SC2447TSTRT [SEMTECH]

Dual-Phase, Single or Dual Output Synchronous Step-Down Controller; 双相,单或双输出同步降压型控制器
SC2447TSTRT
型号: SC2447TSTRT
厂家: SEMTECH CORPORATION    SEMTECH CORPORATION
描述:

Dual-Phase, Single or Dual Output Synchronous Step-Down Controller
双相,单或双输出同步降压型控制器

稳压器 开关式稳压器或控制器 电源电路 开关式控制器 光电二极管
文件: 总26页 (文件大小:756K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SC2447  
Dual-Phase, Single or Dual Output  
Synchronous Step-Down Controller  
POWER MANAGEMENT  
Features  
Description  
2-Phase Step-down Controller optimized for Philips  
The SC2447 is a versatile high-frequency dual phase PWM  
step-down controller optimized for Philips and Renesas  
DrMOSTM. Both phases are capable of sourcing or sink-  
ing load currents, making the SC2447 suitable for net-  
working system power and DDR applications.  
or Renesas DrMOSTM  
Out of Phase Operation for Low Input Current Ripple  
Outputs Source and Sink Current  
Fixed Frequency Peak Current-Mode Control  
Lossless Inductor DCR Current Sensing  
Optional Resistor Current-Sensing for Precise Cur-  
rent-Limit  
The SC2447 employs fixed frequency, continuous-con-  
duction peak current-mode control for easy compensa-  
tion and fast transient response.  
Dual 30A Outputs or 2-Phase 60A Single Output  
Operation  
Wide Input Voltage Range: 4.65V to 15V  
Individual Closed-Loop Soft-Start, Overload Shut-  
down Timer and Enable  
The SC2447 can be used to generate two independent  
outputs (up to 30A per output) or a single 60A output  
with shared phase current. The PWM signals are 180°  
out of phase to minimize input/output ripple.  
Output Voltage as Low as 0.5V  
Starts into Pre-Bias Output  
Tri-State PWM Output during Shutdown  
Programmable Frequency Up to 1MHz Per Phase  
External Synchronization  
Either inductor DC resistance or precision sense resistor  
can be used for current-mode control. Inductor DC resis-  
tance sensing has the advantage of being lossless.  
TSSOP-28 Lead-free Package. Fully WEEE and RoHS  
Compliant  
Each phase has individual closed-loop soft-start and over-  
load shutdown timer. The SC2447 powers up neatly with  
pre-biased output. It has tri-state shutdown and hiccup  
overload protection. In two-phase single-output configu-  
ration, the master timer controls the soft-start and over-  
load shutdown functions. The SC2447 is in a lead-free,  
WEEE and RoHS compliant, TSSOP-28 package.  
Applications  
Telecommunication Power Supplies  
DDR Memory Power Supplies  
Graphic Power Supplies  
Servers and Base Stations  
Typical Application Circuit  
VIN  
12V  
RVCC  
10Ω  
R2  
10Ω  
R1  
10Ω  
CIN2  
22µF  
x 4  
CIN1  
22µF  
x 4  
VDDO  
CBP  
VDDC  
VDDG  
VDDC  
VDDG  
VDDO  
CBP  
C3  
1µF  
C4  
1µF  
C5  
1µF  
C6  
1µF  
CB2  
100nF  
CB1  
100nF  
AVCC  
L1  
CBN  
VO  
CBN  
VO  
L2  
CVCC  
4.7µF  
1µH/1.8mΩ  
REG5V  
VI  
REG5V  
VI  
0.4µH/1mΩ  
VOUT1  
2.5V/20A  
VOUT2  
1.2V/25A  
GDH1  
GDL1  
GDH2  
GDL2  
RS1B  
RS2B  
200KΩ  
DISABLE  
DISABLE  
22.1KΩ  
CO1  
100µF  
x 3  
CO2  
100µF  
x 3  
VSSO  
VSSO  
VSSC  
VSSC  
RS1A  
22.1KΩ  
RS2A  
SC2447  
22.1KΩ  
PIP212-12M  
PIP212-12M  
CCS2  
68nF  
CS1+  
CS1-  
CCS1  
100nF  
CS2+  
CS2-  
RFB1A  
10KΩ  
RFB2A  
10KΩ  
RS2C , 20KΩ  
RS1C , 11KΩ  
IN1-  
IN2-  
COMP2  
ROSC  
AGND  
RFB1B  
2.49KΩ  
RFB2B  
7.15KΩ  
COMP1  
ROSC , 51.1KΩ  
RA1  
RA2  
REFOUT  
REF  
24.9KΩ  
16.9KΩ  
CCMP1  
10pF  
CCMP2  
10pF  
CA1  
CREF  
CA2  
3.3nF  
0.1uF  
3.3nF  
REFIN  
SYNC  
SS1/EN1  
SS2/EN2  
CSS1  
0.1µF  
CSS2  
0.1µF  
Figure 1  
1
www.semtech.com  
Revision: December 15, 2006  
SC2447  
POWER MANAGEMENT  
Ordering Information  
Pin Configurations  
Device  
Top Mark  
SC2447  
Package  
TOP VIEW  
SC2447TSTRT(1)(2)  
TSSOP-28  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
CS1+  
CS1-  
SS1/EN1  
NC  
SC2447EVB  
Evaluation Board  
3
ROSC  
IN1-  
NC  
Notes:  
4
GDH1  
GDL1  
NC  
(1) Only available in tape and reel packaging. A reel contains 2500 devices  
for TSSOP package.  
(2) Lead free product. This product is fully WEEE and RoHS compliant.  
5
COMP1  
SYNC  
AGND  
REF  
6
7
NC  
8
GDL2  
GDH2  
NC  
9
REFOUT  
REFIN  
COMP2  
IN2-  
10  
11  
12  
13  
14  
NC  
NC  
CS2-  
AVCC  
SS2/EN2  
CS2+  
(28 Pin TSSOP)  
θJA= 84°C/W; θJC= 13°C/W.  
Figure 2  
Absolute Maximum Rating  
Exceeding the specifications below may result in permanent damage to the device, or device malfunction. Operation outside of the parameters specified  
in the Electrical Characteristics section is not implied. Exposure to Absolute Maximum rated conditions for extended periods of time may affect device  
reliability.  
Parameter  
Symbol  
AVCC  
Maximum Ratings  
-0.3 to 16  
Units  
V
Supply Voltage  
Gate Outputs GDH1, GDH2, GDL1, GDL2 voltages  
IN1-, IN2- Voltages  
VGDH1, VGDH2,VGDL1, VGDL2  
VIN1-,VIN2-  
VREF ,VREFOUT  
VREFIN  
COMP1,VCOMP2  
-0.3 to 6  
V
-0.3 to AVCC+0.3  
-0.3 to 6  
V
REFOUT Voltages  
V
REF, REFIN Voltage  
-0.3 to AVCC+0.3  
-0.3 to AVCC+0.3  
-0.3 to AVCC+0.3  
-0.3 to AVCC+0.3  
-0.3 to 6  
V
COMP1, COMP2 Voltages  
CS1+, CS1-, CS2+ and CS2- Voltages  
SYNC Voltage  
V
V
VCS1+,VCS1-,VCS2+,VCS2-  
V
VSYNC  
VSS1,VSS2  
TSTG  
V
SS1/EN1 AND SS2/EN2 Voltages  
Storage Temperature Range  
Lead Temperature (Soldering) 10 sec  
Junction Temperature  
V
-60 to 150  
°C  
°C  
°C  
kV  
TLEAD  
TJ  
260  
150  
ESD Rating (Human Body Model)  
ESD  
2
www.semtech.com  
© 2006 Semtech Corp.  
2
SC2447  
POWER MANAGEMENT  
Recommended Operating Conditions  
The performance is not guarantied if exceeding the specifications below.  
Parameter  
Symbol  
AVCC  
TA  
Conditions  
Min  
4.65  
-40  
Typ  
Max  
15  
Units  
V
AVCC Operating Voltage  
Ambient temperature Range  
Junction Temperature Range  
85  
°C  
TJ  
-40  
125  
°C  
Electrical Characteristics  
Unless specified: AVCC = 12V, SYNC = 0, ROSC = 51.1k, -40°C < TA = TJ < 125°C  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
4.65  
15  
Units  
Undervoltage Lockout  
AVCC Start Threshold  
AVCCTH  
AVCCHYST  
ICC  
AVCC Increasing  
4.50  
0.2  
8
V
V
AVCC Start Hysteresis  
AVCC Operating Current  
AVCC Quiescent Current in UVLO  
