LH543620M-30 [SHARP]

FIFO, 1KX36, Synchronous, CMOS, PQFP144, 20 X 20 MM, PLASTIC, TQFP-144;
LH543620M-30
型号: LH543620M-30
厂家: SHARP ELECTRIONIC COMPONENTS    SHARP ELECTRIONIC COMPONENTS
描述:

FIFO, 1KX36, Synchronous, CMOS, PQFP144, 20 X 20 MM, PLASTIC, TQFP-144

先进先出芯片
文件: 总40页 (文件大小:278K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LH543620  
1024 × 36 Synchronous FIFO  
FUNCTIONAL DESCRIPTION  
FEATURES  
The LH543620 is a FIFO (First-In, First-Out) memory  
device, based on fully-static CMOS RAM technology,  
capable of containing up to 1024 36-bit words. It can  
replace four or more nine-bit-wide FIFOs in many appli-  
cations.  
Fast Cycle Times: 20/25/30 ns  
Selectable 36/18/9-Bit Word Width for Both  
Input Port and Output Port  
Byte-Order-Reversal Function (i.e.,  
The input port and the output port operate inde-  
pendently of each other. Write operations are performed  
on the rising edge of the input clock CKI, and enabled by  
‘Big-Endian’ ‘Little-Endian’ Conversion)  
16-mA-I Three-State Outputs  
OL  
two enabled signals ENI , ENI . Read operations are  
1
2
performed on the rising edge of the output clock CKO and  
enabled by two enabled signals ENO , ENO .  
Automatic Byte Parity Checking  
Selectable Byte Parity Generation  
1
2
Five status flags are available to monitor the memory  
array status: Full, Almost-Full, Half-Full, Almost-Empty,  
and Empty. The Almost-Full and Almost-Empty flags are  
initialized to a default offset of eight locations from their  
respective boundaries, but they are each programmable  
over the entire FIFO depth.  
Five Status Flags: Full, Almost-Full,  
Half-Full, Almost-Empty, and Empty  
All FIFO Status Flags are Synchronous  
(AE, HF, AF Through Programming of  
Control Register)  
Both the input port and the output port may be set  
independently to operate at three data-word widths: 36  
bits, 18 bits, or 9 bits. This setting may be changed during  
system operation. The LH543620 can perform Byte-Or-  
der-Reversal on the four nine-bit bytes of each 36-bit data  
word passing through it, thus accomplishing ‘Big Endian’  
‘Little Endian’ conversion.  
Programmed Values may be entered from  
either Port  
Two Enable Control Signals for each Port  
Mailbox Register with Synchronized Flags  
Asynchronous Data-Bypass Function  
‘Smart’ Data-Retransmit Function  
When data is read out of the FIFO a byte-parity check  
is performed. The parity flag is used to indicate that a  
parity error was detected in one of the 9-bit bytes of the  
output word.  
Parity generation, when selected, creates the parity bit  
of each 8-bit byte of the input word. The result is written  
into the MSB-bit of each 9-bit byte, overwriting the pre-  
vious contents of the bit. The default is odd parity. How-  
ever, the FIFO may be programmed to use even parity.  
Configurable for Paralleled FIFO Operation  
(72-Bit Data Width)  
1
Space-Saving PQFP and TQFP  
Packages  
The LH543620 has a data-bypass mode that connects  
the output port to the input port asynchronously. Amailbox  
facility with Synchronized Flags is provided from the input  
port to the output port.  
2
PQFP-to-PGA Package Conversion  
The LH543620’s ‘Smart-Retransmitcapability sets the  
internal-memory read pointer to any arbitrary memory  
location. The ‘Smart-Retransmit’ capability includes a  
Marking Function and a Programmable Offset to support  
data communication and digital signal processing appli-  
cations.  
NOTES:  
1. This is a final data sheet; except that all references to the TQFP  
package have Preliminary status.  
2. For PQFP-to-PGA conversion for thru-hole board designs,  
SHARP recommends ITT Pomona Electronics’ SMT/PGA Ge-  
neric Converter model #5853®. This converter maps the  
LH543620 132-pin PQFP to a generic 13 × 13, 132-pin PGA  
(100-mil pitch). For more information, contact SHARP or ITT Po-  
mona Electronics at 1500 East Ninth Street, Pomona, CA  
2-410  
1024 × 36 Synchronous FIFO  
LH543620  
Figure 1. LH543620 Block Diagram  
2-411  
LH543620  
1024 × 36 Synchronous FIFO  
PIN DESCRIPTIONS (SUMMARY)  
PIN  
TYPE *  
PIN  
TYPE *  
PIN NAME  
DESCRIPTION  
PIN NAME  
DESCRIPTION  
DATABUS  
CONTROL SIGNALS SYNCHRONOUS  
TO THE OUTPUT CLOCK  
D[35:0]  
Q[15:0]  
Q[35:16]  
36-Bit Input-Port Databus  
I
ENO1,ENO2  
ADO[2:0]  
Output-Port Enables  
Output-Port Address  
I
I
I/O/Z  
O/Z  
Three-State 36-Bit Output-  
Port Databus  
Output-Port Word-Width  
Selection  
CLOCKS  
WSO[1:0]  
I
CKI  
Input-Port Clock  
I
I
RTMD[1:0]  
RT  
Retransmit Mode Control  
Retransmit  
I
I
CKO  
Output-Port Clock  
ASYNCHRONOUS CONTROL  
STATUS FLAGS SYNCHRONOUS  
TO THE OUTPUT CLOCK  
RS  
Master Reset  
I
I
I
OE  
Output Enable  
AE  
Almost-Empty Flag  
Empty Flag  
O
O
O
O
BYE  
Data-Bypass Enable  
EF  
Command-Address Port  
Reference  
PF  
Parity-Error Flag  
Mailbox-Empty Flag  
CAPR  
I
MEF  
CONTROL SIGNALS SYNCHRONOUS  
TO THE INPUT CLOCK  
VOLTAGES AND GROUNDS  
VCC  
VSS  
Positive Power  
Ground  
V
V
ENI1,ENI2  
ADI[2:0]  
Input-Port Enables  
Input-Port Address  
I
I
Input-Port Word-Width  
Selection  
WSI[1:0]  
I
STATUS FLAGS SYNCHRONOUS  
TO THE INPUT CLOCK  
FF  
Full Flag  
O
O
O
O
AF  
HF 1  
Almost-Full Flag  
Half-Full Flag  
Mailbox-Full Flag  
MFF  
NOTES:  
* I = Input, O = Output, V = Voltage, Z = High-Impedance  
1. The half-full flag is user-selectable to be synchronized to either  
CKI or CKO.  
2-412  
1024 × 36 Synchronous FIFO  
LH543620  
132-PIN PQFP PIN CONNECTIONS  
132-PIN PQFP  
18  
19  
20  
21  
22  
23  
24  
25  
26  
116  
115  
114  
113  
112  
111  
110  
109  
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
98  
97  
96  
95  
94  
93  
92  
91  
MEF  
MFF  
EF  
AE  
VSS  
HF  
AF  
FF  
PF  
CKO  
VCC  
D28  
D29  
D30  
D31  
D32  
D33  
D34  
D35  
VCC  
ENI1  
ENI2  
ADI0  
ADI1  
CHAMFERED  
EDGE  
27  
28  
29  
30  
31  
32  
33  
34  
35  
Q35  
Q34  
VSS  
Q33  
Q32  
ADI2  
WSI0  
WSI1  
VSS  
CAPR  
BYE  
ENO1  
ENO2  
ADO0  
ADO1  
ADO2  
VCC  
TOP VIEW  
VCC  
Q31  
Q30  
VSS  
Q29  
Q28  
VCC  
Q27  
Q26  
VSS  
Q25  
Q24  
VCC  
Q23  
Q22  
VSS  
VSS  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
WSO0  
WSO1  
RS  
90  
89  
88  
87  
86  
85  
84  
RTMD0  
RTMD1  
RT  
OE  
49  
50  
VCC  
543620-4  
Figure 2. Pin Connections for 132-Pin PQFP Package  
2-413  
LH543620  
1024 × 36 Synchronous FIFO  
132-PIN PQFP PIN LIST  
PIN NAME  
D14  
D13  
D12  
D11  
D10  
D9  
PIN NO.  
1
PIN NAME  
Q15  
PIN NO.  
61  
PIN NAME  
D28  
PIN NO.  
116  
117  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
130  
131  
132  
7
Q14  
D27  
2
62  
Q13  
D26  
3
64  
Q12  
D25  
4
65  
Q11  
D24  
5
67  
Q10  
D23  
6
68  
D8  
Q9  
D22  
8
70  
D7  
Q8  
D21  
9
71  
D6  
Q7  
D20  
10  
11  
12  
13  
14  
15  
16  
18  
19  
20  
21  
23  
24  
25  
26  
27  
29  
30  
32  
33  
35  
36  
38  
39  
41  
42  
44  
45  
47  
48  
52  
53  
55  
56  
58  
59  
73  
D5  
Q6  
D19  
74  
D4  
Q5  
D18  
76  
D3  
Q4  
CKI  
D17  
77  
D2  
Q3  
79  
D1  
Q2  
D16  
80  
D0  
Q1  
D15  
82  
MEF  
MFF  
EF  
Q0  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
83  
OE  
85  
17  
RT  
86  
22  
AE  
RTMD1  
RTMD0  
RS  
87  
28  
HF  
88  
31  
AF  
89  
34  
FF  
WSO1  
WSO0  
ADO2  
ADO1  
ADO0  
ENO2  
EN01  
BYE  
CAPR  
WSI1  
WSI0  
ADI2  
ADI1  
ADI0  
ENI2  
ENI1  
D35  
90  
37  
PF  
91  
40  
CKO  
Q35  
Q34  
Q33  
Q32  
Q31  
Q30  
Q29  
Q28  
Q27  
Q26  
Q25  
Q24  
Q23  
Q22  
Q21  
Q20  
Q19  
Q18  
Q17  
Q16  
93  
43  
94  
46  
95  
49  
96  
