SC1544 [SEMTECH]

ACPI Controller for Advanced Motherboards; ACPI控制器的高级主板
SC1544
型号: SC1544
厂家: SEMTECH CORPORATION    SEMTECH CORPORATION
描述:

ACPI Controller for Advanced Motherboards
ACPI控制器的高级主板

控制器
文件: 总15页 (文件大小:260K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SC1544  
ACPI Controller for  
Advanced Motherboards  
PRELIMINARY  
POWER MANAGEMENT  
Description  
ꢀeatures  
Semtech’s SC1544, SC243x and SC1112A or SC1114  
provide all the voltages necessary for an ACPI system.  
u Complete programmable supply for instantly available  
PC systems  
u Supports 2.5V memory or 3.3V memory (-2.5 or -3.3  
option in part number)  
The SC1544 offers five independant supplies: a 5V dual  
supply for USB, a 3.3V dual supply for PCI, a 3.3V or  
2.5V dual supply for memory, a 1.5V or 3.3V supply for  
AGP and a 1.8V supply. The AGP supply is programmble  
using the system TYPEDET signal.  
u 5V dual and 3.3V dual supplies are programmable to  
be active or inactive in S5  
u Integrated AGP voltage supply with “TYPEDET” signal  
for 3.3V or 1.5V operation  
An on-board internal charge pump eliminates the need  
for P-channel MOSꢀETs and enables function from a single  
5V supply (system 5VSB). All dual outputs are over current  
protected.  
u Integrated LDO for 1.8V supply  
u Integrated charge pump removes the need for PMOS  
ꢀETs, enables single supply operation  
u Over current protection on all dual outputs  
u Inherent soft-start capability  
The SC1544 differs from the SC1547 in three important  
ways: 1) the device initially starts up in S5, and not G0  
like the SC1547; 2) the gate drives for the 1.8V and AGP  
outputs are always high in normal operation; 3) no OCP  
on the 1.8V and AGP outputs.  
u TSSOP-24 package  
Applications  
u Instantly available motherboards  
Typical Application Circuit  
5V  
C1  
100uF/6.3V  
GND  
3.3V  
C2  
100uF/6.3V  
GND  
5VSB  
C3  
100uF/6.3V  
GND  
Q1  
Q2  
IRLR3103  
IRLR3103  
5V DUAL  
C4  
100uF/6.3V  
GND  
Q3  
IRLR3103  
Q4  
IRLR3103  
3.3V DUAL  
C5  
100uF/6.3V  
GND  
Q5  
IRLR3103  
Q6  
IRLR3103  
3.3V DUAL MEM  
C6  
100uF/6.3V  
GND  
AGP  
GND  
1.8V  
GND  
Q7  
IRLR3103  
C7  
100uF/6.3V  
Q8  
IRLR3103  
U1  
1
SC1544-3.3  
G8  
C8  
100uF/6.3V  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
G5  
2
3
3.3VDM  
G6  
1.8V  
G4  
4
G7  
3.3VD  
GND  
G2/3  
G1  
5
AGP  
6
TYPEDET  
PWR_OK  
EN  
TYPEDET  
PWR_OK  
EN  
7
8
5VD  
9
/SLP_S3  
/SLP_S5  
USB  
/S3  
5VSB  
FC  
10  
11  
12  
/S5  
USB  
+CAP  
-CAP  
C10  
0.1uF  
C11  
1uF  
PCI  
PCI  
C9 0.01uF  
Revision 3, May 2002  
1
www.semtech.com  
SC1544  
POWER MANAGEMENT  
PRELIMINARY  
Absolute Maximum Ratings  
Exceeding the specifications below may result in permanent damage to the device, or device malfunction. Operation outside of the parameters specified  
in the Electrical Characteristics section is not implied.  
Parameter  
Symbol  
Maximum  
Units  
Input Supply Voltage  
V5VSB  
-0.6 to 7  
-0.6 to V5VSB  
-0.6 to 13.2  
15.6  
V
V
Logic Input Pins  
Charge Pump Output Voltage  
Thermal Impedance Junction to Case  
Thermal Resistance Junction to Ambient  
Operating Ambient Temperature Range  
Operating Junction Temperature Range  
Storage Temperature Range  
VFC  
θJC  
V
°C/W  
°C/W  
°C  
83.8  
θJA  
TA  
0 to 70  
TJ  
0 to 125  
-65 to +150  
300  
°C  
TSTG  
TLEAD  
°C  
Lead Temperature (Soldering) 10 Sec.  
°C  
Electrical Characteristics(1)  
Unless specified: all applicable silver box supplies (3.3V, 5V, 5VSB) ± 5%, GND = 0V, VSENSE PINS = VOUT(NOM), TA = 25°C. Values in bold apply over full  
operating ambient temperature range.  
Parameter  
Symbol  
Test Conditions  
Min  
4.5  
Typ  
Max  
Units  
IN  
Supply Voltage  
Quiescent Current  
V5VSB  
IQ  
5.0  
10  
5.5  
15  
20  
V
All states (S0, S3, S5, disabled)  
mA  
Undervoltage Lockout  
Threshold Voltage  
VUVLO  
