SC121 [SEMTECH]

Low Voltage Synchronous Boost Regulator; 低电压同步升压稳压器
SC121
型号: SC121
厂家: SEMTECH CORPORATION    SEMTECH CORPORATION
描述:

Low Voltage Synchronous Boost Regulator
低电压同步升压稳压器

稳压器
文件: 总23页 (文件大小:330K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SC121  
Low Voltage Synchronous  
Boost Regulator  
POWER MANAGEMENT  
Features  
Description  
„
„
„
Input voltage — 0.7V to 4.5V  
The SC121 is a high efficiency, low noise, synchronous  
step-up DC-DC converter that provides boosted voltage  
levels in low-voltage handheld applications. The wide  
input voltage range allows use in systems with single  
NiMH or alkaline battery cells as well as in systems with  
higher voltage battery supplies. It features an internal  
1.2A switch and synchronous rectifier to achieve up to  
94% efficiency and to eliminate the need for an external  
Schottky diode. The output voltage can be set to 3.3V  
with internal feedback, or to any voltage within the speci-  
fied range using a standard resistor divider.  
Minimum start-up voltage — 0.85V  
Output voltage — fixed at 3.3V; adjustable from 1.8V  
to 5.0V  
Peak input current limit — 1.2A  
Output current at 3.3 VOUT — 80mA with VIN = 1.0V,  
190mA with VIN = 1.5V  
Forced PWM operation at all loads  
Efficiency up to 94%  
Internal synchronous rectifier  
No forward conduction path during shutdown  
Switching frequency — 1.2MHz  
Soft-start startup current limiting  
Shutdown current — 0.1μA (typ)  
Ultra-thin 1.5 × 2.0 × 0.6 (mm) MLPD-UT-6 package  
Lead-free and halogen-free  
„
„
„
„
„
„
„
„
„
„
„
„
The SC121 operates exclusively in Pulse Width Modulation  
(PWM) mode for low ripple and fixed-frequency switching.  
Output disconnect capability is included to reduce leakage  
current, improve efficiency, and eliminate external com-  
ponents sometimes needed to disconnect the load from  
the supply during shutdown.  
WEEE and RoHS compliant  
Applications  
Low quiescent current is maintained with a high 1.2MHz  
operating frequency. Small external components and the  
space saving MLPD-UT-6, 1.5×2.0×0.6 (mm) package  
make this device an excellent choice for small handheld  
applications that require the longest possible battery life.  
„
„
„
„
„
„
„
„
MP3 players  
Smart phones and cellular phones  
Palmtop computers and handheld instruments  
PCMCIA cards and memory cards  
Digital cordless phones  
Personal medical products  
Wireless VoIP phones  
Small motors  
Typical Application Circuit  
L1  
IN  
LX  
Single  
Cell  
OUT  
3.3V  
EN  
(1.2V)  
FB  
GND  
CIN  
COUT  
SC121  
April 13, 2010  
1
© 2010 Semtech Corporation  
SC121  
Pin Configuration — MLPD-UT  
Ordering Information  
Device  
Package  
SC121ULTRT(1)(2)  
MLPD-UT-6 1.5×2  
Evaluation Board  
SC121EVB  
Notes:  
1
2
3
LX  
GND  
IN  
6
5
4
OUT  
FB  
TOP VIEW  
(1) Available in tape and reel only. A reel contains 3,000 devices.  
(2) Lead-free packaging, only. Device is WEEE and RoHS compliant,  
and halogen-free.  
T
EN  
MLPD-UT; 1.5×2, 6 LEAD  
θJA = 84°C/W  
Marking Information — MLPD-UT  
121  
yw  
MLPD-UT; 1.5×2, 6 LEAD  
yw = date code  
2
SC121  
Absolute Maximum Ratings  
Recommended Operating Conditions  
IN, OUT, LX, FB (V) . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to +6.0  
EN (V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to (VIN + 0.3)  
ESD Protection Level(1) (kV) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Ambient Temperature Range (°C). . . . . . . . . . . . -40 to +85  
VIN (V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.7 to 4.5  
VOUT (V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.8 to 5.0  
Thermal Information  
Thermal Res. MLPD, Junction-Ambient(2) (°C/W) . . . . . . . 84  
Maximum Junction Temperature (°C) . . . . . . . . . . . . . . . 150  
Storage Temperature Range (°C) . . . . . . . . . . . -65 to +150  
Peak IR Reflow Temperature (10s to 30s) (°C) . . . . . . +260  
Exceeding the above specifications may result in permanent damage to the device or device malfunction. Operation outside of the parameters  
specified in the Electrical Characteristics section is not recommended.  
NOTES:  
(1) Tested according to JEDEC standard JESD22-A114.  
(2) Calculated from package in still air, mounted to 3 x 4.5 (in), 4 layer FR4 PCB with thermal vias under the exposed pad per JESD51 standards.  
Electrical Characteristics  
Unless otherwise noted VIN = 2.5V, CIN = COUT = 22μF, L1 = 4.7μH, TA = -40 to +85°C. Typical values are at TA = 25°C.  
