PC929P [SHARP]

Logic IC Output Optocoupler, 1-Element, 4000V Isolation, PLASTIC, SMD, MINI-FLAT, 14 PIN;
PC929P
型号: PC929P
厂家: SHARP ELECTRIONIC COMPONENTS    SHARP ELECTRIONIC COMPONENTS
描述:

Logic IC Output Optocoupler, 1-Element, 4000V Isolation, PLASTIC, SMD, MINI-FLAT, 14 PIN

输出元件 光电
文件: 总22页 (文件大小:430K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PC929 Series  
High Speed, Built-in Short  
PC929 Series  
Protection Circuit, Gate Drive  
SMD 14 pin OPIC Photocoulper  
Description  
PC929 Series contains an IRED optically coupled to  
an OPIC chip.  
Agency approvals/Compliance  
1. Recognized by UL1577, file No. E64380 (as model  
No. PC929)  
It is packaged in a Mini-flat, Half pitch type (14 pin).  
Input-output isolation voltage(rms) is 4.0kV. High  
speed responce (tPLH, tPHL : MAX. 0.5 µs).  
2. Approved by VDE (VDE0884) (as an option) file No.  
94626 (as model No. PC929)  
3. Package resin : UL flammability grade (94V-0)  
Features  
Applications  
1. 14 pin Half pitch type (Lead pitch : 1.27 mm)  
1. Inverter  
2. Double transfer mold package  
(Ideal for Flow Soldering)  
3. Built-in IGBT shortcircuit protector circuit  
4. Built-in direct drive circuit for IGBT drive  
(Peak output current : IO1P, IO2P : MAX. 0.4 A)  
5. High speed responce (tPLH, tPHL : MAX. 0.5 µs)  
6. High isolation voltage (Viso(rms) : 4.0 kV)  
"OPIC"(Optical IC) is a trademark of the SHARP Corporation. An OPIC consists of a light-detecting element and a signal-processing  
circuit integrated onto a single chip.  
Notice The content of data sheet is subject to change without prior notice.  
In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that may occur in equipment using any SHARP  
devices shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device.  
Sheet No.: D2-A06302EN  
1
Date Mar. 26. 2004  
© SHARP Corporation  
PC929 Series  
Internal Connection Diagram  
14  
13 12 11 10  
9
8
1
2
3
4
5
6
7
8
9
Cathode  
Cathode  
Anode  
NC∗  
FS  
C
GND  
O2  
O1  
IGBT protection  
circuit  
10  
11  
12  
13  
14  
Interface  
Amp.  
NC∗  
NC∗  
VCC  
GND  
NC∗  
No. to pin shall be shorted in the device.  
4
7
1
2
3
4
5
6
7
Voltage regulator  
Truth table  
Input  
C input-output O2 output FS output  
Low level  
High level  
Low level  
High level  
High level High level  
ON  
Low level Low level At operating protection function  
Low level High level  
OFF  
Low level High level  
Outline Dimensions  
(Unit : mm)  
2. SMT Gullwing Lead-Form (VDE0884 option)  
1. SMT Gullwing Lead-Form [ex. PC929P]  
[ex. PC929PY]  
1.27±0.25  
1.27±0.25  
14  
8
14  
8
SHARP  
mark "S"  
PC929  
PC929  
4
V
DE  
Date code  
Date code  
1
7
1
7
Primary side mark  
Primary side mark  
9.22±0.5  
VDE0884 Identification mark  
7.62±0.3  
9.22±0.5  
7.62±0.3  
Epoxy resin  
Epoxy resin  
0.6±0.1  
0.6±0.1  
+0.4  
+0.4  
+0.4  
+0.4  
1.0  
1.0  
0  
1.0  
1.0  
0  
0  
0  
+0  
+0  
10.0  
10.0  
0.5  
0.5  
Product mass : approx. 0.47g  
Sheet No.: D2-A06302EN  
2
PC929 Series  
Date code (2 digit)  
1st digit  
2nd digit  
Year of production  
Month of production  
A.D.  
