SGM8622XS

更新时间:2024-09-18 06:18:38
品牌:SGMICRO
描述:250レA, 3MHz, Rail-to-Rail I/O CMOS Operational Amplifier

SGM8622XS 概述

250レA, 3MHz, Rail-to-Rail I/O CMOS Operational Amplifier 250レA,为3MHz ,轨到轨输入/输出CMOS运算放大器

SGM8622XS 数据手册

通过下载SGM8622XS数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
SGM8621  
SGM8622  
SGM8623  
SGM8624  
250µA, 3MHz, Rail-to-Rail I/O  
CMOS Operational Amplifier  
FEATURES  
PRODUCT DESCRIPTION  
Low Cost  
TheSGM8621(single), SGM8622 (dual), SGM8623 (single  
with shutdown) and SGM8624 (quad) are low noise, low  
voltage, and low power operational amplifiers, that can  
be designed into a wide range of applications. The  
SGM8621/2/3/4 have a high gain-bandwidth product of  
3MHz, a slew rate of 1.7V/µs, and a quiescent current of  
250µA/amplifier at 5V. The SGM8623 has a power-down  
disable feature that reduces the supply current to  
150nA.  
Rail-to-Rail Input and Output  
0.7mV Typical VOS  
High Gain-Bandwidth Product: 3MHz  
High Slew Rate: 1.7V/µs  
Settling Time to 0.1% with 2V Step: 2.1 µs  
Overload Recovery Time: 1µs  
Low Noise : 12 nV/  
Hz  
Operates on 2.5 V to 5.5V Supplies  
Input Voltage Range = - 0.1 V to +5.6 V with VS = 5.5 V  
Low Power  
250µA/Amplifier Typical Supply Current  
SGM8623 150nA when Disabled  
Small Packaging  
The SGM8621/2/3/4 are designed to provide optimal  
performance in low voltage and low noise systems.  
They provide rail-to-rail output swing into heavy loads.  
The input common-mode voltage range includes  
ground, and the maximum input offset voltage is 3mV  
for SGM8621/2/3/4. They are specified over the extended  
industrial temperature range (40°C to +125°C). The  
operating range is from 2.5V to 5.5V.  
SGM8621 Available in SC70-5, SOT23-5 and SO-8  
SGM8622 Available in MSOP-8 and SO-8  
SGM8623 Available in SOT23-6and SO-8  
SGM8624 Available in TSSOP-16 and SO-16  
The single version, SGM8621/8623, is available in SC70-5,  
SO-8 and SOT23-5(6) packages. The dual version  
SGM8622 is available in SO-8 and MSOP-8 packages.  
The quad version SGM8624 is available in SO-16 and  
TSSOP-16 packages.  
PIN CONFIGURATIONS (Top View)  
SGM8621  
SGM8621/8623  
OUT  
-VS  
+VS  
-IN  
1
2
5
4
DISABLE  
8
7
6
5
NC  
-IN  
+IN  
-VS  
1
2
3
4
(SGM8623 ONLY)  
+VS  
OUT  
NC  
3
+IN  
APPLICATIONS  
Sensors  
Audio  
Active Filters  
A/D Converters  
Communications  
Test Equipment  
Cellular and Cordless Phones  
Laptops and PDAs  
Photodiode Amplification  
Battery-Powered Instrumentation  
SOT23-5 /SC70-5  
NC = NO CONNECT  
SO-8  
SGM8623  
OUT  
-VS  
6
5
4
+VS  
1
2
3
SGM8624  
DISABLE  
-IN  
16  
1
OUT D  
