SC196 [SEMTECH]

1.5A Synchronous Buck Converter with Integrated Power Devices; 1.5A同步降压转换器,集成功率器件
SC196
型号: SC196
厂家: SEMTECH CORPORATION    SEMTECH CORPORATION
描述:

1.5A Synchronous Buck Converter with Integrated Power Devices
1.5A同步降压转换器,集成功率器件

转换器
文件: 总18页 (文件大小:657K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SC196  
1.5A Synchronous Buck Converter  
with Integrated Power Devices  
POWER MANAGEMENT  
Description  
Features  
The SC196 is a synchronous step-down converter with ‹ Up to 95% efciency  
integrated power devices designed for use in applications ‹ VOUT adjustable from less than 0.8V to VIN  
using a single-cell Li-ion battery. Its wide input voltage ‹ Output current — 1.5A  
range also makes it suitable for use in systems with xed ‹ Input range — 2.5V to 5.5V  
3.3Vor5Vsupplyrailsavailable.Theswitchingfrequencyis ‹ Quiescent current — 17μA  
nominally set to 1MHz, allowing the use of small inductors ‹ Fixed 1MHz frequency or 750kHz to 1.25MHz  
and capacitors. The current rating of the internal MOSFET  
switches allows a DC output current of 1.5A.  
synchronized operation  
‹ PSAVE operation to maximize efciency at light loads  
‹ Shutdown current <1μA  
The output voltage is set by connecting a resistor divider ‹ Fast transient response  
from the lter inductor to the feedback pin. See the ‹ 100% duty cycle in dropout  
SC196A for pin-programmable output voltages.  
‹ Soft-start  
‹ Over-temperature and short-circuit protection  
The SC196 has a exible clocking methodology that ‹ Lead-free package — MLPD10-UT, 3 x 3 x 0.6 mm  
allows it to be synchronized to an external oscillator or  
controlled by the internal oscillator. The device operates  
in either forced PWM mode or in PSAVE mode. If PSAVE  
Applications  
mode is enabled, the part will automatically enter PFM at  
‹ Cell phones  
light loads to maintain maximum efciency across the full  
‹ Wireless communication chipset power  
load range.  
‹ Personal media players  
‹ Microprocessor/DSP core/IO power  
For noise sensitive applications, PSAVE mode can be  
‹ PDAs and handheld computers  
disabled by synchronizing to an external oscillator or  
‹ WLAN peripherals  
pulling the SYNC/PWM pin high. Shutdown turns off all  
‹ USB powered modems  
the control circuitry to achieve a typical shutdown current  
‹ 1 Li-Ion or 3 NiMH/NiCd powered devices  
of 0.1μA.  
Typical Application Circuit  
VOUT  
<0.8V to VIN  
L1  
4.7μH  
VIN  
2.5V to 5.5V  
1.5A  
SC196  
VIN  
LX  
CFB1  
10pF  
VOUT  
CIN  
10μF  
PVIN  
RFB1  
RFB2  
MODE  
EN  
ADJ  
COUT  
22μF  
SYNC/PWM  
PGND  
GND  
February 8, 2007  
www.semtech.com  
1
SC196  
POWER MANAGEMENT  
Absolute Maximum Rating  
Exceeding the specications below may result in permanent damage to the device or device malfunction. Operation outside of the parameters specied in the  
Electrical Characteristics section is not recommended.  
Parameter  
Symbol  
Maximum  
Units  
Input Supply Voltage  
VIN  
-0.3 to 7  
V
Logic Inputs  
(N=SYNC/PWM, EN, MODE)  
VN  
-0.3 to VIN+0.3, 7V Max  
V
Output Voltage  
VOUT  
VADJ  
VLX  
θJA  
-0.3 to VIN+0.3, 7V Max  
-0.3 to VIN+0.3, 7V Max  
-1 to VIN +1, 7V Max  
40  
V
V
ADJ Input  
LX Voltage  
V
Thermal Impedance Junction to Ambient(1)  
VOUT Short-Circuit to GND  
Operating Ambient Temperature Range  
Storage Temperature  
°C/W  
s
tSC  
Continuous  
-40 to +85  
TA  
°C  
°C  
°C  
°C  
kV  
TS  
-65 to +150  
-40 to +150  
260  
Junction Temperature  
TJ  
Peak IR Reow Temperature  
TPKG  
VESD  
ESD Protection Level (2)  
2
Notes:  
(1) Calculated from package in still air, mounted to 3” x 4.5”, 4 layer FR4 PCB with thermal vias under the exposed pad per JESD51 standards.  
(2) Tested according to JEDEC standard JESD22-A114-B.  
Electrical Characteristics  
Unless otherwise noted: VIN = 3.6V, VOUT = 1.8V, EN = VIN, SYNC/PWM = VIN, MODE = VIN , TA = -40 to 85°C. Typical values are at TA = 25°C.  
Parameter  
Symbol  
VIN  
Conditions  
