SC1453ISK-30TRT [SEMTECH]

Fixed Positive LDO Regulator, 3V, 0.23V Dropout, PDSO5, 1 MM HEIGHT, LOW PROFILE, TSOT-23, 5 PIN;
SC1453ISK-30TRT
型号: SC1453ISK-30TRT
厂家: SEMTECH CORPORATION    SEMTECH CORPORATION
描述:

Fixed Positive LDO Regulator, 3V, 0.23V Dropout, PDSO5, 1 MM HEIGHT, LOW PROFILE, TSOT-23, 5 PIN

光电二极管 输出元件 调节器
文件: 总13页 (文件大小:195K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SC1453  
150mA Ultra Low Dropout  
Regulator with Low Noise Bypass  
POWER MANAGEMENT  
Description  
ꢀeatures  
The SC1453 is a low dropout linear regulator that  
operates from a +2.25V to +6.5V input range and  
delivers up to 150mA. A PMOS pass transistor allows  
the low 75µA supply current to remain independent of  
load, making these devices ideal for battery operated  
portable equipment such as cellular phones, cordless  
phones and personal digital assistants.  
u “2982/5205” compatible pinout  
u Guaranteed 150 mA output current  
u Very small external components - designed to work  
with ceramic capacitors  
u Low 26µVRMS output noise  
(1.5V option, C = C = 1µ, C = 10nꢀ)  
IN  
OUT  
BYP  
u Very low supply current  
u Thermal overload protection  
u Reverse battery protection  
u Low power shutdown  
The SC1453 has a bandgap reference bypass pin for  
very low noise operation - a 10nꢀ (typ.) capacitor may be  
connected between this pin and ground. Other features  
include low powered shutdown, short circuit protection,  
thermal shutdown protection and reverse battery  
protection. The SC1453 comes in the tiny 5 lead SOT-23  
package and the ultra-low profile 5 lead TSOT-23.  
u ꢀull industrial temperature range  
u Very low profile packaging available (1mm max. height)  
u Surface mount packaging (5 pin SOT-23 and  
TSOT-23)  
Applications  
u Battery Powered Systems  
u Cellular Telephones  
u Cordless Telephones  
u Personal Digital Assistants  
u Portable Instrumentation  
u Modems  
u PCMCIA cards  
Typical Application Circuit  
U1  
1
SC1453  
5
4
VIN  
VOUT  
IN  
OUT  
C1  
1uF  
3
C3  
1uF  
EN  
BYP  
GND  
2
C2  
10nF  
Revision 8, December 2001  
1
www.semtech.com  
SC1453  
POWER MANAGEMENT  
Absolute Maximum Ratings  
Exceeding the specifications below may result in permanent damage to the device, or device malfunction. Operation outside of the parameters specified  
in the Electrical Characteristics section is not implied.  
Parameter  
Symbol  
Maximum  
Units  
Input Supply Voltage  
VIN  
θJA  
-0.6 to +7  
256  
V
°C/W  
°C/W  
°C  
Thermal Resistance Junction to Ambient  
Thermal Resistance Junction to Case  
Operating Ambient Temperature Range  
Operating Junction Temperature Range  
Storage Temperature Range  
81  
θJC  
TA  
-40 to +85  
-40 to +125  
-65 to 150  
300  
TJ  
°C  
TSTG  
TLEAD  
ESD  
°C  
Lead Temperature (Soldering) 10 Sec.  
ESD Rating  
°C  
2
kV  
Electrical Characteristics  
Unless specified: VIN = VOUT + 1V, VEN = VIN, IOUT = 100µA, CIN = COUT = 1µF, TA = 25°C. Values in bold apply over full operating ambient temperature range.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Units  
IN  
Supply Voltage Range  
Supply Current  
VIN  
IQ  
2.25  
6.50  
130  
160  
1.0  
V
IOUT = 0mA to150mA  
VIN = 6.5V, VEN = 0V  
75  
µA  
0.1  
µA  
1.5  
OUT  
Output Voltage (1)  
VOUT  
IOUT = 1mA  
-1.5%  
VOUT  
2.5  
-3  
+1.5%  
+3.0%  
10  
V
0mA IOUT 150mA, VOUT +1V VIN 5.5V -3.0%  
(VOUT(NOM) + 0.1V) VIN 5.5V, IOUT = 1mA  
Line Regulation (1)(2)  
Load Regulation (1)  
REG(LINE)  
REG(LOAD)  
mV  
mV  
12  
IOUT = 0.1mA to 150mA  
-10  
-20  
www.semtech.com  
2001 Semtech Corp.  
2
SC1453  
POWER MANAGEMENT  
Electrical Characteristics (Cont.)  