V5VSB Rising  
3.5  
4.0  
4.4  
V
Logic Inputs (EN, PCI, PWR_OK, /S3, /S5, TYPEDET, USB)  
Logic Pin Sink Current(2)  
Logic Pin Source Current  
ISINK  
VBIAS = 5V, all logic pins  
EN, VEN = 0V  
0.1  
0.5  
50  
1
µA  
µA  
ISOURCE  
3
PCI, TYPEDET, USB, VPIN = 0V  
/S3, PWR_OK, VPIN = 0V  
/S5, V/S5 = 0V  
200  
400  
600  
100  
150  
Threshold Voltage  
VIH  
VIL  
2.4  
V
V
0.8  
1.8V Output  
Output Voltage(3)  
V1.8V  
1mA IOUT 720mA  
1.764  
1.800  
1.836  
V
1.746  
1.854  
www.semtech.com  
2002 Semtech Corp.  
2
SC1544  
POWER MANAGEMENT  
Electrical Characteristics (Cont.)(1)  
PRELIMINARY  
Unless specified: all applicable silver box supplies (3.3V, 5V, 5VSB) ± 5%, GND = 0V, VSENSE PINS = VOUT(NOM), TA = 25°C. Values in bold apply over full  
operating ambient temperature range.  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Units  
1.8V Output (Cont.)  
Line Regulation(3)  
REGLINE  
REGLOAD  
VG8(HI)  
V5VSB = 4.75V to 5.25V, IOUT = 0A  
V5VSB = 5V, IOUT = 0A to 720mA  
V1.8V = 1.7V, IG8 = 10µA  
S3, IG8 = -10µA  
0.01  
0.01  
8.75  
0.8  
0.10  
0.20  
%
%
V
Load Regulation(3)  
Gate 8 Drive Voltage(4)  
8.00  
VG8(LO)  
1.0  
Gate 8 Drive Current(4)  
Sense Pin Bias Current  
IG8(SOURCE)  
IG8(SINK)  
I1.8V  
V1.8V = 1.7V, VG8 = 5V  
V1.8V = 1.9V, VG8 = 3V  
Sinking, V1.8V = 1.8V  
2
4
mA  
µA  
%
-3.5  
-70  
-5  
-100  
-130  
2.5V/3.3V Dual Memory Output  
Output Voltage(5)  
V3.3VDM  
1mA IOUT 720mA  
-1.5  
VOUT(NOM) +1.5  
-2.5  
+2.5  
Line Regulation(5)  
REGLINE  
REGLOAD  
VG5(HI)  
V5VSB = 4.75V to 5.25V, IOUT = 0A  
V5VSB = 5V, IOUT = 0A to 720mA  
0.01  
0.01  
8.75  
0.8  
4
0.10  
0.20  
%
%
V
Load Regulation(5)  
Gate 5 Drive Voltage(6)  
V3.3VDM = VOUT(NOM) - 100mV, IG5 = 10µA, S0  
IG5 = -10µA, S3  
8.00  
VG5(LO)  
1.0  
1.0  
Gate 5 Drive Current(6)  
Gate 6 Drive Voltage(7)  
Gate 6 Drive Current(7)  
Sense Pin Bias Current  
IG5(SOURCE)  
IG5(SINK)  
V3.3VDM = VOUT(NOM) - 100mV, VG5 = 5V, S0  
V3.3VDM = VOUT(NOM) + 100mV, VG5 = 3V, S0  
V3.3VDM = VOUT(NOM) - 100mV, IG6 = 10µA, S3  
IG6 = -10µA, S0  
2
mA  
V
-3.5  
8.00  
-5  
VG6(HI)  
8.75  
0.8  
4
VG6(LO)  
IG6(SOURCE)  
IG6(SINK)  
V3.3VDM = VOUT(NOM) - 100mV, VG6 = 5V, S3  
V3.3VDM = VOUT(NOM) + 100mV, VG6 = 3V, S3  
Sinking, 3.3V option, V3.3VDM = 3.3V  
Sinking, 2.5V option, V3.3VDM = 2.5V  
2
mA  
µA  
-3.5  
-330  
-215  
-5  
I3.3VDM  
-475  
-310  
-620  
-405  
3.3V Dual Output  
Output Voltage(8)  
V3.3VD  
1mA IOUT 720mA  
3.250  
3.300  
3.350  
3.383  
0.10  
V
3.217  
Line Regulation(8)  
Load Regulation(8)  
REGLINE  
V5VSB = 4.75V to 5.25V, IOUT = 0A  
V5VSB = 5V, IOUT = 0A to 720mA  
0.01  
0.01  
%
%
REGLOAD  
0.20  
www.semtech.com  
2002 Semtech Corp.  
3
SC1544  
POWER MANAGEMENT  
Electrical Characteristics (Cont.)(1)  
PRELIMINARY  
Unless specified: all applicable silver box supplies (3.3V, 5V, 5VSB) ± 5%, GND = 0V, VSENSE PINS = VOUT(NOM), TA = 25°C. Values in bold apply over full  
operating ambient temperature range.  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
100  
Units  
3.3V Dual Output (Cont.)  
Gate 3 Drive Voltage(9)  
VG3(HI)  
VG3(LO)  
IG3(SOURCE)  
IG3(SINK)  
VG4(HI)  
IG3 = 10µA  
IG3 = -10µA  
8.00  
8.75  
40  
V
mV  
mA  
Gate 3 Drive Current(9)  
Gate 4 Drive Voltage(10)  
Gate 4 Drive Current(10)  
VG3 = 5V  
0.5  
-10  
0.7  
-14  
8.75  
0.8  
4
VG3 = 3V  
V3.3VD = 3.2V, IG4 = 10µA  
V3.3VD = 3.4V, IG4 = -10µA  
V3.3VD = VOUT(NOM) - 100mV, VG4 = 5V  
V3.3VD = VOUT(NOM) + 100mV, VG4 = 3V  
Sinking, V3.3VD = 3.3V  
8.00  
V
VG4(LO)  
IG4(SOURCE)  
IG4(SINK)  
I3.3VD  
1.0  
-130  
100  
2
mA  
µA  
-3.5  
-70  
5
Sense Pin Bias Current  
5V Dual Output  
-100  
Gate 2 Drive Voltage(11)  
VG2(HI)  
VG2(LO)  
IG2(SOURCE)  
IG2(SINK)  
VG1(HI)  
IG2 = 10µA  
IG2 = -10µA  
VG2 = 5V  
8.00  
8.75  
40  
V
mV  
mA  
Gate 2 Drive Current(11)  
Gate 1 Drive Voltage(12)  
