SC2599EVB [SEMTECH]

Low Voltage DDR Termination Regulator;
SC2599EVB
型号: SC2599EVB
厂家: SEMTECH CORPORATION    SEMTECH CORPORATION
描述:

Low Voltage DDR Termination Regulator

双倍数据速率
文件: 总13页 (文件大小:1026K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SC2599  
Low Voltage DDR  
Termination Regulator  
POWER MANAGEMENT  
Features  
Description  
The SC2599 is designed to meet the latest JEDEC specifi-  
cation for low power DDR3 and DDR4, while also support-  
ing DDR and DDR2. The SC2599 regulates up to + 3A for  
VTT and up to + 40mA for VREF.  
Input to linear regulator (VIN): 1.0V to 3.6V  
Output (VTT): 0.5V to 1.8V  
Bias Voltage (VDD): 2.35V to 3.6V  
Up to 3A sink or source from VTT for DDR through  
DDR4  
+ 1% over temperature (with respect to VDDQ/2, in-  
cluding internal resistor divider variation) VREF and  
VTT  
Logic-level enable input  
Built in soft-start  
Thermal shutdown with auto-restart  
Over current protection  
Minimal output capacitance  
The SC2599 also provides an accuracy of +1% over tem-  
perature (which takes into account the internal resistor  
divider) for VREF and VTT for the memory controller and  
DRAM.  
SC2599 protection features include thermal shutdown  
with auto-restart for VTT and over-current limit for both  
VTT and VREF.  
Under-Voltage-Lock-Out circuits are included to ensure  
that the output is off when the bias voltage falls below its  
threshold, and that the part behaves elegantly in power-  
up or power-down.  
Package: MLPD8 - 2mm x 2mm x 0.6mm  
Applications  
The low external parts count combined with industry  
leading specifications make SC2599 an attractive solution  
for DDR through DDR4 termination.  
DDR Memory Termination  
Typical Application Circuit  
CIN  
CVDD  
1μF  
2x10μF  
VDDQ  
VDD VIN  
VDDQ  
VTT  
VTTS  
VREF  
CVTT  
3x10μF  
(1)  
CVREF  
EN  
GND  
PAD  
0.1μF  
Note:  
(1) This component is optional.  
Rev. 2.0  
1
SC2599  
Pin Configuration  
Ordering Information  
Device  
Package  
SC2599ULTRC(1)(2)  
SC2599EVB  
MLPD8  
Evaluation Board  
Notes:  
(1) Available in tape and reel only. A reel contains 3000 devices.  
(2) Lead-free packaging only. Device is WEEE and RoHS compliant  
and halogen-free.  
VDD  
VIN  
1
2
3
4
8
7
6
5
VDDQ  
VREF  
VTTS  
EN  
Therm al  
PAD  
VTT  
G ND  
MLPD8 - 2mm x 2mm x 0.6mm  
Marking Information  
C99  
Yw  
nnn = Part Number (Example: C99)  
Yw = Datecode  
2
SC2599  
Absolute Maximum Ratings  
Thermal Information  
Thermal Resistance, Junction to Ambient(2) (°C/W) . . . 57  
Thermal Resistance, Junction to Ambient(3) (°C/W) . . . 45  
Maximum Junction Temperature (°C) . . . . . . . . . . . . . . +150  
Storage Temperature Range (°C). . . . . . . . . . . . -65 to +150  
Peak IR Reflow Temperature (10s to 30s) (°C) . . . . . . . +260  
VIN (V). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to 4.3  
VDD to GND (V). . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to 4.3  
VTT to GND (V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to VDD  
EN (V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to 6.0  
Other pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to 4.3  
ESD Protection Level (HBM)(1) (kV). . . . . . . . . . .  
ESD Protection Level (CDM)(1) (kV). . . . . . . . . . .  
2.5  
1
Exceeding the above specifications may result in permanent damage to the device or device malfunction. Operation outside of the parameters  
specified in the Electrical Characteristics section is not recommended.  
Notes:  
(1) HBM: tested according to ANSI/ESDA/JEDEC JS-001. CDM: tested according to JESD-C101E.  
(2) Calculated from package in still air, mounted to 3 x 4.5 (in), 4 layer FR4 PCB with thermal vias under the exposed pad per JESD51 standards.  
(3) Based upon lab measurement on EVB board: 3 x 2 (in), 4 layer FR4 PCB with thermal vias under the exposed pad.  
Electrical Characteristics  
Unless otherwise noted TJ = -40 to +125°C, VIN = 1.2V, VDD = 3.3V . Typical values are at TA = 25°C.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Units  
Input Supplies  
LDO Supply Voltage  
VDD Supply Voltage  
VIN  
1
3.6  
3.6  
V
V
VDD  
2.35  
2.0  
Measured at VDD pin, rising edge  
Measured at VDD pin, falling edge  
2.25  
2.15  
VDD UVLO Threshold  
V
1.95  