Channel 1 Error Amplifier  
Input Common-Mode Voltage Range(1)  
Inverting Input Voltage Range(1)  
Input Offset Voltage  
AVCC= 12V  
mA  
mA  
AVCC = AVCCTH - 0.2V  
2.5  
0
0
3
V
V
AVCC  
±3  
0 ~ 70°C  
±1  
-100  
-100  
170  
65  
mV  
nA  
Non-Inverting Input Bias Current  
Inverting Input Bias Current  
Amplifier Transconductance  
Amplifier Open-Loop Gain  
Amplifier Unity Gain Bandwidth(1)  
IREF  
-250  
-250  
I
nA  
IN1-  
GM1  
aOL1  
µΩ−1  
dB  
5
MHz  
V
= VCS1- = 0  
VCSSS11+ Increasing  
Minimum COMP1 Switching Threshold  
1.7  
V
Amplifier Output Sink Current  
Amplifier Output Source Current  
Channel 2 Error Amplifier  
V
IN1- = 1V, VCOMP1 = 2.5V  
11  
µA  
µA  
V
IN1- = 0, VCOMP1 = 2.5V  
8.5  
Input Common-mode Voltage Range(1)  
Inverting Input Voltage Range(1)  
0
0
3
AVCC  
±3  
V
V
Input Offset Voltage  
0 ~ 70°C  
±1  
mV  
www.semtech.com  
© 2006 Semtech Corp.  
3
SC2447  
POWER MANAGEMENT  
Electrical Characteristics (Cont.)  
Unless specified: AVCC = 12V, SYNC = 0, ROSC = 51.1k, -40°C < TA = TJ < 125°C  
Parameter  
Symbol  
Conditions  
Min  
Typ  
-100  
-150  
Max  
Units  
nA  
Non-inverting Input Bias Current  
Inverting Input Bias Current  
IREFIN  
-250  
-380  
I
nA  
IN2-  
Inverting Input Voltage for 2-Phase Single  
Output Operation  
2.5  
V
Amplifier Transconductance  
Amplifier Open-Loop Gain  
Amplifier Unity Gain Bandwidth(1)  
GM2  
aOL2  
170  
65  
5
µΩ−1  
dB  
MHz  
VCS2+ = VCS2- = 0  
Minimum COMP2 Switching Threshold  
1.7  
V
V
SS2 Increasing  
Amplifier Output Sink Current  
Amplifier Output Source Current  
Oscillator  
VCOMP2 = 2.5V  
VCOMP2 = 2.5V  
11  
µA  
µA  
8.5  
Channel Frequency  
fCH1, fCH2  
0 ~ 70°C  
450  
2.1fCH  
1.5  
500  
550  
0.5  
kHz  
kHz  
V
(1)  
Synchronizing Frequency  
SYNC Input High Voltage  
SYNC Input Low Voltage  
V
VSYNC = 0.2V  
VSYNC = 2V  
1
50  
SYNC Input Current  
ISYNC  
µA  
DMAX1,  
DMAX2  
Channel Maximum Duty Cycle  
88  
%
%
Channel Minimum Duty Cycle  
Current-limit Comparators  
Input Common-Mode Range  
DMIN1, DMIN2  
0
0
AVCC - 1.5  
57.5  
V
VILIM1+,  
VILIM2+  
VCS1- = VCS2- = 0.5V,  
Sourcing Mode, 0 ~ 70°C  
Cycle-by-cycle Peak Current Limit  
42.5  
50  
mV  
V
=VCS1- = 0  
VCCSS12+- =VCS2- = 0  
Positive Current-Sense Input Bias Current  
I
CS1+, ICS2+  
-0.7  
-0.7  
-2  
-2  
µA  
µA  
Negative Current-Sense Input Bias  
Current  
VCS1+ =VCS1- = 0  
VCS2+ =VCS2- = 0  
ICS1-, ICS2-  
PWM Outputs  
GDL1, GDL2,  
GDH1, GDH2  
Peak Source Current  
AVCC = 12V  
AVCC = 12V  
10  
8
mA  
mA  
GDL1, GDL2,  
GDH1, GDH2  
Peak Sink Current  
www.semtech.com  
© 2006 Semtech Corp.  
4
SC2447  
POWER MANAGEMENT  
Electrical Characteristics (Cont.)  
Unless specified: AVCC = 12V, SYNC = 0, ROSC = 51.1k, -40°C < TA = TJ < 125°C  
Parameter  
Symbol  
Conditions  
Min Typ  
Max  
Units  
Output High Voltage  
Source IO = 1.2mA, 0 ~ 70°C  
4.1  
5
V
Output Low Voltage  
Sink IO = 1mA  
0
0.4  
V
Maximum Tri-State Leakage  
Current  
GDH in High Impedance State  
2
µA  
Propagation delay time from  
current sense inputs to PWM  
output(1)  
TDLPWM  
TA =25°C  
85  
ns  
Soft-Start, Overload Hiccup and Enable  
Soft-Start Charging Current  
ISS1, ISS2  
VSS1 = VSS2 = 1.5V  
9.5  
3.2  
µA  
Overload Hiccup Enabling  
Voltage  
VSS1 and VSS2 Increasing  
V
VIN1-= 0.5VREF,VIN2-=0.5V  
SS1 = VSS2 > 2.85VREFIN  
,
,
37  
7.5  
µA  
µA  
V
V
Soft-Start Discharging Current  
at Over Current Condition  
ISS1(DIS),  
ISS2(DIS)  
VIN1-= 0.5VREF,VIN2-=0.5V  
SS1 = VSS2 < 2.85VREFIN  
V
Overload Hiccup Threshold  
Voltage  
VSS1 and VSS2 Decreasing  
VSS1 and VSS2 Decreasing  
2.85  
0.5  
Overload Hiccup Recovery  
Soft-Start Voltage  
VSSRCV1,  
VSSRCV2  
V
PWM Output Disable SS/EN  
Voltage  
0.6  
1.5  
V
PWM Output Enable SS/EN  
Voltage  
1.2  
V
Internal 0.5V Reference Buffer  
Output Voltage  
VREFOUT  
IREFOUT = -1mA, 0°C < TA = TJ < 70°C 495 500  
505  
mV  
%/mA  
%V  
Load Regulation  
0 < IREFOUT < -5mA  
0.05  
Line Regulation  
AVCCTH < AVCC < 15V, IREFOUT = -1mA  
0.02%  
Notes:  
(1) Guaranteed by design, not tested in production.  
www.semtech.com  
© 2006 Semtech Corp.  
5
SC2447  
POWER MANAGEMENT  
Typical Performance Characteristics  
ꢀꢁꢁꢂꢁꢃꢄꢅꢆꢇꢈꢉꢈꢊꢁꢃꢋꢌꢆꢍꢎꢃꢏꢉꢉꢐꢊꢎꢃꢑꢂꢇꢎꢒꢓꢊ  
ꢔꢐꢃꢕꢊꢅꢆꢊꢁꢒꢎꢍꢁꢊ  
ꢀꢁꢁꢂꢁꢃꢄꢅꢆꢇꢈꢉꢈꢊꢁꢃꢋꢌꢔꢊꢁꢎꢈꢌꢓꢃꢋꢌꢆꢍꢎꢃ%ꢈꢒꢐꢃ  
ꢝꢍꢁꢁꢊꢌꢎꢃꢃꢔꢐꢃꢕꢊꢅꢆꢊꢁꢒꢎꢍꢁꢊ  
#ꢑꢞꢏꢃꢕꢙꢁꢊꢐꢙꢂꢇ ꢐꢃꢔꢐꢃꢕꢊꢅꢆꢊꢁꢒꢎꢍꢁꢊ  
ꢅꢁꢀꢀ  
ꢄꢁꢂꢀ  
ꢄꢁꢀꢀ  
ꢃꢁꢂꢀ  
ꢃꢁꢀꢀ  
ꢀꢁꢂꢀ  
ꢀꢁꢀꢀ  
ꢃꢂꢀ  
ꢃꢄꢂ  
ꢃꢀꢀ  
ꢇꢂ  
#ꢁ4ꢀ  
#ꢁꢂꢂ  
#ꢁꢂꢀ  
#ꢁ#ꢂ  
#ꢁ#ꢀ  
#ꢁꢅꢂ  
#ꢁꢅꢀ  
ꢗꢝꢓꢓ"ꢐꢃꢄꢝ  
.&ꢜ&ꢙ!  
ꢓ(ꢍꢙꢙꢉ ꢐꢄ  
ꢂꢀ  
ꢓ(ꢍꢙꢙꢉ ꢐꢃ  
)ꢍ  &ꢙ!  
ꢄꢂ  
ꢆꢂꢀ  
ꢆꢄꢂ  
ꢄꢂ  
ꢂꢀ  
ꢇꢂ  
ꢃꢀꢀ ꢃꢄꢂ  
ꢆꢂꢀ  
ꢆꢄꢂ  
ꢄꢂ  
ꢂꢀ  
ꢇꢂ  
ꢃꢀꢀ ꢃꢄꢂ  
ꢆꢂꢀ  
ꢆꢄꢂ  
ꢄꢂ  
ꢂꢀ  
ꢇꢂ  
ꢃꢀꢀ ꢃꢄꢂ  
ꢈꢉꢊꢋꢉꢌꢍꢎꢏꢌꢉꢐꢑꢒꢓꢔ  
ꢈꢉꢊꢋꢉꢌꢍꢎꢏꢌꢉꢐꢑꢒꢓꢔ  
ꢈꢉꢊꢋꢉꢌꢍꢎꢏꢌꢉꢐꢑꢒꢓꢔ  
ꢀꢁꢁꢂꢁꢃꢄꢅꢆꢇꢈꢉꢈꢊꢁꢃ&ꢂꢌ!ꢈꢌꢔꢊꢁꢎꢈꢌꢓꢃꢋꢌꢆꢍꢎꢃ  
%ꢈꢒꢐꢃꢝꢍꢁꢁꢊꢌꢎꢃꢔꢐꢃꢕꢊꢅꢆꢊꢁꢒꢎꢍꢁꢊ  
ꢖꢗꢈꢎꢘꢙꢈꢌꢓꢃꢚꢁꢊꢛꢍꢊꢌꢘꢜꢃꢑꢒꢁꢈꢒꢎꢈꢂꢌꢃ  
ꢔꢐꢃꢕꢊꢅꢆꢊꢁꢒꢎꢍꢁꢊ  
ꢖꢂꢍꢁꢘꢊꢃꢝꢍꢁꢁꢊꢌꢎꢃꢞꢈꢅꢈꢎꢃꢕꢙꢁꢊꢐꢙꢂꢇ ꢃ  
ꢔꢐꢃꢕꢊꢅꢆꢊꢁꢒꢎꢍꢁꢊ  
ꢆꢃꢀ  
ꢆꢄꢀ  
ꢆꢅꢀ  
ꢆ#ꢀ  
ꢆꢂꢀ  
ꢄꢁꢀ  
ꢃꢁꢀ  
ꢂꢄ  
ꢂꢃ  
ꢂꢀ  
#1  
#0  
#ꢇ  
ꢗꢝꢓꢓ"ꢐꢃꢄꢝ  
ꢚ$ꢓ"ꢐꢂꢃꢁꢃ/  
.
ꢀꢁꢀ  
ꢆꢃꢁꢀ  
ꢆꢄꢁꢀ  
ꢆꢅꢁꢀ  
ꢆ#ꢁꢀ  
ꢓ(ꢍꢙꢙꢉ ꢐꢄ  
ꢓ(ꢍꢙꢙꢉ ꢐꢃ  
ꢆꢂꢀ  
ꢆꢄꢂ  
ꢄꢂ  
ꢂꢀ  
ꢇꢂ  
ꢃꢀꢀ ꢃꢄꢂ  
ꢆꢂꢀ  
ꢆꢄꢂ  
ꢄꢂ  
ꢂꢀ  
ꢇꢂ  
ꢃꢀꢀ ꢃꢄꢂ  
ꢆꢂꢀ  
ꢆꢄꢂ  
ꢄꢂ  
ꢂꢀ  
ꢇꢂ  
ꢃꢀꢀ ꢃꢄꢂ  
ꢈꢉꢊꢋꢉꢌꢍꢎꢏꢌꢉꢐꢑꢒꢓꢔ  
ꢈꢉꢊꢋꢉꢌꢍꢎꢏꢌꢉꢐꢑꢒꢓꢔ  
ꢈꢉꢊꢋꢉꢌꢍꢎꢏꢌꢉꢐꢑꢒꢓꢔ  
ꢖꢂꢉꢎ!ꢖꢎꢒꢁꢎꢃꢝꢙꢒꢁꢓꢈꢌꢓꢃꢝꢍꢁꢁꢊꢌꢎ  
ꢔꢐꢃꢕꢊꢅꢆꢊꢁꢒꢎꢍꢁꢊ  
"ꢀꢚꢏ#ꢕꢃꢞꢂꢒ $ꢞꢈꢌꢊꢃ"ꢊꢓꢍꢇꢒꢎꢈꢂꢌ  
ꢔꢐꢃꢕꢊꢅꢆꢊꢁꢒꢎꢍꢁꢊ  
"ꢀꢚꢏ#ꢕꢃꢔꢐꢃꢕꢊꢅꢆꢊꢁꢒꢎꢍꢁꢊ  
ꢃꢃꢁꢀ  
ꢃꢀꢁꢂ  
ꢃꢀꢁꢀ  
1ꢁꢂ  
ꢂꢀꢄ  
ꢂꢀꢃ  
ꢂꢀꢀ  
#11  
#10  
#1ꢇ  
#14  
ꢃꢁꢀ  
ꢀꢁ0  
ꢀꢁ4  
ꢀꢁ#  
ꢀꢁꢄ  
ꢀꢁꢀ  
ꢗꢝꢓꢓ"ꢐꢃꢄꢝ  
.ꢕ)ꢚ5ꢈ"ꢐꢆꢃꢊꢗ  
ꢗꢝꢓꢓ"ꢐꢃꢄꢝ  
$$"ꢐꢃꢁꢂꢝ  
.ꢕ)ꢚ5ꢈ"ꢐꢆꢃꢊꢗꢐꢑ2&ꢙꢉꢐ.ꢉ!ꢏ ꢍꢎ&ꢞꢙꢔ  
ꢗꢝꢓꢓ"ꢐꢃꢄꢝꢐꢑ2ꢞꢍ3ꢐ.ꢉ!ꢏ ꢍꢎ&ꢞꢙꢔ  
2ꢞꢍ3ꢐ.ꢉ!ꢏ ꢍꢎ&ꢞꢙ  
1ꢁꢀ  
0ꢁꢂ  
2&ꢙꢉꢐ.ꢉ!ꢏ ꢍꢎ&ꢞꢙ  
0ꢁꢀ  
ꢆꢂꢀ  
ꢆꢄꢂ  
ꢄꢂ  
ꢂꢀ  
ꢇꢂ  
ꢃꢀꢀ ꢃꢄꢂ  
ꢆꢂꢀ  
ꢆꢄꢂ  
ꢄꢂ  
ꢂꢀ  
ꢇꢂ  
ꢃꢀꢀ ꢃꢄꢂ  
ꢆꢂꢀ  
ꢆꢄꢂ  
ꢄꢂ  
ꢂꢀ  
ꢇꢂ  
ꢃꢀꢀ ꢃꢄꢂ  
ꢈꢉꢊꢋꢉꢌꢍꢎꢏꢌꢉꢐꢑꢒꢓꢔ  
ꢈꢉꢊꢋꢉꢌꢍꢎꢏꢌꢉꢐꢑꢒꢓꢔ  
ꢈꢉꢊꢋꢉꢌꢍꢎꢏꢌꢉꢐꢑꢒꢓꢔ  
www.semtech.com  
© 2006 Semtech Corp.  
6
SC2447  
POWER MANAGEMENT  
Typical Application Circuit Performance  
Circuit Conditions: 2-Output Configuration as in Figure 16. VIN = 12V, VOUT1 = 2.5V, VOUT2 = 1.2V, ROSC = 51.1k, SYNC = 0, and TA = 25°C.  
Pre-biased Start Up (VOUT1  
)
Shutdown (VOUT1)  
Soft-Start Up (VOUT1  
)
VOUT1  
1V/div  
VOUT1  
1V/div  
VOUT1  
1V/div  
