SC284PEVB [SEMTECH]

Dual Channel 2.5MHz, 2.0A Synchronous Buck with Automatic Power Save;
SC284PEVB
型号: SC284PEVB
厂家: SEMTECH CORPORATION    SEMTECH CORPORATION
描述:

Dual Channel 2.5MHz, 2.0A Synchronous Buck with Automatic Power Save

文件: 总22页 (文件大小:2696K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SC284P  
Dual Channel 2.5MHz, 2.0A Synchronous  
Buck with Automatic Power Save  
POWER MANAGEMENT  
Features  
Description  
VIN Range — 2.75 – 5.5V  
The SC284P is a dual channel 2A synchronous step-down  
regulator designed to operate with an input voltage  
range of 2.75 to 5.5 Volts. Each channel offers seven  
pre-determined output voltages via three control pins  
programmable from ꢀ.0 to 3.3 Volts. The control pins  
allow for on-the-fly voltage changes, enabling system  
designers to implement dynamic power savings. The  
SC284P is also capable of adjusting the output voltage  
via an external resistor divider.  
VOUT Selectable — ꢀ.0 - 3.3V  
Up to 2A Output Current for Each Channel  
Package with Ultra-Small Footprint : 3 x 3 x 0.6(mm)  
Switching Frequency — 2.5MHz  
Efficiency Up to 94%  
High Light-load Efficiency via Automatic PSAVE  
Mode  
Low Output Noise in CCM  
The SC284P is optimized for maximum efficiency over a  
wide range of load currents. During full load operation,  
the device operates in PWM mode with fixed 2.5MHz  
oscillator frequency, allowing the use of small surface  
mount external components. As the load decreases,  
the regulator will transition into Power Save mode  
maintaining high efficiency.  
Excellent Transient Response  
Start Up into Pre-Biased Output  
ꢀ00% Duty-Cycle Low Dropout Operation  
Shutdown Current — <ꢀµA  
Internal Soft-Start  
Input Under-Voltage Lockout  
Output Over-Voltage, Current Limit Protection  
Over-Temperature Protection  
VOUT Further Adjustable Using External Resistors  
Connecting CTL0 — CTL2 to logic low forces the device  
into shutdown mode reducing the supply current to less  
than ꢀµA. Connecting any of the control pins to logic  
high enables the converter and sets the output voltage  
according to Table ꢀ. Other features include under-  
voltage lockout, soft-start to limit inrush current, and  
over-temperature protection.  
PGOOD Feature  
Lead-free, Halogen-free, and RoHS/WEEE Compliant  
Applications  
Wireless Access Point/Router/Modem  
Femtocell  
Set-Top Box  
Point-Of-Sale  
Projector  
Typical Application Circuit  
LA 2.2µH  
PVINA  
VINA  
VOUTA  
LXA  
VOUTA  
RAVINA 1Ω  
COUTA  
22µF  
CINA  
10µF  
AVINA  
LB 2.2µH  
CAVINA 10nF  
VOUTB  
LXB  
VOUTB  
AGNDA  
COUTB  
22µF  
SC284P  
PVINB  
AVINB  
VINB  
RAVINB 1Ω  
PGNDA  
CINB  
10µF  
CAVINB 10nF  
PGNDB  
CTL0B  
AGNDB  
CTL0A  
CTL0A  
CTL1A  
CTL2A  
CTL0B  
CTL1B  
CTL1A  
CTL2A  
CTL1B  
CTL2B  
CTL2B  
PGOODA  
PGOODB  
PGOODA  
PGOODB  
Revision 2.ꢀ  
© 20ꢀ4 Semtech Corporation  
SC284P  
Pin Configuration  
Ordering Information  
Device  
Package  
SC284PULTRC(ꢀ)(2)  
SC284PEVB  
3 x 3 x 0.6(mm) MLPQ-UT20  
Evaluation Board  
20 19  
18  
17  
16  
Notes:  
(ꢀ) Available in tape and reel only. A reel contains 3,000 devices.  
(2) Available in lead-free package only. Device is fully WEEE and RoHS  
compliant and halogen-free.  
1
2
3
15  
14  
13  
12  
11  
PVINA  
AGNDA  
AVINA  
CTL0B  
PGOODB  
AVINB  
TOP VIEW  
AGNDB  
PVINB  
PGOODA  
CTL0A  
4
5
T
6
7
8
9
10  
Table 1 – Output Voltage Settings  
3 x 3 x 0.6(mm) MLPQ-UT20  
θJA= 40°C/W  
CTL2[A/B] CTL1[A/B] CTL0[A/B]  
Output Voltage  
Disabled  
ꢀ.0V  
0
0
0
0
0
0
0
0
0
0
ꢀ.ꢀV  
Marking Information  
ꢀ.2V  
ꢀ.5V  
0
0
ꢀ.8V  
2.5V  
3.3V  
284P = Part Number Code  
yyww = Date Code  
xxxx = Semtech Lot Number  
2
SC284P  
Absolute Maximum Ratings  
Recommended Operating Conditions  
AVINA, AVINB, PVINA, PVINBSupply (V) . . . . . -0.3 to +6.0  
LXA and LXB (V) . . . . . . . . . -ꢀ toVIN +ꢀ, -3 (20ns Max), 6 Max  
VOUTA and VOUTB (V) . . . . . . . . . . . . . . . . . . -0.3 to (VIN +0.3)  
CTLXA/Bpins (V) . . . . . . . . . . . . . . . . . . . -0.3 to (VIN + 0.3)  
Peak IR Reflow Temperature (°C) . . . . . . . . . . . . . . . . . . . . . 260  
ESD Protection Level(2) (kV) . . . . . . . . . . . . . . . . . . . . . . . . . 3kV  
Output Short Circuit to GND. . . . . . . . . . . . . . . .Continuous  
VINA and VINB Supply (V) . . . . . . . . . . . . . . . . . . . . . . . 2.75 to 5.5  
Maximum Output Current Each Channel (A) . . . . . . . . . 2.0  
Thermal Information  
Thermal Resistance, Junction to Ambient (ꢀ) (°C/W) . . . . 40  
Maximum Junction Temperature (°C) . . . . . . . . . . . . . . +ꢀ50  
Storage Temperature Range(°C) . . . . . . . . . . . . . . -65to+ꢀ50  
Exceeding the absolute maximum ratings may result in permanent damage to the device and/or device malfunction. Operation outside of the  
parameters specified in the Electrical Characteristics section is not recommended.  
Notes:  
(ꢀ) Calculated from package in still air, mounted to 3 x 4.5 (in), 4 layer FR4 PCB with thermal vias under the exposed pad per JESD5ꢀ standards.  
(2) Tested according to JEDEC standard JESD22-Aꢀꢀ4-B.  
Electrical Characteristics  
Unless specified: VINA= VINB= 5.0V, VOUTA= VOUTB= ꢀ.5V, CINA= CINB=ꢀ0µF, COUTA=COUTB= 22µF, L= 2.2µH, -40°C ≤ (TA = TJ )≤ +ꢀ25 °C. Unless otherwise  
noted typical values are TA= +25 °C.  
Parameter  
Symbol  
Conditions  
Min  
2.75  
2.55  
Typ  
Max Units  
Input Voltage Range  
VINA/B  
5.5  
V
V
2.65  
200  
2.75  
Rising VINA ,VINB  
Hysteresis  
Under-Voltage Lockout  
Quiescent Current  