Gate 1 Drive Current(12)  
0.5  
-10  
0.7  
-14  
8.75  
40  
VG2 = 3V  
IG1 = 10µA  
IG1 = -10µA  
VG1 = 5V  
8.00  
V
VG1(LO)  
IG1(SOURCE)  
IG1(SINK)  
I5VD  
100  
16  
mV  
mA  
0.5  
-10  
0.7  
-14  
VG1 = 3V  
Sense Pin Bias Current(2)  
AGP Output  
V5VD = 5V  
µA  
%
Output Voltage(13)  
VAGP  
1mA IOUT 720mA  
-2.0  
VOUT(NOM) +2.0  
-3.0  
+3.0  
Line Regulation(13)  
REGLINE  
REGLOAD  
VG7(HI)  
V5VSB = 4.75V to 5.25V, IOUT = 0A  
V5VSB = 5V, IOUT = 0A to 720mA  
0.01  
0.01  
8.75  
0.8  
0.10  
0.20  
%
%
V
Load Regulation(13)  
Gate 7 Drive Voltage(4)  
VAGP = VOUT(NOM) - 100mV, IG7 = 10µA  
VAGP = VOUT(NOM) + 100mV, IG7 = -10µA  
8.00  
VG7(LO)  
1.0  
V
www.semtech.com  
2002 Semtech Corp.  
4
SC1544  
POWER MANAGEMENT  
Electrical Characteristics (Cont.)(1)  
PRELIMINARY  
Unless specified: all applicable silver box supplies (3.3V, 5V, 5VSB) ± 5%, GND = 0V, VSENSE PINS = VOUT(NOM), TA = 25°C. Values in bold apply over full  
operating ambient temperature range.  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Units  
mA  
AGP Output (Cont.)  
Gate 7 Drive Current(4)  
IG7(SOURCE)  
IG7(SINK)  
IAGP  
VAGP = VOUT(NOM) - 100mV, VG7 = 5V  
VAGP = VOUT(NOM) + 100mV, VG7 = 3V  
VAGP = 3.3V, TYPEDET = High  
VAGP = 1.5V, TYPEDET = Low  
2
4
-3.5  
-235  
-70  
-5  
Sense Pin Bias Current  
-340  
-105  
-445  
-140  
µA  
FC (Charge Pump)  
Output Voltage  
VFC  
V5VSB = 5V  
9.0  
9.5  
50  
10.0  
V
Overcurrent Protection(14)  
Trip Threshold  
VTH(OC)  
30  
70  
%VOUT  
ms  
(15)  
Short Circuit Immunity  
1
75  
Notes:  
(1) This device is ESD sensitive. Use of standard ESD handling precautions is required.  
(2) Guaranteed by design.  
(3) Applies to S0 only.  
(4) Gates 7 and 8 are high whenever 5VSB is present and greater than VUVLO, unless the over current protection  
has been tripped.  
(5) Applies to S3 sleep state only for 3.3V Dual Memory option. Applies to both S0 and S3 sleep state for 2.5V  
Dual Memory Option  
(6) Gate 5 is high in S0 and low in the S3 and S5 sleep states.  
(7) Gate 6 is high in the S3 sleep state and low in S0 and in the S5 sleep state.  
(8) Applies to S3 sleep state and S5 sleep state when the PCI pin is high.  
(9) Gate 3 is high in S0 and low in the S3 and S5 sleep states.  
(10) Gate 4 is high in the S3 sleep state and the S5 sleep state when the PCI pin is high. Gate 4 is low in S0,  
and in the S5 sleep state when the PCI pin is low.  
(11) Gate 2 is high in S0 and low in the S3 and S5 sleep states.  
(12) Gate 1 is high in the S3 sleep state and the S5 sleep state when the USB pin is high. Gate 1 is low in S0,  
and in the S5 sleep state when the USB pin is low.  
(13) Applies to S0 only. VAGP = 3.3V when TYPEDET is high and 1.5V when the TYPEDET pin is low.  
(14) Applies to 2.5V/3.3V Dual Memory, 3.3V Dual and 5V Dual outputs when enabled only. When an output is  
disabled, that output is not monitored for OCP. The 1.8V and AGP outputs do not have over current protection.  
(15) Minimum and maximum time limits for over current protection to trip when powered up (or enabled) into a  
shorted output and when a short is applied to an enabled, OCP protected output.  
www.semtech.com  
2002 Semtech Corp.  
5
SC1544  
POWER MANAGEMENT  
PRELIMINARY  
State Diagram Showing Gate Drive Status  
Note:  
(1) State machine will not allow illegal transitions such as S3 to S5. In order to get to S5 from S3, it is first  
necessary to enter S0.  
www.semtech.com  
2002 Semtech Corp.  
6
SC1544  
POWER MANAGEMENT  
PRELIMINARY  
Timing Diagrams  
Startup  
Normal  
Operation  
www.semtech.com  
2002 Semtech Corp.  
7
SC1544  
POWER MANAGEMENT  
PRELIMINARY  
Power Matrix  
This table shows which output is powered from which supply under each system state.  
System USB PCI /S3 /S5 PWR_OK 3.3V/2.5V Dual 3.3V  
5V  
3.3V/1.5V 1.8V(2)  
AGP(2)  
Comments  
State  
Memory  
Dual Dual  
S0  
