XE3006 [SEMTECH]

Low-Power Audio CODEC; 低功耗音频编解码器
XE3006
型号: XE3006
厂家: SEMTECH CORPORATION    SEMTECH CORPORATION
描述:

Low-Power Audio CODEC
低功耗音频编解码器

解码器 编解码器
文件: 总37页 (文件大小:374K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
XE3005/XE3006  
VSSD VSSA VSSA VDD VREF  
VREG11  
VREG16  
Power supply  
management  
Microphone  
Bias  
RESET  
XE3006  
VDDPA  
AOUTP  
PWM  
DAC  
Power  
amplifier  
AIN  
Σ∆  
modulator  
Decimator  
Amp.  
AOUTN  
VSSPA  
Sandman  
Functions  
Serial Audio  
Interface  
Clock  
mgt  
SPI  
MISO SS SCK MOSI SMAD SMDA BCLK SDI SDO FSYNC MCLK  
XE3005 / XE3006  
Low-Power Audio CODEC  
GENERAL DESCRIPTION  
FEATURES  
Ultra low-power consumption, below 2 mW  
Low-voltage operation down to 1.8 V  
Sandman™ function to reduce system power  
consumption (XE3006)  
The XE3005 is an ultra low-power CODEC (Analog to  
Digital and Digital to Analog Converter) for voice and  
audio applications. It includes microphone supply,  
preamplifier, 16-bit ADC, 16-bit DAC, serial audio  
interface, power management and clock management  
for the ADC and the DAC. The sampling frequency of  
the ADC and of the DAC can be adjusted from 4 kHz to  
48 kHz.  
Single supply voltage  
Adjustable sampling frequency: 4 – 48 kHz  
Digital format: 16 bit 2s complement  
Requires a minimum number of external  
components  
Easy interfacing to various DSPs  
Direct connection to microphone and speaker  
Various programming options  
The XE3006 also includes the Sandman™ function,  
which signals whether a relevant voice or audio signal is  
present for the ADC or DAC.  
QUICK REFERENCE DATA  
supply voltage  
1.8 – 3.6 V  
0.4 mA  
4 – 48 kHz  
78 dB  
APPLICATIONS  
current (@20 kHz sampling)  
sampling frequency  
Wireless Headsets  
Bluetooth™ headset  
Hands-free telephony  
Digital hearing instruments  
Consumer and multimedia applications  
All battery-operated portable audio devices  
Typical dynamic range ADC  
Typical dynamic range DAC  
78 dB  
ORDERING INFORMATION  
Part  
Package  
Ext. part no.  
Temp. range  
XE3005  
TSSOP 20 pins  
XE3005I033TRLF  
-
20 to 70° C  
Lead free  
uCSP® 20 balls  
TSSOP 24 pins  
XE3005  
XE3006  
XE3005I064TRLF  
XE3006I019  
-20 to 70° C  
-20 to 70° C  
Rev 1 August 2005  
www.semtech.com  
1
XE3005/XE3006  
Table of Contents  
1
Device Description ...................................................................................................................................................3  
1.1 Terminals Description XE3005/6................................................................................................................................4  
Functional Description ............................................................................................................................................5  
2
2.1 Device Functions........................................................................................................................................................5  
2.2 Power-Down Functions ........................................................................................................................................... 12  
3
Serial Communications......................................................................................................................................... 13  
3.1 Serial Audio Interface .............................................................................................................................................. 13  
3.2 Register Programming ............................................................................................................................................ 14  
3.3 Serial Peripheral Interface - SPI.............................................................................................................................. 15  
4
5
Sandman™ Function (XE3006) ............................................................................................................................ 17  
Specifications ........................................................................................................................................................ 19  
5.1 Absolute Maximum Ratings..................................................................................................................................... 19  
5.2 Recommended Operating Conditions..................................................................................................................... 19  
5.3 Electrical Characteristics......................................................................................................................................... 20  
6
Application Information........................................................................................................................................ 27  
6.1 Application Schematics – XE3006 .......................................................................................................................... 27  
Register Description ............................................................................................................................................. 28  
7
7.1 Register Functional Summary................................................................................................................................. 28  
7.2 Register Definitions ................................................................................................................................................. 29  
8
Mechanical Information ........................................................................................................................................ 33  
8.1 XE3005 package size (TSSOP20).......................................................................................................................... 33  
8.2 XE3005 package size (5x4 uCSP®)........................................................................................................................ 34  
8.3 XE3006 Package size (TSSOP24).......................................................................................................................... 35  
9
XE3005 Land pattern recommendations (5x4 uCSP®)....................................................................................... 36  
© Semtech 2005  
www.semtech.com  
2
XE3005/XE3006  
1
DEVICE DESCRIPTION  
MOSI  
SCK  
1
2
20  
MCLK  
SS  
MOSI  
SS  
1
2
MCLK  
SMAD  
SMDA  
VDD  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
19  
18  
17  
16  
15  
14  
13  
12  
11  
SDI  
3
VDD  
SCK  
3
SDO  
4
NRESET  
VREG16  
VREF  
VSSA  
VSSD  
VREG11  
AIN  
MISO  
SDI  
4
BCLK  
FSYNC  
AOUTP  
VDDPA  
AOUTN  
VSSPA  
5
5
NRESET  
VSSA  
6
SDO  
6
7
BCLK  
FSYNC  
AOUTP  
VDDPA  
AOUTN  
VSSPA  
VREG16  
VREF  
7
8
8
9
VSSA  
9
10  
VSSD  
10  
11  
12  
VREG11  
AIN  
Figure 1: Pin layout of the XE3006 and XE3005 in TSSOP  
AOUTN  
BCLK  
FSYNC  
VREG16  
VREF  
SCK  
MOSI  
MCLK  
SDI  
SDO  
SS  
AOUTP  
VDDPA  
VSSD  
XEMICS  
XE3005  
VSSPA  
VREG11  
AIN  
NRESET  
VDD  
VSSA  
BOTTOM VIEW  
TOP VIEW  
Figure 2: Pin layout of the XE3005 in uCSP®  
The XE3006 is available in a TSSOP24 package. The XE3005 is available in a TSSOP20 and uCSP® package. Detailed  
information is found in chapter 8, Mechanical Information.  
© Semtech 2005  
www.semtech.com  
3
XE3005/XE3006  