Parameter  
Symbol  
VIN  
Conditions  
Min  
Typ  
Max  
Units  
V
Input Voltage Range  
0.7  
4.5  
Minimum Startup Voltage  
Shutdown Current  
VIN-SU  
ISHDN  
IOUT < 1mA, TA = 0°C to 85°C  
TA = 25°C, VEN = 0V  
0.85  
0.1  
3.5  
1.2  
90  
V
1
μA  
mA  
MHz  
%
Operating Supply Current(1)  
Internal Oscillator Frequency  
Maximum Duty Cycle  
Minimum Duty Cycle  
Output Voltage  
IQ  
IOUT = 0, VEN = VIN  
fOSC  
DMAX  
DMIN  
20  
%
VOUT  
VFB = 0V  
3.3  
V
Adjustable Output Voltage Range  
VOUT_RNG  
For VIN such that DMIN < D < DMAX  
1.8  
5.0  
1.5  
0.1  
V
Regulation Feedback Reference Volt-  
age Accuracy (Internal or External  
Programming)  
VReg-Ref  
-1.5  
%
FB Pin Input Current  
Startup Time  
IFB  
VFB = 1.2V  
ꢀA  
ms  
tSU  
1
3
SC121  
Electrical Characteristics (continued)  
Parameter  
Symbol  
RDSP  
RDSN  
ILIM(N)  
ILIM(P)-SU  
ILXP  
Conditions  
VOUT = 3.3V  
Min  
Typ  
0.6  
Max  
Units  
Ω
P-Channel ON Resistance  
N-Channel ON Resistance  
N-Channel Current Limit  
P-Channel Startup Current Limit  
LX Leakage Current PMOS  
LX Leakage Current NMOS  
Logic Input High  
VOUT = 3.3V  
0.5  
Ω
VIN = 3.0V  
0.9  
1.2  
A
VIN > VOUT, VEN > VIH  
TA = 25°C, VLX = 0V  
TA = 25°C, VLX = 3.3V  
VIN = 3.0V  
150  
mA  
μA  
μA  
V
1
1
ILXN  
VIH  
0.85  
-0.2  
Logic Input Low  
VIL  
VIN = 3.0V  
0.2  
1
V
Logic Input Current High  
Logic Input Current Low  
IIH  
VEN = VIN = 3.0V  
VEN = 0V  
μA  
μA  
IIL  
NOTES:  
(1) Quiescent operating current is drawn from OUT while in regulation. The quiescent operating current projected to IN is approximately  
IQ × (VOUT/VIN).  
4
SC121  
Typical Characteristics — VOUT = 1.8V  
Efficiency vs. IOUT (VOUT = 1.8V)  
Efficiency vs. IOUT (VOUT = 1.8V)  
R1 = 499k , R2 = 1M , L = 4.7 H, CFB = 22pF, TA = 25οC  
Ω
Ω
μ
Ω
Ω
μ
R1 = 499k , R2 = 1M , L = 4.7 H, CFB = 22pF, VIN = 1.2V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 1.6V  
TA = –40°C  
TA = 85°C  
VIN = 0.8V  
TA = 85°C  
VIN = 1.2V  
TA = –40°C  
TA = 25°C  
0.1 0.2  
0.5  
1
2
5
10  
20  
50 100 200  
0.1 0.2  
0.5  
1
2
5
10  
20  
50 100 200  
IOUT (mA)  
IOUT (mA)  
Load Regulation (VOUT = 1.8V)  
Load Regulation (VOUT = 1.8V)  
R1 = 499k , R2 = 1M , L = 4.7 H, CFB = 22pF, TA = 25οC  
R1 = 499k , R2 = 1M , L = 4.7 H, CFB = 22pF, VIN = 1.2V  
Ω
Ω
μ
Ω
Ω
μ
1.82  
1.8  
1.82  
1.8  
VIN = 1.6V  
TA = –40°C  
TA = 25°C  
1.78  
1.76  
1.78  
1.76  
TA = 85°C  
VIN = 1.2V  
VIN = 0.8V  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
IOUT (mA)  
IOUT (mA)  
Line Regulation — Low Load (VOUT = 1.8V)  
Line Regulation — High Load (VOUT = 1.8V)  
Ω
Ω
μ
R1 = 499k , R2 = 1M , L = 4.7 H, CFB = 22pF, IOUT = 1mA  
Ω
Ω
μ
R1 = 499k , R2 = 1M , L = 4.7 H, CFB = 22pF, IOUT = 50mA  
1.82  
1.8  
1.82  
1.8  
TA = 25°C  
TA = 25°C  
TA = –40°C  
TA = –40°C  
TA = 85°C  
1.78  
1.76  
1.78  
1.76  
TA = 85°C  
0.6  
0.7  
0.8  
0.9  
1
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
0.6  
0.7  
0.8  
0.9  
1
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
VIN (V)  
VIN (V)  
5
SC121  
Typical Characteristics — VOUT = 1.8V (continued)  
Temperature Reg. — Low Load (VOUT = 1.8V)  
Temperature Reg. — High Load (VOUT = 1.8V)  
Ω
Ω
μ
Ω
Ω
μ
R1 = 499k , R2 = 1M , L = 4.7 H, CFB = 22pF, IOUT = 50mA  
R1 = 499k , R2 = 1M , L = 4.7 H, CFB = 22pF, IOUT = 1mA  
1.82  
1.8  
1.82  
1.8  
VIN = 1.6V  
VIN = 1.2V  
VIN = 1.2V  
VIN = 0.8V  
1.78  
1.76  
1.78  
VIN = 0.8V  
1.76  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Junction Temperature (oC)  
Junction Temperature (oC)  
Max. IOUT vs. VIN (VOUT = 1.8V)  
Ω
Ω
μ
R1 = 499k , R2 = 1M , L = 4.7 H, CFB = 22pF  
350  
300  
250  
200  
150  
100  
50  
TA = –40°C  
TA = 25°C  
TA = 85°C  
0
0.6  
0.7  
0.8  
0.9  
1
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
VIN (V)  
6
SC121  
Typical Characteristics — VOUT = 3.3V  
Efficiency vs. IOUT (VOUT = 3.3V)  
Efficiency vs. IOUT (VOUT = 3.3V)  
FB grounded, L = 4.7 H, TA = 25οC  
μ
μ
FB grounded, L = 4.7 H, VIN = 2V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
TA = –40°C  
90  
VIN = 2.95V  
80  
TA = 85°C  
70  
VIN = 1.0V  
60  
VIN = 2.0V  
50  
40  
30  
20  
10  
0
TA = 25°C  
0.1 0.2  
0.5  
1
2
5
10 20  
50 100 200  
500  
0.1 0.2  
0.5  
1
2
5
10 20  
50 100 200  
500  
IOUT (mA)  
IOUT (mA)  
Load Regulation (VOUT = 3.3V)  
Load Regulation (VOUT = 3.3V)  
FB grounded, L = 4.7 H, TA = 25οC  