-IND  
OUT A  
-IN A  
+IN  
2
3
4
5
6
15  
14  
SOT23-6  
+IN A  
+VS  
+IND  
SGM8622  
13 -VS  
8
7
6
5
+VS  
OUTA  
1
2
3
12 +INC  
+INB  
OUT B  
-IN B  
+IN B  
-IN A  
+IN A  
-VS  
11  
-INC  
-INB  
OUT B  
NC  
OUT C  
NC  
7
8
10  
9
4
NC = NO CONNECT  
TSSOP-16 / SO-16  
SO-8 / MSOP-8  
Shengbang Microelectronics Co, Ltd  
Tel: 86/451/84348461  
REV. B  
www.sg-micro.com  
ELECTRICAL CHARACTERISTICS :VS = +5V  
(At TA = +25,VCM = Vs/2, RL = 600Ω, unless otherwise noted)  
SGM8621/2/3/4  
MIN/MAX OVER TEMPERATURE  
TYP  
PARAMETER  
CONDITION  
0to -40℃  
-40to  
125℃  
MIN/  
+25℃  
+25℃  
70℃  
to 85℃  
UNITS MAX  
INPUT CHARACTERISTICS  
Input Offset Voltage (VOS  
Input Bias Current (IB)  
)
0.7  
1
1
3
3.1  
3.3  
3.5  
mV  
pA  
pA  
V
dB  
dB  
dB  
dB  
µV/  
MAX  
TYP  
TYP  
TYP  
MIN  
MIN  
MIN  
MIN  
TYP  
Input Offset Current (IOS  
)
Common-Mode Voltage Range (VCM  
Common-Mode Rejection Ratio(CMRR) VS = 5.5V, VCM = - 0.1V to 4 V  
VS = 5.5V, VCM = - 0.1V to 5.6 V  
)
VS = 5.5V  
-0.1 to +5.6  
90  
75  
66  
92  
74  
65  
90  
99  
73  
65  
89  
98  
73  
64  
78  
82  
92  
Open-Loop Voltage Gain( AOL  
)
RL = 600,Vo = 0.15V to 4.85V  
RL =10K,Vo = 0.05V to 4.95V  
100  
110  
2.7  
100  
Input Offset Voltage Drift (VOS/T)  
OUTPUT CHARACTERISTICS  
Output Voltage Swing from Rail  
RL = 600Ω  
RL = 10KΩ  
0.1  
0.015  
48  
V
V
mA  
TYP  
TYP  
MIN  
TYP  
Output Current (IOUT  
)
45  
42  
40  
30  
Closed-Loop Output Impedance  
F = 100KHz, G = +1  
2.6  
POWER-DOWN DISABLE  
Turn-On Time  
Turn-Off Time  
6.2  
1.4  
ns  
ns  
V
TYP  
TYP  
MAX  
MIN  
DISABLE  
Voltage-Off  
0.8  
2
DISABLE  
Voltage-On  
V
POWER SUPPLY  
Operating Voltage Range  
2.5  
5.5  
2.5  
5.5  
2.5  
5.5  
2.5  
5.5  
V
V
MIN  
MAX  
Power Supply Rejection Ratio (PSRR)  
Vs = +2.5 V to + 5.5 V  
VCM = (-VS) + 0.5V  
94  
250  
79  
300  
78  
345  
77  
350  
76  
380  
dB  
µA  
MIN  
MAX  
Quiescent Current/ Amplifier (IQ)  
Supply Current when Disabled  
(SGM8623 only)  
I
OUT = 0  
150  
nA  
MAX  
DYNAMIC PERFORMANCE  
Gain-Bandwidth Product (GBP)  
Phase Margin(φO)  
Full Power Bandwidth(BWP)  
Slew Rate (SR)  
RL = 10KΩ  
3
MHz  
degrees TYP  
KHz  
V/µs  
µs  
TYP  
67  
50  
1.7  
2.1  
1
1% distortion, RL = 600Ω  
G = +1 , 2V Step, RL = 10KΩ  
G = +1, 2 V Step, RL = 600Ω  
TYP  
TYP  
TYP  
TYP  
Settling Time to 0.1%( tS)  
Overload Recovery Time  
VIN ·Gain = Vs, RL = 600Ω  
µs  
NOISE PERFORMANCE  
Voltage Noise Density (en)  
Current Noise Density( in)  
f = 1kHz  
f = 1kHz  
12  
3
nV/  
fA/  
TYP  
TYP  
Hz  
Hz  
Specifications subject to change without notice.  
