SX1261 [SEMTECH]

Long Range, Low Power, sub-GHz RF Transceiver;
SX1261
型号: SX1261
厂家: SEMTECH CORPORATION    SEMTECH CORPORATION
描述:

Long Range, Low Power, sub-GHz RF Transceiver

文件: 总107页 (文件大小:2366K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SX1261/2  
Long Range, Low Power, sub-GHz  
RF Transceiver  
Analog Front End & Data Conversion  
TM  
LoRa  
Protocol  
Engine  
LNA  
ADC  
Modem  
Matching  
+
LPF  
SPI  
PA  
PLL  
FSK  
Modem  
Data  
Buffer  
OSC  
DC-DC  
LDO  
Figure A: SX1261/2 Block Diagram  
General Description  
Applications  
The level of integration and the low consumption within  
SX1261/2 enable a new generation of Internet of Things  
applications.  
SX1261 and SX1262 sub-GHz radio transceivers are ideal for  
long range wireless applications. Both devices are  
designed for long battery life with just 4.2 mA of active  
receive current consumption. The SX1261 can transmit up  
to +15 dBm and the SX1262 can transmit up to +22 dBm  
with highly efficient integrated power amplifiers.  
Smart meters  
Supply chain and logistics  
Building automation  
Agricultural sensors  
Smart cities  
These devices support LoRa® modulation for LPWAN use  
cases and (G)FSK modulation for legacy use cases. The  
devices are highly configurable to meet different  
application requirements utilizing the global LoRaWANTM  
standard or proprietary protocols.  
Retail store sensors  
Asset tracking  
The devices are designed to comply with the physical layer  
requirements of the LoRaWANTM specification released by  
Street lights  
Parking sensors  
the LoRa AllianceTM  
.
Environmental sensors  
Healthcare  
The radio is suitable for systems targeting compliance with  
radio regulations including but not limited to ETSI EN 300  
220, FCC CFR 47 Part 15, China regulatory requirements  
and the Japanese ARIB T-108. Continuous frequency  
coverage from 150 MHz to 960 MHz allows the support of  
all major sub-GHz ISM bands around the world.  
Safety and security sensors  
Remote control applications  
SX1261/2  
Data Sheet  
1 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
Ordering Information  
Part Number  
Delivery  
Minimum Order Quantity  
SX1261IMLTRT  
SX1262IMLTRT  
Tape & Reel  
Tape & Reel  
3’000 pieces  
3’000 pieces  
QFN 24 Package, Pb-free, Halogen free, RoHS/WEEE compliant product.  
Revision History  
Version  
ECO  
Date  
Modifications  
1.0  
039166  
October 2017  
First Release  
Addition of a note “when using a TCXO" to explain the XTA cap value change  
with TCXO in chapter 4.1.3 XTAL Control Block  
New sub-chapter 5.1.5 “Considerations on the DC-DC Inductor Selection”  
1.1  
040046  
December 2017  
Addition of a note recommending 12 symbols of LoRa preamble for optimal  
performances in chapter 6.1.1.1 Spreading Factor  
Addition of a note on SetLoRaSymbNumTimeout in chapter 9.6 Receive Mode  
Correction of RandomNumber Gen[] values in chapter 12.1 Register Map  
SX1261/2  
Data Sheet  
DS.SX1261-2.W.APP  
2 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
December 2017  
Table of Contents  
1. Architecture.....................................................................................................................................................................................................11  
2. Pin Connection...............................................................................................................................................................................................12  
2.1 I/O Description ..................................................................................................................................................................................12  
2.2 Package View .....................................................................................................................................................................................13  
3. Specifications..................................................................................................................................................................................................14  
3.1 ESD Notice ...........................................................................................................................................................................................14  
3.2 Absolute Maximum Ratings .........................................................................................................................................................14  
3.3 Operating Range ...............................................................................................................................................................................14  
3.4 Crystal Specifications ......................................................................................................................................................................15  
3.5 Electrical Specifications ..................................................................................................................................................................15  
3.5.1 Power Consumption ...........................................................................................................................................................16  
3.5.2 General Specifications........................................................................................................................................................18  
3.5.3 Receive Mode Specifications............................................................................................................................................19  
3.5.4 Transmit Mode Specifications .........................................................................................................................................21  
3.5.5 Digital I/O Specifications ...................................................................................................................................................21  
4. Circuit Description.........................................................................................................................................................................................22  
4.1 Clock References ...............................................................................................................................................................................22  
4.1.1 RC Frequency References..................................................................................................................................................22  
4.1.2 High-Precision Frequency Reference............................................................................................................................22  
4.1.3 XTAL Control Block ..............................................................................................................................................................23  
4.1.4 TCXO Control Block .............................................................................................................................................................24  
4.2 Phase-Locked Loop (PLL) ...............................................................................................................................................................24  
4.3 Receiver ................................................................................................................................................................................................25  
4.3.1 Intermediate Frequencies.................................................................................................................................................25  
4.4 Transmitter ..........................................................................................................................................................................................26  
4.4.1 SX1261 Power Amplifier Specifics..................................................................................................................................27  
4.4.2 SX1262 Power Amplifier Specifics..................................................................................................................................29  
4.4.3 Power Amplifier Summary................................................................................................................................................31  
5. Power Distribution........................................................................................................................................................................................32  
5.1 Selecting DC-DC Converter or LDO Regulation ....................................................................................................................32  
5.1.1 Option A: SX1261 with DC-DC Regulator ....................................................................................................................33  
5.1.2 Option B: SX1261 with LDO Regulator .........................................................................................................................34  
5.1.3 Option C: SX1262 with DC-DC Regulator ....................................................................................................................34  
5.1.4 Option D: SX1262 with LDO Regulator.........................................................................................................................35  
5.1.5 Consideration on the DC-DC Inductor Selection......................................................................................................35  
5.2 Flexible DIO Supply .........................................................................................................................................................................36  
6. Modems ............................................................................................................................................................................................................37  
6.1 LoRa® Modem ....................................................................................................................................................................................37  
6.1.1 Modulation Parameter .......................................................................................................................................................37  
6.1.2 LoRa® Packet Engine ...........................................................................................................................................................39  
6.1.3 LoRa® Frame...........................................................................................................................................................................40  
6.1.4 LoRa® Time-on-Air................................................................................................................................................................41  
6.1.5 LoRa® Channel Activity Detection (CAD) .....................................................................................................................41  
SX1261/2  
Data Sheet  
3 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
6.2 FSK Modem .........................................................................................................................................................................................42  
6.2.1 Modulation Parameter .......................................................................................................................................................42  
6.2.2 FSK Packet Engine................................................................................................................................................................43  
6.2.3 FSK Packet Format ...............................................................................................................................................................44  
7. Data Buffer .......................................................................................................................................................................................................47  
7.1 Principle of Operation .....................................................................................................................................................................47  
7.2 Data Buffer in Receive Mode ........................................................................................................................................................48  
7.3 Data Buffer in Transmit Mode ......................................................................................................................................................48  
7.4 Using the Data Buffer ......................................................................................................................................................................48  
8. Digital Interface and Control.....................................................................................................................................................................49  
8.1 Reset ......................................................................................................................................................................................................49  
8.2 SPI Interface ........................................................................................................................................................................................49  
8.2.1 SPI Timing When the Transceiver is in Active Mode................................................................................................49  
8.2.2 SPI Timing When the Transceiver Leaves Sleep Mode ...........................................................................................50  
8.3 Multi-Purpose Digital Input/Output (DIO) ..............................................................................................................................51  
8.3.1 BUSY Control Line ................................................................................................................................................................51  
8.3.2 Digital Input/Output ...........................................................................................................................................................53  
8.4 Digital Interface Status versus Chip modes ............................................................................................................................53  
8.5 IRQ Handling ......................................................................................................................................................................................54  
9. Operational Modes .......................................................................................................................................................................................55  
9.1 Startup ..................................................................................................................................................................................................55  
9.2 Calibrate ...............................................................................................................................................................................................55  
9.2.1 Image Calibration for Specific Frequency Bands......................................................................................................55  
9.3 Sleep Mode .........................................................................................................................................................................................56  
9.4 Standby (STDBY) Mode ..................................................................................................................................................................56  
9.5 Frequency Synthesis (FS) Mode ..................................................................................................................................................57  
9.6 Receive (RX) Mode ...........................................................................................................................................................................57  
9.7 Transmit (TX) Mode .........................................................................................................................................................................58  
9.7.1 PA Ramping............................................................................................................................................................................58  
9.8 Active Mode Switching Time .......................................................................................................................................................58  
9.9 Transceiver Circuit Modes Graphical Illustration ..................................................................................................................59  
10. Host Controller Interface..........................................................................................................................................................................60  
10.1 Command Structure .....................................................................................................................................................................60  
10.2 Transaction Termination .............................................................................................................................................................60  
11. List of Commands ......................................................................................................................................................................................61  
11.1 Operational Modes Commands ................................................................................................................................................61  
11.2 Register and Buffer Access Commands .................................................................................................................................62  
11.3 DIO and IRQ Control ......................................................................................................................................................................62  
11.4 RF, Modulation and Packet Commands .................................................................................................................................62  
11.5 Status Commands ..........................................................................................................................................................................63  
12. Register Map .................................................................................................................................................................................................64  
12.1 Register Table ..................................................................................................................................................................................64  
13. Commands Interface..................................................................................................................................................................................66  
13.1 Operational Modes Functions ...................................................................................................................................................66  
13.1.1 SetSleep.................................................................................................................................................................................66  
13.1.2 SetStandby...........................................................................................................................................................................67  
SX1261/2  
Data Sheet  
4 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
13.1.3 SetFs........................................................................................................................................................................................67  
13.1.4 SetTx .......................................................................................................................................................................................67  
13.1.5 SetRx.......................................................................................................................................................................................68  
13.1.6 StopTimerOnPreamble....................................................................................................................................................69  
13.1.7 SetRxDutyCycle ..................................................................................................................................................................70  
13.1.8 SetCAD...................................................................................................................................................................................72  
13.1.9 SetTxContinuousWave.....................................................................................................................................................72  
13.1.10 SetTxInfinitePreamble ...................................................................................................................................................73  
13.1.11 SetRegulatorMode..........................................................................................................................................................73  
13.1.12 Calibrate Function...........................................................................................................................................................73  
13.1.13 CalibrateImage.................................................................................................................................................................74  
13.1.14 SetPaConfig.......................................................................................................................................................................75  
13.1.15 SetRxTxFallbackMode....................................................................................................................................................76  
13.2 Registers and Buffer Access ........................................................................................................................................................77  
13.2.1 WriteRegister Function....................................................................................................................................................77  
13.2.2 ReadRegister Function.....................................................................................................................................................77  
13.2.3 WriteBuffer Function ........................................................................................................................................................77  
13.2.4 ReadBuffer Function.........................................................................................................................................................78  
13.3 DIO and IRQ Control Functions .................................................................................................................................................78  
13.3.1 SetDioIrqParams.................................................................................................................................................................78  
13.3.2 IrqMask ..................................................................................................................................................................................78  
13.3.3 GetIrqStatus.........................................................................................................................................................................79  
13.3.4 ClearIrqStatus......................................................................................................................................................................80  
13.3.5 SetDIO2AsRfSwitchCtrl....................................................................................................................................................80  
13.3.6 SetDIO3AsTCXOCtrl ..........................................................................................................................................................80  
13.4 RF Modulation and Packet-Related Functions ....................................................................................................................82  
13.4.1 SetRfFrequency...................................................................................................................................................................82  
13.4.2 SetPacketType.....................................................................................................................................................................82  
13.4.3 GetPacketType....................................................................................................................................................................83  
13.4.4 SetTxParams ........................................................................................................................................................................83  
13.4.5 SetModulationParams......................................................................................................................................................84  
13.4.6 SetPacketParams................................................................................................................................................................87  
13.4.7 SetCadParams .....................................................................................................................................................................91  
13.4.8 SetBufferBaseAddress ......................................................................................................................................................93  
13.4.9 SetLoRaSymbNumTimeout............................................................................................................................................93  
13.5 Communication Status Information .......................................................................................................................................94  
13.5.1 GetStatus...............................................................................................................................................................................94  
13.5.2 GetRxBufferStatus..............................................................................................................................................................95  
13.5.3 GetPacketStatus .................................................................................................................................................................95  
13.5.4 GetRssiInst ............................................................................................................................................................................96  
13.5.5 GetStats .................................................................................................................................................................................96  
13.5.6 ResetStats .............................................................................................................................................................................96  
13.6 Miscellaneous ..................................................................................................................................................................................97  
13.6.1 GetDeviceErrors..................................................................................................................................................................97  
13.6.2 ClearDeviceErrors...............................................................................................................................................................97  
14. Application ...................................................................................................................................................................................................98  
SX1261/2  
Data Sheet  
5 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
14.1 HOST API Basic Read Write Function ......................................................................................................................................98  
14.2 Circuit Configuration for Basic Tx Operation .......................................................................................................................98  
14.3 Circuit Configuration for Basic Rx Operation .......................................................................................................................99  
14.4 Issuing Commands in the Right Order ...................................................................................................................................99  
14.5 Application Schematics ............................................................................................................................................................ 100  
14.5.1 Application Design of the SX1261 with RF Switch ............................................................................................. 100  
14.5.2 Application Design of the SX1262 with RF Switch ............................................................................................. 100  
15. Packaging Information........................................................................................................................................................................... 101  
15.1 Package Outline Drawing ........................................................................................................................................................ 101  
15.2 Package Marking ......................................................................................................................................................................... 102  
15.3 Land Pattern ................................................................................................................................................................................. 102  
15.4 Reflow Profiles .............................................................................................................................................................................. 103  
SX1261/2  
Data Sheet  
6 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
List of Figures  
Figure 2-1: SX1261/2 Top View Pin Location QFN 4x4 24L................................................................................................................ 13  
Figure 4-1: SX1261/2 Block Diagram.......................................................................................................................................................... 22  
Figure 4-2: TCXO Control Block.................................................................................................................................................................... 24  
Figure 4-3: PA Supply Scheme in DC-DC Mode ..................................................................................................................................... 27  
Figure 4-4: VR_PA versus Output Power on the SX1261 .................................................................................................................... 27  
Figure 4-5: Current versus Output Power with DC-DC Regulation on the SX1261................................................................... 28  
Figure 4-6: Current versus Output Power with LDO Regulation on the SX1261........................................................................ 28  
Figure 4-7: Power Linearity on the SX1261 with either LDO or DC-DC Regulation .................................................................. 29  
Figure 4-8: VR_PA versus Output Power on the SX1262 .................................................................................................................... 29  
Figure 4-9: Power Linearity on the SX1262.............................................................................................................................................. 30  
Figure 4-10: Current versus Programmed Output Power on the SX1262 .................................................................................... 30  