FB grounded, L = 4.7 H, VIN = 2V  
μ
μ
3.34  
3.32  
3.3  
3.34  
3.32  
3.3  
TA = 25°C  
VIN = 2.95V  
3.28  
3.26  
3.24  
3.22  
3.2  
3.28  
3.26  
3.24  
3.22  
3.2  
VIN = 2.0V  
TA = –40°C  
VIN = 1.0V  
TA = 85°C  
0
50  
100 150 200 250 300 350 400 450 500  
0
50  
100 150 200 250 300 350 400 450 500  
IOUT (mA)  
IOUT (mA)  
Line Regulation — Low Load (VOUT = 3.3V)  
Line Regulation — High Load (VOUT = 3.3V)  
μ
μ
FB grounded, L = 4.7 H, IOUT = 1mA  
FB grounded, L = 4.7 H, IOUT = 90mA  
3.34  
3.32  
3.3  
3.34  
3.32  
3.3  
TA = –40°C  
TA = –40°C  
3.28  
3.26  
3.24  
3.22  
3.2  
3.28  
3.26  
3.24  
3.22  
3.2  
TA = 85°C  
TA = 85°C  
TA = 25°C  
TA = 25°C  
0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
2.2 2.4 2.6 2.8  
3
0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
2.2 2.4 2.6 2.8  
3
VIN (V)  
VIN (V)  
7
SC121  
Typical Characteristics — VOUT = 3.3V (continued)  
Temperature Reg. — Low Load (VOUT = 3.3V)  
Temperature Reg. — High Load (VOUT = 3.3V)  
μ
FB grounded, L = 4.7 H, IOUT = 90mA  
μ
FB grounded, L = 4.7 H, IOUT = 1mA  
3.34  
3.32  
3.3  
3.34  
3.32  
3.3  
VIN = 2.95V  
VIN = 2.95V  
VIN = 2.0V  
VIN = 1.0V  
VIN = 2.0V  
VIN = 1.0V  
3.28  
3.26  
3.24  
3.22  
3.2  
3.28  
3.26  
3.24  
3.22  
3.2  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Junction Temperature (oC)  
Junction Temperature (oC)  
Max. IOUT vs. VIN (VOUT = 3.3V)  
μ
FB grounded, L = 4.7 H  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
TA = –40°C  
TA = 25°C  
TA = 85°C  
0
0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
2.2 2.4 2.6 2.8  
3
VIN (V)  
8
SC121  
Typical Characteristics — VOUT = 4.0V  
Efficiency vs. IOUT (VOUT = 4.0V)  
Efficiency vs. IOUT (VOUT = 4.0V)  
R1 = 976k , R2 = 412k , L = 4.7 H, CFB = 22pF, TA = 25οC  
Ω
Ω
μ
Ω
Ω
μ
R1 = 976k , R2 = 412k , L = 4.7 H, CFB = 22pF, VIN = 2.4V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
TA = –40°C  
VIN = 3.6V  
TA = 85°C  
TA = 25°C  
VIN = 1.2V  
VIN = 2.4V  
0.1 0.2  
0.5  
1
2
5
10 20  
50 100 200  
500  
0.1 0.2  
0.5  
1
2
5
10 20  
50 100 200  
500  
IOUT (mA)  
IOUT (mA)  
Load Regulation (VOUT = 4.0V)  
Load Regulation (VOUT = 4.0V)  
R1 = 976k , R2 = 412k , L = 4.7 H, CFB = 22pF, TA = 25οC  
R1 = 976k , R2 = 412k , L = 4.7 H, CFB = 22pF, VIN = 2.4V  
Ω
Ω
μ
Ω
Ω
μ
4.1  
4.05  
4
4.1  
4.05  
4
VIN = 3.6V  
TA = 25°C  
3.95  
3.9  
3.95  
3.9  
VIN = 1.2V  
VIN = 2.4V  
TA = –40°C  
TA = 85°C  
3.85  
3.85  
0
50  
100 150 200 250 300 350 400 450 500 550  
0
50  
100 150 200 250 300 350 400 450 500 550  
IOUT (mA)  
IOUT (mA)  
Line Regulation — Low Load (VOUT = 4.0V)  
Line Regulation — High Load (VOUT = 4.0V)  
R1 = 976k , R2 = 412k , L = 4.7 H, CFB = 22pF, IOUT = 110mA  
Ω
Ω
μ
Ω
Ω
μ
R1 = 976k , R2 = 412k , L = 4.7 H, CFB = 22pF, IOUT = 1mA  
4.1  
4.05  
4
4.1  
4.05  
4
TA = 85°C  
TA = –40°C  
TA = –40°C  
TA = 85°C  
3.95  
3.9  
3.95  
3.9  
TA = 25°C  
TA = 25°C  
3.85  
3.85  
0.8  
1.2  
1.6  
2
2.4  
2.8  
3.2  
3.6  
0.8  
1.2  
1.6  
2
2.4  
2.8  
3.2  
3.6  
VIN (V)  
VIN (V)  
9
SC121  
Typical Characteristics — VOUT = 4.0V (continued)  
Temperature Reg. — High Load (VOUT = 4.0V)  
Temperature Reg. — Low Load (VOUT = 4.0V)  
Ω
Ω
μ
Ω
Ω
μ
R1 = 976k , R2 = 412k , L = 4.7 H, CFB = 22pF, IOUT = 110mA  
R1 = 976k , R2 = 412k , L = 4.7 H, CFB = 22pF, IOUT = 1mA  
4.1  
4.05  
4
4.1  
4.05  
4
VIN = 3.6V  
VIN = 3.6V  
VIN = 2.4V  
VIN = 1.2V  
VIN = 1.2V  
VIN = 2.4V  
3.95  
3.9  
3.95  
3.9  
3.85  
3.85  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Junction Temperature (oC)  
Junction Temperature (oC)  
Max. IOUT vs. VIN (VOUT = 4.0V)  
Ω
Ω
μ
R1 = 976k , R2 = 412k , L = 4.7 H, CFB = 22pF  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
TA = –40°C  
TA = 85°C  
TA = 25°C  
0
0.8  
1.2  
1.6  
2
2.4  
2.8  
3.2  
3.6  
VIN (V)  
10  
SC121  
Typical Characteristics — VOUT = 5.0V  
Efficiency vs. IOUT (VOUT = 5.0V)  
Efficiency vs. IOUT (VOUT = 5.0V)  
R1 = 931k , R2 = 294k , L = 4.7 H, CFB = 22pF, TA = 25οC  
Ω
Ω
μ
Ω
Ω
μ
R1 = 931k , R2 = 294k , L = 4.7 H, CFB = 22pF, VIN = 3.6V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 4.2V  
TA = –40°C  
TA = 85°C  
VIN = 1.2V  
VIN = 2.2V  
TA = 25°C  
VIN = 3.2V  
0.1 0.2  
0.5  
1
2
5
10 20  
50 100 200  
500  
0.1 0.2  
0.5  
1
2
5
10 20  
50 100 200  
500  
IOUT (mA)  
IOUT (mA)  
Load Regulation (VOUT = 5.0V)  
Load Regulation (VOUT = 5.0V)  
R1 = 931k , R2 = 294k , L = 4.7 H, CFB = 22pF, TA = 25οC  