UVLO  
IQ  
mV  
Channel A & B, PWM mode excluding IOUT  
,
6
mA  
per channel  
60  
µA  
µA  
µs  
V
IOUT = 0mA, CTLX = VIN  
CTL0-2= GND, Per channel  
Shutdown Current  
Soft-Start Time  
ISHDN  
tSS  
ꢀ0  
Channel A & B; IOUT= 2A, VOUT =90% of final value  
ꢀ700  
Output Voltage Range  
VOUT  
ꢀ.0  
3.3  
Channel A & B; IOUT=400mA, PWM Mode  
PSAVE Mode  
-2.0  
+2.0  
Output Voltage Tolerance(ꢀ)  
CTL Settings Regulation  
ΔVOUT  
%
%
ꢀ.75  
Channel A & B; Relative to VOUT at CTL=ꢀ00,  
IOUTA=400mA; IOUTB=400mA; PWM Mode  
ΔVCTL-REG  
Line Regulation  
Load Regulation  
ΔVLINE-REG  
ΔVLOAD-REG  
Channel A & B; VIN= 2.75 – 5.5V; PWM Mode  
Channel A & B; VIN = 5.0V; IOUT=ꢀmA – 2A  
0.2  
0.3  
%/V  
%/A  
3
SC284P  
Electrical Characteristics (continued)  
Parameter  
Symbol  
Conditions  
Channel A & B; Peak LX current  
Channel A & B  
Min  
2.25  
2.0  
Typ  
3.0  
2.5  
-ꢀ  
Max Units  
Current Limit Threshold  
Oscillator Frequency  
ILIMIT  
3.75  
3.0  
A
fOSC  
MHz  
Channel A & B; VIN = 5.5V; LX = 0V; CTL0-2= GND  
Channel A & B; VIN = 5.5V; LX= 5.0V; CTL0-2= GND  
Average LX Current, VOUT =ꢀ.5V  
Channel A & B; ILX= ꢀ00mA, TJ= 25 °C  
Channel A & B; ILX= -ꢀ00mA, TJ= 25 °C  
Channel A & B; CTL0-2=VIN or GND  
Channel A & B  
-ꢀ0  
LX Leakage Current(2)  
ILK(LX)  
µA  
mA  
mΩ  
ꢀ0  
Foldback Holding Current  
High Side Switch Resistance(3)  
Low Side Switch Resistance  
CTLx Input Current(2)  
ICL_HOLD  
RDSON_P  
RDSON_N  
ICTL_  
600  
95  
65  
-2.0  
ꢀ.6  
2.0  
0.4  
µA  
V
CTLx Input High Threshold  
CTLx Input Low Threshold  
Impedence of PGOOD Low  
PGOOD Threshold  
VCTLx_HI  
VCTLx_LO  
RPGOOD_LO  
VPG_TH  
Channel A & B  
V
8
90  
2
Ω
VOUT rising  
Asserted  
%
ms  
μs  
%
°C  
°C  
PGOOD Delay  
VPG_DLY  
PGOOD= Low  
Channel A & B  
Channel A & B  
Channel A & B  
20  
ꢀꢀ5  
ꢀ60  
ꢀ0  
VOUT Over Voltage Protection  
VOVP  
TSD  
Thermal Shutdown Temperature(4)  
Thermal Shutdown Hysteresis(4)  
TSD_HYS  
Notes:  
(ꢀ) The “Output Voltage Toleranceincludes output voltage accuracy, voltage drift over temperature.  
(2) A negative current means the current flows from the pin and a positive current means the current flows into the pin.  
(3) Measured from VINA/B to LXA/B  
(4) Thermal shutdown protection is independent for each channel.  
.
4
SC284P  
Typical Characteristics  
Circuit Conditions: CIN= ꢀ0uF/6.3V; COUT= 22uF/6.3V, Unless otherwise noted, L= 2.2uH (TOKO: ꢀꢀ27AS-2R2M).  
Efficiency vs. Load Current  
Total Loss (Per Channel) vs. Load Current  
100  
90  
80  
70  
60  
50  
1000  
800  
600  
400  
200  
0
TA=25  
VIN = 5V, VOUT = 3.3V  
Vin=3.3V,Vo=1.5V  
VIN = 3.3V, VOUT = 1.5V  
VIN = 5V, VOUT = 1.5V  
Vin=5V,Vo=3.3V  
Vin=5V,Vo=1.5V  
0
0.5  
1.0  
1.5  
2.0  
0.001  
0.01  
0.1  
1
10  
Load Current (A)  
Load Current (A)  
Steady State (PSAVE) Operation (IOUT=200mA)  
Steady State (PWM) Operation (IOUT=2A)  
IOUT  
2A/div  
IOUT  
200mA/div  
ILX  
ILX  
500mA/div  
ꢀA/div  
VLX  
VLX  
2V/div  
2V/div  
VIN = 5V  
500ns/div  
500ns/div  
VIN = 5V  
VOUT = ꢀ.5V  
VOUT = ꢀ.5V  
UVLO Hysteresis  
UVLO Rising Threshold  
2.70  
2.68  
2.66  
2.64  
2.62  
2.60  
200  
195  
190  
185  
180  
175  
170  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Ambient Temperature (0C)  
Ambient Temperature (0C)  
5
SC284P  
Typical Characteristics  
Circuit Conditions: CIN= ꢀ0uF/6.3V; COUT= 22uF/6.3V, Unless otherwise noted, L= 2.2uH (TOKO: ꢀꢀ27AS-2R2M).  
Load Regulation, Vout=1.0V  
Load Regulation, Vout=1.2V  
1.27  
1.25  
1.22  
1.20  
1.17  
1.15  
1.12  
1.10  
1.05  
1.00  
0.95  
0.90  
1250C  
1250C  
250C  
250C  
-400C  
-400C  
0.0  
0.5  
1.0  
1.5  
2.0  
0.0  
0.5  
1.0  
1.5  
2.0  
Load Current (A)  
Load Current (A)  
Load Regulation, Vout=1.8V  
Load Regulation, Vout=1.5V  
1.60  
1.90  
1.85  
1.80  
1.75  
1.70  
1.55  
1.50  
1.45  
1.40  
1250C  
1250C  
250C  
250C  
-400C  
-400C  
0.0  
0.5  
1.0  
1.5  
2.0  
0.0  
0.5  
1.0  
1.5  
2.0  
Load Current (A)  
Load Current (A)  
Load Regulation, Vout=2.5V  
Load Regulation, Vout=3.3V  
3.45  
3.40  
3.35  
3.30  
3.25  
3.20  
3.15  
2.65  
2.60  
2.55  
2.50  
2.45  
2.40  
2.35  
1250C  
1250C  
250C  
-400C  
250C  
-400C  
0.0  
0.5  
1.0  
1.5  
2.0  
0.0  
0.5  
1.0  
1.5  
2.0  
Load Current (A)  
Load Current (A)  
6
SC284P  
Typical Characteristics  
Circuit Conditions: CIN= ꢀ0uF/6.3V; COUT= 22uF/6.3V, Unless otherwise noted, L= 2.2uH (TOKO: ꢀꢀ27AS-2R2M).  
Line Regulation, Vout=1.0V, Iout=500mA  
1.05  
Line Regulation, Vout=1.2V, Iout=500mA  
1.26  
1.24  
1.22  
1.20  
1.18  
1.16  
1.14  
1.04  
1.03  
1.02  
1250C  
1250C  
250C  
1.01  
250C  
1.00  
-400C  
-400C  
0.99  
0.98  
0.97  
0.96  
0.95  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Input Voltage (V)  
Inout Voltage (V)  
Line Regulation, Vout=1.8V, Iout=500mA  
Line Regulation, Vout=1.5V, Iout=500mA  
1.58  
1.89  
1.87  
1.85  
1.83  
1.81  
1.79  
1.77  
1.75  
1.73  
1.71  
1.56  
1.54  
1.52  
1.50  
1.48  
1.46  
1.44  
1250C  
250C  
1250C  
250C  
-400C  
-400C  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Input Voltage (V)  
Input Voltage (V)  
Line Regulation, Vout=2.5V, Iout=500mA  
Line Regulation, Vout=3.3V, Iout = 500mA  
3.46  
2.62  
3.42  
3.38  
3.34  
3.30  
3.26  
3.22  
3.18  
3.14  
2.58  
2.54  
2.50  
2.46  
2.42  
2.38  
1250C  
1250C  
250C  
-400C  
250C  
-400C  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Input Voltage (V)  
Input Voltage (V)  
7
SC284P  
Typical Waveforms  