Figure 5-1: SX1261 Diagram with the DC-DC Regulator Power Option........................................................................................ 33  
Figure 5-2: SX1261 Diagram with the LDO Regulator Power Option............................................................................................. 34  
Figure 5-3: SX1262 Diagram with the DC-DC Regulator Power Option........................................................................................ 34  
Figure 5-4: SX1262 Diagram with the LDO Regulator Power Option............................................................................................. 35  
Figure 5-5: Separate DIO Supply.................................................................................................................................................................. 36  
Figure 6-1: LoRa® Signal Bandwidth........................................................................................................................................................... 38  
Figure 6-2: LoRa® Packet Format ................................................................................................................................................................. 40  
Figure 6-3: Fixed-Length Packet Format .................................................................................................................................................. 44  
Figure 6-4: Variable-Length Packet Format............................................................................................................................................. 44  
Figure 6-5: Data Whitening LFSR................................................................................................................................................................. 45  
Figure 7-1: Data Buffer Diagram .................................................................................................................................................................. 47  
Figure 8-1: SPI Timing Diagram.................................................................................................................................................................... 49  
Figure 8-2: SPI Timing Transition................................................................................................................................................................. 50  
Figure 8-3: Switching Time Definition....................................................................................................................................................... 51  
Figure 8-4: Switching Time Definition in Active Mode........................................................................................................................ 52  
Figure 9-1: Transceiver Circuit Modes ....................................................................................................................................................... 59  
Figure 13-1: Stopping Timer on Preamble or Header Detection..................................................................................................... 70  
Figure 13-2: RX Duty Cycle Energy Profile................................................................................................................................................ 71  
Figure 13-3: RX Duty Cycle when Receiving............................................................................................................................................ 72  
Figure 14-1: Application Schematic of the SX1261 with RF Switch............................................................................................. 100  
Figure 14-2: Application Schematic of the SX1262 with RF Switch............................................................................................. 100  
Figure 15-1: QFN 4x4 Package Outline Drawing................................................................................................................................. 101  
Figure 15-2: SX1261/2 Marking................................................................................................................................................................. 102  
Figure 15-3: QFN 4x4mm Land Pattern.................................................................................................................................................. 102  
SX1261/2  
Data Sheet  
7 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
List of Tables  
Table 2-1: SX1261/2 Pinout in QFN 4x4 24L ............................................................................................................................................ 12  
Table 3-1: ESD and Latch-up Notice.......................................................................................................................................................... 14  
Table 3-2: Absolute Maximum Ratings..................................................................................................................................................... 14  
Table 3-3: Operating Range.......................................................................................................................................................................... 14  
Table 3-4: Crystal Specifications ................................................................................................................................................................. 15  
Table 3-5: Power Consumption.................................................................................................................................................................... 16  
Table 3-6: Power Consumption in Transmit Mode ............................................................................................................................... 17  
Table 3-7: General Specifications ................................................................................................................................................................ 18  
Table 3-8: Receive Mode Specifications.................................................................................................................................................... 19  
Table 3-9: Transmit Mode Specifications.................................................................................................................................................. 21  
Table 3-10: Digital I/O Specifications ......................................................................................................................................................... 21  
Table 4-1: Internal Foot Capacitor Configuration.................................................................................................................................. 23  
Table 4-2: Intermediate Frequencies in FSK Mode ............................................................................................................................... 25  
Table 4-3: Intermediate Frequencies in LoRa® Mode........................................................................................................................... 26  
Table 4-4: Power Amplifier Summary ........................................................................................................................................................ 31  
Table 5-1: Regulation Type versus Circuit Mode.................................................................................................................................... 32  
Table 5-2: OCP Configuration ....................................................................................................................................................................... 32  
Table 5-3: Typical 15 μH Inductors.............................................................................................................................................................. 35  
Table 6-1: Range of Spreading Factors (SF) ............................................................................................................................................ 38  
Table 6-2: Signal Bandwidth Setting in LoRa® Mode............................................................................................................................ 38  
Table 6-3: Coding Rate Overhead ............................................................................................................................................................... 39  
Table 6-4: Bandwidth Definition in FSK Packet Type ........................................................................................................................... 42  
Table 6-5: Whitening Initial Value ............................................................................................................................................................... 45  
Table 6-6: CRC Type Configuration............................................................................................................................................................. 46  
Table 6-7: CRC Initial Value ............................................................................................................................................................................ 46  
Table 6-8: CRC Polynomial............................................................................................................................................................................. 46  
Table 8-1: SPI Timing Requirements........................................................................................................................................................... 50  
Table 8-2: Switching Time.............................................................................................................................................................................. 52  
Table 8-3: Digital Pads Configuration for each Chip Mode................................................................................................................ 53  
Table 8-4: IRQ Status Registers..................................................................................................................................................................... 54  
Table 9-1: SX1261/2 Operating Modes...................................................................................................................................................... 55  
Table 9-2: Image Calibration Over the ISM Bands................................................................................................................................. 56  
Table 9-3: Rx Gain Configuration................................................................................................................................................................. 57  
Table 10-1: SPI Interface Command Sequence ...................................................................................................................................... 60  
Table 11-1: Commands Selecting the Operating Modes of the Radio .......................................................................................... 61  
Table 11-2: Commands to Access the Radio Registers and FIFO Buffer........................................................................................ 62  
Table 11-3: Commands Controlling the Radio IRQs and DIOs.......................................................................................................... 62  
Table 11-4: Commands Controlling the RF and Packets Settings ................................................................................................... 62  
Table 11-5: Commands Returning the Radio Status............................................................................................................................. 63  
Table 12-1: List of Registers ........................................................................................................................................................................... 64  
Table 13-1: SetSleep SPI Transaction ......................................................................................................................................................... 66  
Table 13-2: Sleep Mode Definition.............................................................................................................................................................. 66  
Table 13-3: SetConfig SPI Transaction....................................................................................................................................................... 67  
SX1261/2  
Data Sheet  
8 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
Table 13-4: STDBY Mode Configuration ................................................................................................................................................... 67  
Table 13-5: SetFs SPI Transaction ................................................................................................................................................................ 67  
Table 13-6: SetTx SPI Transaction................................................................................................................................................................ 67  
Table 13-7: SetTx Timeout Duration........................................................................................................................................................... 68  
Table 13-8: SetRx SPI Transaction................................................................................................................................................................ 68  
Table 13-9: SetRx Timeout Duration .......................................................................................................................................................... 69  
Table 13-10: StopTimerOnPreamble SPI Transaction .......................................................................................................................... 69  
Table 13-11: StopOnPreambParam Definition....................................................................................................................................... 69  
Table 13-12: SetRxDutyCycle SPI Transaction......................................................................................................................................... 70  
Table 13-13: SetCAD SPI Transaction......................................................................................................................................................... 72  
Table 13-14: SetTxContinuousWave SPI Transaction........................................................................................................................... 72  
Table 13-15: SendTxInfinitePreamble SPI Transaction........................................................................................................................ 73  
Table 13-16: SetRegulatorMode SPI Transaction................................................................................................................................... 73  
Table 13-17: Calibrate SPI Transaction ...................................................................................................................................................... 73  
Table 13-18: Calibration Setting .................................................................................................................................................................. 74  
Table 13-19: CalibrateImage SPI Transaction.......................................................................................................................................... 74  
Table 13-20: SetPaConfig SPI Transaction................................................................................................................................................ 75  
Table 13-21: PA Operating Modes with Optimal Settings.................................................................................................................. 75  
Table 13-22: SetRxTxFallbackMode SPI Transaction ............................................................................................................................ 76  
Table 13-23: Fallback Mode Definition...................................................................................................................................................... 76  
Table 13-24: WriteRegister SPI Transaction ............................................................................................................................................. 77  
Table 13-25: ReadRegister SPI Transaction.............................................................................................................................................. 77  
Table 13-26: WriteBuffer SPI Transaction ................................................................................................................................................. 77  
Table 13-27: ReadBuffer SPI Transaction .................................................................................................................................................. 78  
Table 13-28: SetDioIrqParams SPI Transaction....................................................................................................................................... 78  
Table 13-29: IRQ Registers.............................................................................................................................................................................. 79  
Table 13-30: GetIrqStatus SPI Transaction ............................................................................................................................................... 79  
Table 13-31: ClearIrqStatus SPI Transaction ............................................................................................................................................ 80  
Table 13-32: SetDIO2AsRfSwitchCtrl SPI Transaction .......................................................................................................................... 80  
Table 13-33: Enable Configuration Definition ........................................................................................................................................ 80  
Table 13-34: SetDIO3asTCXOCtrl SPI Transaction ................................................................................................................................. 80  
Table 13-35: tcxoVoltage Configuration Definition.............................................................................................................................. 81  
Table 13-36: SetRfFrequency SPI Transaction......................................................................................................................................... 82  
Table 13-37: SetPacketType SPI Transaction........................................................................................................................................... 82  
Table 13-38: PacketType Definition............................................................................................................................................................ 82  
Table 13-39: GetPacketType SPI Transaction.......................................................................................................................................... 83  
Table 13-40: SetTxParams SPI Transaction............................................................................................................................................... 83  
Table 13-41: RampTime Definition ............................................................................................................................................................. 83  
Table 13-42: SetModulationParams SPI Transaction............................................................................................................................ 84  
Table 13-43: GFSK ModParam1, ModParam2 & ModParam3 - br.................................................................................................... 84  
Table 13-44: GFSK ModParam4 - PulseShape ......................................................................................................................................... 84  
Table 13-45: GFSK ModParam5 - Bandwidth .......................................................................................................................................... 85  
Table 13-46: GFSK ModParam6, ModParam7 & ModParam8 - Fdev .............................................................................................. 85  
Table 13-47: LoRa® ModParam1- SF ........................................................................................................................................................... 86  
Table 13-48: LoRa® ModParam2 - BW ........................................................................................................................................................ 86  
Table 13-49: LoRa® ModParam3 - CR.......................................................................................................................................................... 86  
SX1261/2  
Data Sheet  
9 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
Table 13-51: SetPacketParams SPI Transaction...................................................................................................................................... 87  
Table 13-52: GFSK PacketParam1 & PacketParam2 - PreambleLength......................................................................................... 87  
Table 13-53: GFSK PacketParam3 - PreambleDetectorLength......................................................................................................... 87  
Table 13-50: LoRa® ModParam4 - LowDataRateOptimize.................................................................................................................. 87  
Table 13-54: GFSK PacketParam4 - SyncWordLength ......................................................................................................................... 88  
Table 13-55: Sync Word Programming ..................................................................................................................................................... 88  
Table 13-56: GFSK PacketParam5 - AddrComp...................................................................................................................................... 88  
Table 13-57: Node Address Programming............................................................................................................................................... 88  
Table 13-58: Broadcast Address Programming...................................................................................................................................... 89  
Table 13-59: GFSK PacketParam6 - PacketType..................................................................................................................................... 89  
Table 13-60: GFSK PacketParam7 - PayloadLength.............................................................................................................................. 89  
Table 13-61: GFSK PacketParam8 - CRCType .......................................................................................................................................... 89  
Table 13-62: CRC Initial Value Programming .......................................................................................................................................... 90  
Table 13-63: CRC Polynomial Programming ........................................................................................................................................... 90  
Table 13-64: GFSK PacketParam9 - Whitening ....................................................................................................................................... 90  
Table 13-65: Whitening Initial Value .......................................................................................................................................................... 90  
Table 13-66: LoRa® PacketParam1 & PacketParam2 - PreambleLength........................................................................................ 90  
Table 13-67: LoRa® PacketParam3 - HeaderType .................................................................................................................................. 91  
Table 13-68: LoRa® PacketParam4 - PayloadLength............................................................................................................................. 91  
Table 13-69: LoRa® PacketParam5 - CRCType......................................................................................................................................... 91  
Table 13-70: LoRa® PacketParam6 - InvertIQ........................................................................................................................................... 91  
Table 13-71: SetCadParams SPI Transaction ........................................................................................................................................... 91  
Table 13-72: CAD Number of Symbol Definition................................................................................................................................... 92  
Table 13-73: Recommended Settings for cadDetPeak and cadDetMin with 4 Symbols Detection ................................... 92  
Table 13-74: CAD Exit Mode Definition..................................................................................................................................................... 92  
Table 13-75: SetBufferBaseAddress SPI Transaction ............................................................................................................................ 93  
Table 13-76: SetLoRaSymbNumTimeout SPI Transaction.................................................................................................................. 93  
Table 13-77: Status Bytes Definition........................................................................................................................................................... 94  
Table 13-78: GetStatus SPI Transaction.................................................................................................................................................... 94  
Table 13-79: GetRxBufferStatus SPI Transaction.................................................................................................................................... 95  
Table 13-80: GetPacketStatus SPI Transaction ....................................................................................................................................... 95  
Table 13-81: Status Bit ..................................................................................................................................................................................... 95  
Table 13-82: GetRssiInst SPI Transaction .................................................................................................................................................. 96  
Table 13-83: GetStats SPI Transaction ....................................................................................................................................................... 96  
Table 13-84: GetDeviceErrors SPI Transaction........................................................................................................................................ 97  
Table 13-85: OpError Bits................................................................................................................................................................................ 97  
Table 13-86: ClearDeviceErrors SPI Transaction..................................................................................................................................... 97  
SX1261/2  
Data Sheet  
10 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
1. Architecture  
The SX1261 and SX1262 (designated hereafter as “SX1261/2”) are half-duplex transceivers capable of low power operation  
in the 150-960 MHz ISM frequency band. The radio comprises four main blocks:  
1. Analog Front End: the transmit and receive chains, as well as the data converter interface to ensuing digital blocks.  
The last stage of the transmit chain is different between the SX1261 and SX1262 chip versions. The SX1261 transceiver  
is capable of outputting +14/15 dBm maximum output power under DC-DC converter or LDO supply. The SX1262  
transceiver is capable of delivering up to +22 dBm under the battery supply.  
2. Digital Modem Bank: a range of modulation options is available in the SX1261/2:  
LoRa® Rx/Tx, BW = 7.8 - 500 kHz, SF5 to SF12, BR = 0.018 - 62.5 kb/s  
(G)FSK Rx/Tx, with BR = 0.6 - 300 kb/s  
3. Digital Interface and Control: this comprises all payload data and protocol processing as well as access to  
configuration of the radio via the SPI interface.  
4. Power Distribution: two forms of voltage regulation, DC-DC or linear regulator LDO, are available depending upon  
the design priorities of the application.  
SX1261/2  
Data Sheet  
11 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
2. Pin Connection  
2.1 I/O Description  
Table 2-1: SX1261/2 Pinout in QFN 4x4 24L  
Type  
Pin  
Pin  
(I = input  
Description  
Number  
Name  
O = Ouptut)  
0
1
GND  
-
I
Exposed Ground pad  
Input voltage for power amplifier regulator, VR_PA  
SX1261: connected to pin 7  
VDD_IN  
SX1262: connected to pin 10  
2
GND  
XTA  
-
Ground  
3
-
Crystal oscillator connection, can be used to input external reference clock  
4
XTB  
-
Crystal oscillator connection  
5
GND  
-
Ground  
6
DIO3  
VREG  
GND  
I/O  
Multipurpose digital I/O - external TCXO supply voltage  
7
O
Regulated output voltage from the internal regulator LDO / DC-DC  
8
-
Ground  
9
DCC_SW  
VBAT  
VBAT_IO  
DIO2  
DIO1  
BUSY  
NRESET  
MISO  
MOSI  
SCK  
O
DC-DC Switcher Output  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
I
Supply for the RFIC  
I
Supply for the Digital I/O interface pins (except DIO3)  
I/O  
Multipurpose digital I/O / RF Switch control  
I/O  
Multipurpose digital IO  
I/O  
Busy indicator  
I/O  
Reset signal, active low  
O
I
SPI slave output  
SPI slave input  
I
SPI clock  
NSS  
I
SPI Slave Select  
GND  
-
Ground  
RFI_P  
RFI_N  
RFO  
I
RF receiver input  
I
RF receiver input  
O
-
RF transmitter output (SX1261 low power PA or SX1262 high power PA)  
Regulated power amplifier supply  
VR_PA  
SX1261/2  
Data Sheet  
12 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
2.2 Package View  
SCK  
VDD_IN  
GND  
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
MOSI  
MISO  
XTA  
0
GND  
NRESET  
XTB  
BUSY  
GND  
DIO1  
DIO3  
Figure 2-1: SX1261/2 Top View Pin Location QFN 4x4 24L  
SX1261/2  
Data Sheet  
DS.SX1261-2.W.APP  
13 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
December 2017  
3. Specifications  
3.1 ESD Notice  
The SX1261/2 transceivers are high-performance radio frequency devices, with high ESD and latch-up resistance. The chip  
should be handled with all the necessary ESD precautions to avoid any permanent damage.  
Table 3-1: ESD and Latch-up Notice  
Symbol  
Description  
Min  
Typ  
Max  
Unit  
Class 2 of ANSI/ESDA/JEDEC Standard JS-001-2014  
(Human Body Model)  
ESD_HBM  
-
-
2.0  
kV  
ESD_CDM  
LU  
ESD Charged Device Model, JEDEC standard JESD22-C101D, class III  
Latch-up, JEDEC standard JESD78 B, class I level A  
-
-
-
-
1000  
100  
V
mA  
3.2 Absolute Maximum Ratings  
Stresses above the values listed below may cause permanent device failure. Exposure to absolute maximum ratings for  
extended periods may affect device reliability, reducing product life time.  
Table 3-2: Absolute Maximum Ratings  
Symbol  
Description  
Min  
Typ  
Max  
Unit  
VDDmr  
Tmr  
Supply voltage, applies to VBAT and VBAT_IO  
Temperature  
-0.5  
-55  
-
-
-
-
3.9  
125  
10  
V
°C  
Pmr  
RF Input level  
dBm  
3.3 Operating Range  
Operating ranges define the limits for functional operation and parametric characteristics of the device. Functionality  
outside these limits is not guaranteed.  
Table 3-3: Operating Range  
Symbol  
Description  
Min  
Typ  
Max  
Unit  
VDDop  
Top  
Supply voltage, applies to VBAT and VBAT_IO  
Temperature under bias  
1.8  
-
-
-
-
-
3.7  
85  
V
°C  
-40  
Clop  
ML  
Load capacitance on digital ports  
RF Input power  
-
-
-
20  
pF  
dBm  
-
0
VSWR  
Voltage Standing Wave Ratio  
10:1  
SX1261/2  
Data Sheet  
14 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
3.4 Crystal Specifications  
Table 3-4: Crystal Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Unit  
FXOSC  
CLOAD  
C0XTAL  
RSXTAL  
CMXTAL  
DRIVE  
Crystal oscillator frequency  