50  
97  
51  
98  
54  
99  
57  
101  
102  
103  
104  
105  
106  
107  
109  
110  
111  
112  
113  
114  
115  
60  
63  
66  
69  
72  
75  
78  
81  
D34  
84  
D33  
92  
D32  
100  
108  
118  
129  
D31  
D30  
D29  
2-414  
1024 × 36 Synchronous FIFO  
144-PIN TQFP PIN CONNECTIONS  
144-PIN TQFP  
LH543620  
TOP VIEW  
108  
107  
106  
105  
104  
103  
102  
101  
100  
NC  
NC  
1
D28  
D29  
D30  
D31  
D32  
D33  
D34  
D35  
2
3
4
5
6
7
8
9
MEF  
MFF  
EF  
AE  
VSS  
HF  
AF  
FF  
VCC  
ENI1  
ENI2  
ADI0  
ADI1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
PF  
CKO  
VCC  
Q35  
Q34  
VSS  
Q33  
ADI2  
WSI0  
WSI1  
VSS  
NC  
CAPR  
BYE  
ENO1  
ENO2  
ADO0  
ADO1  
ADO2  
VCC  
WSO0  
WSO1  
RS  
Q32  
VCC  
NC  
Q31  
Q30  
VSS  
Q29  
Q28  
VCC  
LH543620  
Q27  
Q26  
VSS  
Q25  
79  
78  
77  
76  
75  
74  
73  
Q24  
VCC  
Q23  
Q22  
VSS  
VSS  
NC  
RTMD0  
RTMD1  
RT  
32  
33  
34  
35  
36  
OE  
VCC  
NC  
543620-33  
Figure 3. Pin Connections for 144-pin TQFP Package  
2-415  
LH543620  
1024 × 36 Synchronous FIFO  
144-PIN TQFP PIN LIST  
PIN NAME  
NC  
PIN NO.  
1
PIN NAME  
VCC  
Q8  
PIN NO.  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
VCC  
PIN NAME  
97  
PIN NO.  
D28  
2
CKO  
PF  
98  
D29  
3
Q9  
99  
D30  
4
VSS  
Q10  
Q11  
VCC  
VCC  
Q12  
Q13  
VSS  
Q14  
Q15  
VCC  
Q16  
Q17  
VSS  
Q18  
Q19  
VCC  
Q20  
Q21  
VCC  
VCC  
NC  
FF  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
D31  
5
AF  
D32  
6
HF  
D33  
7
VSS  
AE  
D34  
8
D35  
9
EF  
VCC  
ENI1  
ENI2  
ADI0  
ADI1  
ADI2  
WSI0  
WSI1  
VSS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
MFF  
MEF  
NC  
VCC  
VCC  
D0  
D1  
D2  
D3  
NC  
D4  
CAPR  
BYE  
ENO1  
ENO2  
ADO0  
ADO1  
ADO2  
VCC  
WSO0  
WSO1  
RS  
D5  
D6  
D7  
D8  
VSS  
D9  
VSS  
VSS  
Q22  
Q23  
VCC  
Q24  
Q25  
VSS  
Q26  
Q27  
VCC  
Q28  
Q29  
VSS  
Q30  
Q31  
NC  
D10  
D11  
D12  
D13  
D14  
NC  
D15  
D16  
D17  
VCC  
CKI  
D18  
D19  
D20  
D21  
D22  
D23  
D24  
D25  
D26  
VSS  
VSS  
D27  
RTMD0  
RTMD1  
RT  
OE  
VCC  
NC  
Q0  
Q1  
VSS  
VSS  
Q2  
Q3  
VCC  
Q4  
VCC  
Q32  
Q33  
VSS  
Q34  
Q35  
Q5  
VSS  
Q6  
Q7  
2-416  
1024 × 36 Synchronous FIFO  
LH543620  
1
ABSOLUTE MAXIMUM RATINGS  
PARAMETER  
Supply Voltage to VSS Potential  
Signal Pin Voltage to VSS Potential 2  
DC Output Current 3  
RATING  
–0.5 V to 7 V  
–0.5 V to VCC + 0.5 V  
± 75 mA  
Storage Temperature Range  
Power Dissipation (Package Limit)  
NOTES:  
–65oC to 150oC  
2.5 Watts (Quad Flat Pack)  
1. Stresses greater than those listed under ‘Absolute Maximum Ratings’ may cause permanent damage to the device. This is a stress rating for  
transient conditions only. Functional operation of the device at these or any other conditions outside those indicated in the ‘Operating Range’  
of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.  
2. Negative undershoot of 1.5 V in amplitude is permitted for up to 10 ns, once per cycle.  
3. Outputs should not be shorted for more than 30 seconds. No more than one output should be shorted at any time.  
OPERATING RANGE  
SYMBOL  
PARAMETER  
Temperature, Ambient  
Supply Voltage  
MIN  
0
MAX  
70  
UNIT  
o
TA  
C
VCC  
VSS  
4.5  
0
5.5  
V
V
V
V
Supply Voltage  
0
VIL  
Logic LOW Input Voltage 1  
–0.5  
2.2  
0.8  
VIH  
Logic HIGH Input Voltage  
Vcc + 0.5  
NOTE:  
1. Negative undershoot of 1.5 V in amplitude is permitted for up to 10 ns, once per cycle.  
DC ELECTRICAL CHARACTERISTICS (Over Operating Range)  
SYMBOL  
PARAMETER  
Input Leakage Current  
I/O Leakage Current  
TEST CONDITIONS  
VCC = 5.5 V, VIN = 0 V To VCC  
OE VIH, 0 V VOUT VCC  
IOL = 16.0 mA  
MIN  
–10  
–10  
TYP  
MAX  
10  
UNIT  
µA  
µA  
V
ILI  
ILO  
10  
VOL  
VOH  
ICC  
Logic LOW Output Voltage  
Logic HIGH Output Voltage  
Average Supply Current 1,2  
0.4  
IOH = –8.0 mA  
2.4  
V
Measured at fC = maximum  
205  
40  
380  
85  
mA  
mA  
ICC2  
Average Standby Supply Current 1,3 All Inputs = VIHMIN (Clock idle)  
All Inputs = VCC  
,
Outputs – open,  
Control – deasserted,  
Clocks = VCC  
ICC3  
Power-Down Supply Current 1  
0.01  
1.0  
mA  
NOTE:  
1. ICC, ICC2, and ICC3 are dependent upon actual output loading, and ICC is also dependent on cycle times.  
Specified values are with outputs open (for ICC: CL = 0 pF); and, for ICC, operating at minimum cycle times.  
2.  
3.  
I
CC (MAX): Using worst case conditions and data pattern. ICC (TYP): Using VCC = 5 V and average data pattern.  
ICC2 (TYP): Using VCC = 5 V and TA = 25°C.  
2-417  
LH543620  
1024 × 36 Synchronous FIFO  
AC TEST CONDITIONS  
PARAMETER  
RATING  
+5 V  
Input Pulse Levels  
V
SS  
to 3 V  
Input Rise and Fall Times (10% to 90%)  
Output Reference Levels  
Input Timing Reference Levels  
Output Load, Timing Tests  
3 ns  
1.1 k Ω  
1.5 V  
1.5 V  
DEVICE  
UNDER  
TEST  
680 Ω  
*
30 pF  
Figure 3  
1,2  
CAPACITANCE  
PARAMETER  
RATING  
8 pF  
CIN MAX. (Input Capacitance)  
COUT MAX. (Output Capacitance)  
*
INCLUDES JIG AND SCOPE CAPACITANCES  
543620-27  
10 pF  
Figure 4. Output Load Circuit  
NOTES:  
1. Sample tested only.  
2. Capacitances are maximum values at 25oC,  
measured at 1.0 MHz, with VIN = 0 V.  
2-418  
1024 × 36 Synchronous FIFO  
LH543620  
1
AC ELECTRICAL CHARACTERISTICS (See Timing Diagrams Pages 21-35)  
–20  
–25  
–30  
SYMBOL  
DESCRIPTION  
UNIT  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
33  
fC  
Clock Cycle Frequency  
50  
40  
MHz  
ns  
tC  
Clock Cycle Time  
Clock HIGH Time  
Clock LOW Time  
Data In Setup Time  
20  
8
25  
10  
12  
6
30  
12  
14  
7
tCH  
tCL  
tDS  
ns  
9
ns  
5
ns  
Data Setup Time When Writing to Resource  
Register From Output Port  
tDSO  
tDH  
10  
2
12  
2
14  
2
ns  
ns  
ns  
Data In Hold Time  
Data Hold Time When Writing to Resource Register  
From Output Port  
tDHO  
2
2
2
tA  
tOH  
Data Out Access Time  
14  
16  
18  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Data Out Hold Time  
4
5
2
6
2
1
4
6
2
7
2
1
4
7
2
8
2
1
tES  
Enable Setup Time  
tEH  
Enable Hold Time  
tOES  
tOEH  
tOL  
Output Enable Setup Time  
Output Enable Hold Time  
OE to Data Out Low-Z 2  
OE to Data Out High-Z 2  
OE to Data Valid  
tOZ  
12  
10  
14  
14  
14  
14  
14  
14  
14  
14  
15  
12  
16  
16  
16  
16  
16  
16  
16  
16  
19  
14  
18  
18  
18  
18  
18  
18  
18  
18  
tOE  
tEF  
Empty Flag Access Time  
Full Flag Access Time  
tFF  
tAE  
AE Flag Access Time  
tAF  
AF Flag Access Time  
tHF  
HF Flag Access Time  
tPF  
Parity Flag Access Time  
Mailbox FF Access Time  
Mailbox EF Access Time  
Address Setup Time  
tMFF  
tMEF  
tAS  
10  
2
12  
2
14  
2
tAH  
Address Hold Time  
tWSS  
tWSH  
tRTMS  
tRTMH  
tRTS  
tRTH  
tRS  
WSI and WSO Setup Time  
WSI and WSO Hold Time  
Retransmit Mode Setup Time  
Retransmit Mode Hold Time  
Retransmit Setup Time  
Retransmit Hold Time  
10  
2
12  
2
14  
2
5
6
7
2
2
2
5
6
7
2
2
2
Reset Pulse Width  
20  
10  
25  
12  
30  
15  
tRSR  
tRF  
Reset Recovery Time 2  
Reset LOW to Flag Valid  
Reset to Data Out LOW  
Bypass LOW to Data Valid  
Bypass Propagation Delay  
Skew Time Between CKO and CKI for FF 3  
Skew Time Between CKI and CKO for EF 4  
Skew Time Between Clock for Mailbox Flags  
30  
18  
12  
12  
35  
20  
16  
16  
40  
22  
18  
18  
tRO  
tBA  
tBD  
tSKEW1  
tSKEW2  
tSKEWM  
NOTES:  
7
7
7
9
9
9
11  
11  
11  
2-419  
LH543620  
1024 × 36 Synchronous FIFO  
PIN DESCRIPTIONS (FUNCTIONAL)  
PIN NAME  
DESCRIPTION  
DATABUS  
36-bit Input-Port Databus. The D port is the input port for the FIFO memory array, the resource  
