTE  
0 = DDO0 is not muted  
1 = DDO0 is muted  
Trace driver output1 (DDO1) reclocker  
status:  
STAT_OUTPUT1_  
RETIMER_BYPASS  
11  
10  
RO  
RO  
0 = Reclocker path to DDO1 is not  
bypassed   
1 = Reclocker path to DDO1 is bypassed  
Trace driver output 0 (DDO0) reclocker  
status:  
STAT_OUTPUT0_  
RETIMER_BYPASS  
0 = Reclocker path to DDO0 is not  
bypassed   
1 = Reclocker path to DDO0 is bypassed  
GS12341  
Final Data Sheet  
99 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
Table 5-4: Status Register Descriptions (Continued)  
Reset  
Value  
Register  
Name  
Bit  
Slice  
Address  
Parameter Name  
R/W  
Description  
h
h
Secondary carrier detection status  
(based on STAT_CLI_SQUELCH if  
CFG_SEC_CD_INCL_CLI_SQUELCH=1;  
otherwise this parameter is based on  
STAT_PRI_CD).  
STAT_SEC_CD  
9
RO  
0 = Secondary carrier is not detected  
1 = Secondary carrier is detected  
Primary carrier detection status  
(ignoring CLI squelch).  
STAT_PRI_CD  
8
7
RO  
RO  
0 = Primary carrier is not detected  
1 = Primary carrier is detected  
CEQ (Cable Equalizer) bypass status.  
CURRENT_  
STATUS_1  
(Continued)  
87  
STAT_CEQ_BYPASS  
0 = CEQ is not bypassed  
(Continued)  
1 = CEQ is bypassed  
RSVD  
RSVD  
6:5  
4:3  
RO  
RO  
Reserved - do not modify.  
Reserved  
Rate at which the Reclocker is locked.  
0 = Unlocked  
1 = MADI (125Mb/s)  
2 = SD (270Mb/s)  
3 = HD (1.485Gb/s)  
4 = 3G (2.97Gb/s)  
STAT_DETECTED_RATE  
2:0  
RO  
5 = 6G (5.94Gb/s)  
6 = 12G (11.88Gb/s)  
7 = Reserved  
RSVD  
15:8  
7:0  
RO  
RO  
Reserved  
SDI cable length indication. Range = 0  
to 64d (64d is max cable reach  
determined for specific rate, cable type,  
and launch swing compensation).   
0xFF= Unknown cable length.  
88  
89  
EQ_GAIN_IND  
STAT_CABLE_LEN_  
INDICATION  
PRBS checker error count. Cleared to 0  
at the start of a measurement. Updated  
by the device on completion of a  
measurement. Value is undefined in  
case of abort due to loss of Reclocker  
lock (STAT_PRBS_CHECK_LAST_ABORT  
= 1).  
STAT_PRBS_CHK_  
ERR_CNT  
PRBS_  
CHK_ERR_CNT  
15:0  
RO  
GS12341  
Final Data Sheet  
100 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
Table 5-4: Status Register Descriptions (Continued)  
Reset  
Value  
Register  
Name  
Bit  
Slice  
Address  
Parameter Name  
R/W  
Description  
h
h
RSVD  
15:10  
RO  
Reserved  
PRBS no data status:  
0 = Normal  
1 = No data transitions were seen during  
the previous PRBS check. This bit is set  
to 1 to indicate that the input data was  
all 0's during a PRBS check. When that  
happens, the error count will be zero  
when in fact there was no valid PRBS  
pattern.This bit is updated by the device  
on completion of a measurement. It  
retains its value until the next PRBS  
check operation is requested. Value is  
undefined in case of abort  
STAT_PRBS_CHECK_  
NODATA  
9
RO  
(STAT_PRBS_CHECK_LAST_ABORT = 1).  
Value does not increment during a  
measurement until it completes.  
PRBS abort status.  
0 = Normal.  
STAT_PRBS_CHECK_  
LAST_ABORT  
1 = PRBS check was aborted due to loss  
of lock or sleep.  
This bit retains its value until the next  
PRBS operation is requested.  
PRBS_  
CHK_STATUS  
8A  
8
RO  
RO  
RSVD  
7:2  
Reserved  
Status for PRBS checker:  
0 = PRBS check idle; ready for new  
operation.  
1 = PRBS check timed or continuous  
operation in progress.  
2 = PRBS check timed operation  
completed (success)  
STAT_PRBS_CHECK_  
STATUS  
3 = PRBS check timed or continuous  
operation aborted (error). Part of a four  
way handshake with  
1:0  
RO  
CTRL_PRBS_CHECK_START  
(Section 4.4).Abort will be reported if  
loss of lock or sleep occurred during a  
PRBS check operation or those  
conditions existed when the operation  
was requested by the host.  
EYE_MON_  
SCAN_  
SIZE_OUTPUT  
The size in bytes of the last partial scan  
segment.  
8B  
STAT_EYE_IMAGE_SIZE  
15:0  
RO  
GS12341  
Final Data Sheet  
101 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
Table 5-4: Status Register Descriptions (Continued)  
Reset  
Value  
Register  
Name  
Bit  
Slice  
Address  
Parameter Name  
R/W  
Description  
h
h
Left Edge Voltage Offset returned from  
shape scan.  
STAT_EYE_SHAPE_  
LEFT_EDGE_OFFSET  
Offset values 0 to 255d, 0 represents  
most negative voltage, 127d is 0V 255d  
is most positive voltage.  
15:8  
