SC2604ULTRT [SEMTECH]

Switching Controller, Voltage-mode, 480kHz Switching Freq-Max, PDSO8, 2 X 3 MM, 0.60 MM HEIGHT, HALOGEN FREE AND ROHS COMPLIANT, MLPD-8;
SC2604ULTRT
型号: SC2604ULTRT
厂家: SEMTECH CORPORATION    SEMTECH CORPORATION
描述:

Switching Controller, Voltage-mode, 480kHz Switching Freq-Max, PDSO8, 2 X 3 MM, 0.60 MM HEIGHT, HALOGEN FREE AND ROHS COMPLIANT, MLPD-8

开关 光电二极管
文件: 总16页 (文件大小:405K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SC2604  
Simple PWM Boost Controller  
with Input Disconnect FET Drive  
POWER MANAGEMENT  
Features  
Description  
„
„
„
„
„
„
„
„
„
„
„
„
„
„
Input Voltage Range: 4.5V to 16V  
1% Voltage Reference Accuracy  
Up to 95% Efficiency  
Input Disconnect FET Drive  
In-rush Current Control  
Internal Compensation  
Programmable Current Limit  
Programmable Soft Start  
800mA Typical PWM Gate Drive  
400kHz Switching Frequency  
Under Voltage Lockout  
<200uA Shutdown Current  
-40oC to +85oC Temperature Range  
MSOP-8 and MLPD-UT8 Package, Pb Free, Halogen  
Free and WEEE/RoHS Compliant  
The SC2604 is a versatile, low-cost, voltage-mode PWM  
controller designed for boost DC/DC power supply  
applications. It features input disconnect FET driver  
allowing power source and load separation at shutdown  
mode, which eliminates possible leakage current from  
source to load. Also, it prevents catastrophic failure when  
output is shorted during operation.  
The SC2604 also includes temperature compensated  
voltage reference, internal ramp, current limit comparator,  
internally compensated error amplifier, and floating driver  
with charge pump. Programmable soft start controls  
in-rush current and reduces output voltage overshoot.  
Hiccup mode over-current protection allows system auto-  
retry and ease of trouble shooting.  
Applications  
Internally compensated feedback loop makes power  
supply design simple, and eliminates the need for external  
compensation network.  
„
„
„
„
„
„
„
Portable Devices  
Flat Panel TV  
TV Set Top Box  
Auxiliary Supplies  
Peripheral Card Supplies  
Industrial Power Supply  
High Density DC/DC Conversion  
The SC2604 is available in low profile MLPD-UT and  
MSOP-8 package with rated temperature range of -40oC  
to +85oC.  
Typical Application Circuit  
Rs  
D1  
Vo  
Vin  
sensing resistor  
Q1  
L1  
1
2
+
+
C1  
C4  
C7  
Rcc  
U1  
1
2
5
7
8
3
6
4
CS  
DRV  
GATE  
FB  
R3  
R5  
Q2  
VIN  
SS/VREF  
OCP/EN  
GND  
C11  
C13  
C14  
SC2604  
Figure 1. 12V to 25V/1A Boost Converter with Over Current Protection  
December 31, 2010  
www.semtech.com  
1
SC2604  
Pin Configuration, MSOP-8  
Pin Configuration, MLPD-UT8  
CS  
VIN  
DRV  
1
2
3
4
8
7
6
5
CS  
1
2
3
8
7
6
5
DRV  
OCP/EN  
FB  
OCP/EN  
FB  
VIN  
GATE  
GND  
GATE  
GND  
4
SS/VRF  
SS/VREF  
2mm x 3mm x 0.6mm MLPD-UT8  
Marking Information, MSOP-8  
Marking Information, MLPD-UT8  
Bottom Mark  
Top Mark  
nnnn=Part Number Code (Example AS00)- Reference Part No. Code for MSOP  
yyww=Date Code (Example: 0752)  
nnn=Part Number (Example FSA) - Reference Part No. Code for small MLP  
yw =Datecode (Reference Package Marking Design Guide lines, Appendix A)  
xxx = Semtech Lot No. (Example: 901)  
xxxx = Semtech Lot No. (Example: E901)  