S3  
S5  
X(1)  
X(1)  
0
X(1)  
X(1)  
0
1
0
0
0
0
0
1
1
0
0
0
0
1
0
0
0
0
0
3.3V  
5VSB  
OFF  
OFF  
OFF  
OFF  
3.3V  
5VSB 5VSB  
OFF OFF  
5V  
3.3V  
ON  
ON  
ON  
ON  
ON  
3.3V  
ON  
ON  
ON  
ON  
ON  
All outputs off  
PCI enabled  
USB enabled  
0
1
5VSB OFF  
OFF 5VSB  
5VSB 5VSB  
1
0
1
1
PCI & USB  
enabled  
Notes:  
(1) X = “don’t care”. In S0 and S3, the 3.3V dual and 5V dual outputs are not affected by the state of the PCI and  
USB pins. These outputs are only controlled by the sate of the PCI and USB pins in S5.  
(2) Gate 7 and Gate 8 are high in all states with 5VSB > UVLO and OCP not tripped. If powered from 3.3V as shown  
in the table, the AGP and 1.8V outputs are only present in S0, and will ramp with the 3.3V supply as it comes up.  
This avoids dips in the 3.3V supply which would otherwise occur if Gate 7 and Gate 8 went high after the 3.3V  
supply came up, demanding high currents to charge output capacitors. If powered from 5VSB they can be used to  
create 1.5VSB, 1.8VSB or 3.3VSB as required.  
Gates At A Glance  
This table shows which gate drive pin controls which MOSꢀET:  
Gate Number:  
Pin Number:  
Drives the FET between:  
5V Dual  
FET mode:  
pass device  
pass device  
pass device  
linear regulator  
1
2
3
4
5
6
7
8
18  
19(1)  
19(1)  
22  
1
5VSB  
5V  
5V Dual  
3.3V Dual  
3.3V Dual  
3.3V  
5VSB  
3.3V  
5VSB  
3.3V  
3.3V  
and  
3.3V/2.5V Dual Memory pass device/linear regulator(2)  
3
3.3V/2.5V Dual Memory  
linear regulator  
linear regulator  
linear regulator  
4
AGP  
1.8V  
24  
Notes:  
(1) Note common pin for Gate 2 and Gate 3 - both ꢀETs are operating as pass devices only in S0.  
(2) ꢀET is acting as a pass device for 3.3V Dual Memory and as a linear regulator for 2.5V Dual Memory.  
www.semtech.com  
2002 Semtech Corp.  
8
SC1544  
POWER MANAGEMENT  
PRELIMINARY  
Pin Configuration  
Ordering Information  
Part Number  
SC1544TS-X.XTR(1)(2)  
SC1544EVB(3)  
Package  
TSSOP-24  
N/A  
Top View  
Notes:  
(1) Where -X.X denotes voltage options. Available  
voltages are: 2.5V and 3.3V (2.5V Dual Memory or 3.3V  
Dual Memory).  
(2) Only available in tape and reel packaging. A reel  
contains 2500 devices.  
(3) Evaluation board for SC1544 - specify voltage  
option when ordering.  
TSSOP-24  
Block Diagram  
Marking Information  
Top View  
x.x = voltage option (Example: 3.3)  
yyww = Date code (Example: 0012  
xxxxxx = Lot number (Example: P94A01)  
www.semtech.com  
2002 Semtech Corp.  
9
SC1544  
POWER MANAGEMENT  
PRELIMINARY  
Pin Descriptions  
Pin #  
Pin Name Pin Function  
1
2
3
4
G5  
3.3VDM  
G6  
Gate drive for MOSFET between VCC3 and 2.5V/3.3V Dual Memory.  
Sense pin for 3.3V Dual Memory. Sense pin for 2.5V Dual Memory for 2.5V option.  
Gate drive for MOSFET between 5VSB and 2.5V/3.3V Dual Memory.  
G7  
Gate drive for MOSFET between VCC3 and 1.5V/3.3V AGP. High when 5VSB is present and  
greater than UVLO.  
5
6
7
8
AGP  
Sense pin for 1.5V/3.3V AGP.  
TYPEDET Select 1.5V or 3.3V for AGP, high = 3.3V.  
PWR_OK  
EN  
Power_OK signal from silver box.  
Enable signal active high. Connect to 5VSB if not being used. Cycling the enable pin will reset  
the over current latches.  
9
/S3  
Pulling this pin low (with /S5 high) causes the device to enter the S3 sleep state. Pulling both /S3  
and /S5 low will cause the device to enter the S5 sleep state.  
10  
11  
12  
13  
/S5  
USB  
PCI  
Pulling this pin low along with /S3 causes the device to enter the S5 sleep state.  
Enable pin for 5V Dual during S5 sleep state, high = ON.  
Enable pin for 3.3V Dual during S5 sleep state, high = ON.  
-CAP  
Negative end of charge pump capacitor. Connect a 10nF ceramic capacitor between this pin  
and pin 14 (+CAP).  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
+CAP  
FC  
Positive end of charge pump capacitor.  
Charge pump output (9V nominal). Decouple this pin with a 0.1µF ceramic capacitor.  