Min  
2.5  
Typ  
Max  
5.5  
Units  
Input Voltage Range  
UVLO Threshold (upper)  
UVLO Hysteresis  
V
V
VUVL  
2.18  
2.3  
2.45  
VUVLHYS  
VOUT  
150  
mV  
V
Output Voltage Range  
FB Voltage Tolerance  
Load Regulation (PWM)  
0.8  
VIN  
0.515  
±1  
VFB  
VIN = 2.5V to 5.5V, IOUT = 0mA to 1.5A 0.485  
IOUT = 0mA to 1.5A  
0.5  
V
VOUT LOAD  
±0.5  
%
SYNC/PWM=GND,COUT = 22μF,  
VIN = 2.5V to 5.5V, IOUT = 0mA to 1.5A  
PSAVE Regulation  
P-Channel Current Limit  
Quiescent Current  
VOUT PSAVE  
ILIM(P)  
IQ  
±2  
2.8  
17  
±3  
3.57  
28  
%
A
VIN=2.5V to 5.5V  
1.96  
SYNC/PWM = GND, IOUT = 0A,  
VOUT = 1.04 x VOUT(Programmed)  
μA  
μA  
Shutdown Current  
ISD  
EN = GND, LX = OPEN  
0.1  
1
© 2007 Semtech Corp.  
www.semtech.com  
2
SC196  
POWER MANAGEMENT  
Electrical Characteristics (Cont.)  
Parameter  
Symbol  
RDSP  
RDSN  
ILXP  
Conditions  
ILX = 100mA  
Min  
Typ  
0.275  
0.165  
0.1  
Max  
Units  
Ω
P-Channel On Resistance  
N-Channel On Resistance  
LX Leakage Current PMOS  
LX Leakage Current NMOS  
Oscillator Frequency  
SYNC Frequency (upper)  
SYNC Frequency (lower)  
Start-Up Time  
ILX = 100mA  
Ω
LX = GND, EN = GND  
LX = 3.6V, EN = GND  
2
μA  
μA  
MHz  
MHz  
kHz  
ms  
°C  
ILXN  
-2  
0.1  
fOSC  
0.85  
1.25  
1.0  
1.15  
fSYNCU  
fSYNCL  
tSTART  
TSD  
750  
5
Thermal Shutdown  
145  
10  
Thermal Shutdown Hysteresis  
Logic Input High(1)  
TSD-HYS  
VIH  
°C  
1.2  
V
Logic Input Low(1)  
VIL  
0.4  
2
V
Logic Input Current High(1)  
Logic Input Current Low(1)  
IIH  
-2  
-2  
0.1  
0.1  
μA  
μA  
IIL  
2
Note:  
(1) For EN, SYNC/PWM, MODE  
© 2007 Semtech Corp.  
www.semtech.com  
3
SC196  
POWER MANAGEMENT  
Pin Conguration  
Ordering Information  
DEVICE  
PACKAGE  
SC196ULTRT(1)(2)  
MLPD-UT10 3x3x0.6  
Evaluation Board  
SC196EVB  
Ordering Information  
Notes:  
PVIN  
VIN  
1
2
3
4
5
10  
9
LX  
1) Lead-free packaging only. This product is fully WEEE and RoHS compliant.  
2) Available in tape and reel only. A reel contains 3000 devices.  
TOP VIEW  
PGND  
8
SYNC/PWM  
EN  
GND  
MODE  
ADJ  
7
T
6
VOUT  
MLPD-UT: 3X3X0.6, 10 LEAD  
Marking Information  
196  
yyww  
xxxx  
yy = two digit year of manufacture  
ww = two digit week of manufacture  
xxxx = lot number  
© 2007 Semtech Corp.  
www.semtech.com  
4
SC196  
POWER MANAGEMENT  
Pin Descriptions  
Pin #  
Pin Name Pin Function  
Input supply voltage connection to switching FETs — connect the input capacitor between this  
pin and PGND directly.  
1
PVIN  
VIN  
2
3
Input supply voltage for control circuits  
Oscillator synchronization input. Tie to VIN for forced PWM mode or GND to allow the part to  
enter PSAVE mode at light loads. Apply an external clock signal for frequency synchronization.  
SYNC/PWM  
EN  
Enable digital input; a high input enables the SC196, a low disables and reduces quiescent cur-  
rent to less than 1A. In shutdown, LX becomes high impedance.  
4
5
Regulated output voltage sense pin — connect to the output capacitor allowing sensing of the  
output voltage.  
VOUT  
Output Voltage Adjust and feedback compensation pin - connect resistor divider between this  
pin and GND to set the desired output voltage level.  
6
7
ADJ  
MODE  
MODE select pin — MODE = VIN to select 100% duty cycle function, MODE = GND to disable  
this function.  
8
9
GND  
PGND  
LX  
Ground  
Power Ground  
10  
Inductor connection to the switching FETs  
THERMAL Pad for heatsinking purposes not connected internally. Connects to ground plane using  
PAD multiple vias.  
T
© 2007 Semtech Corp.  
www.semtech.com  
5
SC196  
POWER MANAGEMENT  
Block Diagram  
Plimit Amp  
1
PVIN  
Current Amp  
EN  
4
3
SYNC  
/PWM  
OSC & Slope  
Generator  
Control  
Logic  
10  
LX  
PWM  
Comp  
PSAVE  
Comp  
Error Amp  
500mV  
Ref  
Nlimit Amp  
9
PGND  
7
2
MODE  
VIN  
8
5
GND  
VOUT  
ADJ  
6
© 2007 Semtech Corp.  
www.semtech.com  
6
SC196  
POWER MANAGEMENT  
Applications Information  