xxxx = Semtech Lot No. (Example: 01-1)  
Ordering Information  
Notes:  
Device  
Package  
(1) Available in tape and reel only. A reel contains 2,500 devices.  
(2) Available in lead-free package only. Device is Pb Free, Halogen  
Free, and WEEE/RoHS compliant.  
SC2604MSTRT(1)(2)  
SC2604ULTRT(1)(2)  
SC2604EVB-1  
MSOP-8  
2mm x 3mm x 0.6mm MLPD-UT8  
Evaluation Board, MSOP-8  
Evaluation Board, MLPD-8  
SC2604EVB-2  
2
www.semtech.com  
© 2010 Semtech Corp.  
SC2604  
Absolute Maximum Ratings  
Thermal Information  
Thermal Resistance, Junction to Ambient(1)  
VIN Supply Voltage ……………………………… -0.3 to 20V  
CS Pin Voltage………………………………………-0.3 to 20V  
MSOP-8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 °C/W  
MLPD-UT8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50 °C/W  
GATE Pin Voltage……………………………………-0.3 to 20V  
DRV Pin Voltage ……………………………………-0.3 to 25V  
Maximum Junction Temperature . . . . . . . . . . . . . . . . . 15 0°C  
Storage Temperature Range . . . . . . . . . . . . . . .-45 to +150 °C  
Lead Temperature (Soldering) 10 sec . . . . . . . . . . . . . . . . . . 300 °C  
OCP/EN Pin Voltage …………………………………-0.3 to 7V  
SS/VREF Pin Voltage …………………………………-0.3 to 7V  
FB Pin Voltage ………………………………………-0.3 to 7V  
Peak IR Reflow Temperature …………………………. 260°C  
ESD Protection Level(2) ………………………………… 2000V  
Recommended Operating Conditions  
Input Voltage Range …………………………… 4.5V to 16V  
Exceeding the above specifications may result in permanent damage to the device or device malfunction. Operation outside of the parameters specified in the  
Electrical Characteristics section is not recommended.  
NOTES-  
(1) Calculated from package in still air, mounted to 3x 4.5, 4 layer FR4 PCB with thermal vias under the exposed pad per JESD51 standards.  
(2) Tested according to JEDEC standard JESD22-A114-B.  
Electrical Characteristics  
Unless otherwise noted, VIN = 12V, VO = 25V, -40°C < TA = TJ < 125°C.  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Input Supply  
VIN Supply Voltage  
VIN Start Voltage  
4.5  
16  
V
VIN Rising  
4.2  
400  
6.0  
4.5  
V
VIN Start Hysteresis  
VIN Supply Current  
VIN Shutdown Current  
Error Amplifier  
Feedback Voltage  
Feedback Bias Current  
Error Amplifier Gain (1)  
Oscillator  
mV  
mA  
µA  
Switching, GATE pin floating  
OCP/EN = Low  
9.0  
200  
IO = 100mA  
1.225  
1.250  
0.5  
1.275  
1.0  
V
VIN = 12V, VFB = VSS/VREF  
µA  
90  
V/V  
Oscillator Frequency  
Maximum Duty Cycle  
Internal Ramp Peak (2)  
Internal Ramp Valley (2)  
Regulation  
320  
86  
400  
90  
480  
kHz  
%
V
1.4  
0.4  
V
Load Regulation  
IO = 0.1A to 1A  
0.5  
%
VIN = 5V to 16V, IO = 0.1A  
0.125  
Line Regulation  
%/V  
VIN = 5V to 16V, IO = 0.1A, TJ = 25°C  
0.065  
3
www.semtech.com  
© 2010 Semtech Corp.  
SC2604  
Electrical Characteristics (Cont.)  
Unless otherwise noted, VIN = 12V, VO = 25V, -40°C < TA = TJ < 125°C.  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
PWM Switch Gate Drive  
Gate Source Current  
Gate Sink Current  
VIN = 12V, CGATE = 10nF  
VIN = 12V, CGATE = 10nF  
0.5  
0.5  
0.8  
0.8  
A
A
PWM Switch Soft Start  
Soft Start Charge Current  
55  
µA  
Pull down below this level to  
disable PWM Switch gate  
SS/VREF Threshold to Shutdown Switch  