IOUT1  
2A/div  
VSS1/EN1  
2V/div  
VSS1/EN1  
2V/div  
VSS1/EN1  
5V/div  
IOUT1  
10A/div  
VGDL1  
5V/div  
IOUT1=0A  
ROUT1=1  
10ms/div  
200µs/div  
10ms/div  
Output Voltage Ripple (VOUT1  
)
Load Transient Response (VOUT1  
)
Overload Hiccup (VOUT1)  
VOUT1  
20mV/div  
VOUT1  
VOUT1  
1V/div  
0.1V/div  
VSS1/EN1  
2V/div  
IOUT1  
10A/div  
VSW1  
10V/div  
IOUT1  
5A/div  
IOUT1  
20A/div  
IOUT1=20A  
IOUT1=15A to 20A  
2µs/DIV  
200µs/div  
50ms/div  
Pre-biased Start Up (VOUT2  
)
Shutdown (VOUT2)  
Soft-Start Up (VOUT2  
)
VOUT2  
0.5V/div  
VOUT2  
0.5V/div  
VOUT2  
0.5V/div  
IOUT2  
1A/div  
VSS2/EN2  
2V/div  
VSS2/EN2  
2V/div  
VSS2/EN2  
5V/div  
IOUT2  
IOUT2  
20A/div  
20A/div  
VGDL2  
5V/div  
IOUT2=0A  
ROUT2=1Ω  
10ms/div  
200µs/div  
10ms/div  
www.semtech.com  
© 2006 Semtech Corp.  
7
SC2447  
POWER MANAGEMENT  
Typical Application Circuit Performance  
Circuit Conditions: 2-Output Configuration as in Figure 16. VIN = 12V, VOUT1 = 2.5V, VOUT2 = 1.2V, ROSC = 51.1k, SYNC = 0, and TA = 25°C.  
Output Voltage Ripple (VOUT2  
)
Load Transient Response (VOUT2  
)
Overload Hiccup (VOUT2)  
VOUT2  
0.1V/div  
VOUT2  
20mV/div  
VOUT2  
0.5V/div  
VSS2/EN2  
2V/div  
IOUT2  
10A/div  
IOUT2  
5A/div  
VSW2  
10V/div  
IOUT2  
20A/div  
IOUT2=25A  
IOUT2=20A to 25A  
2µs/DIV  
200µs/div  
50ms/div  
ꢀꢉꢉꢈꢘꢈꢊꢌꢘꢜꢃ'ꢃꢚꢐꢗ(ꢃ)**+,-  
1.)ꢑꢃ2ꢃ3.1ꢑ  
ꢞꢂꢐꢐꢃ'ꢃꢚꢐꢗ(ꢃ)**+,-  
1.)ꢑꢃ2ꢃ3.1ꢑ  
Output Voltage Ripple  
V
OUT1 & VOUT2  
1ꢂ  
1ꢀ  
0ꢂ  
0ꢀ  
ꢇꢂ  
ꢇꢀ  
ꢃꢀ  
ꢘ7"ꢐꢃꢄꢝ  
ꢘ7"ꢐꢃꢄꢝ  
ꢚ5ꢈꢃ"ꢐꢄꢁꢂꢝ  
VOUT1  
20mV/div  
0
ꢚ5ꢈꢃ"ꢐꢄꢁꢂꢝ  
VOUT2  
20mV/div  
4
ꢚ5ꢈꢄ"ꢐꢃꢁꢄꢝ  
#
VSW2  
10V/div  
ꢚ5ꢈꢄ"ꢐꢃꢁꢄꢝ  
VSW1  
10V/div  
ꢃꢀ  
ꢃꢂ  
ꢄꢀ  
ꢄꢂ  
ꢅꢀ  
ꢃꢀ  
ꢃꢂ  
ꢄꢀ  
ꢄꢂ  
ꢅꢀ  
IOUT1=20A  
IOUT2=25A  
1µs/DIV  
ꢚꢏꢎꢋꢏꢎꢐꢓꢏꢌꢌꢉꢙꢎꢐꢑꢗꢔ  
ꢚꢏꢎꢋꢏꢎꢐꢓꢏꢌꢌꢉꢙꢎꢐꢑꢗꢔ  
Circuit Conditions: 2-Ouput Configuration, VIN = 12V, LOUT=0.4uH for VOUT= 1.2V, LOUT=1uH for VOUT= 2.5V, 3.3V, and 5.0V, ROSC = 51.1k, and TA = 25°C.  
ꢀꢉꢉꢈꢘꢈꢊꢌꢘꢜꢃ'ꢃꢚꢐꢗ(ꢃ)**+,-  
ꢞꢂꢐꢐꢃ'ꢃꢚꢐꢗ(ꢃ)**+,-  
).*ꢑ/ꢃ0.0ꢑ/ꢃ1.)ꢑꢃ2ꢃ3.1ꢑ  
).*ꢑ/ꢃ0.0ꢑ/ꢃ1.)ꢑꢃ2ꢃ3.1ꢑ  
ꢃꢀꢀ  
1ꢂ  
1ꢀ  
0ꢂ  
0ꢀ  
ꢇꢂ  
ꢃꢄ  
ꢃꢀ  
0
ꢘ7"ꢐꢃꢄꢝ  
ꢘ7"ꢐꢃꢄꢝ  
ꢚ5ꢈ"ꢐꢂꢁꢀꢝ  
ꢚ5ꢈ"ꢐꢂꢁꢀꢝ  
ꢚ5ꢈ"ꢐꢅꢁꢅꢝ  
ꢚ5ꢈ"ꢐꢄꢁꢂꢝ  
ꢚ5ꢈ"ꢐꢅꢁꢅꢝ  
4
ꢚ5ꢈ"ꢐꢃꢁꢄꢝ  
#
ꢚ5ꢈꢃ"ꢐꢄꢁꢂꢝ  
ꢚ5ꢈꢄ"ꢐꢃꢁꢄꢝ  
ꢃꢀ  
ꢃꢂ  
ꢄꢀ  
ꢄꢂ  
ꢅꢀ  
ꢃꢀ  
ꢃꢂ  
ꢄꢀ  
ꢄꢂ  
ꢅꢀ  
ꢚꢏꢎꢋꢏꢎꢐꢓꢏꢌꢌꢉꢙꢎꢐꢑꢗꢔ  
ꢚꢏꢎꢋꢏꢎꢐꢓꢏꢌꢌꢉꢙꢎꢐꢑꢗꢔ  
www.semtech.com  
© 2006 Semtech Corp.  
8
SC2447  
POWER MANAGEMENT  
Typical Application Circuit Performance  
Circuit Conditions: 2-Phase Configuration as in Figure 17, VIN = 12V, VOUT = 1.2V, ROSC = 51.1k, SYNC = 0, and TA = 25°C.  
Pre-biased Start Up (VOUT  
)
Shutdown (VOUT)  
Soft-Start Up  
VOUT  
0.5V/div  
VOUT  
0.5V/div  
VOUT  
0.5V/div  
IOUT  
1A/div  
VSS1/EN1  
2V/div  
VSS1/EN1  
2V/div  
VSS1/EN1  
5V/div  
IOUT  
20A/div  
IOUT  
20A/div  
VGDL1  
5V/div  
IOUT=0A  
ROUT2=1Ω  
10ms/div  
200µs/div  
10ms/div  
Output Voltage Ripple (VOUT  
)
Load Transient Response (VOUT  
)
Overload Hiccup (VOUT)  
VOUT  
20mV/div  
VOUT  
0.5V/div  
VOUT  
0.1V/div  
VSS1/EN1  
2V/div  
IOUT  
50A/div  
VSW1  
10V/div  
IOUT  
IOUT  
50A/div  
10A/div  
VSW2  
10V/div  
IOUT2=50A  
IOUT2=40A to 50A  
1µs/DIV  
200µs/div  
50ms/div  
ꢀꢉꢉꢈꢘꢈꢊꢌꢘꢜꢃ'ꢃꢚꢐꢗ(ꢃ)**+,-  
1!4ꢙꢒꢐꢊ/ꢃ3.1ꢑ  
ꢞꢂꢐꢐꢃ'ꢃꢚꢐꢗ(ꢃ)**+,-  
1!4ꢙꢒꢐꢊ/ꢃ3.1ꢑ  
ꢝꢍꢁꢁꢊꢌꢎꢃꢖꢙꢒꢁꢊ  
1!4ꢙꢒꢐꢊ/ꢃ3.1ꢑ  
1ꢀ  
0ꢂ  
0ꢀ  
ꢇꢂ  
ꢇꢀ  
4ꢂ  
ꢃꢂꢁꢀ  
ꢃꢄꢁꢂ  
ꢃꢀꢁꢀ  
ꢇꢁꢂ  
ꢅꢀ  
ꢄꢂ  
ꢄꢀ  
ꢃꢂ  
ꢃꢀ  
ꢘ7"ꢐꢃꢄꢝ  
ꢘ7"ꢐꢃꢄꢝ  
ꢘ7"ꢐꢃꢄꢝ  
9:ꢗ$ꢕꢃ  
9:ꢗ$ꢕꢄ  
ꢂꢁꢀ  
ꢄꢁꢂ  
ꢀꢁꢀ  
ꢃꢀ  
ꢄꢀ  
ꢅꢀ  
#ꢀ  
ꢂꢀ  
4ꢀ  
ꢃꢀ  
ꢄꢀ  
ꢅꢀ  
#ꢀ  
ꢂꢀ  
4ꢀ  
ꢃꢀ  
ꢄꢀ  
ꢅꢀ  
#ꢀ  
ꢂꢀ  
4ꢀ  
ꢚꢏꢎꢋꢏꢎꢐꢓꢏꢌꢌꢉꢙꢎꢐꢑꢗꢔ  
ꢚꢏꢎꢋꢏꢎꢐꢓꢏꢌꢌꢉꢙꢎꢐꢑꢗꢔ  
ꢈꢞꢎꢍ ꢐꢚꢏꢎꢋꢏꢎꢐꢓꢏꢌꢌꢉꢙꢎꢐꢑꢗꢔ  
www.semtech.com  
© 2006 Semtech Corp.  
9
SC2447  
POWER MANAGEMENT  
Pin Descriptions  
Pin  
Pin Name Pin Function  
1
CS1+  
CS1-  
ROSC  
IN1-  
The Non-inverting Input of Channel 1 Current-sense Amplifier/Comparator  
The Inverting Input of Channel 1 Current-sense Amplifier/Comparator. Normally tied to the  
output of the converter.  
2
3
4
5
An external resistor connected from this pin to AGND sets the oscillator frequency.  
Inverting Input of Channel 1 Error Amplifier. Tie an external resistive divider between output  
1 and ground for output voltage sensing.  
COMP1 The Channel 1 Error Amplifier Output. This pin is used for loop compensation.  
Edge-triggered Synchronization Input. When not synchronized, tie this pin to a voltage above  
1.5V or ground. An external clock (frequency > frequency set with ROSC) at this pin  
synchronizes the controllers.  
6
SYNC  
7
8
9
AGND  
REF  
Analog Signal Ground.  
The Non-inverting Input of Channel 1 Error Amplifier.  
REFOUT Buffered 0.5V internal reference.  
An external reference voltage is applied to this pin. This is also the non-inverting input of  
Channel 2 Error amplifier.  
10  
11  
REFIN  
COMP2 The Channel 2 Error Amplifier Output. This pin is used for loop compensation.  
The Inverting Input of Channel 2 Error Amplifier. Tie an external resistive divider between  
12  
IN2-  
output 2 and ground for output voltage sensing. Tie to AVCC for two-phase single output  
applications.  
The Inverting Input of Channel 2 Current-sense Amplifier/Comparator. Normally tied to the  
output of the converter.  
13  
14  
CS2-  
CS2+  
The Non-inverting Input of Channel 2 Current-sense Amplifier/Comparator.  
An external capacitor tied to this pin sets (1) the soft-start time (2) output overload shutdown  
SS2/EN2 time for Channel 2. Pulling this pin below 0.6V tri-states GHD2 and forces GDL2 low. Leave  
open for two-phase single output applications.  
15  
16  
20  
21  
24  
25  
AVCC  
GDH2  
GDL2  
GDL1  
GDH1  
Power Supply Voltage for the Analog Portion of the Controllers.  
PWM Output 2.  
Logic Enable Signal for Channel 2.  
Logic Enable Signal for Channel 1.  
PWM Output 1.  
An external capacitor tied to this pin sets (1) the soft-start time (2) output overload shutdown  
time for Channel 1. Pulling this pin below 0.6V tri-states GDH1 and forces GDL1 low.  
28  
SS1/EN1  
NC  
17,18,19  
22,23,26,27  
No Connection.  
www.semtech.com  
© 2006 Semtech Corp.  
10  
SC2447  
POWER MANAGEMENT  
Block Diagram  
SYNC  
CLK2  
CLK1  
AVCC  
16  
6
FREQUENCY  
DIVIDER  
CLK  
1.25V  
REFERENCE  
0.5V  
OSCILLATOR  
ROSC  
3