SC196 Detailed Description  
Table 1 — Recommended ADJ Resistor Combinations  
The SC196 is a synchronous step-down Pulse Width  
Modulated (PWM), DC-DC converter utilizing a 1MHz  
xed-frequency current mode architecture. The device  
is designed to operate in a xed-frequency PWM mode  
across the full load range and can enter Power Save Mode  
(PSAVE), utilizing Pulse Frequency Modulation (PFM) at  
light loads to maximize efciency.  
VOUT(V)  
1
RFB2(kΩ)  
200  
200  
200  
200  
178  
200  
178  
178  
178  
200  
178  
178  
100  
100  
100  
RFB1(kΩ)  
200  
240  
280  
320  
357  
442  
432  
464  
487  
806  
820  
887  
560  
620  
665  
1.1  
1.2  
1.3  
1.5  
1.6  
1.7  
1.8  
1.875  
2.5  
2.8  
3
Operation  
During normal operation, the PMOS MOSFET is activated  
on each rising edge of the internal oscillator. Current  
feedback for the switching regulator uses the PMOS  
current path, and it is amplied and summed with  
the internal slope compensation network. The voltage  
feedback loop uses an external feedback divider. The on-  
time is determined by comparing the summed current  
feedback and the output of the error amplier. The period  
is set by the onboard oscillator or by an external clock  
attached to the SYNC/PWM pin.  
3.3  
3.6  
3.8  
The SC196 has an internal synchronous NMOS rectier  
and does not require a Schottky diode on the LX pin.  
Output Voltage Selection  
Continuous Conduction & Oscillator Synchronization  
The SC196 is designed to operate in continuous  
conduction, xed-frequency mode. When the SYNC/PWM  
pin is tied high the part runs in PWM mode using the  
internal oscillator. The part can be synchronized to an  
external clock by driving a clock signal into the SYNC/  
PWM pin. The part synchronizes to the rising edge of the  
clock.  
The output voltage can be programmed using a resistor  
network connected from VOUT to ADJ to GND. The  
combined resistance of the divider chain should be  
greater than 10KΩ and less than 1MΩ. Table 1 lists  
appropriate resistors which limit the bias current required  
of the external feedback resistor chain and ensuring good  
noise immunity.  
The output voltage can be adjusted between less than  
0.8V and VIN. The output voltage formula is:  
Protection Features  
The SC196 provides the following protection features:  
§
·
RFB1  
RFB2  
¨
¨
¸
1  
VOUT   0.5u  
¸
• Thermal Shutdown  
• Current Limit  
• Over-Voltage Protection  
• Soft-Start  
©
¹
VOUT = output voltage (V)  
RFB1 = feedback resistor from VOUT to ADJ (Ω)  
FB2 = feedback resistor from ADJ to GND (Ω)  
R
Thermal Shutdown  
Resistors with 1% or better tolerance are recommended  
to ensure voltage accuracy.  
The device has a thermal shutdown feature to protect the  
SC196 if the junction temperature exceeds 145°C. In  
thermalshutdown, theon-chippowerdevicesaredisabled,  
effectively tri-stating the LX output. Switching will resume  
when the temperature drops by 10°C. During this time,  
© 2007 Semtech Corp.  
www.semtech.com  
7
SC196  
POWER MANAGEMENT  
Applications Information (Cont.)  
the output capacitor. The burst-to-off period in PSAVE will  
decrease as the load current reduces.  
if the output voltage decreases by more than 60% of its  
programmed value, a soft-start will be invoked.  
The PSAVE switching burst frequency is controlled so that  
the inductor current ripple is similar to that in PWM mode.  
The minimum switching frequency during this period is  
limited to 650kHz.  
Current Limit  
The PMOS and NMOS power devices of the buck switcher  
stage are protected by current limit functions. In the  
case of a short to ground on the output, the part enters  
frequency foldback mode, which causes the switching  
frequency to divide by a factor determined by the output  
voltage. This prevents the inductor current from "stair-  
casing".  
The SC196 automatically detects when to exit PSAVE  
mode by monitoring VOUT . For the SC196 to exit PSAVE  