VDD UVLO Hysteresis  
0.1  
415  
160  
100  
3
V
Quiescent Current for VDD  
IQ  
Load =0A, EN = High, VVDDQ > 1V  
Load =0A, EN = Low, VVDDQ > 1V, IREF = 0A  
Load =0A, EN = Low, VVDDQ = 0V, IREF = 0A  
Load =0A, EN = High  
700  
400  
160  
30  
μA  
μA  
μA  
μA  
μA  
Shutdown Current for VDD  
IQSD  
Quiescent Current for VIN  
Shutdown Current for VIN  
VTT Output  
IIN  
IINSD  
Load =0A, EN = Low  
3
20  
Output Voltage Range  
VTT  
0.5  
-1  
1.8  
+1  
V
Output Voltage Tolerance with  
respect to VDDQ/2  
Load = 0A, VTT = 0.5V to 1.8V  
%
3
SC2599  
Electrical Characteristics (continued)  
Parameter  
Symbol  
Conditions  
-2A < Load < 2A  
Min  
-25  
40  
Typ  
Max  
Units  
Load Regulation  
+25  
150  
300  
mV  
High-Side MOSFET (source), Load = 0.1A  
Low-Side MOSFET (sink), Load = 0.1A  
EN = Low  
100  
140  
8
On-Resistance  
mΩ  
Ω
50  
Discharge MOSFET On-Resistance  
Reference Input/Output  
VDDQ Voltage Range  
VDDQ Input Bias Current  
Tolerance with respect to VDDQ/2  
VREF Source Current Limit  
VREF Sink Current Limit  
Protection  
1
0
3.6  
10  
1
V
ꢀA  
%
Load = 0A, VREF = 0.5V to 1.8V  
-1  
40  
- 40  
mA  
Thermal Shutdown Threshold  
Thermal Restart Hysteresis  
Output Current Limit Threshold  
Soft-Start  
160  
20  
0C  
0C  
A
Ambient Temperature: 25 0C  
3.7  
4.3  
VTT Soft-Start Time  
From EN = High to VTT = 90% VREF  
40  
ꢀs  
Logic  
EN = High  
EN = Low  
1.7  
-1  
EN Logic Threshold  
EN Input Current  
V
0.3  
1
ꢀA  
4
SC2599  
Block Diagram  
Therm al  
Shutdown  
VDD  
1
2
VIN  
UVLO  
EN  
5
Soft-Start  
DRIVER  
LOGIC  
R
3
VTT  
VDDQ  
8
+
-
R
4
GND  
EN\  
VREF  
7
6
VTTS  
Pin Descriptions  
Pin #  
Pin Name  
Pin Function  
1
VDD  
Input bias voltage — 2.35V to 3.6V . Connect a ceramic capacitor from this pin to GND.  
LDO input range — 1V to 3.6V. Connect ceramic capacitors from this pin to GND.  
2
VIN  
3
4
5
6
7
VTT  
GND  
EN  
Output of the linear regulator. Connect ceramic capacitors from this pin to GND.  
Ground reference for the IC.  
Logic input to enable or disable the VTT output. If EN pin is grounded to shut down the linear regulator,  
VREF remains active.  
VTTS  
VREF  
VTT output sense input. Connect VTTS to the output at the output capacitor to implement remote sense.  
The reference output, equal to one half of VDDQ. Connect a 100nF capacitor from this pin to GND.  
8
VDDQ  
GND  
External reference input; range 1V to 3.6V.  
Thermal pad. This pad must be connected to GND. For optimal heat sinking, connect to the GND plane us-  
ing multiple vias.  
PAD  
5
SC2599  
Detailed Application Circuit  
C1  
C2  
C3  
PAD  
VTT  
VIN  
G ND  
VTT 3  
VIN 2  
4
5 EN  
EN  
C4  
C5  
6 VTTS  
7 VREF  
VDD  
1
8
3.3V  
C6  
R1  
VDDQ  
VREF  
100 O hm  
C7  
C8  
Bill Of Materials  
Reference Designator  
Description  
Value  
Part Number  
Manufacture  
C1, C2, C3, C4, C5,  
Ceramic Capacitor  
Ceramic Capacitor  
Ceramic Capacitor  
10uF/0805/X7R  
1uF/0603/X7R  
0.1uF/0603/X7R  
GRM21BR71A106KE51  
Murata  
Murata  
Murata  
C6  
GRM188R71A105KA61D  
GRM188R71H104KA93D  
C7, C8  
6
SC2599  
Typical Characteristics  
Characteristics in this section are based upon the detailed application circuit on page 6.  
0.6V VREF Regulation Sink/Source  
0.6V VTT Regulation Sink/Source  
VIN = 1.2V, VDDQ = 1.2V, VDD = 3.3V  
VIN = 1.2V, VDDQ = 1.2V, VDD = 3.3V  
0.620  
0.620  
0.610  
0.600  
Sink  
Source  
Sink  
Source  
250C  
850C  
-400C  
250C  
850C  
-400C  
0.610  
0.600  
0.590  
0.580  
0.590  
0.580  
-0.05 -0.04 -0.03 -0.02 -0.01  
0
0.01 0.02 0.03 0.04 0.05  
-3  
-2  
-1  
0
1
2
3
VTT Current (A)  
VREF Current (A)  
0.75V VREF Regulation Sink/Source  
0.75V VTT Regulation Sink/Source  
VIN = 1.5V, VDDQ = 1.5V, VDD = 3.3V  
VIN = 1.5V, VDDQ = 1.5V, VDD = 3.3V  
0.770  
0.760  
0.750  
0.770  
Sink  
Source  
Sink  
Source  
250C  
850C  
-400C  
250C  
850C  
-400C  
0.760  
0.750  
0.740  
0.730  
0.740  
0.730  
-0.05 -0.04 -0.03 -0.02 -0.01  
0
0.01 0.02 0.03 0.04 0.05  
-3  
-2  
-1  
0
1
2
3
VREF Current (A)  
VTT Current (A)  
0.9V VREF Regulation Sink/Source  
0.9V VTT Regulation Sink/Source  
VIN = 1.8V, VDDQ = 1.8V, VDD = 3.3V  
VIN = 1.8V, VDDQ = 1.8V, VDD = 3.3V  
0.920  
0.910  
0.900  
0.920  
Sink  
Source  
Sink  
Source  