SS/VREF Threshold to Turn-on Switch  
100  
mV  
Pull above this level to  
enable PWM Switch gate  
310  
mV  
Disconnect Switch Gate Drive  
DRV Source Current  
VIN = 12V, VDRV = 15.5V  
VIN = 12V, VDRV = 8V  
VIN = 5V  
45  
45  
µA  
µA  
V
DRV Sink Current  
2.15  
4.3  
Charge Pump Voltage  
VIN = 12V  
5.8  
V
Over Current Protection  
Current Limit Threshold  
VIN - CS  
61  
72  
83  
mV  
mV  
Pull down below this level to  
disable Disconnect FET gate  
OCP/EN Threshold  
520  
590  
660  
OCP/EN Charge Current  
OCP/EN Discharge Current  
CS Input Current  
37  
1.0  
0.2  
µA  
µA  
µA  
Note: (1). Guaranteed by Characterization  
(2). Guaranteed by design  
4
www.semtech.com  
© 2010 Semtech Corp.  
SC2604  
Pin Descriptions  
Pin  
Pin Name  
Pin Function  
1
2
3
4
5
6
CS  
VIN  
Current sense input (negative)  
Device supply voltage (also positive current sense input)  
PWM gate driver output for boost converter. This pin swings from 0V to VIN.  
Device ground  
GATE  
GND  
SS/VREF  
FB  
Soft start and reference voltage pin  
Error amplifier inverted input  
When a capacitor is tied to this pin, the maximum inrush current is controlled during start-up. The capacitor value  
also determines the off-time after the device has entered hiccup mode. Pulling this pin low can disable the linear  
and the switcher to turn off the circuit.  
7
8
OCP/EN  
DRV  
Gate drive of input disconnect FET limiting system input current  
Thermal Pad  
Pad for heatsinking purposes. Connect to ground plane using multiple vias. Not connected internally.  
5
www.semtech.com  
© 2010 Semtech Corp.  
SC2604  
Block Diagram  
OSCILLATOR  
Error  
VIN  
Gate  
PWM  
FB  
Q
S
Amplifier  
25K  
Gm=3.6mA/V  
1.25V  
VIN  
55uA  
SS/VREF  
0.4V  
4.2V  
üüüüü  
VIN  
CS  
6.25K  
0.625V  
VIN  
HICCUP  
OSCILLATOR  
CHARGE  
PUMP  
1.25V  
DRV  
GND  
LOW  
CURRENT  
SHUTDOWN  
1uA  
1.5V  
0 – 120mV  
38uA  
1uA  
OCP/EN  
Figure 2. SC2604 Function Diagram  
6
www.semtech.com  
© 2010 Semtech Corp.  
SC2604  
Typical Characteristics  
Load Characteristic (VIN=12V, VO=25V)  
Efficiency (VIN=12V, VO=25V)  
30  
100  
95  
90  
85  
80  
75  
70  
65  
60  
25  
20  
15  
10  
5
0
0.00  
0.50  
1.00  
1.50  
0.00  
0.50  
1.00  
1.50  
2.00  
2.50  
Output Current (A)  
Output Current (A)  
Error Amplifier: Gain and Phase  
Line Regulation (VO=25V, IO=1.5A)  
25.250  
25.125  
25.000  
24.875  
24.750  
24.625  
24.500  
40  
35  
30  
25  
20  
15  
10  
5
180  
135  
90  
45  
Gain  
Phase  
0
0
-5  
Simulation  
-10  
-45  
1.E+02  
1.E+04  
1.E+06  
1.E+08  
8
10  
12  
14  
16  
Input Voltage (V)  
Frequency (Hz)  
7
www.semtech.com  
© 2010 Semtech Corp.  
SC2604  
Typical Characteristics (Cont.)  
Current Limit Threshold vs Temperature  
Feedback Voltage vs Temperature  
85  
1.260  
1.250  
1.240  
1.230  
1.220  
VIN = 12V  
80  
75  
70  
65  
60  
VIN = 5V  
-50 -25  
0
25  
50  
75  
100 125  
-50 -25  
0
25  
50  
75 100 125  
Temperature (oC)  
Temperature (oC)  
Floating Driving Voltage (VDRV-VIN)  
of DRV Pin vs VIN  
Oscillator Frequency vs Temperature  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
420  
TA = 125oC  
410  
400  
390  
380  
370  
360  
TA = 25oC  
TA = -40oC  
