SC4905A [SEMTECH]

High Performance Voltage Mode PWM Controller; 高性能电压模式PWM控制器
SC4905A
型号: SC4905A
厂家: SEMTECH CORPORATION    SEMTECH CORPORATION
描述:

High Performance Voltage Mode PWM Controller
高性能电压模式PWM控制器

控制器
文件: 总24页 (文件大小:365K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SC4905A/B  
High Performance Voltage Mode  
PWM Controller  
POWER MANAGEMENT  
Description  
Features  
The SC4905A/B is a 10 pin BICMOS primary side voltage  
mode controller for use in Isolated DC-DC and off-line  
switching power supplies. It is a highly integrated solution,  
requiring few external components. The device features a  
high speed oscillator with integrated feed forward  
compensation, accurately programmable maximum duty  
cycle, voltage mode of operation, line voltage monitoring,  
supply UVLO, low start up current, low voltage current limit  
threshold and user accessible reference.  
‹ Operation to 1MHz  
‹ Accurate programmable maximum duty cycle  
‹ Integrated oscillator/voltage feed forward  
compensation  
‹ Line voltage monitoring  
‹ External frequency synchronization  
‹ Bi-phase mode of operation for ripple reduction  
‹ Under 100µA start-up current  
‹ Accessible reference voltage  
‹ VDD undervoltage lockout  
The SC4905A/B device operates at a fixed frequency,  
highly desirable for Telecom applications. Features a  
separate SYNC pin which simplifies synchronization to  
an external clock. Feeding the oscillator of one device to  
the SYNC of another forces biphase operation (180  
degrees apart) which reduces input ripple and filter size.  
‹ -40°C to 105°C operating temperature  
‹ 10-Pin MSOP Lead-free package available.  
Fully WEEE and RoHS compliant  
Applications  
‹ Telecom equipment and power supplies  
‹ Networking power supplies  
‹ Power over LAN applications  
‹ Industrial power supplies  
The SC4905A has a typical turn-on threshold of 4.4V  
and the SC4905B has a typical turn-on threshold of  
about 11.6 volts.  
‹ Isolated power supplies  
These devices are available in the 10 lead MSOP  
package.  
Typical Application Circuit  
Revision: January 4, 2006  
1
www.semtech.com  
SC4905A/B  
POWER MANAGEMENT  
Absolute Maximum Ratings  
Exceeding the specifications below may result in permanent damage to the device, or device malfunction. Operation outside of the parameters specified in the  
Electrical Characteristics section is not implied.  
Parameter  
Symbol  
Maximum  
Units  
V
Supply Voltage  
18  
Input Voltage (RC, ILIM)  
Input Voltage (VFF)  
Input Current (VFF)  
-0.3 to VREF + 0.3  
V
-0.3 to VREF + 0.7  
V
2
mA  
V
Input Voltage (FB)  
-0.3 to VREF + 0.7  
Output Current (REF) DC  
OUT  
5
-0.3 to VREF + 0.3  
180  
mA  
V
Power Dissipation  
mW  
°C  
°C  
°C  
KV  
Storage Temperature Range  
Junction Temperature  
Lead Temperature (Soldering) 10 Sec.  
ESD Rating (Human Body Model)  
TSTG  
TJ  
-65 to +150  
-55 to +150  
+300  
TLEAD  
ESD  
2
Electrical Characteristics  
Unless otherwise specified, VDD = 12V, VIN = 48V, ROSC = 499k, COSC = 220pF, RT = 280k, RM = 2k, RB = 8.25k, CVDD = 0.1uF, Ta = Tj = -40 to 105 °C.  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
Supply Curent Section  
Startup Current  
VDD = UVLO Start - 1, VDD  
Comparator Off  
100  
4.2  
µA  
IDD Active  
VDD = Comparator On,  
Oscillator Running  
3.5  
mA  
Line Under Voltage Lockout  
Start Threshold  
Voltage measured at VFF pin  
VFF = 1.2V +/- 3%  
1.164  
85  
1.200  
100  
1.236  
115  
V
Hysteresis  
mV  
nA  
I (VFF)  
-300  
300  
IB  
Oscillator Section  
Maximum Frequency  
CT Peak Voltage (1)  
V
FF = 1.2V to 4.8V  
VFF = 1.2V  
0.8  
1.0  
1.2  
3.6  
200  
1.2  
MHz  
V
VFF = 3.6V  
V
CT Valley Voltage (1)  
Sync/CLOCK  
mV  
Clock SYNC Threshold  
Sync Input Detect Time (1)  
.45 *VFF  
.50 *VFF  
50  
.55 *VFF  
V
FSYNC > Fosc  
nS  
2006 Semtech Corp.  
2
www.semtech.com  
SC4905A/B  
POWER MANAGEMENT  
Electrical Characteristics (Cont.)  
Unless otherwise specified, VDD = 12V, VIN = 48V, ROSC = 499k, COSC = 220pF, RT = 280k, RM = 2k, RB = 8.25k, CVDD = 0.1uF, Ta = Tj = -40 to 105 °C.  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
Sync/CLOCK (Cont.)  
(1)  
Sync Frequency  
1.2 *FOSC  
Hz  
Current Limit Section  
Input Bias Current  
0
-2  
µA  
mV  
ns  
Current Limit Threshold  
Propagation Delay, ILIM to OUT (1)  
VREF Section  
170  
200  
35  
230  
50mV Overdrive  
VREF (A version)  
0 - 5mA  
0 - 5mA  
-3%  
-3%  
4
5
+3%  
+3%  
V
V
VREF (B version)  
VDD UVLO Section (A version)  
Start Threshold  
4.1  
11  
4.4  
4.6  
V
Hysteresis  
200  
300  
mV  
VDD UVLO Section (B version)  
Start Threshold  
11.6  
3.6  
12  
4
V
V
Hysteresis  
Pulse Width Modulator Section  
FB Input current  
Minimum Duty Cycle (1)  
Maximum Duty Cycle  
PWM Gain (1)  
VFB = 0V to Vref  
VFB < 500mV  
1
0
uA  
%
V
DMAX = VFF , VFB = Vref  
VFF = 3.6  