Circuit Conditions: CIN= ꢀ0uF/6.3V; COUT= 22uF/6.3V, L= 2.2uH (TOKO: ꢀꢀ27AS-2R2M).  
Start Up (Enable) (VOUT=1.5V)  
Start Up (Power up VIN=VCTLx) (VOUT=1.5V)  
VIN  
5V/div  
VIN  
2V/div  
VCTL  
2V/div  
VOUT  
ꢀV/div  
VOUT  
ꢀV/div  
VIN = 5V  
IOUT = 0.4A to 2A  
50us/div  
VIN = 5V  
IOUT = 0.4A to 2A  
50us/div  
Start Up (Enable) (VOUT=3.3V)  
Start Up (Power up VIN=VCTLx) (VOUT=3.3V)  
VIN  
5V/div  
VIN  
2V/div  
VCTL  
2V/div  
VOUT  
ꢀV/div  
VOUT  
ꢀV/div  
VIN = 5V  
IOUT = 2A  
200us/div  
VIN = 5V  
IOUT = 2A  
200us/div  
Shutdown (Disable)(VOUT=1.5V)  
Shutdown (Disable)(VOUT=3.3V)  
VIN  
5V/div  
VIN  
5V/div  
VCTL  
2V/div  
VOUT  
VCTL  
2V/div  
ꢀV/div  
VOUT  
ꢀV/div  
VIN = 5V  
ROUT = ꢀ.65Ω(2A)  
50us/div  
8
SC284P  
Typical Characteristics  
Circuit Conditions: CIN= ꢀ0uF/6.3V; COUT= 22uF/6.3V, Unless otherwise noted, L= 2.2uH (TOKO: ꢀꢀ27AS-2R2M).  
Switching Frequency Vs Temperature, Vout=1.0V  
Switching Frequency Vs Temperature, Vout=1.2V  
2.575  
2.575  
2.57  
2.565  
2.56  
2.57  
2.565  
2.56  
2.555  
2.55  
2.555  
2.55  
2.545  
2.54  
2.545  
2.54  
2.535  
2.535  
-40  
-15  
10  
35  
60  
85  
110  
135  
-40  
-15  
10  
35  
60  
85  
110  
135  
Ambient Temperature (0C)  
Ambient Temperature (0C)  
Switching Frequency Vs Temperature, Vout=1.8V  
Switching Frequency Vs Temperature, Vout=1.5V  
2.575  
2.575  
2.57  
2.565  
2.56  
2.57  
2.565  
2.56  
2.555  
2.55  
2.555  
2.55  
2.545  
2.54  
2.545  
2.54  
2.535  
2.535  
-40  
-15  
10  
35  
60  
85  
110  
135  
-40  
-15  
10  
35  
60  
85  
110  
135  
Ambient Temperature (0C)  
Ambient Temperature (0C)  
Switching Frequency Vs Temperature, Vout=2.5V  
2.575  
Switching Frequency vs Temperature, Vout=3.3V  
2.575  
2.57  
2.565  
2.56  
2.57  
2.565  
2.56  
2.555  
2.55  
2.555  
2.55  
2.545  
2.54  
2.545  
2.54  
2.535  
2.535  
-40  
-15  
10  
35  
60  
85  
110  
135  
-40  
-15  
10  
35  
60  
85  
110  
135  
Ambient Temperature (0C)  
Ambient Temperature (0C)  
9
SC284P  
Typical Characteristics  
Circuit Conditions: CIN= ꢀ0uF/6.3V; COUT= 22uF/6.3V, Unless otherwise noted, L= 2.2uH (TOKO: ꢀꢀ27AS-2R2M).  
Switching Frequency Vs Input Voltage, Vout=1.0V  
Switching Frequency Vs Input Voltage, Vout=1.2V  
2.65  
2.65  
2.6  
2.55  
2.5  
2.6  
2.55  
2.5  
2.45  
2.45  
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
Input Voltage (V)  
Input Voltage (V)  
Switching Frequency Vs Input Voltage, Vout=1.8V  
Switching Frequency Vs Input Voltage, Vout=1.5V  
2.65  
2.65  
2.6  
2.55  
2.5  
2.6  
2.55  
2.5  
2.45  
2.45  
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
Input Voltage (V)  
Input Voltage (V)  
Switching Frequency Vs Input Voltage, Vout=2.5V  
2.65  
Switching Frequency vs Input Voltage, Vout=3.3V  
2.65  
2.6  
2.55  
2.5  
2.6  
2.55  
2.5  
2.45  
2.45  
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
Input Voltage (V)  
Input Voltage (V)  
ꢀ0  
SC284P  
Typical Waveforms  
Circuit Conditions: CIN= ꢀ0uF/6.3V; COUT= 22uF/6.3V, L= 2.2uH (TOKO: ꢀꢀ27AS-2R2M).  
Transient Response (Vout=1.5V, Iout=0.1A to 0.4A)  
Transient Response (Vout=1.5V, Iout=0.4A to 2A)  
VOUT  
VOUT  
ꢀ00mV/div  
50mV/div  
ILX  
ILX  
ꢀA/div  
200mA/div  
IOUT  
200mA/div  
IOUT  
ꢀA/div  
VIN = 5V  
IOUT = 0.4A to 2A  
VIN = 5V  
IOUT = 0.ꢀA to 0.4A  
20us/div  
20us/div  
Transient Response (Vout=1.5V, Iout=0.01A to 0.1A)  
Transient Response (Vout=3.3V, Iout=0.4A to 2A)  
VOUT  
50mV/div  
VOUT  
ꢀ00mV/div  
ILX  
ꢀA/div  
ILX  
500mA/div  
IOUT  
50mA/div  
IOUT  
200mA/div  
VIN = 5V  
IOUT = 2A  
200us/div  
VIN = 5V  
IOUT = 2A  
200us/div  
Output Hard Short (VOUT=1.5V)  
Output Voltage Ripple (VOUT=1.5V)  
VOUT  
ꢀV/div  
VOUT  
20mV/div  
ILX  
ꢀA/div  
VIN = 5V  
IOUT = 500mA  
ꢀus/div  
VIN = 5V  
IOUT = 500mA  
50us/div  
ꢀꢀ  
SC284P  
Pin Descriptions  
Pin #  
Pin Name Pin Function  
2
3
PVINA  
AGNDA  
AVINA  
Channel A — Input supply voltage for the converter power stage and internal circuitry.  
Ground connection for internal circuitry — connect directly to PGNDA.  
Power supply for internal circuitry — must be connected to PVINA using an R-C filter of ꢀΩ and ꢀ0nF.  
Power Good indicator for channel A. When the output voltage reaches the PGOODA threshold, this pin will be  
open drain (after the PGOOD delay), otherwise it is pulled low internally.  
4
5
PGOODA  
CTL0A  
Channel A — Control bit 0, see Table ꢀ for decoding. This pin has a ꢀ MΩ internal pull-down resistor. This resis-  
tor is switched in circuit whenever the pin voltage is below the input high threshold, or when the part is in  
under-voltage lockout.  
Channel A — Control bit ꢀ, see Table ꢀ for decoding. This pin has a ꢀ MΩ internal pull-down resistor. This resis-  
tor is switched in circuit whenever the pin voltage is below the input high threshold, or when the part is in  
under-voltage lockout.  
6
7
CTLꢀA  
CTL2A  
Channel A — Control bit 2, see Table ꢀ for decoding. This pin has a ꢀ MΩ internal pull-down resistor. This resis-  
tor is switched in circuit whenever the pin voltage is below the input high threshold, or when the part is in  
under-voltage lockout.  
8
VOUTB  
PGNDB  
LXB  
Output voltage sense pin of Channel B  
9
Channel B — Ground connection for converter power stage and internal circuitry.  
Switching node of Channel B — connect an inductor between this pin and the output capacitor.  
Channel B — Input supply voltage for the converter power stage and internal circuitry.  
Ground connection for internal circuitry — connect directly to PGNDB.  
