SC1186CSW.TRT [SEMTECH]

Switching Controller, Voltage-mode, 1A, 160kHz Switching Freq-Max, PDSO24, MS-013AD, SOIC-24;
SC1186CSW.TRT
型号: SC1186CSW.TRT
厂家: SEMTECH CORPORATION    SEMTECH CORPORATION
描述:

Switching Controller, Voltage-mode, 1A, 160kHz Switching Freq-Max, PDSO24, MS-013AD, SOIC-24

转换器 控制器
文件: 总12页 (文件大小:111K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PROGRAMMABLE SYNCHRONOUS DC/DC  
CONVERTER, DUAL LOW DROPOUT  
REGULATOR CONTROLLER  
SC1186  
PRELIMINARY - December 2, 1999  
TEL:805-498-2111 FAX:805-498-3804 WEB:http://www.semtech.com  
DESCRIPTION  
FEATURES  
The SC1186 combines a synchronous voltage mode  
controller with two low-dropout linear regulators  
providing most of the circuitry necessary to  
Synchronous design, enables no heatsink solution  
95% efficiency (switching section)  
5 bit DAC for output programmability  
implement three DC/DC converters for powering  
Designed for Intel Pentium® ll & III requirements  
1.5V, 2.5V short circuit protected linear controllers  
1.265V ± 1.5% Reference available  
advanced microprocessors such as Pentium® II & III.  
The SC1186 switching section features an integrated  
5 bit D/A converter, latched drive output for  
APPLICATIONS  
enhanced noise immunity, pulse by pulse current  
limiting and logic compatible shutdown. The SC1186  
switching section operates at a fixed frequency of  
140kHz, providing an optimum compromise between  
size, efficiency and cost in the intended application  
areas. The integrated D/A converter provides  
programmability of output voltage from 2.0V to 3.5V  
in 100mV increments and 1.30V to 2.05V in 50mV  
increments with no external components.  
Pentium® ll & III microprocessor supplies  
Flexible motherboards  
1.3V to 3.5V microprocessor supplies  
Programmable triple power supplies  
ORDERING INFORMATION  
Linear  
Voltage  
Temp.  
Range (TJ)  
Part Number(1) Package  
The SC1186 linear sections are low dropout regula-  
tors with short circuit protection, supplying 1.5V for  
GTL bus and 2.5V for non-GTL I/O. The Reference  
voltage is made available for external linear  
regulators.  
SC1186CSW  
SO-24 1.5V/2.5V 0° to 125°C  
Note:  
(1) Add suffix ‘TR’ for tape and reel.  
PIN CONFIGURATION  
BLOCK DIAGRAM  
VCC  
CS- CS+  
70mV  
EN  
Top View  
CURRENT  
LIMIT  
BSTH  
DH  
REF  
+
-
AGND  
1
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
GATE2  
LDOV  
VID0  
VID1  
VID2  
VID3  
VID4  
2
3
4
5
6
GATE1  
LDOS1  
LDOS2  
VID4  
VID3  
VID2  
VID1  
VID0  
LEVEL SHIFT AND  
HIGH SIDE DRIVE  
+
-
-
+
D/A  
ERROR  
AMP  
PGNDH  
VCC  
REF  
VOSENSE  
AGND  
LDOEN  
CS-  
R
S
7
8
9
10  
11  
12  
SHOOT-THRU  
CONTROL  
Q
OSCILLATOR  
VOSENSE  
EN  
BSTH  
BSTL  
DL  
CS+  
PGNDH  
DH  
PGNDL  
BSTL  
DL  
LDOEN  
LDOS1  
GATE1  
2.5V FET  
CONTROLLER  
1.5V FET  
CONTROLLER  
SYNCHRONOUS  
MOSFET DRIVE  
1.265V  
REF  
(24 Pin SOIC)  
PGNDL  
LDOV  
REF  
GATE2 LDOS2  
1
Pentium is a registered trademark of Intel Corporation  
© 1999 SEMTECH CORP.  
652 MITCHELL ROAD NEWBURY PARK CA 91320  
PROGRAMMABLE SYNCHRONOUS DC/DC  
CONVERTER, DUAL LOW DROPOUT  
REGULATOR CONTROLLER  
SC1186  
PRELIMINARY - December 2, 1999  
ABSOLUTE MAXIMUM RATINGS  
Parameter  
Symbol  
Maximum  
Units  
VCC to GND  
VIN  
-0.3 to +7  
V
PGND to GND  
± 1  
V
BST to GND  
Operating Temperature Range  
Junction Temperature Range  
-0.3 to +15  
0 to +70  
0 to +125  
V
°C  
°C  
TA  
TJ  
Storage Temperature Range  
Lead Temperature (Soldering) 10 seconds  
Thermal Impedance Junction to Ambient  
TSTG  
TL  
-65 to +150  
°C  
°C  
°C/W  
300  
80  
θJA  
Thermal Impedance Junction to Case  
25  
°C/W  
θJC  
ELECTRICAL CHARACTERISTICS  