95  
27.5  
75  
%
%/V  
ns  
Propagation Delay, PWM to OUT (1)  
Output  
Output VSAT Low  
Output VSAT High  
Rise Time (1)  
Fall Time (1)  
IOUT = 1mA  
500  
mV  
V
IOUT = 1mA  
VREF - 0.5  
COUT = 20pF  
COUT = 20pF  
10  
10  
ns  
ns  
Note 1: Guaranteed by design. Not 100% tested in production.  
2006 Semtech Corp.  
3
www.semtech.com  
SC4905A/B  
POWER MANAGEMENT  
Pin Configuration  
Ordering Information  
Part Number  
SC4905AIMSTR  
SC4905AIMSTRT(2)  
SC4905BIMSTR  
SC4905BIMSTRT(2)  
Package(1) Temp. Range (TA)  
(Top view)  
VDD  
FB  
REF  
MSOP-10  
-40°C to 105°C  
OUT  
GND  
ILIM  
VFF  
DMAX  
RC  
Notes:  
SYNC  
(1) Only available in tape and reel packaging. A reel  
contains 2500 devices.  
(2) Lead free product. This product is fully WEEE and  
RoHS compliant.  
(MSOP-10)  
2006 Semtech Corp.  
4
www.semtech.com  
SC4905A/B  
POWER MANAGEMENT  
Pin Descriptions  
Where VFF is the voltage at the VFF pin at a given Vin,  
frequency is in Hertz, resistance in ohms, and capaci-  
tance in farads.  
The recommended range if timing resistors is between  
10 kohm and 500kohm and range of timing capacitors  
is between 100pF and 1000pF. Timing resistors less  
than 10 kohm should be avoided.  
VDD: The supply input for the device. Once VDD has ex-  
ceeded the UVLO limit, the internal reference, oscillator,  
drivers and logic are powered up. This pin should be by-  
passed with a low ESR capacitance right at the IC pin to  
minimize noise problems, and to ensure proper opera-  
tion.  
Refer to layout guide lines on page 12 to achieve best  
results.  
FB: Input to the PWM comparator with an offset voltage  
of 700mV. The feedback analog signal from the output  
of an error amplifier or an Optoisolator will be connected  
to this pin to provide regulation.  
SYNC: SYNC is a positive edge triggered input with a  
threshold precisely set to  
VFF: The VFF pin provides the controller with a voltage  
proportional to the power supply input voltage to achieve  
feed-forward function. RM plus RB in conjunction with RT  
will set the Vff level (see page 1 circuit).  
0.5*VFF  
In the Bi-Phase operation mode SYNC pins should be con-  
nected to the Cosc (Timing Capacitors) of the other con-  
troller. This will force a 180° out of phase operation.  
(see page9).  
In a single controller operation, SYNC could be grounded  
or connected to an external synchronization clock with Fre-  
quency higher than the on board oscillator Frequency (see  
page 2).  
(
RB + RM  
)
VFF =  
× VIN  
(
RT + RB + RM  
)
DMAX: Programmable duty cycle is achieved via resis-  
tive divider from the VFF. The duty cycle percentage is  
set by the ratio of the divider RM, and RB (see page 1  
circuit) from the VFF signal. When RM is shorted, maxi-  
mum duty cycle of 100% is achieved. RM plus RB in con-  
junction with RT will also be used as the divider to set the  
Vff level.  
ILIM: Current sense input is provided via the ILIM pin.  
The current sense input from a sense resistor provides a  
pulse by pulse current limit by terminating the PWM pulse  
when the input is above 180mV.  
GND: Device power and analog ground. Careful atten-  
tion should be paid to the layout of the ground planes  
(see page 12).  
VDMAX  
DutyCycle% =  
VFF  
RC: The oscillator programming pin. The oscillator should  
be referenced to Vin to achieve the line feed forward func-  
tion. Only two components are required to program the  
oscillator, a resistor ROSC (tied to the Vin and RC), and a  
capacitor COSC (tied to the RC and GND). Since the peak  
oscillator voltage is VFF, constant frequency operation is  
maintained over the full power supply. When the DMAX  
pin is shorted to the VFF pin, the oscillator can run at the  
largest duty cycle possible.  
OUT: The output is intended to drive an external FET driver  
or other high impedance circuit. The output voltage swings  
from GND to Vref with a typical output impedance of 500.  
REF: The REF pin provides a 4 or 5V user accessible  
voltage reference. This pin should be decoupled with a  
1µF capacitor.  
Following formula can be used for a close approximation  
of the Oscillator Frequency.  
VFF  
2
Vin−  
FOSC  
(R  
OSC COSC VFF1.05  
)
2006 Semtech Corp.  
5
www.semtech.com  
SC4905A/B  
POWER MANAGEMENT  
Block Diagram  
Marking Information  
SC4905AIMSTR  
Top Mark  
SC4905BIMSTR  
Top Mark  
ALOA  
yyww  
ALOB  
yyww  
Bottom Mark  
Bottom Mark  
yyww = Date Code (Example: 0012)  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx = Semtech Lot No. (Example: E901  
xxxx  
01-1)  
2006 Semtech Corp.  
6
www.semtech.com  
SC4905A/B  
POWER MANAGEMENT  
Application Information  
THEORY OF OPERATION  
The SC4905 is a versatile 10 pin BICMOS primary side This feed forward action provides an immediate duty cycle  
adjustment while maintaining a constant oscillator fre-  