R1 = 931k , R2 = 294k , L = 4.7 H, CFB = 22pF, VIN = 3.6V  
Ω
Ω
μ
Ω
Ω
μ
5.05  
5
5.05  
5
VIN = 4.2V  
TA = –40°C  
4.95  
4.9  
4.85  
4.8  
4.95  
4.9  
4.85  
4.8  
TA = 85°C  
TA = 25°C  
VIN = 3.2V  
VIN = 1.2V  
VIN = 2.2V  
0
50  
100 150 200 250 300 350 400 450 500 550  
0
50  
100 150 200 250 300 350 400 450 500 550  
IOUT (mA)  
IOUT (mA)  
Line Regulation — Low Load (VOUT = 5.0V)  
Line Regulation — High Load (VOUT = 5.0V)  
Ω
Ω
μ
R1 = 931k , R2 = 294k , L = 4.7 H, CFB = 22pF, IOUT = 1mA  
Ω
Ω
μ
R1 = 931k , R2 = 294k , L = 4.7 H, CFB = 22pF, IOUT = 85mA  
5.05  
5
5.05  
5
TA = –40°C  
TA = –40°C  
4.95  
4.9  
4.85  
4.8  
4.95  
4.9  
4.85  
4.8  
TA = 85°C  
TA = 25°C  
TA = 85°C  
TA = 25°C  
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
VIN (V)  
VIN (V)  
11  
SC121  
Typical Characteristics — VOUT = 5.0V (continued)  
Temperature Reg. — Low Load (VOUT = 5.0V)  
R1 = 931k , R2 = 294k , L = 4.7 H, CFB = 22pF, IOUT = 1mA  
Temperature Reg. — High Load (VOUT = 5.0V)  
Ω
Ω
μ
Ω
Ω
μ
R1 = 931k , R2 = 294k , L = 4.7 H, CFB = 22pF, IOUT = 85mA  
5.05  
5
5.05  
5
VIN = 4.2V  
VIN = 4.2V  
VIN = 3.2V  
4.95  
4.9  
4.85  
4.8  
4.95  
4.9  
4.85  
4.8  
VIN = 2.2V  
VIN = 1.2V  
VIN = 3.2V  
VIN = 2.2V  
VIN = 1.2V  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Junction Temperature (oC)  
Junction Temperature (oC)  
Max. IOUT vs. VIN (VOUT = 5.0V)  
Ω
Ω
μ
R1 = 931k , R2 = 294k , L = 4.7 H, CFB = 22pF  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
TA = –40°C  
TA = 25°C  
TA = 85°C  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
VIN (V)  
12  
SC121  
Typical Characteristics (continued)  
PWM Operation  
Load Transient  
VOUT = 3.3V, VIN = 1.5V, TA =25°C  
VOUT = 3.3V, VIN = 1.5V, IOUT = 50mA  
VOUT ripple  
(10mV/div)  
IOUT = 40mA to  
140mA  
(50mA/div)  
IL  
(100mA/div)  
VOUT  
(100mV/div)  
AC Coupled  
VLX  
(5V/div)  
Time = (100μs/div)  
Time = (400ns/div)  
Startup Min Load Res. vs. VIN (Any VOUT  
)
Startup Max Load Current vs. VIN (Any VOUT  
)
Ω
Ω
μ
Ω
Ω
μ
R1 = 931k , R2 = 294k , L = 4.7 H, CFB = 22pF  
R1 = 931k , R2 = 294k , L = 4.7 H, CFB = 22pF  
100  
80  
60  
40  
20  
0
160  
140  
120  
100  
80  
TA = –40°C  
TA = 25°C  
TA = –40°C  
TA = 85°C  
60  
40  
TA = 25°C  
TA = 85°C  
20  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
VIN (V)  
VIN (V)  
Min. Start-up Voltage vs. Temperature (Any VOUT  
)
VOUT = 3.3V, IOUT = 1mA  
0.9  
0.85  
0.8  
0.75  
0.7  
0.65  
0.6  
-40  
0
20  
40  
60  
-20  
80  
100  
Temperature (°C)  
13  
SC121  
Pin Descriptions  
MLPD Pin #  
Pin Name  
Pin Function  
1
2
LX  
Switching node — connect an inductor from the input supply to this pin.  
Signal and power ground.  
GND  
Battery or supply input — requires an external 10μF bypass capacitor (capacitance evaluated while under  
IN bias) for normal operation.  
3
IN  
V
4
5
EN  
FB  
Enable digital control input — active high.  
Feedback input — connect to GND for preset 3.3V output. A voltage divider is connected from OUT to GND  
to adjust output from 1.8V to 5.0V.  
Output voltage pin — requires an external 10μF bypass capacitor (capacitance evaluated while under VOUT  
bias) for normal operation.  
6
T
OUT  
Thermal  
Pad  
Thermal Pad is for heat sinking purposes — connect to ground plane using multiple vias — not connected  
internally.  
14  
SC121  
Block Diagram  
VOUT  
Comp.  
IN  
+
-
OUT  
+
1.7 V  
-
+
-
Start-up  
Oscillator  
EN  
P
LIM  
Amp.  
Gate Drive  
and  
Logic  
Bulk  
Bias  
Oscillator and  
Slope  
Generator  
Slope  
Comp.  
Control  
LX  
PWM  
Comp.  
+
PWM  
Control  
-
+
-
NLIM  
Amplifier  
Error  
+
-
Amp.  
Output Voltage  
Selection Logic  
-
FB  
Current  
Amplifier  
+
GND  
VREF  
+
-
1.2 V  
15  
SC121  
Applications Information  
The values of the resistors in the voltage divider network  
are chosen to satisfy the equation  
Detailed Description  
The SC121 is a synchronous step-up fixed frequency Pulse  
Width Modulated (PWM) DC-DC converter utilizing a  
1.2MHz fixed frequency current mode architecture. It is  
designed to provide output voltages in the range 1.8V to  
5.0V from an input voltage as low as 0.7V, with a (output  
unloaded) start up input voltage of 0.85V. Quiescent  
current consumption is typically 3.5mA, entirely into the  
OUT pin during boost regulation. (See footnote 1 of the  
Electrical Characteristics table.)  
§
·
R1  
R2  
¨
¸
¸
VOUT  1.191u 1  
V
   