Crystal load capacitance  
Crystal shunt capacitance  
Crystal series resistance  
Crystal motional capacitance  
Drive level  
-
-
32  
10  
0.6  
30  
1.89  
-
-
-
MHz  
pF  
0.3  
-
2
pF  
60  
2.5  
100  
1.3  
-
fF  
W  
The reference frequency accuracy is defined by the complete system, and should take into account precision of the  
transmitter and the receiver, as well as environmental parameters such as extreme temperature limits. In a LoRaWANTM  
system, the expected reference frequency accuracy on the end-device should be about +/- 30 ppm under all operating  
conditions. This includes initial error, temperature drift and ageing over the lifetime of the product.  
3.5 Electrical Specifications  
The electrical specifications are given with the following conditions unless otherwise specified:  
VBAT_IO = VBAT = 3.3 V, all current consumptions are given for VBAT connected to VBAT_IO  
Temperature = 25 °C  
FXOSC = 32 MHz, with specified crystal  
FRF = 434/490/868/915 MHz  
All RF impedances matched  
Transmit mode output power defined in 50 load  
FSK BER = 0.1%, 2-level FSK modulation without pre-filtering, BR = 4.8 kb/s, FDA = 5 kHz, BW_F = 20 kHz  
double-sided  
LoRa® PER = 1%, packet 64 bytes, preamble 8 symbols, CR = 4/5, CRC on payload enabled, explicit header mode  
RX/TX specifications given using default RX gain step and direct tie connection between Rx and Tx  
Blocking immunity, ACR and co-channel rejection are given for a single tone interferer and referenced to sensitivity +3  
dB, blocking tests are performed with unmodulated signal  
Optional TCXO and RF Switch power consumption always excluded  
Caution!  
Throughout this document, all receiver bandwidths are expressed as “double-sided bandwidth”. This is valid for  
LoRa® and FSK modulations.  
SX1261/2  
Data Sheet  
15 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
3.5.1 Power Consumption  
Table 3-5: Power Consumption  
Symbol  
Mode  
Conditions  
Min  
Typ  
Max  
Unit  
OFF mode  
(SLEEP mode  
with cold start1)  
IDDOFF  
All blocks off  
-
160  
-
nA  
SLEEP mode  
(SLEEP mode  
Configuration retained  
-
-
600  
1.2  
-
-
nA  
IDDSL  
Configuration retained + RC64k  
A  
2
with warm start  
)
IDDSBR  
IDDSBX  
STDBY_RC mode  
RC13M, XOSC OFF  
XOSC ON  
-
-
0.6  
0.8  
-
-
mA  
mA  
STDBY_XOSC mode  
Synthesizer mode  
DC-DC mode used  
LDO mode used  
-
-
2.1  
-
-
mA  
mA  
IDDFS  
IDDRX  
3.55  
FSK 4.8 kb/s  
-
-
-
-
4.2  
4.6  
4.8  
5.3  
-
-
-
-
mA  
mA  
mA  
mA  
LoRa® 125 kHz  
Receive mode  
Rx Boosted3, FSK 4.8 kb/s  
Rx Boosted, LoRa® 125 kHz  
DC-DC mode used  
LoRa® 125 kHz, VBAT = 1.8 V  
-
8.2  
-
mA  
FSK 4.8 kb/s  
LoRa® 125 kHz  
-
-
-
-
8
-
-
-
-
mA  
mA  
mA  
mA  
Receive mode  
8.8  
9.3  
10.1  
LDO mode used  
Rx Boosted, FSK 4.8 kb/s  
Rx Boosted, LoRa® 125 kHz  
1. Cold start is equivalent to device at POR or when the device is waking up from Sleep mode with all blocks OFF, see Section 13.1.1 "SetSleep" on  
page 66  
2. Warm start is only happening when device is waking up from Sleep mode with its configuration retained, see Section 13.1.1 "SetSleep" on page  
66  
3. For more details on how to set the device in Rx Boosted gain mode, see Section 9.6 "Receive (RX) Mode" on page 57  
SX1261/2  
Data Sheet  
16 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
Table 3-6: Power Consumption in Transmit Mode  
Symbol  
Frequency Band  
PA Match / Condition  
Power Output  
Typical  
Unit  
+14 dBm, VBAT = 3.3 V  
+10 dBm VBAT = 3.3 V  
+14 dBm, VBAT = 1.8 V  
+10 dBm, VBAT = 1.8 V  
25.5  
18  
mA  
mA  
mA  
mA  
+14 dBm  
48  
34  
868/915 MHz  
+15 dBm, VBAT = 3.3 V  
+10 dBm VBAT = 3.3 V  
+15 dBm, VBAT = 1.8 V  
+10 dBm, VBAT = 1.8 V  
32.5  
15  
mA  
mA  
mA  
mA  
+14 dBm / optimal settings 2  
IDDTX  
SX1261 1  
60  
29  
+15 dBm, VBAT = 3.3 V  
+14 dBm, VBAT = 3.3 V  
+10 dBm, VBAT = 3.3 V  
+15 dBm, VBAT = 1.8 V  
+14 dBm, VBAT = 1.8 V  
+10 dBm, VBAT = 1.8 V  
25.5  
21  
mA  
mA  
mA  
mA  
mA  
mA  
14.5  
46.5  
39  
434/490 MHz  
+14 dBm  
26  
+22 dBm  
+20 dBm  
+17 dBm  
+14 dBm  
118  
102  
95  
mA  
mA  
mA  
mA  
+22 dBm  
90  
868/915 MHz  
+20 dBm / optimal settings 4  
+17 dBm / optimal settings 4  
+14 dBm / optimal settings 4  
+20 dBm  
+17 dBm  
+14 dBm  
84  
58  
45  
mA  
mA  
mA  
IDDTX  
SX1262 3  
+22 dBm  
+20 dBm  
+17 dBm  
+14 dBm  
107  
90  
mA  
mA  
mA  
mA  
+22 dBm  
75  
63  
434/490 MHz  
+20 dBm / optimal settings 4  
+17 dBm / optimal settings 4  
+14 dBm / optimal settings 4  
+20 dBm  
+17 dBm  
+14 dBm  
65  
42  
32  
mA  
mA  
mA  
1. For SX1261, DC-DC mode is used for the whole IC. For more details, see Section 5.1 "Selecting DC-DC Converter or LDO Regulation" on page 32.  
2. For more details on optimal settings, see Section 13.1.14.1 "PA Optimal Settings" on page 75.  
3. For SX1262, DC-DC mode is used for the IC core but the PA is supplied from VBAT. For more details, see Section 5.1 "Selecting DC-DC Converter or  
LDO Regulation" on page 32.  
4. Optimal settings adapted to the specified output power. For more details, see Section 13.1.14.1 "PA Optimal Settings" on page 75  
SX1261/2  
Data Sheet  
17 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
3.5.2 General Specifications  
Table 3-7: General Specifications  
Symbol  
FR  
Description  
Conditions  
Min  
150  
-
Typ  
-
Max  
960  
-
Unit  
MHz  
Hz  
Synthesizer frequency range  
Synthesizer frequency step  
SX1261  
-
FSTEP  
0.95  
1 kHz offset  
10 kHz offset  
100 kHz offset  
1MHz offset  
10 MHz offset  
-
-
-
-
-
-75  
-95  
-
-
-
-
-
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
Synthesizer phase noise  
(for 868 / 915 MHz)  
PHN1 2  
-100  
-120  
-135  
TS_FS  
Synthesizer wake-up time  
Synthesizer hop time  
From STDBY_XOSC mode  
10 MHz step  
-
-
40  
30  
-
-
s  
s  
TS_HOP  
Crystal oscillator  
wake-up time  
from STDBY_RC3  
TS_OSC  
-
150  
-
-
s  
Crystal oscillator trimming  
range for crystal frequency  
error compensation 4  
OSC_TRM  
min/max XTAL specifications  
+/-15 +/-30  
ppm  
Programmable  
300 5  
200  
BR_F  
FDA  
Bit rate, FSK  
Frequency deviation, FSK  
Bit rate LoRa®  
0.6  
0.6  
-
-
-
kb/s  
kHz  
Minimum modulation index is 0.5  
Programmable  
FDA + BR_F / 2  250 kHz  
Min. for SF12, BW_L = 7.8 kHz  
Max. for SF5, BW_L = 500 kHz  
62.5 6  
BR_L  
0.018  
kb/s  
500 6  
12  
BW_L  
SF  
Signal BW, LoRa®  
Programmable  
7.8  
5
-
-
kHz  
-
Spreading factor for LoRa®  
Programmable, chips/symbol = 2^SF  
Min/Max values in typical conditions,  
Typ value for default setting  
VDDop > VTCXO + 200 mV  
Regulated voltage range for  
TCXO voltage supply  
VTCXO  
1.6  
1.7  
3.3  
V
Load current for  
TCXO regulator  
ILTCXO  
-
-
1.5  
-
4
mA  
From enable to regulated voltage  
within 25 mV from target  
Start-up time for  
TCXO regulator  
TSVTCXO  
100  
s  
Quiescent current  
-
-
-
70  
2
A  
Current consumption of the  
TCXO regulator  
IDDTCXO  
ATCXO  
Relative to load current  
1
%
provided through a 220 resistor  
in series with a 10 pF capacitance  
Amplitude voltage for  
external TCXO  
applied toXTA pin  
0.4  
0.6  
1.2  
Vpk-pk  
See Section 4.2 "Phase-Locked Loop (PLL)" on  
page 24  
SX1261/2  
Data Sheet  
18 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
1. Phase Noise specifications are given for the recommended PLL BW to be used for the specific modulation/BR, optimized settings may be used for  
specific applications  
2. Phase Noise is not constant over frequency, due to the topology of the PLL, for two frequencies close to each other, the phase noise could change  
significantly  
3. Wake-up time till crystal oscillator frequency is within +/- 10 ppm  
4. OSC_TRIM is the available trimming range to compensate for crystal initial frequency error and to allow crystal temperature compensation  
implementation; the total available trimming range is higher and allows the compensation for all IC process variations  
5. Maximum bit rate is assumed to scale with the RF frequency; for example 300 kb/s in the 869/915 MHz frequency bands and only 50 kb/s at 150  
MHz  
6. For RF frequencies below 400 MHz, there is a scaling between the frequency and supported BW, some BW may not be available below 400 MHz  
3.5.3 Receive Mode Specifications  
Table 3-8: Receive Mode Specifications  
Symbol  
Description  
Conditions  
Min  
Typ  
Max Unit  
BR_F = 0.6 kb/s, FDA = 0.8 kHz, BW_F = 4 kHz  
BR_F = 1.2 kb/s, FDA = 5 kHz, BW_F = 20 kHz  
BR_F = 4.8 kb/s, FDA = 5 kHz, BW_F = 20 kHz  
BR_F = 38.4 kb/s, FDA = 40 kHz, BW_F = 160 kHz  
BR_F = 250 kb/s, FDA = 125 kHz, BW_F = 500 kHz  
-
-
-
-
-
-125  
-123  
-118  
-109  
-104  
-
-
-
-
-
dBm  
dBm  
dBm  
dBm  
dBm  
Sensitivity 2-FSK,  
RX Boosted gain, see Section 9.6  
"Receive (RX) Mode" on page 57,  
split RF paths for Rx and Tx, RF  
switch insertion loss excluded  
RXS_2FB  
BW_L = 10.4 kHz, SF = 7  
BW_L = 10.4 kHz, SF = 12  
BW_L = 125 kHz, SF = 7  
BW_L = 125 kHz, SF = 12  
BW_L = 250 kHz, SF = 7  
BW_L = 250 kHz, SF = 12  
BW_L = 500 kHz, SF = 7  
BW_L = 500 kHz, SF = 12  
-
-
-
-
-
-
-
-
-134  
-148  
-124  
-137  
-121  
-134  
-117  
-129  
-
-
-
-
-
-
-
-
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
Sensitivity LoRa®,  
Rx Boosted gain, see Section 9.6  
"Receive (RX) Mode" on page 57,  
split RF paths for Rx and Tx, RF  
switch insertion loss excluded  
RXS_LB  
Sensitivity 2-FSK  
Rx Power Saving gain  
with direct tie connection  
between Rx and Tx  
RXS_2F  
RXS_L  
BR_F = 4.8 kb/s, FDA = 5 kHz, BW_F = 20 kHz  
BW_L = 125 kHz, SF = 12  
-
-115  
-
dBm  
Sensitivity LoRa®  
Rx Power Saving gain  
with direct tie connection  
between Rx and Tx  
-
-
-133  
-9  
-
-
dBm  
dB  
CCR_F  
CCR_L  
ACR_F  
Co-channel rejection, FSK  
Co-channel rejection, LoRa®  
Adjacent channel rejection, FSK  
SF = 7  
-
-
5
-
-
dB  
dB  
SF = 12  
19  
Offset = +/- 50 kHz  
-
45  
-
dB  
Offset = +/- 1.5 x BW_L  
BW_L = 125 kHz, SF = 7  
BW_L = 125 kHz, SF = 12  
Adjacent channel rejection,  
LoRa®  
ACR_L  
-
-
60  
72  
-
-
dB  
dB  
SX1261/2  
Data Sheet  
19 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
Table 3-8: Receive Mode Specifications  
Symbol  
Description  
Conditions  
Min  
Typ  
Max Unit  
BR_F = 4.8 kb/s, FDA = 5 kHz, BW_F = 20 kHz  
Offset = +/- 1 MHz  
BI_F  
-
-
-
68  
70  
80  
-
-
-
dB  
dB  
dB  
Blocking immunity, FSK  
Offset = +/- 2 MHz  
Offset = +/- 10 MHz  
BW_L = 125 kHz, SF =12  
Offset = +/- 1 MHz  
Offset = +/- 2 MHz  
Offset = +/- 10 MHz  
-
-
-
88  
90  
99  
-
-
-
dB  
dB  
dB  
BI_L  
Blocking immunity, LoRa®  
Unwanted tones are 1 MHz and  
1.96 MHz above LO  
IIP3  
IMA  
3rd order input intercept point  
Image attenuation  
-
-5  
-
dBm  
Without IQ calibration  
With IQ calibration  
-
-
35  
54  
-
-
dB  
dB  
BW_F  
TS_RX  
DSB channel filter BW, FSK  
Receiver wake-up time  
Programmable, typical values  
FS to RX  
4.8  
-
-
467  
-
kHz  
41  
s  
Maximum tolerated frequency  
offset between transmitter and  
receiver, no sensitivity  
All bandwidths, 25% of BW  
25%  
BW  
The tighter limit applies (see below)  
degradation, SF5 to SF12  
FERR_L  
Maximum tolerated frequency  
offset between transmitter and  
receiver, no sensitivity  
SF12  
SF11  
SF10  
-50  
-
-
-
50  
ppm  
ppm  
ppm  
-100  
-200  
100  
200  
degradation, SF10 to SF12  
SX1261/2  
Data Sheet  
20 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
3.5.4 Transmit Mode Specifications  
Table 3-9: Transmit Mode Specifications  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
Unit  
Highest power step setting  
+14/15 1  
+22  
TXOP  
Maximum RF output power  
SX1261  
SX1262  
-
-
-
-
dBm  
dBm  
SX1261, under DC-DC or LDO  
VDDop range from 1.8 to 3.7 V  
-
0.5  
-
dB  
RF output power drop  
versus supply voltage  
TXDRP  
SX1262, +22 dBm, VBAT = 2.7 V  
SX1262, +22 dBm, VBAT = 2.4 V  
SX1262, +22 dBm, VBAT = 1.8 V  
-
-
-
2
3
6
-
-
-
dB  
dB  
dB  
TXPRNG  
TXACC  
TXRMP  
RF output power range  
RF output power step accuracy  
Power amplifier ramping time  
Programmable in 31 steps, typical value  
TXOP-31  
-
TXOP  
-
dBm  
dB  
-
2
-
Programmable  
10  
3400  
s  
36 + PA  
ramping  
TS_TX  
Tx wake-up time  
Frequency Synthesizer enabled  
-
-
s  
1. for SX1261 +15 dBm maximum RF output power can be reached with special settings, see Section 13.1.14.1 "PA Optimal Settings" on page 75.  
3.5.5 Digital I/O Specifications  
Table 3-10: Digital I/O Specifications  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
Unit  
0.7*VBAT_IO 1  
VBAT_IO 1+0.3  
VIH  
VIL  
Input High Voltage  
Input Low Voltage  
-
-
-
-
-
-
V
V
V
V
V
0.3*VBAT_IO 1  
0.2*VBAT  
-
-0.3  
VIL_N  
VOH  
VOL  
Input Low Voltage for pin NRESET  
Output High Voltage  
-
-0.3  
0.9*VBAT_IO 1  
0
VBAT_IO 1  
Imax = -2.5 mA  
0.1*VBAT_IO 1  
Imax = 2.5 mA  
-
Output Low Voltage  
Digital input leakage current  
(NSS, MOSI, SCK)  
Ileak  
-1  
-
1
A  
1. excluding following pins: NRESET and DIO3, which are referred to VBAT  
SX1261/2  
Data Sheet  
21 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
4. Circuit Description  
Analog Front End & Data Conversion  
TM  
LoRa  
Protocol  
Engine  
LNA  
ADC  
Modem  
Matching  
+
LPF  
SPI  
PA  
PLL  
FSK  
Modem  
Data  
Buffer  
OSC  
DC-DC  
LDO  
Figure 4-1: SX1261/2 Block Diagram  
SX1261 and SX1262 are half-duplex RF transceivers operating in the sub-GHz frequency bands and can handle constant  
envelope modulations schemes such as LoRa® or FSK.  
4.1 Clock References  
4.1.1 RC Frequency References  
Two RC oscillators are available: 64 kHz and 13 MHz RC oscillators. The 64 kHz RC oscillator (RC64k) is optionally used by the  
circuit in SLEEP mode to wake-up the transceiver when performing periodic or duty cycled operations. Several commands  
make use of this 64 kHz RC oscillator (called RTC across this document) to generate time-based events. The 13 MHz RC  
oscillator (RC13M) is enabled for all SPI communication to permit configuration of the device without the need to start the  
crystal oscillator. Both RC oscillators are supplied directly from the battery.  
4.1.2 High-Precision Frequency Reference  
In SX1261/2 the high-precision frequency reference can come either from an on-chip crystal oscillator (OSC) using an  
external crystal resonator or from an external TCXO (Temperature Compensated Crystal Oscillator), supplied by an internal  
regulator.  
The SX1261/2 comes in a small form factor 4 x 4 mm QFN package with the SX1262 able to transmit up to +22 dBm. When  
in transmit mode the circuit may heat up depending on the output power and current consumption. Careful PCB design  
using thermal isolation techniques must be applied between the circuit and the crystal resonator to avoid transferring the  
heat to the external crystal resonator.  
SX1261/2  
Data Sheet  
22 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
When using the LoRa® modulation with LowDataRateOptimize set to 0x00 (see Section Table 13-50: "LoRa® ModParam4 -  
LowDataRateOptimize" on page 87), the total frequency drift over the packet transmission time should be minimized and  
kept lower than Freq_drift_max:  
When possible, using LowDataRateOptimize set to 0x01 will significantly relax the total frequency drift over the packet  
transmission requirement to 16 x Freq_drift_max.  
Note:  
Recommendations for heat dissipation techniques to be applied to the PCB designs are given in detail in the application  
note AN1200.37 “Recommendations for Best Performance” on www.semtech.com.  
In miniaturized design implementations where heat dissipations techniques cannot be implemented or the use of the  
LowDataRateOptimize is not supported, the use of a TCXO will provide a more stable clock reference.  
4.1.3 XTAL Control Block  
The SX1261/2 does not require the user to set external foot capacitors on the XTAL supplying the 32 MHz clock. Indeed, the  
device is fitted with internal programmable capacitors connected independently to the pins XTA and XTB of the device.  
Each capacitor can be set independently, balanced or unbalanced to each other, by 0.47 pF typical steps.  
Table 4-1: Internal Foot Capacitor Configuration  
Pin  
Register Address  
Typical Values  
Each capacitor can be controlled independently  
in steps of 0.47 pF added to the minimal value:  
0x00 sets the trimming cap to 11.3 pF (minimum)  
0x2F sets the trimming cap to 33.4 pF (maximum)  
XTA  
0x0911  
XTB  
0x0912  
Note when using an XTAL:  
At POR or when waking-up from Sleep in cold start mode, the trimming cap registers will be initialized at the value 0x05  
(13.6 pF). Once the device is set in STDBY_XOSC mode, the internal state machine will overwrite both registers to the value  
0x12 (19.7pF). Therefore, the user must ensure the device is already in STDBY_XOSC mode before changing the trimming  
cap values so that they are not overwritten by the state machine.  
Note when using a TCXO:  
Once the command SetDIO3AsTCXOCtrl(...) is sent to the device, the register controlling the internal cap on XTA will be  
automatically changed to 0x2F (33.4 pF) to filter any spurious which could occur and be propagated to the PLL.  
SX1261/2  
Data Sheet  
23 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
4.1.4 TCXO Control Block  
Under certain circumstances, typically small form factor designs with reduced heat dissipation or environments with  
extreme temperature variation, it may be required to use a TCXO (Temperature Compensated Crystal Oscillator) to achieve  
better frequency accuracy. This depends on the complete system, transmitter and receiver. The specification FERR_L in  
Section Table 3-8: "Receive Mode Specifications" on page 19 provides information on the maximum tolerated frequency  
offset for optimal receiver performance.  
Programmable DC  
voltage 1.6 to 3.3 V  
DIO3  
100 nF  
10 pF  
1.5 to 4  
mA  
220  
XTA  
SX1261/SX1262  
TCXO  
XTB (leave open)  
Figure 4-2: TCXO Control Block  
When a TCXO is used, it should be connected to pin 3 XTA, through a 220 resistor and a10 pF DC-cut capacitor. Pin 4 XTB  
should be left open. Pin 6 DIO3 can be used to provide a regulated DC voltage to power the TCXO, programmable from 1.6  
to 3.3 V. VBAT should always be 200 mV higher than the programmed voltage to ensure proper operation.  
The nominal current drain is 1.5 mA, but the regulator can support up to 4 mA of load. Clipped-sine output TCXO are  
required, with the output amplitude not exceeding 1.2 V peak-to-peak. The commands to enable TCXO mode are described  
in Section 13.3.6 "SetDIO3AsTCXOCtrl" on page 80, and that includes DC voltage and timing information.  
Note:  
A complete Reset of the chip as described in Section 8.1 "Reset" on page 49 is required to get back to normal XOSC  
operation, after the chip has been set to TCXO mode with the command SetDIO3AsTCXOCtrl.  
4.2 Phase-Locked Loop (PLL)  
A fractional-N third order sigma-delta PLL acts as the frequency synthesizer for the LO of both receiver and transmitter  
chains. SX1261/2 is able to cover continuously all the sub-GHz frequency range 150-960 MHz. The PLL is capable of  
auto-calibration and has low switching-on or hopping times. Frequency modulation is performed inside the PLL  
bandwidth. The PLL frequency is derived from the crystal oscillator circuit which uses an external 32 MHz crystal reference.  
SX1261/2  
Data Sheet  
24 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
4.3 Receiver  
The received RF signal is first amplified by a differential Low Noise Amplifier (LNA), then down-converted to low- IF  
intermediate frequency by mixers operating in quadrature configuration. The I and Q signals are low-pass filtered and then  
digitized by a continuous time feedback architecture  converter (ADC) allowing more than 80 dB dynamic range. Once  
in the digital domain the signal is then decimated, down-converted again, decimated again, channel filtered and finally  
demodulated by the selected modem depending on modulation scheme: FSK modem or LoRa® modem.  
4.3.1 Intermediate Frequencies  
The SX1261/2 receiver mostly operates in low-IF configuration, expect for specific high-bandwidth settings.  
Table 4-2: Intermediate Frequencies in FSK Mode  
Setting Name  
Bandwidth [kHz DSB]  
Intermediate Frequency [kHz]  
RX_BW_467  
RX_BW_234  
RX_BW_117  
RX_BW_58  
RX_BW_29  
RX_BW_14  
RX_BW_7  
467.0  
234.3  
117.3  
58.6  
29.3  
14.6  
7.3  
250  
250  
250  
250  
250  
250  
250  
200  
200  
200  
200  
200  
200  
200  
167  
167  
167  
167  
167  
167  
167  
RX_BW_373  
RX_BW_187  
RX_BW_93  
RX_BW_46  
RX_BW_23  
RX_BW_11  
RX_BW_5  
373.6  
187.2  
93.8  
46.9  
23.4  
11.7  
5.8  
RX_BW_312  
RX_BW_156  
RX_BW_78  
RX_BW_39  
RX_BW_19  
RX_BW_9  
312.0  
156.2  
78.2  
39.0  
19.5  
9.7  
RX_BW_4  
4.8  
SX1261/2  
Data Sheet  
25 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
Table 4-3: Intermediate Frequencies in LoRa® Mode  
BW Setting  
Bandwidth [kHz DSB]  
Intermediate Frequency [kHz]  
LORA_BW_500  
LORA_BW_250  
LORA_BW_125  
LORA_BW_62  
LORA_BW_41  
LORA_BW_31  
LORA_BW_20  
LORA_BW_15  
LORA_BW_10  
LORA_BW_7  
500  
250  
0
250  
250  
250  
167  
250  
167  
250  
167  
250  
125  
62.5  
41.67  
31.25  
20.83  
15.63  
10.42  
7.81  
4.4 Transmitter  
The transmit chain uses the modulated output from the modem bank which directly modulates the fractional-N PLL. An  
optional pre-filtering of the bit stream can be enabled to reduce the power in the adjacent channels, also dependent on  
the selected modulation type.  
The default maximum RF output power of the transmitter is +14/15 dBm for SX1261 and +22 dBm for SX1262. The RF  
output power is programmable with 32 dB of dynamic range, in 1 dB steps. The power amplifier ramping time is also  
programmable to meet regulatory requirements.  
The power amplifier is supplied by the regulator VR_PA and the connection between VR_PA and RFO is done externally to  
the chip. As illustrated in Figure 4-3: PA Supply Scheme in DC-DC Mode, the supply used for VR_PA is different between the  
two circuit versions:  
in SX1261: VR_PA, supplied through VDD_IN, is taken from a voltage regulator (DC-DC or LDO), allowing a very small  
variation of the output power versus supply voltage;  
in SX1262: VR_PA, supplied through VDD_IN, is taken directly from the battery and in this case maximum output  
power is limited by supply voltage at VDD_IN.  
SX1261/2  
Data Sheet  
26 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
VBAT  
VBAT  
1.8 to 3.7 V  
1.8 to 3.7 V  
DCC_SW  
DCC_SW  
LDO DC-DC  
(1.55 V)  
LDO DC-DC  
(1.55 V)  
VREG (1.55 V)  
VREG (1.55 V)  
VDD_IN (1.8 to 3.7 V)  
VDD_IN (1.55 V)  
CORE  
(RX)  
CORE  
(RX)  
VR_PA (up to 1.35 V)  
VR_PA (up to 3.1 V)  
REG  
PA  
REG  
PA  
(PLL)  
(PLL)  
RFO  
RFO  
PA LP  
PA LP  
SX1261  
SX1262  
Figure 4-3: PA Supply Scheme in DC-DC Mode  
4.4.1 SX1261 Power Amplifier Specifics  
Caution!  
All figures in this chapter are indicative and typical, and are not a specification. These figures only highlight  
behavior of the PA over voltage and current.  
In the SX1261, the power efficiency of the transmitter is maximized when the internal DC-DC regulator is used. The voltage  
on VR_PA varies from about 20 mV to 1.35 V to achieve the programmed Output Power (Pout).  
Figure 4-4: VR_PA versus Output Power on the SX1261  
SX1261/2  
Data Sheet  
27 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
With this method, the output power is kept almost constant with VBAT from 1.8 to 3.7 V.  
When the DC-DC regulator is used the total power consumption will directly be impacted by the supply voltage. For  
instance, when 17 mA are needed on VBAT to output +10 dBm with VBAT = 3.7 V, the same output and will require 34 mA  
when VBAT = 1.8 V.  
Figure 4-5: Current versus Output Power with DC-DC Regulation on the SX1261  
However, when LDO is chosen, the current drain will remain flat for VBAT between 1.8 V and 3.7 V, at the expense of a much  
lower energy efficiency:  
Figure 4-6: Current versus Output Power with LDO Regulation on the SX1261  
SX1261/2  
Data Sheet  
28 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
The following plot also confirms the linearity of the output power curve at nominal and extreme voltage levels:  
Figure 4-7: Power Linearity on the SX1261 with either LDO or DC-DC Regulation  
4.4.2 SX1262 Power Amplifier Specifics  
Caution!  
All figures below are indicative and typical, and are not a specification. These figures only highlight behavior of the  
PA over voltage and current.  
Figures for the SX1262 are given with DC-DC regulation enabled, which applies only to the circuit core.  
On the SX1262, the PA is optimized for maximum output power whilst maximizing the efficiency, which makes it  
mandatory to supply the power amplifier with fairly high voltages to maintain an high output power. To summarize:  
the current efficiency of the PA is optimal at the highest output power step  
output power will be limited by the voltage supplied to VBAT.  
This is illustrated in the following figure:  
Figure 4-8: VR_PA versus Output Power on the SX1262  
SX1261/2  
Data Sheet  
29 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
The internal regulator for VR_PA has a little less than 200 mV of drop-out, which means VBAT must be 200 mV higher than  
the published VR_PA voltages in order to attain the corresponding output power. For example, for P = +20 dBm, VR_PA  
out  
= 2.5 V is required, which means that the SX1262 will be able to maintain P = +20 dBm on the 2.7 V < VBAT < 3.7 V voltage  
out  
range. Below 2.7 V, the output power will degrade as VBAT reduces.  
As can be seen from the blue curve on Figure 4-8: VR_PA versus Output Power on the SX1262, the SX1262 will be capable  
of supplying almost 1.7 V when VBAT = 1.8 V, which, in turn, will make the output power plateau at +17 dBm for all power  
settings above +17 dBm.  
The following plot confirms the linearity of the output power, as long as the VBAT voltage is high enough to supply the  
required VR_PA voltage:  
Figure 4-9: Power Linearity on the SX1262  
The power consumption evolves with the programmed output power, as follows (DC-DC regulation):  
Figure 4-10: Current versus Programmed Output Power on the SX1262  
SX1261/2  
Data Sheet  
30 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
4.4.3 Power Amplifier Summary  
The following table summarizes the power amplifier optimization keys in the SX1261 and SX1262 transceivers:  
Table 4-4: Power Amplifier Summary  
PA Summary  
Conditions  
SX1261  
SX1262  
with relevant matching and  
settings  
Max Power  
+14 /15 dBm  
+ 22 dBm  
118 mA  
90/451 mA  
at + 22 dBm, indicative  
at + 14 dBm, indicative  
-
IDDTX  
25.5 mA  
flat from 3.3 V to 3.7 V  
VBAT = 3.1 V for +22 dBm  
VBAT = 2.7 V for +20 dBm  
VBAT = 1.8 V for +16 dBm  
Output Power vs VBAT  
flat from VBAT = 1.8 V to 3.7 V  
inversely proportional to VBAT,  
DC - DC buck converter  
is used for PA supply  
IDDTX vs VBAT  
-
1. See Section 13.1.14.1 "PA Optimal Settings" on page 75.  
SX1261/2  
Data Sheet  
31 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
5. Power Distribution  
5.1 Selecting DC-DC Converter or LDO Regulation  
Two forms of voltage regulation (DC-DC buck converter or linear LDO regulator) are available depending upon the design  
priorities of the application. The linear LDO regulator is always present in all modes but the transceiver will use DC-DC when  
selected. Alternatively a high efficiency DC to DC buck converter (DC-DC) can be enabled in FS, Rx and Tx modes.  
The DC-DC can be driven by two clock sources:  
in STDBY_XOSC: RC13M is used to supply clock and the frequency is RC13M / 4 so the switching frequency of the  
DC-DC converter will be 3.25 MHz  
in FS, RX, TX: the PLL is used to supply clock and the frequency is ~5MHz; every time the command SetRFFrequency(...)  
is called the divider ratio is recalculated so that the switching frequency is as close as possible to the 5 MHz target.  
Unless specified, all specifications of the transceiver are given with the DC-DC regulator enabled. For applications where  
cost and size are constrained, LDO-only operation is possible which negates the need for the 47nH inductor before pin 1  
and the 15 μH inductor between pins 7 and 9, conferring the benefits of a reduced bill of materials and reduced board  
space. The following table illustrates the power regulation options for different modes and user settings.  
Table 5-1: Regulation Type versus Circuit Mode  
Circuit Mode  
Sleep  
STDBY_RC STDBY_XOSC  
FS  
Rx  
Tx  
Regulator Type = 0  
Regulator Type = 1  
-
-
LDO  
LDO  
LDO  
LDO  
LDO  
LDO  
DC-DC + LDO  
DC-DC + LDO  
DC-DC + LDO  
DC-DC + LDO  
The user can specify the use of DC-DC by using the command SetRegulatorMode(...). This operation must be carried out in  
STDBY_RC mode only.  
When the DC-DC is enabled, the LDO will remain On and its target voltage is set 50 mV below the DC-DC voltage to ensure  
voltage stability for high current peaks. If the DC-DC voltage drops to this level due to high current peak, the LDO will cover  
for the current need at the expense of the energy consumption of the radio which will be increased.  
However, to avoid consuming too much energy, the user is free to configure the Over Current Protection (OCP) register  
manually. At Reset, the OCP is configured to limit the current at 60 mA.  
Table 5-2: OCP Configuration  
Circuit  
Register Address  
OCP default  
Maximum Current  
SX1261  
SX1262  
0x08E7  
0x08E7  
0x18  
0x38  
60 mA  
140 mA  
The OCP is configurable by steps of 2.5 mA and the default value is re-configured automatically each time the function  
SetPaConfig(...) is called. If the user wants to adjust the OCP value, it is necessary to change the register as a second step after  
calling the function SetPaConfig(...).  
SX1261/2  
Data Sheet  
32 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
Note:  
The user should pay attention to the dependency of the current drain versus VBAT when using the SX1261 in DC-DC mode.  
Because the current drained is inversely proportional to VBAT (for instance for P = +14 dBm, 25.5 mA at 3.3 V, and 48 mA  
out  
at 1.8 V), the OCP current limit should be set high enough to accommodate a current increase or be dynamically set.  
Another strategy is to set the OCP to a specific limit and accept a drop of the output power of the device when the OCP  
starts limiting the current consumption.  
5.1.1 Option A: SX1261 with DC-DC Regulator  
The DC-DC Regulator is used with about 90% of  
efficiency, for the chip core and Power Amplifier (PA).  
Advantage of this option:  
VDD_IN  
The power consumption is drastically reduced at 3.3 V,  
output power is maintained from VBAT = 1.8 V to 3.7 V.  
SX1261  
Main supply  
1.8 to 3.7 V  
Figure 5-1: SX1261 Diagram with the DC-DC Regulator Power Option  
SX1261/2  
Data Sheet  
33 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
5.1.2 Option B: SX1261 with LDO Regulator  
The LDO Regulator is used, for both the core of the  
chip and the PA.  
Advantage of this option:  
VDD_IN  
The cost and space for the external 15 H and 47 nH  
inductors are spared.  
SX1261  
Main supply  
1.8 to 3.7 V  
Figure 5-2: SX1261 Diagram with the LDO Regulator Power Option  
5.1.3 Option C: SX1262 with DC-DC Regulator  
The DC-DC Regulator is used with about 90% of  
efficiency, for the chip core only. The PA regulator is  
supplied with VBAT.  
VDD_IN  
Advantage of this option:  
The power consumption of the core is reduced.  
SX1262  
Main supply  
1.8* to 3.7 V  
*VBAT=3.3 V min. to reach +22 dBm  
Figure 5-3: SX1262 Diagram with the DC-DC Regulator Power Option  
SX1261/2  
Data Sheet  
34 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
5.1.4 Option D: SX1262 with LDO Regulator  
The LDO Regulator is used. Power consumption of  
the core is slightly higher than in Option C.  
Advantage of this option:  
VDD_IN  
The cost and space for an external 15 H inductor  
are spared.  
SX1262  
Main supply  
1.8* to 3.7 V  
* VBAT=3.3 V min. to reach +22 dBm  
Figure 5-4: SX1262 Diagram with the LDO Regulator Power Option  
5.1.5 Consideration on the DC-DC Inductor Selection  
The selection of the inductor is essential to ensure optimal performance of the DC-DC internal block. Selecting an incorrect  
inductor could cause various unwanted effects ranging from ripple currents to early aging of the device, as well as a  
degradation of the efficiency of the DC-DC regulator.  
For the SX1261/2, the preferred inductor will be shielded, presenting a low internal series resistance and a resonance  
frequency much higher than the DC-DC switching frequency. When selecting the 15 μH inductor, the user should therefore  
select a part with the following considerations:  
DCR (max) = 2 ohms  
Idc (min) = 100 mA  
Freq (min) = 20 MHz  
Table 5-3: Typical 15 μH Inductors  
Value  
(μH)  
Idc max  
(mA)  
Freq  
(MHz)  
DCR  
(ohm)  
Package  