registers, and the mailbox, or it may be directly connected to the output port. See Figure 4.  
D[35:0] is synchronous to the rising edge of CKI.  
D[35:0]  
Q[35:0]  
Three-State 36-Bit Output-Port Databus. The Q port is the output port for the FIFO memory array,  
the resource registers, and the mailbox, or it may be directly connected to the input port. See Figure  
4. Q[35:0] is synchronous to the rising edge of CKO. The lower 16 bits of the Q port (Q[15:0]) may  
also be used as the input port for the resource register.  
CLOCKS  
Input-Port Clock. CKI is a free-running waveform controlled by an oscillator. It may be irregular or  
asynchronous if minimum clock-HIGH times and clock-LOW times are met.  
CKI  
Output-Port Clock. CKO is a free-running waveform controlled by an oscillator. It may be irregular  
or asynchronous if minimum clock-HIGH times and clock-LOW times are met.  
CKO  
OUTPUT PORT  
INPUT PORT  
SELECT INPUT  
PORT FUNCTION  
ADI [2:0] =  
SELECT OUTPUT  
PORT FUNCTION  
ADO [2:0] =  
RESOURCE  
REGISTER  
RESOURCE  
REGISTER  
MAILBOX  
MAILBOX  
D MAILBOX  
MFF = L  
MAILBOX Q  
MFF = H  
MEF = H  
MEF = L  
CAPR  
OE  
L
H
L
H
D RESOURCE  
REGISTER (ADI)  
RESOURCE  
REGISTER (ADO) Q  
IDLE  
CAPR  
L
H
Q RESOURCE  
IDLE  
REGISTER (ADO)  
All the operations are synchronized to CKI,  
except MEF is set HIGH on CKO.  
All the operations are synchronized to CKO,  
except MFF is set HIGH on CKI.  
*
*
543620-5  
Figure 5. Resource Registers, Read and Write  
2-420  
1024 × 36 Synchronous FIFO  
LH543620  
PIN NAME  
DESCRIPTION  
ASYNCHRONOUS CONTROL  
Master Reset. When asserted LOW, the LH543620 internal resource registers are set to their  
default value. See Table 1. The status flags indicate Empty FIFO.  
RS  
Output Enable. When asserted LOW, OE forces Q[35:0] to be active. When deasserted HIGH, OE  
forces Q[35:0] into a Hi-Z state. Bit 6 of the control register governs whether OE suppresses the  
advancement of the Read Pointer (RP). In this case, OE must obey setup time and hold time  
relative to CKO.  
OE  
Data-Bypass Enable. When asserted LOW, BYE connects Q[35:0] directly to D[35:0].  
BYE  
Command-Address Port Reference. CAPR determines the source of the 16-bit word to be loaded  
into the resource register. Whenever CAPR is LOW, the word comes from the Input Port. Whenever  
CAPR is HIGH (OE is HIGH), the word comes from the Output Port.  
NOTES:  
CAPR  
1. The destination of the resource register is always the Output Port.  
2. CAPR is assumed to be a steady signal. It is not allowed to change ‘on-the-fly’ during operation.  
CONTROL SIGNALS SYNCHRONOUS TO THE INPUT CLOCK  
Input-Port Enables. ENI1 and ENI2 are active HIGH and synchronous to the rising edge of CKI.  
Data is written into the FIFO memory array when both ENI1 and ENI2 are asserted HIGH.  
NOTE: ENI1, ENI2 DO NOT ENABLE writing data into the Resource Registers or the Mailbox.  
ENI , ENI  
1
2
Input-Port Address. ADI[2:0] specifies the Input-Port destination. See Table 1. ADI[2:0] is  
synchronized to the rising edge of CKI.  
ADI[2:0]  
WSI[1:0]  
Input-Port Word-Width Selection. WSI[1:0] selects the Input-Port Word-Width. See Table 2.  
WSI[1:0] is synchronous to the rising edge of CKI.  
Table 1. Input-Port Address  
Table 2. Input-Port Word-Width Selection  
DEFAULT VALUE  
(of the selected  
REGISTER)  
WSI1 WSI0  
FUNCTION  
ADI2 ADI1 ADI0  
SELECTION  
9-Bit Data-Path  
Input data D[8:0]  
L
L
Width  
L
L
L
L
L
RBASE register  
0
0
18-Bit Data-Path  
Width  
Input data D[17:0]  
L
H
H
H
L
ROFFSET  
register  
H
Reserved  
L
H
H
L
L
AF offset value  
Parity register  
AE offset value  
Control register  
Mailbox  
8
0
8
1
0
36-Bit Data-Path  
Width  
Input data D[35:0]  
H
L
H
L
H
H
H
L
H
L
H
Resource  
H
H
H
registers write  
disabled  
2-421  
LH543620  
1024 × 36 Synchronous FIFO  
PIN NAME  
DESCRIPTION  
STATUS FLAGS SYNCHRONOUS TO THE INPUT CLOCK  
Full Flag. FF is synchronous to the rising edge of CKI. When asserted LOW, 1024 36-bit words of  
the FIFO memory array contain meaningful data. When FF is asserted, writing data to the FIFO is  
disabled.  
FF  
AF  
Almost-Full Flag. When asserted LOW, AF indicates that there are at most ‘p’ vacant 36-bit  
words remaining in the FIFO memory array, where ‘p’ is the value of the Almost-Full-Offset-Value.  
AF has two synchronization modes depending on Bit 5 of the control register.  
Bit 5 = 0 (Default) Asynchronous Mode  
Bit 5 = 1: AF is synchronous to the rising edge of CKI.  
Half-Full Flag. When asserted LOW, there are at least 513 36-bit words in the FIFO memory  
array. HF has three synchronization modes depending on Bits 3 and 4 of the control register. See  
Table 3.  
HF  
Mailbox-Full Flag. MFF is synchronized to the rising edge of CKI. When asserted LOW, it  
indicates that a new mail word has been placed in the mailbox.  
MFF  
CONTROL SIGNALS SYNCHRONOUS TO THE OUTPUT CLOCK  
Output-Port Enables. ENO1 and ENO2 are active HIGH, synchronous to the rising edge of CKO.  
Data is read from the FIFO memory array when both ENO1, ENO2 are asserted.  
ENO , ENO  
1
2
NOTE: ENO1, ENO2 DO NOT ENABLE reading data from the Resource Register or the Mailbox.  
Output-Port Address. ADO[2:0] specifies the Output-Port source/destination. See Table 4.  
ADO[2:0] is synchronous to the rising edge of CKO.  
NOTE: In order to read the resource register at the output bus, BYE should be deasserted and the  
FIFO memory array should be disabled.  
ADO[2:0]  
Table 3. HF Synchronization Modes  
Table 4. Output-Port Address  
DEFAULT VALUE  
(of the selected  
REGISTER)  
CONTROL  
REGISTER  
ADO2 ADO1 ADO0  
SELECTION  
FUNCTION  
BIT 4 BIT 3  
RBASE  
register  
L
L
L
L
L
0
0
L *  
L
L *  
H
Asynchronous Mode: HF  
Synchronous Mode I: HF is  
synchronous to the rising edge of CKO  
ROFFSET  
register  
H
H
H
L
Synchronous Mode II: HF is  
synchronous to the rising edge of CKI  
AF offset value  
Parity register  
AE offset value  
L
L
H
H
L
L
H
L
8
0
8
H
* Default Mode  
H
Control  
register  
H
H
L
H
L
1
0
Mailbox  
H
Resource  
registers read Not applicable  
disabled  
H
H
H
2-422  
1024 × 36 Synchronous FIFO  
LH543620  
PIN NAME  
DESCRIPTION  
CONTROL SIGNALS SYNCHRONOUS TO THE OUTPUT CLOCK (cont’d)  
Output-Port Word-Width Selection. WSO[1:0] is synchronous to the rising edge of CKO.  
WSO[1:0] selects the Output-Port Word-Width and controls byte-order-reversal according to  
Table 5.  
WSO[1:0]  
Retransmit Mode Control. RTMD[1:0] is synchronized to the rising edge of CKO. RTMD[1:0]  
controls the placement of new contents into the Read Pointer (RP) and/or the Retransmit Base  
(RBASE) registers. Whenever Retransmit (RT) is asserted, one of three operations is performed  
according to the setting of RTMD[1:0]. See Table 6.  
NOTES:  
RTMD[1:0]  
1. When RTMD[1:0] is set to 0, the FIFO is in depth cascade mode, and the Retransmit  
mechanism can not be used. In cascade mode, the Almost-Empty Flag is a handshake signal for  
cascading. The Almost-Empty Flag is used as an input to the ENI of the next FIFO in the chain.  
2. In standard FIFO operation RTMD[1:0] must not be set to 0 and the Retransmit signal must be  
HIGH.  
Retransmit. RT is synchronized to the rising edge of CKO. When asserted LOW, RT causes one  
of the Retransmit Mode operations to be performed, according to the encoding of RTMD[1:0]. See  
Table 6.  
RT  
NOTE: When RTMD[1:0] = 0 (FIFO is in cascade mode) RT is ignored.  
Table 5. Output-Port Word-Width Selection  
Table 6. Retransmit Operation Modes  