Unless specified: VCC = 4.75V to 5.25V; GND = PGND = 0V; VOSENSE = VO; 0mV < (CS+-CS-) < 60mV; LDOV = 11.4V to 12.6V; TA = 0 to 70°C  
PARAMETER  
CONDITIONS  
MIN TYP MAX UNITS  
Switching Section  
Output Voltage  
IO = 2A in Application Circuit  
VCC  
See Output Voltage Table  
Supply Voltage  
4.5  
7
V
mA  
%
Supply Current  
VCC = 5.0V  
8
1
15  
Load Regulation  
IO = 0.8A to 15A  
Line Regulation  
±0.15  
70  
%
Current Limit Voltage  
Oscillator Frequency  
Oscillator Max Duty Cycle  
Peak DH Sink/Source Current  
60  
120  
90  
1
85  
mV  
kHz  
%
140  
95  
160  
BSTH-DH = 4.5V,DH-PGNDH = 3.3V  
A
DH-PGNDH = 1.5V 100  
mA  
Peak DL Sink/Source Current  
BSTL-DL = 4.5V, DL-PGNDL = 3.3V  
DL-PGNDL = 1.5V  
1
100  
A
mA  
Gain (AOL)  
VOSENSE to VO  
35  
10  
dB  
µA  
µA  
%
VID Source Current  
VID Leakage  
1
VIDx 2.4V  
VIDx = 5V  
10  
Power Good Threshold Voltage  
Dead Time  
88  
40  
112  
100  
ns  
Linear Sections  
Quiescent Current  
Output Voltage LDO1  
Output Voltage LDO2  
Reference Voltage  
Gain (AOL)  
LDOV = 12V  
5
mA  
V
2.493 2.525 2.556  
1.496 1.515 1.534  
V
1.246 1.265 1.284  
V
Iref 100µA  
LDOS (1,2) to GATE (1,2)  
IO = 0 to 8A  
90  
dB  
%
%
Load Regulation  
Line Regulation  
0.3  
0.3  
Output Impedance  
VGATE = 6.5V  
1
1.5  
k
2
© 1999 SEMTECH CORP.  
652 MITCHELL ROAD NEWBURY PARK CA 91320  
PROGRAMMABLE SYNCHRONOUS DC/DC  
CONVERTER, DUAL LOW DROPOUT  
REGULATOR CONTROLLER  
SC1186  
PRELIMINARY - December 2, 1999  
ELECTRICAL CHARACTERISTICS (Cont.)  
Unless specified: VCC = 4.75V to 5.25V; GND = PGND = 0V; VOSENSE = VO; 0mV < (CS+-CS-) < 60mV; LDOV = 11.4V to 12.6V; TA = 0 to 70°C  
PARAMETER  
CONDITIONS  
MIN TYP MAX UNITS  
LDOV Undervoltage Lockout  
LDOEN Threshold  
6.5  
1.3  
8.0  
10  
1.9  
1.0  
V
V
LDOEN Sink Current  
LDOEN = 3.3V  
LDOEN = 0V  
0.01  
-200 -300  
µA  
µA  
Overcurrent Trip Voltage  
% of Vo set point  
20  
1
40  
5
60  
60  
6
%
Power-up Output Short Circuit Immunity  
Output Short Circuit Glitch Immunity  
Gate Pulldown Impedance  
ms  
ms  
0.5  
80  
10  
4
GATE(1,2)-AGND;VCC=BST=0V  
300  
750  
k
k
VOSENSE Impedance  
PIN DESCRIPTION  
Pin Pin Name  
Pin Function  
1
2
3
4
5
6
AGND  
GATE1  
LDOS1  
LDOS2  
VCC  
Small Signal Analog and Digital Ground  
Gate Drive Output LDO1  
Sense Input for LDO1  
Sense Input for LDO2  
Input Voltage  
Top View  
REF  
Buffered Reference Voltage output  
AGND  
1
2
3
4
5
6
7
8
9
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
GATE2  
LDOV  
VID0  
VID1  
VID2  
7
8
9
LDOEN  
CS-  
CS+  
LDO Supply Monitor.  
GATE1  
LDOS1  
LDOS2  
Current Sense Input (negative)  
Current Sense Input (positive)  
Power Ground for High Side Switch  
High Side Driver Output  
Power Ground for Low Side Switch  
Low Side Driver Output  
Supply for Low Side Driver  
Supply for High Side Driver  
Logic low shuts down the converter;  
High or open for normal operation.  
Top end of internal feedback chain  
VCC  
REF  
LDOEN  
CS-  
CS+  
PGNDH  
VID3  
VID4  
10 PGNDH  
11 DH  
12 PGNDL  
13 DL  
14 BSTL  
15 BSTH  
16 EN(1)  
VOSENSE  
EN  
BSTH  
BSTL  
DL  
10  
11  
12  
DH  
PGNDL  
(24 Pin SOIC)  
17 VOSENSE  
VID4(1)  
18  
Programming Input (MSB)  
Programming Input  
Programming Input  
VID3(1)  
19  
VID2(1)  
20  
VID1(1)  
21  
Programming Input  
VID0(1)  
Programming Input (LSB)  
+12V for LDO section  
Gate Drive Output LDO2  
22  
Note:  
(1) All logic level inputs and outputs are open  
collector TTL compatible.  
23 LDOV  
24 GATE2  
3
© 1999 SEMTECH CORP.  
652 MITCHELL ROAD NEWBURY PARK CA 91320  
PROGRAMMABLE SYNCHRONOUS DC/DC  
CONVERTER, DUAL LOW DROPOUT  
REGULATOR CONTROLLER  
SC1186  
PRELIMINARY - December 2, 1999  