1990  
1991  
1992  
1993  
1994  
1995  
1996  
1997  
1998  
1999  
2000  
2001  
A.D  
2002  
2003  
2004  
2005  
2006  
2007  
2008  
2009  
2010  
2011  
2012  
Mark  
P
Month  
Mark  
1
Mark  
A
B
January  
February  
March  
R
2
S
3
C
T
April  
4
D
E
U
May  
5
F
V
June  
6
H
J
W
X
July  
7
August  
September  
October  
November  
December  
8
K
L
A
9
B
O
N
D
M
N
C
·
·
·
·
·
·
repeats in a 20 year cycle  
Country of origin  
Japan  
Sheet No.: D2-A06302EN  
3
PC929 Series  
Absolute Maximum Ratings  
(unless otherwise specified Ta=Topr  
)
Parameter  
*1Forward current  
*2Reverse voltage  
Symbol  
IF  
Rating  
Unit  
mA  
V
20  
VR  
6
35  
Supply voltage  
VCC  
IO1  
V
O1 output current  
0.1  
A
*3O1 peak output current  
IO1P  
IO2  
0.4  
A
O2 output current  
0.1  
A
*3O2 peak output current  
O1 output voltage  
IO2P  
VO1  
PO  
0.4  
A
35  
V
*4Power dissipation  
Overcurrent detection voltage  
Overcurrent detection current  
Error signal output voltage  
Error signal output current  
*5Total power dissipation  
*6Isolation voltage  
Operating temperature  
Storage temperature  
*7Soldering temperature  
500  
mW  
V
VC  
VCC  
IC  
30  
mA  
V
VFS  
IFS  
VCC  
20  
mA  
mW  
kV  
˚C  
˚C  
˚C  
Ptot  
550  
Viso (rms)  
Topr  
Tstg  
Tsol  
4.0  
25 to +80  
55 to +125  
260  
*1 The derating factors of a absolute maximum ratings due to ambient temperature  
are shown in Fig.15  
*2 Ta =25˚C  
*3 Pulse width0.15µs, Duty ratio : 0.01  
*4.5 The derating factors of a absolute maximum ratings due to ambient temperature  
are shown in Fig.16  
*6 AC for 1minute, 40 to 60 %RH, Ta =25˚C, f=60Hz  
*7 For 10s  
Electro-optical Characteristics  
(unless otherwise specified Ta=Topr  
)
Parameter  
Symbol  
VF1  
VF2  
IR  
Conditions *8  
Ta=25˚C, IF=10mA  
Ta=25˚C, IF=0.2mA  
Ta=25˚C, VR=5V  
MIN.  
TYP.  
1.6  
1.5  
MAX.  
1.75  
Unit  
V
Forward voltage  
1.2  
V
Reverse current  
10  
µA  
pF  
V
Terminal capacitance  
Ct  
Ta=25˚C, V=0, f=1kHz  
Ta=10 to +60˚C  
30  
250  
30  
15  
Supply voltage  
VCC  
15  
24  
V
VO1L  
O1 Low level output voltage  
O2 High level output voltage  
O2 Low level output voltage  
O1 leak current  
V
=12V, V =12V, I =0.1A, I =5mA*9  
0.2  
22  
1.2  
0.4  
V
CC1  
CC2  
O1  
F
VO2H  
VO2L  
IO1L  
VCC=VO1=24V, IO2=0.1A, IF=5mA *9  
20  
V
VCC=24V, IO2=0.1A, IF=0  
*9  
2.0  
500  
17  
V
Ta=25˚C, VCC=VO1=35V, IF=0 *9  
Ta=25˚C, VCC=VO1=24V, IF=5mA*9  
µA  
mA  
mA  
mA  
mA  
10  
High level supply current  
Low level supply current  
ICCH  
ICCL  
VCC=VO1=24V, IF=5mA  
Ta=25˚C, VCC=VO1=24V, IF=0 *9  
VCC=VO1=24V, IF=0  
*9  
19  
11  
18  
*9  
20  
*8 It shall connect a by-pass capacitor of 0.01 µF or more between VCC (pin 13 ) and GND (pin, 10 , 14) near the device, when it measures the transfer characteristics and the  
output side characteristics.  
*9 FS=OPEN, VC=0  
Sheet No.: D2-A06302EN  
4
PC929 Series  
(unless otherwise specified Ta=Topr  
)
*10  
Parameter  
High input threshold current  
Symbol  
IFLH  
Conditions  
MIN.  
0.3  
TYP.  
1.5  
1011  
0.3  
0.3  
0.2  
0.2  
MAX.  