WSO1 WSO0  
FUNCTION  
RTMD1 RTMD0 OPERATION  
ACTION TAKEN  
9-Bit Data-Path  
Width  
Depth  
Cascade  
Mode  
The Almost-Empty  
Flag is a handshake  
signal for cascading  
Output data Q[8:0]  
Output data Q[17:0]  
L
L
L
L
L
L
18-Bit Data-Path  
Width  
H
(RBASE) +  
(ROFFSET) RP  
Retransmit  
H
36-Bit Data-Path  
Width With Byte- Output data Q[35:0]  
Order-Reversal  
(RBASE) +  
(ROFFSET) RP  
Retransmit and  
H
H
L
36-Bit Data-Path  
Output data Q[35:0]  
Width  
H
H
L
H
and Mark  
(RBASE) +  
(ROFFSET) →  
RBASE  
Mark  
(RP) RBASE  
H
2-423  
LH543620  
1024 × 36 Synchronous FIFO  
PIN NAME  
DESCRIPTION  
STATUS FLAGS SYNCHRONOUS TO THE OUTPUT CLOCK  
Almost-Empty Flag. The AE flag has two modes of operation depending on the RTMD[1:0]  
setting.  
1. RTMD[1:0] 0: AE is a standard Almost-Empty Flag. When asserted LOW, AE implies that  
there are at most ‘q’ 36-bit words in the FIFO memory array, where ‘q’ is Almost-Empty-Offset-  
Value register value. In this mode AE has two synchronization options depending on the setting of  
Bit 2 of the control register.  
AE  
Bit 2 = 0 (Default) Asynchronous Mode  
Bit 2 = 1 Synchronous Mode: AE is synchronous to the rising edge of CKO.  
2. RTMD[1:0] = 0: AE is a handshake signal for cascading.  
Empty Flag. EF is synchronous to the rising edge of CKO. When asserted LOW, all 1024  
36-bit words are vacant. When asserted, EF disables the FIFO Read operation.  
EF  
PF  
Parity-Error Flag. PF is synchronized to the rising edge of CKO. When asserted LOW, PF  
implies that a parity error has occurred in at least one 9-bit byte within a 36-bit word read from the  
FIFO memory array. If there are no errors, it is deasserted HIGH. When an error is detected, the  
parity check result of each 9-bit byte of the 36-bit output word is written to the parity register. The  
content of the parity register is frozen until read. The PF signal is delayed by one CKO cycle  
compared to the output data (i.e., if the PF is asserted, there was an error in the previous word).  
Mailbox-Empty Flag. MEF is synchronous to the rising edge of CKO. When asserted LOW, MEF  
indicates that there is no new mail word in the mailbox.  
MEF  
VOLTAGES AND GROUNDS  
Positive Power.  
Ground.  
V
CC  
V
SS  
CKI. The operation is enabled if both ENI and ENI are  
asserted HIGH. Data Read operations from the FIFO  
memory occur at the rising edge of CKO. The operation  
1
2
OPERATIONAL DESCRIPTION  
The LH543620 has four operating modes: Normal  
Mode, Programmable Resource Registers, Mailbox, and  
Data Bypass.  
is enabled if both ENO and ENO are asserted HIGH.  
1
2
The FIFO write and read operations are supported by  
the following mechanisms: Byte-Order-Reversal and Bus  
Funneling/Defunneling Functions, Status Flags, Retrans-  
mit Mechanism, Parity Checking, and Parity Generation.  
NORMAL MODE  
Normal FIFO operation refers to Read and Write op-  
erations to the FIFO memory array. Data Write operations  
into the FIFO memory array occur at the rising edge of  
2-424  
1024 × 36 Synchronous FIFO  
LH543620  
Byte-Order-Reversal and Bus Funneling/  
Defunneling Functions  
Example 2: 18-to-36 Defunneling With Byte Reversal  
This example performs two functions:  
1. Bus width change  
Word width can be selected at the Input Port and/or  
the Output Port to be 36, 18 or 9 bits wide. When the  
Output Port width is selected to be 36 bits, it is possible  
to select Byte-Order-Reversal.  
2. Big Endian to Little Endian conversion  
This configuration can be used for connecting the Intel  
80286 to the Motorola 68040.  
The funneling mechanism is controlled by the inputs  
WSI[1:0] and WSO[1:0] according to Tables 2 and 5. Data  
is packed and unpacked from a 36-bit word memory array.  
Table 7 describes all combinations offunneling/defunneling.  
CONDITIONS  
RESULTS  
WSI[1:0]  
WSO[1:0]  
Input 18 bits wide.  
Changes to the funneling/defunneling settings during  
system operation should be made one clock before a  
word boundary, as shown in Example 3.  
1
Pins used are D[17:0].  
Output 36 bits wide with byte  
order reversal.  
2
Example 1: 36-to-9 Funneling  
The dataflow structure is illustrated by Figure 6.  
CONDITIONS  
RESULTS  
Example 3: Changing Input Bus Width From 9 to 36  
During Operation  
WSI[1:0]  
WSO[1:0]  
Input 36 bits wide.  
3
CKI  
0
WSI  
0
ACTION  
Output 9 bits wide.  
Pins used are Q[8:0].  
0
Write 1st 9-bit byte  
Write 2nd 9-bit byte  
Write 3rd 9-bit byte  
Write 4th 9-bit byte  
Write 1st 36-bit word  
1
0
The dataflow structure is illustrated by Figure 5.  
2
0
3
3
4
3
Table 7. Bus Funneling/Defunneling *  
INPUT  
WSI = 0  
OUTPUT  
CKI  
CKO  
WSO = 3  
Q[35:0]  
WSO = 2  
Q[35:0]  
WSO = 1  
WSO = 0  
Q[35:9]  
cycles  
D[35:9]  
D[8:0] cycles  
Q[35:18] Q[17:0]  
Q[8:0]  
0
1
2
3
4
5
6
7
8
xxx  
xxx  
xxx  
xxx  
xxx  
xxx  
xxx  
xxx  
xxx  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
0
1
2
3
4
5
6
7
8
B3 B2 B1 B0 B0 B1 B2 B3 B3 B2 B1 B0 B3 B2 B1  
B7 B6 B5 B4 B4 B5 B6 B7 B1 B0 B3 B2 B0 B3 B2  
B7 B6 B5 B4 B1 B0 B3  
B0  
B1  
B2  
B3  
B4  
B5 B4 B7 B6 B2 B1 B0  
B7 B6 B5  
WSI = 1  
WSO = 3  
Q[35:0]  
WSO = 2  
Q[35:0]  
WSO = 1  
WSO = 0  
Q[35:9]  
D[35:18]  
D[17:0]  
Q[35:18] Q[17:0]  
Q[8:0]  
0
1
2
3
4
xx  
xx  
xx  
xx  
xx  
B1 B0  
B3 B2  
B5 B4  
B7 B6  
B9 B8  
0
1
2
3
4
B3 B2 B1 B0 B0 B1 B2 B3 B3 B2 B1 B0 B3 B2 B1  
B7 B6 B5 B4 B4 B5 B6 B7 B1 B0 B3 B2 B0 B3 B2  
B7 B6 B5 B4 B1 B0 B3  
B0  
B1  
B2  
B3  
B4  
B5 B4 B7 B6 B2 B1 B0  
B7 B6 B5  
WSI = 3  
WSO = 3  
Q[35:0]  
WSO = 2  
Q[35:0]  
WSO = 1  
WSO = 0  
D[35:0]  
Q[35:18] Q[17:0]  
Q[35:9]  
Q[8:0]  
0
1
B3 B2 B1 B0  
B7 B6 B5 B4  
0
1
B3 B2 B1 B0 B0 B1 B2 B3 B3 B2 B1 B0 B3 B2 B1  
B7 B6 B5 B4 B4 B5 B6 B7 B1 B0 B3 B2 B0 B3 B2  
B7 B6 B5 B4 B1 B0 B3  
B0  
B1  
B2  
B3  
B4  
B5 B4 B7 B6 B2 B1 B0  
B7 B6 B5  
* NOTE: B0, B1, . . ., represent data bytes.  
2-425  
LH543620  
1024 × 36 Synchronous FIFO  
INPUT: WSI[1:0]=3  
OUTPUT: WSO[1:0]=0  
LH543620  
B3  
B7  
B3  
B0  
B1  
B2  
D35  
Q35  
BYTE #4 BYTE #8  
BYTE #4 BYTE #1 BYTE #2 BYTE #3  
BYTE #8  
BYTE #7  
D27  
D26  
Q27  
Q26  
B6  
BYTE #7  
B2  
BYTE #3  
B2  
B3  
B0  
B1  
BYTE #3 BYTE #4 BYTE #1 BYTE #2  
D18  
D17  
Q18  
Q17  
B1  
B5  
B1  
B2  
B3  
B0  
BYTE #2 BYTE #6  
BYTE #2 BYTE #3 BYTE #4 BYTE #1  
BYTE #6  
BYTE #5  
4
D9  
D8  
Q9  
Q8  
B0  
B4  
B0  
B1  
B2  
B3  
BYTE #1 BYTE #5  
BYTE #1 BYTE #2 BYTE #3 BYTE #4  
D0  
Q0  
0
1
2
0
1
2
3
CKI  
CKO  
NOTES:  
HEAVY SOLID LINES = Main data path.  
SHADED LINES = Not used for this application.  
543620-30  
Figure 6. Example of 36-to-9 Bus Funneling  
INPUT: WSI[1:0]= 1  
NOT USED  
OUTPUT: WSO[1:0]= 2  
LH543620  
B0  
B4  
D35  
Q35  
BYTE #1 BYTE #5  
D27  
D26  
Q27  
Q26  
B1  
B5  
BYTE #2 BYTE #6  
NOT USED  
D18  
D17  
Q18  
Q17  
B1  
B3  
B5  
B7  
B2  
B6  
BYTE #2 BYTE #4 BYTE #6 BYTE #8  
BYTE #3 BYTE #7  
D9  
D8  
Q9  
Q8  
B0  
B2  
B4  
B6  
B3  
B7  
BYTE #1 BYTE #3 BYTE #5 BYTE #7  
BYTE #4 BYTE #8  
D0  
Q0  
0
1
2
3
4
0
1
2
3
CKI  
CKO  
NOTES:  
HEAVY SOLID LINES = Main data path.  
SHADED LINES = Not used for this application.  
543620-31  
Figure 7. Example of 18-to-36 Bus Defunneling  
With Byte Order Reversal  
2-426  
1024 × 36 Synchronous FIFO  
LH543620  
Status Flags  
NOTES  
There are five status flags:  
1. The Retransmit mechanism can be used inde-  
pendently and parallel to the write operation.  
FF Full Flag  
2. RTMD[1:0] must be selected two cycles prior to RT  
being asserted and remain stable during RT low.  
AF Almost-Full Flag  