ꢀ0  
ꢀꢀ  
ꢀ2  
ꢀ3  
PVINB  
AGNDB  
AVINB  
Power supply for internal circuitry — must be connected to PVINB using an R-C filter of ꢀΩ and ꢀ0nF.  
Power Good indicator for channel B. When the output voltage reaches the PGOODB threshold, this pin will be  
open drain (after the PGOOD delay), otherwise it is pulled low internally.  
ꢀ4  
ꢀ5  
PGOODB  
CTL0B  
Channel B — Control bit 0, see Table ꢀ for decoding. This pin has a ꢀ MΩ internal pulld-own resistor. This resis-  
tor is switched in circuit whenever the pin voltage is below the input high threshold, or when the part is in  
under-voltage lockout.  
Channel B — Control bit ꢀ - see Table ꢀ for decoding. This pin has a ꢀ MΩ internal pull-down resistor. This  
resistor is switched in circuit whenever the pin voltage is below the input high threshold, or when the part is  
in under-voltage lockout.  
ꢀ6  
ꢀ7  
CTLꢀB  
CTL2B  
Channel B — Control bit 2, see Table ꢀ for decoding. This pin has a ꢀ MΩ internal pull-down resistor. This resis-  
tor is switched in circuit whenever the pin voltage is below the input high threshold, or when the part is in  
under-voltage lockout.  
ꢀ8  
ꢀ9  
20  
VOUTA  
PGNDA  
LXA  
Output voltage sense pin of Channel A  
Channel A — Ground connection for converter power stage and internal circuitry.  
Switching node of Channel A — connect an inductor between this pin and the output capacitor.  
Thermal pad for heatsinking purposes.  
PAD  
ꢀ2  
SC284P  
Block Diagram  
1
PVINA  
Current Amp  
AVINA  
3
Plimit Amp  
Oscillator and  
Slope Generator  
Control  
Logic  
20  
LXA  
18  
VOUTA  
CTL0A  
CTL1A  
CTL2A  
PWM  
Comp  
Error Amp  
5
6
7
500mV  
Ref  
Voltage  
Select  
19  
PGNDA  
PSAVE  
Comp  
2
AGNDA  
PGOOD  
Detector  
Delay  
4
PGOODA  
AVINB  
11  
PVINB  
Current Amp  
13  
Plimit Amp  
Oscillator and  
Slope Generator  
Control  
Logic  
10  
LXB  
8
VOUTB  
CTL0B  
PWM  
Comp  
15  
Error Amp  
500mV  
Ref  
Voltage  
Select  
CTL1B 16  
9
PGNDB  
17  
12  
CTL2B  
PSAVE  
Comp  
AGNDB  
PGOOD  
Detector  
Delay  
PGOODB  
14  
ꢀ3  
SC284P  
Applications Information  
enough in value for the current through the resistor chain  
to be at least 20µA in order to ignore the VOUT pin current.  
Detailed Description  
The SC284P is a two channel synchronous step-down  
converter. Both channels of this device are designed  
to operate at a fixed-frequency of 2.5MHz in CCM and  
provide the same current capacity of up to 2A. The  
switching frequency is chosen to minimize the size of the  
external inductor and capacitors while maintaining high  
efficiency. Both channels of SC284P are independent.  
where VOSTD is the pre-determined output voltage via the  
CTL pins.  
Operation  
CFF is needed to maintain good transient response  
performance. The correct value of CFF can be found using  
the following equation.  
During normal operation, the PMOS FET is activated on  
each rising edge of the internal oscillator. The voltage  
feedback loop uses an internal feedback resistor divider.  
The period is set by the internal oscillator. The device has  
an internal synchronous NMOS rectifier and does not  
require a Schottky diode on the LXpin.  
To simplify the design, it is recommended to program the  
desired output voltage from a standard ꢀ.0V as shown in  
Figure ꢀ with the correct CFF calculated from Equation 2.  
For programming the output voltage from other standard  
voltages, RFBꢀ, RFB2 and CFF need to be adjusted to meet  
Equations ꢀ and 2.  
Programmable Output Voltage  
Both channels on SC284P have seven pre-determined  
output voltage values which can be individually selected  
by programming the CTL input pins (see Table ꢀ — Output  
Voltage Settings). Each CTL pin has an active ꢀ MΩ internal  
pull-down resistor. The ꢀMΩ resistor is switched in circuit  
whenever the CTL input voltage is below the input  
threshold, or when the part is in under-voltage lockout. It is  
recommended to tie all high CTL pins together and use an  
VINA  
L
VOUTA  
PVINA  
LXA  
RAVINA 1Ω  
CINA  
10µF  
SC284P  
CFFA  
COUTA  
AVINA  
AGNDA  
PVINB  
RFB1A  
CAVINA  
0.1µF  
external pull-up resistor to VIN if there is no enable signal, or  
if the enable input is an open drain/collector signal.The CTL  
pins may be driven by a microprocessor to allow dynamic  
voltage adjustment for systems that reduce the supply  
voltage when entering sleep states. Avoid all zeros being  
present on the CTL pins when changing programmable  
output voltages as this would momentarily disable the  
device.  
VOUTA  
RFB2A  
10kΩ  
VINB  
RFB1A = (VOUTA-1)  
x RFB2A  
for CTLAX = 0010  
(1.0V)  
RAVINB 1Ω  
CINB  
10µF  
AVINB  
L
VOUTB  
CAVINB  
0.1µF  
LXB  
AGNDB  
CFFB  
COUTB  
PGOODA  
RFB1B  
PGOODA  
CTL3A  
Enable A  
VOUTB  
CTL2A  
CTL1A  
RFB2B  
10kΩ  
RFB1B = (VOUTB-1)  
x RFB2B  
SC284P is also capable of regulating a different (higher)  
output voltage, which is not shown in the Table ꢀ, via an  
external resistor divider.There will be a typical 2µA current  
for CTLBX = 0010  
(1.0V)  
PGOODB  
Enable B  
PGNDA  
PGNDB  
PGOODB  
CTL3B  
CTL2B  
CTL1B  
flowing into the VOUT pin. The typical schematic for an ad-  
justableoutputvoltageoptionfromthestandard.0Vwith  
CTLX=[00ꢀ], is shown in Figure ꢀ. RFBꢀA/B and RFB2A/B are used  
to adjust the desired output voltage. If the RFB2A/B current  
Figure 1 — Output Voltage Programming  
is such that the 2µAVOUT pin current can be ignored, then RFBꢀA/B  