Unless specified: VIN = VOUT + 1V, VEN = VIN, IOUT = 100µA, CIN = COUT = 1µF, TA = 25°C. Values in bold apply over full operating ambient temperature range.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max Units  
OUT (Cont.)  
Current Limit  
Dropout Voltage(1)(3)  
ILIM  
VD  
400  
mA  
mV  
IOUT = 1mA  
1
IOUT = 50mA  
50  
65  
75  
mV  
I
OUT = 100mA  
100  
150  
125  
155  
190  
230  
mV  
IOUT = 150mA  
mV  
Output Voltage Noise,  
COUT = 1µF  
en  
10Hz to 100kHz, IOUT = 1mA  
CBYP = 10nF, VOUT = 1.5V  
26  
54  
13  
29  
61  
µVRMS  
10Hz to 100kHz, IOUT = 1mA  
CBYP = 10nF, VOUT = 3.3V  
Output Voltage Noise,  
COUT = 100µF  
en  
10Hz to 100kHz, IOUT = 1mA  
CBYP = 10nF, VOUT = 1.5V  
µVRMS  
10Hz to 100kHz, IOUT = 1mA  
CBYP = 10nF, VOUT = 3.3V  
Power Supply Rejection Ratio  
PSRR  
tr  
f = 120Hz, CBYP = 10nF  
dB  
ms  
V
BYP  
Start-up Rise Time  
EN  
CBYP = 10nF  
1.3  
Enable Input Threshold  
VIH  
VIL  
IEN  
2.25V VIN 6.5V  
2.25V VIN 6.5V  
0V VEN VIN  
1.6  
0.4  
Enable Input Bias Current (4)  
Over Temperature Protection  
High Trip Level  
-0.5  
0
+0.5  
µA  
THI  
150  
20  
°C  
°C  
Hysteresis  
THYST  
Notes:  
(1) Low duty cycle pulse testing with Kelvin connections required.  
(2) VIN(MIN) = 2.25V.  
(3) Defined as the input to output differential at which the output voltage drops 100mV below the value measured  
at a differential of 1V. Not measurable on 1.5V and 1.8V parts due to minimum VIN constraints.  
(4) Guaranteed by design.  
www.semtech.com  
2001 Semtech Corp.  
3
SC1453  
POWER MANAGEMENT  
Pin Configuration  
Ordering Information  
Part Number  
Package  
Top View  
SC1453ISK-X.XTR(1)(2)  
SC1453ITSK-XXTR(1)(2)  
SOT-23-5  
TSOT-23-5  
N/A  
(3)  
SC1453EVB  
Notes:  
(1) Where X.X or XX denotes voltage options. Available  
voltages are: 1.5V (1.5 or 15), 1.8V (1.8 or 18), 2.5V (2.5  
or 25), 2.6V (2.6 or 26), 2.7V (2.7 or 27), 2.8V (2.8 or  
28), 2.85 (8.5 or 85), 2.9V (2.9 or 29), 3.0V (3.0 or 30),  
3.1V (3.1 or 31), 3.2V (3.2 or 32) and 3.3V (3.3 or 33).  
(2) Only available in tape and reel packaging. A reel  
contains 3000 devices.  
(SOT-23-5 & TSOT-23-5)  
(3) Evaluation board for SC1453. Specify output voltage  
option when ordering.  
Pin Descriptions  
Pin #  
Pin Name  
IN  
Pin Function  
1
2
3
4
Input pin.  
GND  
EN  
Ground pin. Can be used for heatsinking if needed.  
Active high enable pin. Connect to IN if not being used.  
BYP  
Reference bypass. Connect a 10nF capacitor (typical) between this pin and GND to  
reduce output noise.  
5
OUT  
Regulator output, sourcing up to 150mA.  
Block Diagram  
www.semtech.com  
2001 Semtech Corp.  
4
SC1453  
POWER MANAGEMENT  
Marking Information  
Bottom Mark  
Top Mark  
yyww  
x3XX  
yyww = Date code  
x = package (5 for SOT-23-5, T for TSOT-23-5)  
3 = SC1453  
(example: 0008 for week 8 of 2000)  
XX = voltage option  
(examples: 5331 for 3.1V option in SOT-23-5,  
T385 for 2.85V option in TSOT-23-5)  
Applications Information  
allow fast charging of the output capacitor and high  
initial currents for DSP initialization.  
Theory Of Operation  
The SC1453 has a fast start-up circuit to speed up the  
initial charging time of the bypass capacitor to enable  
the output voltage to come up quicker (typically 1.3ms  
with CBYP = 10nꢀ).  
The SC1453 is intended for applications where very low  
dropout voltage, low supply current and low output noise  
are critical. It provides a very simple, low cost solution  
that uses very little pcb real estate. Only three external  
capacitors are required for operation (two if a low noise  
output is not required).  
The SC1453 includes thermal shutdown circuitry to turn  
off the device if TJ exceeds 150°C (typical), with the  
device remaining off until TJ drops by 20°C (typical).  