SGM8621/2/3/4  
PACKAGE/ORDERING INFORMATION  
ORDER  
NUMBER  
PACKAGE  
DESCRIPTION  
PACKAGE  
OPTION  
MARKING  
INFORMATION  
MODEL  
SGM8621XC5/TR  
SGM8621XN5/TR  
SGM8621XS/TR  
SGM8622XMS/TR  
SGM8622XS/TR  
SGM8623XN6/TR  
SGM8623XS/TR  
SGM8624XS/TR  
SGM8624XTS  
SC70-5  
SOT23-5  
SO-8  
Tape and Reel, 3000  
Tape and Reel, 3000  
Tape and Reel, 2500  
Tape and Reel, 3000  
Tape and Reel, 2500  
Tape and Reel, 3000  
Tape and Reel, 2500  
Tape and Reel, 2500  
Tape and Reel, 3000  
8621  
SGM8621  
8621  
SGM8621XS  
SGM8622XMS  
SGM8622XS  
8623  
MSOP-8  
SO-8  
SGM8622  
SGM8623  
SGM8624  
SOT23-6  
SO-8  
SGM8623XS  
SGM8624XS  
SGM8624XTS  
SO-16  
TSSOP-16  
CAUTION  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage, V+ to V- ............................................ 7.5 V  
Common-Mode Input Voltage  
This integrated circuit can be damaged by ESD.  
Shengbang Micro-electronics recommends that all  
integrated circuits be handled with appropriate  
precautions. Failure to observe proper handling and  
installation procedures can cause damage.  
.................................... (–V  
S
) – 0.5 V to (+V ) +0.5V  
S
Storage Temperature Range..................... –65℃ to +150℃  
Junction Temperature.................................................160℃  
Operating Temperature Range.................–55to +150℃  
ESD damage can range from subtle performance  
degradation to complete device failure. Precision  
integrated circuits may be more susceptible to  
damage because very small parametric changes could  
cause the device not to meet its published  
specifications.  
Package Thermal Resistance @ T = 25  
A
SC70-5, θJA................................................................ 333/W  
SOT23-5, θJA.............................................................. 190/W  
SOT23-6, θJA.............................................................. 190/W  
SO-8, θJA......................................................................125/W  
MSOP-8, θJA.............................................................. 216/W  
SO-16, θJA..................................................................... 82/W  
TSSOP-16, θJA............................................................ 105/W  
Lead Temperature Range (Soldering 10 sec)  
.....................................................260℃  
ESD Susceptibility  
HBM................................................................................1500V  
MM....................................................................................400V  
NOTES  
1. Stresses above those listed under Absolute Maximum  
Ratings may cause permanent damage to the device. This is  
a stress rating only; functional operation of the device at  
these or any other conditions above those indicated in the  
operational section of this specification is not implied.  
Exposure to absolute maximum rating conditions for  
extended periods may affect device reliability.  