3.0  
5.0  
Unit  
mA  
mA  
Ta=25˚C,VCC=VO1=24V, FS=OPEN, VC=0  
*11  
"
Low  
"
VCC=VO1=24V, FS=OPEN, VC=0  
0.2  
Isolation resistance  
RISO  
tPLH  
tPHL  
tr  
Ta=25˚C, DC=500V, 40 to 60%RH 5×1010  
"LowHigh" propagation delay time  
"HighLow" propagation delay time  
Rise time  
Ta=25˚C,  
0.5  
0.5  
0.5  
0.5  
µs  
VCC=VO1=24V, IF=5mA,  
RG=47, CG=3 000pF  
FS=OPEN, VC=0  
µs  
µs  
Fall time  
tf  
µs  
Ta=25˚C, VCM=600V(p-p)  
IF=5mA, VCC=VO1=24V,  
VO2H=2.0V, FS=OPEN, VC=0  
Ta=25˚C, VCM=600V(p-p)  
IF=0, VCC=VO1=24V,  
VO2L=2.0V, FS=OPEN, VC=0  
Ta=25˚C  
Instantaneous common mode  
rejection voltage  
(High level output)  
CMH  
CML  
1.5  
kV/µs  
kV/µs  
Instantaneous common mode  
rejection voltage  
(Low level output)  
1.5  
*12  
Overcurrent detection voltage  
VCTH  
VCHIS  
tPCOHL  
tPCOtf  
VOE  
V
CC6.5 VCC6 VCC5.5  
V
V
VCC=VO1=24V  
IF=5mA, RG=47Ω  
CG=3 000pF, FS=OPEN  
Overcurrent detection  
voltage hysteresis width  
1
2
2
4
5
3
10  
O2 "HighLow" propagation delay  
time at overcurrent protection  
Ta=25˚C  
VCC=VO1=24V  
IF=5mA,  
µs  
µs  
V
O2 Fall time at overcurrent protection  
RG=47, CG=3 000pF,  
RC=1k, CP=3 000pF  
FS=OPEN  
O2 "HighLow" output voltage  
at overcurrent protection  
2
Ta=25˚C, IF=5mA  
VCC=VO1=24V  
IFS=10mA, RG=47Ω  
CG=3 000pF, C=OPEN  
Low level error signal voltage  
High level error signal voltage  
VFSL  
0.2  
0.4  
V
Ta=25˚C  
VCC=VO1=24V, IF=5mA  
VFS=24V, RG=47Ω  
CG=3 000pF, VC=0  
IFSH  
100  
µA  
Error signal "HighLow"  
propagation delay time  
Ta=25˚C, VCC=VO1=24V  
IF=5mA, RFS=1.8kΩ  
RG=47, RC=1kΩ  
tPCFHL  
1
5
µs  
µs  
Error signal output pulse width  
tFS  
20  
35  
CG=3 000pF, CP=1 000pF  
*10 It shall connect a by-pass capacitor of 0.01 µF or more between VCC (pin 13 ) and GND (pin 10 , 14) near the device, when it measures the device, when it measures the  
overcurrent characteristics, Protection output characteristics, and Error signal output characteristics.  
*11 IFLH represents forward current when output goes from "Low" to "High"  
*12 VCTH is the of C(pin 9 ) voltage when output becomes from "High" to "Low"  
Sheet No.: D2-A06302EN  
5
PC929 Series  
Model Line-up  
Lead Form  
SMT Gullwing  
Sleeve  
50pcs/sleeve  
−−−−−− Approved  
PC929 PC929Y  
Taping  
Package  
1 000pcs/reel  
VDE0884  
Model No.  
−−−−−−  
PC929P  
Approved  
PC929PY  
Please contact a local SHARP sales representative to inquire about production status and Lead-Free options.  