Reverse battery protection circuitry ensures that the  
device cannot be damaged if the input supply is  
accidentally reversed, limiting the reverse current to less  
than 1.5mA.  
The SC1453 contains a bandgap reference trimmed for  
optimal temperature coefficient which is fed into the  
inverting input of an error amplifier. The output voltage  
of the regulator is divided down internally using a  
resistor divider and compared to the bandgap voltage.  
The error amplifier drives the gate of a low RDS(ON)  
P-channel MOSꢀET pass device.  
Component Selection - General  
Output capacitor - Semtech recommends a minimum  
capacitance of 1µꢀ at the output with an equivalent  
series resistance (ESR) of < 1over temperature. While  
the SC1453 has been designed to be used with ceramic  
capacitors, it does not have to be used with ceramic  
capacitors, allowing the designer a choice. Increasing the  
bulk capacitance will further reduce output noise and  
improve the overall transient response.  
An active high enable pin (EN) allows the regulator to be  
shut down. Pulling this pin low causes the device to  
enter a very low power shutdown mode, where it will draw  
typically 0.1µA from the input supply.  
A bypass pin (BYP) is provided to decouple the bandgap  
reference to reduce output noise and also to improve  
power supply rejection. This pin can be left open if low  
noise operation is not required.  
Input capacitor - Semtech recommends the use of a 1µꢀ  
ceramic capacitor at the input. This allows for the device  
being some distance from any bulk capacitance on the  
rail. Additionally, input droop due to load transients is  
reduced, improving overall load transient response.  
The regulator has its own current limit circuitry to  
ensure that the output current will not damage the  
device during output short, overload or start-up. The  
current limit is guaranteed to be greater than 400mA to  
www.semtech.com  
2001 Semtech Corp.  
5
SC1453  
POWER MANAGEMENT  
Applications Information (Cont.)  
Bypass capacitor - Semtech recommends the use of a With the standard SOT-23-5/TSOT-23-5 Land Pattern  
10nꢀ ceramic capacitor to bypass the bandgap shown at the end of this datasheet, and minimum trace  
reference. Increasing this capacitor to 100nꢀ will widths, the thermal impedance junction to ambient for  
further improve power supply rejection and overall SC1453ISK is 256°C/W. Thus no additional heatsinking  
output noise. C may be omitted if low noise operation is required for this example.  
BYP  
is not required.  
The junction temperature can be reduced further (or  
Thermal Considerations  
higher power dissipation can be allowed) by the use of  
larger trace widths and connecting PCB copper to the  
The worst-case power dissipation for this part is given GND pin (pin 2), which connects directly to the device  
by:  
substrate. Adding approximately one square inch of PCB  
copper to pin 2 will reduce θ to approximately  
JA  
(1) 130°C/W and T  
for the example above to  
=
(
V
)
+
V IQ(MAX)  
IN(MAX)  
P
VOUT(MIN) IOUT(MAX)  
J(MAX)  
D(MAX)  
IN(MAX)  
approximately 100°C for the SOT-23-5 package. The use  
of multi layer boards with internal ground/power planes  
will lower the junction temperature and improve overall  
output voltage accuracy.  
ꢀor all practical purposes, equation (1) can be reduced  
to the following expression:  
=
(
V
− •  
)
P
VOUT(MIN) IOUT(MAX)  
(2)  
D(MAX)  
IN(MAX)  
Layout Considerations  
Looking at a typical application, 3.3V to 2.8V at 150mA:  
VIN(MAX) = 3.3 + 5% = 3.465V  
VOUT(MIN) = 2.8V - 3% = 2.716V  
IOUT = 150mA  
While layout for linear devices is generally not as critical  
as for a switching application, careful attention to detail  