1.1 TERMINALS DESCRIPTION XE3005/6  
Terminals  
Description  
XE3006  
XE3005  
Name  
Type 1  
uCSP  
TSSOP24  
TSSOP20  
®
Master Clock. MCLK derives the internal clocks of ADC and  
DAC  
1
1
A2  
MCLK  
DI  
2
3
4
N/A  
N/A  
3
N/A  
N/A  
A1  
SMAD  
SMDA  
VDD  
DO  
DO  
AI  
Sandman output ADC  
Sandman output DAC  
Digital power supply  
Reset signal generated by the CODEC. If required, the reset  
signal can be applied externally to initialize all the internal  
CODEC registers  
5
4
B1  
NRESET  
ZI/O  
6
7
N/A  
5
N/A  
C2  
VSSA  
AI  
Analog ground  
Regulator voltage 1.6 V. Can be used to supply the  
microphone  
VREG16  
AO  
8
6
7
C1  
D1  
D2  
E2  
E1  
E3  
E4  
D3  
D4  
C3  
C4  
B3  
B4  
N/A  
A4  
B2  
A3  
VREF  
VSSA  
VSSD  
VREG11  
AIN  
AO  
AI  
Reference voltage  
9
Analog ground  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
8
AI  
Digital ground  
9
AO  
AI  
ADC Regulated microphone output supply voltage 1.1 V  
ADC Analog input signal  
10  
11  
12  
13  
14  
15  
16  
17  
18  
N/A  
19  
2
VSSPA  
AOUTN  
VDDPA  
AOUTP  
FSYNC  
BCLK  
SDO  
AI  
DAC Power Amplifier Ground  
DAC Analog Output negative  
DAC Power Amplifier Supply  
DAC Analog Output positive  
Serial audio interface Frame Synchronization  
Serial audio interface Bit Clock  
Serial audio interface Data Output  
AO  
AI  
AO  
DI/O  
DI/O  
ZO  
SDI  
DI PD Serial audio interface Data Input  
ZO SPI Master In Slave Out  
MISO  
SCK  
DI PD SPI Serial Clock  
SS  
DI PU SPI Slave Select  
DI PD SPI Master Out Slave In  
20  
MOSI  
Note: (1)  
AI = Analog Input  
AO = Analog Output  
DI = Digital Input  
DO = Digital Output  
DI/O = Digital In or Out  
PU = internal Pull Up  
ZO = Hi Impedance or Output  
PD = internal Pull Down  
ZI/O = Hi impedance In or Out  
© Semtech 2005  
www.semtech.com  
4
XE3005/XE3006  
2
FUNCTIONAL DESCRIPTION  
A CODEC is typically used for voice and audio applications as an interface between a Digital Signal processor (DSP) or  
microcontroller and the analogue interfaces like a microphone and loudspeaker.  
DAC  
ADC  
MIC-Amplifier  
CODEC  
Power Amplifier  
Serial Audio Interface  
SPI  
DSP / Microcontroller  
„
„
Digital wireless transmission – Bluetooth™  
Voice recognition / speech synthesis  
Figure 3: Typical usage of CODEC  
This chapter provides a brief description of the CODEC features relating to the CODEC configuration. The configuration  
of the CODEC is defined by programming registers through a serial interface. A detailed description of the registers  
defining details of the CODEC setup can be found in chapter 3 and 7. Digital voice and audio samples are passed  
through the Serial Audio Interface.  
2.1 DEVICE FUNCTIONS  
2.1.1 ADC Signal Channel  
The ADC channel is a chain of programmable amplifier, band-pass filter, sigma-delta modulator and a decimation filter.  
The amplifier gain is programmable to 5x (default) and 20x. The band-pass filter has cut-off frequencies proportional to  
the sampling rate. The sigma-delta modulator operates at a frequency of 64 times the sampling rate. The analog  
modulator is followed by a digital decimation filter. The digital output data (16 bits, 2’s complement format) is made  
available through the Serial Audio Interface. The format of the Serial Audio interface can be selected through register J.  
With the default register settings the ADC can run at a sampling frequency up to 20 kHz. When used with a sampling  
frequency higher than 20 kHz, then register C has to be changed.  
The whole ADC chain can be powered-down through register I.  
© Semtech 2005  
www.semtech.com  
5
XE3005/XE3006  
2.1.2 MIC Input  
The programmable pre-amplifier and the microphone bias sources VREG11 or VREG16 are optimized to operate with  
electret microphones. VREG11 provides a 1.1 V reference voltage. The VREG11 can deliver up to 50 µA. VREG11 is  
enabled through control register E. VREG16 is a regulated voltage of typically 1.6V and can deliver up to 1 mA.VREG16  
is always enabled.  
Vcc  
4
5
VDD  
0.1µF  
NRESET  
VSSA  
6
7
VREG16  
VREF  
8
VSSA  
9
VSSD  
10  
11  
1k  
VREG11  
AIN  
12  
50 pF (gain is 5)  
200 pF (gain is 20)  
390k  
1µF  
1µF  
GND  
Figure 4: Typical microphone interface (1.1 V / 50 uA bias through VREG11)  
Vcc  
4
5
VDD  
0.1µF  
NRESET  
VSSA  
6
1k*  
7
VREG16  
VREF  
8
9
VSSA  
VSSD  
10  
11  
12  
VREG11  
AIN  
50 pF (gain is 5)  
200 pF (gain is 20)  
390kΩ  
1µF  
1µF  
*
depends on microphone type  
GND  
Figure 5: Typical microphone interface (1.6 V / 1 mA bias through VREG16)  
© Semtech 2005  
www.semtech.com  
6
XE3005/XE3006  
2.1.3 DAC Signal Channel  
The DAC is based on a multi bit sigma-delta modulator, which operates at a frequency of 8 times the sampling rate. The  
outputs of the modulator are 2’s complement words of 6 bit. A pulse-width modulator (PWM) converts the 6 bit words into  
2 single bit streams at 256 times the sampling frequency. Finally the 2 bit streams are supplied to the power amplifier.  
The Power Amplifier is a Class D amplifier, which offers higher efficiency than the traditional Class AB topologies. It uses  
a three-state unbalanced PWM. This means that both channels of the PA (AOUTP and AOUTN) will not switch at the  
same time, therefore the outputs are not purely differential (see figure 5 and 6)  
XE3005/6  
VDDPA  
P
P
s
N
N
AOUTP  
AOUTN  
P
From Serial Audio  
Interface  
Interpolator  
&
Modulator  
Pulse Width  
Modulator  
Power  
Amplifier  
N
dac_in(15:0)  
@ Fsync  
pwm_in(5:0)  
@ 8xFsync  
bit streams  
@ 256xFsync  
VSSPA  
s = 0  
s = 1  
Figure 6: DAC block diagram  
Figure 6 shows the relation of input and output samples of the PWM (The timing diagram is not to scale in the time-axis).  
pwm_in(5:0) = 1  
pwm_in(5:0) = -1  
pwm_in(5:0) = 0  
pwm_in(5:0) = 2  
1
0
P
1
0
N
1/(256 x Fsync)  
1/(8 x Fsync)  
VDDPA  
VSSPA  
-VDDPA  
OUTP-OUTN  
1/(256 x Fsync)  
2/(256 x Fsync)  
Figure 7: Examples PWM in and out (not to scale)  
The DAC receives 16-bit wide 2’s complement format through the Serial Audio Interface. The protocol can be selected  
through register J. The complete DAC and PA amplifier chain can be powered-down through register I.  
© Semtech 2005  
www.semtech.com  
7
XE3005/XE3006  
2.1.4 Digital Loop Back  
In digital loop back mode, the ADC output is routed directly to the DAC input. This allows in-circuit system level tests. The  
digital loop back mode can be selected through register J.  
2.1.5 Operating Frequency  
A master clock (MCLK) has to be applied to the XE3005/3006. The clock frequency of the signal applied to the MCLK pin  
may vary between 1.024 MHz minimum and 33.9 MHz maximum. The maximum internal clock signal frequency  
(MCLK/div_factor) should not exceed 12.288 MHz.  
The div_factor can be set by the user in register I to 1,2 or 4. The default value for div_factor is ‘1’.  
2.1.6 Serial Audio Interface  
The Serial Audio Interface is a 4-wire interface for bi-directional communication of audio data. It operates on the bit serial  
clock BCLK and the frame synchronization signal FSYNC. The sampling frequency of the CODEC corresponds to the  
rate at which the Audio Serial Interface will put out succeeding frames. One frame always corresponds to one sample.  
One frame always contains 2 channels.  