HF Half-Full Flag  
AE Almost-Empty Flag  
EF Empty Flag  
3. At least two words need to be in the FIFO memory  
array prior to performing a retransmit.  
4. When using normal read and write operations, theFF  
inhibits writing when the FIFO is full and the EF  
inhibits reading when the FIFO is empty. This behav-  
ior provides a protection from wraparound situations  
(i.e., the Read pointer is ahead of the Write Pointer).  
This protection is NOT provided when using retrans-  
mit. The user should be careful not to write more than  
1024 words from the marked point.  
The functionality and the synchronization of the status  
flags are detailed in the Pins Descriptions (Functional)  
section. All status flags are generated for 36-bit word  
widths, not according to selected input or output port  
widths.  
Retransmit Mechanism  
With standard FIFO operations, every data word can  
be read out of the FIFO once. The Retransmit mechanism  
allows reading the data more than once by providing  
flexible control of the Read Pointer.  
5. When the retransmit mechanism is not used, the  
recommended connection is:  
RTMD[1:0] = 3  
RT = HIGH  
Associated with the Retransmit mechanism are three  
control lines: RTMD[1:0], RT, and two Resource regis-  
ters: RBASE and ROFFSET.  
The Retransmit mechanism can be useful in many  
applications. For example:  
1. Computer-communications applications.  
RTMD[1:0] sets the mode of operation. See Table 6.  
RT enables the operation synchronous to CKO.  
Retransmit allows three modes of operation:  
When the receiver reads a block of data and finds no  
errors in the data block, it can mark the beginning of  
the new message by setting the FIFO in MARK mode  
RTMD[1:0] = 3 and assert the RT signal for one clock  
cycle.  
Mark: RTMD[1:0] = 3 and RT is asserted. The value of  
the Read Pointer is saved into the RBASE register.  
If the receiver finds an error in the data block, it can  
read the last message again by setting the FIFO in  
Retransmit mode RTMD[1:0] = 1 and asserting the  
RT signal for one cycle.  
Retransmit: RTMD[1:0] = 1 and RT is asserted. The  
Read Pointer is loaded by the value of RBASE plus the  
value of ROFFSET.  
Retransmit and Mark: RTMD[1:0] = 2 and RT is as-  
serted: The Read Pointer is loaded by the value of  
RBASE plus the value of ROFFSET. Then the value of  
the Read Pointer is saved into the RBASE register.  
2. Overlap addressing for DSP applications.  
A typical DSP consists of A/D-FIFO-DSP. In many  
applications, the DSP needs to read a block of data  
where each block overlaps the previous block (like  
the overlap-and-save method for filtering.) The over-  
lap addressing can be implemented by using the  
LH543620 with no additional hardware as follows:  
The timing of the retransmit is illustrated in Figures 26  
and 27.  
When RT is asserted and RTMD[1:0] is set to 1 or 2,  
the flags change their value to indicate a ‘Retransmit  
state’, i.e., EF, AE, FF deasserted; AF, HF asserted.  
Three enable-read cycles are required to read the new  
data word. The flagsreflectthe newstatus. Theretransmit  
is acknowledged even when the output is disabled  
(ENO = LOW), but enable-read cycles are needed to fill  
the pipeline with new information before reading the new  
data.  
The FIFO is set to retransmit and mark mode:  
RTMD[1:0] = 2, the AF offset register is programmed  
to N = Block Size, and the ROFFSET register is  
programmed to (N – Overlap). The data is loaded into  
the FIFO each time CKin is triggered.  
The DSP can sense the AF flag of the FIFO. When-  
ever this flag is being asserted, a new block of data  
is available in the FIFO. The DSP then reads a block  
of data, and then asserts the FIFO’s RT signal, which  
causes the RP and RBASE register to be set at the  
beginning of the new block.  
2-427  
LH543620  
1024 × 36 Synchronous FIFO  
Parity Checking  
PROGRAMMABLE RESOURCE REGISTERS  
The Parity checking mechanism is always active. Par-  
ity checking is done separately for each of the 9-bit bytes  
of the 36-bit word read from the memory array. Toggling  
Bit 0 of the control register selects odd or even parity.  
When a parity error is detected in one or more bytes, the  
signal PF is asserted and the result of the individual parity  
checks are written to the parity register. See Example 3.  
The LH543620 has six programmable resource regis-  
ters. The resource registers may be loaded from either  
the Input Port or the Output Port. They can be read from  
the Output Port. The selection and loading or reading of  
the resource registers is controlled by ADI, ADO and  
CAPR. See Tables 1 and 4 and Figure 4.  
The resource registers are:  
To avoid a possible invalid PF signal, ENO and ENO  
should not be deasserted during the CLKO low time.  
1
2
Control (Default = 1).  
AE Offset – Offset value of the AE flag (Default = 8).  
AF Offset – Offset value of the AF flag (Default = 8).  
The parity register is frozen until read. When read, the  
parity register is released and ready to store the next  
parity error data.  
RT Offset – Offset value of the Retransmit mechanism  
(Default = 0).  
Parity Generation  
RT Base – Base register of the Retransmit mechanism  
(Default = 0).  
After Reset, parity generation is not active. Parity  
generation is active only when Bit 1 of the control register  
is HIGH. The parity mechanism, when enabled, creates  
a parity bit for each of the bytes of the input word. The  
parity bit for each byte is created based on its 8 least  
significant bits of each 9-bit byte of the input-data word  
and on Bit 0 of the control register (it specifies odd or even  
parity). The result of the parity generation is written back  
to the MSB of the data byte. See Example 4.  
Parity  
EXAMPLE 3  
PARITY CHECK  
Q35  
Q0  
Output word:  
Odd parity:  
Even parity:  
100111100 000111100 100111000 000111000  
Parity Register = 0110; PF-Asserted Low  
Parity Register = 1001; PF-Asserted Low  
EXAMPLE 4  
PARITY GENERATION  
D35  
D0  
Input word:  
100111100 000111100 100111000 000111000  
100111100 100111100 000111000 000111000  
Output, odd parity:  
Output, even parity: 000111100 000111100 100111000 100111000  
2-428  
1024 × 36 Synchronous FIFO  
LH543620  
Control Register (See Figure 7)  
Output Port:  
After reset, the control register’s value is 1. This sets  
the following conditions:  
Data from the Output Port is written to a resource  
register when:  
Odd parity  
the value of the output-address field, ADO, selects the  
register (see Table 4)  
Disabling parity generation (parity check is active).  
AF, HF, AE flags are asynchronous.  
OE signal does not control the Read pointer.  
Read/Write Resource Register Mode  
CAPR is HIGH  
OE is HIGH  
NOTE: ADI[2:0] should remain stable whenever data is  
coming in from the output port.  
It is possible to write to the resource registers from  
either the Input Port or the Output Port. Reading from the  
resource register is possible only from the Output Port.  
The source port for the write operation is determined by  
the control signal CAPR.  
Data is read from a resource register to the Output Port  
when:  
the value of the output-address field, ADO, selects the  
register (see Table 4)  
Input Port:  
OE is LOW  
Data from the Input Port iswritten toa resourceregister  
when:  
Both operations are enabled by ADO[2:0] and are  
synchronous to CKO.  
the value of the input-address field, ADI, selects the  
register (see Table 1)  
MAILBOX  
The mailbox mechanism includes:  
CAPR is LOW  