quency.  
A maximum duty cycle can be programmed by connect-  
ing a resistor divider from the VFF to the DMAX pin. The  
scaling of the VFF signal will set the maximum duty cycle  
percentage.  
voltage mode controller optimized for applications requir-  
ing minimum space such as isolated DC-DC and off-line  
switching power supplies.  
The device contains all of the control and drive circuity  
required for isolated or non-isolated power supplies,  
where an external error amplifier is used. Fixed oscillator  
frequency up to 1MHz can be programmed by an exter-  
nal RC network.  
An external error amplifier will provide the error signal to  
the FB pin of the SC4905.  
The SC4905 is a voltage mode controller, utilizing a feed A current sense input is provided via the ILIM pin. The  
forward scheme to accommodate for any variations in  
the input supply voltage resulting in a duty cycle  
adjustment. This feed forward action results in an  
improved dynamic performance of the converter.  
The SC4905 also provides a programmable maximum duty  
cycle to prevent core saturation when a transformer is used.  
As an added level of protection, SC4905 provides a cycle  
current sense input from a sense resistor is used for the  
peak current limit comparator.  
Once VDD has exceeded the UVLO (VDD under voltage  
lock out) limit, the internal reference, oscillator, drivers and  
logic are powered up.  
SYNC is a positive edge triggered input with a threshold  
set to 0.5*VFF.  
By connecting a faster external control signal to the SYNC  
pin, the internal oscillator frequency will be synchronized  
to the positive edge of the external control signal. In a  
single controller operation, SYNC could be grounded or  
connected to an external synchronization clock within the  
SYNC frequency (see page 3).  
In the Bi-Phase operation mode a very unique oscillator  
is utilized to allow two SC4905 to be synchronized  
together and work out of phase. This feature is setup by  
simple connection of the SYNC input to the RC pin of the  
other part. The fastest oscillator automatically becomes  
the master, forcing the two PWMs to operate out of  
phase. This feature minimizes the input and output  
ripples, and reduces stress on the capacitors.  
by cycle peak current limit during an over current condition.  
SUPPLY  
A single supply, VDD is used to provide the bias for the  
internal reference, oscillator, drivers, and logic circuitry  
of the SC4905.  
PWM CONTROLLER  
The SC4905 is a BICMOS primary side voltage mode  
controller for use in isolated DC-DC and off-line switch-  
ing power supplies. It is a highly integrated solution, re-  
quiring few external components.  
The device features a high speed oscillator with integrated  
feed forward compensation, accurately programmable  
maximum duty cycle, voltage mode of operation, line volt-  
age monitoring, supply UVLO, low start-up current, low  
voltage current limit threshold and user accessible refer-  
ence.  
Two voltage options are available for the SC4905. The  
SC4905A version has a typical VDD under voltage of  
4.4V, and a 4V reference, while the SC4905B version  
provides a 11.6V VDD UVLO, and a 5V reference.  
The Oscillator frequency is programmed by a resistor and  
a capacitor network connected to the line supply voltage .  
Any variations in the input supply voltage result in a duty  
cycle adjustment, provided by the change of the oscillator  
peak voltage via the VFF pin.  
Typical  
Typical  
Device  
Vdd UVLO  
Reference Voltage  
SC4905A  
SC4905B  
4.4V  
4V  
5V  
11.6V  
2006 Semtech Corp.  
7
www.semtech.com  
SC4905A/B  
POWER MANAGEMENT  
Application Information (Cont.)  
VDD UNDER VOLTAGE LOCK OUT  
According to the application, and the voltages available,  
the SC4905A (UVLO = 4.4V), or the SC4905B (UVLO =  
11.6V) can be used to provide the VDD undervoltage  
lock out function to ensure the converters controlled  
start up.  
Since the Rosc is referenced to the input supply voltage,  
any variation in the supply is directly translated into a  
variation in the duty cycle, while maintaining the fixed  
frequency operation.  
Following equation can be used to calculate the oscilla-  
tor frequency:  
Before the VDD UVLO has been reached, the internal ref-  
erence, oscillator, OUT driver, and logic are disabled.  
VFF  
REFERENCE  
Vin −  
2
FOSC  
A 4V (SC4905A) or a 5V(SC4905B) reference voltage is  
available that can be used to source a typical current  
up to 5mA to the external circuitry. The REF can be used  
to provide the feed back circuitry with a regulated bias.  
(
R
OSC COSC VFF1.05  
)
The recommended range if timing resistors is between  
10 kohm and 500kohm and range of timing capacitors  
is between 100pF and 1000pF. Timing resistors less  
than 10 kohm should be avoided.  
OSCILLATOR  