mode, the load must be increased, causing VOUT to  
decrease until the power save exit threshold is reached.  
PSAVE levels are set high to minimize the undershoot  
when exiting PSAVE. The lower PSAVE comparator level  
is set +0.7% above VOUT, and the upper comparator level  
at +1.5% above VOUT, with the exit threshold at -2% below  
VOUT.  
Over-Voltage Protection  
Over-voltage protection is provided on the SC196. In the  
event of an over-voltage on the output, the PWM drive is  
disabled, effectively tri-stating the LX output. The part will  
not resume switching until the output voltage has fallen  
2% below the regulation voltage.  
If PSAVE operation is required, then a 22μF output  
capacitor must be used.  
Soft-Start  
The soft-start mode is enabled after every shutdown  
cycle to limit in-rush current. In conjunction with the  
frequency foldback, this controls the maximum current  
during start-up. The PMOS current limit is stepped up  
through seven soft-start levels to the full value by a timer  
driven from the internal oscillator. During soft-start, the  
switching frequency is stepped through 1/8, 1/4, 1/2  
and full internal oscillator frequency. The time at which  
these steps are made is controlled by the output voltage  
reaching predened threshold levels. When the output  
voltage is within 2% of the regulation voltage, soft-start  
mode is disabled.  
Higher Load  
Applied  
BURST  
OFF  
1.5%  
0.7%  
PSAVE Mode at Light Load  
PWM Mode at Medium/  
High Load  
VOUT  
-2%  
Inductor Current  
Power Save Mode Operation  
0 A  
The PSAVE mode may be selected by tying the SYNC/PWM  
pin to GND. Selecting PSAVE mode will enable the SC196  
to automatically activate/deactivate operation at light  
loads, maximizing efciency across the full load range.  
The SC196 automatically detects the load current at which  
it should enter PSAVE mode. The SC196 is optimized to  
track maximum efciency with respect to VIN.  
Time  
Figure 1 — Power Save Operation  
100% Duty Cycle Operation  
The 100% duty cycle mode may be selected by connecting  
the MODE pin high. This will allow the SC196 to maintain  
output regulation under conditions of low input voltage/  
high output voltage conditions.  
In PSAVE mode, VOUT is driven from a lower level to an  
upper level by a switching burst. Once the upper level has  
been reached, the switching is stopped and the quiescent  
current is reduced. VOUT falls from the upper to lower levels  
in this low current state as the load current discharges  
In 100% duty cycle operation, as the input supply drops  
toward the output voltage, the PMOS on-time increases  
linearly above the maximum value in xed-frequency  
operation until the PMOS is active continuously. Once  
© 2007 Semtech Corp.  
www.semtech.com  
8
SC196  
POWER MANAGEMENT  
Applications Information (Cont.)  
the PMOS is switched on continuously, the output voltage  
tracks the input voltage minus the voltage drop across  
the PMOS power device and inductor according to the  
following relationship:  
Table 1 — Recommended Inductors  
Rated  
Current  
(A)  
Dimensions  
LxWxH  
Value  
(μH)  
DCR  
(Ω)  
Tolerance  
(%)  
Manufacturer/Part #  
(mm)  
VOUT = VIN - IOUT x (RDSP + RIND)  
BI Technologies  
HM66404R1  
4.1  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
0.057  
0.09  
1.95  
1.5  
20  
20  
30  
30  
20  
30  
20  
5.7 × 5.7 ×2.0  
6.6 × 4.5 × 3.0  
4.0 × 4.0 × 2.0  
5.0 × 5.0 × 2.0  
5.0 × 5.0 × 2.0  
3.8 × 3.8 × 1.8  
3.0 × 3.0 × 1.5  
Coilcraft  
D01608C-472ML  
where  
VOUT = Output voltage  
VIN = Input voltage  
IOUT = Output current  
RDSP = PMOS switch ON resistance  
RIND = Series resistance of the inductor  
TDK  
0.098  
0.050  
0.087  
0.050  
0.2  
1.24  
1.2  
VLCF4020T- 4R7N1R2  
Taiyo Yuden  
LMNP04SB4R7N  
TOKO  
D52LC  
1.14  
1.2  
Sumida  
CDRH3D16  
Inductor Selection  
TheSC196isdesignedforusewitha4.7Hinductor.Where  