Synchronizing the Serial Audio Interface to the MCLK is recommended. FSYNC and MCLK must have a fixed ratio as  
defined by the following relation:  
FSYNC = Sampling frequency = frame rate = MCLK/(256 x div_factor).  
The pin BCLK defines the time when the data must be presented to the serial audio interface and shifted into (pin SDI) or  
out of (pin SDO) the CODEC. The number of BCLK periods in one FSYNC period is 32. The user can select to use the  
first 16 clock cycles (channel 1) or the second 16 clock cycles (channel 2) of BLCK to shift in or out the data samples.  
The table below shows some examples of the relationships between MCLK, BCLK and FSYNC  
MCLK  
2048 kHz  
8192 kHz  
5120 kHz  
22579.2 kHz  
Div_factor  
BCLK  
256 kHz  
256 kHz  
640 kHz  
1411.2 kHz  
FSYNC  
8 kHz  
1
4
1
2
8 kHz  
20 kHz  
44.1 kHz  
The table below shows the possible functional configurations of the serial audio interface  
CODEC  
master  
slave  
supported protocol  
LFS (Long Frame Sync)  
LFS, LFS Optimization and SFS (Short Frame Sync)  
By default the Serial Audio Interface operates in slave, SFS mode. In slave mode the user needs to generate the signals  
BLCK, FSYNC and supply to the CODEC.  
In master mode the CODEC generates the BLCK and FSYNC signals. In that case the BLCK operates at 32 times the  
frequency of FSYNC. The CODEC master mode can be used with the LFS protocol only.  
The register J is used for the different setups of the serial audio interface.  
© Semtech 2005  
www.semtech.com  
8
XE3005/XE3006  
2.1.7 Serial Peripheral Interface - SPI  
The SPI interface is used to control register values. It is a serial communications interface that is independent of the rest  
of the CODEC. It allows the device to communicate synchronously with a microprocessor or DSP. The CODEC interface  
only implements a slave controller.  
A detailed description can be found in chapter 3.3.  
2.1.8  
Sandman™ ADC Function  
The Sandman™ function monitors the signals, which are processed in the ADC signal channel and the DAC signal  
channel. The logic output signal SMAD indicates whether the ADC signal channel has processed an audio signal or only  
noise, and for how long. The reference signal amplitude can be selected through register O, the time window parameters  
are the off time and on time (registers L, M and N).  
FSYNC  
Serial Audio  
BCLK  
SDO  
Interface  
AIN  
Σ∆  
modulator  
Decimator  
Amp.  
Sandman  
Interface  
SMAD  
Figure 8: Implementation of the Sandman function for the ADC (SMAD)  
The logic output SMAD can be used to power-down or reduce clock speed in other devices in the application, such as a  
microcontroller, DSP or wireless link. Also, SMAD can be used as phone pick-up indicator. The Sandman™ function is  
illustrated in Figure 9 and is valid for both SMAD (related to the ADC signal) and SMDA (related to the DAC signal).  
Initially, SMAD is inactive (low), which means that “noise” is processed by the ADC, i.e. no audio signal amplitude above  
the Reference. The Sandman™ Interface compares every output sample of the ADC signal channel to the Reference  
value. If the signal is lower than the Reference value, SMAD remains inactive (low).  
As soon as the signal passes the reference (time = 1), the on-time counter is started. (for the moment defined by time=’x’  
see Figure 9). However, as the signal returns below the reference (time = 2) before the on-time counter has reached the  
on time, the on-time counter is reset and the SMAD signal remains inactive (low).  
The next time the signal gets higher than the Reference (time = 3), the on-time counter is started again and when it  
reaches the on time, the SMAD signal becomes active (high), indicating that an audio signal is present (time = 4). As long  
as the signal remains above the Reference, nothing happens and the SMAD signal remains active (high). When the  
signal falls below the Reference (time = 5), the off-time counter is started, but as it does not reach the off time before the  
signal passes again the Reference (time = 6), SMAD remains active (high). Also during the period from time = 7 to time =  
8, the off time counter does not reach the off time.  
When the signal falls below the Reference (time = 9) and remains below the Reference until the off-time counter has  
reached the off-time, the SMAD signal is changed into the inactive (low) state (time = 10).  
© Semtech 2005  
www.semtech.com  
9
XE3005/XE3006  
2.1.9  
Sandman™ DAC Function  
The Sandman™ function monitors the signals, which are processed in the ADC signal, channel and the DAC signal  
channel. The logic output signal SMDA indicates whether the DAC signal channel processes an audio signal or only  
noise, and this for certain duration. The reference signal amplitude can be selected through register P, the time window  
parameters are the off time and on time (registers L, M and N).  
Reg I, bit 4  
Sandman  
SMDA  
Interface  
VDDPA  
FSYNC  
BCLK  
SDI  
AOUTP  
Serial Audio  
Interface  
PWM  
DAC  
Power  
amplifier  
AOUTN  
VSSPA  
Figure 9: Implementation of the Sandman function for the DAC (SMDA)  
The logic output SMDA can be employed to power-down other devices in the application, such as an external audio  
power amplifier. By setting bit 4 in register I, the on-chip DAC signal channel can be powered-down through SMDA too.  
The Sandman™ function is illustrated in Figure 9 and is valid for both SMAD (related to the ADC signal) and SMDA  
(related to the DAC signal).  
AIN/SDO  
(AOUT/SDI)  
+ reference  
- reference  
On-time counter  
Time step = 1/fs = 1/FSYNC  
Off-time counter  
on-time  
off-time  
SMAD  
(SMDA)  
1
2
3
4
5
6
7
8
9
10 time  
Figure 10: Illustration of the Sandman™ function.  
© Semtech 2005  
www.semtech.com  
10  
XE3005/XE3006  
The above illustration is valid for either the SMAD output as a result of AIN/SDO or for the SMDA output as a  
function of AOUT/SDI.  
2.1.10 Start-up and Initialization  
The CODEC generates its own power on reset signal after a power supply is connected to the VDD pin. The reset signal  
is made available for the user at the pin NRESET. The rising edge of the NRESET indicates that the startup sequence of  
the CODEC has finished. In most applications the NRESET pin can be left open.  
The NRESET signal generated by the CODEC is used to initialize the various blocks in the device and guarantees a  
correct start-up of the circuit. The start-up sequence that is automatically carried out upon power-up of the device is listed  
below and illustrated in Figure 10.  
1. NRESET is low (0V) when the device is not powered and remains low for a short time when VDD (upper curve in  
Figure 10) is applied. The low state sustains while VDD, VREG16, VREF are stabilizing.  
2. As soon as the MCLK signal is present, a counter is activated that counts 221 periods of the MCLK. After this  
moment the NRESET is in the high state (VDD).  
VDD = 1.8..3.3V  
VREG16 = 1.6V  
VREF = 1.2V  
time  
. . .  
MCLK  
977 ms (MCLK=2.048KHz)  
NRESET  
main reset  
Figure 11: Startup sequence and NRESET signal after power-on.  
The user can use the NRESET pin in 3 different ways and combinations:  
© Semtech 2005  
www.semtech.com  
11  
XE3005/XE3006  
1. Leave the NRESET pin not connected. In this case the CODEC will startup as described in figure 10.  
2. Use the NRESET pin as an output to indicate, to e.g. a microcontroller, that the CODEC finished its power up  