OUTPUT VOLTAGE  
Unless specified: 4.75V < VCC < 5.25V; GND = PGND = 0V; VOSENSE = VO; 0mV < (CS+-CS-) < 60mV;  
= 0°C < Tj < 85°C  
Standard  
PARAMETER  
VID  
43210  
MIN  
TYP  
MAX  
UNITS  
Output Voltage  
01111  
01110  
01101  
01100  
01011  
01010  
01001  
01000  
00111  
00110  
00101  
00100  
00011  
00010  
00001  
00000  
11111  
11110  
11101  
11100  
11011  
11010  
11001  
11000  
10111  
10110  
10101  
10100  
10011  
10010  
10001  
10000  
1.277  
1.326  
1.375  
1.424  
1.478  
1.527  
1.576  
1.625  
1.675  
1.724  
1.782  
1.832  
1.881  
1.931  
1.980  
2.030  
1.970  
2.069  
2.167  
2.266  
2.364  
2.463  
2.561  
2.660  
2.758  
2.842  
2.940  
3.038  
3.136  
3.234  
3.332  
3.430  
1.300  
1.350  
1.400  
1.450  
1.500  
1.550  
1.600  
1.650  
1.700  
1.750  
1.800  
1.850  
1.900  
1.950  
2.000  
2.050  
2.000  
2.100  
2.200  
2.300  
2.400  
2.500  
2.600  
2.700  
2.800  
2.900  
3.000  
3.100  
3.200  
3.300  
3.400  
3.500  
1.323  
1.374  
1.425  
1.476  
1.523  
1.573  
1.624  
1.675  
1.726  
1.776  
1.818  
1.869  
1.919  
1.970  
2.020  
2.071  
2.030  
2.132  
2.233  
2.335  
2.436  
2.538  
2.639  
2.741  
2.842  
2.958  
3.060  
3.162  
3.264  
3.366  
3.468  
3.570  
V
4
© 1999 SEMTECH CORP.  
652 MITCHELL ROAD NEWBURY PARK CA 91320  
PROGRAMMABLE SYNCHRONOUS DC/DC  
CONVERTER, DUAL LOW DROPOUT  
REGULATOR CONTROLLER  
SC1186  
PRELIMINARY - December 2, 1999  
APPLICATION CIRCUIT  
5
© 1999 SEMTECH CORP.  
652 MITCHELL ROAD NEWBURY PARK CA 91320  
PROGRAMMABLE SYNCHRONOUS DC/DC  
CONVERTER, DUAL LOW DROPOUT  
REGULATOR CONTROLLER  
SC1186  
PRELIMINARY - December 2, 1999  
MATERIALS LIST  
Qty. Reference  
Part/Description Vendor  
Notes  
4
6
1
2
1
2
C1,C5,C13,C18 0.1µF Ceramic  
C2,C3,C14-C17 1500µF/6.3V  
Various  
SANYO  
MV-GX or equiv. Low ESR  
C9  
1000µF  
C11,C21  
L1  
330µF/6.3V  
4µH  
Various  
8 Turns 16AWG on MICROMETALS T50-52D core  
Q1,Q2  
See notes  
See notes FET selection requires trade-off between efficiency and  
cost. Absolute maximum RDS(ON) = 22 m for Q1,Q2  
1
1
1
1
1
1
1
Q3  
Q4  
R4  
R5  
R6  
R1  
U1  
IRLML2803  
IRFZ14S  
IR  
.25 30V SOT23 (or equivalent)  
IR  
Or equivalent  
OAR-1 Series  
IRC  
5m  
Various  
Various  
Various  
SEMTECH  
2.32k , 1%, 1/8W  
1k , 1%, 1/8W  
10 , 5%, 1/8W  
SC1186CSW  
6
© 1999 SEMTECH CORP.  
652 MITCHELL ROAD NEWBURY PARK CA 91320  
PROGRAMMABLE SYNCHRONOUS DC/DC  
CONVERTER, DUAL LOW DROPOUT  
REGULATOR CONTROLLER  
SC1186  
PRELIMINARY - December 2, 1999  
96%  
92%  
88%  
84%  
Vo=2.8V  
80%  
76%  
Vo=2.0V  
Vo=2.5V  
0.0  
2.0  
4.0  
6.0  
8.0  
10.0  
12.0  
14.0  
16.0  
Io (Amps)  
Typical Efficiency (Switching section)  
Typical Ripple, Vo=2.0V, Io=10A  
Output Voltage  
Output Current  
5A/div  
Transient Response Vo=2.4V, Io=300mA to 15A  
2.5V Linear Short circuit output response  
7
© 1999 SEMTECH CORP.  
652 MITCHELL ROAD NEWBURY PARK CA 91320  
PROGRAMMABLE SYNCHRONOUS DC/DC  
CONVERTER, DUAL LOW DROPOUT  
REGULATOR CONTROLLER  
SC1186  
PRELIMINARY - December 2, 1999  
as small as possible. This loop contains all the high  
LAYOUT GUIDELINES  
current, fast transition switching. Connections should  
be as wide and as short as possible to minimize loop  
inductance. Minimizing this loop area will a) reduce  
EMI, b) lower ground injection currents, resulting in  
electrically “cleaner” grounds for the rest of the system  
and c) minimize source ringing, resulting in more reli-  
able gate switching signals.  
Careful attention to layout requirements are necessary  
for successful implementation of the SC1186 PWM  
controller. High currents switching at 140kHz are pre-  