will ensure reliable operation.  
TA = 85°C  
1) Attaching the part to a larger copper footprint will  
enable better heat transfer from the device, especially  
on PCBs where there are internal ground and power  
planes.  
Inserting these values into equation (2) gives us:  
P
=
(
3.465 2.716  
0.150 = 112mW  
)
D(MAX)  
2) Place the input, output and bypass capacitors close  
to the device for optimal transient response and device  
behaviour.  
Using this figure, we can calculate the maximum thermal  
impedance allowable to maintain TJ 125°C:  
3) Connect all ground connections directly to the ground  
plane. If there is no ground plane, connect to a common  
local ground point before connecting to board ground.  
(
TJ(MAX) TA(MAX)  
)
=
(
125 85  
)
= 357°C/ W  
θJA(MAX)  
=
PD(MAX)  
0.112  
www.semtech.com  
2001 Semtech Corp.  
6
SC1453  
POWER MANAGEMENT  
Typical Characteristics  
Quiescent Current vs. Junction Temperature  
vs. Input Voltage  
Off-State Quiescent Current  
vs. Junction Temperature  
120  
200  
175  
150  
125  
100  
75  
VIN = 6.5V  
VEN = 0V  
IOUT = 150mA  
V
IN = 6.5V  
100  
80  
60  
40  
20  
0
V
IN = 3.8V  
50  
25  
0
-50  
-25  
0
25  
50  
75  
100  
125  
125  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
125  
125  
T
J (°C)  
TJ (°C)  
Output Voltage vs. Junction Temperature  
vs. Output Current  
Line Regulation vs. Junction Temperature  
vs. Input Voltage Change  
0.00  
-0.05  
-0.10  
-0.15  
-0.20  
-0.25  
-0.30  
12  
10  
8
I
OUT = 1mA  
IOUT = 1mA  
IOUT = 50mA  
V
IN = VOUT + 1V to 6.5V  
6
100mA IOUT 150mA  
4
2
VIN = VOUT + 1V to 5.5V  
VIN = VOUT + 1V  
0
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
T
J (°C)  
TJ (°C)  
Load Regulation vs.  
Junction Temperature  
Current Limit vs. Junction Temperature  
vs. Input Voltage  
10  
9
8
7
6
5
4
3
2
1
0.90  
0.85  
0.80  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
VIN = VOUT + 1V  
IOUT = 0.1mA to 150mA  
VIN = 6.5V  
VIN = 3.8V  
0
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
T
J (°C)  
TJ (°C)  
www.semtech.com  
2001 Semtech Corp.  
7
SC1453  
POWER MANAGEMENT  
Typical Characteristics (Cont.)  
Dropout Voltage vs. Junction Temperature  
Dropout Voltage vs. Output Current  
vs. Junction Temperature  
vs. Output Current  
200  
200  
175  
150  
125  
100  
75  
175  
150  
IOUT = 150mA  
125  
100  
75  
Top to bottom:  
TJ = 125°C  
TJ = 25°C  
50  
50  
IOUT = 50mA  
25  
0
25  
TJ = -40°C  
0
-50  
-25  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
150  
TJ (°C)  
IOUT (mA)  
Bypass Start-up Rise Time vs. Junction Temperature  
vs. Input Voltage  
Enable Input Threshold Voltage vs. Junction  
Temperature vs. Input Voltage  
1.8  
1.6  
CBYP = 10nF  
1.7  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
VIH @ VIN = 6.5V  
VIH @ VIN = 3.8V  
1.6  
1.5  
VIN = 3.8V  
1.4  
1.3  
1.2  
VIL @ VIN = 6.5V  
1.1  
V
IL @ VIN = 3.8V  
VIN = 6.5V  
1.0  
0.9  
0.8  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
T
J (°C)  
TJ (°C)  
Reverse Battery Protection vs.  
Junction Temperature  
Output Spectral Noise Density vs. +requency  
vs. Output Voltage, COUT = 1µ+  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
10  
VIN = VEN = -6.5V  
VIN = VOUT + 1V  
IOUT = 1mA  
CIN = 1µF  
1
0.1  
C
BYP = 10nF  
TJ = 25°C  
Top to bottom:  
VOUT = 3.3V  
V
OUT = 3.0V  
VOUT = 2.8V  
VOUT = 2.5V  
0.01  
0.001  
V
OUT = 1.8V  
VOUT = 1.5V  
-50  
-25  
0
25  
50  
75  
100  
125  
0.01  
0.1  
1
10  
100  
1000  
T
J (°C)  
f (kHz)  
www.semtech.com  
2001 Semtech Corp.  
8
SC1453  
POWER MANAGEMENT  
Typical Characteristics (Cont.)  
Output Spectral Noise Density vs. +requency  
Output Spectral Noise Density vs. +requency  
vs. Output Capacitance  