VOUT > 3.8V is required, a 10H inductor is recommended.  
The magnitude of the inductor current ripple depends on  
the inductor value and can be determined by the following  
equation:  
Coilcraft  
LPS3015  
1.1  
Note: recommended Inductors do not necessarily guarantee rated perfor-  
mance of the part.  
§
·
VOUT  
VOUT  
COUT Selection  
¨
¨
¸
¸
'IL   
1  
The internal compensation is designed to work with a  
certain output lter corner frequency dened by the  
equation:  
Lu fosc  
V
IN  
©
¹
This equation demonstrates the relationship between  
input voltage, output voltage, and inductor ripple current.  
1
fC   
2S Lu COUT  
The inductor should have a low DCR to minimize the  
conduction losses and maximize efciency. As a minimum  
requirement, the DC current rating of the inductor  
should be equal to the maximum load current plus half  
of the inductor current ripple as shown by the following  
equation:  
This lter has a single pole and is designed to operate with  
a minimum output capacitor value of 10F. Larger output  
capacitor values will improve transient performance.  
If PSAVE operation is required, the minimum capacitor  
value is 22μF.  
'IL  
2
IL(PK)   IOUT(MAX)  
Output voltage ripple is a combination of the voltage  
ripple from the inductor current charging and discharging  
the output capacitor and the voltage created from the  
inductor current ripple through the output capacitor ESR.  
Selecting an output capacitor with a low ESR will reduce  
the output voltage ripple component, as can be seen in  
the following equation:  
Final inductor selection will depend on various design con-  
siderations such as efciency, EMI, size and cost. Table 2  
lists the manufacturers of practical inductor options.  
CIN Selection  
The source input current to a buck converter is non-  
continuous. To prevent large input voltage ripple, a low  
ESR ceramic capacitor is required. A minimum value of  
10F should be used for input voltage ltering, while a  
22F capacitor is recommended for improved input  
voltage ltering.  
ΔVOUT(ESR) = ΔIL(RIPPLE) x ESRCOUNT  
Capacitors with X7R or X5R ceramic dielectric are strongly  
recommended for their low ESR and superior temperature  
© 2007 Semtech Corp.  
www.semtech.com  
9
SC196  
POWER MANAGEMENT  
Applications Information (Cont.)  
and voltage characteristics. Y5V capacitors should not  
be used as their temperature coefcients make them  
unsuitable for this application. Attention should be paid to  
the DC voltage characteristics of the ceramic capacitors  
to be used for both input and output. Parts with different  
case sizes can vary signicantly. For example a 22μF  
X5R 0805 capacitor with 3.6V DC applied could have a  
capacitance as low as 12μF. When a 1206 size part is  
used, the capacitance is approximately 20μF. Table 3 lists  
the manufacturers of recommended capacitor options.  
Table 3 — Recommended Capacitors  
Rated  
Voltage  
(VDC)  
Value  
(μF)  
Temperature  
Characteristic  
Manufacturer/Part #  
Case Size  
Murata  
GRM21BR60J226ME39L  
22  
22  
10  
10  
6.3  
16  
X5R  
X5R  
X5R  
X5R  
0805  
1210  
0603  
0603  
Murata  
GRM422X5R226  
K16H533  
Murata  
GRM188R60J106  
MKE19  
6.3  
6.3  
TDK  
C2012X5R0J106K  
Note: Where PSAVE operation is required, 22μF must be used for COUT  
.
Feed-Forward Compensation Capacitor  
A small 10pf compensation capacitor, CFB1 is required  
to ensure correct operation. This capacitor should  
be connected directly across feedback resistor RFB1  
.
Capacitors with X7R or X5R ceramic dielectric are  
strongly recommended for their superior temperature  
characteristics.  
© 2007 Semtech Corp.  
www.semtech.com  
10  
SC196  
POWER MANAGEMENT  
Applications Information (Cont.)  
PCB Layout Considerations  
Poor layout can degrade the performance of the DC-DC  
converter and can contribute to EMI problems, ground  
bounce and resistive voltage losses. Poor regulation and  
instability can result.  