(L x W x H in mm)  
Reference  
Manufacturer  
LPS3010-153  
MLZ2012N150L  
MLZ2012M150W  
VLS2010ET-150M  
VLS2012ET-150M  
Coilcraft  
TDK  
15  
15  
15  
15  
15  
370  
90  
43  
40  
40  
40  
40  
0.95  
0.47  
2.95 x 2.95 x 0.9  
2 x 1.25 x 1.25  
2 x 1.25 x 1.25  
2 x 2 x 1  
TDK  
120  
440  
440  
0.95  
TDK  
1.476  
1.062  
TDK  
2 x 2 x 1.2  
SX1261/2  
Data Sheet  
DS.SX1261-2.W.APP  
35 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
December 2017  
5.2 Flexible DIO Supply  
The transceiver has two power supply pins, one for the core of the transceiver called VBAT and one for the host controller  
interface (SPI, DIOs, BUSY) called VBAT_IO. Both power supplies can be connected together in application. In case a low  
voltage micro-controller (typically with IO pads at 1.8 V) is used to control the transceiver, the user can:  
use VBAT at 3.3 V for optimal RF performance  
directly connect VBAT_IO to the same supply used for the micro-controller  
connect the digital IOs directly to the micro-controller DIOs.  
At any time, VBAT_IO must be lower than or equal to VBAT.  
Regulator 1.8 V  
VBAT_IO  
VBAT  
Battery  
Typ. 1.8 to 3.7 V  
Controller  
Transceiver  
SPI  
DIOx  
NRESET  
Requirement: VBAT ≥ VBAT_IO  
Figure 5-5: Separate DIO Supply  
SX1261/2  
Data Sheet  
36 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
6. Modems  
The SX1261/2 contains different modems capable of handling LoRa® and FSK modulations. LoRa® and FSK are associated  
with their own frame and modem.  
LoRa® modem LoRa® Frame  
FSK modem FSK Frame  
The user specifies the modem and frame type by using the command SetPacketType(...). This command specifies the frame  
used and consequently the modem implemented.  
This function is the first one to be called before going to Rx or Tx and before defining modulation and packet parameters.  
The command GetPacketType() returns the current protocol of the radio.  
6.1 LoRa® Modem  
The LoRa® modem uses spread spectrum modulation and forward error correction techniques to increase the range and  
robustness of radio communication links compared to traditional FSK based modulation.  
An important facet of the LoRa® modem is its increased immunity to interference. The LoRa® modem is capable of  
co-channel GMSK rejection of up to 19 dB. This immunity to interference permits the simple coexistence of LoRa®  
modulated systems either in bands of heavy spectral usage or in hybrid communication networks that use LoRa® to extend  
range when legacy modulation schemes fail.  
6.1.1 Modulation Parameter  
It is possible to optimize the LoRa® modulation for a given application, access is given to the designer to four critical design  
parameters, each one permitting a trade-off between the link budget, immunity to interference, spectral occupancy and  
nominal data rate. These parameters are:  
Modulation BandWidth (BW_L)  
Spreading Factor (SF)  
Coding Rate (CR)  
Low Data Rate Optimization (LDRO)  
These parameters are set using the command SetModulationParams(...) which must be called after defining the protocol.  
6.1.1.1 Spreading Factor  
The spread spectrum LoRa® modulation is performed by representing each bit of payload information by multiple chips of  
information. The rate at which the spread information is sent is referred to as the symbol rate (Rs), the ratio between the  
nominal symbol rate and chip rate is the spreading factor and it represents the number of symbols sent per bit of  
information.  
Consideration on SF5 and SF6  
In the SX1261/2, two new spreading factors have been added compared to the previous device family: the SF5 and the SF6.  
These two new spreading factors have been modified slightly for the SX1261/2 and will now be able to operate in both  
implicit and explicit mode. However, these modification have made the new spreading factor incompatible with previous  
device generation. Especially, the SF6 on the SX1261/2 will not be backward compatible with the SF6 used on the SX1276.  
SX1261/2  
Data Sheet  
37 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
Furthermore, due to the higher symbol rate, the minimum recommended preamble length needed to ensure correct  
detection and demodulation from the receiver is increased compared to other Spreading Factors. For SF5 and SF6, the user  
is invited to use 12 symbols of preamble to have optimal performances over the dynamic range or the receiver.  
Note:  
The spreading factor must be known in advance on both transmit and receive sides of the link as different spreading factors  
are orthogonal to each other. Note also the resulting Signal to Noise Ratio (SNR) required at the receiver input.  
It is the capability to receive signals with negative SNR that increases the sensitivity as well as link budget and range of the  
LoRa® receiver.  
Table 6-1: Range of Spreading Factors (SF)  
Spreading Factor (SF)  
5
6
7
8
9
10  
11  
12  
2^SF (Chips / Symbol)  
32  
64  
-5  
128  
-7.5  
256  
-10  
512  
1024  
-15  
2048  
-17.5  
4096  
-20  
Typical LoRa® Demodulator SNR [dB]  
-2.5  
-12.5  
A higher spreading factor provides better receiver sensitivity at the expense of longer transmission times (time-on-air).  
6.1.1.2 Bandwidth  
An increase in signal bandwidth permits the use of a higher effective data rate, thus reducing transmission time at the  
expense of reduced sensitivity improvement.  
LoRa® modem operates at a programmable bandwidth (BW_L) around a programmable central frequency f  
RF  
BW_L  
f
BWL  
2
BWL  
2
fRF  
f
RF ------------  
f
RF + ------------  
Figure 6-1: LoRa® Signal Bandwidth  
An increase in LoRa® signal bandwidth (BW_L) permits the use of a higher effective data rate, thus reducing transmission  
time at the expense of reduced sensitivity improvement. There are regulatory constraints in most countries on the  
permissible occupied bandwidth. The LoRa® modem bandwidth always refers to the double side band (DSB). The range of  
LoRa® signal bandwidths available is given in the table below:  
Table 6-2: Signal Bandwidth Setting in LoRa® Mode  
Signal Bandwidth  
0
1
2
3
4
5
6
7
8
9
BW_L [kHz] 0  
7.810  
10.420  
15.630  
20.830  
31.250  
41.670  
62.50  
1250  
250 1  
500 1  
1. For RF frequencies below 400 MHz, there is a scaling between the frequency and supported BW, some BW may not be available below 400 MHz  
SX1261/2  
Data Sheet  
38 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
For BW_L up to 250 kHz, the receiver performs a double conversion. A first down conversion to low- IF is performed inside  
the RF chain, a second conversion to baseband is performed digitally inside the baseband modem. When the 500 kHz  
bandwidth is used, a single down-conversion to zero-IF is performed in the RF part.  
6.1.1.3 FEC Coding Rate  
To further improve the robustness of the link the LoRa® modem employs cyclic error coding to perform forward error  
detection and correction.  
Forward Error Correction (FEC) is particularly efficient in improving the reliability of the link in the presence of interference.  
So that the coding rate and robustness to interference can be changed in response to channel conditions. The coding rate  
selected on the transmitter side is communicated to the receiver through the header (when present).  
Table 6-3: Coding Rate Overhead  
Cyclic Coding Rate CR  
[in raw bits / total bits]  
Coding Rate  
Overhead Ratio  
1
2
3
4
4/5  
4/6  
4/7  
4/8  
1.25  
1.5  
1.75  
2
A higher coding rate provides better noise immunity at the expense of longer transmission time. In normal conditions a  
factor of 4/5 provides the best trade-off; in the presence of strong interferers a higher coding rate may be used. Error  
correction code does not have to be known in advance by the receiver since it is encoded in the header part of the packet.  
6.1.1.4 Low Data Rate Optimization  
For low data rates (typically for high SF or low BW) and very long payloads which may last several seconds in the air, the low  
data rate optimization (LDRO) can be enabled. This reduces the number of bits per symbol to the given SF minus two (see  
Section 6.1.4 "LoRa® Time-on-Air" on page 41) in order to allow the receiver to have a better tracking of the LoRa® signal.  
Depending on the payload size, the low data rate optimization is usually recommended when a LoRa® symbol time is equal  
or above 16.38 ms.  
6.1.1.5 LoRa® Transmission Parameter Relationship  
With a knowledge of the key parameters that can be selected by the user, the LoRa® symbol rate is defined as:  
BW  
Rs = ---------  
SF  
2
where BW is the programmed bandwidth and SF is the spreading factor. The transmitted signal is a constant envelope  
signal. Equivalently, one chip is sent per second per Hz of bandwidth.  
6.1.2 LoRa® Packet Engine  
LoRa® has it own packet engine that supports the LoRa® PHY as described in the following section.  
SX1261/2  
Data Sheet  
39 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
6.1.3 LoRa® Frame  
The LoRa® modem employs two types of packet formats: explicit and implicit. The explicit packet includes a short header  
that contains information about the number of bytes, coding rate and whether a CRC is used in the packet. The packet  
format is shown in the following figure.  
Figure 6-2: LoRa® Packet Format  
The LoRa® packet starts with a preamble sequence which is used to synchronize the receiver with the incoming signal. By  
default the packet is configured with a 12-symbol long sequence. This is a programmable variable so the preamble length  
may be extended; for example, in the interest of reducing the receiver duty cycle in receive intensive applications. The  
transmitted preamble length may vary from 10 to 65535 symbols, once the fixed overhead of the preamble data is  
considered. This permits the transmission of near arbitrarily long preamble sequences.  
The receiver undertakes a preamble detection process that periodically restarts. For this reason the preamble length should  
be configured as identical to the transmitter preamble length. Where the preamble length is not known, or can vary, the  
maximum preamble length should be programmed on the receiver side.  
The preamble is followed by a header which contain information about the following payload. The packet payload is a  
variable-length field that contains the actual data coded at the error rate either as specified in the header in explicit mode  
or as selected by the user in implicit mode. An optional CRC may be appended.  
Depending upon the chosen mode of operation two types of header are available.  
6.1.3.1 Explicit Header Mode  
This is the default mode of operation. Here the header provides information on the payload, namely:  
The payload length in bytes  
The forward error correction coding rate  
The presence of an optional 16-bit CRC for the payload  
The header is transmitted with maximum error correction code (4/8). It also has its own CRC to allow the receiver to discard  
invalid headers.  
6.1.3.2 Implicit Header Mode  
In certain scenarios, where the payload, coding rate and CRC presence are fixed or known in advance, it may be  
advantageous to reduce transmission time by invoking implicit header mode. In this mode the header is removed from the  
packet. In this case the payload length, error coding rate and presence of the payload CRC must be manually configured  
identically on both sides of the radio link.  
SX1261/2  
Data Sheet  
40 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
6.1.4 LoRa® Time-on-Air  
The packet format for the LoRa® modem is detailed in Figure 6-3: Fixed-Length Packet Format and Figure 6-4:  
Variable-Length Packet Format. The equation to obtain Time On Air (ToA) is:  
with:  
SF: Spreading Factor (5 to 12)  
BW: Bandwidth (in kHz)  
ToA: the Time on Air in ms  
N
: number of symbols  
symbol  
The computation of the number of symbols differs depending on the parameters of the modulation.  
For SF5 and SF6:  
For all other SF:  
For all other SF with Low Data Rate Optimization activated:  
With:  
N_bit_CRC = 16 if CRC activated, 0 if not  
N_symbol_header = 20 with explicit header, 0 with implicit header  
CR is 1, 2, 3 or 4 for respective coding rates 4/5, 4/6, 4/7 or 4/8  
6.1.5 LoRa® Channel Activity Detection (CAD)  
The use of a spread spectrum modulation technique presents challenges in determining whether the channel is already in  
use by a signal that may be below the noise floor of the receiver. The use of the RSSI in this situation would clearly be  
impracticable. To this end the channel activity detector is used to detect the presence of other LoRa® signals.  
On the SX1261/2, the channel activity detection mode is designed to detect the presence of a LoRa® preamble or data  
symbols while the previous generations of products were only able to detect LoRa® preamble symbols.  
Once in CAD mode, the SX1261/2 will perform a scan of the band for a user-selectable duration (defined in number of  
symbols) and will then return with the Channel Activity Detected IRQ if LoRa® symbols have been detected during the CAD.  
The time taken for the channel activity detection is dependent upon the LoRa® modulation settings used. For a given  
configuration (SF/BW) the typical CAD detection time can be selected to be either 1, 2, 4, 8 or 16 symbols. Once the duration  
of the selected number of symbols has been done, the radio will remains for around half a symbol in Rx to post-process the  
measurement.  
SX1261/2  
Data Sheet  
41 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
6.2 FSK Modem  
6.2.1 Modulation Parameter  
The FSK modem is able to perform transmission and reception of 2-FSK modulated packets over a range of data rates  
ranging from 0.6 kbps to 300 kbps. All parameters are set by using the command SetModulationParams(...). This function  
should be called only after defining the protocol.  
The bitrate setting is referenced to the crystal oscillator and provides a precise means of setting the bit rate (or equivalently  
chip) rate of the radio. In the command SetModulationParams(...), the bitrate is expressed as 32 times the XTAL frequency  
divided the real bit rate used by the device. The generic formula is:  
F
XOSC  
BR = -------------------*32  
BitRate  
FSK modulation is performed inside the PLL bandwidth, by changing the fractional divider ratio in the feedback loop of the  
PLL. The high resolution of the sigma-delta modulator, allows for very narrow frequency deviation. The frequency deviation  
Fdev is one of the parameters of the function SetModulationParams(...) and is expressed as:  
FdevHz  
Fdev = -----------------------  
FreqStep  
where:  
XtalFreq  
FreqStep = -----------------------  
25  
2
Additionally, in transmission mode, several shaping filters can be applied to the signal in packet mode or in continuous  
mode. In reception mode, the user needs to select the best reception bandwidth depending on its conditions. To ensure  
correct demodulation, the following limit must be respected for the selection of the bandwidth:  
2*Fdev + BR< BW  
The bandwidth is defined by parameter BW as described in the following table.  
Table 6-4: Bandwidth Definition in FSK Packet Type  
BW  
Value  
Bandwidth [kHz DSB]  
BW4  
BW5  
0x1F  
0x17  
0x0F  
0x1E  
0x16  
0x0E  
0x1D  
0x15  
0x0D  
4.8  
5.8  
BW7  
7.3  
BW9  
9.7  
BW11  
BW14  
BW19  
BW23  
BW29  
11.7  
14.6  
19.5  
23.4  
29.3  
SX1261/2  
Data Sheet  
DS.SX1261-2.W.APP  
42 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
December 2017  
Table 6-4: Bandwidth Definition in FSK Packet Type  
BW  
Value  
Bandwidth [kHz DSB]  
BW39  
BW46  
0x1C  
0x14  
0x0C  
0x1B  
0x13  
0x0B  
0x1A  
0x12  
0x0A  
0x19  
0x11  
0x09  
39.0  
46.9  
BW58  
58.6  
BW78  
78.2  
BW93  
93.8  
BW117  
BW156  
BW187  
BW234  
BW312  
BW373  
BW467  
117.3  
156.2  
187.2  
234.3  
312.0  
373.6  
467.0  
The bandwidth must be chosen so that  
Bandwidth[DSB] BR + 2*frequency deviation + frequency error  
where the frequency error is two times the crystal frequency error used.  
The SX1261/2 offers several pulse shaping options defined by the parameter PulseShape. If other unspecified values are  
given as parameters, then no filtering is used.  
6.2.2 FSK Packet Engine  
The SX1261/2 is designed for packet-based transmission. The packet controller block is responsible for assembly of  
received data bit-stream into packets and their storage into the data buffer. It also performs the bit-stream decoding  
operations such as de-whitening & CRC-checks on the received bit-stream.  
On the transmit side, the packet handler can construct a packet and send it bit by bit to the modulator for transmission. It  
can whiten the payload and append the CRC-checksum to the end of the packet. The packet controller only works in  
half-duplex mode i.e. either in transmit or receive at a time.  
The packet controller is configured using the command SetPacketParams(...) as in Section 13.4.6 "SetPacketParams" on  
page 87. This function can be called only after defining the protocol. The next chapters describe in detail the different  
frames available in the SX1261/2.  
6.2.2.1 Preamble Detection in Receiver Mode  
The SX1261/2 is able to gate the reception of a packet if an insufficient number of alternating preamble symbols (usually  
referred to 0x55 or 0xAA in hexadecimal form) has been detected. This can be selected by the user by using the parameter  
PreambleDetectorLength used in the command SetPacketParams(...). The user can select a value ranging from “Preamble  
detector length off” - where the radio will not perform any gating and will try to lock directly on the following Sync Word -  
SX1261/2  
Data Sheet  
43 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
to “Preamble detector length 32 bits” where the radio will be expecting to receive 32 bits of preamble before the following  
Sync Word. In this case, if the 32 bits of preamble are not detected, the radio will either drop the reception in RxSingle mode,  
or restart its tracking loop in RxContinuous mode.  
To achieve best performance of the device, it is recommended to set PreambleDetectorLength to “Preamble detector length  
8 bits” or “Preamble detector length 16 bits” depending of the complete size of preamble which is sent by the transmitter.  
Note: In all cases, PreambleDetectorLength must be smaller than the size of the following Sync Word to achieve proper  
detection of the packets. If the preamble length is greater than the following Sync Word length (typically when no Sync  
Word is used) the user should fill some of the Sync Word bytes with 0x55.  
6.2.3 FSK Packet Format  
The FSK packet format provides a conventional packet format for application in proprietary NRZ coded, low energy  
communication links. The packet format has built in facilities for CRC checking of the payload, dynamic payload size and  
packet acknowledgement. Optionally whitening based upon pseudo random number generation can be enabled. Two  
principle packet formats are available in the FSK protocol: fixed length and variable length packets.  
6.2.3.1 Fixed-Length Packet  
If the packet length is fixed and known on both sides of the link then knowledge of the packet length does not need to be  
transmitted over the air. Instead the packet length can be written to the parameter packetLength which determines the  
packet length in bytes (0 to 255).  
Preamble  
8 to 65535  
bits  
Sync Word Address  
0 to 8 bytes 0 to 1 byte  
Payload  
1 to 255 bytes  
CRC  
0, 1 or 2 bytes  
CRC Checksum  
Whitening  
Figure 6-3: Fixed-Length Packet Format  
The preamble length is set from 8 to 65535 bits using the parameter PreambleLen. It is usually recommended to use a  
minimum of 16 bits for the preamble to guarantee a valid reception of the packet on the receiver side. The CRC  
operation, packet length and preamble length are defined using the command SetPacketParams(...) as defined in  
Section 11. "List of Commands" on page 61.  
6.2.3.2 Variable-Length Packet  
Where the packet is of uncertain or variable size, then information about the packet length must be transmitted within the  
packet. The format of the variable-length packet is shown below.  
Preamble  
8 to 65535  
bits  
Address  
0 to 1  
byte  
Sync Word  
0 to 8 bytes  
Length  
1 byte  
Payload  
0 to 255 bytes  
CRC  
0, 1 or 2 bytes  
CRC Checksum  
Whitening  
Figure 6-4: Variable-Length Packet Format  
SX1261/2  
Data Sheet  
44 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
6.2.3.3 Setting the Packet Length or Node Address  
The packet length and Node or Broadcast address are not considered part of the payload and they are added automatically  
in hardware.  
The packet length is added automatically in the packet when the packetType field is set to variable size in the command  
SetPacketParam(...).  
The node or broadcast address can be enabled by using the AddrComp field is in the command SetPacketParam(...). This  
field allow the user to enable and select an additional packet filtering at the payload level.  
6.2.3.4 Whitening  
The whitening process is built around a 9-bit LFSR which is used to generate a random sequence and the payload (including  
the payload length, the Node or Broadcase address and CRC checksum when needed) is then XORed with this random  
sequence to generate the whitened payload. The data is de-whitened on the receiver side by XORing with the same  
random sequence. This setup limits the number of consecutive 1’s or 0’s to 9. Note that the data whitening is only required  
when the user data has high correlation with long strings of 0’s and 1’s. If the data is already random then the whitening is  
not required. For example a random source generating the Transmit data, when whitened, could produce longer strings of  
1’s and 0’s, thus it’s not required to randomize an already random sequence.  
LFSR Polynom ial =X9 + X5 + 1  
X8  
X7  
X6  
X5  
X4  
X3  
X2  
X1  
X0  
W hitened data  
Transmit data  
Figure 6-5: Data Whitening LFSR  
The whitening is based around the 9-bit LFSR polynomial x^9+x^5+1. With this structure, the LSB at the output of the LFSR  
is XORed with the MSB of the data.  
At the initial stage, each flip-flop of the LFSR can be initialized through the registers at addresses 0x06B8 and 0x6B9.  
Table 6-5: Whitening Initial Value  
Whitening Initial Value  
Register Address  
Default Value  
Whitening initial value MSB  
Whitening initial value LSB  
0x06B8  
0x06B9  
0x01  
0x00  
SX1261/2  
Data Sheet  
45 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
6.2.3.5 CRC  
The SX1261/2 offers full flexibility to select the polynomial and initial value of the selected polynomial. In additions, the user  
can also select a complete inversion of the computed CRC to comply with some international standards.  
The CRC can be enabled and configured by using the CRCType field in the command SetPacketParam(...). This field allows  
the user to enable and select the length and configuration of the CRC.  
Table 6-6: CRC Type Configuration  
CRCType  
Description  
0x01  
0x00  
0x02  
0x04  
0x06  
CRC_OFF (No CRC)  
CRC_1_BYTE (CRC computed on 1 byte)  
CRC_2_BYTE (CRC computed on 2 bytes)  
CRC_1_BYTE_INV (CRC computed on 1 byte and inverted)  
CRC_2_BYTE_INV (CRC computed on 2 bytes and inverted)  
The CRC selected must be modified together with the CRC initial value and CRC polynomial.  
Table 6-7: CRC Initial Value  
Register Address  
Default Value  
CRC MSB Initial Value [15:8]  
CRC LSB Initial Value [7:0]  
0x06BC  
0x06BD  
0x1D  
0x0F  
Table 6-8: CRC Polynomial  
Register Address  
Default Value  
CRC MSB Polynomial Value [15:8]  
CRC LSB Polynomial Value [7:0]  
0x06BE  
0x06BF  
0x10  
0x21  
This flexibility permits the user to select any standard CRC or to use his own CRC allowing a specific detection of a given  
packet. Examples:  
To use the IBM CRC configuration, the user must select:  
0x8005 for the CRC polynomial  
0xFFFF for the initial value  
CRC_2_BYTE for the field CRCType in the command SetPacketParam(...).  
For the CCIT CRC configuration the user must select:  
0x1021 for the CRC polynomial  
0x1D0F for the initial value  
CRC_2_BYTE_INV for the field CRCType in the command SetPacketParam(...)  
SX1261/2  
Data Sheet  
46 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
7. Data Buffer  
The transceiver is equipped with a 256-byte RAM data buffer which is accessible in all modes except sleep mode. This RAM  
area is fully customizable by the user and allows access to either data for transmission or from the last packet reception.  
7.1 Principle of Operation  
0xFF  
USER  
TRANSCEIVER  
txBaseAddress + txPayloadLength  
TxBufferPointer  
Transmitted  
Payload  
WriteBuffer()  
SetBufferBaseAddress()  
rxBaseAddress + rxPayloadLength  
GetRxBufferStatus()  
Received  
Payload  
RxStartBufferPointer  
SetBufferBaseAddress()  
0x00  
Data buffer  
Capacity = 256 bytes  
Figure 7-1: Data Buffer Diagram  
The data buffer can be configured to store both transmit and receive payloads.  
SX1261/2  
Data Sheet  
47 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
7.2 Data Buffer in Receive Mode  
In receive mode RxBaseAddr specifies the buffer offset in memory at which the received packet payload data will be written.  
The buffer offset of the last byte written in receive mode is then stored in RxDataPointer which is initialized to the value of  
RxBaseAddr at the beginning of the reception.  
The pointer to the first byte of the last packet received and the packet length can be read with the command  
GetRxbufferStatus().  
In single mode, RxDataPointer is automatically initialized to RxBaseAddr each time the transceiver enters Rx mode. In  
continuous mode the pointer is incremented starting from the previous position.  
7.3 Data Buffer in Transmit Mode  
Upon each transition to transmit mode TxDataPointer is initialized to TxBaseAddr and is incremented each time a byte is sent  
over the air. This operation stops once the number of bytes sent equals the payloadlength parameter as defined in the  
function SetPacketParams(...).  
7.4 Using the Data Buffer  
Both, RxBaseAddr and TxBaseAddr are set using the command SetBufferBaseAddresses(...).  
By default RxBaseAddr and TxBaseAddr are initialized at address 0x00.  
Due to the contiguous nature of the data buffer, the base addresses for Tx and Rx are fully configurable across the 256-byte  
memory area. Each pointer can be set independently anywhere within the buffer. To exploit the maximum data buffer size  
in transmit or receive mode, the whole data buffer can be used in each mode by setting the base addresses TxBaseAddr and  
RxBaseAddr at the bottom of the memory (0x00).  
The data buffer is cleared when the device is put into Sleep mode (implying no access). The data is retained in all other  
modes of operation.  
The data buffer is acceded via the command WriteBuffer(...) and ReadBuffer(...). In this function the parameter offset defines  
the address pointer of the first data to be written or read. Offset zero defines the first position of the data buffer.  
Before any read or write operation it is hence necessary to initialize this offset to the corresponding beginning of the buffer.  
Upon reading or writing to the data buffer the address pointer will then increment automatically.  
Two possibilities exist to obtain the offset value:  
First is to use the RxBaseAddr value since the user defines it before receiving a payload.  
Second, offset can be initialized with the value of RxStartBufferPointer returned by GetRxbufferStatus(...) command.  
Note:  
All the received data will be written to the data buffer even if the CRC is invalid, permitting user-defined post processing of  
corrupted data. When receiving, if the packet size exceeds the buffer memory allocated for the Rx, it will overwrite the  
transmit portion of the data buffer.  
SX1261/2  
Data Sheet  
48 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
8. Digital Interface and Control  
The SX1261/2 is controlled via a serial SPI interface and a set of general purpose input/output (DIOs). At least one DIO must  
be used for IRQ and the BUSY line is mandatory to ensure the host controller is ready to accept the commands. The  
SX1261/2 uses an internal controller (CPU) to handle communication and chip control (mode switching, API etc...). BUSY is  
used as a busy signal indicating that the chip is ready for new command only if this signal is low. When BUSY is high, the  
host controller must wait until it goes down again before sending another command. Through SPI the application sends  
commands to the internal chip or access directly the data memory space.  
8.1 Reset  
A complete “factory reset” of the chip can be issued on request by toggling pin 15 NRESET of the SX1261/2. It will be  
automatically followed by the standard calibration procedure and any previous context will be lost. The pin should be held  
low for more than 50 μs (typically 100 μs) for the Reset to happen.  
8.2 SPI Interface  
The SPI interface gives access to the configuration register via a synchronous full-duplex protocol corresponding to CPOL  
= 0 and CPHA = 0 in Motorola/Freescale nomenclature. Only the slave side is implemented.  
An address byte followed by a data byte is sent for a write access whereas an address byte is sent and a read byte is received  
for the read access. The NSS pin goes low at the beginning of the frame and goes high after the data byte.  
MOSI is generated by the master on the falling edge of SCK and is sampled by the slave (i.e. this SPI interface) on the rising  
edge of SCK. MISO is generated by the slave on the falling edge of SCK.  
A transfer is always started by the NSS pin going low. MISO is high impedance when NSS is high.  
The SPI runs on the external SCK clock to allow high speed up to 16 MHz.  
8.2.1 SPI Timing When the Transceiver is in Active Mode  
In this mode the chip is able to handle SPI command in a standard way i.e. no extra delay needed at the first SPI transaction.  
Figure 8-1: SPI Timing Diagram  
SX1261/2  
Data Sheet  
49 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
All timings in following table are given for a max load cap of 10 pF.  
Table 8-1: SPI Timing Requirements  
Symbol  
Description  
Minimum  
Typical  
Maximum  
Unit  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
t9  
NSS falling edge to SCK setup time  
SCK period  
32  
62.5  
31.25  
5
-
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCK high time  
-
MOSI to SCK hold time  
MOSI to SCK setup time  
NSS falling to MISO delay  
SCK falling to MISO delay,  
SCK to NSS rising edge hold time  
NSS high time  
-
5
-
0
15  
15  
-
0
31.25  
125  
-
NSS falling edge to SCK setup time when switching  
from SLEEP to STDBY_RC mode  
t10  
t11  
100  
0
-
-
-
s  
s  
NSS falling to MISO delay when switching from  
SLEEP to STDBY_RC mode  
150  
8.2.2 SPI Timing When the Transceiver Leaves Sleep Mode  
One way for the chip to leave Sleep mode is to wait for a falling edge of NSS. At falling edge, all necessary internal regulators  
are switched On; the chip starts chip initialization before being able to accept first SPI command. This means that the delay  
between the falling edge of NSS and the first rising edge of SCK must take into account the wake-up sequence and the chip  
initialization. In Sleep mode and during the initialization phase, the busy signal mapped on BUSY pin, is set high indicating  
to the host that the chip is not able to accept a new command. Once the chip is in STDBY_RC mode, the busy signal goes  
low and the host can start sending a command. This is also true for startup at battery insertion or after a hard reset.  
Figure 8-2: SPI Timing Transition  
SX1261/2  
Data Sheet  
50 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
8.3 Multi-Purpose Digital Input/Output (DIO)  
The chip is interfaced through the 4 control lines which are composed of the BUSY pin and 3 DIOs pins that can be  
configured as interrupt, debug or to control the radio immediate peripherals (TCXO or RF Switch).  
8.3.1 BUSY Control Line  
The BUSY control line is used to indicate the status of the internal state machine. When the BUSY line is held low, it indicates  
that the internal state machine is in idle mode and that the radio is ready to accept a command from the host controller.  
The BUSY control line is set back to zero once the chip has reached a stable mode and it is ready for a new command.  
Inherently, the amount of time the BUSY line will stay high depends on the nature of the command. For example, setting  
the device into TX mode from the STDBY_RC mode will take much more time than simply changing some radio parameters  
because the internal state machine will maintain the BUSY line high until the radio is effectively transmitting the packet.  
BUSY  
NSS  
SPI  
opcode  
Param…  
Param1  
(MOSI, MISO, SCK)  
 