-50 -25  
0
25  
50  
75 100 125  
4
5
6
7
8
9 10 11 12 13 14 15 16  
Temperature (oC)  
Input Voltage (V)  
8
www.semtech.com  
© 2010 Semtech Corp.  
SC2604  
Applications Information  
PWM Control Loop  
allow a complete shutdown of the output. Pulling the SS/  
VREF pin below 0.1V only shuts the boost FET (Q2 in Figure  
1) off and the output voltage will be (VIN-Vd).  
The SC2604 is a voltage-mode PWM controller with a fixed  
switching frequency of 400kHz for use in high efficiency,  
boosted voltage, DC/DC power supplies.  
4.2V  
As shown in Figure 2, the PWM control loop of the SC2604  
consists of a 400kHz oscillator, a PWM comparator,  
a voltage error amplifier, and a FET driver. The boost  
converter output voltage is fed back to FB (error amplifier  
negative) and is regulated to the reference voltage at  
SS/VREF pin. The error amplifier output is compared  
with the 400kHz ramp to generate a PWM wave, which  
is amplified and used to drive the boost FET (Q2 in Figure  
1) for the converter. The PWM controller works with soft  
start and fault monitoring circuitry to meet application  
requirements.  
Enable Hiccup  
1.25V+  
VIN  
0.625V  
VIN+VGS  
OCP/EN  
1.25V  
DRV  
SS/VREF  
GATE  
0.5V  
VIN -Vd  
T2  
VO  
T1  
UVLO, Start-up, and Shutdown  
Note: T1=COCP/EN*0.625V / 37µA  
T2=CSS/VREFüüüüü µA  
To initiate the SC2604, a supply voltage is applied to VIN.  
The DRV and GATE are held low. When VIN voltage exceeds  
UVLO (Under Voltage Lockout) threshold, typically 4.2V,  
an internal current source (37µA) begins to charge the  
OCP/EN pin capacitor. The OCP/EN voltage ramps from  
near ground to over 1.25V but the voltage between  
0.625V and 1.25V provides the linear soft-start range for  
the disconnect FET (Q1). When the OCP/EN voltage is  
over 1.25V, the OCP hiccup is enabled, and SS/VREF pin is  
released. At this moment, another internal current source  
(55µA) begins to charge the SS/VREF pin capacitor. When  
the SS/VREF pin voltage reaches 0.5V, the error amplifier  
output will rise to 0.4V, then the PWM comparator begins  
to switch. The switching regulator output is slowly  
ramping up for a soft turn-on. The details of SC2604 start-  
up timing is shown in Figure 3.  
Figure 3. Start-up Timing Diagram  
Hiccup Mode Short Circuit Protection  
Hiccup mode over-current protection is utilized in the  
SC2604. When an increasing load causes a voltage of  
72mv to occur from VIN to CS then a current limit hiccup  
sequence is started. The sequence starts by pulling DRV  
low and discharging the OCP/EN pin with a 1µA current  
source. When the OCP/EN pin falls below 1.25V, the SS/  
VREFpinisforcedtoground(similartotheUVLOshutdown  
described in the last setion).  
When the voltage on the OCP/EN pin falls to near zero  
volt, the 1µA discharge current becomes a 37µA charging  
current and the OCP/EN pin starts to charge and DRV is  
enabled. When the OCP/EN voltage rises from 0.625V  
to 1.25V, the current in the disconnect FET is allowed to  
increase from zero to a maximum of 72mV/(Current Sense  
Resistor Value). If the over-current condition still exists  
when OCP/EN crosses 1.25V then the hiccup sequence  
will re-start. If there is no over-current as OCP/EN crosses  