¨
©
¹
A large value of R2, ideally 590kΩ or larger, is preferred for  
stability for VIN within approximately 400mV of VOUT. For  
lower VIN, lower resistor values can be used. The values of  
R1 and R2 can be as large as desired to achieve low quies-  
cent current. CFB = 22pF is recommended to improve  
transient response.  
The regulator control circuitry is shown in the Block  
Diagram. It is comprised of a programmable feedback  
controller, an internal 1.2MHz oscillator, an n-  
channel Field Effect Transistor (FET) between the LX and  
GND pins, and a p-channel FET between the LX and OUT  
pins. The current flowing through both FETs is monitored  
and limited as required for startup and PWM operation.  
An external inductor must be connected between the IN  
pin and the LX pin.  
The Enable Pin  
The EN pin is a high impedance logical input that can be  
used to enable or disable the SC121 under processor  
control. VEN < 0.2V will disable regulation, set the LX pin  
in a high-impedance state (turn off both FET switches),  
and turn on an active discharge device to discharge the  
output capacitor via the OUT pin. Synchronous rectifier  
(p-channel FET) bulk switching prevents pass-through  
conduction from LX to OUT while disabled. VEN > 0.85V  
will enable the output. The startup sequence from the  
EN pin is identical to the startup sequence from the appli-  
cation of input power.  
Output Voltage Selection  
The SC121 output voltage can be programmed to an  
internally preset value or it can be programmed with  
external resistors. The output is internally programmed to  
3.3V when the FB pin is connected to GND. Any output  
voltage in the range 1.8V to 5.0V can be programmed with  
a resistor voltage divider between OUT and the FB pin as  
shown in Figure 1.  
L1  
IN  
LX  
OUT  
EN  
VOUT  
CFB  
R1  
FB  
GND  
CIN  
COUT  
SC121  
R2  
Figure 1 — Output Voltage Feedback Circuit  
16  
SC121  
Applications Information (continued)  
The minimum on-time limitation imposes a minimum  
boost ratio, so if VIN is too close to VOUT (VIN > VOUT – 400mV,  
approximately), VOUT will rise above the programmed  
value for a sufficiently small output load. A higher output  
load requires a higher duty cycle to overcome dissipative  
losses, such that regulation at programmed VOUT will  
eventually be restored. But this regulation-restoration  
load rises rapidly with VIN, so this phenomenon can be  
beneficially exploited in only rare circumstances. If opera-  
tion with high VIN and low load is required, please consider  
using the SC120, a pin compatible dual mode (PWM/  
PSAVE) boost converter. The SC120 will support zero load  
in PSAVE mode for VIN up to VOUT + 150mV.  
PWM Operation  
The PWM cycle runs at a fixed frequency (fosc = 1.2MHz),  
with a variable duty cycle (D). PWM operation continually  
draws current from the input supply, except for low  
output loads in which current flows periodically from, and  
back into, the input. During the on-state of the PWM  
cycle, the n-channel FET is turned on, grounding the  
inductor at the LX pin. This causes the current flowing  
from the input supply through the inductor to ground to  
ramp up. During the off-state, the n-channel FET is turned  
off and the p-channel FET (synchronous rectifier) is turned  
on. This causes the inductor current to flow from the  
input supply through the inductor into the output capaci-  
tor and load, boosting the output voltage above the input  
voltage. The cycle then repeats to re-energize the  
inductor.  
Regulator Startup, Short Circuit Protection,  
and Current Limits  
The SC121 permits power up at input voltages from 0.85V  
to 4.5V. Soft-start startup current limiting of the internal  
switching n-channel and p-channel FET power devices  
protects them from damage in the event of a short  
between OUT and GND. As the output voltage rises, pro-  
gressively less-restrictive current limits are applied. This  
protection unavoidably prevents startup into an exces-  
sive load.  
Ideally, the steady state (constant load) duty cycle is  
determined by D = 1 – (VIN/VOUT), but must be greater in  
practice to overcome dissipative losses. The SC121 PWM  
controller constrains the value of D such that 0.20 < D < 0.90  
(approximately).  
The average inductor current during the off-state multi-  
plied by (1-D) is equal to the average load current. The  
inductor current is alternately ramping up (on-state) and  
down (off-state) at a rate and amplitude determined by  
the inductance value, the input voltage, and the on-time  
(TON = D×T, T = 1/fOSC). Therefore, the instantaneous induc-  
tor current will be alternately larger and smaller than the  
average.  
Upon enable, the p-channel FET between the LX and OUT  
pins turns on with its current limited to approximately  
150mA, the short-circuit output current. When VOUT  