sequence and that the CODEC is ready to operate.  
3. Use the NRESET pin to force a re-initialization of the registers to their default values. In this case the user has to  
force the NRESET to 0V for at least 32 periods of the MCLK. The circuit which forces the NRESET to 0V should  
be able to sink at least 50 uA.  
Figure 12 shows the block diagram of the CODEC reset.  
reset to analog and  
digital circuitry of codec  
delay  
counter  
Power  
On  
Reset  
NRESET  
low drive  
buffer  
MCLK  
XE3005/6  
Figure 12: Codec reset circuitry  
2.2 POWER-DOWN FUNCTIONS  
2.2.1 Software Power-Down  
Register I allows for the selective power down of the ADC signal channel or the DAC signal channel through SPI control.  
The wake-up time, after powering down the device is typically 200µs. The maximum standby current is 96µA, depending  
highly upon the Master clock (MCLK), see 5.3.5.2 Low Power Modes.  
2.2.2 Hardware Power-Down  
The device has no power-down pin. However, by holding down (0 V) the NRESET pin (resetting the device) as well as  
the pins MCLK, BCLK and FSYNC, the power consumption will reach the standby current of typically 16µA. Use the  
standard procedure for power up (see start-up and initialization procedure) after a hardware power down and apply your  
registers setup procedure.  
© Semtech 2005  
www.semtech.com  
12  
XE3005/XE3006  
3
SERIAL COMMUNICATIONS  
3.1 SERIAL AUDIO INTERFACE  
The Serial Audio Interface is a 4-wire interface for bi-directional communication of audio data. The 4 terminals are listed  
below:  
BCLK:  
FSYNC:  
Bit serial clock, one clock cycle corresponds to one data bit transmitted or received.  
Frame Synchronization. This signal indicates the start of a data word. The frequency of the FSYNC  
corresponds to the sample frequency of the CODEC.  
SDI:  
SDO:  
Serial Data In, data received from external device and sent to DAC.  
Serial Data Out, data received from ADC and sent to external device.  
The same clock (BCLK) and synchronization (FSYNC) signals are used for both sending and receiving. The  
synchronization signal FSYNC must have a fixed ratio with the master clock signal MCLK.  
The Serial Audio Interface supports two formats that are commonly used for audio/voice CODECs and that are referred to  
as SFS (Short Frame Synchronization) and LFS (Long Frame Synchronization). Data can be transmitted and received in  
2 channels. Which channel is selected depends on the programmed values in the registers. The two interface protocols  
are shown below.  
channel 2, no data  
channel 1, sample n+1  
channel 1, sample n  
FSYNC  
BCLK  
SDI  
-
-
-
-
-
-
n+115  
n15 n14  
n0  
n+115  
n15 n14  
n0  
SDO  
msb  
msb  
lsb  
Figure 13: Audio interface timing LFS mode, channel 1  
channel 1, sample n+1  
channel 1, sample n  
channel 2, sample n  
FSYNC  
BCLK  
SDI  
-
-
n+115  
n15 n14  
n0  
-
-
-
-
n+115  
n15 n14  
n0  
SDO  
msb  
msb  
lsb  
Figure 14: Audio interface timing in SFS mode, channel 1  
© Semtech 2005  
www.semtech.com  
13  
XE3005/XE3006  
SDI Data should be changed on the rising edge of BCLK. The SDI data will be read by the CODEC on the falling edge of  
BLCK. SDO data will change on the rising edge of the BCLK. The SDO data should be read on the falling edge of the  
BLCK. Each rising edge of the FSYNC indicates the start of a new sample.  
3.1.1 LFS Optimization  
For transmitting and receiving, 32 clock cycles in one frame are always required (figure 12 and 13). This is even the case  
when only 16 bits have to be sent or received. In most cases this can be handled easily with a DSP and microcontroller.  
If the user wants to send a minimum of BLCK cycles, it is possible to shorten channel 1 (channel 2 can not be shortened).  
In the LFS mode the possibility exists to shorten the number of BLCK cycles to 17 instead of 32. In this case the data is  
transmitted and received in channel 2. Channel 1 is shortened to one BLCK cycle only.  
Note! This optimization is possible in slave mode only.  
The figure 15 shows this special LFS mode.  
channel 1, no data  
channel 2, sample n+1  
channel 1, no data  
channel 2, sample n  
FSYNC  
BCLK  
SDI  
n15 n14  
n0  
-
-
n15 n14  
-
-
n15 n14  
n15 n14  
n0  
SDO  
lsb  
msb  
msb  
Figure 15: Audio interface timing in LFS mode, 17 BLCK cycles, channel 2  
3.2 REGISTER PROGRAMMING  
The control registers define the configuration of the CODEC and define the various modes of operation. During power-up,  
all registers will be configured with default values. The control register set consists of 16 registers. A detailed description  
is provided chapter 7.  
The control registers can be changed in the two following ways:  
1. Logic values at SPI pins during power-up  
There are 3 bits inside the registers which are configured depending on the logic values of the pins SS, SCK and MOSI  
during the power up startup sequence as described in section 2.1.10  
Value at power up  
SS = 1  
Influenced bits of registers  
Register I(0)=0  
Register I(0)=1  
comments  
MCLKDIV division by 1  
MCLKDIV division by 2  
SFS protocol  
SS = 0  
SCK = 0  
Register J(0)=1  
SCK = 1  
Register J(0)=0  
LFS protocol  
MOSI = 0  
MOSI = 1  
Register E(2) = 0  
Register E(2) = 1  
preamplifier gain x5  
preamplifier gain x20  
© Semtech 2005  
www.semtech.com  
14  
XE3005/XE3006  
Using the SPI pins at startup the user is able to configure the CODEC in the corresponding setups without  
reprogramming through the SPI interface and protocol. In best case the SPI interface can then be completely omitted and  
the 3 SPI pins can be fixed to ‘0’ or ‘1’.  
2. Programming through SPI interface after power-up  
Once the device has been powered up, the configuration registers can be modified at all times (also when the device is  
active) through the SPI interface.  
The following section describes the SPI protocol which is required to change the control registers from their default  
values.  
3.3 SERIAL PERIPHERAL INTERFACE - SPI  
The serial peripheral interface (SPI) allows the device to communicate synchronously with other devices such as a  
microprocessor or a DSP. The CODEC interface only implements a slave controller. This section describes the  
communication from master (e.g. DSP) to slave (CODEC pin MOSI) and from slave (CODEC pin MISO) to a master (e.g.  
DSP).  
Four lines are used to transmit data between the slave and master:  
-
-
-
-
MOSI (Master Out, Slave In) data from master to slave, synchronous with the SPI clock (SCK).  
MISO (Master In, Slave Out) data from slave to master, synchronous with the SPI clock (SCK).  
SCK (Serial Clock) synchronizes the data bits of MOSI and MISO.  
SS (Slave Select) Slave devices are selected by activating SS.  
3.3.1 Protocol  
During SPI communication, data is simultaneously transmitted and received.  
trecovery  
1/Fsck  
tdisable  
SS  
SCK  
MOSI  
MISO  
14  
14  
15  
15  
1
1
0
0
Figure 16: SPI signal timing  
The master puts data on the MOSI line on the falling edge of SCK; the slave reads the data on the rising edge of SCK.  
The slave puts data on the MISO line on the falling edge of SCK; the master reads the data on the rising edge of SCK.  
Transmission in either direction is by 2 bytes with MSB first.  
The SS pin should be kept low during the whole transfer of data.  