1.25V then the SS/VREF pin is released to rise and allow a  
If the supply voltage at VIN pin falls below UVLO threshold  
(3.8V typically) during a normal operation, the DRV pin  
is pulled low to cut off the supply power of the boost  
converter, while the OCP/EN pin capacitor is discharged  
with a 1µA internal current source. When the OCP/EN pin  
falls below 1.25V, the SS/VREF pin is forced to ground. This  
completely shuts down the boost conveter.  
Directly pulling the OCP/EN pin below 0.52V can also  
© 2010 Semtech Corp.  
9
www.semtech.com  
SC2604  
Applications Information (Cont.)  
soft-start of the switching boost regulator.  
Capacitor at OCP/EN Pin - COCP/EN  
The DRV pin of the SC2604 is meant to drive an N-Channel  
FET that can disconnect the input supply in the event of an  
over-current condition. The OCP/EN capacitor becomes  
part of a hiccup oscillator that is charged with 37µA and  
discharged with 1µA to provide a low duty cycle for the  
FET Q1.  
Asthecurrentatstart-upmayhititscurrentlimitthreshold,  
the ramp rate of the current must be slow enough to allow  
the output capacitor to be fully charged to a voltage one  
diode drop Vd less than input voltage VIN. To guarantee a  
successful start-up at no load, the value of the capacitor at  
the OCP/EN pin has to satisfy the following formula:  
COUT(V Vd ) RCS  
It should be understood that sufficiently fast ramp rates  
on the OCP/EN pin and the SS/VREF pin can trigger a  
hiccup event because of the charging current demanded  
by the boost regulator output capacitor.  
IN  
COCP/EN  
>
0.625  
750  
Disconnect FET Selection  
Setting the Output Voltage  
The floating driving voltage of DRV pin drops slightly as  
the supply voltageVIN is below 7.5V (Typical Characteristics  
on page 8), where a FET with low gate threshold voltage  
(VGS(TH)) has to be used for the disconnect FET. In a 5V input  
application, a FET with VGS(TH)=2V, such as FDD6672A from  
Fairchild, is needed.  
In Figure 1, an external resistive divider R3 and R5 with its  
center tap tied to the FB pin sets the output voltage.  
VOUT  
R3 = R  
1  
5   
1.25V  
In some applications, a RC branch (R6, C12 in the Typical  
Schematic on page 12) will be needed for loop stability.  
Layout Guidelines  
Careful attentions to layout requirements are necessary  
for successful implementation of the SC2604 PWM  
controller. High currents switching at 400kHz are present  
in the application and their effect on ground plane voltage  
differentials must be understood and minimized.  
Maximum Duty Cycle  
The maximum duty cycle, Dmax defines the upper limit of  
power conversion ratio  
VOUT  
VIN  
1
1) The high power parts of the circuit should be laid out  
first. A ground plane should be used, the number and  
position of ground plane interruptions should be such as  
to not unnecessarily compromise ground plane integrity.  
Isolated or semi-isolated areas of the ground plane may  
be deliberately introduced to constrain ground currents  
to particular areas, for example the input capacitor and  
bottom Schottky ground.  
=
1 DMAX  
Calculating Current Sense Resistor  
Current sense resistor is placed at the input to sense  