5V standby supply from silver box. Decouple this pin with a 1µF ceramic capacitor.  
Sense pin for 5V Dual.  
5VSB  
5VD  
G1  
Gate drive for MOSFET between 5VSB and 5V Dual.  
Gate drive for MOSFETs between VCC5 and 5V Dual and VCC3 and 3.3V Dual.  
Reference ground.  
G2/3  
GND  
3.3VD  
G4  
Sense pin for 3.3V Dual.  
Gate drive for MOSFET between 5VSB and 3.3V Dual.  
Sense pin for 1.8V LDO.  
1.8V  
G8  
Gate drive for MOSFET between VCC3 (or 5VSB) and 1.8V. High when 5VSB is present and  
greater than UVLO.  
www.semtech.com  
2002 Semtech Corp.  
10  
SC1544  
POWER MANAGEMENT  
PRELIMINARY  
Typical Applications Circuits  
5V  
C1  
100uF/6.3V  
GND  
3.3V  
C2  
100uF/6.3V  
GND  
5VSB  
C3  
100uF/6.3V  
GND  
Q1  
Q2  
IRLR3103  
IRLR3103  
5V DUAL  
C4  
100uF/6.3V  
GND  
Q3  
Q4  
IRLR3103  
IRLR3103  
3.3V DUAL  
C5  
100uF/6.3V  
GND  
Q5  
Q6  
IRLR3103  
IRLR3103  
3.3V DUAL MEM  
C6  
100uF/6.3V  
GND  
Q7  
IRLR3103  
AGP  
C7  
100uF/6.3V  
GND  
Q8  
IRLR3103  
1.8V  
U1  
SC1544-3.3  
G8  
C8  
1
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
100uF/6.3V  
GND  
G5  
2
3.3VDM  
1.8V  
G4  
3
4
G6  
G7  
3.3VD  
GND  
G2/3  
G1  
5
AGP  
TYPEDET  
PWR_OK  
EN  
6
TYPEDET  
PWR_OK  
EN  
7
8
5VD  
9
/SLP_S3  
/SLP_S5  
USB  
/S3  
5VSB  
FC  
10  
11  
12  
/S5  
USB  
PCI  
+CAP  
-CAP  
C10  
0.1uF  
C11  
1uF  
PCI  
C9 0.01uF  
Notes:  
(1) 3.3V option shown - see below for Q5 configuration for 2.5V option.  
(2) 1.8V output shown powered from 3.3V. If powered from 5VSB, this becomes 1.8VSB.  
(3) See Applications Information.  
3.3V  
C2  
D1  
100uF/6.3V  
GND  
5VSB  
C3  
100uF/6.3V  
GND  
Q5  
Q6  
2.5V DUAL MEM  
GND  
U1  
G5  
SC1544-2.5  
G8  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
C6  
100uF/6.3V  
2.5VDM  
G6  
1.8V  
G4  
3
4
Q5 body diode in series with D1 to pre-charge 2.5V Dual Memory  
D1 to ensure that the linear regulator will still regulate  
G7  
3.3VD  
GND  
G2/3  
G1  
5
AGP  
6
TYPEDET  
PWR_OK  
EN  
7
8
5VD  
9
/S3  
5VSB  
FC  
10  
11  
12  
/S5  
USB  
+CAP  
-CAP  
PCI  
www.semtech.com  
2002 Semtech Corp.  
11  
SC1544  
POWER MANAGEMENT  
Applications Information  
Theory Of Operation  
PRELIMINARY  
To prevent false latching due to capacitor inrush currents,  
low supply rails or momentary overloads, the current limit  
The SC1544 provides a simple way to power five seperate latch has a timer. If V is above the OCP threshold (V  
)
TH(OC)  
OUT  
voltage buses while controlling them correctly using the before the timer “times out”, then the outputs do not  
ACPI control interface (PWR_OK, /SLP_S3 and /SLP_S5). latch.  
It requires only a single supply rail (5VSB from the system Reducing Commutation Noise  
silver box) to operate. An internal charge pump generates  
the gate voltages required to enable the use of n-channel The slew rate of the linears is slow enough to provide  
ꢀETs throughout the design. The external ꢀETs are soft commutation. The non-linear switch outputs (5V and  
operated in two discrete modes:  
3.3V Duals) have fast slew rates. It may be necessary to  
put a resistor in series with the gate to reduce transients  
(3.3V Dual Memory shown):  
1) as pass devices where V = V - (I * R )  
DS(ON)  
OUT  
IN  
OUT  
2) as linear regulators.  
Please refer to the “Gates At A Glance” section on page  
8 and the Typical Applications Circuits on page 11 to  
determine which ꢀETs operate in which mode.  
3.3V  
U1  
G5  
SC1544-3.3  
G8  
R1  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
Q5  
IRLR3103  
10k (typ.)  
3.3VDM  
G6  
1.8V  
G4  
Linear Mode: the SC1544 contains a bandgap reference  
trimmed for optimal temperature coefficient which is fed  
into the inverting input of an error amplifier. The output  
voltage of each linear regulator (monitored by the sense  