SLOPE COMP.  
COMP1  
5
GDH1  
25  
IN1  
4
SLOPE2  
-
R
S
TRI-STATE1  
EA1  
REF  
8
+
-
+
Q
PWM1  
+
REFSS1  
TGON1  
UV  
SLOPE1  
GDL1  
24  
CS1+  
1
+
+
+
ISEN1  
Σ
CS1-  
2
-
CLK1  
OC1  
PRE-BIAS  
OL1  
DSBL1  
SOFT-START  
&
+
ILIM1+  
OVERLOAD  
HICCUP  
CONTROL 1  
-
SS1/EN1  
28  
SS1/EN1  
1.25V  
2R  
50mV  
SSL1  
0.5V  
+
REFOUT  
9
-
R
UVLO  
4.3/4.5V  
AGND  
7
COMP2  
11  
B
A
SEL  
2.5V  
MUX  
-
Y
CLK2  
+
GDH2  
20  
ANALOG  
SWITCH  
IN2  
12  
-
R
REFIN  
10  
EA2  
TRI-STATE2  
+
+
-
Q
PWM2  
S
+
REFSS2  
TGON2  
UV  
SLOPE2  
CS2+  
14  
GDL2  
21  
+
+
+
CS2-  
13  
ISEN2  
Σ
CLK2  
-
PRE-BIAS  
SOFT-START  
&
OL2  
DSBL2  
+
OC2  
ILIM2+  
OVERLOAD  
HICCUP  
CONTROL 2  
SS2/EN2  
15  
-
SSL2  
SS2/EN2  
50mV  
1.25V  
R
2R  
REFSS2  
Figure 3. SC2447 Block Diagram  
www.semtech.com  
© 2006 Semtech Corp.  
11  
SC2447  
POWER MANAGEMENT  
Block Diagram  
2.85V  
-
+
S
R
OL  
0.5V/3.2V  
Q
9.5uA  
SS/EN  
COMP  
SSL  
-
+
S
R
DSBL  
Q
0.8V  
(0.6V min.)  
R
S
TGON  
CLK  
OC  
17.0uA  
UV  
Q
46.5uA  
Figure 4. Soft-Start and Overload Hiccup Control Circuit  
www.semtech.com  
© 2006 Semtech Corp.  
12  
SC2447  
POWER MANAGEMENT  
Timing Chart  
AVCC  
AVCC  
4.5V  
4.5V  
VSS/EN  
VSS/EN  
3.2V  
3.2V  
Enable Hiccup  
VCOMP  
Enable Hiccup  
VCOMP  
1.5V  
1.5V  
1.25V  
1.25V  
0
0
VREFSS  
VIN-  
VREFSS  
VIN-  
0.5V (VREF  
)
0.5V (VREF)  
0
0
0
0
GDH  
GDL  
GDH  
GDL  
GDH in high impedance state  
GDH in high impedance state  
0
0
t0  
t6  
t7  
t1  
t2  
t4  
t3  
t5  
t2 t4  
t5 t6 t7  
t0  
t1  
(a) Normal Start Up  
(b) Pre-Biased Start Up  
Figure 5. SC2447 Start-up Timing Diagram  
AVCC  
4.3V  
VSS/EN  
VCOMP  
VREFSS  
VIN-  
0.5V (VREF  
)
GDH  
GDL  
GDH in high impedance state  
t17  
t16  
Figure 6. SC2447 UVLO Shutdown Timing Diagram  
www.semtech.com  
© 2006 Semtech Corp.  
13  
SC2447  
POWER MANAGEMENT  
Timing Chart  
VSS/EN  
3.2V  
Enable Hiccup  
Enable Hiccup  
2.85V  
VCOMP  
1.50V  
1.25V  
0.8V  
0.5V  
0V  
VIN-  
0.5V  
Reference Voltage  
Min.(VREF, VREFSS  
)
0V  
GDH in high impedance state  
GDH  
GDL  
0V  
0V  
t14  
t15  
t7  
t8 t9  
t10 t11 t12  
t13  
Figure 7. SC2447 Overload Hiccup Operation Timing Diagram  
www.semtech.com  
© 2006 Semtech Corp.  
14  
SC2447  
POWER MANAGEMENT  
Application Information  
The SC2447 consists of two current-mode synchronous For a given output power, the size of the passive  
buck controllers with many integrated functions. The components are inversely proportional to the switching  
SC2447 can be used to generate:  
frequency, whereas MOSFET/Diode switching losses are  
proportional to the operating frequency. Other issues such  
1) two independent outputs from a common input or as heat dissipation, packaging and the cost issues are  
two different inputs or,  
2) dual-phase output with current sharing,  
also considered. The frequency bands for signal  
transmission should be avoided because of EM  
3) current sourcing/sinking from common or separate interference.  
inputs as in DDR (I and II) memory application.  
Minimum Switch On Time Consideration  
Step-Down Converter  
In the SC2447, the falling edge of the clock turns on the  
Starting from the following step-down converter top MOSFET. The inductor current and the sensed voltage  
specifications,  
ramp up. After the sensed voltage crosses a threshold  
determined by the error amplifier output, the top MOSFET  
is turned off. The propagation delay time from the turn-  
on of the controlling FET to its turn-off is the minimum  
switch on time. This propagation delay time consists of  
the propagation delay time (TDLPWM) from the current sense  
inputs to the PWM output and the propagation delay time  
(TDLTG) from the trailing edge of the PWM input to the  
trailing edge of the phase voltage.  
Input voltage range: Vin [Vin,min,Vin,max  
]
Input voltage ripple (peak-to-peak): Vin  
Output voltage: Vo  
Output voltage accuracy: ε  
Output voltage ripple (peak-to-peak): Vo  
Nominal output (load) current: Io  
Maximum output current limit: Io,max  
Output (load) current transient slew rate: dIo (A/s)  
Circuit efficiency: η  
The SC2447 has a typical propagation delay time from  
the current sense inputs to the PWM output of about  
85ns at room temperature. The shortest on interval  
(TMINON) of the controlling FET is then 85ns+TDLTG. Assuming  
that TDLTG is 45ns, the controller either does not turn on  
the top MOSFET at all or turns it on for at least 130ns.  
TDLTG can be found in the MOSFET driver datasheet.  
Selection criteria and design procedures for the following  
are described.  
1) output inductor (L) type and value  
2) output capacitor (Co) type and value  
3) input capacitor (Cin) type and value  
4) power MOSFETs  
For a synchronous step-down converter, the operating duty  
cycle is VO/VIN. The required on time for the top MOSFET  
is VO/(VIN*fs). If the frequency is set such that the required  
pulse width is less than 130ns, assuming TDLTG is 45ns,  
then the converter will start skipping cycles. Due to  
minimum on-time limitation, simultaneously operating at  
very high switching frequency and very short duty cycle is  
not practical. If the voltage conversion ratio VO/VIN and  
hence the required duty cycle is higher, the switching  
frequency can be increased to reduce the size of passive  
components.  
5) current sensing and limiting circuit  
6) voltage sensing circuit  
7) loop compensation network  
Operating Frequency (fs)  
The switching frequency in the SC2447 is user-  
programmable. The advantages of using constant  
frequency operation are simple passive component  
selection and ease of feedback compensation. Before  
setting the operating frequency, the following trade-offs  
should be considered:  
There will not be enough modulating headroom if the on  
time is made equal to the minimum on time (TMINON). For  
ease of control, set the switching frequency so that the  
pulse width is at least 1.5 times the minimum on time.  
1) Passive component size  
2) Efficiency  
3) EMI condition  
4) Minimum switch on time  
5) Maximum duty ratio  
www.semtech.com  