2. Route the output voltage feedback path away from the  
inductor and LX node to minimize noise and magnetic  
interference. Keep RFB1 and RFB2 close to the ADJ pin  
to avoid noise pickup.  
3. Maximize ground metal on the component side to  
improvethereturnconnectionandthermaldissipation.  
Separation between the LX node and GND should be  
maintained to avoid coupling of switching noise to the  
ground plane.  
A few simple design rules can be implemented to ensure  
good layout:  
4. Use a ground plane with several vias connecting to  
the component side ground to further reduce noise  
interference on sensitive circuit nodes.  
1. Place the inductor and lter capacitors as close to the  
device as possible and use short wide traces between  
the power components.  
GND  
LOUT  
CIN  
VIN  
LX  
VOUT  
COUT  
GND  
SC196  
SYNC/PWM  
EN  
MODE  
CFB1  
RFB2  
RFB1  
GND  
© 2007 Semtech Corp.  
www.semtech.com  
11  
SC196  
POWER MANAGEMENT  
Typical Characteristics  
Efciency vs. Load Current VOUT = 2.5V  
Efciency vs. Load Current VOUT = 3.3V  
RFB1+RFB2=10Kꢀ  
RFB1+RFB2=10Kꢀ  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
VIN=3.3V PSAVE  
VIN=3.9V PSAVE  
VIN=3.3V PWM  
VIN=4.2V PWM  
VIN=3.2V PWM  
VIN=4.2V PWM  
VIN=5.0V PWM  
VIN=4.2V PSAVE  
VIN=5.0V PSAVE  
VIN=4.2V PSAVE  
VIN=5.0V PSAVE  
VIN=5.0V PWM  
30  
20  
10  
0
0.001  
0.0001  
0.01  
0.1  
1
10  
0.0001  
0.001  
0.01  
0.1  
1
10  
IOUT(A)  
IOUT(A)  
Efciency vs. Load Current VOUT = 1.0V  
Efciency vs. Load Current VOUT = 1.8V  
RFB1+RFB2=10Kꢀ  
R
FB1+RFB2=10Kꢀ  
100  
90  
80  
70  
60  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN=2.7V PSAVE  
VIN=2.7V PSAVE  
VIN=2.7V PWM  
VIN=3.6V PWM  
VIN=4.2V PWM  
VIN=3.6V PSAVE  
VIN=4.2V PSAVE  
VIN=3.6V PSAVE  
VIN=4.2V PSAVE  
50  
40  
VIN=2.7V PWM  
VIN=3.6V PWM  
VIN=4.2V PWM  
30  
20  
10  
0
0.001  
0.0001  
0.001  
0.01  
0.1  
1
10  
0.0001  
0.01  
0.1  
1
10  
IOUT(A)  
IOUT(A)  
PWM to PSAVE Hysteresis  
Efciency vs. Input Voltage  
I
OUT=750mA (PWM) / 50mA (PSAVE), RFB1+RFB2=10Kꢀ  
VIN=3.6V, VOUT=1.8V  
100  
95  
90  
85  
80  
75  
70  
65  
60  
1.82  
VOUT=3.3V PWM  
1.815  
1.81  
VOUT=3.3V PSAVE  
VOUT=1.0V PWM  
PSAVE Exit  
OUT Increasing  
1.805  
PSAVE Entry  
IOUT Decreasing  
VOUT=1.0V PSAVE  
I
1.8  
1.795  
0
0.1  
0.2  
0.3  
IOUT(A)  
0.4  
0.5  
0.6  
2.4  
2.8  
3.2  
3.6  
4.0  
4.4  
4.8  
5.2  
5.6  
VIN(V)  
© 2007 Semtech Corp.  
www.semtech.com  
12  
SC196  
POWER MANAGEMENT  
Typical Characteristics (Cont.)  
VOUT vs. VIN  
Load Regulation  
VIN=3.6V, VOUT=1.8V  
VOUT=1.8V, IOUT=750mA(PWM)/50mA(PSAVE)  
1.82  
1.82  
1.815  
1.81  
PSAVE  
1.81  
PSAVE  
1.8  
PWM  
1.805  
1.8  
1.79  
1.78  
1.77  
1.76  
PWM  
1.795  
1.79  
1.785  
2.4  
2.8  
3.2  
3.6  
4
4.4  
IN(V)  
4.8  
5.2  
5.6  
6
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
1.4  
1.6  
V
I
OUT(A)  
VOUT vs. Temperature VOUT=1.8V  
Current Limit  
VIN=3.6V, VOUT=1.8V, PWM  
VIN=3.6V, VOUT=1.8V, IOUT=100mA  
2
1.8  
1.6  
1.4  
1.2  
1
1.798  
1.796  
1.794  
1.792  
1.79  
PSAVE  
1.788  
1.786  
1.784  
0.8  
0.6  
0.4  
0.2  
0
PWM  
20  
1.782  
1.78  
1.778  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
IOUT(A)  
2
2.2 2.4  
-60  
-40  
-20  
0
40  
60  
80  
100  
TAC)  
Quiescent Current vs. Input Voltage, PSAVE Mode  
Quiescent Current vs. Input Voltage, PWM Mode  
PSAVE Mode  
22  
PWM Mode  
6
21  
TA=-40°  
C
C
TA=85°  
C
TA=85°  
TA=25°  
C
C
5.5  
5
20  
19  
18  
17  
16  
15  
14  
13  
12  
TA=25°  
4.5  
4
TA=-40°  
C
3.5  
3
2.5  
3
3.5  
4
4.5  
5
5.5  
6
2.5  
3
3.5  
4
4.5  
5
5.5  
6
VIN(V)  
V
IN(V)  
© 2007 Semtech Corp.  
www.semtech.com  
13  
SC196  
POWER MANAGEMENT  
Typical Characteristics (Cont.)  
P-Channel RDSON vs. Input Voltage  
N-Channel RDSON vs. Input Voltage  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.22  
0.20  
0.18  
TA=85°  
C
C
TA=85°  
C
C
TA=25°  
TA=25°  
0.16  
0.14  
TA=-40°  
C
TA=-40°  
C