There are three timing constraints:  
-
Recovery time (t recovery) between the falling edge of SS and the falling edge of SCK.  
© Semtech 2005  
www.semtech.com  
15  
XE3005/XE3006  
-
-
Disable time (t disable) between the last rising edge of SCK and the rising edge of SS.  
SCK frequency (FSCK  
)
Delay  
t recover  
t disable  
F SCK  
Min  
125  
2 x Tmaster  
Max  
-
-
Unit  
ns  
ns  
Comments  
Tmaster = clock period of the master clock MCLK  
Fmaster = frequency of the master clock MCLK  
0.5 x Fmaster  
Hz  
3.3.2 SPI Interface Modes  
There are two SPI modes: read and write.  
3.3.2.1 Read Mode  
Read communication always takes place in pairs of bytes. A read request of 2 bytes is sent on the MOSI line. The  
content of the addressed register, one byte, is dumped on the MISO line during the transmission of the second byte on  
the MOSI. The formats of one byte are the following:  
bit  
mosi  
7
1
6
1
5
0
4
msb  
3
3
2
1
1
0
lsb  
A (4:0)  
bit  
7
6
5
4
2
0
miso  
msb  
D(7:0)  
lsb  
ss  
sck  
mosi  
miso  
0
1
1
0
A4 A3 A2 A1 A0  
1
1
request (read <address A(4:0)>)  
msb  
lsb  
read data D(7:0) of address A(4:0)  
Figure 17: SPI signal timing in read mode  
3.3.2.2 Write Mode  
Write communication always takes place in pairs of bytes. The format of the 2 bytes is:  
Bit  
mosi  
7
1
6
0
5
0
4
msb  
3
3
2
1
1
0
lsb  
A(4:0)  
Bit  
7
6
5
4
2
0
mosi  
msb  
D(7:0)  
lsb  
© Semtech 2005  
www.semtech.com  
16  
XE3005/XE3006  
ss  
sck  
lsb  
msb  
mosi  
A4  
A3 A2  
A0  
1
0
0
A1  
write data D(7:0) to address A(4:0)  
request (write to address A(4:0))  
Figure 18: SPI signal timing in write mode  
4
SANDMAN™ FUNCTION (XE3006)  
The Sandman™ function analyzes the audio signals in the ADC and DAC. Its output signals indicate whether an audio  
signal is present in the ADC or DAC or if the processed signal is just noise. The threshold or reference value between  
noise and audio signal as well as the minimum duration of an audio signal is user-programmable through the SPI  
interface. If the XE3006 CODEC is used in a system that includes a microcontroller, a DSP or an RF link, the outputs of  
the Sandman™ Interface can be used to bring these devices into standby or sleep mode whenever no audio signal is  
being processed. In this way, the Sandman™ function contributes to significant additional power savings on the system  
level outside the XE3006 chip.  
The Sandman™ Interface consists of 2 digital outputs:  
The SMAD detects whether the ADC processes an audio signal. The calculation is made with the digital data leaving  
the ADC.  
The SMDA detects whether an audio signal is processed by the DAC. The calculation is made with the digital data  
entering through the Audio Interface.  
The Sandman™ Interface is implemented for the ADC and for the DAC in an identical way. It works with a set of 4 user-  
defined parameters: off time, on-time, ADC-reference and DAC-reference. The on time and the off time are the same for  
ADC and DAC. However, the reference values for the ADC and the DAC are adjusted separately, as indicated in the  
table below.  
Input parameters  
Off-time1(7:0)  
Off-time2(15:8)  
On-time(7:0)  
ADC_reference(7:0)  
DAC_reference(7:0)  
Register  
Sandman ADC  
Sandman DAC  
L
M
N
O
P
X
X
X
X
-
X
X
X
-
X
The Sandman™ Interface (for the ADC as well as for the DAC) is configured with three parameters:  
Reference (7:0): Absolute value under which the signal is considered noise and above which the signal is  
considered to be an audio signal. The Sandman™ function is disabled (SMAD or SMDA at logic 1) if this parameter  
is zero. The ADC and the DAC have separate Reference values.  
Off-time (15:0): Time until power down. The number of sequential samples that have to be lower than the  
Reference for the power down signal to become active. The Sandman™ function is disabled (SMAD or SMDA at  
logic 1) if this parameter is zero. The ADC and DAC have one common Off-time value.  
© Semtech 2005  
www.semtech.com  
17  
XE3005/XE3006  
On-time (7:0): Time until wakeup. The number of sequential samples that have to be higher than the Reference for  
the power down signal to become inactive. The Sandman™ function is disabled (SMAD or SMDA at logic 1) if this  
parameter is zero. The ADC and DAC have one common On-time value.  
All these parameters are set in the registers L, M, N, O and P.  
Reference(7:0)  
0
On-time(7:0)  
don’t care  
0
don’t care  
1.-.255  
Off-time(15:0) Sandman (SMAD or SMDA) Comments  
don’t care  
don’t care  
0
logic 1 (disable function)  
logic 1 (disable function)  
logic 1 (disable function)  
logic 1 (signal higher than ref)  
Sandman disable  
Sandman disable  
Sandman disable  
don’t care  
don’t care  
1.-.255  
1 - 65535  
all registers zero  
time for FSYNC =  
20kHz  
corresponds to  
128.-.32640  
corresponds to corresponds to logic 0 (signal lower than ref)  
50 µs – 12 ms 50 µs - 3.2 sec  
The reference (7:0) value is related to the absolute value of the 16 bits input signal. The following format is used for the  
comparison:  
16 bit inputs data (2’s-complement) : 0111’1111’1111’1111 = 0x7FFF  
8 bit reference (unsigned) : 0111’1111’1000’0000 = 0xFF00/2  
max positive value  
reference max  
So the reference is compared to the 8 most significant bits of the absolute value of the input signal:  
reference(7:0)  
Absolute reference  
AIN (mV) if gain = 4  
AIN (mV) if gain = 20  
0
1
2
0
128  
256  
0.00  
1.10  
2.20  
0.00  
0.27  
0.55  
M
M
M
M
255  
280  
70  
255 × 128 = 32640  
The values in this table are amplitude values, RMS values can be derived by dividing the numbers by 2.  
The working mechanism of the Sandman™ function is the following:  
The incoming data is compared to the reference after each time step (1/FSYNC = 50µs if FSYNC = 20kHz).  
During the On-time phase  
If the input data is higher than the reference, a counter will be incremented otherwise the counter is reset.  
When the counter reaches the On-time value, then the SMAD or SMDA signal is activated (high level).  
During the Off-time phase  
If the input data is lower than the reference, a counter will be incremented otherwise the counter is reset.  
When the counter reaches the Off-time value, then the SMAD or SMDA signal is deactivated (low level).  
In a first approximation, the following points are recommended:  
On-time at least 1ms. If the On-time is shorter than 1 ms, the Sandman™ function becomes sensitive to spikes in  
the audio input signal AIN.  
Off-time at least 10ms, the Off-time should be longer than 1/fmin = 10ms, (code = 200). fmin is the minimum audio  
frequency = 100Hz if FSYNC = 20kHz. The value of fmin scales proportionally with the sampling frequency FSYNC. A  
high-pass filter in the ADC filters out signals below 100Hz.  
Reference should be adjusted just above the noise level.  
© Semtech 2005  
www.semtech.com  
18  
XE3005/XE3006  
The CODEC bandwidth is around 100 Hz to 10 kHz at the nominal system frequency settings (MCLK = 5 MHz, CKDIV =  
1, FSYNC = 20 kHz).  
In digital loop back mode, the data entering into the Audio Interface is not transferred to the DAC. However, the  
Sandman™ function (if activated) continues to output the SMDA signal based on the data entered into the Audio Interface  
(input terminal SDI).  
5
SPECIFICATIONS  
5.1 ABSOLUTE MAXIMUM RATINGS  