The oscillator frequency is set by connecting a RC network  
as shown below.  
Vin  
SC4905  
U1  
1
2
3
4
5
10  
9
VDD  
FB  
REF  
OUT  
GND  
ILIM  
RT  
280k  
Rosc  
499k  
8
VFF  
DMAX  
RC  
7
RM  
2k  
6
SYNC  
RB  
Cosc  
8.25k  
220p, 16V  
The oscillator has a ramp voltage that will track the volt-  
age at the VFF pin (1.2V<VFF<3.6V). The oscillator peak  
voltage is derived by charging the oscillator capacitor (Cosc)  
to the VFF voltage via the oscillator resistor (Rosc). The  
bias current to charge the Cosc is controlled by the Rosc.  
Once the RC pin has reached the VFF voltage, the oscil-  
lator ramp is discharged by an internal switch hence cre-  
ating the triangle oscillator ramp.  
2006 Semtech Corp.  
8
www.semtech.com  
SC4905A/B  
POWER MANAGEMENT  
Application Information (Cont.)  
FEED FORWARD & MAXIMUM DUTY CYCLE  
The feed forward function provided by the SC4905 will  
improve the dynamic performance of the converter in  
response to the changes in the input supply.  
In voltage mode controllers without the voltage feed for-  
ward circuitry, any changes in the input supply will cause  
an error in the output voltage which is sensed by the error  
amplifier and eventually is translated to an adjustment in  
the duty cycle by the controller. This delay in the response  
will cause the slower dynamic performance of the con-  
verter.  
If the application does not require an upper limit on the  
duty cycle, the VFF pin should be connected to the DMAX  
pin. In this mode, the duty cycle will be allowed to increase  
to the maximum limit of about 100%.  
SYNC/Bi-Phase operation  
In noise sensitive applications where synchronization of  
the oscillator frequency to a reference frequency is re-  
quired, the SYNC pin can accept the external clock.By  
connecting an external control signal to the SYNC pin,  
the Internal oscillator frequency will be synchronized to  
the positive edge of the external control signal. SYNC is  
a positive edge triggered input with a threshold set to  
0.5*VFF.  
This problem is resolved by sensing the input supply line  
and making the adjustment in the duty cycle immediately  
at the PWM controller.  
Vin  
In a single controller operation, SYNC chould be grounded  
or connected to an external synchronization clock within  
the SYNC frequency (see page 3).  
SC4905  
U1  
1
2
3
4
5
10  
9
VDD  
FB  
REF  
OUT  
R14  
280k  
R15  
499k  
Shut Down  
VIN  
8
VFF  
DMAX  
RC  
GND  
ILIM  
7
R16  
2k  
6
U1  
U2  
SYNC  
1
2
3
4
5
10  
9
1
2
3
4
5
10  
9
VDD  
FB  
REF  
OUT  
VDD  
FB  
REF  
OUT  
Rosc1  
Cosc1  
Rosc2  
Cosc2  
R18  
C27  
220p, 16V  
8
8
VFF  
DMAX  
RC  
GND  
ILIM  
VFF  
DMAX  
RC  
GND  
ILIM  
8.25k  
7
7
6
6
SYNC  
SYNC  
SC4905  
SC4905  
The SC4905 uses the input supply line as the bias for  
the oscillator circuitry, and the VFF pin. Any changes in  
the line will cause the ramp peak voltage to be adjusted  
to the VFF pin voltage while maintaining the oscillator  
frequency unchanged.  
The VFF pin can also be used to shut down the SC4905  
if it is pulled down to GND by an open collector circuitry.  
This can be useful for overvoltage protection or other  
control signals.  
The SC4905 also provides a programmable duty cycle,  
that can be set by an external voltage divider from the  
VFF pin. The ratio of the divider will determine the pro-  
grammed duty cycle allowed.  
In the Bi-Phase operation mode a very unique oscillator  
is utilized to allow two SC4905 to be synchronized  
together and work out of phase. This feature is setup by  
simple connection of the SYNC input to the RC pin of the  
other part. The fastest oscillator automatically becomes  
the master, forcing the two PWMs to operate out of  
phase. This feature minimizes the input and output  
ripples, and reduces stress on the capacitors.  
VDMAX  
DutyCycle% =  
VFF  
2006 Semtech Corp.  
9
www.semtech.com  
SC4905A/B  
POWER MANAGEMENT  
Application Information (Cont.)  
FEED BACK  
GATE DRIVERS  
The error signal from the output of an external Error am-  
plifier such as SC431 or SC4431 is applied to the invert-  
ing input of the PWM comparator at the FB pin either  
directly or via an opto coupler for the Isolated applica-  
tions. For best stability keep the FB trace length as short  
as possible.  
OUT is a CMOS gate drive output stage that is supplied  
from REF and provides a peak source/sink current of  
about 1mA. The output stage is capable of driving the  
logic input of external MOSFET Drivers and is switched at  
the oscillator frequency. When the voltage on the RC pin  
is rising,, the output is high.  
It should be noted that if high speed/high current drivers  
such as the SC1301 are used, careful layout must be  
followed in order to minimize stary inductance, which  
might cause negative voltages at the output of the driv-  