0.12  
0.10  
2.7  
3.2  
3.7  
4.2  
IN(V)  
4.7  
5.2  
2.7  
3.2  
3.7  
4.2  
VIN(V)  
4.7  
5.2  
V
Switching Frequency vs. Temperature  
100% Duty Cycle Mode  
VIN=3.4V, VOUT=3.3V, IOUT=150mA, PWM  
1050  
1040  
1030  
1020  
1010  
1000  
990  
VIN=5.5V  
VIN=3.6V  
V
OUT (20mV/div)  
ILX (200mA/div)  
VIN=2.7V  
VLX (2V/div)  
980  
970  
960  
950  
Time (2s/div)  
-50  
-30  
-10  
10  
30  
TJ(°C)  
50  
70  
90  
110  
130  
PSAVE Operation  
PWM Operation  
VIN=3.6V, VOUT=1.8V, IOUT=150mA, PSAVE  
VIN=3.6V, VOUT=1.8V, IOUT=150mA, PWM  
VOUT (20mV/div)  
ILX (500mA/div)  
VOUT (50mV/div)  
I
LX (500mA/div)  
V
LX (5V/div)  
VLX (2V/div)  
Time (1s/div)  
Time (2s/div)  
© 2007 Semtech Corp.  
www.semtech.com  
14  
SC196  
POWER MANAGEMENT  
Typical Characteristics (Cont.)  
PSAVE Start-up  
PWM Start-up  
VIN=3.6V, VOUT=1.8V, IOUT=1.5A, PWM  
VIN=3.6V, VOUT=1.8V, IOUT=10mA, PSAVE  
V
EN (5V/div)  
VEN (5V/div)  
VOUT (1V/div)  
VOUT (1V/div)  
IIN (500mA/div)  
I
IN (100mA/div)  
Time (1ms/div)  
Time (100s/div)  
Load Transient Response-1  
Load Transient Response-2  
VIN=3.6V, VOUT=1.8V, IOUT=100mA to 1.5A, PWM  
VIN=3.6V, VOUT=1.8V, IOUT=10mA to 1.5A, PWM  
VOUT (200mV/div)  
VOUT (200mV/div)  
I
OUT (500mA/div)  
IOUT (500mA/div)  
Time (400s/div)  
Time (400s/div)  
Load Transient Response-3  
Load Transient Response-4  
VIN=3.6V, VOUT=1.8V, IOUT=100mA to 1.5A, PSAVE  
VIN=3.6V, VOUT=1.8V, IOUT=10mA to 1.5A, PSAVE  
VOUT (200mV/div)  
VOUT (200mV/div)  
I
OUT (500mA/div)  
IOUT (500mA/div)  
Time (400s/div)  
Time (400s/div)  
© 2007 Semtech Corp.  
www.semtech.com  
15  
SC196  
POWER MANAGEMENT  
Applications Circuits  
VOUT Programmed to 1.2V, no PSAVE  
VOUT  
1.2V  
1.5A  
L1  
4.7μH  
VIN  
2.5V to 5.5V  
SC196  
VIN  
LX  
RFB1  
CFB1  
10pF  
VOUT  
280k  
CIN  
10μF  
PVIN  
MODE  
EN  
0.1%  
COUT  
10μF  
ADJ  
RFB2  
200k  
0.1%  
SYNC/PWM  
PGND  
GND  
The output voltage is set at 1.2V by the selection of the two resistors RFB1 and RFB2, using resistor values from  
Table 1. PWM-only mode operation is selected by connecting the SYNC/PWM pin to the VIN pin. The 100% duty cycle  
capability is selected by connecting the MODE pin to the VIN pin. A 10μF capacitor is selected for the output, as PSAVE  
operation is not required in this application.  
© 2007 Semtech Corp.  
www.semtech.com  
16  
SC196  
POWER MANAGEMENT  
Outline Drawing — MLPD-UT10 3x3x0.6  
DIMENSIONS  
INCHES MILLIMETERS  
A
E
B
E
DIM  
MIN NOM MAX MIN NOM MAX  
-
-
-
-
A
.018  
A1 .000  
A2  
.024 0.45  
.002 0.00  
.60  
0.05  
(.006)  
(0.1524)  
b
C
D
E
e
.007 .009 .011 0.18 0.23 0.30  
.074 .079 .083 1.87 2.02 2.12  
.042 .048 .052 1.06 1.21 1.31  
.114 .118 .122 2.90 3.00 3.10  
PIN 1  
INDICATOR  
.020 BSC  
0.50 BSC  
(LASER MARK)  
L
.012 .016 .020 0.30 0.40 0.50  
N
10  
10  
aaa  
bbb  
.003  
.004  
0.08  
0.10  
A
SEATING  
PLANE  
aaa  
C
A1  
C
A2  
C
1
2
LxN  
D
N
e
bxN  
bbb  
C A B  
NOTES:  
1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).  
2. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS TERMINALS.  
© 2007 Semtech Corp.  
www.semtech.com  
17  
SC196  
POWER MANAGEMENT  
Land Pattern — MLPD-UT10 3x3x0.6  
DIMENSIONS  
INCHES MILLIMETERS  
K
DIM  
(.112)  
.075  
.055  
.087  
.020  
.012  
.037  
.150  
(2.85)  
1.90  
1.40  
2.20  
0.50  
0.30  
0.95  
3.80  
C
G
H
K
P
X
Y
Z
H
X
G
Y
(C)  
Z
P
NOTES:  
1.  
THIS LAND PATTERN IS FOR REFERENCE PURPOSES ONLY.  
CONSULT YOUR MANUFACTURING GROUP TO ENSURE YOUR  
COMPANY'S MANUFACTURING GUIDELINES ARE MET.  
2. THERMAL VIAS IN THE LAND PATTERN OF THE EXPOSED PAD  
SHALL BE CONNECTED TO A SYSTEM GROUND PLANE.  
FAILURE TO DO SO MAY COMPROMISE THE THERMAL AND/OR  
FUNCTIONAL PERFORMANCE OF THE DEVICE  
Contact Information  
Semtech Corporation  
Power Management Products Division  
200 Flynn Road, Camarillo, CA 93012  
Phone: (805) 498-2111 FAX (805) 498-3804  
www.semtech.com  
© 2007 Semtech Corp.  
www.semtech.com  
18  