vs. Output Voltage, C = 100µ+  
OUT  
10  
10  
VIN = VOUT + 1V  
Left to right:  
C
OUT = 100µF  
IOUT = 1mA  
C
OUT = 44µF  
CIN = 1µF  
BYP = 10nF  
TJ = 25°C  
1
1
COUT = 22µF  
COUT = 10µF  
C
C
OUT = 1µF  
0.1  
0.01  
0.1  
Top to bottom:  
VOUT = 3.3V  
VOUT = 1.5V  
VIN = 2.5V  
IOUT = 1mA  
V
OUT = 3.0V  
VOUT = 2.8V  
VOUT = 2.5V  
0.01  
0.001  
C
BYP = 10nF  
V
OUT = 1.8V  
CIN = 1µF  
TJ = 25°C  
VOUT = 1.5V  
0.001  
0.01  
0.1  
1
10  
100  
1000  
1000  
1000  
0.01  
0.1  
1
10  
100  
1000  
f (kHz)  
f (kHz)  
Output Spectral Noise Density vs. +requency  
vs. Bypass Capacitance  
Output Spectral Noise Density vs. +requency  
vs. Output Current  
10  
10  
Top to bottom:  
OUT = 150mA  
OUT = 100mA  
IOUT = 50mA  
IOUT = 1mA  
CBYP = 1nF  
CBYP = 10nF  
I
I
C
BYP = 100nF  
1
0.1  
1
0.1  
CBYP = 1µF  
VOUT = 1.5V  
VIN = 2.5V  
CIN = 1µF  
VOUT = 1.5V  
VIN = 2.5V  
IOUT = 1mA  
0.01  
0.001  
0.01  
0.001  
C
BYP = 10nF  
C
IN = 1µF  
COUT = 1µF  
TJ = 25°C  
COUT = 1µF  
TJ = 25°C  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
1000  
f (kHz)  
f (kHz)  
Power Supply Rejection Ratio vs. +requency  
vs. Output Voltage, CBYP = 10n+  
Power Supply Rejection Ratio vs. +requency  
vs. Output Voltage, CBYP = 100n+  
80  
80  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
Top to bottom:  
VOUT = 1.5V  
OUT = 2.5V  
VOUT = 1.8V  
VOUT = 2.8V  
VOUT = 3.0V  
Top to bottom:  
OUT = 1.5V  
VOUT = 1.8V  
OUT = 2.5V  
VOUT = 2.8V  
VOUT = 3.0V  
VOUT = 3.3V  
V
V
V
VIN = VOUT + 1V  
IN = COUT = 1µF  
VIN = VOUT + 1V  
IN = COUT = 1µF  
V
OUT = 3.3V  
C
C
CBYP = 10nF  
IOUT = 1mA  
TJ = 25°C  
CBYP = 100nF  
IOUT = 1mA  
TJ = 25°C  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
1000  
f (kHz)  
f (kHz)  
www.semtech.com  
2001 Semtech Corp.  
9
SC1453  
POWER MANAGEMENT  
Evaluation Board Schematic  
J1  
RIPPLE MON  
J2  
IN MON  
J3  
U1  
IN  
SC1453  
OUT  
J4  
1
3
5
4
R1  
IN  
OUT MON  
C1  
C2  
R4  
C3  
C4  
R2  
R3  
BYP  
EN  
GND  
2
J5  
J6  
1
2
C5  
J8  
EN  
J7  
IQ MON  
FLG  
1
2
3
EN  
J9  
Q1  
LOAD DRV  
J10  
J11  
J12  
GND  
J13  
J14  
J15  
GND  
GND GND  
GND GND  
1
2
3
4
8
7
6
5
S
S
S
G
D
D
D
D
J16  
1
2
3
Si4410  
LOAD DRV EN  
Evaluation Board Bill of Materials  
Quantity  
Reference  
C1, C4  
Part/Description  
Not placed  
1µF ceramic  
10nF ceramic  
BNC socket  
Test pin  
Vendor  
Notes  
2
2
1
1
3
1
1
1
2
1
6
1
2
1
1
1
C2, C3  
C5  
Murata  
Various  
Various  
Various  
Various  
Various  
GRM42-6X7R105K10  
J1  
VOUT ripple monitor  
J2 - J4  
J5  
Red  
Test pin  
White  
J6  
Header, 2 pin  
Not placed  
Header, 3 pin  
Test pin  
J7  
J8, J16  
J9  
Various  
Various  
Various  
Vishay  
Orange  
J10 - J15  
Q1  
Test pin  
Black (J14 not placed)  
Si4410  
R1, R2  
R3  
Not placed  
See next page  
10k, 1/10W  
Various  
Various  
R4  
U1  
SC1453ISK-X.X or  
SC1453ITSK-XX  
Semtech  
www.semtech.com  
2001 Semtech Corp.  
10  
SC1453  
POWER MANAGEMENT  
Evaluation Board Gerber Plots  
Top Copper  
Bottom Copper  
Output Voltage Option (V)  
R3 Value/Size  
1.5  
1.8  
2.5  
2.6  
2.7  
2.8  
2.85  
2.9  
3.0  
3.1  
3.2  
3.3  
10/0.5W  
12/0.5W  
16/0.5W  
16/0.5W  
18/0.5W  
18/0.5W  
18/0.5W  
18/0.5W  
20/0.5W  
20/0.5W  
22/0.5W  
22/0.5W  
Top Silk Screen  
www.semtech.com  
2001 Semtech Corp.  
11  
SC1453  
POWER MANAGEMENT  
Outline Drawing - SOT-23-5  
Outline Drawing - TSOT-23-5  
www.semtech.com  
2001 Semtech Corp.  
12  
SC1453  
POWER MANAGEMENT  
Land Pattern - SOT-23-5 & TSOT-23-5  
Contact Information  
Semtech Corporation  
Power Management Products Division  
652 Mitchell Rd., Newbury Park, CA 91320  
Phone: (805)498-2111 ꢀAX (805)498-3804  
www.semtech.com  
2001 Semtech Corp.  
13  