250C  
850C  
-400C  
250C  
850C  
-400C  
0.910  
0.900  
0.890  
0.880  
0.890  
0.880  
-0.05 -0.04 -0.03 -0.02 -0.01  
0
0.01 0.02 0.03 0.04 0.05  
-3  
-2  
-1  
0
1
2
3
VTT Current (A)  
VREF Current (A)  
7
SC2599  
Typical Characteristics  
Characteristics in this section are based upon the detailed application circuit on page 6.  
Start-Up and Shutdown Using EN  
Shutdown Using VDD  
VREF = 40mA, VTT = 1A  
VIN = 1.2V, VDD = 3.3V, VREF = 0A, VTT = 0A  
EN (2V/div)  
VIN = VDDQ (200mV/div)  
VDDQ (200mV/div)  
VTT (200mV/div)  
VREF (200mV/div)  
VDD (1V/div)  
VTT (200mV/div)  
VREF (200mV/div)  
500us/div  
5ms/div  
Start-Up Using VDDQ  
VREF = 0A, VTT = 0A, VIN = 1.2V  
Start-Up Using VDD  
VREF = 40mA, VTT = 1A  
VDDQ (200mV/div)  
VIN = VDDQ (200mV/div)  
VDD (1V/div)  
VDD (1V/div)  
VTT (200mV/div)  
VTT (200mV/div)  
VREF (200mV/div)  
VREF (200mV/div)  
2ms/div  
1ms/div  
Load Transient Source and Sink: -1A to +1A  
VDDQ = 1.2V, VIN = 1.2V, VDD = 3.3V  
Current Limit with VTT Shorted  
VDDQ = 1.2V, VIN = 1.2V, VDD = 3.3V  
Input Current (1A/div)  
7mV  
VTT (20mV/div)  
VTT (100mV/div)  
Source Current Load (1A/div)  
Sink Current Load (1A/div)  
200us/div  
10ms/div  
8
SC2599  
Applications Information  
theory tells us that the input capacitance can be chosen to  
be half of the output capacitance.  
VTT Output  
VTT starts to ramp up when EN and VDD meet their startup  
thresholds. SC2599 regulates VTT to the voltage at VREF  
and can support up to 3A for sourcing or sinking  
capability.  
Ceramic capacitors have a capacitance value that degrades  
with temperature, DC and AC bias, and their chemistry.  
Usually, ceramic capacitors need to be derated by 50%  
when operated at their rated DC voltage. Therefore, it is  
recommended to use capacitors with a voltage rating of  
6.3V or higher for 3.3V or lower applications.  
To achieve tight regulation and fast dynamic response at  
VTT, it is recommended to connect the VTTS sense signal  
to VTT at the ceramic output capacitors.  
Stability and VTT Capacitor  
VREF Output  
Figure 1 shows the small signal model for the sourcing  
current loop stability. The low frequency pole is formed  
by COUT and RL. Since this pole depends on those variables,  
it is recommended to have a minimum of 10uF COUT for  
stable condition. SC2599 has an internal compensation  
network to ensure the stability as the load changes. Figure  
2 shows the bode plot with the crossover frequency at  
around 0.8MHz and 36 degree phase margin. Another  
parameter effecting to the loop stability is parasitic induc-  
tance in PCB layout and output capacitor ESL. The gain  
plot shows that a peaking rising after the crossing fre-  
quency is due to ESL effect. Minimizing the ESL reduces  
this peaking.  
VREF starts to ramp up when VDD meets the UVLO thresh-  
old. SC2599 regulates VREF to one-half of VDDQ. To  
reduce the component count and provide a good accu-  
racy reference for VTT, SC2599 includes an internal resistor  
divider network. SC2599 is capable of sinking or sourcing  
up to 60mA at VREF. To reduce the component count  
further, SC2599 does not require the user to have a local  
ceramic capacitor at the VREF pin - but it is recommended  
to layout with a capacitor place holder.  
EN Input  
The EN pin is used to enable and disable VTT only; it does  
not control VREF. When EN is pulled low, the VTT output is  
discharged internally to ground through an 8Ω FET.  
VIN  
VTT  
Protection  
gm *VG S  
-
SC2599 has thermal protection with auto-restart. When  
the junction temperature is above the thermal shutdown  
threshold (160OC), SC2599 disables VTT, while VREF  
remains present. When the junction temperature drops  
below the hysteretic window, typically at 140OC, SC2599  
will be enabled again.  
+
CIN  
VG S  
-
+
RL  
CO UT  
VREF  
ZC  
SC2599 has a built-in current limit feature to prevent  
damage to the sink and source FETs. If VTT is shorted to  
VDD or ground, SC2599 will sink or source current up to  
the current limit threshold.  
Figure 1 — Small Signal Model  
PCB Layout  
The SC2599 requires minimal external components to  
provide a VTT solution. Figure 3 shows the component  
placement and layout for the application circuit on page  