can be found by the next equation. RFB2A/B need to be low  
ꢀ4  
SC284P  
Applications Information (continued)  
Power Save Mode Operation  
Power Good  
PGOOD is an open-drain output.When the output volt-  
age drops below nominal voltage, the PGOOD pin is  
pulled low after a 20μs delay. During start-up, PGOOD  
will be asserted ꢀ.7ms (typ.) after the output voltage  
reaches 90% of the final regulation voltage.Over volt-  
age, fold-back current limit and thermal shutdown will  
force PGOOD low after a 20μs delay. When recovering  
from a fault, PGOOD will be asserted ꢀ.7ms (typ.) af-  
ter Vout reaches 90% of the final regulation voltage.  
WhentheloadcurrentdecreasesbelowthePSAVEthreshold,  
PWM switching stops and the device automatically enters  
PSAVE mode.This threshold varies depending upon the in-  
putvoltageandtheoutputvoltagesetting,optimizingeffi-  
ciencyforallpossibleloadcurrentsinPWMorPSAVEmode.  
While in PSAVE mode, output voltage regulation is  
controlled by a series of switching bursts. During a  
burst, the inductor current is limited to a peak value  
which controls the on-time of the PMOS switch. Af-  
ter reaching this peak, the PMOS switch is disabled  
and the inductor current decreases to near 0mA.  
Switching bursts continue until the output voltage climbs  
to VOUT +2.5% or until the PSAVE current limit is reached.  
Switching is then stopped to eliminate switching losses,  
enhancing overall efficiency. Switching resumes when  
the output voltage reaches the lower threshold of VOUT  
and continues until the upper threshold again is reached.  
Maximum Power Dissipation  
Each channel of SC284P has its own ΘJA of 40°C/W when  
only one channel is in operation. Since both channels are  
within the same package, please make sure to use both  
channelsforpowercalculations. Toguaranteeanoperating  
junction temperature of less than ꢀ25°C, Figure 3 shows  
the maximum allowable power loss for each channel. The  
curve is based upon the junction temperature of either  
channel reaching a maximum of ꢀ25°C. Each channel of  
SC284P can support up to 2A load current.  
Note that the output voltage is regulated hysteretically  
while in PSAVE mode between VOUT and VOUT + 2.5%.  
The period and duty cycle while in PSAVE mode are  
solely determined by VIN and VOUT until PWM mode  
resumes. This can result in the switching frequency be-  
ing much lower than the PWM mode frequency. If the  
output load current increases enough to cause VOUT to  
decrease below the PSAVE exit threshold (VOUT-4%),  
the device automatically exits PSAVE and operates in  
continuous PWM mode. Note that the PSAVE high and  
low threshold levels are both set at or above  
VOUT to minimize undershoot when the SC284P  
2.8  
2.6  
2.4  
2.2  
TA = 25°C  
2
1.8  
1.6  
1.4  
1.2  
1
0.8  
0.6  
TA = 55°C  
TA = 85°C  
0.4  
0.2  
0
exits PSAVE mode and returns to PWM mode.  
2.8  
2.2 2.4 2.6  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
Load  
Loss of Channel A (W)  
(IOUT  
)
O FF  
VOU T +2.5%  
Figure 3 — Maximum allowable loss for each channel  
for a maximum junction temperature of 125°C  
VOUT  
VOU T - 4%  
BURST  
VLX  
PSAVE  
EXIT  
PW M M ode at  
M edium/High  
Load  
PSAVE M ode at  
Light Load  
PW M M ode at  
M edium/High  
Load  
Tim e  
Figure 2 - Transitions Between PWM and PSAVE Modes  
ꢀ5  
SC284P  
Applications Information (continued)  
Protection Features  
Soft-Start  
The SC284P provides the following protection features:  
Current Limit  
Soft-start is activated once VIN reaches the UVLO and one  
or more CTL pins are set high to enable the part. A thermal  
shutdown event will also activate the soft-start sequence.  
Soft-start controls the maximum current during startup  
thus limiting inrush current. The PMOS current limit is  
stepped through four soft-start levels of approximately  
20%, 25%, 40%, & ꢀ00%. Each step is maintained for 400μs  
following an internal reference start up duration of ꢀ00μs  
giving a total nominal startup period of ꢀ700μs. During  
startup, the chip operates by controlling the inductor  
current swings between 0A and current limit. If at any time  
VOUT reaches 86% of the target or at the end of the soft-  
start period, the SC284P will switch to PWM mode  
operation.  
Over-Voltage Protection  
Soft-Start  
Thermal Shutdown  
Current Limit  
The internal PMOS power device in the switching stage  
is protected by a current limit feature. If the inductor  
current is above the PMOS current limit for ꢀ6 consecutive  
cycles, the part enters foldback current limit mode and  
the output current is limited to the current limit holding  
current (ICL_HOLD) of a few hundred milliampere. Under  
this condition, the output voltage will be the product of  
ICL_HOLD and the load resistance. The current limit holding  
current will decrease when the output voltage increases.  
The load presented must fall below the current limit  
holding current for the part to exit foldback current  
limit mode. Figure 4 shows how the typical current limit  
holding current varies with output voltage. The SC284P  
is capable of sustaining an indefinite short circuit without  
damage and will resume normal operation when the fault  
is removed. The foldback current limit mode is disabled  
during soft-start.  
The SC284P is capable of starting up into a pre-biased  
output.  
Shut Down  
When all CTL pins of a channel are low, the corresponding  
channel will be disabled, drawing less than ꢀμA from that  