One 36-bit data register.  
TheoperationisenabledbyADI[2:0]andsynchronized  
to CKI.  
Two status flags:  
– MFF Mailbox Full Flag  
– MEF Mailbox Empty Flag  
6
5 4 3 2 1 0  
0 EVEN PARITY  
1 ODD PARITY  
0 PARITY GENERATION IS DISABLED  
1 PARITY GENERATION IS ENABLED  
0 AE ASYNCHRONOUS  
1 AE SYNCHRONOUS TO CKO  
0 HF ASYNCHRONOUS  
1 HF SYNCHRONOUS TO CKO  
2 OR 3 HF SYNCHRONOUS TO CKI  
0 AF ASYNCHRONOUS  
1 AF SYNCHRONOUS TO CKI  
0 OE DOES NOT CONTROL THE READ POINTER  
1 OE CONTROLS THE READ POINTER  
543620-29  
Figure 8. LH543620 Control Register  
2-429  
LH543620  
Writing to the Mailbox is enabled from the Input Port  
1024 × 36 Synchronous FIFO  
The recommended control setting for bypass is:  
when the Input Port address field ADI[2:0] = 6. The write  
operation is synchronous to the rising edge of CKI.  
ENI = LOW, ENO = LOW, ADI[2:0] = 7,  
ADO[2:0] = 7, OE = LOW, BYE = LOW  
When writing to the Mailbox, the status flags are  
changed as follows:  
OPERATIONAL MODES AND CONFIGURATIONS  
Interlocked Width Expansion (Figure 8A)  
MEF is deasserted HIGH on the rising edge of CKO.  
MFF is asserted LOW on the rising edge of CKI.  
Two LH543620s may be configured to expand the  
width to 72 bits. This is accomplished by:  
A Mailbox read is enabled from the Output Port, when  
the Output Port address field ADO[2:0] = 6. The Read  
operation is synchronized to CKO.  
Cross-connecting the FF output of each FIFO to ENI  
1
(or ENI ) input of the other FIFO.  
2
Cross-connecting the EF output of each FIFO to ENO  
1
When reading the Mailbox, the status flags are  
changed as follows:  
(or ENO ) input of the other FIFO.  
2
The composite status flags are the OR function of the  
individual flags.  
MEF is asserted LOW on the rising edge of CKO.  
MFF is deasserted HIGH on the rising edge of CKI.  
Pipeline Cascading Mode and ‘Two-Dimension’  
Pipeline Cascading Mode (Figure 8B and 8C)  
After reset the Mailbox is empty (i.e., MFF = HIGH,  
MEF = LOW).  
Depth cascading is accomplished by:  
When using Mailbox, the transmitter side can transfer  
a message to the receiver side without interrupting the  
data in the FIFO memory array.  
Setting the upper FIFO into cascade mode:  
RTMD[1:0] = 0  
Connecting the same free-running clock to CKO of the  
upper FIFO and to CKI input of the lower FIFO.  
DATA BYPASS MODE  
Data Bypass mode is selected when BYE = LOW. In  
this mode, data may be transferred asynchronously from  
the Input Port to the Output Port. The device may be  
placed in Data Bypass mode without voiding the contents  
of the FIFO memory array, the Mailbox Register, or the  
Resource Register. However, if the input is enabled  
Connecting the AE output of the upper FIFO to ENI  
1
input (or ENI ) of the lower FIFO.  
2
Connecting the FF output of the lower FIFO to ENO  
1
input (or ENO ) of the upper FIFO.  
2
NOTE: RTMD[1:0] should remain stable during cascade  
mode operation (i.e., remain low).  
(ENI = HIGH) then the input data D is also written to  
1,2  
the FIFO memory array on the rising edge of CKI. If the  
Output is enabled, (ENO = HIGH) then the input data  
1,2  
D is transferred to the output buffer, and the Read Pointer  
is incremented by CKO. The control signal OE is function-  
ing when BYE is asserted.  
2-430  
1024 × 36 Synchronous FIFO  
LH543620  
CKI  
ENI  
CKI  
CKO  
ENO1  
EF  
CKO  
ENO  
ENI1  
ENI2  
FF  
ENO2  
Q[35:0]  
DI[71:36]  
D[35:0]  
DO[71:36]  
CKI  
CKO  
ENO1  
EF  
ENI1  
ENI2  
FF  
EF  
FF  
ENO2  
Q[35:0]  
DI[35:0]  
DO[35:0]  
D[35:0]  
A. INTERLOCKED WIDTH EXPANSION  
COMMON  
CLOCK  
CKI  
ENI1  
CKI  
CKO  
ENO1  
AE  
CKI  
CKO  
ENO1  
EF  
CKO  
VCC  
ENI1  
ENI2  
FF  
ENI1  
ENI2  
FF  
ENO1  
EF  
ENI2  
FF  
ENO2  
Q[35:0]  
ENO2  
Q[35:0]  
ENO2  
DO[35:0]  
DI[35:0]  
D[35:0]  
D[35:0]  
RTMD[1:0]  
L L  
RTMD[1:0]  
H H  
B. PIPELINED CASCADING MODE  
COMMON  
CLOCK  
CKO  
ENO  
CKI  
ENI  
CKI  
CKO  
ENO1  
AE  
CKI  
CKO  
ENO1  
EF  
VCC  
ENI1  
ENI2  
FF  
ENI1  
ENI2  
FF  
ENO2  
Q[35:0]  
ENO2  
Q[35:0]  
DO[71:36]  
D[35:0]  
D[35:0]  
DI[71:36]  
RTMD[1:0]  
H H  
RTMD[1:0]  
L L  
CKI  
ENI1  
ENI2  
FF  
CKO  
ENO1  
AE  
CKI  
ENI1  
ENI2  
FF  
CKO  
ENO1  
EF  
VCC  
EF  
FF  
ENO2  
ENO2  
Q[35:0]  
DO[35:0]  
DI[35:0]  
D[35:0]  
D[35:0]  
RTMD[1:0]  
L L  
Q[35:0]  
RTMD[1:0]  
H H  
C. 'TWO-DIMENSION' PIPELINED CASCADING MODE  
NOTES:  
DI = System data input width.  
DO = System data output width.  
543620-7  
Figure 9. LH543620 Width and Depth Expansion Scheme  
2-431  
LH543620  
1024 × 36 Synchronous FIFO  
TIMING DIAGRAMS  
tRS  
RS  
tRF  
EF, AE  
tRF  
FF, HF,  
AF, PF  
tRO  
OE = HIGH1  
OE = LOW  
Q[35:0]  
tRSR  
ENI1, ENI2,  
ENO1, ENO2  
ADI[2:0]3  
ADO[2:0]  
NOTES:  
1. After reset, the outputs will be LOW if OE = LOW, and in a high-impedance  
state if OE = HIGH.  
2. The clocks (CKI, CKO) may be free-running during a reset operation.  
3. If CAPR = L, then ADO = XXX and ADI must be = H,H,H for proper reset.  
If CAPR = H, then ADI = XXX and ADO must be = H,H,H for proper reset.  
543620-15  
Figure 10. Reset Timing  
2-432  
1024 × 36 Synchronous FIFO  
LH543620  
tC  
tCH  
tCL  
CKI  
tEH  
tEH  
tES  
tES  
ENI1, ENI2  
D[35:0]  
tDS  
tDH  
tDS  
tDH  
tC  
CKO  
tEH  
tES  
tEH  
tES  
tCL  
tCH  
ENO1, ENO2  
OE  
tOZ  
tOH  
tOE  
tOL  
tA  
tOH  
tA  
tOH  
Q[35:0]  
PREVIOUS DATA  
NOTES:  
1. Both ENI1 and ENI2 must be asserted (HIGH) to enable write operations.  
2. Both ENO1 and ENO2 must be asserted (HIGH) to enable read operations.  
543620-8  
Figure 11. Write and Read Operation  
2-433  
LH543620  
1024 × 36 Synchronous FIFO  
CKI  
tES  
tEH  
ENI1, ENI2  
tDS  
tDH  
DATA VALID  
tSKEW2  
D[35:0]  
CKO  
EF  
tEF  
tEF  
(NOTE)  
tA  
tOH  
DATA-OUT VALID  
Q[35:0]  
ENO1, ENO2  
OE  
NOTE: If tSKEW2 < (minimum specification) then EF may change one CKO cycle later.  
543620-9  
Figure 12. Empty Flag Timing  
2-434  
1024 × 36 Synchronous FIFO  
LH543620  
WRITE  
NO WRITE  
CKI  
tFF  
tFF  
FF  
(NOTE)  
tDS  
tDH  
D[35:0]  
DATA WRITE  
tES  
ENI1, ENI2  
tSKEW1  
CKO  
tES  
tEH  
ENO1, ENO2  
tA  
tOH  
Q[35:0]  
DATA READ  
NOTE: If tSKEW1 < (minimum specification) then FF may change one CKI cycle later.  
543620-10  
Figure 13. Full Flag Timing  
2-435  
LH543620  
1024 × 36 Synchronous FIFO  
WORD (1024 - p-1) WRITE OCCURS  
WORD (1024 - p-1) READ OCCURS  
CKI  
CKO  
tSKEW1  
ENI1, ENI2  
ENO1, ENO2  
tAF  
tAF  
SYNCHRONOUS MODE  
AF  
tAF  
ASYNCHRONOUS MODE  
tAF  
AF  
NOTES:  
1. The synchronization mode of AF is set by programming bit 5 of control register.  
2. When in synchronization mode and tSKEW1 < (min specification) then AF may change one CKI later.  
543620-11  
Figure 14. Almost-Full Flag -  
Synchronous and Asynchronous Modes  
WORD (q + 1) READ OCCURS  
WORD (q + 1) WRITE OCCURS  
CKI  
CKO  
ENO1, ENO2  
ENI1, ENI2  
tSKEW2  
tAE  
tAE  
ASYNCHRONOUS MODE  
AE  
tAE  
tAE  
SYNCHRONOUS MODE  
AE  
NOTES:  
1. The synchronization mode is set by programming bit 2 of control register.  
2. When AE is in synchronous mode and tSKEW2 < (min specification) then AE may change one CKO cycle later.  
543620-12  
Figure 15. Almost-Empty Flag -  
Synchronous and Asynchronous Modes  
2-436  
1024 × 36 Synchronous FIFO  
LH543620  
WORD 513 READ OCCURS  
WORD 513 WRITE OCCURS  
CKI  
CKO  
tSKEW2  
tSKEW1  
ENI1, ENI2  
ENO1, ENO2  
tHF  
tHF  
ASYNCHRONOUS MODE  
HF  
tHF  
tHF  
SYNCHRONOUS TO CKI  
HF  
HF  
tHF  
tHF  
SYNCHRONOUS TO CKO  
NOTE: The synchronization mode of HF is determined by the state of bits 3 and 4 of the Control Register.  