ers. This negative voltage can be clamped to reasonable  
level by placing a small Schottky diode directly at the  
output of the driver as shown below.  
REF  
4.7nF C36  
Secondary Supply  
Vout  
R22  
1.1k  
22pF  
C31  
R25  
100k  
C33  
R24  
680pF  
FB  
6
5
3
4
C32  
1nF  
C30  
NA  
3.74k  
R29  
NA  
R23  
5.1k  
R26  
1
5
80.2k  
MOCD207  
4
C34  
C35  
0.1u,16V  
22n, 16V  
U6  
SC4431  
R27  
9.1k  
Vref  
REF VDD  
VDD  
Mosfet Gate  
2
0
R13  
SC1301A  
SC4905  
U1  
3
5
C17  
C18  
The signal at the FB pin is then compared to the ramp  
signal from the RC pin and the OUT gate drive signal is  
generated.  
Voltages below 600mV at the FB pin, will produce a 0%  
duty cycle at the OUT drive. Maximum duty cycle is pro-  
duced when VFB-600mV>VFF. The FB signal range is from  
600mv to 4V.  
1
2
3
4
5
10  
9
D8  
VDD  
REF  
OUT  
C22  
1
FB  
4
8
VFF  
DMAX  
RC  
GND  
ILIM  
D11  
2
7
U2  
6
SYNC  
SOFT START  
During start up of the converter, the discharged output  
capacitor, and the load current demand large supply cur-  
rent requirements. To avoid this a soft start scheme is  
usually implemented where the duty cycle of the regula-  
tor is gradually increased from 0% until the soft start  
duration is elapsed.  
Programmable soft start duration can implemented ex-  
ternally by utilizing a simple external circuitry shown be-  
low.  
OVER CURRENT  
A pulse by pulse current limit is provided by the SC4905.  
The current information is sensed at the ILIM pin and  
compared to a peak current limit level of 180mV. If the  
180mV limit is exceeded, the OUT pulse is terminated.  
REF VDD  
REF  
SC4905  
R13  
0
U1  
R22  
1.1k  
SC4905  
1
2
3
4
5
VDD  
FB  
REF  
OUT  
U1  
C17  
C26  
1
2
3
4
5
10  
9
6
VDD  
FB  
REF  
OUT  
3
4
9
8
7
6
C22  
C30  
M1  
VFF  
DMAX  
RC  
GND  
ILIM  
8
5
VFF  
GND  
ILIM  
7
R17  
56.2K  
DMAX  
RC  
MOCD207  
Csoft start  
6
SYNC  
SYNC  
R30  
Rsense  
D7  
D15  
R11  
VDD  
SC1301A  
C18  
3
5
D8  
Approximate soft start duration can be calculated as be-  
low:  
1
4
D11  
U2  
2
2006 Semtech Corp.  
10  
www.semtech.com  
SC4905A/B  
POWER MANAGEMENT  
Application Information (Cont.)  
START UP SEQUENCE  
Initially during the power up, the SC4905 is in the under  
voltage lock out condition. As the VDD supply exceeds  
the UVLO limit of the SC4905 and the VFF pin exceeds  
the line under voltage lock out of about 1.2V, the inter-  
nal reference, oscillator, and logic circuitry are powered  
up.  
The OUT driver is not enabled until the line under voltage  
lock out limit is reached. At that point, once the FB pin  
has reached above 600mV, the output driver is enabled.  
As the output voltage starts to increase, the error signal  
from the error amplifier starts to decrease. If isolation is  
required, the error amplifier output can drive the LED of  
the opto isolator. The output of the opto is connected in  
a common emitter configuration with a pull up resistor to  
a reference voltage connected to the FB pin of the  
SC4905. The voltage level at the FB pin provides the duty  
cycle necessary to achieve regulation.  
2006 Semtech Corp.  
11  
www.semtech.com  
SC4905A/B  
POWER MANAGEMENT  
Application Information (Cont.)  
LAYOUT GUIDELINES  
Careful attention to layout requirements are necessary for  
successful implementation of the SC4905 PWM control-  
ler.  
High currents switching are present in the application  
and their effect on ground plane voltage differentials must  
be understood and minimized.  
7) If an opto isolator is used for isolation, quiet primary  
and secondary ground planes should be used. Same  
precautions should be followed for the primary GND plane  
as mentioned in item 5 mentioned above. For the sec-  
ondary GND plane, the GND plane method mentioned  
in item 4 should be followed.  
1). The high power parts of the circuit should be laid out  
first. A ground plane should be used. The number and  
position of ground plane interruptions should be such as  
to not unnecessarily compromise ground plane integrity.  
Isolated or semi-isolated areas of the ground plane may  
be deliberately introduced to constrain ground currents to  
particular areas, for example the input capacitor and FET  
ground.  
2). The loop formed by the Input Capacitor(s) (Cin), the  
FET must be kept as small as possible. This loop contains  
all the high current, fast transition switching. Connections  
should be as wide and as short as possible to minimize  
loop inductance. Minimizing this loop area will a) reduce  
EMI, b) lower ground injection currents, resulting in electri-  
cally “cleaner” grounds for the rest of the system and c)  
minimize source ringing, resulting in more reliable gate  
switching signals.  
8) All the noise sensitive components such as VFF, DMAX  
resistive divider, reference by pass capacitor, VDD bypass  