7:0  
RO  
EYE_MON_  
SHAPE_  
OUTPUT_0  
8C  
Left Edge Phase returned from shape  
scan.  
STAT_EYE_SHAPE_  
LEFT_EDGE_PHASE  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
Phase values 0 to 127d.  
Positive (top) Edge Voltage Offset  
returned from shape scan.  
STAT_EYE_SHAPE_  
POS_EDGE_OFFSET  
15:8  
7:0  
Offset values 0 to 255d, 0 represents  
most negative voltage, 127d is 0V 255d  
is most positive voltage.  
EYE_MON_  
SHAPE_  
8D  
8E  
8F  
OUTPUT_1  
Positive (top) Edge Phase returned from  
shape scan.  
STAT_EYE_SHAPE_  
POS_EDGE_PHASE  
Phase values 0 to 127d.  
Right Edge Voltage Offset returned from  
shape scan.  
STAT_EYE_SHAPE_  
RIGHT_EDGE_OFFSET  
15:8  
7:0  
Offset values 0 to 255d, 0 represents  
most negative voltage, 127d is 0V 255d  
is most positive voltage.  
EYE_MON_  
SHAPE_  
OUTPUT_2  
Right Edge Phase returned from shape  
scan.  
STAT_EYE_SHAPE_  
RIGHT_EDGE_PHASE  
Phase values 0 to 127d.  
Negative (bottom) Edge Voltage Offset  
returned from shape scan.  
STAT_EYE_SHAPE_  
NEG_EDGE_OFFSET  
15:8  
7:0  
Offset values 0 to 255d, 0 represents  
most negative voltage, 127d is 0V 255d  
is most positive voltage.  
EYE_MON_  
SHAPE_  
OUTPUT_3  
Negative (bottom) Edge Phase returned  
from shape scan.  
STAT_EYE_SHAPE_  
NEG_EDGE_PHASE  
Phase values 0 to 127d.  
GS12341  
Final Data Sheet  
102 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
Table 5-4: Status Register Descriptions (Continued)  
Reset  
Value  
Register  
Name  
Bit  
Slice  
Address  
Parameter Name  
R/W  
Description  
h
h
RSVD  
15:9  
RO  
Reserved  
Full scan status:  
0 = Full scan complete.  
1 = Partial scan complete.  
On completion of an eye monitor eye  
scan (CRTL_EYE_SHAPE_SCAN_B = 0),  
indicates whether the eye monitor  
completed the full scan or a partial scan.  
Undefined for eye shape scan  
STAT_EYE_SCAN_  
PARTIAL_OR_FULL  
8
RO  
RO  
(CTRL_EYE_SHAPE_SCAN_B = 1).  
RSVD  
7:2  
Reserved  
EYE_MON_  
STATUS  
Eye monitor status:  
0 = Eye monitor idle; ready for new  
90  
operation  
1 = Eye monitor operation in progress  
2 = Eye monitor operation completed  
(success)  
3 = Eye monitor operation aborted  
(error). Part of a four way handshake  
with CTRL_EYE_MON_START, see  
Section 4.5 for procedure.Abort will be  
reported by device if loss of lock or sleep  
occurred during an eye monitor  
operation or those conditions existed  
when the operation was requested by  
the host.  
STAT_EYE_MON_  
STATUS  
1:0  
RO  
91 - BF  
RSVD  
RSVD  
15:0  
Reserved  
GS12341  
Final Data Sheet  
103 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
6. Application Information  
6.1 Typical Application Circuit  
VCC1V8  
VCC1V8  
29  
470nF  
10μF  
100nF  
10μF  
40  
39 38  
37  
36  
35  
34  
33 32  
31  
30  
1
2
3
VEE_SDI  
4.7μF  
4.7μF  
28  
VEEO  
SDI  
27  
26  
DDO0  
OUT  
OUT  
2Ω  
SDI_TERM  
DDO0  
Note: Pins 24/25 both  
require a 100nF capacitor  
VCC1V8  
25  
24  
VCCO_0  
VCCO_1  
VCC_SDI  
4
5
VCC1V8  
GS12341  
Note: The device central paddle is not an electrical  
connection. Refrain from connecting device pins to  
the central paddle.  
1μF  
100nF x2  
RSVD  
RSVD  
23  
22  
OUT  
OUT  
DDO1/RCO  
6
7
8
DDO1/RCO  
VEEO  
21  
RSVD  
VEE_SDI  
9
10  
11  
12  
13 14  
15  
16  
17  
18  
19  
20  
VCC1V8  
100nF  
VCC1V8  
100nF  
Figure 6-1: Typical Application Circuit  
Note 1: 4.7μF AC-coupling capacitors are required on DDO0/DDO0 and DDO1/RCO,  
DDO1/RCO when the downstream IC has an input common mode range that is  
incompatible with the output common mode range of the GS12341.  
Note 2: Although 1μF AC-coupling capacitors may be adequate at the input of SDI for  
most applications, it is recommended to use 4.7μF capacitors for increased margin to  
pathological signals.  
Note 3: It is recommended that separate filtered supplies are used for the following two  
groups: (VCC_SDI, VCC_CORE), (VCCO1P8_0, VCCO1P8_1, VDD, VCCO_0*, VCCO_1*).  
*Assuming VCCO_0 and VCCO_1 supplies are chosen as 1.8V.  
Multiple devices can share the same filtered supply plane.  
GS12341  
Final Data Sheet  
104 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
7. Package & Ordering Information  
7.1 Package Dimensions  
DIMENSIONS  
A
D
MILLIMETERS  
MIN NOM MAX  
0.80 0.90 1.00  
B
E
DIM  
A
0.05  
0.02  
A1 0.00  
A2  
(0.02)  
0.20 0.25  
0.15  
b
D
PIN 1  