Figure 8-3: Switching Time Definition  
From the internal state machine point of view, all “write” command will make the BUSY line to go high after a small lap of  
time represented as T on the graph above. T represents the time needed by the internal state machine to wake-up and  
SW  
SW  
start processing the command.  
Conversely, the “read” command will be handled directly without the help of the internal state machine and thus the BUSY  
line will remains low after a “read” command.  
The max value for T from NSS rising edge to the BUSY rising edge is, in all cases, 600 ns.  
SW  
In Sleep mode, the BUSY pin is held high through a 20 kΩ resistor and the BUSY line will go low as soon as the radio leaves  
the Sleep mode.  
In FS, BUSY will go low when the PLL is locked.  
In RX, BUSY will go to low as soon as the RX is up and ready to receive data.  
In TX, BUSY will go low when the PA has ramped-up and transmission of preamble starts.  
SX1261/2  
Data Sheet  
51 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
In additon to this, the BUSY will also go high to handle its internal IRQ. In this scenario, it is essential to wait for the BUSY  
line to go low before sending an SPI command (either a “read” or “write” command).  
BUSY  
NSS  
SPI  
opcode  
Param…  
Param1  
(MOSI, MISO, SCK)  
 
 
Mode  
 
Figure 8-4: Switching Time Definition in Active Mode  
The following table gives the value of T Mode for all possible transitions. The switching time is defined as the time  
SW  
between the rising edge of the NSS ending the SPI transaction and the falling edge of BUSY.  
Table 8-2: Switching Time  
Transition  
T
Mode Typical Value [s]  
SW  
SLEEP to STBY_RC cold start (no data retention)  
3500  
340  
31  
SLEEP to STBY_RC warm start (with data retention)  
STBY_RC to STBY_XOSC  
STBY_RC to FS  
STBY_RC to RX  
STBY_RC to TX  
STBY_XOSC to FS  
STBY_XOSC to TX  
STBY_XOSC to RX  
FS to RX  
50  
83  
126  
40  
105  
62  
41  
FS to TX  
76  
RX to FS  
15  
RX to TX  
92  
SX1261/2  
Data Sheet  
52 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
8.3.2 Digital Input/Output  
Any of the 3 DIOs can be selected as an output interrupt source for the application. When the application receives an  
interrupt, it can determine the source by using the command GetIrqStatus(...). The interrupt can then be cleared using the  
ClearIrqStatus(...) command. The Pin Description is as follows:  
DIO1 is the generic IRQ line, any interrupt can be mapped to DIO1. The complete list of available IRQ can be found in  
Section 8.4 "Digital Interface Status versus Chip modes" on page 53.  
DIO2 has a double functionality. As DIO1, DIO2 can be used as a generic IRQ line and any IRQ can be routed through this  
pin. Also, DIO2 can be configured to drive an RF switch through the use of the command SetDio2AsRfSwitchCtrl(...). In this  
mode, DIO2 will be at a logical 1 during Tx and at a logical 0 in any other mode.  
DIO3 also has a double functionality and as DIO1 or DIO2, it can be used as a generic IRQ line. Also, DIO3 can be used to  
automatically control a TCXO through the command SetDio3AsTCXOCtrl(...). In this case, the device will automatically power  
cycle the TCXO when needed.  
8.4 Digital Interface Status versus Chip modes  
Table 8-3: Digital Pads Configuration for each Chip Mode  
Mode  
DIO3  
DIO2  
DIO1  
BUSY  
MISO  
MOSI  
SCK  
NSS  
NRESET  
Reset  
Start-up  
Sleep  
PD  
HIZ PD  
HIZ PD  
OUT  
PD  
HIZ PD  
HIZ PD  
OUT  
PD  
HIZ PD  
HIZ PD  
OUT  
PU  
HIZ PU  
HIZ PU  
OUT  
HIZ  
HIZ  
HIZ  
HIZ  
HIZ  
IN  
HIZ  
HIZ  
HIZ  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
-
IN PU  
IN PU  
IN PU  
IN PU  
IN PU  
IN PU  
IN PU  
HIZ  
STBY_RC  
STBY_XOSC  
FS  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
IN  
IN  
OUT  
OUT  
OUT  
OUT  
IN  
IN  
RX  
OUT  
OUT  
OUT  
OUT  
IN  
IN  
TX  
OUT  
OUT  
OUT  
OUT  
IN  
IN  
Note:  
PU = pull up with 50 kat typical conditions  
PD = pull down with 50 kat typical conditions (the resistor value varies with the supply voltage)  
SX1261/2  
Data Sheet  
53 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
8.5 IRQ Handling  
In total there are 10 possible interrupt sources depending on the selected frame and chip mode. Each one can be enabled  
or masked. In addition, each one can be mapped to DIO1, DIO2 or DIO3.  
Table 8-4: IRQ Status Registers  
Bit  
0
IRQ  
TxDone  
Description  
Packet transmission completed  
Packet received  
Protocol  
All  
1
RxDone  
All  
2
PreambleDetected  
SyncWordValid  
HeaderValid  
HeaderErr  
Preamble detected  
All  
3
Valid Sync Word detected  
Valid LoRa Header received  
LoRa® header CRC error  
FSK  
4
LoRa®  
5
LoRa®  
All  
6
7
CrcErr  
Wrong CRC received  
CadDone  
Channel activity detection finished  
LoRa®  
8
9
CadDetected  
Timeout  
Channel activity detected  
Rx or Tx Timeout  
LoRa®  
All  
For more information on how to setup IRQ and DIOs, refer to the function SetDioIrqParams() in Section 13.3.1  
"SetDioIrqParams" on page 78.  
SX1261/2  
Data Sheet  
54 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
9. Operational Modes  
The SX1261/2 features six operating modes. The analog front-end and digital blocks that are enabled in each operating  
mode are explained in the following table.  
Table 9-1: SX1261/2 Operating Modes  
Mode  
Enabled Blocks  
SLEEP  
Optional registers, backup regulator, RC64k oscillator, data RAM  
Top regulator (LDO), RC13M oscillator  
STDBY_RC  
STDBY_XOSC  
Top regulator (DC-DC or LDO), XOSC  
FS  
Tx  
Rx  
All of the above + Frequency synthesizer at Tx frequency  
Frequency synthesizer and transmitter, Modem  
Frequency synthesizer and receiver, Modem  
9.1 Startup  
At power-up or after a reset, the chip goes into STARTUP state, the control of the chip being done by the sleep state  
machine operating at the battery voltage. The BUSY pin is set to high indicating that the chip is busy and cannot accept a  
command. When the digital voltage and RC clock become available, the chip can boot up and the CPU takes control. At this  
stage the BUSY line goes down and the device is ready to accept commands.  
9.2 Calibrate  
Calibration procedure is automatically called in case of POR or via the calibration command. Parameters can be added to  
the calibrate command to identify which section of calibration should be repeated. The following blocks can be calibrated:  
RC64k using the 32 MHz crystal oscillator as reference  
RC13M using the 32 MHz crystal oscillator as reference  
PLL to select the proper VCO frequency and division ratio for any RF frequency  
RX ADC  
Image (RX mode with defined tone)  
Once the calibration is finished, the chip enters STDBY_RC mode.  
9.2.1 Image Calibration for Specific Frequency Bands  
The image calibration is done through the command CalibrateImage(...) for a given range of frequencies defined by the  
parameters freq1 and freq2. Once performed, the calibration is valid for all frequencies between the two extremes used as  
parameters. Typically, the user can select the parameters freq1 and freq2 to cover any specific ISM band.  
SX1261/2  
Data Sheet  
55 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
Table 9-2: Image Calibration Over the ISM Bands  
Frequency Band [MHz]  
Freq1  
Freq2  
430 - 440  
470 - 510  
779 - 787  
863 - 870  
902 - 928  
0x6B  
0x75  
0x6F  
0x81  
0xC1  
0xC5  
0xD7  
0xDB  
0xE1 (default)  
0xE9 (default)  
In case of POR or when the device is recovering from Sleep mode in cold start mode, the image calibration is performed as  
part of the initial calibration process and for optimal image rejection in the band 902 - 928 MHz. However at this stage the  
internal state machine has no information whether an XTAL or a TCXO is fitted. When the 32 MHz clock is coming from a  
TCXO, the calibration will fail and the user should request a complete calibration after calling the function  
SetDIO3AsTcxoCtrl(...).  
By default, the image calibration is made in the band 902 - 928 MHz. Nevertheless, it is possible to request the device to  
perform a new image calibration at other frequencies.  
Note:  
Contact your Semtech representative for the other optimal calibration settings outside of the given frequency bands.  
9.3 Sleep Mode  
In this mode, most of the radio internal blocks are powered down or in low power mode and optionally the RC64k clock  
and the timer are running. The chip may enter this mode from STDBY_RC and can leave the SLEEP mode if one of the  
following events occurs:  
NSS pin goes low in any case  
RTC timer generates an End-Of-Count (corresponding to Listen mode)  
When the radio is in Sleep mode, the BUSY pin is held high.  
9.4 Standby (STDBY) Mode  
In standby mode the host should configure the chip before going to RX or TX modes. By default in this state, the system is  
clocked by the 13 MHz RC oscillator to reduce power consumption (in all other modes except SLEEP the XTAL is turned ON).  
However if the application is time critical, the XOSC block can be turned or left ON.  
XOSC or RC13M selection in standby mode is determined by mode parameter in the command SetStandby(...).  
The mode where only RC13M is used is called STDBY_RC and the one with XOSC ON is called STDBY_XOSC.  
If DC-DC is to be used, the selection should be made while the circuit is in STDBY_RC mode by using the  
SetRegulatorMode(...) command, then the DC-DC will automatically switch ON when entering STDBY_XOSC mode. The  
DC-DC will be clocked by the RC13M. The LDO will remain active with a target voltage 50 mV lower than the DC-DC one.  
SX1261/2  
Data Sheet  
56 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
9.5 Frequency Synthesis (FS) Mode  
In FS mode, PLL and related regulators are switched ON. The BUSY goes low as soon as the PLL is locked or timed out.  
For debugging purposes the chip may be requested to remain in this mode by using the SetFs() command.  
Since the SX1261/2 uses low IF architecture, the RX and TX frequencies are different. The RX frequency is equal to TX one  
minus the intermediate frequency (IF). In FS or TX modes, the RF frequency is directly programmed by the user.  
9.6 Receive (RX) Mode  
In RX mode, the RF front-end, RX ADC and the selected modem (LoRa® or FSK) are turned ON. In RX mode the circuit can  
operate in different sub-modes:  
Continuous mode: the device remains in RX mode and waits for incoming packet reception until the host requests a  
different mode,  
Single mode: the device returns automatically to STDBY_RC mode after packet reception,  
Single mode with timeout: the device returns automatically to STDBY_RC mode after packet reception or after the  
selected timeout,  
Listen mode: the device alternate between Sleep and Rx mode until an IRQ is triggered.  
In RX mode, BUSY will go low as soon as the RX is up and ready to receive data.  
The SX1261 and SX1262 can operate in a Rx Boosted gain setup or in a Rx power saving gain setup. In the Rx power saving  
gain, the radio will consume less power at a small cost in sensitivity. In Rx Boosted gain, the radio will consume more power  
to improve the sensitivity.  
Table 9-3: Rx Gain Configuration  
Rx Gain  
Register Address  
Value  
Rx Power Saving gain: 0x94 (default)  
Rx Boosted gain: 0x96  
0x08AC  
Rx Gain  
Note:  
In LoRa® mode, the user can also use the command SetLoRaSymbNumTimeout(...) to perform a quick and immediate  
assessment of the presence (or not) of LoRa preamble symbols. If the user defined parameter SymbNum is different from  
0, the modem will wait for a total of SymbNum LoRa® symbol to validate, or not, the correct detection of a LoRa® packet. If  
the various states of the demodulator are not lock at this moment, the radio will generate the RxTimeout IRQ. Otherwise,  
the radio will stay in Rx for the full duration of the packet. For more information, please see Section 13.4.9  
"SetLoRaSymbNumTimeout" on page 93.  
SX1261/2  
Data Sheet  
57 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
9.7 Transmit (TX) Mode  
In TX mode after ramping-up the Power-Amplifier (PA) transmits the data buffer. In TX mode the circuit can operate in  
different sub-modes: single mode or single with timeout mode.  
The timeout in Tx mode can be used as a security to ensure that if for any reason the Tx is aborted or does not succeed (ie.  
the TxDone IRQ never is never triggered), the TxTimeout will prevent the system from waiting for an unknown amount of  
time. Using the timeout while in Tx mode remove the need to use resources from the host MCU to perform the same task.  
In TX mode, BUSY will go low as soon as the PA has ramped-up and transmission of preamble starts.  
9.7.1 PA Ramping  
The ramping of the PA can be selected while setting the output power by using the command SetTxParams(...).  
The PA ramp time can be selected to go from 10 s up to 3.4 ms.  
9.8 Active Mode Switching Time  
For more details on active mode switching time, see Section 8.3.1 "BUSY Control Line" on page 51.  
SX1261/2  
Data Sheet  
58 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
9.9 Transceiver Circuit Modes Graphical Illustration  
All of the device operating modes and the states through which each mode selection transitions is shown here:  
reset  
POWER ON  
or  
RESET  
RTC or NSS (SPI Operation)  
startup  
sleep  
SetStandby()  
STDBY  
SetStandby()  
RxDone, RxTimeout  
SetStandby()  
TxDone, TxTimeout  
RxTxTimeout  
(duty cycled operation)  
FS  
SetRx()  
SetTx()  
Rx  
Tx  
RxDone  
Figure 9-1: Transceiver Circuit Modes  
SX1261/2  
Data Sheet  
59 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
10. Host Controller Interface  
Through the SPI interface, the host can issue commands to the chip or access the data memory space to directly retrieve or  
write data. In normal operation, a reduced number of direct data write operations is required except for data buffer.  
The user interacts with the circuit through an API (instruction set).  
The SX1261 uses the pin BUSY to indicate the status of the chip and its ability (or not) to receive another command while it  
is doing its internal processing. Prior to executing one of the generic functions, it is thus necessary to check the status of  
BUSY to make sure the chip is in a state where it can process another function.  
10.1 Command Structure  
In case of a command that does not require any parameter, the host sends only the opcode (1 byte).  
In case of a command which requires one or several parameters, the opcode byte is followed immediately by parameter  
bytes with the NSS rising edge terminating the command.  
Table 10-1: SPI Interface Command Sequence  
Byte  
0
[1:n]  
Data from host  
Data to host  
Opcode  
RFU  
Parameters  
Status  
10.2 Transaction Termination  
The host terminates an SPI transaction with the rising NSS signal; the host does not explicitly send the command length as  
a parameter. The host must not raise NSS within the bytes of a transaction.  
If a transaction sends a command requiring parameters, all the parameters must be sent before rising NSS. If not the chip  
will take some unknown value for the missing parameters.  
SX1261/2  
Data Sheet  
60 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
11. List of Commands  
The following tables give the list of commands and their corresponding opcode. Unless specified, all parameters are 8-bit  
values.  
11.1 Operational Modes Commands  
These functions have a direct impact on the behaviour of the device. They control the internal state machine to transmit or  
receive packets, and all the modes in-between.  
Table 11-1: Commands Selecting the Operating Modes of the Radio  
Command  
Opcode  
Parameters  
Description  
SetSleep  
0x84  
sleepConfig  
Set Chip in SLEEP mode  
Set Chip in STDBY_RC or STDBY_XOSC  
mode  
SetStandby  
0x80  
standbyConfig  
SetFs  
SetTx  
SetRx  
0xC1  
0x83  
0x82  
-
Set Chip in Freqency Synthesis mode  
Set Chip in Tx mode  
timeout[23:0]  
timeout[23:0]  
Set Chip in Rx mode  
Stop Rx timeout on Sync Word/Header or  
preamble detection  
StopTimerOnPreamble  
SetRxDutyCycle  
0x9F  
0x94  
StopOnPreambleParam  
Store values of RTC setup for listen mode  
and if period parameter is not 0, set chip  
into RX mode  
rxPeriod[23:0], sleepPeriod[23:0]  
Set chip into RX mode with passed CAD  
parameters  
SetCad  
0xC5  
0xD1  
0xD2  
0x96  
0x89  
0x98  
-
Set chip into TX mode with infinite carrier  
wave settings  
SetTxContinuousWave  
SetTxInfinitePreamble  
SetRegulatorMode  
Calibrate  
-
Set chip into TX mode with infinite  
preamble settings  
-
Select LDO or DC_DC+LDO for CFG_XOSC,  
FS, RX or TX mode  
regModeParam  
calibParam  
freq1, freq2  
Calibrate the RC13, RC64, ADC , PLL, Image  
according to parameter  
Launches an image calibration at the given  
frequencies  
CalibrateImage  
Configure the Duty Cycle, Max output  
power, device for the PA for SX1261 or  
SX1262  
SetPaConfig  
0x95  
0x93  
paDutyCycle, HpMax, deviceSel, paLUT  
fallbackMode  
Defines into which mode the chip goes  
after a TX / RX done.  
SetRxTxFallbackMode  
SX1261/2  
Data Sheet  
61 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
11.2 Register and Buffer Access Commands  
Table 11-2: Commands to Access the Radio Registers and FIFO Buffer  
Command  
Opcode  
Parameters  
Description  
WriteRegister  
ReadRegister  
WriteBuffer  
ReadBuffer  
0x0D  
0x1D  
0x0E  
0x1E  
address[15:0], data[0:n]  
address[15:0]  
offset, data[0:n]  
offset  
Write into one or several registers  
Read one or several registers  
Write data into the FIFO  
Read data from the FIFO  
11.3 DIO and IRQ Control  
Table 11-3: Commands Controlling the Radio IRQs and DIOs  
Command  
Opcode  
Parameters  
Description  
IrqMask[15:0],  
Dio1Mask[15:0],  
Dio2Mask[15:0],  
Dio3Mask[15:0],  
SetDioIrqParams  
0x08  
Configure the IRQ and the DIOs attached to each IRQ  
GetIrqStatus  
ClearIrqStatus  
0x12  
0x02  
0x9D  
0x97  
-
Get the values of the triggered IRQs  
Clear one or several of the IRQs  
-
SetDIO2AsRfSwitchCtrl  
SetDIO3AsTcxoCtrl  
enable  
Configure radio to control an RF switch from DIO2  
Configure the radio to use a TCXO controlled by DIO3  
tcxoVoltage, timeout[23:0]  
11.4 RF, Modulation and Packet Commands  
Table 11-4: Commands Controlling the RF and Packets Settings  
Command  
Opcode  
Parameters  
Description  
SetRfFrequency  
0x86  
rfFreq[23:0]  
Set the RF frequency of the radio  
Select the packet type corresponding  
to the modem  
SetPacketType  
GetPacketType  
SetTxParams  
0x8A  
0x11  
0x8E  
protocol  
Get the current packet configuration  
for the device  
-
Set output power and ramp time for  
the PA  
power, rampTime  
Compute and set values in selected  
protocol modem for given  
modulation parameters  
SetModulationParams  
0x8B  
modParam1, modParam2, modParam3  
www.semtech.com  
SX1261/2  
62 of 107  
Semtech  
Data Sheet  
DS.SX1261-2.W.APP  
Rev. 1.1  
December 2017  
Table 11-4: Commands Controlling the RF and Packets Settings  
Command  
Opcode  
Parameters  
Description  
packetParam1, packetParam2, packetParam3,  
packetParam4, packetParam5, packetParam6,  
packetParam7, packetParam8, packetParam9  
Set values on selected protocol  
modem for given packet parameters  
SetPacketParams  
0x8C  
cadSymbolNum, cadDetPeak, cadDetMin,  
cadExitMode, cadTimeout  
Set the parameters which are used for  
performing a CAD (LoRa® only)  
SetCadParams  
0x88  
0x8F  
0xA0  
Store TX and RX base address in regis-  
ter of selected protocol modem  
SetBufferBaseAddress  
SetLoRaSymbNumTimeout  
TxbaseAddr, RxbaseAddr  
SymbNum  
Set the number of symbol the modem  
has to wait to validate a lock  
11.5 Status Commands  
Table 11-5: Commands Returning the Radio Status  
Command  
Opcode  
Parameters  
Description  
GetStatus  
GetRssiInst  
0xC0  
0x15  
0x13  
-
-
-
Returns the current status of the device  
Returns the instantaneous measured RSSI while in Rx mode  
Returns PaylaodLengthRx(7:0), RxBufferPointer(7:0)  
GetRxBufferStatus  
Returns RssiAvg, RssiSync, PStatus2, PStaus3, PStatus4 in  
FSK protocol, returns RssiPkt, SnrPkt in LoRa® protocol  
GetPacketStatus  
GetDeviceErrors  
ClearDeviceErrors  
0x14  
0x17  
0x07  
-
-
Returns the error which has occurred in the device  
Clear all the error(s). The error(s) cannot be cleared  
independently  
0x00  
GetStats  
0x10  
0x00  
-
-
Returns statistics on the last few received packets  
Resets the value read by the command GetStats  
ResetStats  
SX1261/2  
Data Sheet  
DS.SX1261-2.W.APP  
63 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
December 2017  
12. Register Map  
12.1 Register Table  
Table 12-1: List of Registers  
Regiser Name  
Address  
0x06B8  
Reset Value  
0xX1  
Function  
Whitening initial value MSB  
Whitening initial value LSB  
Initial value used for the whitening LFSR in  
FSK mode. The user should not change the  
value of the 7 MSB of this register  
0x06B9  
0x00  
CRC MSB Initial Value [0]  
CRC LSB Initial Value [1]  
CRC MSB polynomial Value [0]  
CRC LSB polynomial Value [1]  
SyncWord[0]  
0x06BC  
0x06BD  
0x06BE  
0x06BF  
0x06C0  
0x06C1  
0x06C2  
0x06C3  
0x06C4  
0x06C5  
0x06C6  
0x06C7  
0x06CD  
0x06CE  
0x0740  
0x1D  
Initial value used for the polynomial used to  
compute the CRC in FSK mode  
0x0F  
0x10  
Polynomial used to compute the CRC in FSK  
mode  
0x21  
-
1st byte of the Sync Word in FSK mode  
2nd byte of the Sync Word in FSK mode  
3rd byte of the Sync Word in FSK mode  
4th byte of the Sync Word in FSK mode  
5th byte of the Sync Word in FSK mode  
6th byte of the Sync Word in FSK mode  
7th byte of the Sync Word in FSK mode  
8th byte of the Sync Word in FSK mode  
Node Address used in FSK mode  
SyncWord[1]  
-
SyncWord[2]  
-
SyncWord[3]  
-
SyncWord[4]  
-
SyncWord[5]  
-
SyncWord[6]  
-
SyncWord[7]  
-
Node Address  
0x00  
0x00  
0x14  
Broadcast Address  
LoRa Sync Word MSB  
Broadcast Address used in FSK mode  
Differentiate the LoRa® signal for Public or  
Private Network  
Set to 0x3444 for Public Network  
Set to 0x1424 for Private Network  
LoRa Sync Word LSB  
0x0741  
0x24  
RandomNumberGen[0]  
RandomNumberGen[1]  
RandomNumberGen[2]  
RandomNumberGen[3]  
0x0819  
0x081A  
0x081B  
0x081C  
-
-
-
-
Can be used to get a 32-bit random number  
Set the gain used in Rx mode:  
Rx Power Saving gain: 0x94  
Rx Boosted gain: 0x96  
Rx Gain  
0x08AC  
0x94  
SX1261/2  
Data Sheet  
64 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
Table 12-1: List of Registers  
Regiser Name  
Address  
Reset Value  
Function  
Set the Over Current Protection level.  
The value is changed internally depending  