相关型号:

SC1453ISK-31TR

Fixed Positive LDO Regulator, 3.1V, 0.23V Dropout, PDSO5, 1 MM HEIGHT, LOW PROFILE, TSOT-23, 5 PIN
SEMTECH

SC1453ISK-31TRT

Fixed Positive LDO Regulator, 3.1V, 0.23V Dropout, PDSO5, 1 MM HEIGHT, LOW PROFILE, TSOT-23, 5 PIN
SEMTECH

SC1453ISK-32TR

Fixed Positive LDO Regulator, 3.2V, 0.23V Dropout, PDSO5, 1 MM HEIGHT, LOW PROFILE, TSOT-23, 5 PIN
SEMTECH

SC1453ISK-32TRT

Fixed Positive LDO Regulator, 3.2V, 0.23V Dropout, PDSO5, 1 MM HEIGHT, LOW PROFILE, TSOT-23, 5 PIN
SEMTECH

SC1453ISK-33TR

Fixed Positive LDO Regulator, 3.3V, 0.23V Dropout, PDSO5, 1 MM HEIGHT, LOW PROFILE, TSOT-23, 5 PIN
SEMTECH

SC1453ISK-8.5TR

Fixed Positive LDO Regulator, 2.85V, 0.23V Dropout, CMOS, PDSO5, SOT-23, 5 PIN
SEMTECH

SC1453ISK-8.5TRT

Fixed Positive LDO Regulator, 2.85V, 0.23V Dropout, PDSO5, SOT-23, 5 PIN
SEMTECH

SC1453ISK-85TRT

Fixed Positive LDO Regulator, 2.85V, 0.23V Dropout, PDSO5, 1 MM HEIGHT, LOW PROFILE, TSOT-23, 5 PIN
SEMTECH

SC1453ISK-XXXTR

150mA Ultra Low Dropout Regulator with Low Noise Bypass
SEMTECH

SC1453ISK-XXXTRT

150mA Ultra Low Dropout Regulator with Low Noise Bypass
SEMTECH

SC1453ISK1.5TRT

150mA Ultra Low Dropout Regulator with Low Noise Bypass
SEMTECH

SC1453ISK18TRT

150mA Ultra Low Dropout Regulator with Low Noise Bypass
SEMTECH