INDICATOR  
5.95 6.00 6.05  
(LASER MARK)  
D1 3.45 3.60 3.70  
E
3.95 4.00 4.05  
E1 1.43 1.58 1.68  
e
L
N
0.40 BSC  
0.30 0.40 0.50  
40  
aaa  
bbb  
0.08  
0.10  
A
SEATING  
PLANE  
aaa C  
C
A1  
A2  
D1  
LxN  
E/1  
E1  
2
1
N
bxN  
0.30 x 45°  
e/2  
bbb  
C A B  
e
D/2  
NOTES:  
1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).  
2. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.  
3. DIMENSION OF LEAD WIDTH APPLIES TO TERMINAL AND IS MEASURED BETWEEN  
0.15 to 0.30mm FROM THE TERMINAL TIP.  
Figure 7-1: Package Dimensions  
GS12341  
Final Data Sheet  
105 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
7.2 Recommended PCB Footprint  
0.20  
0.60  
Pin #1  
3.60  
0.40  
5.20  
Figure 7-2: Recommended PCB Footprint  
7.3 Packaging Data  
Table 7-1: Packaging Data  
Parameter  
Value  
Package Type  
6mm x 4mm 40-pin QFN  
Moisture Sensitivity Level  
3
Junction to Air Thermal Resistance, j-a (at zero airflow)  
Junction to Board Thermal Resistance, j-b  
Junction to Case Thermal Resistance, j-c  
40.0°C/W  
32.0°C/W  
36.0°C/W  
<1.0°C/W  
Yes  
Junction-to-Top Characterization Parameter, Psi,   
Pb-free and RoHS compliant  
GS12341  
Final Data Sheet  
106 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
7.4 Marking Diagram  
GS12341  
XXXXE3  
YYWW  
XXXX = Last 4 Digits (excluding decimal) of SAP  
Batch Assembly (FIN) as listed on Packing Slip  
E3 = Pb-free & Green Indicator  
YYWW = Date Code (Example: 1952)  
Figure 7-3: Marking Diagram  
7.5 Solder Reflow Profiles  
Temperature  
60-150 sec.  
20-40 sec.  
260°C  
250°C  
3°C/sec max  
217°C  
6°C/sec max  
200°C  
150°C  
25°C  
Time  
60-180 sec. max  
8 min. max  
Figure 7-4: Maximum Pb-free Solder Reflow Profile  
GS12341  
Final Data Sheet  
107 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
7.6 Ordering Information  
Table 7-2: Ordering Information  
Minimum Order  
Part Number  
Format  
Quantity  
GS12341-INE3  
GS12341-INTE3  
GS12341-INTE3Z  
490  
250  
Tray  
Tape and Reel  
Tape and Reel  
2500  
GS12341  
Final Data Sheet  
108 of 109  
Semtech  
www.semtech.com  
Rev.1  
Proprietary & Confidential  
PDS-061928  
August 2019  
IMPORTANT NOTICE  
Information relating to this product and the application or design described herein is believed to be reliable, however such information is  
provided as a guide only and Semtech assumes no liability for any errors in this document, or for the application or design described herein.  
Semtech reserves the right to make changes to the product or this document at any time without notice. Buyers should obtain the latest relevant  
information before placing orders and should verify that such information is current and complete. Semtech warrants performance of its  
products to the specifications applicable at the time of sale, and all sales are made in accordance with Semtech’s standard terms and conditions  
of sale.  
SEMTECH PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS,  
DEVICES OR SYSTEMS, OR IN NUCLEAR APPLICATIONS IN WHICH THE FAILURE COULD BE REASONABLY EXPECTED TO RESULT IN PERSONAL  
INJURY, LOSS OF LIFE OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. INCLUSION OF SEMTECH PRODUCTS IN SUCH APPLICATIONS IS  
UNDERSTOOD TO BE UNDERTAKEN SOLELY AT THE CUSTOMER’S OWN RISK. Should a customer purchase or use Semtech products for any such  
unauthorized application, the customer shall indemnify and hold Semtech and its officers, employees, subsidiaries, affiliates, and distributors  
harmless against all claims, costs damages and attorney fees which could arise.  
The Semtech name and logo are registered trademarks of the Semtech Corporation. All other trademarks and trade names mentioned may be  
marks and names of Semtech or their respective companies. Semtech reserves the right to make changes to, or discontinue any products  
described in this document without further notice. Semtech makes no warranty, representation or guarantee, express or implied, regarding the  
suitability of its products for any particular purpose. All rights reserved.  
© Semtech 2019  
Contact Information  
Semtech Corporation  
200 Flynn Road, Camarillo, CA 93012  
Phone: (805) 498-2111, Fax: (805) 498-3804  
www.semtech.com  
GS12341  
Final Data Sheet  
109 of 109  
Semtech  
Rev.1  
109Proprietary & Confidential  
PDS-061928  
August 2019  