Sheet No.: D2-A06302EN  
6
PC929 Series  
Fig.1 Test Circuit for O1 Low Level Output  
Voltage  
Fig.2 Test Circuit for O2 High Level Output  
Voltage  
13  
13  
VCC1  
3
3
1
12  
12  
11  
IO2  
V
VCC  
IO1  
VO1L  
11  
PC929  
PC929  
VCC2  
V
IF  
IF  
V02H  
14 10  
14 10  
1
2
2
9
8
9
8
Fig.3 Test Circuit for O2 Low Level Output  
Voltage  
Fig.4 Test Circuit for O1 Leak Current  
13  
13  
A
IO1L  
3
1
3
1
12  
11  
12  
11  
VCC  
VCC  
PC929  
PC929  
V
VO2L  
IF  
IF  
IO2  
14 10  
14 10  
2
2
9
8
9
8
Fig.5 Test Circuit for "LowHigh" Input  
Fig.6 Test Circuit for High Level / Low Level  
Supply Current  
Threshold Current  
13  
13  
12  
11  
A
ICC  
3
1
3
1
12  
11  
VCC  
VCC  
PC929  
PC929  
V
VO2  
IF  
IF  
14 10  
14 10  
variable  
2
2
9
8
9
8
Sheet No.: D2-A06302EN  
7
PC929 Series  
Fig.8 Test Circuit for Response Time  
Fig.7 Test Circuit for Instantaneous Common  
Mode Rejection Voltage  
13  
13  
12  
11  
3
3
1
12  
11  
SW  
VCC  
VCC  
CG  
RG  
VOUT  
A
B
tr=tf=0.01µs  
Pulse width 5µs  
Duty ratio 50%  
PC929  
PC929  
VIN  
V
V
VO2  
14 10  
14 10  
1
2
2
9
8
9
8
+
VCM  
50%  
VCM  
(peak)  
VIN waveform  
VCM waveform  
tPHL  
tPLH  
GND  
VO2H  
90%  
50%  
10%  
CMH, VO2 waveform  
SW at A, IF=5mA  
VOUT waveform  
tf  
tr  
VO2H  
VO2L  
CML, VO2 waveform  
SW at B, IF=0mA  
VO2L  
GND  
Fig.9 Test Circuit for Overcurrent Detection Voltage,  
Overcurrent Detection Voltage Hysteresis  
Fig.10 Test Circuit for O2 Output Voltage at  
Overcurrent Protection  
13  
13  
3
3
12  
11  
12  
11  
VCC  
CG  
VCC  
CG  
RG  
RG  
PC929  
PC929  
V
V
VO2  
VO2  
CP  
IF  
IF  
14 10  
14 10  
RC  
V
VCTH  
VC  
1
2
1
2
9
8
9
8
Sheet No.: D2-A06302EN  
8
PC929 Series  
Fig.12 Test Circuit for High Level Error  
Fig.11 Test Circuit for O1 Low Level  
Error Signal Voltage  
Signal Current  
13  
13  
3
3
12  
11  
12  
VCC  
CG  
VCC  
CG  
RG  
RG  
11  
PC929  
PC929  
IF  
IF  
14 10  
14 10  
V
1
2
1
2
9
8
9
8
VFSL  
IFS  
VFS  
IFSH  
A
Fig.13 Test Circuit for O "HighLow" Propagation  
Fig.14 Error Signal "HighLow" propagation Delay  
2
Delay Time at Overcurrent Protection, O Fall  
Time, Error Signal Output Pulse Width  
2
Time at Overcurrent Protection  
13  
13  
RC  
3
1
3
1
12  
11  
12  
11  
VCC  
CG  
VCC  
CG  
RG  
VOUT  
CP  
RG  
tr=tf=0.01µs  
Pulse width 25µs  
Duty ratio 25%  
tr=tf=0.01µs  
Pulse width 25µs  
Duty ratio 25%  
PC929  
PC929  
VIN  
VIN  
V
14 10  
14 10  
RC  
VOUT  
2
2
V
9
8
9
8
RFS  
IF  
tpCOTF  
(Input current)  
90%  
50%  
10%  
VO2  
(O2 output voltage)  
tpCOHL  
90%  
10%  
Error detection threshold voltage (VCTH  
)
C
(Detecting terminal)  
tpCFHL  
tFS  
FS  
(Error signal output)  
50%  
50%  
Sheet No.: D2-A06302EN  
9
PC929 Series  
Fig.16 Power Dissipation vs. Ambient  
Fig.15 Forward Current vs. Ambient  
Temperature  
Temperature  
60  
600  
550  
500  
50  
40  
30  
20  
Ptot  
PO  
400  
300  
200  
10  
0
100  
0
25  
0
25  
50  
75 80 100  
125  
25  
0
25  
50  
75 80 100  
125  
Ambient temperature Ta (°C)  
Ambient temperature Ta (˚C)  
Fig.17 Forward Current vs. Forward  
Fig.18 "LowHigh" Relative Input Threshold  
Voltage  
100  
Current vs. Supply Voltage  
1.6  
Ta=25°C  
1.4  
1.2  
1.0  
10  
Ta=0˚C  
Value of VCC=24V assumes 1.  