approaches VIN (but is still below 1.7V), the n-channel  
current limit is set to 350mA (the p-channel limit is dis-  
abled), the internal oscillator turns on (approximately  
200kHz), and a fixed 75% duty cycle PWM operation  
begins. (See the section PWM Operation.) When the  
output voltage exceeds 1.7V, fixed frequency PWM opera-  
tion begins, with the duty cycle determined by an n-  
channel FET peak current limit of 350mA. When this  
n-channel FET startup current limit is exceeded, the on-  
state ends immediately and the off-state begins. This  
determines the duty cycle on a cycle-by-cycle basis.  
When VOUT is within 2% of the programmed regulation  
voltage, the n-channel FET current limit is raised to 1.2A,  
and normal voltage regulation PWM control begins.  
If the average output current is sufficiently small, the  
minimum inductor current can ramp down to zero during  
the off-state. Discontinuous mode operation (where both  
FETs turn off as the inductor current reaches zero) is not  
supported in the SC121, since this would result in a finite  
positive minimum current from input to output, which  
would cause an uncontrolled rise in output voltage in this  
case. Instead, the inductor current will reverse for the  
remainder of the off-state, flowing from the output  
capacitor into the OUT pin, through the p-channel FET to  
the LX pin, and through the inductor to the input capaci-  
tor. Negative inductor current ripple allows regulation  
even with zero output load. The energy returned to the  
input capacitor is not wasted, but dissipative conduction  
losses will inevitably occur.  
Once normal voltage regulation PWM control is initiated,  
the output becomes independent of VIN and output regu-  
lation can be maintained for VIN as low as 0.7V, subject to  
the maximum duty cycle and peak current limits. The  
17  
SC121  
Applications Information (continued)  
Once an overload has occurred, the load must be  
decreased to permit recovery. The conditions required for  
overload recovery are identical to those required for suc-  
cessful initial startup.  
duty cycle must remain between 20% and 90% for the  
device to operate within specification.  
Note that startup with a regulated active load is not the  
same as startup with a resistive load. The resistive load  
output current increases proportionately as the output  
voltage rises until it reaches programmed VOUT/RLOAD, while  
a regulated active load presents a constant load as the  
output voltage rises from 0V to programmed VOUT. Note  
also that if the load applied to the output exceeds an  
applicable VOUT–dependent startup current limit or duty  
cycle limit, the criterion to advance to the next startup  
stage may not be achieved. In this situation startup may  
pause at a reduced output voltage until the load is reduced  
further.  
Component Selection  
The SC121 provides optimum performance when a 4.7μH  
inductor is used with a 10μF output capacitor. Different  
component values can be used to modify input current or  
output voltage ripple, improve transient response, or to  
reduce component size or cost.  
Inductor Selection  
The inductance value primarily affects the amplitude of  
inductor peak-to-peak current ripple (ΔIL). Reducing  
inductance increases ΔIL and raises the inductor peak  
current, IL-max = IL-avg + ΔIL/2, where IL-avg is the inductor  
current averaged over a full on/off cycle. IL-max is subject to  
the n-channel FET current limit ILIM(N), therefore reducing  
the inductance may lower the output overload current  
threshold. Increasing ΔIL also lowers the inductor  
minimum current, IL-min = IL-avg ΔIL/2, thus raising the load  
current threshold below which inductor negative–peak  
current becomes zero.  
Output Overload and Recovery  
The PWM steady state duty cycle is determined by  
D = 1 – (VIN/VOUT), but must be somewhat greater in prac-  
tice to overcome dissipative losses. As the output load  
increases, the dissipative losses also increase. The PWM  
controller must increase the duty cycle to compensate.  
Eventually, one of two overload conditions will occur,  
determined by VIN, VOUT, and the overall dissipative losses  
due to the output load current. Either the maximum duty  
cycle of 90% will be reached or the n-channel FET 1.2A  
(nominal) peak current limit will be reached, which effec-  
tively limits the duty cycle to a lower value. Above that  
load, the output voltage will decrease rapidly and in  
reverse order the startup current limits will be invoked as  
the output voltage falls through its various voltage thresh-  
olds. How far the output voltage drops depends on the  
load voltage vs. current characteristic.  
Equating input power to output power and noting that  
input current is equal to inductor current, average the  
inductor current over a full PWM switching cycle to  
obtain  
1 VOUT uIOUT  
ILavg  
 