Stresses above those listed in the following table may cause permanent failure. Exposure to absolute ratings for  
extended periods may affect device reliability.  
The values are in accordance with the Absolute Maximum Rating System (IEC 134).  
All voltages are referenced to ground (VSSA and VSSD).  
Analog and digital grounds are equal (VSSA = VSSD).  
Symbol  
VDD  
Tstg  
TA  
Ves  
Ilus  
Parameter  
Conditions  
Min  
-0.3  
-65  
-20  
Max  
3.65  
150  
70  
500  
98  
Unit  
V
°C  
°C  
V
Supply voltage  
Storage temperature  
Operating free-air temperature, TA  
Electrostatic discharge protection  
Static latchup current  
1)  
2)  
2)  
10  
mA  
V
Vlud  
Dynamic latchup voltage  
50  
1) Tested according MIL883C Method 3015.6, class JEDEC 1B (Standardized Human Body Model: 100 pF, 1500 , 3  
pulses, protection related to substrate).  
2) Static and dynamic latchup values are valid at 27 °C.  
5.2 RECOMMENDED OPERATING CONDITIONS  
All voltages referenced to ground (VSSA and VSSD).  
Min  
Typ  
Max  
Unit  
Supply voltage, VDD  
1.8  
3.0  
3.6  
V
Analog signal peak input voltage, AIN (gain = 20x)  
Analog signal peak input voltage, AIN (gain = 5x)  
65  
mV  
mV  
270  
Differential output load resistance  
16  
32  
20  
Ohm  
Master clock frequency  
1.024  
33  
48  
70  
MHz  
kHz  
°C  
ADC or DAC conversion rate  
Operating free-air temperature, TA  
-20  
© Semtech 2005  
www.semtech.com  
19  
XE3005/XE3006  
5.3 ELECTRICAL CHARACTERISTICS  
The operating conditions in this section are: VDD = 3.0 V, T = 25°C.  
5.3.1 Digital Inputs and Outputs, FSYNC = 20 kHz, output not loaded  
Test  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VOH High-level output voltage, DOUT  
VOL Low-level output voltage, DOUT  
IIH High-level input current, any digital input  
IIL Low-level input current, any digital input  
IO = -360uA  
IO = 2mA  
2.4  
VDD+0.5  
V
VSSD-0.5  
0.4  
10  
10  
10  
10  
V
VIH = 3.3 V  
VIL = 0.6 V  
uA  
uA  
pF  
pF  
Ci  
Input capacitance  
Co Output capacitance  
5.3.2 ADC Dynamic Performance, FSYNC = 20 kHz  
Parameter  
Test Conditions  
Pre-amp gain = 5x  
Vin=250mV (full scale)  
Min  
Typ  
Max  
Unit  
SNR Signal-to-noise ratio  
72  
78  
0.5  
70  
10  
dB  
THD Total harmonic distortion  
1 full scale  
%
Hz  
kHz  
us  
Flo Low cut-off frequency (-3 dB), See Note 1  
Fhi High cut-off frequency (-3 dB), See Note 2  
GD Group delay  
FSYNC = 20 kHz  
FSYNC = 20 kHz  
FSYNC = 20 kHz  
60  
80  
150  
Note 1) Flo is proportional to FSYNC  
Note 2) Fhi equals FSYNC/2  
5.3.3 ADC Channel Characteristics, FSYNC = 20 kHz  
Parameter  
Test Conditions  
Pre-amp gain = 5x  
Min  
Typ  
Max  
Unit  
270  
Vip Peak input voltage (single ended)  
mV  
Pre-amp gain = 20x  
A-weighted, 100 Hz-10 kHz  
pre-amp gain = 5x  
A-weighted, 100 Hz-10 kHz  
pre-amp gain = 20x  
65  
20  
5
Vneq Equivalent input noise  
µV rms  
Pre-amp gain = 5x  
Vin=250mV (full scale)  
Dynamic range  
72  
1
78  
dB  
dB  
PSRR Power supply rejection ratio, input referred  
Up to 1 kHz  
Preamp-gain = 5x  
Preamp gain = 20x  
60  
50  
Cin Input capacitor  
pF  
200  
Rin Input resistance VIN – VSSA  
Eg gain error  
MOhm  
[%]  
VDD 1.8-3.3V  
VDD 1.8-3.3V  
VDD 1.8-3.3V  
VDD 1.8-3.3V  
+/- 0.1  
-60  
offset error  
LSB  
LSB  
LSB  
input noise  
6.7  
INL Integral non linearity  
+/- 5  
DNL Differential non linearity  
VDD 1.8-3.3V  
+/- 0.1  
LSB  
© Semtech 2005  
www.semtech.com  
20  
XE3005/XE3006  
5.3.4 DAC Dynamic Performance, load is an LC filter at 10 kHz  
FSYNC = 20 kHz, MCLK = 5 MHz, for info on the LC filter see chapter 6, Application Information.  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
SNR Signal-to-noise ratio  
Bandwidth 10 kHz  
72  
78  
dB  
THD Total harmonic distortion  
Dynamic range  
1 full scale  
0.5  
78  
%
dB  
µs  
Bandwidth 10 kHz  
FSYNC = 20 kHz  
72  
GD Group delay  
150  
5.3.5 Power Supply  
5.3.5.1 Regulated supply characteristics @ T = 25°C  
Test  
Parameter  
Min  
Typ  
Max  
Unit  
Conditions  
1µF capacitor  
390 kresistor  
VREF  
reference Voltage  
1.2  
V
VREG11  
I_vreg11  
R_vreg11  
VREG16  
I_vreg16  
regulated Voltage 1.1V  
available current  
1.1  
35  
1
V
µA  
50  
output impedance  
1.5  
kOhm  
V
regulated Voltage 1.6V  
available output current  
1µF capacitor  
1.5  
1.6  
1
mA  
dB  
VREF PSRR power supply rejection ratio, input referred  
VREG11 PSRR power supply rejection ratio, input referred  
VREG16 PSRR power supply rejection ratio, input referred  
up to 1 kHz  
up to 1 kHz  
up to 1 kHz  
60  
60  
40  
dB  
dB  
5.3.5.2 Low power mode  
Stand-by mode @ VDD = 3.0V, T = 25°C  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
ADC off, DAC off  
MCLK = 5 MHz,  
Istb1  
Istb2  
Istb3  
Supply current in standby mode  
28  
48  
20  
56  
96  
40  
µA  
ADC off, DAC off  
MCLK = 12.2880 MHz  
Supply current in standby mode  
Supply current in standby mode  
µA  
µA  
NRESET mode  
MCLK = 0  
Stand-by mode @ VDD = 1.8V, T = 25°C  
Parameter  
Test Conditions  
ADC off, DAC off  
MCLK = 5 MHz,  
ADC off, DAC off  
MCLK = 12.2880 MHz  
Min  
Typ  
25  
Max  
50  
Unit  
µA  
Istb1  
Istb2  
Istb3  
Supply current in standby mode  
Supply current in standby mode  
Supply current in standby mode  
31  
62  
µA  
NRESET mode  
MCLK = 0  
16  
32  
µA  
© Semtech 2005  
www.semtech.com  
21  
XE3005/XE3006  
5.3.5.3 Normal operation, output load consumption is not included.  
Normal operations @ VDD = 3.0V, FSYNC = 20 kHz, T = 25°C, Register C(7:0) = 0xF0  
Parameter  
Test Conditions  
Min  
Typ  
350  
240  
120  
Max  
700  
480  
240  
Unit  
µA  
ADC on, DAC on  
FSYNC = 20 kHz, no load  
IDD  
Supply current CODEC  
ADC on, DAC off  
FSYNC = 20 kHz, no load  
IADC Supply current ADC  
IDAC Supply current DAC  
µA  
ADC off, DAC on  
FSYNC = 20 kHz, no load  
µA  
Normal operations @ VDD = 3.0V, FSYNC = 48 kHz, T = 25°C, Register C(7:0) = 0xC4  
Parameter  
Test Conditions  
Min  
Typ  
860  
600  
280  
Max  
1720  
1200  
560  
Unit  
µA  
ADC on, DAC on  
FSYNC = 48 kHz, no load  
IDD  
Supply current CODEC  
ADC on, DAC off  
FSYNC = 48 kHz, no load  
IADC Supply current ADC  
IDAC Supply current DAC  
µA  
ADC off, DAC on  
FSYNC = 48 kHz, no load  
µA  
Normal operations @ VDD = 1.8V, FSYNC = 20 kHz, T = 25°C, Register C(7:0) = 0xF0  
Parameter  
Test Conditions  
Min  
Typ  
250  
200  
65  
Max  
500  
400  
130  
Unit  
µA  
ADC on, DAC on  
FSYNC = 20 kHz, no load  
IDD  
Supply current CODEC  
ADC on, DAC off  
FSYNC = 20 kHz, no load  
IADC Supply current ADC  
IDAC Supply current DAC  
µA  
ADC off, DAC on  
FSYNC = 20 kHz, no load  
µA  
Normal operations @ VDD = 1.8V, FSYNC = 48 kHz, T = 25°C, Register C(7:0) = 0xC4  
Parameter  
Test Conditions  
Min  
Typ  
625  
505  
140  
Max  
1250  
1010  
280  
Unit  
µA  
ADC on, DAC on  
FSYNC = 48 kHz, no load  
IDD  
Supply current CODEC  
ADC on, DAC off  
FSYNC = 48 kHz, no load  
IADC Supply current ADC  
IDAC Supply current DAC  
µA  
ADC off, DAC on  
FSYNC = 48 kHz, no load  
µA  
© Semtech 2005  
www.semtech.com  
22  
XE3005/XE3006  
5.3.6 Timing Requirements of serial audio interface  
Ref.  
Test  
Conditions  
Characteristics  
No. *  
Min  
Typ  
Max  
Unit  
1
1
Master Clock Frequency for MCLK = 1/ T  
MCLK Duty Cycle  
1024  
45  
5.12  
33  
55  
10  
10  
MHz  
%
Rise Time for All Digital Signals  