capacitor, current sensing circuitry, feedback circuitry, and  
the oscillator resistor/capacitor network should be con-  
nected as close as possible to the SC4905. The GND  
return should be connected to the quiet SC4905 GND  
plane.  
9) The connection from the OUT of the SC4905 should be  
minimized to avoid any stray inductance. If the layout  
can not be optomized due to constraints, a small  
Schottky diode maybe connected from the OUT pin to  
the ground directly at the IC. This will clamp excessive  
negative voltages at the IC. If drivers are used, the  
Schottky diodes should be connected directly at the IC,  
from the output of the driver to the driver ground.  
10) If the SYNC function is not used, the SYNC pin should  
be grounded at the SC4905 GND to avoid noise pick up.  
3). The connection between FETs and the Transformer  
should be a wide trace or copper region. It should be as  
short as practical. Since this connection has fast voltage  
transitions, keeping this connection short will minimize EMI.  
4) The output capacitor(s) (Cout) should be located as  
close to the load as possible. Fast transient load cur-  
rents are supplied by Cout only. Connections between  
Cout and the load must be short, wide copper areas to  
minimize inductance and resistance.  
5) The SC4905 is best placed over a quiet ground plane  
area. Avoid pulse currents in the Cin FET loop flowing in  
this area. GND should be returned to the ground plane  
close to the package and close to the ground side of (one  
of) the VDD supply capacitor(s). Under no circumstances  
should GND be returned to a ground inside the Cin and  
FET loop. This can be achieved by making a star connec-  
tion between the quiet GND planes that the SC4905 will  
be connected to and the noisy high current GND planes  
connected to the FETs.  
6) The feed back connection between the error amplifier  
and the FB pin should be kept as short as possible, and  
the GND connections should be to the quiet GND used for  
the SC4905.  
2006 Semtech Corp.  
12  
www.semtech.com  
SC4905A/B  
POWER MANAGEMENT  
Typical Step Load  
Vout  
20mV/Div  
Iout  
0.5A/Div  
500us/Div  
Cout = 6X100uF (600uF) Tantalum  
Typical SC4905 Forward converter Step Load plot at Vin = 48V, Vout = 12V, Step = 50% to 75% Iout, Fosc = 245kHz  
2006 Semtech Corp.  
13  
www.semtech.com  
SC4905A/B  
POWER MANAGEMENT  
SC4905A Typical Characteristics  
(SC4808A)  
198  
197  
196  
195  
194  
193  
192  
191  
190  
78  
Current limit rising  
Start up Iq, Vdd = 3V  
76  
74  
72  
70  
68  
66  
64  
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
95  
110 125  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95  
110 125  
Ta (°C)  
Ta (°C)  
Iq (start up) vs. Temperature  
Current Limit vs. Temperature  
3.200  
3.100  
3.000  
2.900  
2.800  
2.700  
2.600  
65  
60  
55  
50  
45  
40  
35  
Idd Active, Vdd = 4V  
Current limit Input current  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
95  
110 125  
Ta (°C)  
Ta (°C)  
Idd (operating) vs. Temperature  
Current Limit bias current vs. Temperature  
4.025  
4.020  
4.015  
4.010  
4.005  
4.000  
3.995  
4.55  
Vdd UVLO (Rising)  
Vdd UVLO (Falling)  
Reference, Iref = 0mA, Vdd = 5V  
Reference, Iref = 5mA, Vdd = 5V  
4.50  
4.45  
4.40  
4.35  
4.30  
4.25  
4.20  
4.15  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95  
110 125  
Ta (°C)  
Ta (°C)  
Reference vs. Temperature  
Vdd UVLO vs. Temperature  
2006 Semtech Corp.  
14  
www.semtech.com  
SC4905A/B  
POWER MANAGEMENT  
SC4905A Typical Characteristics (Cont.)  
0.250  
220  
200  
180  
160  
140  
120  
100  
80  
Vdd UVLO (Hysteresis)  
Input Bias current IFF  
0.240  
0.230  
0.220  
0.210  
0.200  
0.190  
0.180  
0.170  
60  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95  
110 125  
Ta (°C)  
Ta (°C)  
Vdd UVLO Hysteresis vs. Temperature  
Vff pin leakage current vs. Temperature  
1.240  
1.220  
1.200  
1.180  
1.160  
1.140  
1.120  
1.100  
1.080  
1400  
1200  
1000  
800  
LUVLO (Rising)  
LUVLO (falling)  
Oscillator Frequency 1MHz  
Oscillator Frequency 300kHz  
600  
400  
200  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95  
110 125  
Ta (°C)  
Ta (°C)  
Line UVLO vs. Temperature  
Oscillator Frequency vs. Temperature  
200  
180  
160  
140  
120  
100  
80  
103.6  
103.5  
103.5  
103.4  
103.4  
103.3  
103.3  
103.2  
103.2  
103.1  
103.1  
LUVLO (Hysteresis)  
Input leakage current Irc  
-40  
-25 -10  
5
20  
35  
50  
65  
80  
95  
110 125  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
Ta (°C)  
Ta (°C)  
Line UVLO Hysteresis vs. Temperature  
RC pin leakage current vs. Temperature  
2006 Semtech Corp.  
15  
www.semtech.com  
SC4905A/B  
POWER MANAGEMENT  
SC4905A Typical Characteristics (Cont.)  
1.792  
0.075  
0.070  
0.065  
0.060  
0.055  
0.050  
0.045  
0.040  