相关型号:

SC1968

NPN EPITAXIAL PLANAR TYPE
MITSUBISHI

SC196A

1.5A Synchronous Buck Converter with Integrated Power Devices
SEMTECH

SC196AEVB

1.5A Synchronous Buck Converter with Integrated Power Devices
SEMTECH

SC196AMLTRT

1.5A Synchronous Buck Converter with Integrated Power Devices
SEMTECH

SC196A_08

1.5A Synchronous Buck Converter with Integrated Power Devices
SEMTECH

SC196EVB

1.5A Synchronous Buck Converter with Integrated Power Devices
SEMTECH

SC196ULTRT

1.5A Synchronous Buck Converter with Integrated Power Devices
SEMTECH

SC197

3.5MHz, 500mA Synchronous Dual Step-Down DC-DC Regulator
SEMTECH

SC1972

NPN EPITAXIAL PLANAR TYPE(for RF power amplifiers on VHF band Mobile radio applications)
MITSUBISHI

SC197EVB

3.5MHz, 500mA Synchronous Dual Step-Down DC-DC Regulator
SEMTECH

SC197ULTRT

3.5MHz, 500mA Synchronous Dual Step-Down DC-DC Regulator
SEMTECH

SC198

Dual DC-DC Buck Converter with High Current Capability
SEMTECH