6. The thermal pad should be connected to the GND plane  
using multiple vias.  
Input Capacitor  
The primary purpose of input capacitance is to provide the  
charge to the VTT output capacitor when there is a load  
transient at VTT. In the typical application circuit, VDDQ  
equals VIN, and VTT equals one-half of VDDQ. As a result,  
9
SC2599  
PG ND on top and bottom layers  
C3  
C2  
VTT copper pour on top  
and bottom layers  
C1  
C4  
C5  
Route VTT sense  
trace on inner layer  
VIN copper pour on top  
and/or bottom layer  
C 4,C5 shown located  
on bottom side  
C6  
R1 shown located on  
bottom side  
Thermal pad must connect to the  
GND plane using multiple vias.  
Figure 2 — Gain and Phase Bode Plot  
Fc = 810KHz, PM = 36 degree at 1A Source  
Figure 3 — Component Placement and Layout  
Critical Layout Guidelines  
CVTT  
Bias and Reference Capacitors:  
Sinking Current Loop  
A 1ꢀF capacitor must be placed as close as possible to the  
IC and connected between pin 6 (VDD) and the ground  
plane.  
VTT  
G ND  
VIN  
CVIN  
Q B  
A 0.1ꢀF capacitor must be placed as close as possible to  
the IC and connected between pin 4 (VREF) and the  
ground plane. The user has an option to add this capaci-  
tor to the circuit but it is recommended to layout with a  
capacitor place holder.  
CVTT  
VDDQ Reference Capacitor:  
VTT  
VIN  
G ND  
An R-C filter from the supply used for VDDQ consisting of  
a 100 Ω resistor and a 0.1ꢀF capacitor should be placed as  
close as possible to the IC and connected between pin 5  
(VDDQ) and the ground plane, as shown on page 6.  
Q T  
Sourcing Current  
Loop  
CVIN  
VTT and VIN Capacitors:  
Since SC2599 provides both sink and source capabilities,  
the loop impedance through the input and VTT capacitors  
plays an important role in circuit stability. Figure 4 shows  
both sink and source current loops. Close attention to  
board layout is needed to reduce ESL in these loops.  
During a bode plot measurement for the sourcing current  
loop, an injected small AC signal flows around the loop  
from CIN to QT through CVTT and then returns to CVIN through  
the ground plane. Therefore, it is recommended to keep  
the CIN and CVTT capacitors as close as possible to reduce  
Figure 4 — Small AC Signal Current Loops  
the ESL impedance between them. Similarly in the sinking  
current loop, an injected small AC signal flows from CVTT  
through QB and then returns to CVTT through the GND  
plane. Therefore, it is recommended to keep ESL small for  
this loop. Balancing the ESL of those loops gives the best  
case for stability.  
10  
SC2599  
Outline Drawing — MLPD8  
11  
SC2599  
Land Pattern — MLPD8  
12  
SC2599  
© Semtech 2015  
All rights reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright  
owner. The information presented in this document does not form part of any quotation or contract, is believed to be  
accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any conse-  
quence of its use. Publication thereof does not convey nor imply any license under patent or other industrial or intellec-  
tual property rights. Semtech assumes no responsibility or liability whatsoever for any failure or unexpected operation  
resulting from misuse, neglect improper installation, repair or improper handling or unusual physical or electrical stress  
including, but not limited to, exposure to parameters beyond the specified maximum ratings or operation outside the  
specified range.  
SEMTECH PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-  
SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF SEMTECH PRODUCTS  
IN SUCH APPLICATIONS IS UNDERSTOOD TO BE UNDERTAKEN SOLELY AT THE CUSTOMER’S OWN RISK. Should a customer  
purchase or use Semtech products for any such unauthorized application, the customer shall indemnify and hold  
Semtech and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs damages  
and attorney fees which could arise.  
Notice: All referenced brands, product names, service names and trademarks are the property of their respective  
owners.  
Contact Information  
Semtech Corporation  
Power Mangement Products Division  
200 Flynn Road, Camarillo, CA 93012  
Phone: (805) 498-2111 Fax: (805) 498-3804  
www.semtech.com  
13  