input power supply. The internal switches and bandgap  
voltage will be immediately turned off.  
Thermal Shutdown  
300  
The device has a thermal shutdown feature to protect  
the SC284P if the junction temperature exceeds ꢀ60°C.  
During thermal shutdown, the on-chip power devices are  
disabled, tri-stating the LX output. When the temperature  
drops by ꢀ0°C, it will initiate a soft-start cycle to resume  
normal operation.  
TA= 25°C  
250  
200  
150  
100  
50  
VIN= 3.6V  
VIN= 5.0V  
Inductor Selection  
VIN= 3.3V  
The SC284P converter has internal loop compensation.  
The compensation is designed to work with an output  
filter corner frequency of less than 40kHz for a VIN of 5V  
and 50KHz for a VIN of 3.3V over any operating condition.  
The corner frequency of the output filter is shown in the  
following equation.  
0
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
Output Voltage (V)  
Figure 4— Typical Current Limit Holding Current  
vs. Output Voltage  
1
fC   
2S  
LuCOUT  
Over-Voltage Protection  
In the event of a ꢀ5% over-voltage on the output, the  
PWM drive is disabled leaving the LX pin floating.  
Values outside this range may lead to instability, malfunc-  
tion, or out-of-specification performance.  
ꢀ6  
SC284P  
Applications Information (continued)  
L at  
Dimen-  
sions  
LxWxH  
(mm)  
In general, the inductance is chosen by making the  
inductor ripple current to be less than 30% of maximum  
load current. When choosing an inductor, it is important  
to consider the change in inductance with DC bias  
current. The inductor saturation current is specified as  
the current at which the inductance drops a specific  
percentage from the nominal value. This is approximately  
30%. Except for short-circuit or other fault conditions,  
the peak current must always be less than the saturation  
current specified by the manufacturer. The peak current is  
the maximum load current plus one half of the inductor  
ripple current at the maximum input voltage. Load and/or  
line transients can cause the peak current to exceed this  
level for short durations. Maintaining the peak current  
below the inductor saturation specification keeps the  
inductor ripple current and the output voltage ripple at  
acceptable levels. Manufacturers often provide graphs of  
actual inductance and saturation characteristics versus  
applied inductor current. The saturation characteristics of  
the inductor can vary significantly with core temperature.  
Core and ambient temperatures should be considered  
when examining the core saturation characteristics.  
DCR  
Max  
(Ω)  
Rated  
Current  
(A)  
Manufacturer  
Part Number  
L
(μH)  
Rated  
Current  
(μH)  
TOKO  
1071AS-1R0N  
ꢀ.00 30% 0.040  
2.20 20% 0.048  
ꢀ.00 23% 0.062  
2.70  
2.50  
2.20  
0.70  
ꢀ.54  
0.70  
2.8x3.0xꢀ.5  
3.5x3.7xꢀ.8  
3.2x3.2xꢀ.5  
TOKO  
1127AS-2R2M  
Panasonic  
ELLVGG1R0N  
Table 2 – Recommended Inductors  
COUT Selection  
The internal voltage loop compensation in the SC284P  
limits the minimum output capacitor value to 22µF if using  
a 2.2µH inductor or 44µF if using a ꢀµH inductor.This is due  
to its influence on the the loop crossover frequency, phase  
margin, and gain margin. The total output capacitance  
should not exceed 50µF to avoid any start-up problems.  
For most typical applications it is recommended to use an  
output capacitance of 22µF to 44µF. When choosing the  
output capacitor’s capacitance, verify the voltage derating  
effect from the capacitor vendor’s data sheet.  
When the inductance has been determined, the DC  
resistance (DCR) must be examined. The efficiency that  
can be achieved is dependent upon the DCR of the  
inductor. Lower values give higher efficiency. The RMS DC  
current rating of the inductor is associated with losses in  
the copper windings and the resulting temperature rise of  
the inductor. This is usually specified as the current which  
produces a 40˚C temperature rise. Most copper windings  
are rated to accommodate this temperature rise above  
maximum ambient.  
Capacitors with X7R or X5R ceramic dielectric are  
recommended for their low ESR and superior temperature  
and voltage characteristics. Y5V capacitors should not  
be used as their temperature coefficients make them  
unsuitable for this application.  
The output voltage droop due to a load transient is  
determined by the capacitance of the ceramic output  
capacitor. The ceramic capacitor supplies the load current  
initially until the loop responds. Within a few switching  
cycles the loop will respond and the inductor current will  
increase to match the required load. The output voltage  
droop during the period prior to the loop responding  
can be related to the choice of output capacitor by the  
relationship from the following equation.  
Magnetic fields associated with the output inductor can  
interfere with nearby circuitry. This can be minimized by  
the use of low noise shielded inductors which use the  
minimum gap possible to limit the distance that magnetic  
fields can radiate from the inductor. However shielded  
inductors typically have a higher DCR and are thus less  
efficient than a similarly sized non-shielded inductor.  
Final inductor selection depends upon various design  
considerations such as efficiency, EMI, size, and cost. Table  
2 lists the manufacturers of recommended inductor  
options. The saturation characteristics and DC current  
ratings are also shown.  
u ',/2$'  
9'5223 u I26&  
&
 