0.035  
0.030  
Vout Low, Vdd = 4V  
Sync. Threshold  
1.790  
1.788  
1.786  
1.784  
1.782  
1.780  
1.778  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
95  
110  
125  
Ta (°C)  
Ta (°C)  
Synchronization Threshold vs. Temperature  
VOUT Low vs. Temperature  
280  
3.942  
3.940  
3.938  
3.936  
3.934  
3.932  
3.930  
3.928  
3.926  
Input leakage current IFB, Vfb = 0  
Vout High, Vdd = 4V  
260  
240  
220  
200  
180  
160  
140  
120  
100  
-40  
-25 -10  
5
20  
35  
50  
65  
80  
95  
110 125  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
Ta (°C)  
Ta (°C)  
FB pin leakage current vs. Temperature  
VOUT high vs. Temperature  
2006 Semtech Corp.  
16  
www.semtech.com  
SC4905A/B  
POWER MANAGEMENT  
SC4905B Typical Characteristics  
209  
208  
207  
206  
205  
204  
203  
202  
201  
200  
199  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
Current limit rising  
Start up Iq, Vdd = 3V  
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
95  
110 125  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95  
110 125  
Ta (°C)  
Ta (°C)  
Iq (start up) vs. Temperature  
Current Limit vs. Temperature  
3.460  
3.410  
3.360  
3.310  
3.260  
3.210  
3.160  
3.110  
3.060  
70  
60  
50  
40  
30  
20  
10  
0
Idd Active, Vdd = 4V  
Current limit Input current  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
95  
110 125  
Ta (°C)  
Ta (°C)  
Idd (operating) vs. Temperature  
Current Limit bias current vs. Temperature  
5.030  
5.025  
5.020  
5.015  
5.010  
5.005  
5.000  
13.00  
Vdd UVLO (Rising)  
Vdd UVLO (Falling)  
Reference, Iref = 0mA, Vdd = 5V  
Reference, Iref = 5mA, Vdd = 5V  
12.00  
11.00  
10.00  
9.00  
8.00  
7.00  
6.00  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
Ta (°C)  
Ta (°C)  
Reference vs. Temperature  
Vdd UVLO vs. Temperature  
2006 Semtech Corp.  
17  
www.semtech.com  
SC4905A/B  
POWER MANAGEMENT  
SC4905B Typical Characteristics (Cont.)  
200  
180  
160  
140  
120  
100  
80  
3.740  
Vdd UVLO (Hysteresis)  
Input Bias current IFF  
3.720  
3.700  
3.680  
3.660  
3.640  
3.620  
3.600  
3.580  
60  
-40  
-25 -10  
5
20  
35  
50  
65  
80  
95  
110 125  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
Ta (°C)  
Ta (°C)  
Vdd UVLO Hysteresis vs. Temperature  
Vff pin leakage current vs. Temperature  
1.240  
1.220  
1.200  
1.180  
1.160  
1.140  
1.120  
1.100  
1.080  
1400  
1200  
1000  
800  
LUVLO (Rising)  
LUVLO (falling)  
Oscillator Frequency 1MHz  
Oscillator Frequency 300kHz  
600  
400  
200  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95  
110 125  
Ta (°C)  
Ta (°C)  
Line UVLO vs. Temperature  
Oscillator Frequency vs. Temperature  
200  
180  
160  
140  
120  
100  
80  
101.8  
101.7  
101.6  
101.5  
101.4  
101.3  
101.2  
101.1  
101.0  
100.9  
LUVLO (Hysteresis)  
Input leakage current Irc  
-40  
-25 -10  
5
20  
35  
50  
65  
80  
95  
110 125  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
Ta (°C)  
Ta (°C)  
Line UVLO Hysteresis vs. Temperature  
RC pin leakage current vs. Temperature  
2006 Semtech Corp.  
18  
www.semtech.com  
SC4905A/B  
POWER MANAGEMENT  
SC4905B Typical Characteristics (Cont.)  
1.796  
0.060  
0.055  
0.050  
0.045  
0.040  
0.035  
0.030  
Vout Low, Vdd = 4V  
Sync. Threshold  
1.794  
1.792  
1.790  
1.788  
1.786  
1.784  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
95  
110  
125  
Ta (°C)  
Ta (°C)  
Synchronization Threshold vs. Temperature  
Vout Low vs. Temperature  
190  
4.958  
4.957  
4.956  
4.955  
4.954  
4.953  
4.952  
4.951  
4.950  
4.949  
4.948  
Input leakage current IFB, Vfb = 0  
Vout High, Vdd = 4V  
180  
170  
160  
150  
140  
130  
120  
110  
100  
-40  
-25 -10  
5
20  
35  
50  
65  
80  
95  
110 125  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
Ta (°C)  
Ta (°C)  
FB pin leakage current vs. Temperature  
Vout high vs. Temperature  
2006 Semtech Corp.  
19  
www.semtech.com  
SC4905A/B  
POWER MANAGEMENT  
Evaluation Board Schematics  
2006 Semtech Corp.  
20  
www.semtech.com  
SC4905A/B  
POWER MANAGEMENT  
Evaluation Board Bill of Materials  
Revised: Monday, March 8, 2003  
SC4905 Single Switch Forward (RCD Reset) non Synchronous 12V 50W  
Bill Of Materials  
Revised: January 28,2002  
Revision: 1b  
Item Quantity  
Reference  
Part  
Manufacturer #  
Foot Print  
1
2
3
4
5
6
7
8
1
1
2
6
5
1
2
3
CON1  
5output_half_brick  
3input_half_brick  
470pF,100V  
100u,16V  
CON\5OUTPUT_HALF_BRICK  
CON2  
CON\3INPUT_HALF_BRICK  
SM/C_0805  
C11,C1  
C2,C3,C4,C5,C6,C7  
EEJL1CD476R  
SM/C_0805  
C8,C9,C14,C28,C34  
0.1u,16V  
C10  
.47uF,100V  
1u,100V  
10u,16V  
GHM1545X7R474K250 (Murata)  
GRM44-1X7R105K250AL (Murata)  
GRM42-2X5R106K16 (Murata)  
SM/C_2220  
C12,C13  
SM/C_2220  
C15,C16,C23  
SM/C_1210_GRM  
C17,C18,C19,C20,C21,C24,  
9
7
1u, 16V  
SM/C_0805  