© 2006 Semtech Corp.  
15  
SC2447  
POWER MANAGEMENT  
Application Information (Cont.)  
Consider the following when choosing inductors:  
Setting the Switching Frequency  
a) Inductor core material: For high efficiency applications  
above 350kHz, ferrite, Kool-Mu and polypermalloy  
materials should be used. Low-cost powdered iron cores  
can be used for cost sensitive-applications below 350kHz  
but with attendant higher core losses.  
The switching frequency is set with an external resistor  
connected from Pin 3 to the ground. The set frequency is  
inversely proportional to the resistor value (Figure 8).  
800  
700  
600  
500  
400  
300  
200  
100  
0
b) Select inductance value: Sometimes the calculated  
inductance value is not available off-the-shelf. The designer  
can choose the next larger standard inductance value.  
The inductance varies with temperature and DC current.  
It is a good engineering practice to re-evaluate the  
resulting current ripple at the rated DC output current.  
c) Current rating: The saturation current of the inductor  
should be at least 1.5 times of the peak inductor current  
under all conditions.  
0
50  
100  
150  
200  
250  
Rosc (k Ohm)  
Output Capacitor (Co) and Vout Ripple  
Figure 8. Free Running Frequency vs. ROSC  
Inductor (L) and Ripple Current  
The output capacitor filters the inductor current in the  
steady state and serves as a reservoir during load transient.  
The output capacitor can be modeled as an ideal capacitor  
in series with its parasitic ESR (Resr) and ESL (Lesl) (Figure  
9 ).  
Both step-down controllers in the SC2447 operate in  
synchronous continuous-conduction mode (CCM)  
regardless of the output load. The output inductor  
selection/design is based on the output DC and transient  
requirements. Both output current and voltage ripples  
are reduced with larger inductors but it takes longer to  
change the inductor current during load transients.  
Conversely, smaller inductors results in lower DC copper  
losses but the AC core losses (flux swing) and the winding  
AC resistance losses are higher. A compromise is to  
choose the inductance such that peak-to-peak inductor  
ripple-current is 20% to 30% of the rated output load  
current.  
Co  
Lesl  
Resr  
Figure 9. An Equivalent Circuit of Co  
If the current through the branch is ib(t), the voltage across  
the terminals will then be  
Assuming that the inductor current ripple (peak-to-peak)  
value is δ*Io, the inductance value will then be  
t
1
dib (t)  
Vo (1D)  
δIo fs  
vo (t) =Vo +  
ib (t)dt + Lesl  
+ Resrib (t).  
L =  
.
Co  
dt  
0
This basic equation illustrates the effect of ESR, ESL  
and Co on the output voltage.  
The peak current in the inductor becomes (1+δ/2)*Io  
and the RMS current is  
δ 2  
12  
The first term is the DC voltage across Co at time t=0.  
The second term is the voltage variation caused by the  
IL,rms = Io 1+  
.
www.semtech.com  
© 2006 Semtech Corp.  
16  
SC2447  
POWER MANAGEMENT  
Application Information (Cont.)  
The voltage rating of aluminum capacitors should be at  
least 1.5Vo. The RMS current ripple rating should also  
be greater than  
charge balance between the load and the converter  
output. The third term is voltage ripple due to ESL and  
the fourth term is the voltage ripple due to ESR. The  
total output voltage ripple is then the vector sum of the  
last three terms.  
δIo  
.
2 3  
Since the inductor current waveform is a triangular with  
peak-to-peak value δ*Io, the ripple-voltage caused by  
inductor current ripple is  
Usually it is necessary to have several capacitors of the  
same type in parallel to satisfy the ESR requirement. The  
voltage ripple cause by the capacitor charge/discharge  
should be an order of magnitude smaller than the voltage  
ripple caused by the ESR. To guarantee this, the  
capacitance should satisfy  
δIo  
8Cofs  
vC  
,
the ripple-voltage due to ESL is  
δIo  
D
vESL = Leslfs  
,
10  
Co >  
.
2πfsResr  
and the ESR ripple-voltage is  
In many applications, several low ESR ceramic capacitors  
are added in parallel with the aluminum capacitors in  
order to further reduce ESR and improve high frequency  
decoupling. Because the values of capacitance and ESR  
are usually different in ceramic and aluminum capacitors,  
the following remarks are made to clarify some practical  
issues.  
vESR = Resr δIo.  
Aluminum capacitors (e.g. electrolytic, solid OS-CON,  
POSCAP, tantalum) have high capacitances and low ESLs.  
The ESR has the dominant effect on the output ripple  
voltage. It is therefore very important to minimize the  
ESR.  
Remark 1: High frequency ceramic capacitors may not  
carry most of the ripple current. It also depends on the  
capacitor value. Only when the capacitor value is set  
properly, the effect of ceramic capacitor low ESR starts  
to be significant.  
When determining the ESR value, both the steady state  
ripple-voltage and the dynamic load transient need to be  
considered. To keep the steady state output ripple-  
voltage < Vo, the ESR should satisfy  
For example, if a 10µF, 4mceramic capacitor is  
connected in parallel with 2x1500µF, 90melectrolytic  
capacitors, the ripple current in the ceramic capacitor is  
only about 42% of the current in the electrolytic  
capacitors at the ripple frequency. If a 100µF, 2mΩ  
ceramic capacitor is used, the ripple current in the  
ceramic capacitor will be about 4.2 times of that in the  
electrolytic capacitors. When two 100µF, 2mceramic  
capacitors are used, the current ratio increases to 8.3.  
In this case most of the ripple current flows in the  
ceramic decoupling capacitor. The ESR of the ceramic  
capacitors will then determine the output ripple-voltage.  
Vo  
δIo  
Resr1  
<
.
To limit the dynamic output voltage overshoot/  
undershoot to within α (say 3%) of the steady state  
output voltage) from no load to full load, the ESR value  
should satisfy  
αVo  
Io  
Resr2  
<
.
Then, the required ESR value of the output capacitors  
should be  
Remark 2: The total equivalent capacitance of the filter  
bank is not simply the sum of all the paralleled capacitors.  