SGM8621/2/3/4  
TYPICAL PERFORMANCE CHARACTERISTICS  
(At TA = +25,VCM = Vs/2, RL = 600, unless otherwise noted)  
Closed-Loop Output Voltage Swing  
Output Impedance vs.Frequency  
6
5
4
3
2
1
0
140  
120  
100  
80  
Vs=5V  
Vs=5V  
VIN =4.9VP-P  
TA =25℃  
RL =10KΩ  
G=1  
G =100  
60  
G =10  
40  
G =1  
20  
0
0.1  
1
10 100  
Frequency(kHz)  
1000  
10000  
10  
100  
1000  
10000  
Frequency(kHz)  
Positive Overload Recovery  
Vs = ±2.5V  
VIN = 50mV  
RL = 620  
G = 100  
Negative Overload Recovery  
Vs = ±2.5V  
VIN = 50mV  
RL = 620Ω  
G = 100  
2.5V  
2.5V  
0V  
0V  
0V  
0V  
-50mV  
-50mV  
Time(5µs/div)  
Time(1µs/div)  
Large-Signal Step Response  
Small-Signal Step Response  
Vs = 5V  
G = +1  
CL = 100pF  
RL = 620Ω  
Vs = 5V  
G = +1  
CL = 100pF  
RL = 620Ω  
Time(100µs/div)  
Time(100µs/div)  
SGM8621/2/3/4  
TYPICAL PERFORMANCE CHARACTERISTICS  
(At TA = +25,VCM = Vs/2, RL = 600, unless otherwise noted)  
CMRR vs.Frequency  
PSRR vs.Frequency  
120  
100  
80  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
Vs=5V  
Vs=5V  
60  
40  
20  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
Frequency(kHz)  
Frequency(kHz)  
Small-Signal Overshoot vs.Load Capacitance  
Channel Separation vs.Frequency  
70  
60  
50  
40  
30  
20  
10  
0
140  
130  
120  
110  
100  
90  
Vs=5V  
RL =10kΩ  
TA =25℃  
Vs=5V  
RL =620Ω  
TA =25℃  
G=1  
G=1  
+OS  
-OS  
80  
1
10  
100  
Load Capacitance(pF)  
1000  
10000  
0.1  
1
10  
100  
1000  
Frequency(kHz)  
PSRR vs.Temperature  
CMRR vs.Temperature  
120  
120  
VS = 5.5V  
VS = 2.5V to 5.5V  
110  
100  
90  
110  
100  
90  
VCM = - 0.1V to 4 V  
80  
80  
VCM = - 0.1V to 5.6V  
70  
70  
60  
60  
-50 -30 -10 10 30 50 70 90 110 130  
Temperature(℃)  
-50 -30 -10 10 30 50 70 90 110 130  
Temperature(℃)  
SGM8621/2/3/4  
TYPICAL PERFORMANCE CHARACTERISTICS  
(At TA = +25,VCM = Vs/2, RL = 600, unless otherwise noted)  
Open-Loop Gain vs.Temperature  
Supply Current vs.Temperature  
120  
110  
100  
90  
350  
325  
300  
275  
250  
225  
200  
175  
150  
RL=10KΩ  
RL=600Ω  
VS = 2.5V  
VS = 3V  
80  
VS = 5V  
70  
-50 -30 -10 10 30 50 70 90 110 130  
Temperature(℃)  
-50 -30 -10 10 30 50 70 90 110 130  
Temperature(℃)  
Output Voltage Swing vs.Output Current  
Sourcing Current  
Shutdown Current vs.Temperature  
5
4
3
2
1
0
210  
180  
150  
120  
90  
VS = 5V  
135℃  
-50℃  
25℃  
VS = 5V  
135℃  
VS = 3V  
25℃  
-50℃  
60  
VS = 2.5V  
30  
Sinking Current  
0
-50 -30 -10 10 30 50 70 90 110 130  
Temperature(℃)  
0
10  
20  
30  
40  
Output Current(mA)  
50  
60  
70  
Output Voltage Swing vs.Output Current  
Sourcing Current  
Closed-Loop Output Voltage Swing  
3
2
1
0
3
2.5  
2
VS = 3V  
1.5  
1
135℃  
-50℃  
25℃  
Vs=2.7V  
VIN =2.6VP-P  
TA =25℃  
RL =10KΩ  
G=1  
0.5  
0
Sinking Current  
0
10  
20  
30  
40  
50  
10  
100  
1000  
10000  
Frequency(kHz)  
Output Current(mA)  
SGM8621/2/3/4  
TYPICAL PERFORMANCE CHARACTERISTICS  
(At TA = +25,VCM = Vs/2, RL = 600, unless otherwise noted)  
Output Impedance vs.Frequency  
Small-Signal Overshoot vs.Load Capacitance  
140  
120  
100  
80  
70  
60  
50  
40  
30  
20  
10  
0
Vs=2.7V  
Vs=2.7V  
RL =10kΩ  
TA =25℃  
G=1  
+OS  
-OS  
60  