on the device selected. Default values are:  
OCP Configuration  
0x08E7  
0x18  
SX1262: 0x38 (140 mA)  
SX1261: 0x18 (60 mA)  
Value of the trimming cap on XTA pin  
XTA trim  
XTB trim  
0x0911  
0x0912  
0x05  
0x05  
This register should only be changed while  
the radio is in STDBY_XOSC mode.  
Value of the trimming cap on XTB pin  
This register should only be changed while  
the radio is in STDBY_XOSC mode.  
SX1261/2  
Data Sheet  
65 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
13. Commands Interface  
13.1 Operational Modes Functions  
13.1.1 SetSleep  
The command SetSleep(...) is used to set the device in SLEEP mode with the lowest current consumption possible. This  
command can be sent only while in STDBY mode (STDBY_RC or STDBY_XOSC). After the rising edge of NSS, all blocks are  
switched OFF except the backup regulator if needed and the blocks specified in the parameter sleepConfig.  
Table 13-1: SetSleep SPI Transaction  
Byte  
0
1
Data from host  
Opcode = 0x84  
sleepConfig  
The sleepConfig argument is defined in Table 13-2.  
Table 13-2: Sleep Mode Definition  
SleepConfig[7:3]  
SleepConfig [2]  
SleepConfig [1]  
SleepConfig [0]  
RESERVED  
0: cold start  
0: RFU  
0: RTC timeout disable  
1: warm start  
(device configuration in  
retention) 1  
1: wake-up on RTC timeout  
(RC64k)  
RESERVED  
0: RFU  
1. Note that only configuration for the activated modem before going to sleep is retained. Configuration of the other modems is lost and must be  
re-configured.  
When entering SLEEP mode, the BUSY line goes up and stays at a high level for the complete duration of the SLEEP period.  
Once in SLEEP mode, it is possible to wake the device up from the host processor with a falling edge on the NSS line. The  
device can also wake up automatically based on a counter event driven by the RTC 64 kHz clock. If the RTC is used, a rising  
edge of NSS will still wake up the chip (the host keeps control of the chip).  
By default, when entering into SLEEP mode, the chip configuration is lost. However, being able to store chip configuration  
to lower host interaction or during RxDutyCycle mode is a must that can be done using the register in retention mode  
during SLEEP state. This is available when the SetSleep(...) command is sent with sleepConfig[2] set to 1. Once the chip leaves  
SLEEP mode (by NSS or RTC event), the chip will first restore the registers with the value stored into the retention register.  
Caution:  
Once sending the command SetSleep(...), the device will become unresponsive for around 500 s, time needed for the  
configuration saving process and proper switch off of the various blocks. The user must thus make sure the device will not  
be receiving SPI command during these 500 s to ensure proper operations of the device.  
SX1261/2  
Data Sheet  
66 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
13.1.2 SetStandby  
The command SetStandby(...) is used to set the device in a configuration mode which is at an intermediate level of  
consumption. In this mode, the chip is placed in halt mode waiting for instructions via SPI. This mode is dedicated to chip  
configuration using high level commands such as SetPacketType(...).  
By default, after battery insertion or reset operation (pin NRESET goes low), the chip will enter in STDBY_RC mode running  
with a 13 MHz RC clock.  
Table 13-3: SetConfig SPI Transaction  
Byte  
0
1
Data from host  
Opcode = 0x80  
StdbyConfig  
The StdbyConfig byte definition is as follows:  
Table 13-4: STDBY Mode Configuration  
StdbyConfig  
Value  
Description  
STDBY_RC  
0
1
Device running on RC13M, set STDBY_RC mode  
STDBY_XOSC  
Device running on XTAL 32MHz, set STDBY_XOSC mode  
13.1.3 SetFs  
The command SetFs() is used to set the device in the frequency synthesis mode where the PLL is locked to the carrier  
frequency. This mode is used for test purposes of the PLL and can be considered as an intermediate mode. It is  
automatically reached when going from STDBY_RC mode to TX mode or RX mode.  
Table 13-5: SetFs SPI Transaction  
Byte  
0
Data from host  
Opcode = 0xC1  
In FS mode, the PLL will be set to the frequency programmed by the function SetRfFrequency(...) which is the same used for  
TX or RX operations.  
13.1.4 SetTx  
The command SetTx() sets the device in transmit mode.  
Table 13-6: SetTx SPI Transaction  
Byte  
0
1-3  
Data from host  
Opcode = 0x83  
timeout(23:0)  
SX1261/2  
Data Sheet  
DS.SX1261-2.W.APP  
67 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
December 2017  
Starting from STDBY_RC mode, the oscillator is switched ON followed by the PLL, then the PA is switched ON and the  
PA regulator starts ramping according to the ramping time defined by the command SetTxParams(...)  
When the ramping is completed the packet handler starts the packet transmission  
When the last bit of the packet has been sent, an IRQ TX_DONE is generated, the PA regulator is ramped down, the PA  
is switched OFF and the chip goes back to STDBY_RC mode  
A TIMEOUT IRQ is triggered if the TX_DONE IRQ is not generated within the given timeout period  
The chip goes back to STBY_RC mode after a TIMEOUT IRQ or a TX_DONE IRQ.  
The timeout duration can be computed with the formula:  
Timeout duration = Timeout * 15.625 µs  
Timeout is a 23-bit parameter defining the number of step used during timeout as defined in the following table.  
Table 13-7: SetTx Timeout Duration  
Timeout(23:0)  
Timeout Duration  
Timeout disable, Tx Single mode, the device will stay in TX Mode until the packet is transmitted and returns  
in STBY_RC mode upon completion.  
0x000000  
Timeout active, the device remains in TX mode, it returns automatically to STBY_RC mode on timer  
end-of-count or when a packet has been transmitted. The maximum timeout is then 262 s.  
Others  
The value given for the timeout should be calculated for a given packet size, given modulation and packet parameters. The  
timeout behaves as a security in case of conflicting commands from the host controller.  
The timeout in Tx mode can be used as a security to ensure that if for any reason the Tx is aborted or does not succeed (ie.  
the TxDone IRQ never is never triggered), the TxTimeout will prevent the system from waiting for an unknown amount of  
time. Using the timeout while in Tx mode remove the need to use resources from the host MCU to perform the same task.  
13.1.5 SetRx  
The command SetRx() sets the device in receiver mode.  
Table 13-8: SetRx SPI Transaction  
Byte  
0
1-3  
Data from host  
Opcode = 0x82  
timeout(23:0)  
SX1261/2  
Data Sheet  
DS.SX1261-2.W.APP  
68 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
December 2017  
This command sets the chip in RX mode, waiting for the reception of one or several packets. The receiver mode operates  
with a timeout to provide maximum flexibility to end users.  
Table 13-9: SetRx Timeout Duration  
Timeout15:0)  
Timeout Duration  
No timeout. Rx Single mode. The device will stay in RX Mode until a reception occurs and the devices return  
in STBY_RC mode upon completion  
0x000000  
Rx Continuous mode. The device remains in RX mode until the host sends a command to change the  
operation mode. The device can receive several packets. Each time a packet is received, a packet done  
indication is given to the host and the device will automatically search for a new packet.  
0xFFFFFF  
Others  
Timeout active. The device remains in RX mode, it returns automatically to STBY_RC mode on timer  
end-of-count or when a packet has been received. As soon as a packet is detected, the timer is automatically  
disabled to allow complete reception of the packet. The maximum timeout is then 262 s.  
When the timeout is active (0x000000 < timeout < 0xFFFFFF), the radio will stop the reception at the end of the timeout  
period unless a preamble and Sync Word (in GFSK) or Header (in LoRa®) has been detected. This is to ensure that a valid  
packet will not be dropped in the middle of the reception due to the pre-defined timeout. By default, the timer will be  
stopped only if the Sync Word or header has been detected. However, it is also possible to stop the timer upon preamble  
detection by using the command StopTimerOnPreamble(...).  
13.1.6 StopTimerOnPreamble  
The command StopTimerOnPreamble(...) allows the user to select if the timer is stopped upon preamble detection of Sync  
Word / header detection.  
Table 13-10: StopTimerOnPreamble SPI Transaction  
Byte  
0
1
Data from host  
Opcode = 0x9F  
StopOnPreambleParam  
The enable byte definition is given in the following table.  
Table 13-11: StopOnPreambParam Definition  
StopOnPreambleParam  
Value  
Description  
disable  
enable  
0x00  
0x01  
Timer is stopped upon Sync Word or Header detection  
Timer is stopped upon preamble detection  
By default, the timer is stopped only when the Sync Word (in GFSK) or Header (in LoRa®) has been detected. When the  
function StopTimerOnPreamble(...) is used with the value enable at 0x01, then the timer will be stopped upon preamble  
SX1261/2  
Data Sheet  
69 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
detection and the device will stay in RX mode until a packet is received. It is important to notice that stopping the timer  
upon preamble may cause the device to stay in Rx for an unexpected long period of time in case of false detection.  
Radio Current  
Preamble Detected  
Or  
SyncWord / Header Detected  
timeout  
time  
Radio in STDBY_RC  
Radio in RX mode  
Radio in STDBY_RC  
Radio in RX mode  
Figure 13-1: Stopping Timer on Preamble or Header Detection  
13.1.7 SetRxDutyCycle  
This command sets the chip in sniff mode so that it regularly looks for new packets. This is the listen mode.  
Table 13-12: SetRxDutyCycle SPI Transaction  
Byte  
0
1-3  
4-6  
Data from host  
Opcode= 0x94  
rxPeriod(23:0)  
sleepPeriod(23:0)  
When this command is sent in STDBY_RC mode, the context (device configuration) is saved and the chip enters in a loop  
defined by the following steps:  
The chip enters RX and listens for a packet for a period of time defined by rxPeriod  
The chip is looking for a preamble in either LoRa® or FSK  
Upon preamble detection, the timeout is stopped and restarted with the value 2 * rxPeriod + sleepPeriod  
If no packet is received during the RX window (defined by rxPeriod), the chip goes into SLEEP mode with context saved  
for a period of time defined by sleepPeriod  
At the end of the SLEEP window, the chip automatically restarts the process of restoring context and enters the RX  
mode, and so on. At any time, the host can stop the procedure.  
The loop is terminated if either:  
A packet is detected during the RX window, at which moment the chip interrupts the host via the RX_DONE flag and  
returns to STBY_RC mode  
The host issues a SetStandby(...) command during the RX window (during SLEEP mode, the device is unable to receive  
commands straight away and must first be waken up by a falling edge of NSS).  
SX1261/2  
Data Sheet  
70 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
The SLEEP mode duration is defined by:  
Sleep Duration = sleepPeriod * 15.625 µs  
The RX mode duration is defined by  
Rx Duration = rxPeriod * 15.625 µs  
The following figure highlights operations being performed while in RxDutyCycle mode. It can be observed that the radio  
will spend around 1 ms to save the context and go into SLEEP mode and then re-initialize the radio, lock the PLL and go into  
RX. The delay is not accurate and may vary depending on the time needed for the XTAL to start, the PLL to lock, etc.  
Radio Current  
rxPeriod  
sleepPeriod  
time  
Radio in SLEEP mode  
Radio in STDBY_RC  
Radio in RX mode 500 us  
500 us  
Radio in RX mode  
Figure 13-2: RX Duty Cycle Energy Profile  
Upon preamble detection, the radio is set to look for a Sync Word (in GFSK) or a header (in LoRa®) and the timer is restarted  
with a new value which is computed as 2 * rxPeriod + sleepPeriod. This is to ensure that the radio does not spend an  
indefinite amount of time waiting in Rx for a packet which may never arrive (false preamble detection).  
This implies a strong relationship between the time-on-air of the packet to be received, and the amount of time the radio  
spends in RX and in SLEEP mode. If a long preamble is used on the TX side, care must be taken that the formula below is  
respected:  
T
+ T  
2 * rxPeriod + sleepPeriod  
header  
preamble  
SX1261/2  
Data Sheet  
DS.SX1261-2.W.APP  
71 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
December 2017  
Radio Current  
Preamble Detected  
2 x rxPeriod + sleepPeriod  
time  
Radio in SLEEP mode  
Radio in STDBY_RC  
Radio in RX mode  
500 us  
Figure 13-3: RX Duty Cycle when Receiving  
13.1.8 SetCAD  
The command SetCAD() can be used only in LoRa® packet type. The Channel Activity Detection is a LoRa® specific mode of  
operation where the device searches for the presence of a LoRa® preamble signal. After the search has completed, the  
device returns in STDBY_RC mode. The length of the search is configured via the command SetCadParams(...). At the end of  
the search period, the device triggers the IRQ CADdone if it has been enabled. If a valid signal has been detected it also  
generates the IRQ CadDetected.  
Table 13-13: SetCAD SPI Transaction  
Byte  
0
Data from host  
Opcode = 0xC5  
13.1.9 SetTxContinuousWave  
SetTxContinuousWave() is a test command available for all packet types to generate a continuous wave (RF tone) at selected  
frequency and output power. The device stays in TX continuous wave until the host sends a mode configuration command.  
Table 13-14: SetTxContinuousWave SPI Transaction  
Byte  
0
Data from host  
Opcode = 0xD1  
While this command has no real use case in real life, it can provide valuable help to the developer to check and monitor the  
performances of the radio while in Tx mode.  
SX1261/2  
Data Sheet  
72 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
13.1.10 SetTxInfinitePreamble  
SetTxInfinitePreamble() is a test command to generate an infinite sequence of alternating zeros and ones in FSK modulation.  
In LoRa®, the radio is only able to constantly modulate LoRa® preamble symbols. The device will remain in TX infinite  
preamble until the host sends a mode configuration command.  
While this command has no real use case in real life, it can provide valuable help to the developer to check and monitor the  
performances of the radio while modulating in Tx mode.  
Table 13-15: SendTxInfinitePreamble SPI Transaction  
Byte  
0
Data from host  
Opcode = 0xD2  
However, when using this function, it is impossible to define any data sent by the device. In LoRa® mode, the radio is only  
able to constantly modulate LoRa preamble symbols and, in FSK mode, the radio is only able to generate FSK preamble  
(0x55). Nevertheless, the end user will be able to easily monitor the spectral impact of its modulation parameters.  
13.1.11 SetRegulatorMode  
By default only the LDO is used. This is useful in low cost applications where the cost of the extra self needed for a DC-DC  
converter is prohibitive. Using only a linear regulator implies that the RX or TX current is almost doubled. This function  
allows to specify if DC-DC or LDO is used for power regulation. The regulation mode is defined by parameter  
regModeParam.  
Note:  
This function is clearly related to the hardware implementation of the device. The user should always use this command  
while knowing what has been implemented at the hardware level.  
Table 13-16: SetRegulatorMode SPI Transaction  
Byte  
0
1
regModeParam  
Data from host  
Opcode= 0x96  
0: Only LDO used for all modes  
1: DC_DC+LDO used for STBY_XOSC,FS, RX and TX modes  
13.1.12 Calibrate Function  
At power up the radio performs calibration of RC64k, RC13M, PLL and ADC. It is however possible to launch a calibration of  
one or several blocks at any time starting in STDBY_RC mode. The calibrate function starts the calibration of a block defined  
by calibParam.  
Table 13-17: Calibrate SPI Transaction  
Byte  
0
1
Data from host  
Opcode = 0x89  
calibParam  
SX1261/2  
Data Sheet  
DS.SX1261-2.W.APP  
73 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
December 2017  
The total calibration time if all blocks are calibrated is 3.5 ms. The calibration must be launched in STDBY_RC mode and the  
BUSY pins will be high during the calibration process. A falling edge of BUSY indicates the end of the procedure.  
Table 13-18: Calibration Setting  
CalibParam  
Calibration Setting  
0: RC64k calibration disabled  
1: RC64k calibration enabled  
Bit 0  
0: RC13Mcalibration disabled  
1: RC13M calibration enabled  
Bit 1  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
0: PLL calibration disabled  
1: PLL calibration enabled  
0: ADC pulse calibration disabled  
1: ADC pulse calibration enabled  
0: ADC bulk N calibration disabled  
1: ADC bulk N calibration enabled  
0: ADC bulk P calibration disabled  
1: ADC bulk P calibration enabled  
0: Image calibration disabled  
1: Image calibration enabled  
Bit 6  
Bit 7  
0: RFU  
13.1.13 CalibrateImage  
The function CalibrateImage(...) allows the user to calibrate the image rejection of the device for the device operating  
frequency band.  
Table 13-19: CalibrateImage SPI Transaction  
Byte  
0
1
2
Data from host  
Opcode = 0x98  
freq1  
freq2  
For more details on the specific frequency bands, see Section 9.2.1 "Image Calibration for Specific Frequency Bands" on  
page 55.  
SX1261/2  
Data Sheet  
74 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
13.1.14 SetPaConfig  
SetPaConfig is the command which is used to differentiate the SX1261 from the SX1262. When using this command, the  
user selects the PA to be used by the device as well as its configuration.  
Table 13-20: SetPaConfig SPI Transaction  
Byte  
0
1
2
3
4
deviceSel  
0: SX1262  
1: SX1261  
paLut  
Data from host  
Opcode = 0x95  
paDutyCycle  
hpMax  
reserved and  
always 0x01  
paDutyCycle controls the duty cycle (conduction angle) of both PAs (SX1261 and SX1262). The maximum output power, the  
power consumption, and the harmonics will drastically change with paDutyCycle. The values given across this datasheet  
are the recommended settings to achieve the best efficiency of the PA. Changing the paDutyCycle will affect the  
distribution of the power in the harmonics and should thus be selected to work in conjunction of a given matching  
network.  
hpMax selects the size of the PA in the SX1262, this value has no influence on the SX1261. The maximum output power can  
be reduced by reducing the value of hpMax. The valid range is between 0x00 and 0x07 and 0x07 is the maximum supported  
value for the SX1262 to achieve +22 dBm output power. Increasing hpMax above 0x07 could cause early aging of the device  
of could damage the device when used in extreme temperatures.  
deviceSel is used to select either the SX1261 or the SX1262.  
paLut is reserved and has always the value 0x01.  
13.1.14.1 PA Optimal Settings  
PA optimal settings are used to maximize the PA efficiency when the requested output power is lower than the nominal  
+22 dBm (SX1262) or +14/15 dBm (SX1261). For example, the maximum output power in Japan is +10 dBm, and in China it  
is +17 dBm in some bands. Those optimal settings require:  
a dedicated matching / PA load impedance  
a specific tweaking of the PA settings, described in Table 13-21: PA Operating Modes with Optimal Settings  
Table 13-21: PA Operating Modes with Optimal Settings  
Value in  
SetTxParams1  
Output  
Power  
paDutyCycle  
hpMax  
deviceSel  
paLut  
Mode  
+15 dBm  
+14 dBm  
+10 dBm  
0x06  
0x04  
0x01  
0x00  
0x00  
0x00  
0x01  
0x01  
0x01  
0x01  
0x01  
0x01  
+14 dBm  
+14 dBm  
+13 dBm  
SX1261  
SX1261/2  
Data Sheet  
75 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
Table 13-21: PA Operating Modes with Optimal Settings  
Value in  
SetTxParams1  
Output  
Power  
paDutyCycle  
hpMax  
deviceSel  
paLut  
Mode  
+22 dBm  
+20 dBm  
+17 dBm  
+14 dBm  
0x04  
0x03  
0x02  
0x02  
0x07  
0x05  
0x03  
0x02  
0x00  
0x00  
0x00  
0x00  
0x01  
0x01  
0x01  
0x01  
+22 dBm  
+22 dBm  
+22 dBm  
+14 dBm  
SX1262  
1. See Section 13.4.4 "SetTxParams" on page 83.  
Note:  
These changes make the use of nominal power either sub-optimal or unachievable.  
Caution!  
The following restrictions must be observed to avoid voltage overstress on the PA, exceeding the maximum ratings  
may cause irreversible damage to the device:  
For SX1261 at synthesis frequency above 400 MHz, paDutyCycle should not be higher than 0x07.  
For SX1261 at synthesis frequency below 400 MHz, paDutyCycle should not be higher than 0x04.  
For SX1262, paDutyCycle should not be higher than 0x04.  
13.1.15 SetRxTxFallbackMode  
The command SetRxTxFallbackMode defines into which mode the chip goes after a successful transmission or after a packet  
reception.  
Table 13-22: SetRxTxFallbackMode SPI Transaction  
Byte  
0
1
Data from host  
Opcode = 0x93  
fallbackMode  
The fallbackMode byte definition is given as follows:  
Table 13-23: Fallback Mode Definition  
Fallback Mode  
Value  
Description  
FS  
0x40  
0x30  
0x20  
The radio goes into FS mode after Tx or Rx  
The radio goes into STDBY_XOSC mode after Tx or Rx  
The radio goes into STDBY_RC mode after Tx or Rx  
STDBY_XOSC  
STDBY_RC  
By default, the radio will always return in STDBY_RC unless the configuration is changed by using this command. Changing  
the default mode from STDBY_RC to STDBY_XOSC or FS will only have an impact on the switching time of the radio.  
SX1261/2  
Data Sheet  
76 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
13.2 Registers and Buffer Access  
13.2.1 WriteRegister Function  
The command WriteRegister(...) allows writing a block of bytes in a data memory space starting at a specific address. The  
address is auto incremented after each data byte so that data is stored in contiguous memory locations. The SPI data  
transfer is described in the following table.  
Table 13-24: WriteRegister SPI Transaction  
Byte  
0
1
2
3
4
...  
n
Data from  
host  
Opcode =  
0x0D  
address[15:8] address[7:0]  
Status Status  
data@address  
Status  
data@address+1  
Status  
...  
...  
data@address+ (n-3)  
status  
Data to host  
RFU  
13.2.2 ReadRegister Function  
The command ReadRegister(...) allows reading a block of data starting at a given address. The address is auto-incremented  
after each byte. The SPI data transfer is described in Table 13-25. Note that the host has to send an NOP after sending the 2  
bytes of address to start receiving data bytes on the next NOP sent.  