The total equivalent ESR is not simply the parallel  
combination of all the individual ESRs either. Instead  
Resr = min{Resr1,Resr2 }.  
www.semtech.com  
© 2006 Semtech Corp.  
17  
SC2447  
POWER MANAGEMENT  
Application Information (Cont.)  
they should be calculated using the following formulae.  
2
2
(R1a + R1b )2 ω2C1a C1b + (C1a + C1b )2  
Ceq(ω) :=  
2
2
(R1a C1a + R1b C1b )ω2C1aC1b + (C1a + C1b )  
2
2
2
2
R1aR1b(R1a + R1b )ω2C1a C1b + (R1bC1b + R1aC1a  
)
Req(ω) :=  
2
2
(R1a + R1b )2 ω2C1a C1b + (C1a + C1b )2  
where R1a and C1a are the ESR and capacitance of  
electrolytic capacitors, and R1b and C1b are the ESR and  
capacitance of the ceramic capacitors respectively.  
(Figure 10)  
Figure 11. A Simple Model for the Converter Input  
C1a  
C1b  
Ceq  
R1a  
R1b  
Req  
Figure 10. Equivalent RC Branch  
Req and Ceq are both functions of frequency. For rigorous  
design, the equivalent ESR should be evaluated at the  
ripple frequency for voltage ripple calculation when both  
ceramic and electrolytic capacitors are used. If R1a = R1b =  
R1 and C1a = C1b = C1, then Req and Ceq will be frequency-  
independent and  
Req = 1/2 R1 and Ceq = 2C1.  
Figure 12. Typical Waveforms at Converter Input  
It can be seen that high di/dt pulse current flows in the  
input capacitor. Capacitors with low ESL should be used.  
It is also important to place the input capacitor close to  
the MOSFETs on the PC board to reduce trace inductance  
around the pulse current loop.  
Input Capacitor (Cin)  
The input supply to the converter usually comes from a  
pre-regulator. Since the input supply is not ideal, input  
capacitors are needed to filter the current pulses at the  
switching frequency. A simple buck converter is shown in  
Figure 11.  
The RMS value of the capacitor current is approximately  
δ2  
ICin = Io D[(1+ )(1)2 + (1D)].  
12  
η2  
D
D
η
In Figure 11 the DC input power supply has an internal  
impedance Rin and the input capacitor Cin has an ESR of  
Resr. The MOSFET and the input capacitor current  
waveforms, the ESR voltage ripple and the input voltage  
ripple are shown in Figure 12.  
The power dissipated in the input capacitor is then  
2
PCin = ICin Resr.  
www.semtech.com  
© 2006 Semtech Corp.  
18  
SC2447  
POWER MANAGEMENT  
Application Information (Cont.)  
If D1<0.5 and D2<0.5, then  
For reliable operation, the maximum power dissipation  
in the capacitors should not result in more than 10oC of  
temperature rise. Many manufacturers specify the  
maximum allowable ripple current (ARMS), rating of the  
capacitor at a given ripple frequency and ambient  
temperature. The input capacitance should be large  
enough to handle the ripple current. For higher power  
applications, multiple capacitors are placed in parallel to  
increase the ripple current handling capability.  
ICin D Io12 + D2Io2  
.
2
1
Choosing Power MOSFETs  
Power MOSFETs with integrated gate drivers such as  
PIP212, R2J20601NP, PIP202, PIP201 and IP2001,  
IP2002 are suitable for SC2447 application.  
Sometimes meeting tight input voltage ripple  
specifications may require the use of larger input  
capacitance. At full load, the peak-to-peak input voltage  
ripple due to the ESR is  
Current Sensing  
Inductor current sensing is required for the current-mode  
control. Although the inductor current can be sensed  
with a precision resistor in series with the inductor, the  
lossless inductive current sense technique can be used  
in the SC2447. This technique has the advantages of,  
δ
vESR = Resr (1+ )Io.  
2
The peak-to-peak input voltage ripple due to the capacitor  
is  
DIo  
vC ≈  
,
1) lossless current sensing  
Cin fs  
2) lower cost compared to resistive sensing  
3) more accurate compared to RDS(ON) sensing  
From these two expressions, CIN can be found to meet  
the input voltage ripple specification. In a multi-phase  
converter, interleaved switching reduces ripple. The two  
step-down channels of the SC2447 operate at 180 degrees  
from each other. If both step-down channels in the SC2447  
are connected in parallel, both the input and the output  
RMS currents will be reduced.  
The basic arrangement of the inductive current sense is  
shown in Figure 13.  
RL is the equivalent series resistance of the output inductor.  
Rs and Cs form a RC network for inductor current sensing.  
Ripple cancellation effect of interleaving allows the use  
of smaller input capacitors. When converter outputs are  
connected in parallel and interleaved, a smaller inductor  
and capacitor can be used for each channel. The total  
output ripple-voltage remains unchanged. The use of a  
smaller inductor helps speed up the output load  
transient.  
Vin  
Q1  
iL(t)  
L
RL  
Cs  
Cin  
Rs  
Vo  
Q2  
Cout  
Rload  
vC(t)  
When two channels with a common input are interleaved,  
the combined input current waveform depends on the duty  
ratios and the output currents of both channels. Assuming  
that the output current ripple is small, the following formula  
can be used to estimate the RMS ripple current in the  
input capacitor.  
Figure 13. The Basic Structure of Inductive Current  
Sense  
In steady state, the DC voltage across RL is  
VCS = RL IO .  
Let the duty ratio and output current of Channel 1 and  
Channel 2 be D1, D2 and Io1, Io2, respectively.  
Notice that the DC value of VCs is independent of the  
values of L, Rs and Cs. This means that, if only the  
average load current information is needed (such as in  
www.semtech.com  
© 2006 Semtech Corp.  
19  
SC2447  
POWER MANAGEMENT  
Application Information (Cont.)  
average current mode control), this current sensing of 22nF ~ 330nF.  
method is sufficient without time constant matching  
requirement.  
a) When the required current limit ILM is higher than ILMcp  
,
Rs3 is not needed and solve the following three equations  
In the current mode control as implemented in SC2447, for Rs, Rs1, and Rs2:  
voltage ripple on Cs is required for PWM operation. In  
fact, the VCs AC peak-to-peak voltage ripple (denoted as  
VCs) directly affects the signal-to-noise ratio of the PWM  
operation. In general, smaller VCs leads to lower signal-  