G =100  
G =10  
40  
G =1  
20  
0
0.1  
1
10 100  
Frequency(kHz)  
1000  
10000  
1
10  
100  
Load Capacitance(pF)  
1000  
10000  
Input Voltage Noise Spectral Density  
vs.Frequency  
Channel Separation vs.Frequency  
1000  
140  
130  
120  
110  
100  
90  
Vs=5V  
Vs=2.7V  
RL =620Ω  
TA =25℃  
G=1  
100  
80  
10  
0.1  
1
10  
100  
1000  
1
10  
100  
1000  
10000  
Frequency(kHz)  
Frequency(Hz)  
Large-Signal Step Response  
Small-Signal Step Response  
Vs = 2.7V  
G = +1  
CL = 100pF  
RL = 620Ω  
Vs = 2.7V  
G = +1  
CL = 100pF  
RL = 620Ω  
Time(100µs/div)  
Time(100µs/div)  
SGM8621/2/3/4  
TYPICAL PERFORMANCE CHARACTERISTICS  
(At TA = +25,VCM = Vs/2, RL = 600, unless otherwise noted)  
Offset Voltage Production Distribution  
35  
Typical production  
distribution of  
packaged units.  
30  
25  
20  
15  
10  
5
0
Offset Voltage(mV)  
SGM8621/2/3/4  
Power-Supply Bypassing and Layout  
APPLICATION NOTES  
Driving Capacitive Loads  
The SGM862x family operates from either a single +2.5V to  
+5.5V supply or dual ±1.25V to ±2.75V supplies. For  
single-supply operation, bypass the power supply VDD with a  
0.1µF ceramic capacitor which should be placed close to the  
VDD pin. For dual-supply operation, both the VDD and the VSS  
supplies should be bypassed to ground with separate 0.1µF  
The SGM862x can directly drive 1000pF in unity-gain without  
oscillation. The unity-gain follower (buffer) is the most sensitive  
configuration to capacitive loading. Direct capacitive loading  
reduces the phase margin of amplifiers and this results in  
ringing or even oscillation. Applications that require greater  
capacitive drive capability should use an isolation resistor  
between the output and the capacitive load like the circuit in  
Figure 1. The isolation resistor RISO and the load capacitor CL  
form a zero to increase stability. The bigger the RISO resistor  
value, the more stable VOUT will be. Note that this method  
results in a loss of gain accuracy because RISO forms a voltage  
ceramic capacitors. 2.2µF tantalum capacitor can be added for  
better performance.  
Good PC board layout techniques optimize performance by  
decreasing the amount of stray capacitance at the op amp’s  
inputs and output. To decrease stray capacitance, minimize  
trace lengths and widths by placing external components as  
close to the device as possible. Use surface-mount  
components whenever possible.  
divider with the RLOAD  
.
For the operational amplifier, soldering the part to the board  
directly is strongly recommended. Try to keep the high  
frequency big current loop area small to minimize the EMI  
(electromagnetic interfacing).  
RISO  
SGM8621  
VOUT  
VIN  
CL  
VDD  
10µF  
VDD  
10µF  
0.1µF  
Figure 1. Indirectly Driving Heavy Capacitive Load  
0.1µF  
An improvement circuit is shown in Figure 2. It provides DC  
accuracy as well as AC stability. RF provides the DC accuracy  
by connecting the inverting signal with the output. CF and RIso  
serve to counteract the loss of phase margin by feeding the  
high frequency component of the output signal back to the  
amplifier’s inverting input, thereby preserving phase margin in  
the overall feedback loop.  