sent in the application and their effect on ground plane  
voltage differentials must be understood and mini-  
mized.  
1). The high power parts of the circuit should be laid  
out first. A ground plane should be used, the number  
and position of ground plane interruptions should be  
such as to not unnecessarily compromise ground plane  
integrity. Isolated or semi-isolated areas of the ground  
plane may be deliberately introduced to constrain  
ground currents to particular areas, for example the  
input capacitor and bottom FET ground.  
3). The connection between the junction of Q1, Q2 and  
the output inductor should be a wide trace or copper  
region. It should be as short as practical. Since this  
connection has fast voltage transitions, keeping this  
connection short will minimize EMI. The connection  
between the output inductor and the sense resistor  
should be a wide trace or copper area, there are no  
fast voltage or current transitions in this connection  
and length is not so important, however adding unnec-  
essary impedance will reduce efficiency.  
2). The loop formed by the Input Capacitor(s) (Cin), the  
Top FET (Q1) and the Bottom FET (Q2) must be kept  
12V IN  
5V  
10  
1
2
24  
AGND  
GATE1  
LDOS1  
LDOS2  
VCC  
GATE2  
LDOV  
VID0  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
2.32k  
3
Cin  
+
4
Q1  
Q2  
1.00k  
VID1  
0.1uF  
0.1uF  
5
5mOhm  
VID2  
Vout  
6
REF  
VID3  
4uH  
+
7
LDOEN  
CS-  
VID4  
Cout  
8
VOSENSE  
EN  
9
CS+  
10  
11  
12  
PGNDH  
DH  
BSTH  
BSTL  
DL  
PGNDL  
SC1186  
Heavy lines indicate  
high current paths.  
3.3V  
Vo Lin1  
Q3  
+
+
Cout Lin1  
Cin Lin  
Vo Lin2  
Q4  
+
Cout Lin2  
Layout diagram for the SC1186  
8
© 1999 SEMTECH CORP.  
652 MITCHELL ROAD NEWBURY PARK CA 91320  
PROGRAMMABLE SYNCHRONOUS DC/DC  
CONVERTER, DUAL LOW DROPOUT  
REGULATOR CONTROLLER  
SC1186  
PRELIMINARY - December 2, 1999  
4) The Output Capacitor(s) (Cout) should be located  
as close to the load as possible, fast transient load  
currents are supplied by Cout only, and connections  
between Cout and the load must be short, wide cop-  
per areas to minimize inductance and resistance.  
5V supply through a 10 resistor, the Vcc pin should  
be decoupled directly to AGND by a 0.1 F ceramic  
µ
capacitor, trace lengths should be as short as possi-  
ble.  
7) The Current Sense resistor and the divider across  
it should form as small a loop as possible, the traces  
running back to CS+ and CS- on the SC1186 should  
5) The SC1186 is best placed over a quiet ground  
plane area, avoid pulse currents in the Cin, Q1, Q2  
loop flowing in this area. PGNDH and PGNDL should  
be returned to the ground plane close to the package.  
The AGND pin should be connected to the ground  
side of (one of) the output capacitor(s). If this is not  
possible, the AGND pin may be connected to the  
ground path between the Output Capacitor(s) and the  
Cin, Q1, Q2 loop. Under no circumstances should  
AGND be returned to a ground inside the Cin, Q1, Q2  
loop.  
run parallel and close to each other. The 0.1 F ca-  
µ
pacitor should be mounted as close to the CS+ and  
CS- pins as possible.  
8) Ideally, the grounds for the two LDO sections  
should be returned to the ground side of (one of) the  
output capacitor(s).  
6) Vcc for the SC1186 should be supplied from the  
5V  
+
Vout  
+
Currents in various parts of the power section  
9
© 1999 SEMTECH CORP.  
652 MITCHELL ROAD NEWBURY PARK CA 91320  
PROGRAMMABLE SYNCHRONOUS DC/DC  
CONVERTER, DUAL LOW DROPOUT  
REGULATOR CONTROLLER  
SC1186  
PRELIMINARY - December 2, 1999  
fast enough to reduce the voltage dropped across the  
COMPONENT SELECTION  