543620-28  
Figure 16. Half-Full Flag -  
Synchronous and Asynchronous Modes  
2-437  
LH543620  
1024 × 36 Synchronous FIFO  
CKI  
tDS  
tDH  
D[35:0]  
N1  
N2  
N3  
N4  
N5  
ENI1, ENI2  
tSKEW2  
CKO  
tEF  
EF  
tA  
tOH  
Q[35:0]  
N1  
N2  
N3  
tEH  
ENO1, ENO2  
OE  
NOTE: 1. If tSKEW2 < (minimum specification) then EF may change one CKO  
later and the first word (N1) will appear on Q[35:0] one cycle later.  
543620-13  
Figure 17. First Word Latency  
CKO  
ENO1, ENO2  
tPF  
tPF  
PF  
tA  
tOH  
Q[35:0]  
N3  
N1  
N2  
N4  
NOTE: Parity error at word N1.  
543620-14  
Figure 18. Parity Flag  
2-438  
1024 × 36 Synchronous FIFO  
LH543620  
BYE  
D[35:0]  
Q[35:0]  
I1  
I2  
I3  
tBA  
tBD  
(FIFO OUT)  
I2  
I3  
(FIFO OUT)  
NOTES:  
1. If ENI is enabled during BYE = LOW, the bypass data  
will be written into the FIFO.  
2. If ENO is enabled the data at the Q Port is the bypass data.  
The RP will be updated according to CKO.  
543620-16  
Figure 19. Bypass  
CKO  
tAS  
tAH  
ADO[2:0]  
7
3
7
tA  
tOH  
Q[35:0]  
N1  
N2  
tES  
PARITY R.  
tES  
N3  
N4  
tEH  
tEH  
ENO1, ENO2  
OE  
FIFO (N2)  
Q
FIFO (N3)  
Q
PARITY R  
Q
NOTE: N1, N2, N3, N4 are data from the FIFO and PARITY R. is  
the Parity Register value.  
543620-17  
Figure 20. Read Resource Register  
2-439  
LH543620  
1024 × 36 Synchronous FIFO  
CKI  
CAPR  
tAS  
tAH  
ADI[2:0]  
7
5
7
tDS  
tDH  
Q[35:0]  
D1  
C
D2  
D3  
D4  
tEH  
tES  
tES  
tEH  
ENI1, ENI2  
D3 FIFO  
D1  
FIFO  
C
CONTROL REG.  
D2  
FIFO  
543620-18  
Figure 21. Write Resource Register From the Input Port  
CKO  
CAPR  
tOES  
tOEH  
OE  
tAS  
tAH  
ADO[2:0]  
7
5
7
tDSO  
tDHO  
Q[35:0]  
N1  
C
N2  
N3  
tEH  
tES  
tES  
tEH  
ENO1, ENO2  
FIFO (N3) Q  
FIFO (N1)  
Q
Q(C)  
CONTROL  
REG.  
FIFO (N2)  
Q
543620-19  
Figure 22. Write Resource Register From Output Port  
2-440  
1024 × 36 Synchronous FIFO  
LH543620  
CKI  
ENI1, ENI2  
tWSS  
WSI[1:0] WSI1  
WSI2  
DATA IS STORED  
ACCORDING TO:  
WSI1  
WSI2  
WSI2  
WSI2  
543620-20  
Figure 23. WSI[1:0] Timing  
CKO  
ENO1, ENO2  
tWSS  
WSO[1:0] WSO1  
WSO2  
DATA IS READ  
ACCORDING TO:  
WSO1  
WSO2  
WSO2  
WSO2  
543620-21  
Figure 24. WSO[1:0] Timing  
2-441  
LH543620  
1024 × 36 Synchronous FIFO  
CKO  
tEH  
tES  
tES  
tEH  
ENO1, ENO2  
ADO[2:0]  
MEF  
tAS  
tAH  
7
6
7
tMEF  
tA  
tOH  
Q[35:0]  
CKI  
Q (FIFO)  
MAILBOX  
Q (FIFO)  
MFF  
tSKEWM  
tMFF  
NOTE: If tSKEWM < minimum specification MFF may be changed one CKI later.  
543620-22  
Figure 25. Mailbox Read  
2-442  
1024 × 36 Synchronous FIFO  
LH543620  
CKI  
tEH  
tES  
tES  
tEH  
ENI1, ENI2  
tAH  
tAS  
7
6
7
ADI[2:0]  
MFF  
tMFF  
tDS  
tDH  
D[35:0]  
CKO  
I1  
M
I2  
I3  
I4  
MEF  
tSKEWM  
tMEF  
NOTE: If tSKEWM < minimum specification MEF may be changed one CKO later.  
543620-23  
Figure 26. Mailbox Write  
2-443  
LH543620  
1024 × 36 Synchronous FIFO  
Figure 27. Retransmit Using Retransmit and Mark Mode  
2-444  
1024 × 36 Synchronous FIFO  
LH543620  
Figure 28. Retransmit Using Mark Mode and  
Retransmit Mode  
2-445  
LH543620  
1024 × 36 Synchronous FIFO  
CKO  
tOES  
tOEH  
OE  
ENO1, ENO2  
tA  
tOZ  
tOL  
tOH  
Q[35:0]  
543620-26  
Figure 29. OE When Bit 6 of the  
Control Register is HIGH  
2-446  
1024 × 36 Synchronous FIFO  
PACKAGE DIAGRAM  
132PQFP (PQFP132-P-S950)  
LH543620  
0° - 8°  
SECTION  
0.15 [0.006]  
0.25 [0.010] TYP.  
0.51 [0.020] MIN.  
45°  
CHAMFER  
0.10 [0.004]  
0.635  
[0.025] TYP  
NON-ACCUM  
28.02 [1.103]  
27.86 [1.097]  
27.69 [1.090]  
27.18 [1.070]  
TOP VIEW  
24.21 [0.953]  
24.05 [0.947]  
24.21 [0.953]  
24.05 [0.947]  
0.51 [0.020]  
MIN.  
27.69 [1.090]  
27.18 [1.070]  
4.57 [0.180]  
4.06 [0.160]  
28.02 [1.103]  
27.86 [1.097]  
MAXIMUM LIMIT  
MINIMUM LIMIT  
DIMENSIONS IN MM [INCHES]  
132 PQFP  
132-pin PQFP  
2-447  
LH543620  
1024 × 36 Synchronous FIFO  
144TQFP (TQFP-144-P-2020)  
0.20 [0.008]  
0.09 [0.004]  
0.27 [0.010]  
0.17 [0.007]  
0.50 [0.020]  
TYP.  
20.0  
22.0  
[0.787] [0.866]  
BASIC BASIC  
20.0 [0.787]  
BASIC  
22.0 [0.866]  
BASIC  
DETAIL  
1.60 [0.063]  
REF. MAX  
1.45 [0.057]  
1.35 [0.053]  
0.15 [0.006]  
0.05 [0.002]  
0.75 [0.030]  
0.47 [0.019]  
1.00  
[0.039]  
REF.  
MAXIMUM LIMIT  
MINIMUM LIMIT  
DIMENSIONS IN MM [INCHES]  
144TQFP  
2-448  
1024 × 36 Synchronous FIFO  
LH543620  
ORDERING INFORMATION  
LH543620  
X
- ##  
Device Type  
Package  
Speed  
20  
25  
30  
Cycle Times (ns)  
P 132-Pin, Plastic Quad Flat Package (PQFP132-P-S950)  
M 144-Pin, Thin Quad Flat Package  
1024 x 36 Synchronous FIFO  
Example: LH543620P-20 (1024 x 36 Synchronous FIFO, 20 ns, 132-Lead, Plastic Quad Flat Package)  
543620-32  
LIFE SUPPORT POLICY  
SHARP components should not be used in medical devices with life support functions or in safety equipment (or similiar applications where  
component failure would result in loss of life or physical harm) without the written approval of an officer of the SHARP Corporation.  
LIMITED WARRANTY  
SHARP warrants to its Customer that the Products will be free from defects in material and workmanship under normal use and service for a  
period of one year from the date of invoice. Customer's exclusive remedy for breach of this warranty is that SHARP will either (i) repair or  
replace, at its option, any Product which fails during the warranty period because of such defect (if Customer promptly reported the failure to  
SHARP in writing) or, (ii) if SHARP is unable to repair or replace, refund the purchase price of the Product upon its return to SHARP. This  
warranty does not apply to any Product which has been subjected to misuse, abnormal service or handling, or which has been altered or  
modified in design or construction, or which has been serviced or repaired by anyone other than Sharp. The warranties set forth herein are in  
lieu of, and exclusive of, all other warranties, express or implied. ALL EXPRESS AND IMPLIED WARRANTIES, INCLUDING THE  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR USE AND FITNESS FOR A PARTICULAR PURPOSE, ARE SPECIFICALLY  
EXCLUDED. In no event will Sharp be liable, or in any way responsible, for any incidental or consequential economic or property damage.  
The above warranty is also extended to Customers of Sharp authorized distributors with the following exception: reports of failures of Products  
during the warranty period and return of Products that were purchased from an authorized distributor must be made through the distributor.  
In case Sharp is unable to repair or replace such Products, refunds will be issued to the distributor in the amount of distributor cost.  
SHARP reserves the right to make changes in specifications at any time and without notice. SHARP does not assume any responsibility  
for the use of any circuitry described; no circuit patent licenses are implied.  
®
NORTH AMERICA  
EUROPE  
ASIA  
SHARP Corporation  
SHARP Electronics Corporation  
Microelectronics Group  
5700 NW Pacific Rim Blvd., M/S 20  
Camas, WA 98607, U.S.A.  
Phone: (360) 834-2500  
Telex: 49608472 (SHARPCAM)  
Facsimile: (360) 834-8903  
http://www.sharpmeg.com  
SHARP Electronics (Europe) GmbH  
Microelectronics Division  
Sonninstraße 3  
20097 Hamburg, Germany  
Phone: (49) 40 2376-2286  
Telex: 2161867 (HEEG D)  
Facsimile: (49) 40 2376-2232  
Integrated Circuits Group  
2613-1 Ichinomoto-Cho  
Tenri-City, Nara, 632, Japan  
Phone: (07436) 5-1321  
Telex: LABOMETA-B J63428  
Facsimile: (07436) 5-1532  
©1991 by SHARP Corporation  
Reference Code SMT91008  