2
ns  
Fall Time for All Digital Signals  
3
ns  
Hold time BCLK or FSYNC high after MCLK low  
Setup time BCLK or FSYNC high to MCLK low  
Hold time BCLK or FSYNC low after MCLK low  
Setup time BCLK or FSYNC low to MCLK low  
Bit Clock Frequency for BCLK = 1 / TBCLK  
Setup time data input SDI to BCLK low  
Hold time data input SDI after BCLK low  
Delay time SDO valid after BCLK high  
Setup time data input FSYNC to BCLK low  
Hold time data input FSYNC after BCLK low  
4
T/4  
T/4  
T/4  
T/4  
ns  
5
ns  
CLoad = 10pF  
6
ns  
7
ns  
MCLK/2  
8
32xFSYNC  
MHz  
ns  
9
TBCLK/4  
TBCLK/4  
10  
11  
12  
13  
ns  
TBCLK/4  
ns  
TBCLK/4  
TBCLK/4  
ns  
ns  
*see figure 18,19 for LFS and 20, 21 for SFS  
© Semtech 2005  
www.semtech.com  
23  
XE3005/XE3006  
5.3.6.1 Timing diagram of the serial audio interface – LFS mode  
1
2
3
MCLK  
5
7
7
BCLK  
6
6
4
FSYNC  
SDI  
Figure 18: LFS, timing diagram  
MCLK  
8
BCLK  
FSYNC  
SDI  
11  
9
10  
D15 D14 D13 D12 D11 D10 D9  
D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDO  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Figure 19: LFS, zoom timing diagram  
© Semtech 2005  
www.semtech.com  
24  
XE3005/XE3006  
5.3.6.2 Timing diagram of the serial audio interface – SFS mode  
1
2
3
MCLK  
6
5
4
7
BCLK  
FSYNC  
SDI  
Figure 20: SFS, timing diagram  
MCLK  
8
BCLK  
FSYNC  
SDI  
12  
9
13  
11  
10  
D15 D14 D13 D12 D11 D10 D9  
D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDO  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Figure 21: SFS zoom timing diagram  
© Semtech 2005  
www.semtech.com  
25  
XE3005/XE3006  
5.3.7 Timing Requirements of the Serial Peripheral Interface  
Test Conditions  
Ref. No.*  
Characteristics  
Serial Clock Frequency for SCK = 1 / TSCK  
MCLK Duty Cycle  
Min  
Typ  
Max  
MCLK/2 MHz  
Unit  
1
1
2
3
4
5
6
45  
125  
2T  
TSCK/4  
TSCK/4  
TSCK/4  
55  
%
ns  
ns  
ns  
ns  
ns  
Recovery Time  
Disable Time  
CLoad = 10pF  
Setup time MISO valid to SCK high  
Hold time MISO valid after SCK high  
Delay time MOSI valid after SCK low  
* see figure 22  
SS  
2
3
1
4
SCK  
5
6
M2  
M1 M0  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D3  
D2  
D1  
D0  
MISO  
MOSI  
D7  
D6  
D5  
D4  
D2  
D1  
D0  
Figure 22: Serial Peripheral Interface timing  
© Semtech 2005  
www.semtech.com  
26  
XE3005/XE3006  
6
APPLICATION INFORMATION  
6.1 APPLICATION SCHEMATICS – XE3006  
6.1.1 Typical Application schematic  
Sandman output  
Master Clock  
MOSI  
SS  
1
MCLK  
SMAD  
SMDA  
VDD  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
2
Vcc  
SPI  
SCK  
3
4
MISO  
SDI  
0.1µF  
5
NRESET  
VSSA  
SDO  
6
Serial Audio Interface  
BCLK  
FSYNC  
AOUTP  
VDDPA  
AOUTN  
VSSPA  
VREG16  
VREF  
7
8
R
L
VSSA  
9
Vcc  
VSSD  
10  
11  
12  
2µ2F  
4µ7F  
VREG11  
AIN  
L
R
L=680µH  
R=56  
390kΩ  
1µF  
lowpass filter,  
1µF  
Bluetooth™ voice application  
MCLK = 2.048 MHz,  
div_factor =1  
GND  
Figure 23: Typical Application with 3rd order LC output Filter  
6.1.2 External components required for optimal performances  
The following minimum set-up of external components is required:  
Capacitor for Vref: 1 µF  
Resistor for Vref: 390 kΩ  
Capacitor for VREG16: 1 µF  
The low pass filter between the DAC output and the speaker depends on the CODEC settings and the speaker type.  
© Semtech 2005  
www.semtech.com  
27  
XE3005/XE3006  
7
REGISTER DESCRIPTION  
7.1 REGISTER FUNCTIONAL SUMMARY  
The following registers can be programmed by the SPI to configure the operation modes. See also section 3.2 Register  
Programming.  
Name  
Description  
Register C  
ADC current setting. The data in this register has the following  
functions:  
Adjust the ADC current for FSYNC > 20kHz  
0xF0 for FSYNC<= 20 kHz, 0xC4 for FSYNC > 20 kHz.  
Register E  
Register I  
Analog Input. The data in this register has the following functions:  
Enable/disable microphone bias source of 1.1 V  
Gain setting of pre-amplifier.  
Function enable and clock division. The data in this register has the  
following functions:  
Enable/disable Sandman function of DAC  
Enable/disable DAC channel (DAC, power amplifier)  
Enable/disable ADC channel (pre-amplifier, ADC, decimation  
filter)  
Division of master clock  
Register J  
Audio Interface Configuration. The data in this register has the  
following functions:  
Enable/disable digital loopback  
Channel select receive  
Select master / slave mode  
Output impedance  
Channel select transmit  
Select short / long frame sync  
Register L  
Register M  
Register N  
Register O  
Register P  
Sandman™ function, Off-time, low byte. The data in this register has  
the following function:  
Define Off-time (low byte) of the Sandman™ function  
Sandman™ function, Off-time, high byte. The data in this register has  
the following function:  
Define Off-time (high byte) of the Sandman™ function  
Sandman™ function, On-time. The data in this register has the  
following function:  
Define On-time of the Sandman™ function  
Sandman™ function, reference for ADC. The data in this register has  
the following function:  
Define reference amplitude for ADC for Sandman™ function  
Sandman™ function, reference for DAC. The data in this register has  
the following function:  
Define reference amplitude for DAC for Sandman™ function  
© Semtech 2005  
www.semtech.com  
28  
XE3005/XE3006  
7.2 REGISTER DEFINITIONS  
The complete register setup consists of 24 registers of 8 bits each, as shown in the table below. All registers are  
preconfigured with the default values and do not have to be programmed by the user if no changes in the setup are  
required.  
The registers C, E, I and J can be used to configure the XE3005 and XE3006 differently than the default setup.  
The registers L, M, N, O and P are related to the Sandmanfunction available in the XE3006.  
Register  
Address (hex)  
0x00  
Name  
Default value (hex)  
0x48  
A
B
C
D
E
F
G
H
I
Reserved  
Reserved  
ADC current  
Reserved  
Analog input  
Reserved  
Reserved  
Reserved  
0x01  
0x8F  
0x02  
0xF0  
0x03  
0x00  
0x04  
0x08/0x0C  
0x82  
0x05  
0x06  
0x00  
0x07  
0x00  
0x08  
Block on/off and clock division  
Audio interface configuration  
Reserved  
0x00/0x01  
0x25/0x24  
0x00  
J
0x09  
K
L
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
Sandman™ function, off-time byte 1  
Sandman™ function, off-time byte 2  
Sandman™ function, on-time  
Sandman™ function, reference for ADC  
Sandman™ function, reference for DAC  
0x00  
M
N
O
P
0x00  
0x00  
0x00  
0x00  
© Semtech 2005  
www.semtech.com  
29  
XE3005/XE3006  
Register C (7:0)  
address 0x02  
7:0  
ADC  
current  
ADC  
Default value: Description  
0xF0  
0xF0  
0xF0 for FSYNC<= 20 kHz,  
0xC4 for FSYNC > 20 kHz.  
current  
Register E (7:0)  
address 0x04  
7
ADC input  
Default value  
0x08/0x0C  
0
Description  
VMIC_EN  
Generation of the microphone supply at pin VREG11:  
1: enables VREG11  
0: disables VREG11  
6:3  
2
reserved  
PREAMP_  
GAIN  
0001  
0 or 1  
reserved  
Gain of preamplifier:  
0: 5x (270 mV peak)  
1: 20x (65 mV peak)  
The default is depending on the logic value of the pin MOSI during  
startup (see section 3.2)  
MOSI=0, default will be set to 0  
MOSI=1, default will be set to 1  
1:0  
reserved  
00  
reserved  
Register I (7:0)  
address 0x08  
block on/off and  