inductor peak current of the boost regulator. The value of  
the resistor can be calculated by  
72mV  
RCS  
=
2) The loop formed by the output Capacitor(s) (COUT), the  
FET (Q1), the current sensing resistor, and the Schottky  
(D1) must be kept as small as possible, as shown on the  
layout diagram in Figure 4. This loop contains all the high  
current, fast transition switching. Connections should  
be as wide and as short as possible to minimize loop  
inductance. Minimizing this loop area will reduce EMI,  
IPEAK  
where IPEAK is the allowed boost inductor peak current.  
Inmanyapplications,anoiseltercircuit(R1=200,C10=10nF  
in the Typical Schematic on page 12) may be needed for  
the input current sensing.  
10  
www.semtech.com  
© 2010 Semtech Corp.  
SC2604  
Applications Information (Cont.)  
lower ground injection currents, resulting in electrically  
“cleaner” grounds for the rest of the system and minimize  
source ringing, resulting in more reliable gate switching  
signals.  
5) The SC2604 is best placed over an isolated ground  
plane area.The soft-start capacitor and theVin decoupling  
capacitor should also connected to this ground pad  
area. This isolated ground area should be connected to  
the main ground by a trace that runs from the GND pin  
to the ground side of the output capacitor. If this is not  
possible, the GND pin may be connected to the ground  
path between the Output Capacitor and the CIN, Q1, D1  
loop. Under no circumstances should GND be returned to  
a ground inside the CIN, Q1, D1 loop.  
3) The connection between the junction of Q1, D1 and the  
output capacitor should be a wide trace or copper region.  
It should be as short as practical. Since this connection  
has fast voltage transitions, keeping this connection short  
will minimize EMI.  
4) The Output Capacitor(s) (COUT) should be located as  
close to the load as possible, fast transient load currents  
are supplied by COUT only, and connections between COUT  
and the load must be short, wide copper areas to minimize  
inductance and resistance.  
6) Input voltage of the SC2604 should be supplied from  
the power rail through a 1Ω resistor, the Vin pin should  
be decoupled directly to GND by a 0.1µF~1µF ceramic  
capacitor, trace lengths should be as short as possible.  
Vout  
VIN  
Ra  
D1  
4.7uH  
Rcs  
Cin  
1
+
SC2604  
Cout  
Rb  
6
2
5
FB  
VIN  
8
GATE  
OCP/EN  
GND  
SS/VREF  
CS  
7
1uF  
1
0.1uF  
4
3
DRV  
0.1uF  
Note: Heavy lines indicate the critical loop carrying high pulsating current.  
The inductance of the loop needs to be minimized.  
Figure 4. SC2604 Layout Diagram  
11  
www.semtech.com  
© 2010 Semtech Corp.  
SC2604  
Applications Information (Cont.)  
Typical application schematic with 12V input and 25V/1.5A output  
Rs  
Q1  
IRF7821  
L1(CD1-150)  
D1  
25V/1.5A OUTPUT  
12V INPUT  
10m, Sen. Res.  
1
2
A
C
C4 15uH  
1uF  
CMSH2-40L  
C6  
4.7uF  
+
C1  
220uF  
C3  
1uF  
+
C7  
220uF  
Rcc  
1R0  
R1  
200  
Q2  
AO4412  
U1  
CS  
C10  
10nF  
1
2
3
4
8
7
6
5
DRV  
OCP/EN  
FB  
R3  
499k  
VIN  
Da  
C11  
1uF  
GATE  
C12  
R6  
MA729  
R5  
GND SS/VREF  
26.3k  
1.43k  
0.33uF  
C13  
0.33uF 0.1uF  
C14  
SC2604  