287  
The outputcapacitorRMSripplecurrentmaybecalculated  
ꢀ7  
SC284P  
Applications Information (continued)  
from the following equation.  
§
·
9287  
9
9287  
9
¨
¨
¸
¸
,
 
 
&,1ꢁ506ꢀ  
,1  
©
,1  
¹
9
287 u  
9
 9287  
§
·
The input voltage ripple and RMS current ripple are at  
a maximum when the input voltage is twice the output  
voltage or 50% duty cycle.  
,1ꢁ0$;ꢀ  
¨
¨
¸
¸
,
 
&287ꢁ506ꢀ  
/ u I26& u 9  
ꢃ ꢂ  
©
,1  
¹
Table 3 lists the manufac turers of recommended capacitor  
options.  
The input capacitor provides a low impedance loop for  
the edges of pulsed current drawn by the PMOS switch.  
Low ESR/ESL X5R ceramic capacitors are recommended  
for this function. To minimize stray inductance, the capaci-  
tor should be placed as close as possible to the VIN and  
GND pins of the SC284P.  
Value  
Rated  
Type Voltage  
(VDC)  
Dimensions  
LxWxH  
Manufacturer  
Part Nunber  
Value  
(μF)  
at  
3.3V  
(μF)  
(mm)  
Murataꢀ  
2.0xꢀ.25xꢀ.25  
(EIA:0805)  
ꢀ0 ꢀ0%  
ꢀ0 ꢀ0%  
22 20%  
47 20%  
X5R  
X5R  
X5R  
X5R  
6.3  
6.3  
6.3  
6.3  
4.74  
4.05  
6.57  
20.3  
GRM21BR60J106K  
Murataꢀ  
2.0xꢀ.25x0.85  
(EIA:0805)  
GRM219R60J106K  
Murataꢀ  
2.0xꢀ.25xꢀ.25  
(EIA:0805)  
GRM21BR60J226M  
Murataꢀ  
3.2xꢀ.6xꢀ.6  
(EIA:ꢀ206)  
GRM31CR60J476M  
Table 3 – Recommended Capacitors  
CIN Selection  
The SC284P source input current is a DC supply current  
with a triangular ripple imposed on it. To prevent large  
input voltage ripple, a low ESR ceramic capacitor is  
required. A minimum value of ꢀ0μF should be used. It is  
important to consider the DC voltage coefficient charac-  
teristics when determining the actual required value. It  
should be noted a ꢀ0µF, 6.3V, X5R ceramic capacitor with  
5V DC applied may exhibit a capacitance as low as 4.05µF.  
To estimate the required input capacitor, determine the  
acceptable input ripple voltage and calculate the  
minimum value required for CIN as shown by the following  
equation.  
§
·
9287  
9
9287  
9
¨
¨
¸
¸
 