Vn  
Vp  
VOUT  
Vn  
Vp  
SGM8621  
VOUT  
SGM8621  
10µF  
CF  
0.1µF  
VSS(GND)  
RF  
RISO  
SGM8621  
VOUT  
VSS  
VIN  
CL  
RL  
Figure 3. Amplifier with Bypass Capacitors  
Figure 2. Indirectly Driving Heavy Capacitive Load with DC  
Accuracy  
Grounding  
A ground plane layer is important for SGM862x circuit design.  
The length of the current path speed currents in an inductive  
ground return will create an unwanted voltage noise. Broad  
ground plane areas will reduce the parasitic inductance.  
For no-buffer configuration, there are two others ways to  
increase the phase margin: (a) by increasing the amplifier’s  
gain or (b) by placing a capacitor in parallel with the feedback  
resistor to counteract the parasitic capacitance associated with  
inverting node.  
Input-to-Output Coupling  
To minimize capacitive coupling, the input and output signal  
traces should not be parallel. This helps reduce unwanted  
positive feedback.  
SGM8621/2/3/4  
Typical Application Circuits  
C
Differential Amplifier  
R2  
The circuit shown in Figure 4 performs the difference function.  
If the resistors ratios are equal ( R4 / R3 = R2 / R1 ), then  
VOUT = ( Vp – Vn ) × R2 / R1 + Vref.  
R1  
VIN  
VOUT  
SGM8621  
R2  
R1  
Vn  
VOUT  
R3=R1//R2  
SGM8621  
Vp  
R3  
Figure 6. Low Pass Active Filter  
R4  
Vref  
Figure 4. Differential Amplifier  
Instrumentation Amplifier  
The circuit in Figure 5 performs the same function as that in  
Figure 4 but with the high input impedance.  
R2  
R1  
SGM8621  
Vn  
SGM8621  
VOUT  
Vp  
R3  
R4  
SGM8621  
Vref  
Figure 5. Instrumentation Amplifier  
Low Pass Active Filter  
The low pass filter shown in Figure 6 has a DC gain of (-R2/R1)  
and the –3dB corner frequency is 1/2πR2C. Make sure the filter  
is within the bandwidth of the amplifier. The Large values of  
feedback resistors can couple with parasitic capacitance and  
cause undesired effects such as ringing or oscillation in  
high-speed amplifiers. Keep resistors value as low as possible  
and consistent with output loading consideration.  
10  
SGM8621/2/3/4  
PACKAGE OUTLINE DIMENSIONS  
SC70-5  
D
e1  
θ
Dimensions  
Dimensions  
In Inches  
Symbol  
In Millimeters  
e
Min  
0.900  
0.000  
0.900  
0.150  
0.080  
Max  
1.100  
0.100  
1.000  
0.350  
0.150  
Min  
0.035  
0.000  
0.035  
0.006  
0.003  
Max  
0.043  
0.004  
0.039  
0.014  
0.006  
A
A1  
A2  
b
c
D
E
E1  
e
2.000  
1.150  
2.150  
2.200  
1.350  
2.450  
0.079  
0.045  
0.085  
0.087  
0.053  
0.096  
b
0.20  
C
0.650TYP  
0.026TYP  
e1  
L
1.200  
1.400  
0.047  
0.055  
0.525REF  
0.021REF  
L1  
θ
0.260  
0°  
0.460  
8°  
0.010  
0°  
0.018  
8°  
11  
SGM8621/2/3/4  
PACKAGE OUTLINE DIMENSIONS  
SOT23-5  
D
θ
Dimensions  
Dimensions  
In Inches  
0.20  
0
Symbol  
In Millimeters  
b
Min  
1.050  
0.000  
1.050  
0.300  
0.100  
2.820  
1.500  
2.650  
Max  
1.250  