Note: A small Schottky diode (Da) may be required in some applications to clamp negative spike at the GATE pin.  
Bill of materials  
Item Quantity Reference Part (P/N of Vender)  
Vendor  
1
2
1
3
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
C1  
220uF/10V  
Rubycon, ZL  
Vishay  
C3,C4,C11 1uF/16V  
3
C6  
4.7uF/50V  
Murata  
4
C7  
220uF/35V/160m  
Rubycon, YXF  
Vishay  
5
C10  
C12  
C13  
C14  
D1  
10nF  
6
0.33uF  
Vishay  
7
0.33uF  
Vishay  
8
0.1uF  
Vishay  
9
CMSH2-40L (Schottky diode)  
Central Semi  
Panasonic  
Coiltronics  
IR  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
Da  
MA729 (Schottky diode)  
L1  
15uH/3.5A (CD1-150)  
Q1  
Q2  
Rs  
IRF7821  
AO4412  
15m(Sensing Res.)  
200  
Alpha & Omega Semi.  
Vishay  
R1  
Vishay  
Rcc  
R3  
1R0  
Vishay  
499k  
Vishay  
R5  
26.1k  
Vishay  
R6  
1.43k  
Vishay  
U1  
SC2604  
Semtech  
12  
www.semtech.com  
© 2010 Semtech Corp.  
SC2604  
Applications Information (Cont.)  
Start up  
12V Input (5V/DIV)  
25V output (10V/DIV)  
SS/VREF (1V/DIV)  
OCP/EN (1V/DIV)  
X=5ms/DIV  
Inductor current and DRV pin voltage at OCP  
25V Output (1V/DIV)  
OCP/EN (1V/DIV)  
Inductor Current (5A/DIV)  
DRV Voltage (5V/DIV)  
X=10ms/DIV  
13  
www.semtech.com  
© 2010 Semtech Corp.  
SC2604  
Outline Drawing - MSOP-8  
DIMENSIONS  
INCHES üüüüü  
MIN NOM MAX MIN NOM MAX  
ü
DIM  
A
A
-
-
-
-
-
-
-
-
-
-
-
-
.043  
1.10  
0.15  
0.95  
0.38  
0.23  
D
E
A1 .000  
A2 .030  
.006 0.00  
.037 0.75  
.015 0.22  
.009 0.08  
N
b
c
D
.009  
.003  
2X  
E/2  
.114 .118 .122 2.90 3.00 3.10  
.118  
.193 BSC  
.026 BSC  
2.90 3.00 3.10  
4.90 BSC  
E1 .114  
.122  
E1  
E
e
PIN 1  
0.65 BSC  
INDICATOR  
L
L1  
.016 .024 .032 0.40 0.60 0.80  
(.037)  
(.95)  
N
01  
aaa  
bbb  
ccc  
8
-
.004  
.005  
.010  
8
-
0.10  
0.13  
0.25  
ü
C
1
2
0°  
8°  
0°  
8°  
2X N/2 TIPS  
e
B
D
H
ü
C
A2  
A
c
GAGE  
SEATING  
PLANE  
PLANE  
A1  
C
ü
ü
0.25  
L
01  
C A-B D  
(L1)  
DETAIL  
A
SEE DETAIL  
A
SIDE VIEW  
NOTES:  
1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).  
2. DATUMS -A- AND -B- TO BE DETERMINED AT DATUM PLANE  
ü
3. DIMENSIONS "E1" AND "D" DO NOT INCLUDE MOLD FLASH, PROTRUSIONS  
OR GATE BURRS.  
4. REFERENCE JEDEC STD MO-187, VARIATION AA.  
Land Pattern - MSOP-8  
X
DIMENSIONS  
DIM  
C
G
P
X
INCHES  
(.161)  
.098  
.026  
.016  
üüüüü  
(4.10)  
2.50  
0.65  
0.40  
1.60  
5.70  
ü
G
Y
Z
Y
Z
.063  
.224  
P
NOTES:  
1. THIS LAND PATTERN IS FOR REFERENCE PURPOSES ONLY.  
CONSULT YOUR MANUFACTURING GROUP TO ENSURE YOUR  
COMPANY'S MANUFACTURING GUIDELINES ARE MET.  
14  
www.semtech.com  
© 2010 Semtech Corp.  
SC2604  
Outline Drawing - 2x3 MLPD-UT8  
B
E
A
D
DIMENSIONS  
INCHES MILLIMETERS  
DIM  
A
MIN NOM MAX MIN NOM MAX  
-
-
-
-
.020  
A1 .000  
A2  
.024 0.50  
.002 0.00  
0.60  
0.05  
PIN 1  
INDICATOR  
(LASER MARK)  
(.006)  
(0.1524)  
b
D
.007 .010 .012 0.18 0.25 0.30  
.075 .079 .083 1.90 2.00 2.10  
D1 .059 .065 .069 1.50 1.65 1.75  
E
.114 .118 .122 2.90 3.00 3.10  
E1 .065 .071 .075 1.65 1.80 1.90  
e
.020 BSC  
0.50 BSC  
0.40  
8
L
.012 .016 .020 0.30  
0.50  
A
C
N
8
SEATING  
PLANE  
aaa  
.003  
.003  
0.08  
0.08  
aaa  
C
bbb  
A2  
A1  
D1  
1
2
LxN  
E/2  
E1  
N
bxN  
bbb  
C A B  
e
e/2  
D/2  
NOTES:  