,1  
©
,1  
¹
&
 
,1  
§
·
'9  
¨
¨
¸
 (65 u I26&  
¸
,
©
287  
¹
The input capacitor RMS ripple current varies with the  
input and output voltage. The maximum input capacitor  
RMS current is found from the next equation .  
ꢀ8  
SC284P  
Applications Information (continued)  
Stages  
Operation description  
K
Normal PWM operation  
Overload protection is enabled and peak current limit at 100% level  
J
6
7
6WDJH  
6WDJH  
Cycle by cycle peak current limit  
OCP protection is activated.  
Foldback peak current limit.  
6WDJH  
8
PWM "ON" when inductor current of 0A  
PWM "OFF" when inductor current hits peak current limit of foldback  
mode.  
M
Conditions  
Operation description  
Inductor current hits peak current limit  
Peak current limit for 16 consecutive cycles  
Vout ≥ 100% target  
J
K
L
L
M
Inductor current doesn't hit peak current limit  
Figure 5 — Current Limit Protection  
Stages  
Operation description  
Chip is OFF.  
0
Peak current limit at 20% level  
PWM "ON" when inductor current of 0A  
PWM "OFF" when inductor current hits peak current limit  
Stage duration of 400µs  
1
Peak current limit at 25% level  
PWM "ON" when inductor current of 0A  
PWM "OFF" when inductor current hits peak current limit  
Stage duration of 400µs  
2
3
4
%
Peak current limit at 40% level  
6WDJH  
6WDJH  
PWM "ON" when inductor current of 500mA  
PWM "OFF" when inductor current hits peak current limit  
Stage duration of 400µs  
$
&
6WDJH  
Peak current limit at 100% level  
PWM "ON" when inductor current of 500mA  
PWM "OFF" when inductor current hits peak current limit  
Stage duration of 400µs  
Peak current limit at 100% level  
Switch to closed-loop PWM operation.  
Soft Start ends.  
*
)
6WDJH  
+
(
5
6
'
Normal PWM operation  
Overload protection is enabled  
6WDJH  
6WDJH  
Conditions  
Operation description  
VIN > UVLO Threshold  
AND  
One or more CTL pin is high.  
AND  
A
,
Internal reference is ready.  
End of stage 1 AND Vout<86% of target  
End of stage 2 AND Vout<86% of target  
End of stage 3 AND Vout<86% of target  
End of stage 4 AND Vout<86% of target  
Vout>86% of target  
Vout>86% of target  
Vout>86% of target  
End of soft start time of 1700µs  
B
C
D
E
F
G
H
I
6WDJH  
Figure 6 — Soft Start Operation  
ꢀ9  
SC284P  
Applications Information (continued)  
PCB Layout Considerations  
The layout diagram in Figure 7 shows a recommended  
PCB top layer for the SC284P and supporting components.  
Figure 8 shows the bottom layer for this PCB. Fundamental  
layout rules must be followed since the layout is critical for  
achieving the performance specified in the Electrical  
Characteristics table. Poor layout can degrade the perfor-  
mance of the DC-DC converter and can contribute to EMI  
problems, ground bounce, and resistive voltage losses.  
Poor regulation and instability can result.  
The following guidelines are recommended when devel-  
oping a PCB layout:  
Figure 7 — Recommended PCB Layout (Top Layer)  
ꢀ. The input capacitor, CIN, should be placed as close  
to the VIN and PGND pins as possible. This capacitor  
provides a low impedance loop for the pulsed currents  
present at the buck converter’s input. Use short wide  
traces to connect as closely to the IC as possible.  
This will minimize EMI and input voltage ripple by  
localizing the high frequency current pulses.  
2. Keep the LX pin traces as short as possible to minimize  
pickup of high frequency switching edges to other  
parts of the circuit. COUT and L should be connected as  
close as possible between the LX and PGND pins, with  
a direct return to the PGND pin from COUT  
.
3. Route the output voltage feedback/sense path away  
from the inductor and LX node to minimize noise and  
magnetic interference.  
Figure 8 — PCB Bottom Layer  
4. Use a ground plane referenced to the SC284P PGND  
pin. Use several vias to connect to the component  
side ground to further reduce noise and interference  
on sensitive circuit nodes.  
5. If possible, minimize the resistance from the output  
and PGND pin to the load. This will reduce the voltage  
drop on the ground plane and improve the load  
regulation. It will also improve the overall efficiency  
by reducing the copper losses on the output and  
ground planes.  
C5  
L2  
R1 C1  
C3  
U1  
6. Connect the AGND pins to the thermal pad.  
C4  
C2 R2  
L1  
C6  
Figure 9 — Recommended PCB Layout  
(Top Layer Details)  
20  
SC284P  
Outline Drawing – 3x3 MLPQ-UT20  
Land Pattern – 3x3 MLPQ-UT20  
2ꢀ  
SC284P  
© Semtech 20ꢀ4  
All rights reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate  
and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its  
use. Publication thereof does not convey nor imply any license under patent or other industrial or intellectual property  
rights. Semtech assumes no responsibility or liability whatsoever for any failure or unexpected operation resulting from  
misuse, neglect improper installation, repair or improper handling or unusual physical or electrical stress including, but  
not limited to, exposure to parameters beyond the specified maximum ratings or operation outside the specified range.  
SEMTECHPRODUCTSARENOTDESIGNED,INTENDED,AUTHORIZEDORWARRANTEDTOBESUITABLEFORUSEINLIFE-SUPPORT  
APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF SEMTECH PRODUCTS IN SUCH AP-  
PLICATIONSISUNDERSTOODTOBEUNDERTAKENSOLELYATTHECUSTOMER’SOWNRISK.Shouldacustomerpurchaseoruse  
Semtechproductsforanysuchunauthorizedapplication,thecustomershallindemnifyandholdSemtechanditsofficers,em-  
ployees,subsidiaries,affiliates,anddistributorsharmlessagainstallclaims,costsdamagesandattorneyfeeswhichcouldarise.  
Contact Information  
Semtech Corporation  
Power Management Products Division  
200 Flynn Road, Camarillo, CA 930ꢀ2  
Phone: (805) 498-2ꢀꢀꢀ Fax: (805) 498-3804  
www.semtech.com  
22  

相关型号:

SC284PULTRC

Dual Channel 2.5MHz, 2.0A Synchronous Buck with Automatic Power Save
SEMTECH

SC286

Dual Channel 4A Synchronous Step-Down Regulator
SEMTECH

SC286EVB

Dual Channel 4A Synchronous Step-Down Regulator
SEMTECH

SC286ULTRT

Dual Switching Controller, Voltage-mode, 4A, 1925kHz Switching Freq-Max, 4 X 4 MM, 0.60 MM HEIGHT, HALOGEN FREE AND ROHS COMPLIANT, MLPQ-28
SEMTECH

SC28C198A1A

Octal UART for 3.3V and 5V supply voltage
NXP

SC28C198A1A

Serial I/O Controller, CMOS, PQCC84,
PHILIPS

SC28C198A1BE

IC 8 CHANNEL(S), 1M bps, SERIAL COMM CONTROLLER, PQFP100, 14 X 14 MM, 1.40 MM HEIGHT, PLASTIC, SOT-407-1, LQFP-100, Serial IO/Communication Controller
NXP

SC28C198A1BE

Serial I/O Controller, CMOS, PQFP100,
PHILIPS

SC28C198C1A

IC 8 CHANNEL(S), 1M bps, SERIAL COMM CONTROLLER, PQCC84, PLASTIC, MO-047AF, SOT-189-3, LCC-84, Serial IO/Communication Controller
NXP

SC28C198C1A

Serial I/O Controller, CMOS, PQCC84,
PHILIPS

SC28C198C1A-T

IC 8 CHANNEL(S), 1M bps, SERIAL COMM CONTROLLER, PQCC84, PLASTIC, MO-047AF, SOT-189-3, LCC-84, Serial IO/Communication Controller
NXP

SC28C198C1A-T

Serial I/O Controller, CMOS, PQCC84,
PHILIPS