Table 13-25: ReadRegister SPI Transaction  
Byte  
0
1
2
3
4
5
...  
n
Data from  
host  
Opcode  
= 0x1D  
address[15:8] address[7:0]  
NOP  
NOP  
NOP  
...  
NOP  
data@address+  
(n-4)  
Data to host  
RFU  
Status  
Status  
Status  
data@address  
data@address+1  
...  
13.2.3 WriteBuffer Function  
This function is used to store data payload to be transmitted. The address is auto-incremented; when it exceeds the value  
of 255 it is wrapped back to 0 due to the circular nature of the data buffer. The address starts with an offset set as a  
parameter of the function. Table 13-26 describes the SPI data transfer.  
Table 13-26: WriteBuffer SPI Transaction  
Byte  
0
1
2
3
...  
n
Opcode =  
0x0E  
Data from host  
Data to host  
offset  
Status  
data@offset  
Status  
data@offset+1  
Status  
...  
...  
data@offset+(n-2)  
Status  
RFU  
SX1261/2  
Data Sheet  
77 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
13.2.4 ReadBuffer Function  
This function allows reading (n-3) bytes of payload received starting at offset. Note that the NOP must be sent after sending  
the offset.  
Table 13-27: ReadBuffer SPI Transaction  
Byte  
0
1
2
3
4
...  
n
Data from  
host  
Opcode  
= 0x1E  
offset  
Status  
NOP  
NOP  
NOP  
...  
...  
NOP  
Data to host  
RFU  
Status  
data@offset  
data@offset+1  
data@offset+(n-3)  
13.3 DIO and IRQ Control Functions  
13.3.1 SetDioIrqParams  
This command is used to set the IRQ flag.  
Table 13-28: SetDioIrqParams SPI Transaction  
Byte  
0
1-2  
3-4  
5-6  
7-8  
SetDioIrqParams  
(0x08)  
Data from host  
Irq Mask(15:0)  
DIO1Mask(15:0)  
DIO2Mask(15:0)  
DIO3Mask(15:0)  
13.3.2 IrqMask  
The IrkMask masks or unmasks the IRQ which can be triggered by the device. By default, all IRQ are masked (all ‘0’) and the  
user can enable them one by one (or several at a time) by setting the corresponding mask to ‘1’.  
13.3.2.1 DioxMask  
The interrupt causes a DIO to be set if the corresponding bit in DioxMask and the IrqMask are set. As an example, if bit 0 of  
IrqMask is set to 1 and bit 0 of DIO1Mask is set to 1 then, a rising edge of IRQ source TxDone will be logged in the IRQ register  
and will appear at the same time on DIO1.  
One IRQ can be mapped to all DIOs, one DIO can be mapped to all IRQs (an OR operation is done) but some IRQ sources will  
be available only on certain modes of operation and frames.  
SX1261/2  
Data Sheet  
78 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
In total there are 10 possible interrupt sources depending on the chosen frame and chip mode. Each one of them can be  
enabled or masked. In addition, every one of them can be mapped to DIO1, DIO2 or DIO3. Note that if DIO2 or DIO3 are used  
to control the RF Switch or the TCXO, the IRQ will not be generated even if it is mapped to the pins.  
Table 13-29: IRQ Registers  
Bit  
0
IRQ  
TxDone  
Description  
Packet transmission completed  
Packet received  
Protocol  
All  
1
RxDone  
All  
2
PreambleDetected  
SyncWordValid  
HeaderValid  
HeaderErr  
CrcErr  
Preamble detected  
All  
3
Valid sync word detected  
Valid LoRa header received  
LoRa header CRC error  
Wrong CRC received  
FSK  
4
LoRa®  
LoRa®  
All  
5
6
7
CadDone  
Channel activity detection finished  
Channel activity detected  
Rx or Tx timeout  
LoRa®  
LoRa®  
All  
8
CadDetected  
Timeout  
9
A dedicated 10-bit register called IRQ_reg is used to log IRQ sources. Each position corresponds to one IRQ source as  
described in the table above. A set of user commands is used to configure IRQ mask, DIOs mapping and IRQ clearing as  
explained in the following chapters.  
13.3.3 GetIrqStatus  
This command returns the value of the IRQ register.  
Table 13-30: GetIrqStatus SPI Transaction  
Byte  
0
1
2-3  
Data from host  
Data to host  
Opcode = 0x12  
RFU  
NOP  
NOP  
Status  
IrqStatus(15:0)  
SX1261/2  
Data Sheet  
79 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
13.3.4 ClearIrqStatus  
This command clears an IRQ flag in the IRQ register.  
Table 13-31: ClearIrqStatus SPI Transaction  
Byte  
0
1-2  
Data from host  
Opcode = 0x02  
ClearIrqParam(15:0)  
This function clears an IRQ flag in the IRQ register by setting to 1 the bit of ClearIrqParam corresponding to the same  
position as the IRQ flag to be cleared. As an example, if bit 0 of ClearIrqParam is set to 1 then IRQ flag at bit 0 of IRQ register  
is cleared.  
If a DIO is mapped to one single IRQ source, the DIO is cleared if the corresponding bit in the IRQ register is cleared. If DIO  
is set to 0 with several IRQ sources, then the DIO remains set to one until all bits mapped to the DIO in the IRQ register are  
cleared.  
13.3.5 SetDIO2AsRfSwitchCtrl  
This command is used to configure DIO2 so that it can be used to control an external RF switch.  
Table 13-32: SetDIO2AsRfSwitchCtrl SPI Transaction  
Byte  
0
1
Data from host  
Opcode = 0x9D  
enable  
When controlling the external RX switch, the pin DIO2 will toggle accordingly to the internal state machine. DIO2 will go  
up a few microseconds before the ramp-up of the PA and will go back down to zero after the ramp-down of the PA.  
The enable byte definition is given as follows:  
Table 13-33: Enable Configuration Definition  
Enable  
Description  
0
DIO2 is free to be used as an IRQ  
DIO2 is selected to be used to control an RF switch. In this case:  
1
DIO2 = 0 in SLEEP, STDBY_RX, STDBY_XOSC, FS and RX modes, DIO2 = 1 in TX mode  
13.3.6 SetDIO3AsTCXOCtrl  
This command is used to configure the chip for an external TCXO reference voltage controlled by DIO3.  
Table 13-34: SetDIO3asTCXOCtrl SPI Transaction  
Byte  
0
1
2-4  
Data from host  
Opcode = 0x97  
tcxoVoltage  
timeout(23:0)  
SX1261/2  
Data Sheet  
DS.SX1261-2.W.APP  
80 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
December 2017  
When this command is used, the device now controls the TCXO itself through DIO3. When needed (in mode STDBY_XOSC,  
FS, TX and RX), the internal state machine will set DIO3 to a predefined output voltage (control through the parameter  
tcxoVoltage). Internally, the clock controller will wait for the 32 MHz to appear before releasing the internal state machine.  
The time needed for the 32 MHz to appear and stabilize can be controlled through the parameter timeout. If the 32 MHz  
from the TCXO is not detected internally at the end the timeout period, the error XOSC_START_ERR will be flagged in the  
error controller.  
The tcxoVoltage byte definition is given in as follows:  
Table 13-35: tcxoVoltage Configuration Definition  
tcxoVoltage  
Description  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
DIO3 outputs 1.6 V to supply the TCXO  
DIO3 outputs 1.7 V to supply the TCXO  
DIO3 outputs 1.8 V to supply the TCXO  
DIO3 outputs 2.2 V to supply the TCXO  
DIO3 outputs 2.4 V to supply the TCXO  
DIO3 outputs 2.7 V to supply the TCXO  
DIO3 outputs 3.0 V to supply the TCXO  
DIO3 outputs 3.3 V to supply the TCXO  
The power regulation for tcxoVoltage is configured to be 200 mV below the supply voltage. This means that even if  
tcxoVoltage is configured above the supply voltage, the supply voltage will be limited by: VDDop > VTCXO + 200 mV  
The timeout duration is defined by  
Timeout duration = Timeout *15.625 µs  
Most TCXO will not be immediately ready at the desired frequency and will suffer from an initial setup time where the  
frequency is gently drifting toward the wanted frequency. This setup time is different from one TCXO to another and is also  
dependent on the TCXO manufacturer. To ensure this setup time does not have any effect on the modulation or packets,  
the timeout value will internally gate the 32 MHz coming from the TCXO to give enough time for this initial drift to stabilize.  
At the end of the timeout period, the internal block will stop gating the clock and the radio will carry on to the next step.  
Note:  
The user should take the timeout period into account when going into Tx or Rx mode from STDBY_RC mode. Indeed, the  
time needed to switch modes will increase with the duration of timeout. To avoid increasing the switching mode time, the  
user can first set the device in STDBY_XOSC which will switch on the TCXO and wait for the timeout period. Then, the user  
can set the device into Tx or Rx mode without suffering from any delay additional to the internal processing.  
SX1261/2  
Data Sheet  
81 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
13.4 RF Modulation and Packet-Related Functions  
13.4.1 SetRfFrequency  
The command SetRfFrequency(...) is used to set the frequency of the RF frequency mode.  
Table 13-36: SetRfFrequency SPI Transaction  
Byte  
0
1-4  
Data from host  
Opcode = 0x86  
RfFreq(31:0)  
The LSB of Freq is equal to the PLL step which is:  
RF  
*F  
Freq XTAL  
RF  
= ------------------------------------------  
frequency  
25  
2
SetRfFrequency(...) defines the chip frequency in FS, TX and RX modes. In RX, the frequency is internally lowered to IF (250  
kHz by default).  
13.4.2 SetPacketType  
The command SetPacketType(...) sets the SX1261 radio in LoRa® or in FSK mode. The command SetPacketType(...) must be  
the first of the radio configuration sequence. The parameter for this command is PacketType.  
Table 13-37: SetPacketType SPI Transaction  
Byte  
0
1
Data from host  
Opcode = 0x8A  
PacketType  
Table 13-38: PacketType Definition  
PacketType  
Value  
Modem Mode of Operation  
PACKET_TYPE_GFSK  
PACKET_TYPE_LORA  
0x00  
0x01  
GFSK packet type  
LORA mode  
Changing from one mode of operation to another is done using the command SetPacketType(...) . The parameters from the  
previous mode are not kept internally. The switch from one frame to another must be done in STDBY_RC mode.  
SX1261/2  
Data Sheet  
82 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
13.4.3 GetPacketType  
The command GetPacketType() returns the current operating packet type of the radio.  
Table 13-39: GetPacketType SPI Transaction  
Byte  
0
1
2
Data from host  
Data to host  
Opcode = 0x11  
RFU  
NOP  
NOP  
Status  
packetType  
13.4.4 SetTxParams  
This command sets the TX output power by using the parameter power and the TX ramping time by using the parameter  
RampTime. This command is available for all protocols selected.  
Table 13-40: SetTxParams SPI Transaction  
Byte  
0
1
2
Data from host  
Opcode = 0x8E  
power  
RampTime  
The output power is defined as power in dBm in a range of  
- 17 (0xEF) to +14 (0x0E) dBm by step of 1 dB if low power PA is selected  
- 9 (0xF7) to +22 (0x16) dBm by step of 1 dB if high power PA is selected  
Selection between high power PA and low power PA is done with the command SetPaConfig and the parameter deviceSel.  
By default low power PA and +14 dBm are set.  
The power ramp time is defined by the parameter RampTime as defined in the following table:  
Table 13-41: RampTime Definition  
RampTime  
Value  
RampTime (μs)  
SET_RAMP_10U  
SET_RAMP_20U  
SET_RAMP_ 40U  
SET_RAMP_80U  
SET_RAMP_200U  
SET_RAMP_800U  
SET_RAMP_1700U  
SET_RAMP_3400U  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
10  
20  
40  
80  
200  
800  
1700  
3400  
SX1261/2  
Data Sheet  
DS.SX1261-2.W.APP  
83 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
December 2017  
13.4.5 SetModulationParams  
The command SetModulationParams(...) is used to configure the modulation parameters of the radio. Depending on the  
packet type selected prior to calling this function, the parameters will be interpreted differently by the chip.  
Table 13-42: SetModulationParams SPI Transaction  
Byte  
0
1
2
3
4
5
6
7
8
Mod  
Mod  
Mod  
Mod  
Mod  
Mod  
Mod  
Mod  
Data from host for  
Modulation Params  
Opcode  
0x8B  
Param1  
Param2  
Param3  
Param4  
Param5  
Param6  
Param7  
Param8  
The meaning of the parameter depends on the selected protocol.  
In FSK bitrate (BR) and Frequency Deviation (Fdev) are used for the transmission or reception. Bandwidth is used for  
reception purpose. The pulse represents the Gaussian filter used to filter the modulation stream on the transmitter side.  
In LoRa® packet type, SF corresponds to the Spreading Factor used for the LoRa® modulation. SF is defined by the parameter  
Param[1]. BW corresponds to the bandwidth onto which the LoRa® signal is spread. BW in LoRa® is defined by the parameter  
Param[2].  
The LoRa® payload is fit with a forward error correcting mechanism which has several levels of encoding. The Coding Rate  
(CR) is defined by the parameter Param[3] in LoRa®.  
The parameter LdOpt corresponds to the Low Data Rate Optimization (LDRO). This parameter is usually set when the LoRa®  
symbol time is equal or above 16.38 ms (typically for SF11 with BW125 and SF12 with BW125 and BW250). See  
Section 6.1.1.4 "Low Data Rate Optimization" on page 39.  
13.4.5.1 GFSK Modulation Parameters  
The tables below provide more details on the GFSK modulation parameters:  
Table 13-43: GFSK ModParam1, ModParam2 & ModParam3 - br  
BR(23:0)  
Description  
0x000001 to 0xFFFFFF  
br = 32 * Fxtal / bit rate  
The bit rate is entered with the parameter br which is related to the frequency of the main oscillator (32 MHz). The bit rate  
range is from 600 b/s up to 300 kb/s with a default value at 4.8 kb/s.  
Table 13-44: GFSK ModParam4 - PulseShape  
PulseShape  
Description  
0x00  
0x08  
0x09  
0x0A  
0x0B  
No Filter applied  
Gaussian BT 0.3  
Gaussian BT 0.5  
Gaussian BT 0.7  
Gaussian BT 1  
SX1261/2  
Data Sheet  
84 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
Table 13-45: GFSK ModParam5 - Bandwidth  
Bandwidth  
Description  
0x1F  
0x17  
0x0F  
0x1E  
0x16  
0x0E  
0x1D  
0x15  
0x0D  
0x1C  
0x14  
0x0C  
0x1B  
0x13  
0x0B  
0x1A  
0x12  
0x0A  
0x19  
0x11  
0x09  
RX_BW_4800 (4.8 kHz DSB)  
RX_BW_5800 (5.8 kHz DSB)  
RX_BW_7300 (7.3 kHz DSB)  
RX_BW_9700 (9.7 kHz DSB)  
RX_BW_11700 (11.7 kHz DSB)  
RX_BW_14600 (14.6 kHz DSB)  
RX_BW_19500 (19.5 kHz DSB)  
RX_BW_23400 (23.4 kHz DSB)  
RX_BW_29300 (29.3 kHz DSB)  
RX_BW_39000 (39 kHz DSB)  
RX_BW_46900 (46.9 kHz DSB)  
RX_BW_58600 (58.6 kHz DSB)  
RX_BW_78200 (78.2 kHz DSB)  
RX_BW_93800 (93.8 kHz DSB)  
RX_BW_117300 (117.3 kHz DSB)  
RX_BW_156200 (156.2 kHz DSB)  
RX_BW_187200 (187.2 kHz DSB)  
RX_BW_234300 (232.3 kHz DSB)  
RX_BW_312000 (312 kHz DSB)  
RX_BW_373600 (373.6 kHz DSB)  
RX_BW_467000 (467 kHz DSB)  
Table 13-46: GFSK ModParam6, ModParam7 & ModParam8 - Fdev  
Fdev(23:0)  
Description  
Fdev = (Frequency Deviation * 2^25) / Fxtal  
0x000000 to 0xFFFFFF  
F
*F  
dev XTAL  
Frequencydeviation = -----------------------------------  
25  
2
SX1261/2  
Data Sheet  
85 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
13.4.5.2 LoRa® Modulation Parameters  
The tables below provide more details on the LoRa® modulation parameters:  
Table 13-47: LoRa® ModParam1- SF  
SF  
Description  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
SF5  
SF6  
SF7  
SF8  
SF9  
SF10  
SF11  
SF12  
Table 13-48: LoRa® ModParam2 - BW  
BW  
Description  
0x00  
0x08  
0x01  
0x09  
0x02  
0x0A  
0x03  
0x04  
0x05  
0x06  
LORA_BW_7 (7.81 kHz real)  
LORA_BW_10 (10.42 kHz real)  
LORA_BW_15 (15.63 kHz real)  
LORA_BW_20 (20.83 kHz real)  
LORA_BW_31 (31.25 kHz real)  
LORA_BW_41 (41.67 kHz real)  
LORA_BW_62 (62.50 kHz real)  
LORA_BW_125 (125 kHz real)  
LORA_BW_250 (250 kHz real)  
LORA_BW_500 (500 kHz real)  
Table 13-49: LoRa® ModParam3 - CR  
CR  
Description  
0x01  
0x02  
0x03  
0x04  
LORA_CR_4_5  
LORA_CR_4_6  
LORA_CR_4_7  
LORA_CR_4_8  
SX1261/2  
Data Sheet  
86 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
Table 13-50: LoRa® ModParam4 - LowDataRateOptimize  
LowDataRateOptimize  
Description  
0x00  
0x01  
LowDataRateOptimize OFF  
LowDataRateOptimize ON  
13.4.6 SetPacketParams  
This command is used to set the parameters of the packet handling block.  
Table 13-51: SetPacketParams SPI Transaction  
Byte  
0
1
2
3
4
5
6
7
8
9
Data from  
host for  
packet type  
packet  
packet  
packet  
packet  
Param1  
packet  
Param2  
packet  
Param3  
packet  
Param4  
packet  
Param7  
Opcode  
= 0x8C  
packet  
Param5  
Param6  
Param8  
Param9  
13.4.6.1 GFSK Packet Parameters  
The tables below provide more details on the GFSK packets parameters:  
Table 13-52: GFSK PacketParam1 & PacketParam2 - PreambleLength  
PreambleLength (15:0)  
Description  
Transmitted preamble length: number of bits sent as preamble  
0x0001 to 0xFFFF  
The preamble length is a 16-bit value which represents the number of bytes which will be sent by the radio. Each preamble  
byte represents an alternate of 0 and 1 and each byte is coded as 0x55.  
Table 13-53: GFSK PacketParam3 - PreambleDetectorLength  
PreambleDetector  
Description  
0x00  
0x04  
0x05  
0x06  
0x07  
Preamble detector length off  
Preamble detector length 8 bits  
Preamble detector length 16 bits  
Preamble detector length 24 bits  
Preamble detector length 32 bits  
The preamble detector acts as a gate to the packet controller, when different from 0x00 (preamble detector length off), the  
packet controller will only become active if a certain number of preamble bits have been successfully received by the radio.  
SX1261/2  
Data Sheet  
87 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
Table 13-54: GFSK PacketParam4 - SyncWordLength  
SyncWordLength  
Description  
Sync Word length in bits (going from 0 to 8 bytes)  
0x00 to 0x40  
The Sync Word is directly programmed into the device through simple register access. The table below provide the  
addresses to program the Sync Word value.  
Table 13-55: Sync Word Programming  
Sync Word  
Register Address  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
Byte 4  
Byte 5  
Byte 6  
Byte 7  
0x06C0  
0x06C1  
0x06C2  
0x06C3  
0x06C4  
0x06C5  
0x06C6  
0x06C7  
Table 13-56: GFSK PacketParam5 - AddrComp  
AddrComp  
Description  
0x00  
0x01  
0x02  
Address Filtering Disable  
Address Filtering activated on Node address  
Address Filtering activated on Node and broadcast addresses  
The node address and the broadcast address are directly programmed into the device through simple register access. The  
tables below provide the addresses to program the values.  
Table 13-57: Node Address Programming  
Register Address  
Default value  
NodeAddrReg  
0x06CD  
0x00  
SX1261/2  
Data Sheet  
DS.SX1261-2.W.APP  
88 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
December 2017  
Table 13-58: Broadcast Address Programming  
Register Address  
Default value  
BroadcastReg  
0x06CE  
0x00  
Table 13-59: GFSK PacketParam6 - PacketType  
PacketType  
Description  
The packet length is known on both sides, the size of the payload is not  
added to the packet  
0x00  
0x01  
The packet is on variable size, the first byte of the payload will be the  
size of the packet  
Table 13-60: GFSK PacketParam7 - PayloadLength  
AddrComp  
Description  
Size of the payload (in bytes) to transmit or maximum size of the  
payload that the receiver can accept.  
0x00 to 0xFF  
Table 13-61: GFSK PacketParam8 - CRCType  
CRCType  
Description  
0x01  
0x00  
0x02  
0x04  
0x06  
CRC_OFF (No CRC)  
CRC_1_BYTE (CRC computed on 1 byte)  
CRC_2_BYTE(CRC computed on 2 byte)  
CRC_1_BYTE_INV(CRC computed on 1 byte and inverted)  
CRC_2_BYTE_INV(CRC computed on 2 byte and inverted)  
SX1261/2  
Data Sheet  
89 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
In the SX1261 and SX1262, the CRC can be fully configured and the polynomial used, as well as the initial values can be  
entered directly through register access.  
Table 13-62: CRC Initial Value Programming  
Register Address  
Default Value  
CRC MSB Initial Value [15:8]  
CRC LSB Initial Value [7:0]  
0x06BC  
0x06BD  
0x1D  
0x0F  
Table 13-63: CRC Polynomial Programming  
Register Address  
Default Value  
CRC MSB polynomial value [15:8]  
CRC LSB polynomial value [7:0]  
0x06BE  
0x06BF  
0x10  
0x21  
Table 13-64: GFSK PacketParam9 - Whitening  
AddrComp  
Description  
0x00  
0x01  
No encoding  
Whitening enable  
Table 13-65: Whitening Initial Value  
Whitening initial value  
Register Address  
Default Value  
Whitening initial value MSB  
Whitening initial value LSB  
0x06B8  
0x06B9  
0x01  
0x00  
13.4.6.2 LoRa® Packet Parameters  
The tables below provide more details on the LoRa® packets parameters:  
Table 13-66: LoRa® PacketParam1 & PacketParam2 - PreambleLength  
PreambleLength (15:0)  
Description  
preamble length: number of symbols sent as preamble  
0x0001 to 0xFFFF  
SX1261/2  
Data Sheet  
90 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
The preamble length is a 16-bit value which represents the number of LoRa® symbols which will be sent by the radio.  
Table 13-67: LoRa® PacketParam3 - HeaderType  
HeaderType  
Description  
0x00  
0x01  
Variable length packet (explicit header)  
Fixed length packet (implicit header)  
When the byte headerType is at 0x00, the payload length, coding rate and the header CRC will be added to the LoRa®  
header and transported to the receiver.  
Table 13-68: LoRa® PacketParam4 - PayloadLength  
Payloadlength  
Description  
Size of the payload (in bytes) to transmit or maximum size of the  
payload that the receiver can accept.  
0x00 to 0xFF  
Table 13-69: LoRa® PacketParam5 - CRCType  
CRCType  
Description  
0x00  
0x01  
CRC OFF  
CRC ON  
Table 13-70: LoRa® PacketParam6 - InvertIQ  
AddrComp  
Description  
0x00  
0x01  
Standard IQ setup  
Inverted IQ setup  
13.4.7 SetCadParams  
The command SetCadConfig(...) defines the number of symbols on which CAD operates.  
Table 13-71: SetCadParams SPI Transaction  
Byte  
0
1
2
3
4
6-7  
Data from  
host  
Opcode = 0x88  
cadSymbolNum  
cadDetPeak  
cadDetMin  
cadExitMode  
cadTimeout(23:0)  
SX1261/2  
Data Sheet  
91 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
The number of symbols used is defined in the following table.  
Table 13-72: CAD Number of Symbol Definition  
cadSymbolNum  
Value  
Number of Symbols used for CAD  
CAD_ON_1_SYMB  
CAD_ON_2_SYMB  
CAD_ON_4_SYMB  
CAD_ON_8_SYMB  
CAD_ON_16_SYMB  
0x00  
0x01  
0x02  
0x03  
0x04  
1
2
4
8
16  
The parameters cadDetPeak and cadDetMin defines the sensitivity of the LoRa modem when trying to corealate to actual  
LoRa preamble symbols. These two settings depends on the LoRa spreading factor and Bandwidth, but also depends on  
the number of symbol used to validate or not the detection.  
Table 13-73: Recommended Settings for cadDetPeak and cadDetMin with 4 Symbols Detection  
SF  
cadDetPeak  
cadDetMin  
5
6
18  
19  
20  
21  
22  
23  
24  
25  
10  
10  
10  
10  
10  
10  
10  
10  
7
8
9
10  
11  
12  
Choosing the right value is not easy and the values selected must be carefully tested to ensure a good detection at  