1.  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).  
COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.  
2.  
Land Pattern - 2x3 MLPD-UT8  
K
DIMENSIONS  
DIM  
INCHES  
(.116)  
.087  
.071  
.069  
.020  
.012  
.030  
.146  
üüüüü  
(2.95)  
C
G
H
K
P
X
Y
Z
ü
Z
2.20  
1.80  
1.75  
0.50  
0.30  
0.75  
3.70  
H
G
Y
X
P
NOTES:  
1.  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).  
2. THIS LAND PATTERN IS FOR REFERENCE PURPOSES ONLY.  
CONSULT YOUR MANUFACTURING GROUP TO ENSURE YOUR  
COMPANY'S MANUFACTURING GUIDELINES ARE MET.  
3. THERMAL VIAS IN THE LAND PATTERN OF THE EXPOSED PAD  
SHALL BE CONNECTED TO A SYSTEM GROUND PLANE.  
FAILURE TO DO SO MAY COMPROMISE THE THERMAL AND/OR  
FUNCTIONAL PERFORMANCE OF THE DEVICE.  
15  
www.semtech.com  
© 2010 Semtech Corp.  
SC2604  
© Semtech 2010  
All rights reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate  
and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its  
use. Publication thereof does not convey nor imply any license under patent or other industrial or intellectual property  
rights. Semtech assumes no responsibility or liability whatsoever for any failure or unexpected operation resulting from  
misuse, neglect improper installation, repair or improper handling or unusual physical or electrical stress including, but  
not limited to, exposure to parameters beyond the specified maximum ratings or operation outside the specified range.  
SEMTECHPRODUCTSARENOTDESIGNED,INTENDED,AUTHORIZEDORWARRANTEDTOBESUITABLEFORUSEINLIFE-SUPPORT  
APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF SEMTECH PRODUCTS IN SUCH AP-  
PLICATIONSISUNDERSTOODTOBEUNDERTAKENSOLELYATTHECUSTOMER’SOWNRISK.Shouldacustomerpurchaseoruse  
Semtechproductsforanysuchunauthorizedapplication,thecustomershallindemnifyandholdSemtechanditsofficers,em-  
ployees,subsidiaries,affiliates,anddistributorsharmlessagainstallclaims,costsdamagesandattorneyfeeswhichcouldarise.  
Contact Information  
Taiwan  
Tel: 886-2-2748-3380  
Fax: 886-2-2748-3390  
Switzerland  
United Kingdom  
France  
Tel: 81-3-6408-0950  
Fax: 81-3-6408-0951  
Korea  
Tel: 82-2-527-4377  
Fax: 82-2-527-4376  
Tel: 44-1794-527-600  
Fax: 44-1794-527-601  
Shanghai  
Japan  
Tel: 86-21-6391-0830  
Fax: 86-21-6391-0831  
Tel: 33-(0)169-28-22-00  
Fax: 33-(0)169-28-12-98  
Tel: 81-3-6408-0950  
Fax: 81-3-6408-0951  
Germany  
Tel: 49-(0)8161-140-123  
Fax: 49-(0)8161-140-124  
www.semtech.com  
16  
www.semtech.com  
© 2010 Semtech Corp.  

相关型号:

SC2608

Simple, Synchronous Voltage Mode PWM Controller
SEMTECH

SC2608A

Simple, Synchronous Voltage Mode PWM Controller
SEMTECH

SC2608AEVB

Simple, Synchronous Voltage Mode PWM Controller
SEMTECH

SC2608ASTRT

Simple, Synchronous Voltage Mode PWM Controller
SEMTECH

SC2608B

Simple, Synchronous Voltage Mode PWM Controller
SEMTECH

SC2608BEVB

Simple, Synchronous Voltage Mode PWM Controller
SEMTECH

SC2608BSTRT

Simple, Synchronous Voltage Mode PWM Controller
SEMTECH

SC2608EVB

Simple, Synchronous Voltage Mode PWM Controller
SEMTECH

SC2608STRT

Simple, Synchronous Voltage Mode PWM Controller
SEMTECH

SC260B

TRIAC, 200V V(DRM), 25A I(T)RMS,
ASI

SC260B1

TRIAC|200V V(DRM)|25A I(T)RMS|TO-208AA
ETC

SC260B2

TRIAC|200V V(DRM)|25A I(T)RMS|IST-3RT-1/4
ETC