pin for that output) is divided down internally using a  
resistor divider and compared to the bandgap voltage.  
The error amplifier drives the gate of the appropriate  
external ꢀET to maintain the voltage at the non inverting  
input, and hence the output voltage.  
3
4
G7  
3.3VD  
GND  
G2/3  
G1  
3.3V DUAL MEM  
5
AGP  
6
TYPEDET  
PWR_OK  
EN  
7
8
5VD  
9
/S3  
5VSB  
FC  
10  
11  
12  
/S5  
USB  
+CAP  
-CAP  
PCI  
Pass Device Mode: when a particular output is enabled  
(please refer to the “Power Matrix” section on page 8) in  
pass mode (i.e. 5VSB to 5V Dual), the appropriate gate  
drive will be driven high to turn the ꢀET hard on, minimizing  
Another possible source of commutation noise occurs at  
startup on 3.3V Dual Memory, when the standby ꢀET, Q6  
and the pass-through ꢀET, Q5 are both off. 3.3V Dual  
Memory will charge to 3.3V minus 0.7V (the drop across  
the Q5 body diode). When PWR_OK asserts, Q6 turns on  
shorting 3.3V to 3.3V Dual Memory, pulling it down locally  
momentarily. This should not be an issue as long as there  
is sufficient capacitance on 3.3V locally. Another way to  
reduce this drop is to place a schottky diode across Q5  
with the cathode towards 3.3V Dual Memory so this rail  
charges to 3.3V minus 0.4V, thus reducing the drop when  
Q5 turns on:  
the voltage drop due to I *R  
.
DS(ON)  
OUT  
The sense pins serve two functions:  
1) to sense the output voltage for the linear regulators  
2) to sense the output voltage for over current protection  
Over Current Protection is provided for all dual outputs.  
OCP is implemented by utilizing the R  
of the ꢀETs. As  
DS(ON)  
the output current increases, the regulation loop  
maintains the output voltage (linear mode only) by turning  
3.3V  
on the ꢀET more and more. Eventually, as the R  
low  
DS(ON)  
+
C1  
TO PIN  
1
limit is reached (pass devices are already operating at  
this point) the ꢀET will be unable to turn on any further  
and the output voltage will start to fall. When the output  
voltage falls to approximately 50% of nominal, all outputs  
are latched off. Toggling the enable pin or cycling 5VSB  
will reset the latch.  
Increase bulk capacitance (preferred)  
Q5  
IRLR3103  
D1 (optional)  
TO PIN  
2
3.3V DUAL MEM  
www.semtech.com  
2002 Semtech Corp.  
12  
SC1544  
POWER MANAGEMENT  
Applications Information (Cont.)  
Linear Regulator Stability  
PRELIMINARY  
ꢀor the 2.5V Dual Memory linear regulator:  
2.5  
R2 ≤  
71Ω  
When extremely low ESR capacitors (Oscons, Polymers,  
high value ceramics) are used on outputs requiring fast  
transients (3.3V/2.5V memory), the linear regulators may  
exhibit some overshoot and/or transient instability.  
External compensation may be necessary (5VSB to 3.3V  
Dual Memory shown):  
350µA 100  
2.5V  
<
VOUT (AJUSTED)  
< 3.3V  
C6  
100uF/6.3V  
I SENSE  
R1  
R2  
GND  
U1  
G5  
SC1544-2.5  
G8  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
2.5VDM  
G6  
1.8V  
G4  
VOUT (FIXED)  
U1  
G5  
SC1544-3.3  
G8  
3
3.3V DUAL MEM  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
R1 1k  
4
G7  
3.3VD  
GND  
G2/3  
G1  
3.3VDM  
G6  
1.8V  
G4  
5
3
C1  
22nF  
AGP  
6
4
Q6  
IRLR3103  
TYPEDET  
PWR_OK  
EN  
G7  
3.3VD  
GND  
G2/3  
G1  
7
5
AGP  
8
6
5VD  
TYPEDET  
PWR_OK  
EN  
9
7
5VSB  
/S3  
5VSB  
FC  
10  
11  
12  
8
/S5  
5VD  
9
USB  
+CAP  
-CAP  
/S3  
5VSB  
FC  
10  
11  
12  
PCI  
/S5  
USB  
+CAP  
-CAP  
PCI  
Another possibility is to use dual capacitor types for the  
load capacitor - a ceramic capacitor will provide high  
frequency decoupling for the load while an electrolytic  
capacitor (high ESR) will tame the Q to prevent instability:  
The output voltage can only be adjusted upwards from  
the fixed output voltage, and can be calculated using the  
following equation:  
R1  
3.3V DUAL MEM  
VOUT(ADJUSTED) = VOUT(FIXED) 1+  
+ R1ISENSE Volts  
R2  