to-noise ratio and more noise sensitive operation. Larger  
L
(Rs // Rs1) Cs =  
,
RL  
Rs1  
ILM RL  
= 50mV,  
VCs leads to more circuit (power stage) parameter  
sensitive operation. A good engineering compromise is:  
Rs + Rs1  
and  
Rs2 = Rs // Rs1 .  
VCs~ RL δIo.  
Note that RS2 is made equal to RS//RS1 to reduce effect  
of the bias current of the current amplifier in SC2447.  
It is necessary to match the following time constants to  
equalize the ripple.  
L
b) When the required current limit ILM is less than ILMcp  
remove Rs1 and solve the following two equations for Rs  
and Rs3:  
,
RsCs .  
RL  
For example, L = 1µH and RL = 1.8mΩ, the time constant  
RsCs should be set to 555.6µs. If one selects Cs = 33nF,  
then Rs = 16.9 k.  
L
RsCs =  
,
RL  
Rs  
Scaling the Current Limit  
ILM RL +  
VO = 50mV ,  
Rs3  
Over-current is handled differently in the SC2447  
depending on the direction of the inductor current. If  
the differential sense voltage between CS+ and CS-  
exceeds +50mV, the PWM signal (GDH) will go low. The  
MOSFET driver will turn off the top MOSFET and turn on  
the bottom MOSFET, to limit the inductor current. This  
+50mV is the cycle-by-cycle peak current limit when the  
load is drawing current from the converter. There is no  
cycle-by-cycle current limit when the inductor current flows  
in the reverse direction.  
Rs2 is then calculated from  
Rs3Rs  
.
Rs2 =  
Rs3 Rs  
Vin  
Q1  
Vgs1  
iL(t)  
L
RL  
PN  
Cin  
Rs  
Rs1  
In the circuit of Figure 13, the equivalent inductor current  
limit is set according to  
Vo  
Q2  
Cs  
Cout  
Rload  
Vgs2  
vC(t)  
50mV  
ILMcp  
=
,
RL  
when the load is sourcing current from the converter. If  
RL = 1.8m, then ILMcp = 27.8A. The circuit in Figure 14  
allows the user to scale the equivalent current limit with  
the same RL.  
1
+
Rs2  
2
-
ISEN  
Rs3  
CS in the current sensing network is usually in the range  
Figure 14. Scaling the Equivalent Current Limit  
www.semtech.com  
© 2006 Semtech Corp.  
20  
SC2447  
POWER MANAGEMENT  
Application Information (Cont.)  
Overload Protection and Hiccup  
When C32 = 0.1µF, tssr is calculated as 28.4ms. Note  
that during soft start, the converter only starts switching  
During start-up, the capacitor from the SS/EN pin to when the voltage at SS/EN exceeds 1.25V.  
ground functions as a soft-start capacitor. After the  
converter starts and enters regulation, the same d) The effective start-up time is  
capacitor operates as an overload shutoff timing  
(3.2 1.25)V  
tsso = C32  
capacitor. There is an internal net 9.5µA current source  
charging the soft start capacitor C32(C33), connected to  
the SS/EN pin. The soft-start voltage VSS/EN will reach its  
final value if no current limit occurs. As the load current  
increases, the cycle-by-cycle current-limit comparator will  
first limit the inductor current. If VSS/EN is higher than  
3.2V, an internal net 37µA current source will discharge  
the soft-start capacitor C32(C33) during the off time after  
tripping the over-current comparator. If VSS/EN falls to  
2.85V, the controller will shut off both the top and the  
bottom MOSFETs by pulling down the GDL and tri-stating  
the GDH output (PWM). An internal net 7.5µA current  
source discharges C32(C33) .  
.
9.5µA  
The average inductor current is then  
tsso  
ILeff = ILMcp  
.
tssf 1 +tssf 2 + tssr  
ILeff 0.34 ILMcp and is independent of the soft start  
capacitor value. The converter will not overheat in  
hiccup.  
Setting the Output Voltage  
The non-inverting inputs of channel 1 and channel 2 error  
amplifiers are brought out as device pins (Pin 10 and Pin  
8). These pins can be tied to the precision 0.5V reference  
output (Pin 9) of the SC2447. A simple voltage divider  
(Ro1 at top and Ro2 at bottom) sets the converter output  
voltage. The voltage feedback gain h=0.5/Vo is related  
to the divider resistors as follows:  
When the capacitor is discharged below 0.5V, the overload  
hiccup latch is reset, the 9.5µA current source recharges  
the SS/EN capacitor and converter restarts. The overload  
hiccup function is enabled when the soft start capacitor  
voltage exceeds 3.2V. The converter will repeatedly start  
and shut off until it is no longer overloaded when the  
soft-start voltage exceeds 3.2V. This hiccup mode of  
overload protection is a form of foldback current limiting.  
The following calculations estimate the average inductor  
current when the converter output is shorted to the  
ground:  
h
Ro2 =  
Ro1  
.
1h  
Once either Ro1 or Ro2 is chosen, the other can be  
calculated for the desired output voltage Vo. Since the  
number of standard resistance values is limited, the  
calculated resistance may not be available as a standard  
value resistor. As a result, there will be a set error in the  
converter output voltage. This non-random error is  
caused by the feedback voltage divider ratio. It cannot  
be corrected by the feedback loop.  
a) The time taken to discharge the capacitor from 3.2V  
to 2.85V is  
(3.2 2.85)V  
tssf 1 = C32  
.
37µA  
If C32 = 0.1µF, tssf1 is calculated as 0.945ms.  
b) The time taken to discharge the capacitor from 2.85V  
to 0.5V is  
The following table lists a few standard resistor  
combinations for realizing some commonly used output  
voltages.  
(2.850.5)V  
tssf 2 = C32  
.
7.5µA  
Vo (V)  
(1-h)/h  
0.6  
0.2  
0.9  
0.8  
1.2  
1.4  
1.5  
2
1.8  
2.6  
2.5  
4
3.3  
5.6  
If C32 = 0.1µF, tssf2 is calculated as 31.3ms.  
c) The soft start time from 0.5V to 3.2V is  
Ro1 (Ohm) 200 806 1.4K 2.0K 2.61K 4.02K 5.62K  
Ro2 (Ohm) 1K 1K 1K 1K 1K 1K 1K  
(3.2 0.5)V  
tssr = C32  
.
9.5µA  
www.semtech.com  
© 2006 Semtech Corp.  
21  
SC2447  
POWER MANAGEMENT  
Application Information (Cont.)  
Only the voltages in boldface can be precisely set with  
standard 1% resistors.  
The slope of the compensation ramp is then  
Se=0.4*fs.  
From this table, one may also observe that when the  
value  
The slope of the internal compensation ramp is well above  
the minimal slope requirement for current loop stability  
and is sufficient for all the applications.  