相关型号:

GS12341-INE3

12G UHD-SDI Reclocking Adaptive Cable Equalizer
SEMTECH

GS12341-INTE3

12G UHD-SDI Reclocking Adaptive Cable Equalizer
SEMTECH

GS12341-INTE3Z

12G UHD-SDI Reclocking Adaptive Cable Equalizer
SEMTECH

GS12401-1011-9F

Board Connector, 40 Contact(s), 1 Row(s), Female, Straight, Solder Terminal, Receptacle, LEAD FREE
FOXCONN

GS12441

Board Stacking Connector, Female, Right Angle, Surface Mount Terminal, Receptacle, LEAD FREE
FOXCONN

GS12441-0011-8F

Board Stacking Connector, 44 Contact(s), 2 Row(s), Female, Right Angle, 0.02 inch Pitch, Surface Mount Terminal, Locking, Black Insulator, Receptacle, LEAD FREE
FOXCONN

GS125-6S

GAS GENERATOR SET
MTU

GS1284218GB-200I

Cache SRAM, 8MX18, 7.5ns, CMOS, PBGA119, 14 X 22 MM, 1.27 MM PITCH, ROHS COMPLIANT, FPBGA-119
GSI

GS1284218GB-200IT

Cache SRAM, 8MX18, 7.5ns, CMOS, PBGA119, 14 X 22 MM, 1.27 MM PITCH, ROHS COMPLIANT, FPBGA-119
GSI

GS1284218GB-200VIT

Cache SRAM, 8MX18, 7.5ns, CMOS, PBGA119, 22 X 14 MM, 1.27 MM PITCH, ROHS COMPLIANT, FPBGA-119
GSI

GS1284218GB-250I

288Mb Pipelined and Flow Through Synchronous NBT SRAM
GSI

GS1284218GB-250IV

Cache SRAM, 8MX18, CMOS, PBGA119, BGA-119
GSI