Therefore to set the 2.5V Dual Memory linear regulator  
to 2.6V, for example, R1 = 2.8and R2 = 69.8. The  
maximum voltage to which an output can be set using  
this method is limited by the input voltage to the ꢀET(s)  
and the RDS(ON) of the ꢀET(s).  
+
C1  
bulk  
C2  
Electrolytic  
-
Ceramic - high frequency decoupling  
Adjusting the Output Voltage of the Linear Regulators  
Please note that this technique cannot be used for the  
3.3V Dual Memory, 3.3V Dual and 5V Dual outputs since  
the output is switched via a pass device (i.e. not  
regulated) when not in S0.  
It is possible to adjust the output voltage of the linear  
regulators (1.8V, 2.5V Dual Memory and AGP) by  
applying an external resistor divider to the sense pin (see  
below). Since the sense pins sink a nominal 100µA (1.8V  
LDO, 150µA for the 1.5V AGP LDO, 325µA for the 3.3V  
AGP LDO and 350µA for the 2.5V Dual Memory LDO),  
the resistor values should be selected to allow 100x that  
current to flow through the divider. This will ensure that  
variations in the sense current will have negligible affect  
on the output voltage regulation. Thus a target value for  
R2 (maximum) can be calculated:  
(ault Protection Hints  
Loss of AC Power: if it is possible during brownouts or  
momentary loss of AC power to the computer “silver box”  
that PWR_OK can assert low while S3 and S5 remain  
high then the over current protection may trigger. This is  
because the state machine will ignore this illegal  
transition and monitor all outputs as if they are still in  
S0, despite the fact that the inputs are going away. If  
5VSB decays slowly, S3 and S5 remain high, and one  
output drops below the OCP threshold for long enough  
VOUT(FIXED)  
R2 ≤  
ISENSE 100  
www.semtech.com  
2002 Semtech Corp.  
13  
SC1544  
POWER MANAGEMENT  
PRELIMINARY  
Applications Information (Cont.)  
(ault Protection Hints ꢀCont.)  
that the OCP “times out” then the outputs will latch off.  
Then if the AC power returns after the OCP latches off,  
but before the 5VSB supply drops below UVLO, then the  
device will not start up again until EN or 5VSB is cycled.  
One way to avoid this happening is to force the device  
into S3 if PWR_OK goes low but S3 and S5 remain high  
using the circuit shown below. This will supply the  
outputs from 5VSB which will either cause 5VSB to drop  
below UVLO and reset the part when the AC power comes  
back up, or it may prevent OCP occuring at all. Either way  
correct functionality will be guaranteed once AC power  
returns.  
U1  
G5  
SC1544-2.5  
G8  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
2.5VDM  
G6  
1.8V  
G4  
3
4
G7  
3.3VD  
GND  
G2/3  
G1  
5
AGP  
6
TYPEDET  
PWR_OK  
EN  
7
PWR_OK  
/SLP_S3  
8
D1  
1N4148  
5VD  
9
/S3  
5VSB  
FC  
10  
11  
12  
/S5  
R1 4.7k  
USB  
+CAP  
-CAP  
PCI  
Incorrect Signals (rom Silver Box: Some silver boxes  
have been found that produce incorrect voltages on the  
PWR_OK line, producing dangerous negative voltage  
spikes up to -1V or greater. Such spikes exceed the  
absolute maximum ratings for this device and can cause  
the device to malfunction. If a supply produces such  
spikes they can be clamped to GND using a small schottky  
diode as shown below, completely removing any threat.  
U1  
G5  
SC1544-2.5  
G8  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
2.5VDM  
G6  
1.8V  
G4  
3
4
G7  
3.3VD  
GND  
G2/3  
G1  
5
AGP  
6
TYPEDET  
PWR_OK  
EN  
7
PWR_OK  
8
5VD  
9
D1  
/S3  
5VSB  
FC  
10  
11  
12  
/S5  
USB  
+CAP  
-CAP  
PCI  
www.semtech.com  
2002 Semtech Corp.  
14  
SC1544  
POWER MANAGEMENT  
PRELIMINARY  
Outline Drawing - TSSOP-24  
Land Pattern - TSSOP-24  
Contact Information  
Semtech Corporation  
Power Management Products Division  
200 ꢀlynn Road, Camarillo, CA 93012  
Phone: (805)498-2111 ꢀAX (805)498-3804  
www.semtech.com  
2002 Semtech Corp.  
15  