0.100  
1.150  
0.400  
0.200  
3.020  
1.700  
2.950  
Min  
0.041  
0.000  
0.041  
0.012  
0.004  
0.111  
0.059  
0.104  
Max  
0.049  
0.004  
0.045  
0.016  
0.008  
0.119  
0.067  
0.116  
A
A1  
A2  
b
c
D
e
E
E1  
C
e1  
e
0.950TYP  
0.037TYP  
e1  
L
1.800  
2.000  
0.071  
0.028REF  
0.079  
0.700REF  
L1  
θ
0.300  
0°  
0.600  
8°  
0.012  
0°  
0.024  
8°  
12  
SGM8621/2/3/4  
PACKAGE OUTLINE DIMENSIONS  
SOT23-6  
Dimensions  
Dimensions  
In Inches  
D
e1  
Symbol  
In Millimeters  
θ
Min  
1.050  
0.000  
1.050  
0.300  
0.100  
2.820  
1.500  
2.650  
Max  
1.250  
0.100  
1.150  
0.400  
0.200  
3.020  
1.700  
2.950  
Min  
0.041  
0.000  
0.041  
0.012  
0.004  
0.111  
0.059  
0.104  
Max  
0.049  
0.004  
0.045  
0.016  
0.008  
0.119  
0.067  
0.116  
0.20  
e
0
A
A1  
A2  
b
c
D
E
E1  
e
b
C
0.950TYP  
0.037TYP  
e1  
L
1.800  
2.000  
0.071  
0.028REF  
0.079  
0.700REF  
L1  
θ
0.300  
0°  
0.600  
8°  
0.012  
0°  
0.024  
8°  
13  
SGM8621/2/3/4  
PACKAGE OUTLINE DIMENSIONS  
SO-8  
D
Dimensions  
Dimensions  
In Inches  
C
Symbol  
In Millimeters  
Min  
1.350  
0.100  
1.350  
0.330  
0.190  
4.780  
3.800  
5.800  
Max  
1.750  
0.250  
1.550  
0.510  
0.250  
5.000  
4.000  
6.300  
Min  
0.053  
0.004  
0.053  
0.013  
0.007  
0.188  
0.150  
0.228  
Max  
0.069  
0.010  
0.061  
0.020  
0.010  
0.197  
0.157  
0.248  
A
A1  
A2  
B
C
D
E
E1  
e
θ
e
1.270TYP  
0.050TYP  
B
L
θ
0.400  
0°  
1.270  
8°  
0.016  
0°  
0.050  
8°  
14  
SGM8621/2/3/4  
PACKAGE OUTLINE DIMENSIONS  
MSOP-8  
C
b
Dimensions  
Dimensions  
In Inches  
Symbol In Millimeters  
Min  
0.800  
0.000  
0.760  
Max  
1.200  
0.200  
0.970  
Min  
0.031  
0.000  
0.030  
Max  
0.047  
0.008  
0.038  
A
A1  
A2  
b
0.30 TYP  
0.15 TYP  
2.900 3.100  
0.65 TYP  
0.012 TYP  
0.006 TYP  
0.114 0.122  
0.026 TYP  
c
θ
D
e
e
E
2.900  
3.100  
5.100  
0.650  
6°  
0.114  
0.122  
0.201  
0.026  
6°  
A2  
A
E1  
L
4.700  
0.410  
0°  
0.185  
0.016  
0°  
θ
D
15  
SGM8621/2/3/4  
PACKAGE OUTLINE DIMENSIONS  
SO-16  
D
C
Dimensions  
Dimensions  
In Inches  
Symbol  
In Millimeters  
Min  
1.350  
0.100  
1.350  
0.330  
0.170  
9.800  
3.800  
5.800  
Max  
1.750  
0.250  
1.550  
0.510  
0.250  
10.20  
4.000  
6.200  
Min  
0.053  
0.004  
0.053  
0.013  
0.007  
0.386  
0.150  
0.228  
Max  
0.069  
0.010  
0.061  
0.020  
0.010  
0.402  
0.157  
0.244  
A
A1  
A2  
b
c
θ
D
E
e
E1  
e
1.270 (BSC)  
0.050 (BSC)  
L
θ
0.400  
0°  
1.270  
8°  
0.016  
0°  
0.050  
8°  
b
16  
SGM8621/2/3/4  
PACKAGE OUTLINE DIMENSIONS  
TSSOP-16  
A
b
Dimensions  
Dimensions  
In Inches  
Symbol In Millimeters  
Min  
4.900  
4.300  
0.190  
0.090  
6.250  
Max  
5.100  
4.500  
0.300  
0.200  
6.550  
1.100  
1.000  
0.150  
Min  
0.193  
0.169  
0.007  
0.004  
0.246  
Max  
0.201  
0.177  
0.012  
0.008  
0.258  
0.043  
0.039  
0.006  
D
E
b
PIN #1 IDENT.  