C25  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
1
2
2
1
1
1
1
1
1
2
1
2
1
1
C22  
2.2u, 16V  
220p, 16V  
22n, 16V  
NA  
SM/C_0805  
SM/C_0805  
SM/C_0805  
SM/C_0805  
SM/C_0805  
SM/C_0805  
SM/C_0805  
SM/C_0805  
SM/C_2220  
DIODE_DPAK  
SM/DO214AA  
SM/DO213AC  
SMB/DO214  
SOD123  
C26,C27  
C29,C35  
C30  
C31  
22pF  
C32  
1nF  
C33  
680pF  
C36  
4.7nF  
C37  
.33uF,250V  
MBRD660CT  
MURA120T3  
LS4448  
C4532X7R2E334K (TDK)  
D1,D2  
D3  
D4,D5  
D6  
D7  
ZM4742A  
1N5819HW  
ZM4742A (Diodes Inc.)  
D8,D9,D10,D11,D12,D13,  
24  
7
CMOSH-3  
CMOSH-3 (Central Semiconductor)  
SOD523  
D15  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
1
1
1
1
1
1
1
1
1
2
3
1
1
2
2
1
1
1
1
1
1
1
2
2
2
1
1
1
1
1
1
1
1
1
1
2
2
1
D14  
B140T  
short  
SM/DO213AC  
VIA\2P  
JP1  
J1  
REF  
ED5052  
J2  
VDD  
ED5052  
L1  
9uH  
P1173.123T (Pulse)  
LQH4N102K04 (Murata)  
SUD15N15-95 (Vishay)  
P1173  
L2  
LQH4N102K04  
SUD15N15-95  
OUT  
SDIP0302  
M1  
DPAKFET  
OUT  
Q1  
ED5052  
FZT853  
10  
FZT853 (Zetex)  
SM/SOT223_BCEC  
SM/R_0805  
SM/R_0805  
SM/R_1206  
SM/R_1210_MCR  
SM/R_1210_MCR  
SM/R_0805  
ERJL1W  
R5,R1  
R2,R9,R13  
R3  
0
49.9k  
R4  
500  
MRC1-100-5000-F-7  
MRC1-100-5001-F-7  
R6,R7  
R8,R12  
R10  
5000  
TBD  
LR2512-01-R025FTR  
2.2  
LR2512-01-R025FTR (IRC)  
R11  
SM/R_0805  
SM/R_0805  
SM/R_0805  
SM/R_0805  
SM/R_0805  
SM/R_0805  
SM/R_0805  
SM/R_0805  
SM/R_0805  
SM/R_0805  
SM/R_0805  
SM/R_0805  
SM/R_0805  
SM/R_0805  
SM/R_0805  
ED5052  
R14  
280k  
R15  
499k  
R16  
2k  
R17  
500  
R18  
8.25k  
R22,R19  
R20,R30  
R24,R21  
R23  
1.1k  
39.2k  
3.74k  
5.1k  
R25  
100k  
R26  
80.2k  
R27  
9.1k  
R28  
2.2k  
R29  
NA  
SYNC1  
T1  
SYNC  
PA0273  
PE-68386  
SC4905  
SC1301A  
SC4431  
MOCD207  
PA0273 (Pulse)  
PE-68386 (Pulse)  
SC4905 (Semtech)  
SC1301A (Semtech)  
SC4431 (Semtech)  
MOCD207(Fairchild)  
PA0273  
T2  
U1  
PE-68386  
MSOP10  
U2,U3  
U4,U6  
U5  
SOT23_5PIN  
SOT23_5PIN  
SO-8  
2006 Semtech Corp.  
21  
www.semtech.com  
SC4905A/B  
POWER MANAGEMENT  
Evaluation Board Gerber Plots  
Board Layout Assembly Top  
Board Layout Assembly Bottom  
Board Layout Top  
Board Layout Bottom  
2006 Semtech Corp.  
22  
www.semtech.com  
SC4905A/B  
POWER MANAGEMENT  
Evaluation Board Gerber Plots  
Board Layout INNER1  
Board Layout INNER2  
2006 Semtech Corp.  
23  
www.semtech.com  
SC4905A/B  
POWER MANAGEMENT  
Outline Drawing - MSOP-10  
DIMENSIONS  
INCHES MILLIMETERS  
e
DIM  
A
A
MIN NOM MAX MIN NOM MAX  
D
E
-
-
-
-
-
-
-
-
-
-
-
-
.043  
1.10  
0.15  
0.95  
0.27  
0.23  
N
A1 .000  
A2 .030  
.006 0.00  
.037 0.75  
.011 0.17  
.009 0.08  
b
c
D
.007  
.003  
2X  
E/2  
.114 .118 .122 2.90 3.00 3.10  
E1  
E1 .114 .118 .122 2.90 3.00 3.10  
PIN 1  
INDICATOR  
E
.193 BSC  
.020 BSC  
4.90 BSC  
0.50 BSC  
e
L
L1  
N
.016 .024 .032 0.40 0.60 0.80  
ccc  
C
1 2  
(.037)  
(.95)  
10  
10  
2X N/2 TIPS  
B
-
-
01  
aaa  
0°  
8°  
0°  
8°  
.004  
.003  
.010  
0.10  
0.08  
0.25  
bbb  
ccc  
D
aaa  
C
H
A2  
A
SEATING  
PLANE  
c
GAGE  
A1  
bxN  
bbb  
C
PLANE  
C
A-B D  
0.25  
L
01  
(L1)  
DETAIL A  
A
SEE DETAIL  
SIDE VIEW  
NOTES:  
1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).  
2. DATUMS -A- AND -B- TO BE DETERMINED AT DATUM PLANE -H-  
3. DIMENSIONS "E1" AND "D" DO NOT INCLUDE MOLD FLASH, PROTRUSIONS  
OR GATE BURRS.  
4. REFERENCE JEDEC STD MO-187, VARIATION BA.  
Land Pattern - MSOP-10  
X
DIMENSIONS  
DIM  
INCHES  
(.161)  
.098  
MILLIMETERS  
(4.10)  
2.50  
0.50  
0.30  
1.60  
5.70  
C
G
P
X
Y
Z
(C)  
G
Y
Z
.020  
.011  
.063  
.224  
P
NOTES:  
1. THIS LAND PATTERN IS FOR REFERENCE PURPOSES ONLY.  
CONSULT YOUR MANUFACTURING GROUP TO ENSURE YOUR  
COMPANY'S MANUFACTURING GUIDELINES ARE MET.  
Contact Information  
Semtech Corporation  
Power Management Products Division  
200 Flynn Road, Camarillo, CA 93012  
Phone: (805)498-2111 FAX (805)498-3804  
2006 Semtech Corp.  
24  
www.semtech.com  

相关型号:

SC4905AIMSTR

High Performance Voltage Mode PWM Controller
SEMTECH

SC4905AIMSTRT

High Performance Voltage Mode PWM Controller
SEMTECH

SC4905AMSTR

HIGH PERFORMANCE VOLTAGE MODE PWM CONTROLLER
SEMTECH

SC4905A_06

High Performance Voltage Mode PWM Controller
SEMTECH

SC4905B

High Performance Voltage Mode PWM Controller
SEMTECH

SC4905BIMSTR

High Performance Voltage Mode PWM Controller
SEMTECH

SC4905BIMSTRT

High Performance Voltage Mode PWM Controller
SEMTECH

SC4905BMSTR

HIGH PERFORMANCE VOLTAGE MODE PWM CONTROLLER
SEMTECH

SC4910A

High Performance Secondary Side Controller with Synchronous Rectifier
SEMTECH

SC4910AITSTR

Switching Controller, Voltage-mode, 0.15A, 1000kHz Switching Freq-Max, PDSO20, TSSOP-20
SEMTECH

SC4910AITSTRT

High Performance Secondary Side Controller with Synchronous Rectifier
SEMTECH

SC4910B

High Performance Secondary Side Controller with Synchronous Rectifier
SEMTECH