相关型号:

SC1544EVB

ACPI Controller for Advanced Motherboards
SEMTECH

SC1544TS-2.5TRT

Power Supply Support Circuit, Fixed, 1 Channel, PDSO24, TSSOP-24
SEMTECH

SC1544TS-3.3TR

Power Supply Support Circuit, Fixed, 1 Channel, PDSO24, TSSOP-24
SEMTECH

SC1544TS-3.3TRT

Power Supply Support Circuit, Fixed, 1 Channel, PDSO24, TSSOP-24
SEMTECH

SC1544TS-X.XTR

ACPI Controller for Advanced Motherboards
SEMTECH

SC1545

500mA SmartLDOTM With Power Up Signal Sequencing
SEMTECH

SC1545CS

500mA SmartLDOTM With Power Up Signal Sequencing
SEMTECH

SC1545CS-1.8TR

Fixed Positive LDO Regulator, 1.8V, PDSO8, SOIC-8
SEMTECH

SC1545CS.TR

Fixed Positive LDO Regulator, 2.525V, PDSO8, MO-012AA, SO-8
SEMTECH

SC1545CSTR

Fixed Positive LDO Regulator, 2.525V, PDSO8, SO-8
SEMTECH

SC1548

Linear Fet Controller
SEMTECH

SC1548CSK-1.5.TR

Analog Circuit, 1 Func, PDSO5, SOT-23, 5 PIN
SEMTECH