ESR at a faster rate than the capacitor sags, hence en-  
suring a good recovery from transient with no additional  
excursions.  
We must also be concerned with ripple current in the  
output inductor and a general rule of thumb has been to  
allow 10% of maximum output current as ripple current.  
Note that most of the output voltage ripple is produced  
by the inductor ripple current flowing in the output ca-  
pacitor ESR. Ripple current can be calculated from:  
SWITCHING SECTION  
OUTPUT CAPACITORS - Selection begins with the  
most critical component. Because of fast transient load  
current requirements in modern microprocessor core  
supplies, the output capacitors must supply all transient  
load current requirements until the current in the output  
inductor ramps up to the new level. Output capacitor  
ESR is therefore one of the most important criteria. The  
maximum ESR can be simply calculated from:  
V
IN  
IL  
=
Vt  
RIPPLE  
4 L fOSC  
RESR  
It  
Ripple current allowance will define the minimum per-  
mitted inductor value.  
Where  
Vt Maximum transient voltage excursion  
=
POWER FETS - The FETs are chosen based on sev-  
eral criteria with probably the most important being  
power dissipation and power handling capability.  
TOP FET - The power dissipation in the top FET is a  
combination of conduction losses, switching losses and  
bottom FET body diode recovery losses.  
It Transient current step  
=
For example, to meet a 100mV transient limit with a  
10A load step, the output capacitor ESR must be less  
than 10m . To meet this kind of ESR level, there are  
a) Conduction losses are simply calculated as:  
three available capacitor technologies.  
PCOND I2 R  
=
δ
DS(on)  
Each Capacitor  
Total  
O
where  
= duty cycle  
Technology  
C
ESR Qty.  
C
ESR  
(m)  
(µF)  
Rqd. (µF)  
(m)  
60  
VO  
δ
Low ESR Tantalum  
OS-CON  
330  
6
3
5
2000  
990  
10  
8.3  
8.8  
V
IN  
330  
25  
44  
b) Switching losses can be estimated by assuming a  
switching time, if we assume 100ns then:  
Low ESR Aluminum  
1500  
7500  
2
PSW  
I
VIN 10 −  
=
The choice of which to use is simply a cost/perfor-  
mance issue, with Low ESR Aluminum being the  
cheapest, but taking up the most space.  
O
or more generally,  
IO VIN (tr t ) f  
INDUCTOR - Having decided on a suitable type and  
value of output capacitor, the maximum allowable  
value of inductor can be calculated. Too large an in-  
ductor will produce a slow current ramp rate and will  
cause the output capacitor to supply more of the tran-  
sient load current for longer - leading to an output volt-  
age sag below the ESR excursion calculated above.  
The maximum inductor value may be calculated from:  
+
f
OSC  
PSW  
=
4
c) Body diode recovery losses are more difficult to esti-  
mate, but to a first approximation, it is reasonable to as-  
sume that the stored charge on the bottom FET body  
diode will be moved through the top FET as it starts to  
turn on. The resulting power dissipation in the top FET  
will be:  
RESR  
It  
C
L
V
V
O
(
)
PRR  
Q
VIN fOSC  
=
IN  
RR  
The calculated maximum inductor value assumes 100% To a first order approximation, it is convenient to only  
duty cycle, so some allowance must be made. Choosing consider conduction losses to determine FET suitability.  
an inductor value of 50 to 75% of the calculated maxi-  
mum will guarantee that the inductor current will ramp  
For a 5V in; 2.8V out at 14.2A requirement, typical FET  
losses would be:  
10  
652 MITCHELL ROAD NEWBURY PARK CA 91320  
© 1999 SEMTECH CORP.  
PROGRAMMABLE SYNCHRONOUS DC/DC  
CONVERTER, DUAL LOW DROPOUT  
REGULATOR CONTROLLER  
SC1186  
PRELIMINARY - December 2, 1999  