u
K
V
IN  
where η is efficiency.  
A reduction in input voltage, such as a discharging battery,  
will lower the load current at which overload occurs.  
Lower input voltage increases the duty cycle required to  
produce a given output voltage. And lower input voltage  
also increases the input current to maintain the input  
power, which increases dissipative losses and further  
increases the required duty cycle. Therefore an increase in  
load current or a decrease in input voltage can result in  
output overload. Please refer to the Max. IOUT vs. VIN Typical  
Characteristics plots for the condition that best matches  
the application.  
Neglecting the n-channel FET RDS-ON and the inductor DCR,  
for duty cycle D, and with T = 1/fosc,  
DT  
1
L
V uDuT  
IN  
'ILon  
 
V dt   
IN  
³
0
L
This is the change in IL during the on-state. During the  
off-state, again neglecting the p-channel FET RDS-ON and  
the inductor DCR,  
T V  VOUT  
dt   
1D  
1
L
V  VOUT  
uT  
IN  
'ILoff  
 
IN  
³
DT  
L
18  
SC121  
Applications Information (continued)  
Note that this is a negative quantity, since VOUT > VIN and  
0 < D < 1. For a constant load in steady-state, the inductor  
current must satisfy ΔIL-on + ΔIL-off = 0. Substituting the two  
Rated  
Current  
(mA)  
Dimensions  
LxWxH  
Manufacturer/  
Part #  
Value DCR  
Tolerance  
(%)  
(ꢀH)  
(Ω)  
(mm)  
Murata  
LQM31PN4R7M00  
expressions and solving for D, obtain D = 1 – VIN/VOUT  
.
4.7  
4.7  
0.3  
0.7  
700  
500  
20  
20  
3.2 x 1.6 x 0.95  
2 x 2 x 0.6  
Using this expression, and the positive valued expression  
ΔIL = ΔIL-on for current ripple amplitude, obtain expanded  
Coilcraft  
XFL2006-472  
expression for IL-max and IL-min  
.
Capacitor Selection  
VOUT uIOUT  
T
V
Input and output capacitors must be chosen carefully to  
ensure that they are of the correct value and rating. The  
output capacitor requires a minimum capacitance value  
of 10μF at the programmed output voltage to ensure sta-  
bility over the full operating range. This must be consid-  
ered when choosing small package size capacitors as the  
DC bias must be included in their derating to ensure this  
required value. For example, a 10μF 0805 capacitor may  
provide sufficient capacitance at low output voltages but  
may be too low at higher output voltages. Therefore, a  
higher capacitance value may be required to provide the  
minimum of 10μF at these higher output voltages.  
IN  
ILmax,min  
 
r
u
u
VOUT  VIN  
V uK  
2uL VOUT  
IN  
From this result, obtain an alternative expression for ΔIL.  
T
L
V
VOUT  
IN  
'IL   ILmax ILmin  
 