相关型号:

SC2599ULTRC

Low Voltage DDR Termination Regulator
SEMTECH

SC25A

High current capability
GXELECTRONICS

SC25B

High current capability
GXELECTRONICS

SC25D

High current capability
GXELECTRONICS

SC25G

High current capability
GXELECTRONICS

SC25J

High current capability
GXELECTRONICS

SC25K

High current capability
GXELECTRONICS

SC25M

High current capability
GXELECTRONICS

SC25M1000A3S81030

Aluminum Electrolytic Capacitor, Polarized, Aluminum (wet), 25V, 20% +Tol, 20% -Tol, 1000uF, Through Hole Mount, ROHS COMPLIANT
YAGEO

SC25M1000A5FW1030

Aluminum Electrolytic Capacitor, Polarized, Aluminum (wet), 25V, 20% +Tol, 20% -Tol, 1000uF, Through Hole Mount, ROHS COMPLIANT
YAGEO

SC25M1000A5SQ1030

Aluminum Electrolytic Capacitor, Polarized, Aluminum (wet), 25V, 20% +Tol, 20% -Tol, 1000uF, Through Hole Mount, ROHS COMPLIANT
YAGEO

SC25M1000APSV1025

Aluminum Electrolytic Capacitor, Polarized, Aluminum (wet), 25V, 20% +Tol, 20% -Tol, 1000uF, Through Hole Mount, ROHS COMPLIANT
YAGEO