相关型号:

LH543620P-15

FIFO, 1KX36, 15ns, Synchronous, CMOS, PQFP132, 0.950 INCH, PLASTIC, QFP-132
SHARP

LH543620P-20

FIFO, 1KX36, Synchronous, CMOS, PQFP132, 0.950 X 0.950 INCH, PLASTIC, QFP-132
SHARP

LH543620P-25

FIFO, 1KX36, Synchronous, CMOS, PQFP132, 0.950 X 0.950 INCH, PLASTIC, QFP-132
SHARP

LH543620P-30

FIFO, 1KX36, Synchronous, CMOS, PQFP132, 0.950 X 0.950 INCH, PLASTIC, QFP-132
SHARP

LH543620Y-15

FIFO, 1KX36, 15ns, Synchronous, CMOS, CPGA120, PGA-120
SHARP

LH543620Y-25

FIFO, 1KX36, 25ns, Synchronous, CMOS, CPGA120, PGA-120
SHARP

LH543620Y-30

FIFO, 1KX36, 30ns, Synchronous, CMOS, CPGA120, PGA-120
SHARP

LH543621

512 x 36 x 2 / 1024 x 36 x 2 Synchronous Bidirectional FIFO
SHARP

LH543621M-18

x36 Synchronous Bidirectional FIFO
ETC

LH543621M-20

x36 Synchronous Bidirectional FIFO
ETC

LH543621M-25

x36 Synchronous Bidirectional FIFO
ETC

LH543621M-30

x36 Synchronous Bidirectional FIFO
ETC