Using 1.5X Room temp RDS(ON) to allow for temperature  
rise.  
INPUT CAPACITORS - since the RMS ripple current  
in the input capacitors may be as high as 50% of the  
output current, suitable capacitors must be chosen ac-  
cordingly. Also, during fast load transients, there may  
be restrictions on input di/dt. These restrictions require  
useable energy storage within the converter circuitry,  
either as extra output capacitance or, more usually,  
additional input capacitors. Choosing low ESR input  
capacitors will help maximize ripple rating for a given  
size.  
FET type  
IRL34025 15  
PD (W) Package  
RDS(on) (m )  
1.69  
1.19  
2.26  
D2PAK  
D2PAK  
SO-8  
IRL2203  
Si4410  
10.5  
20  
BOTTOM FET - Bottom FET losses are almost entirely  
due to conduction. The body diode is forced into con-  
duction at the beginning and end of the bottom switch  
conduction period, so when the FET turns on and off,  
there is very little voltage across it, resulting in low  
switching losses. Conduction losses for the FET can be  
determined by:  
SHORT CIRCUIT PROTECTION - LINEARS  
The Short circuit feature on the linear controllers is  
implemented by using the Rds(on) of the FETs. As  
output current increases, the regulation loop maintains  
the output voltage by turning the FET on more and  
more. Eventually, as the Rds(on) limit is reached, the  
FET will be unably to turn on more fully, and output  
voltage will start to fall. When the output voltage falls  
to approximately 50% of nominal, the LDO controller  
is latched off, setting output voltage to 0. Power must  
be cycled to reset the latch.  
PCOND I2 RDS(on) (1  
)
− δ  
=
O
For the example above:  
FET type  
IRL34025 15  
PD (W) Package  
RDS(on) (m )  
To prevent false latching due to capacitor inrush cur-  
rents or low supply rails, the current limit latch is ini-  
tially disabled. It is enabled at a preset time (nominally  
2mS) after both the LDOV and LDOEN rails rise  
above their lockout points.  
1.33  
0.93  
1.77  
D2PAK  
D2PAK  
SO-8  
IRL2203  
Si4410  
10.5  
20  
To be most effective, the linear FET Rds(on) should  
not be selected artificially low, the FET should be cho-  
sen so that, at maximum required current, it is almost  
fully turned on  
Each of the package types has a characteristic thermal  
impedance, for the TO-220 package, thermal  
impedance is mostly determined by the heatsink used.  
For the surface mount packages on double sided FR4, 2  
oz printed circuit board material, thermal impedances of  
40oC/W for the D2PAK and 80oC/W for the SO-8 are  
readily achievable. The corresponding temperature rise  
is detailed below:  
If, for example, a linear supply of 1.5V at 4A is re-  
quired from a 3.3V ± 5% rail, max allowable Rds(on)  
would be.  
Rds(on)max = (0.95*3.3-1.5)/4 400m  
Temperature rise (oC)  
To allow for temperature effects 200m would be a  
suitable room temperature maximum, allowing a peak  
short circuit current of approximately 15A for a short  
time before shutdown.  
FET type Top FET  
IRL34025 67.6  
Bottom FET  
53.2  
37.2  
141.6  
IRL2203  
Si4410  
47.6  
180.8  
It is apparent that single SO-8 Si4410 are not adequate  
for this application, but by using parallel pairs in each po-  
sition, power dissipation will be approximately halved and  
temperature rise reduced by a factor of 4.  
11  
652 MITCHELL ROAD NEWBURY PARK CA 91320  
© 1999 SEMTECH CORP.  
PROGRAMMABLE SYNCHRONOUS DC/DC  
CONVERTER, DUAL LOW DROPOUT  
REGULATOR CONTROLLER  
SC1186  
PRELIMINARY - December 2, 1999  
OUTLINE DRAWING  
JEDEC MS-013AD  
B17104B  
ECN99-600 9-22-99  
ECN99-719 12-2-99  
12  
© 1999 SEMTECH CORP.  
652 MITCHELL ROAD NEWBURY PARK CA 91320  