sensitivity level, and also to limit the number of false detections.  
The parameter cadExitMode defines the action to be done after a CAD operation. This is optional.  
Table 13-74: CAD Exit Mode Definition  
cadExitMode  
Value  
Operation  
The chip performs the CAD operation in LoRa®. Once done and whatever the  
activity on the channel, the chip goes back to STBY_RC mode.  
CAD_ONLY  
0x00  
The chip performs a CAD operation and if an activity is detected, it stays in RX until  
a packet is detected or the timer reaches the timeout defined by  
CAD_RX  
0x01  
cadTimeout * 15.625 us  
SX1261/2  
Data Sheet  
DS.SX1261-2.W.APP  
92 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
December 2017  
The parameter cadTimeout is only used when the CAD is performed with cadExitMode = CAD_RX. Here, the cadTimeout  
indicates the time the device will stay in Rx following a successful CAD.  
Rx Timeout = cadTimeout * 15.625  
13.4.8 SetBufferBaseAddress  
This command sets the base addresses in the data buffer in all modes of operations for the packet handing operation in TX  
and RX mode. The usage and definition of those parameters are described in the different packet type sections.  
Table 13-75: SetBufferBaseAddress SPI Transaction  
Byte  
0
1
2
Data from host  
Opcode = 0x8F  
TX base address  
RX base address  
13.4.9 SetLoRaSymbNumTimeout  
This command sets the number of symbols used by the modem to validate a successful reception.  
Table 13-76: SetLoRaSymbNumTimeout SPI Transaction  
Byte  
0
1
Data from host  
Opcode = 0xA0  
SymbNum  
In LoRa® mode, when going into Rx, the modem will lock as soon as a LoRa® symbol has been detected which may lead to  
false detection. This phenomena is quite rare but nevertheless possible. To avoid this, the command  
SetLoRaSymbNumTimeout can be used to define the number of symbols which will be used to validate the correct  
reception of a packet.  
When the SymbNum param is set the 0, the modem will validate the reception as soon as a LoRa® Symbol has been  
detected.  
When SymbNum is different from 0, the modem will wait for a total of SymbNum LoRa® symbol to validate, or not, the  
correct detection of a LoRa® packet. If the various states of the demodulator are not lock at this moment, the radio will  
generate the RxTimeout IRQ.  
SX1261/2  
Data Sheet  
93 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
13.5 Communication Status Information  
These commands return the information about the chip status, and received packet such a packet length, received power  
during packet, several flags indicating if the packet as been correctly received. The returned parameters differ for the LoRa®  
protocol.  
13.5.1 GetStatus  
The host can retrieve chip status directly through the command GetStatus() : this command can be issued at any time and  
the device returns the status of the device. The command GetStatus() is not strictly necessary since device returns status  
information also on command bytes. The status byte returned is described in Table 13-77.  
Table 13-77: Status Bytes Definition  
7
6:4  
3:1  
0
Reserved  
Chip mode  
0x0: Unused  
RFU  
Command status  
0x0: Reserved  
RFU  
Reserved  
0x2: Data is available to host1  
0x3: Command timeout2  
0x2: STBY_RC  
0x3: STBY_XOSC  
0x4: FS  
-
-
0x4: Command processing error3  
0x5: Failure to execute command4  
0x6: Command TX done5  
0x5: RX  
0x6: TX  
1. A packet has been successfully received and data can be retrieved  
2. A transaction from host took too long to complete and triggered an internal watchdog. The watchdog mechanism can be disabled by host; it  
is meant to ensure all outcomes are flagged to the host MCU.  
3. Processor was unable to process command either because of an invalid opcode or because an incorrect number of parameters has been  
provided.  
4. The command was successfully processed, however the chip could not execute the command; for instance it was unable to enter the specified  
device mode or send the requested data,  
5. The transmission of the current packet has terminated  
The SPI transaction for the command GetStatus() is given in the following table.  
Table 13-78: GetStatus SPI Transaction  
Byte  
0
1
Data from host  
Data to host  
Opcode = 0xC0  
RFU  
NOP  
Status  
SX1261/2  
Data Sheet  
94 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
13.5.2 GetRxBufferStatus  
This command returns the length of the last received packet (PayloadLengthRx) and the address of the first byte received  
(RxStartBufferPointer). It is applicable to all modems. The address is an offset relative to the first byte of the data buffer.  
Table 13-79: GetRxBufferStatus SPI Transaction  
Byte  
0
1
2
3
Data from host  
Data to host  
Opcode = 0x13  
RFU  
NOP  
NOP  
NOP  
Status  
PayloadLengthRx  
RxStartBufferPointer  
13.5.3 GetPacketStatus  
Table 13-80: GetPacketStatus SPI Transaction  
Byte  
0
1
2
3
4
Opcode =  
0x14  
Data from host  
NOP  
NOP  
NOP  
NOP  
Data to host for FSK packet type  
Data to host for LORA packet type  
RFU  
RFU  
Status  
Status  
RxStatus  
RssiPkt  
RssiSync  
SnrPkt  
RssiAvg  
SignalRssiPkt  
The next table gives the description of the different RSSI and SNR available on the chip depending on the packet type.  
Table 13-81: Status Bit  
RSSI  
Description  
bit 7: preamble err  
bit 6: sync err  
bit 5: adrs err  
RxStatus  
FSK  
bit 4: crc err  
bit 3: lenght err  
bit 2: abort err  
bit 1: pkt received  
bit 0: pkt sent  
RSSI value latched upon the detection of the sync address.  
[negated, dBm, fixdt(0,8,1)]  
RssiSync  
FSK  
Actual signal power is –RssiSync/2 (dBm)  
RssiAvg  
FSK  
RSSI average value over the payload of the received packet. Latched upon the pkt_done IRQ.  
[negated, dBm, fixdt(0,8,1)]  
Actual signal power is –RssiAvg/2 (dBm)  
RssiPkt  
LoRa®  
Average over last packet received of RSSI  
Actual signal power is –RssiPkt/2 (dBm)  
SX1261/2  
Data Sheet  
DS.SX1261-2.W.APP  
95 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
December 2017  
Table 13-81: Status Bit  
RSSI  
Description  
SnrPkt  
LoRa®  
Estimation of SNR on last packet received.In two’s compliment format multiplied by 4.  
Actual SNR in dB =SnrPkt/4  
Estimation of RSSI of the LoRa® signal (after despreading) on last packet received.In two’s compliment  
format.[negated, dBm, fixdt(0,8,1)]  
SignalRssiPkt  
LoRa®  
Actual Rssi in dB = -SignalRssiPkt/2  
13.5.4 GetRssiInst  
This command returns the instantaneous RSSI value during reception of the packet. The command is valid for all protocols.  
Table 13-82: GetRssiInst SPI Transaction  
Byte  
0
1
2
Data from host  
Opcode = 0x15  
NOP  
NOP  
RssiInst  
Data to host  
RFU  
Status  
Signal power in dBm = –RssiInst/2 (dBm)  
13.5.5 GetStats  
This command returns the number of informations received on a few last packets. The command is valid for all protocols.  
Table 13-83: GetStats SPI Transaction  
Byte  
0
1
2-3  
4-5  
6-7  
Opcode =  
0x10  
Data from host  
NOP  
NOP  
NOP  
NOP  
Data to host in GFSK  
packet type  
RFU  
RFU  
Status  
Status  
NbPktReceived(15:0)  
NbPktReceived(15:0)  
NbPktCrcError(15:0)  
NbPktCrcError(15:0)  
NbPktLengthError(15:0)  
NbPktHeaderErr(15:0)  
Data to host in LoRa®  
packet type  
13.5.6 ResetStats  
This command resets the value read by the command GetStats. To execute this command, the opcode is 0x0 followed by  
6 zeros (so 7 zeros in total).  
SX1261/2  
Data Sheet  
96 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
13.6 Miscellaneous  
13.6.1 GetDeviceErrors  
This commands returns possible errors flag that could occur during different chip operation as described below.  
Table 13-84: GetDeviceErrors SPI Transaction  
Byte  
0
1
2-3  
Data from host  
Data to host  
Opcode= 0x17  
RFU  
NOP  
NOP  
Status  
OpError(15:0)  
The following table gives the meaning of each OpError.  
Table 13-85: OpError Bits  
OpError  
0
1
bit 0  
bit 1  
RC64K_CALIB_ERR  
RC13M_CALIB_ERR  
PLL_CALIB_ERR  
ADC_CALIB_ERR  
IMG_CALIB_ERR  
XOSC_START_ERR  
PLL_LOCK_ERR  
RFU  
RC64k calibration failed  
RC13M calibration failed  
PLL calibration failed  
ADC calibration failed  
IMG calibration failed  
XOSC failed to start  
PLL failed to lock  
RFU  
bit 2  
bit 3  
bit 4  
bit 5  
bit 6  
bit 7  
bit 8  
PA_RAMP_ERR  
RFU  
PA ramping failed  
RFU  
bit 15:9  
13.6.2 ClearDeviceErrors  
This commands clears all the errors recorded in the device. The errors can not be cleared independently.  
Table 13-86: ClearDeviceErrors SPI Transaction  
Byte  
0
1
Data from host  
Data to host  
Opcode= 0x07  
RFU  
0x00  
Status  
SX1261/2  
Data Sheet  
97 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
14. Application  
14.1 HOST API Basic Read Write Function  
The communication with the SX1261/2 is organized around generic functions which allow the user to control the device  
behavior. Each function is based on an Operational Command (refer throughout this document as “Opcode”), which is then  
followed by a set of parameters. The SX1261/2 use the BUSY pin to indicate the status of the chip. In the following chapters,  
it is assumed that host microcontroller has an SPI and access to it via spi.write(data). Data is an 8-bit word. The SPI chip select  
is defined by NSS, active low.  
14.2 Circuit Configuration for Basic Tx Operation  
This chapter describes the sequence of operations needed to send or receive a frame starting from a power up.  
After power up (battery insertion or hard reset) the chip runs automatically a calibration procedure and goes to STDBY_RC  
mode. This is indicated by a low state on BUSY pin. From this state the steps are:  
1. If not in STDBY_RC mode, then go to this mode with the command SetStandby(...)  
2. Define the protocol (LoRa® or FSK) with the command SetPacketType(...)  
3. Define the RF frequency with the command SetRfFrequency(...)  
4. Define output power and ramping time with the command SetTxParams(...)  
5. Define where the data payload will be stored with the command SetBufferBaseAddress(...)  
6. Send the payload to the data buffer with the command WriteBuffer(...)  
7. Define the modulation parameter according to the chosen protocol with the command SetModulationParams(...)  
8. Define the frame format to be used with the command SetPacketParams(...)  
9. Configure DIO and IRQ: use the command SetDioIrqParams(...) to select TxDone IRQ and map this IRQ to a DIO (DIO1,  
DIO2 or DIO3)  
10. Define Sync Word value: use the command WriteReg(...) to write the value of the register via direct register access  
11. Set the circuit in transmitter mode to start transmission with the command SetTx(). Use the parameter to enable  
Timeout  
12. Wait for the IRQ TxDone or Timeout: once the packet has been sent the chip goes automatically to STDBY_RC mode  
13. Clear the IRQ TxDone flag  
SX1261/2  
Data Sheet  
98 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
14.3 Circuit Configuration for Basic Rx Operation  
This chapter describes the sequence of operations needed to receive a frame starting from a power up. This sequence is  
valid for all protocols.  
After power up (battery insertion or hard reset) the chip run automatically a calibration procedure and goes to STDBY_RC  
mode. This is indicated by a low state on BUSY pin. From this state the steps are:  
1. If not in STDBY_RC mode, then set the circuit in this mode with the command SetStandby()  
2. Define the protocol (LoRa® or FSK) with the command SetPacketType(...)  
3. Define the RF frequency with the command SetRfFrequency(...)  
4. Define where the data will be stored inside the data buffer in Rx with the command SetBufferBaseAddress(...)  
5. Define the modulation parameter according to the chosen protocol with the command SetModulationParams(...)  
6. Define the frame format to be used with the command SetPacketParams(...)  
7. Configure DIO and irq: use the command SetDioIrqParams(...) to select the IRQ RxDone and map this IRQ to a DIO (DIO1  
or DIO2 or DIO3), set IRQ Timeout as well.  
8. Define Sync Word value: use the command WriteReg(...) to write the value of the register via direct register access.  
9. Set the circuit in reception mode: use the command SetRx(). Set the parameter to enable timeout or continuous mode  
10. Wait for IRQ RxDone or Timeout: the chip will stay in Rx and look for a new packet if the continuous mode is selected  
otherwise it will goes to STDBY_RC mode.  
11. In case of the IRQ RxDone, check the status to ensure CRC is correct: use the command GetIrqStatus()  
Note:  
The IRQ RxDone means that a packet has been received but the CRC could be wrong: the user must check the CRC before  
validating the packet.  
12. Clear IRQ flag RxDone or Timeout : use the command ClearIrqStatus(). In case of a valid packet (CRC Ok), get the packet  
length and address of the first byte of the received payload by using the command GetRxBufferStatus(...)  
13. In case of a valid packet (CRC Ok), start reading the packet  
14.4 Issuing Commands in the Right Order  
Most of the commands can be sent in any order except for the radio configuration commands which will set the radio in  
the proper operating mode. Indeed, it is mandatory to set the radio protocol using the command SetPacketType(...) as a first  
step before issuing any other radio configuration commands. In a second step, the user should define the modulation  
parameter according to the chosen protocol with the command SetModulationParams(...). Finally, the user should then  
select the packet format with the command SetPacketParams(...).  
Note:  
If this order is not respected, the behavior of the device could be unexpected.  
SX1261/2  
Data Sheet  
99 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
14.5 Application Schematics  
14.5.1 Application Design of the SX1261 with RF Switch  
R4  
VR_PA  
ANT_SW  
100R  
C14  
1nF  
C2  
C1  
L1  
C4  
L3  
Q1 Xtal  
GND  
32.0MHz  
3
GND  
GND  
C6  
1
C16  
U1  
L4  
C5  
C7  
2
4
U2  
1
6
5
4
RFIO  
GND  
1
2
RF1  
CTRL  
RFC  
CTRL  
C8  
L5  
GND  
VDD_IN  
24  
23  
22  
21  
20  
2
3
VR_PA  
RFO  
GND  
RF2  
SMA  
GND  
GND  
XTA  
XTB  
3
XTA  
GND  
GND  
GND  
L8  
4
C9  
C10  
RFI_N  
RFI_P  
GND  
XTB  
5
GND  
C11  
PE4259 RF Switch  
GND  
DIO3  
6
DIO3  
19 NSS  
7
NSS  
SCK  
MOSI  
MISO  
NRESET  
BUSY  
DIO1  
VREG  
GND  
18 SCK  
17 MOSI  
16 MISO  
8
GND  
GND  
C13  
L7 15uH  
9
GND  
DCC_SW  
VBAT  
VBAT_IO  
DIO2  
GND  
L6  
VDD_RADIO  
10  
11  
12  
15 SX_NRESET  
14 BUSY  
DIO2  
C17  
470nF  
13 DIO1  
C18  
R3  
DIO2  
100nF  
C12  
100R  
C15  
1nF  
SX1261  
GND  
GND  
GND  
GND  
GND  
Figure 14-1: Application Schematic of the SX1261 with RF Switch  
14.5.2 Application Design of the SX1262 with RF Switch  
R4  
VR_PA  
ANT_SW  
100R  
C14  
1nF  
VDD_RADIO  
C2  
C1  
L1  
C4  
L3  
Q1 Xtal  
GND  
32.0MHz  
3
GND  
GND  
C6  
1
C16  
U1  
L2  
L4  
C3  
C5  
C7  
2
4
U2  
1
6
5
4
RFIO  
1
2
RF1  
CTRL  
RFC  
CTRL  
C8  
L5  
GND  
VDD_IN  
24  
23  
22  
21  
20  
2
3
VR_PA  
RFO  
GND  
RF2  
SMA  
GND  
GND  
XTA  
XTB  
3
XTA  
GND  
GND  
GND  
GND  
4
RFI_N  
RFI_P  
GND  
C9  
C10  
XTB  
5
GND  
C11  
PE4259 RF Switch  
GND  
DIO3  
6
DIO3  
19 NSS  
7
NSS  
SCK  
MOSI  
MISO  
NRESET  
BUSY  
DIO1  
VREG  
GND  
18 SCK  
17 MOSI  
16 MISO  
8
GND  
GND  
GND  
C13  
L7 15uH  
9
GND  
DCC_SW  
VBAT  
VBAT_IO  
DIO2  
GND  
L6  
VDD_RADIO  
10  
11  
12  
15 SX_NRESET  
14 BUSY  
DIO2  
C17  
470nF  
13 DIO1  
C18  
R3  
DIO2  
100nF  
C12  
100R  
C15  
1nF  
SX1262  
GND  
GND  
GND  
GND  
GND  
Figure 14-2: Application Schematic of the SX1262 with RF Switch  
Note:  
The application schematics presented here are for information only.  
Always refer to the latest reference designs posted on www.semtech.com.  
Note:  
Recommendations for heat dissipation techniques to be applied to the PCB designs are given in detail in the application  
note AN1200.37 “Recommendations for Best Performance” on www.semtech.com.  
In miniaturized design implementations where heat dissipations techniques cannot be implemented or the use of the  
LowDataRateOptimize is not supported, the use of a TCXO will provide a more stable clock reference.  
SX1261/2  
Data Sheet  
100 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
15. Packaging Information  
15.1 Package Outline Drawing  
The transceiver is delivered in a 4x4mm QFN package with 0.5 mm pitch:  
Figure 15-1: QFN 4x4 Package Outline Drawing  
SX1261/2  
Data Sheet  
101 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
15.2 Package Marking  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢀꢃ  
ꢀꢁꢂꢁꢃ  
ꢀꢁꢂꢃꢀ  
ꢀꢁꢂꢃꢀ  
ꢀꢀꢁꢂꢃ  
ꢀꢀꢁꢂꢃ  
ꢀꢀꢀꢀꢀꢁ  
ꢀꢀꢀꢀꢀꢁ  
ꢀ&5/.2,<+35<6-*<ꢁ<9<ꢁ<11<ꢀꢂꢃꢄ<ꢅꢁ<ꢂ*&)<4&(/&,*ꢆ<  
;2222< ꢇ< ꢃ&56<ꢈ71'*5<ꢉꢊ9&140*ꢆ<ꢌꢅꢍꢌꢎ  
::8< ꢇ< ꢏ&6*<ꢐ3)*<ꢉꢌꢑꢒꢅꢎ<  
99999< ꢇ<  *16*(-<ꢂ36<ꢈ71'*5<ꢉꢊ9&140*ꢆ<ꢊꢀꢁꢂꢁ<  
Figure 15-2: SX1261/2 Marking  
15.3 Land Pattern  
The recommended land pattern is as follows:  
Figure 15-3: QFN 4x4mm Land Pattern  
SX1261/2  
Data Sheet  
102 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
15.4 Reflow Profiles  
Reflow process instructions are available from the Semtech website, at the following address:  
http://www.semtech.com/quality/ir_reflow_profiles.html  
The transceiver uses a QFN24 4x4 mm package, also named MLP package.  
SX1261/2  
Data Sheet  
103 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
Glossary  
List of Acronyms and their Meaning  
Acronym  
Meaning  
ACR  
ADC  
API  
Adjacent Channel Rejection  
Analog-to-Digital Converter  
Application Programming Interface  
Modulation Index  
β
BER  
BR  
Bit Error Rate  
Bit Rate  
BT  
Bandwidth-Time bit period product  
BandWidth  
BW  
CAD  
CPOL  
CPHA  
CR  
Channel Activity Detection  
Clock Polarity  
Clock Phase  
Coding Rate  
CRC  
CW  
Cyclical Redundancy Check  
Continuous Wave  
DIO  
DSB  
ECO  
FDA  
FEC  
FIFO  
FSK  
Digital Input / Output  
Double Side Band  
Engineering Change Order  
Frequency Deviation  
Forward Error Correction  
First In First Out  
Frequency Shift Keying  
Gaussian Frequency Shift Keying  
Gaussian Minimum Shift Keying  
Gross Die Per Wafer  
GFSK  
GMSK  
GDPW  
IF  
Intermediate Frequencies  
Interrupt Request  
IRQ  
ISM  
LDO  
LDRO  
Industrial, Scientific and Medical (radio spectrum)  
Low-Dropout  
Low Data Rate Optimization  
SX1261/2  
Data Sheet  
104 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
List of Acronyms and their Meaning  
Acronym  
Meaning  
LFSR  
LNA  
LO  
Linear-Feedback Shift Register  
Low-Noise Amplifier  
Local Oscillator  
Long Range Communication  
LoRa®  
the LoRa® Mark is a registered trademark of the Semtech Corporation  
LSB  
MISO  
MOSI  
MSB  
MSK  
NOP  
NRZ  
NSS  
OCP  
PA  
Least Significant Bit  
Master Input Slave Output  
Master Output Slave Input  
Most Significant Bit  
Minimum-Shift Keying  
No Operation (0x00)  
Non-Return-to-Zero  
Slave Select active low  
Over Current Protection  
Power Amplifier  
PER  
Packet Error Rate  
PHY  
PID  
Physical Layer  
Product Identification  
Phase-Locked Loop  
PLL  
POR  
RC13M  
RC64k  
RFO  
RFU  
RTC  
Power On or Reset  
13 MHz Resistance-Capacitance Oscillator  
64 kHz Resistance-Capacitance Oscillator  
Radio Frequency Output  
Reserved for Future Use  
Real-Time Clock  
SCK  
Serial Clock  
SF  
Spreading Factor  
SN  
Sequence Number  
SNR  
SPI  
Signal to Noise Ratio  
Serial Peripheral Interface  
Single Side Bandwidth  
Standby  
SSB  
STDBY  
SX1261/2  
Data Sheet  
105 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
List of Acronyms and their Meaning  
Acronym  
Meaning  
TCXO  
XOSC  
Temperature-Compensated Crystal Oscillator  
Crystal Oscillator  
SX1261/2  
Data Sheet  
106 of 107  
Semtech  
www.semtech.com  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
Important Notice  
Information relating to this product and the application or design described herein is believed to be reliable, however such information  
is provided as a guide only and Semtech assumes no liability for any errors in this document, or for the application or design described  
herein. Semtech reserves the right to make changes to the product or this document at any time without notice. Buyers should obtain the  
latest relevant information before placing orders and should verify that such information is current and complete. Semtech warrants  
performance of its products to the specifications applicable at the time of sale, and all sales are made in accordance with Semtech’s  
standard terms and conditions of sale.  
SEMTECH PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT  
APPLICATIONS, DEVICES OR SYSTEMS, OR IN NUCLEAR APPLICATIONS IN WHICH THE FAILURE COULD BE REASONABLY EXPECTED TO  
RESULT IN PERSONAL INJURY, LOSS OF LIFE OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. INCLUSION OF SEMTECH PRODUCTS IN  
SUCH APPLICATIONS IS UNDERSTOOD TO BE UNDERTAKEN SOLELY AT THE CUSTOMER’S OWN RISK. Should a customer purchase or use  
Semtech products for any such unauthorized application, the customer shall indemnify and hold Semtech and its officers, employees,  
subsidiaries, affiliates, and distributors harmless against all claims, costs damages and attorney fees which could arise.  
The Semtech name and logo are registered trademarks of the Semtech Corporation. The LoRa® Mark is a registered trademark of the  
Semtech Corporation. All other trademarks and trade names mentioned may be marks and names of Semtech or their respective  
companies. Semtech reserves the right to make changes to, or discontinue any products described in this document without further  
notice. Semtech makes no warranty, representation or guarantee, express or implied, regarding the suitability of its products for any  
particular purpose. All rights reserved.  
© Semtech 2017  
Contact Information  
Semtech Corporation  
Wireless & Sensing Products  
200 Flynn Road, Camarillo, CA 93012  
Phone: (805) 498-2111, Fax: (805) 498-3804  
www.semtech.com  
SX1261/2  
Data Sheet  
107 of 107  
Semtech  
Rev. 1.1  
DS.SX1261-2.W.APP  
December 2017  
107  

相关型号:

SX1261IMLTRT

Telecom Circuit,
SEMTECH

SX1262

Long Range, Low Power, sub-GHz RF Transceiver
SEMTECH

SX1262IMLTRT

Telecom Circuit,
SEMTECH

SX126GW

JUST SHELVING SHELF H-DUTY
ETC

SX1272

860-1050 MHz Ultra Low Power Long Range Transceiver
SEMTECH

SX1272IMLTRT

Low Power Long Range Transceiver
SEMTECH

SX1273

860-1050 MHz Ultra Low Power Long Range Transceiver
SEMTECH

SX1273IMLTRT

Low Power Long Range Transceiver
SEMTECH

SX1276

137-1050 MHz Ultra Low Power Long Range Transceiver
SEMTECH

SX1276IMLTRT

Low Power Long Range Transceiver
SEMTECH

SX1277

137-1050 MHz Ultra Low Power Long Range Transceiver
SEMTECH