u
u
VOUT  VIN  
The inductor selection should consider the n-channel FET  
current limit for the expected range of input voltage and  
output load current. The largest IL-avg will occur at the  
expected smallest VIN and largest IOUT. Determine the  
largest expected ΔIL. Then for the largest expected IL-avg  
,
ensure that the n-channel FET current limit is not exceed.  
That is, for the minimum n-channel FET current limit,  
worst case inductor tolerance, highest expected output  
current, and lowest expected VIN, ensure that  
Low ESR capacitors such as X5R or X7R type ceramic  
capacitors are recommended for input bypassing and  
output filtering. Low-ESR tantalum capacitors are not  
recommended due to possible reduction in capacitance  
seen at the switching frequency of the SC121. Ceramic  
capacitors of type Y5V are not recommended as their tem-  
perature coefficients make them unsuitable for this appli-  
cation. The following table lists recommended capacitors.  
For smaller values and smaller packages, it may be neces-  
sary to use multiples devices in parallel.  
IL-max = IL-avg + ΔIL/2 < ILIM(N)  
.
Many of these equations include the parameter η, effi-  
ciency. Efficiency varies with VIN, IOUT, and temperature.  
Estimate η using the plots provided in this datasheet, or  
from experimental data, at the operating condition of  
interest.  
Case  
Height  
(mm)  
Manufacturer/  
Part Number  
Value  
(ꢀF)  
Rated Volt-  
age (VDC)  
Case  
Size  
Type  
Any chosen inductor should have low DCR compared to  
the RDS-ON of the FET switches to maintain efficiency,  
though for DCR << RDS-ON, further reduction in DCR will  
provide diminishing benefit. The inductor ISAT value should  
exceed the expected IL-max. The inductor self-resonant fre-  
quency should exceed 5×fosc. Any inductor with these  
properties should provide satisfactory performance.  
L = 4.7μH should perform well for most applications.  
Murata  
GRM21BR60J226ME39B  
22  
22  
4.7  
22  
22  
6.3  
10  
4
X5R  
X7R  
X5R  
X5R  
X5R  
0805  
1206  
0603  
0805  
0805  
1.25  
1.6  
Murata  
GRM31CR71A226KE15L  
Murata  
GRM185R60G475ME15  
0.5  
TDK  
10  
20  
0.85  
1.25  
C2012X5R1A226M  
Taiyo Yuden  
JMK212BJ226MG-T  
The following table lists the manufacturers of recom-  
mended inductor options. The specification values shown  
are simplified approximations or averages of many device  
parameters under various test conditions. See manufac-  
turersdocumentation for full performance data.  
19  
SC121  
Applications Information (continued)  
Maximize ground metal on the component side  
PCB Layout Considerations  
Poor layout can degrade the performance of the DC-DC  
converter and can contribute to EMI problems, ground  
bounce, and resistive voltage losses. Poor regulation and  
instability can result.  
to improve the return connection and thermal  
dissipation. Separation between the LX node  
and GND should be maintained to avoid cou-  
pling capacitance between the LX node and the  
ground plane.  
The following simple design rules can be implemented to  
ensure good layout:  
Use a ground plane with several vias connecting  
to the component side ground to further reduce  
noise interference on sensitive circuit nodes.  
Place the inductor and filter capacitors as close  
to the device as possible and use short wide  
traces between the power components.  
Route the output voltage feedback path away  
from the inductor and LX node to minimize  
noise and magnetic interference.  
A suggested layout is shown in Figure 4.  
7.0mm  
VOUT  
COUT  
LX  
OUT  
CFB  
R1  
FB  
EN  
GND  
SC121  
5.2mm  
LX  
(2nd layer)  
IN  
R2  
CIN  
GND  
VIN  
Figure 4 — Layout Drawing  
20  
SC121  
Outline Drawing — MLPD-UT-6 1.5x2  
DIMENSIONS  
INCHES  
B
E
A
D
MILLIMETERS  
DIM  
MIN  
.020  
.000  
NOM  
-
MAX  
.024  
.002  
MIN  
0.50  
0.00  
NOM MAX  
-
A
A1  
A2  
b
0.60  
-
-
0.05  
(.006)  
.010  
(.152)  
0.25  
PIN 1  
INDICATOR  
.007  
.055  
.035  
.075  
.026  
.012  
.063  
.055  
.083  
.035  
0.18  
1.40  
0.90  
1.90  
0.65  
0.30  
1.60  
1.40  
2.10  
0.90  
D
.059  
-
1.50  
-
(LASER MARK)  
D1  
E
.079  
.031  
2.00  
0.80  
E1  
e
.020 BSC  
.014  
0.50 BSC  
0.35  
A2  
C
L
N
aaa  
.012  
.016  
0.30  
0.40  
A
6
6
SEATING  
PLANE  
.003  
0.08  
aaa  
C
bbb  
.004  
0.10  
A1  
D1  
2
1
LxN  
E1  
N
bxN  
bbb  
C A B  
e
NOTES:  
1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).  
2. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS TERMINALS.  
21  
SC121  
Land Pattern — MLPD-UT-6 1.5x2  
H
R
DIMENSIONS  
INCHES  
DIM  
MILLIMETERS  
(.077)  
.047  
.051  
.031  
.020  
.006  
.012  
.030  
.106  
(1.95)  
1.20  
1.30  
0.80  
0.50  
0.15  
0.30  
0.75  
2.70  
C
G
H
K
P
R
X
Y
Z
Z
G
Y
(C)  
K
P
X
NOTES:  
1.  
2.  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).  
THIS LAND PATTERN IS FOR REFERENCE PURPOSES ONLY.  
CONSULT YOUR MANUFACTURING GROUP TO ENSURE YOUR  
COMPANY'S MANUFACTURING GUIDELINES ARE MET.  
THERMAL VIAS IN THE LAND PATTERN OF THE EXPOSED PAD  
3.  
SHALL BE CONNECTED TO A SYSTEM GROUND PLANE.  
FAILURE TO DO SO MAY COMPROMISE THE THERMAL AND/OR  
FUNCTIONAL PERFORMANCE OF THE DEVICE.  
22  
SC121  
© Semtech 2010  
All rights reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright  
owner. The information presented in this document does not form part of any quotation or contract, is believed to be  
accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any conse-  
quence of its use. Publication thereof does not convey nor imply any license under patent or other industrial or intellec-  
tual property rights. Semtech assumes no responsibility or liability whatsoever for any failure or unexpected operation  
resulting from misuse, neglect improper installation, repair or improper handling or unusual physical or electrical stress  
including, but not limited to, exposure to parameters beyond the specified maximum ratings or operation outside the  
specified range.  
SEMTECH PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-  
SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF SEMTECH PRODUCTS  
IN SUCH APPLICATIONS IS UNDERSTOOD TO BE UNDERTAKEN SOLELY AT THE CUSTOMER’S OWN RISK. Should a customer  
purchase or use Semtech products for any such unauthorized application, the customer shall indemnify and hold  
Semtech and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs damages  
and attorney fees which could arise.  
Notice: All referenced brands, product names, service names and trademarks are the property of their respective  
owners.  
Contact Information  
Semtech Corporation  
Power Management Products Division  
200 Flynn Road, Camarillo, CA 93012  
Phone: (805) 498-2111 Fax: (805) 498-3804  
www.semtech.com  
23  

相关型号:

SC1210

High Speed, 12 V, Synchronous Power MOSFET Driver
SEMTECH

SC1210-100

SMD POWER INDUCTORS Open frame construction
BEL

SC1210-101

SMD POWER INDUCTORS Open frame construction
BEL

SC1210-150BSMD

Surface Mount 2-Electrode Gas Discharge Tube (GDT)
SOCAY

SC1210-1R0

SMD POWER INDUCTORS Open frame construction
BEL

SC1210-200BSMD

Surface Mount 2-Electrode Gas Discharge Tube (GDT)
SOCAY

SC1210-220

SMD POWER INDUCTORS Open frame construction
BEL

SC1210-221

SMD POWER INDUCTORS Open frame construction
BEL

SC1210-22RFT10

Anti Sulphur Chip Resistors
TTELEC

SC1210-22RFT4

Anti Sulphur Chip Resistors
TTELEC

SC1210-22RFT5

Anti Sulphur Chip Resistors
TTELEC

SC1210-230BSMD

Surface Mount 2-Electrode Gas Discharge Tube (GDT)
SOCAY