相关型号:

SC1186CSWT

Switching Controller, Voltage-mode, 160kHz Switching Freq-Max, PDSO24, MS-013AD, SOIC-24
SEMTECH

SC1186CSWTR

Switching Controller, Voltage-mode, 1A, 160kHz Switching Freq-Max, BIPolar, PDSO24, MS-013AD, SOIC-24
SEMTECH

SC1186CSWTRT

Switching Controller, Voltage-mode, 1A, 160kHz Switching Freq-Max, BIPolar, PDSO24, ROHS COMPLIANT, MS-013AD, SOIC-24
SEMTECH

SC1186_04

Programmable Synchronous DC/DC Converter, Dual LDO Controller
SEMTECH

SC1187SWTR

Switching Controller, Voltage-mode, 1A, 225kHz Switching Freq-Max, PDSO24, SOIC-24
SEMTECH

SC1188CS

Switching Controller, Voltage-mode, 0.5A, 225kHz Switching Freq-Max, PDSO16, SO-16
SEMTECH

SC1188CSTR

Switching Controller, Voltage-mode, 0.5A, 225kHz Switching Freq-Max, PDSO16, SO-16
SEMTECH

SC1189

Programmable synchronous DC/DC Converter, Dual LDO Controller
SEMTECH

SC1189SWTR

Programmable synchronous DC/DC Converter, Dual LDO Controller
SEMTECH

SC1189SWTRT

Programmable Synchronous DC/DC Converter, Dual LDO Controller
SEMTECH

SC1189_05

Programmable Synchronous DC/DC Converter, Dual LDO Controller
SEMTECH

SC1189_07

Programmable Synchronous DC/DC Converter, Dual LDO Controller
SEMTECH