clock division  
Default value  
0x00/0x01  
Description  
7:4  
3
0000  
0
reserved  
0: enable  
1: disable DA converter (DAC + PA)  
EN_DAC  
EN_ADC  
2
0
0: enable  
1: disable AD converter (Preamp + ADC +  
decimator)  
1:0  
MCLKDIV  
00 or 01  
Division factor of the master clock:  
00: 1  
01: 2  
10: reserved  
11: 4  
The default is depending on the logic value of the pin SS  
during startup (see Section 3.2)  
SS=0, default will be set to 1  
SS=1, default will be set to 0  
© Semtech 2005  
www.semtech.com  
30  
XE3005/XE3006  
Register J (7:0)  
address 0x09  
Audio  
interface  
configuration  
Default Description  
value  
0x25/  
0x24  
7
6
LOOPBACK  
0
0: disable loopback, normal mode  
1: enable loopback => The CODEC connects internally the  
ADC output to DAC input  
0: Receive audio data in the first 16-bit channel after the  
frame synchronization.  
RX_FIRST_  
SECOND  
0
1: Receive audio data in the second 16-bit channel after the  
frame synchronization.  
5
4
reserved  
MASTER  
1
0
reserved  
1: enable audio interface in master mode (only for LFS)  
0: enable audio interface in slave mode (LFS, LFS  
Optimization or SFS)  
3
SDO_HI_EN  
0
0: SDO is continuously in output mode for both data  
channels.  
1: SDO is in output mode when transmitting a channel with  
data (J(2) or J(1)=1).  
It is switched automatically into high-impedance state  
when a channel with no data is transmitted (J(2) or  
J(1)=0).  
2
1
0
TX_FIRST  
TX_SECOND  
PROTOCOL  
1
0
1: transmit the audio data in the first 16-bit channel after the  
frame synchronization.  
0: do no transmit data in the first channel.  
1: transmit the audio data in the second 16-bit channel after  
the frame synchronization.  
0: do no transmit data in the second channel.  
1: Short Frame Synchronization mode (slave mode).  
0: Long Frame Synchronization mode (master or slave  
mode).  
0 or 1  
The default is depending on the logic value of the pin SCK during startup  
(see Section 3.2)  
SCK=0, default will be set to 1  
SCK=1, default will be set to 0  
Register L (7:0)  
address 0x0B  
Sandman™ function,  
off-time,  
Default  
value 0x00  
Description  
least significant byte  
7:0  
SM_OFF_LSB  
00000000 Least significant byte of the off-time of  
the Sandman™ function  
Register M (7:0)  
address 0x0C  
Sandman™ function,  
off-time,  
Default  
value 0x00  
Description  
most significant byte  
7:0  
SM_OFF_MSB  
00000000 Most significant byte of the off-time of  
the Sandman™ function  
Register N (7:0)  
address 0x0D  
7:0  
Sandman™ function,  
on-time  
Default  
value 0x00  
Description  
SM_ON  
00000000 On-time of the Sandman™ function  
© Semtech 2005  
www.semtech.com  
31  
XE3005/XE3006  
Register O (7:0)  
address 0x0E  
7:0  
Sandman™ function,  
reference for ADC  
SMAD_REF  
Default  
value 0x00  
Description  
00000000 Reference amplitude for ADC for  
Sandman™ function  
Register P (7:0)  
address 0x0F  
7:0  
Sandman™ function,  
reference for DAC  
SMDA _REF  
Default  
value 0x00  
Description  
00000000 Reference amplitude for DAC for  
Sandman™ function  
© Semtech 2005  
www.semtech.com  
32  
XE3005/XE3006  
8
MECHANICAL INFORMATION  
8.1 XE3005 PACKAGE SIZE (TSSOP20)  
D
E
A
X
c
H
v
M
A
y
E
Z
11  
20  
Q
A
2
(A )  
3
A
A
1
pin 1 index  
L
p
L
1
1
0
detail X  
w
M
b
p
e
DIMENSIONS (mm are the original dimensions)  
A
UNIT  
A
A
A
b
c
D
E
e
H
L
L
v
w
y
Q
1
2
3
p
E
p
Z
max.  
8o  
0o  
0.15  
0.05  
0.95  
0.80  
0.30  
0.19  
0.2  
0.1  
6.6  
6.4  
4.5  
4.3  
6.6  
6.2  
0.75  
0.50  
0.4  
0.3  
0.5  
0.2  
mm  
1.10  
0.65  
0.25  
1.0  
0.2  
0.13  
0.1  
Figure 24: TSSOP20  
Plastic Thin Shrink Small Outline Package, 20 leads, body width: 4.4 mm  
© Semtech 2005  
www.semtech.com  
33  
XE3005/XE3006  
8.2 XE3005 PACKAGE SIZE (5X4 UCSP®)  
PACKAGE OUTLINE of the XE3005 uCSP®  
SIDE VIEW  
XEMICS  
XE3005  
TOP VIEW  
BOTTOM VIEW  
Nominal dimensions in mm  
b
D
D1  
E
E1  
e1  
SD  
SE  
A
A1  
A2  
e2  
0.325  
± 0.075 ± 0.125  
0
2.745  
± 0.075  
3.225  
± 0.125  
2.40  
0.37  
1.95  
0.65  
< 0.8  
0.31  
0.60  
0.46 max  
Figure 25: 5x4 uCSP®  
Ultra Chip Scale Package, 5 x 4 balls array.  
© Semtech 2005  
www.semtech.com  
34  
XE3005/XE3006  
8.3 XE3006 PACKAGE SIZE (TSSOP24)  
D
E
A
X
c
H
v
M
A
y
E
Z
13  
24  
Q
A
2
(A )  
3
A
A
1
pin 1 index  
L
p
L
1
1
2
detail X  
w
M
b
p
e
DIMENSIONS (mm are the originladimensions)  
A
Q
y
UNIT  
A
A
A
b
c
D
E
e
H
L
L
v
w
1
2
3
p
E
p
Z
max.  
8o  
0o  
0.15  
0.05  
0.95  
0.80  
0.30  
0.19  
0.2  
0.1  
7.9  
7.7  
4.5  
4.3  
6.6  
6.2  
0.75  
0.50  
0.4  
0.3  
0.5  
0.2  
mm  
1.10  
0.65  
0.25  
1.0  
0.2  
0.13  
0.1  
Figure 26: TSSOP24  
Plastic Thin Shrink Small Outline Package with 24 leads and a body width of 4.4 mm.  
© Semtech 2005  
www.semtech.com  
35  
XE3005/XE3006  
9
XE3005 LAND PATTERN RECOMMENDATIONS (5X4 UCSP®)  
PAD  
PASTE_MASK  
Ø 0.25  
Ø 0.25  
SOLDER_MASK Ø 0.35  
LAND PATTERN RECOMMENDATION  
for the XE3005 uCSP®  
PLACEMENT OUTLINE  
Nominal dimensions in mm  
D
E
e1  
SD  
SE  
e2  
3.35  
0.65  
0.325  
0
0.60  
2.82  
Figure 27: Land pattern recommendations (5x4 uCSP®)  
© Semtech 2005  
www.semtech.com  
36  
XE3005/XE3006  
© Semtech 2005  
All rights reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The  
information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and  
may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof  
does not convey nor imply any license under patent or other industrial or intellectual property rights. Semtech. assumes no  
responsibility or liability whatsoever for any failure or unexpected operation resulting from misuse, neglect improper installation,  
repair or improper handling or unusual physical or electrical stress including, but not limited to, exposure to parameters beyond the  
specified maximum ratings or operation outside the specified range.  
SEMTECH PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED OR WARRANTED TO BE SUITABLE FOR USE IN  
LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF SEMTECH  
PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE UNDERTAKEN SOLELY AT THE CUSTOMER’S OWN RISK.  
Should a customer purchase or use Semtech products for any such unauthorized application, the customer shall indemnify and  
hold Semtech and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs damages and  
attorney fees which could arise.  
Contact Information  
Semtech Corporation  
Wireless and Sensing Products Division  
200 Flynn Road, Camarillo, CA 93012  
Phone (805) 498-2111 Fax : (805) 498-3804  
© Semtech 2005  
www.semtech.com  
37  

相关型号:

XE3006I019

Low-Power Audio CODEC
ETC

XE330M10

Aluminum Electrolytic Capacitor, Polarized, Aluminum, 10V, 20% +Tol, 20% -Tol, 330uF
YSTONE

XE330M100

Aluminum Electrolytic Capacitor, Polarized, Aluminum, 100V, 20% +Tol, 20% -Tol, 330uF
YSTONE

XE330M35

Aluminum Electrolytic Capacitor, Polarized, Aluminum, 35V, 20% +Tol, 20% -Tol, 330uF
YSTONE

XE3314B

Telecommunication IC
ETC

XE3314C

Telecommunication IC
ETC

XE3314L

Dual In-Line 2.75 in by 1.38 in by 0.42 in.
ETC

XE332-Z

NOISE SUPPRESSION CAPACITOR
OKAYA

XE333-Z

NOISE SUPPRESSION CAPACITOR
OKAYA

XE334-Z

NOISE SUPPRESSION CAPACITOR
OKAYA

XE3386L

Compact 33,600 BPS Data and Fax Modem
ETC

XE33M450

Aluminum Electrolytic Capacitor, Polarized, Aluminum, 450V, 20% +Tol, 20% -Tol, 33uF
YSTONE