c
A2  
A
E1  
A
e
A2  
A1  
e
0.800  
0.020  
0.031  
0.001  
C
θ
0.65 (BSC)  
0.026 (BSC)  
L
H
θ
0.500  
0.700  
0.020  
0.028  
7°  
A
0.25(TYP)  
0.01(TYP)  
D
1°  
7°  
1°  
H
A1  
17  
SGM8621/2/3/4  
REVISION HISTORY  
Location  
Page  
11/06— Data Sheet changed from REV.A to REV.B  
Added SC70-5 PACKAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Universal  
Changes to PRODUCT DESCRIPTION, FEATURES, and PIN CONFIGURATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Updated PACKAGE/ORDERING INFORMATION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
Changes to ABSOLUTE MAXIMUM ATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Shengbang Microelectronics Co, Ltd  
Unit 3, ChuangYe Plaza  
No.5, TaiHu Northern Street, YingBin Road Centralized Industrial Park  
Harbin Development Zone  
Harbin, HeiLongJiang 150078  
P.R. China  
Tel.: 86-451-84348461  
Fax: 86-451-84308461  
www.sg-micro.com  
18  
SGM8621/2/3/4  

SGM8622XS 相关器件

型号 制造商 描述 价格 文档
SGM8622XS/TR SGMICRO 250レA, 3MHz, Rail-to-Rail I/O CMOS Operational Amplifier 获取价格
SGM8622_15 SGMICRO CMOS Operational Amplifiers 获取价格
SGM8623 SGMICRO 250レA, 3MHz, Rail-to-Rail I/O CMOS Operational Amplifier 获取价格
SGM8623XN6/TR SGMICRO 250レA, 3MHz, Rail-to-Rail I/O CMOS Operational Amplifier 获取价格
SGM8623XS SGMICRO 250レA, 3MHz, Rail-to-Rail I/O CMOS Operational Amplifier 获取价格
SGM8623XS/TR SGMICRO 250レA, 3MHz, Rail-to-Rail I/O CMOS Operational Amplifier 获取价格
SGM8623_15 SGMICRO CMOS Operational Amplifiers 获取价格
SGM8624 SGMICRO 250レA, 3MHz, Rail-to-Rail I/O CMOS Operational Amplifier 获取价格
SGM8624XS SGMICRO 250レA, 3MHz, Rail-to-Rail I/O CMOS Operational Amplifier 获取价格
SGM8624XS/TR SGMICRO 250レA, 3MHz, Rail-to-Rail I/O CMOS Operational Amplifier 获取价格

SGM8622XS 相关文章

  • Bourns 密封通孔金属陶瓷微调电位计产品选型手册(英文版)
    2024-09-20
    6
  • Bourns 精密环境传感器产品选型手册(英文版)
    2024-09-20
    9
  • Bourns POWrTher 负温度系数(NTC)热敏电阻手册 (英文版)
    2024-09-20
    8
  • Bourns GMOV 混合过压保护组件产品选型手册(英文版)
    2024-09-20
    6