1h Vo 0.5  
=
.
h
0.5  
With the inner current loop stable, the output voltage is  
then regulated with the outer voltage feedback loop. A  
simplified equivalent circuit model of the synchronous  
Buck converter with current mode control is shown in  
Figure 15.  
and its multiples fall into the standard resistor value  
chart (1%, 5% or so), it is possible to use standard value  
resistors to set up the exact and required output voltage  
value.  
The input bias current of the error amplifier also causes  
an error in setting the output voltage. The maximum  
inverting input bias current of the error amplifiers is -  
380nA. Assuming the non-inverting input is tied to the  
0.5V reference output, the percentage error in the  
second output voltage will be –100% · (0.38µA)  
·
R
R
/[0.5 · (R +R ) ]. To keep this error below  
o1 o2  
0.2%, R  
o1 o2  
< 2.6k.  
o2  
k
Loop Compensation  
SC2447 uses current-mode control for both step-down  
channels. Current-mode control is a dual-loop control  
system in which the inductor peak current is loosely  
controlled by the inner current-loop. The higher gain outer  
loop regulates the output voltage. Since the current loop  
makes the inductor appear as a current source, the complex  
high-Q poles of the output LC network are split into a  
dominant pole determined by the output capacitor and  
the load resistance and a high frequency pole. This pole-  
splitting property of current-mode control greatly simplifies  
loop compensation.  
Figure 15. A Simple Model of Synchronous Buck  
Converter with Current Mode Control  
The transconductance error amplifier (in the SC2447)  
has a gain gm of 170µA/V. The target of the compensation  
design is to select the compensation network consisting  
of C2, C3 and R2, along with the feedback resistors Ro1,  
Ro2 and the current sensing gain, such that the converter  
output voltage is regulated with satisfactory dynamic  
performance.  
The inner current-loop is unstable (sub-harmonic  
oscillation) unless the inductor current up-slope is steeper  
than the inductor current down-slope. For stable  
operation above 50% duty-cycle, a compensation ramp  
is added to the sensed-current. In the SC2447 the  
compensation ramp is approximately  
Vramp=D*0.4V.  
www.semtech.com  
© 2006 Semtech Corp.  
22  
SC2447  
POWER MANAGEMENT  
Application Information (Cont.)  
PC Board Layout Issues  
Circuit board layout is very important for the proper  
operation of high frequency switching power converters.  
A power ground plane is required to reduce ground  
bounces. The followings are suggested for proper layout.  
Power Stage  
1) Separate the power ground from the signal ground. In  
the SC2447, the power ground PGND should be tied to  
the source terminal of lower MOSFETs. The signal ground  
AGND should be tied to the negative terminal of the  
output capacitor.  
2) Minimize the size of high pulse current loop. Place  
the top MOSFET, bottom MOSFET and the input  
capacitors close to each other with short and wide traces.  
In addition to the aluminum energy storage capacitors,  
add multi-layer ceramic (MLC) capacitors from the input  
to the power ground to improve high frequency bypass.  
Control Section  
1) The frequency-setting resistor ROSC should be placed  
close to Pin 3. Trace length from this resistor to the  
analog ground should be minimized.  
2) Solder the bias decoupling capacitor right across the  
AVCC and analog ground AGND.  
3) Place the current sensing network away from the  
power circuit and close to the corresponding CS+ and  
CS- pins. Use X7R ceramic capacitor for the sensing  
capacitor because of its temperature stability.  
4) Use an isolated local ground plane for the controller  
and tie it to the negative side of output capacitor bank.  
www.semtech.com  
© 2006 Semtech Corp.  
23  
SC2447  
POWER MANAGEMENT  
Typical Application Schematic  
www.semtech.com  
© 2006 Semtech Corp.  
24  
SC2447  
POWER MANAGEMENT  
Typical Application Schematic  
www.semtech.com  
© 2006 Semtech Corp.  
25  
SC2447  
POWER MANAGEMENT  
Outline Drawing - TSSOP-28  
DIMENSIONS  
INCHES MILLIMETERS  
MIN NOM MAX MIN NOM MAX  
A
DIM  
A
D
E
e
N
-
-
-
-
-
-
-
-
-
-
-
-
.047  
1.20  
0.15  
1.05  
0.30  
0.20  
A1 .002  
A2 .031  
.006 0.05  
.042 0.80  
.012 0.19  
.007 0.09  
2X E/2  
b
c
D
.007  
.003  
E1  
.378 .382 .386 9.60 9.70 9.80  
PIN 1  
INDICATOR  
E1 .169 .173 .177 4.30 4.40 4.50  
E
e
.252 BSC  
.026 BSC  
6.40 BSC  
0.65 BSC  
L
L1  
N
01  
aaa  
.018 .024 .030 0.45 0.60 0.75  
ccc  
2X N/2 TIPS  
C
1 2 3  
(.039)  
(1.0)  
e/2  
28  
-
28  
-
0
8
0
8
B
.004  
.004  
.008  
0.10  
0.10  
0.20  
bbb  
ccc  
D
aaa C  
A2  
A
SEATING  
PLANE  
H
C
A1  
A-B D  
bxN  
bbb  
C
c
GAGE  
PLANE  
0.25  
L
01  
(L1)  
DETAIL A  
SEE DETAIL A  
SIDE VIEW  
NOTES:  
1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).  
2. DATUMS -A- AND -B- TO BE DETERMINED AT DATUM PLANE -H-  
3. DIMENSIONS "E1" AND "D" DO NOT INCLUDE MOLD FLASH, PROTRUSIONS  
OR GATE BURRS.  
4. REFERENCE JEDEC STD MO-153, VARIATION AE.  
Land Pattern - TSSOP-28  
X
DIMENSIONS  
DIM  
INCHES  
(.222)  
.161  
.026  
.016  
MILLIMETERS  
(5.65)  
4.10  
0.65  
0.40  
1.55  
7.20  
C
G
P
X
Y
Z
(C)  
G
Y
Z
.061  
.283  
P
NOTES:  
1. THIS LAND PATTERN IS FOR REFERENCE PURPOSES ONLY.  
CONSULT YOUR MANUFACTURING GROUP TO ENSURE YOUR  
COMPANY'S MANUFACTURING GUIDELINES ARE MET.  
Contact Information  
Semtech Corporation  
Power Management Products Division  
200 Flynn Road, Camarillo, CA 93012  
Phone: (805)498-2111 FAX (805)498-3804  
www.semtech.com  
© 2006 Semtech Corp.  
26  

相关型号:

SC2449

BI PHASE DUAL CONTROLLER
SEMTECH

SC2449EVB

BI-Phase/Dual Controller
SEMTECH

SC2449ISWTR

BI-Phase/Dual Controller
SEMTECH

SC2449ISWTRT

BI-Phase/Dual Controller
SEMTECH

SC2449_07

BI-Phase/Dual Controller
SEMTECH

SC245

THYRISTOR
DIGITRON

SC245

Hermetic Triacs
NJSEMI

SC2450

BI-Phase/Dual Controller
SEMTECH

SC2450EVB

BI-Phase/Dual Controller
SEMTECH

SC2450ISW.TR

Analog Circuit,
SEMTECH

SC2450ISWTR

BI-Phase/Dual Controller
SEMTECH

SC2450ISWTRT

BI-Phase/Dual Controller
SEMTECH