1
25˚C  
50˚C  
70˚C  
0.1  
0.8  
0.6  
0.01  
15  
18  
21  
24  
27  
30  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
Supply voltage VCC (V)  
Forward voltage VF (V)  
Fig.19 "LowHigh" Relative Input Threshold  
Fig.20 O1 Low Level Output Voltage vs.  
O1 Output Current  
Current vs. Ambient Temperature  
1.6  
1
Ta=25°C  
VCC=24V  
VCC1=12V  
VCC2=12V  
IF=5mA  
1.4  
1.2  
1.0  
0.1  
0.8  
IFLH = 1 at Ta=25°C  
0.6  
0.4  
0.01  
0.2  
0.0  
0.001  
25  
0
25  
50  
75  
100  
0.01  
0.1  
1
Ambient temperature Ta (°C)  
O1 output current IO1 (A)  
Sheet No.: D2-A06302EN  
10  
PC929 Series  
Fig.22 O1 Leak Current vs. Ambient  
Fig.21 O1 Low Level Output Voltage vs.  
Ambient Temperature  
Temperature  
106  
0.20  
VCC=VO1=35V  
IF=0mA  
VCC1=12V  
VCC2=12V  
IF=5mA  
107  
108  
0.15  
0.10  
IO1=0.1A  
109  
0.05  
0.00  
1010  
25  
0
25  
50  
75  
100  
25  
0
25  
50  
75  
100  
Ambient temperature Ta (°C)  
Ambient temperature Ta (°C)  
Fig.23 O2 High Level Output Voltage vs.  
Supply Voltage  
Fig.24 O2 High Level Output Voltage vs.  
Ambient Temperature  
35  
24  
Ta=25°C  
IF=5mA  
VCC=24V  
IF=5mA  
IO2=0.1A  
30  
23  
IO2=0A  
25  
20  
15  
22  
IO2=0.1A  
21  
20  
19  
10  
5
15  
18  
21  
24  
27  
30  
25  
0
25  
50  
75  
100  
Ambient temperature Ta (°C)  
Supply voltage VCC (V)  
Fig.25 O2 Low Level Output Voltage vs.  
O2 Output Current  
Fig.26 O2 Low Level Output Voltage vs.  
Ambient Temperature  
1.3  
10  
VCC=24V  
Ta=25°C  
VCC=24V  
IF=5mA  
1.2  
1
1.1  
IO2=0.1A  
1
0.1  
0.9  
0.8  
0.01  
0.01  
0.1  
1
25  
0
25  
50  
75  
100  
O2 output current IO2 (A)  
Ambient temperature Ta (°C)  
Sheet No.: D2-A06302EN  
11  
PC929 Series  
Fig.28 Low Level Supply Current vs.  
Fig.27 High Level Supply Current vs. Supply  
Voltage  
Supply Voltage  
16  
18  
IF=5mA  
IF=0mA  
Ta=25˚C  
Ta=25˚C  
14  
16  
14  
12  
10  
12  
Ta=25˚C  
Ta=25˚C  
Ta=80˚C  
10  
Ta=80˚C  
8
6
4
8
6
15  
18  
21  
24  
27  
30  
15  
18  
21  
24  
27  
30  
Supply voltage VCC (V)  
Supply voltage VCC (V)  
Fig.29 Propagation Delay Time vs. Forward  
Fig.30 Propagation Delay Time vs.  
Ambient Temperature  
Current  
1.0  
0.5  
VCC=24V  
RG=47Ω  
tPLH  
Ta=25°C  
IF=5mA  
RG=47Ω  
0.9  
0.8  
CG=3 000pF  
IF=5mA  
0.4  
0.3  
0.2  
CG=3 000pF  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
tPLH  
tPHL  
0.1  
0
0.1  
0
tPHL  
0
5
10  
15  
20  
25  
25  
0
25  
50  
75  
100  
Forward current IF (mA)  
Ambient temperature Ta (°C)  
Fig.31 Overcurrent Detecting Voltage vs.  
Fig.32 O2 Output Fall Time at Protection from Overcurrent/O2 "High-Low"  
Ambient Temperature  
Propagation Delay Time at Protection from Overcurrent vs. Ambient Temperature  
30  
10  
VCC=24V  
VCC=24V  
RG=47Ω  
CG=3 000pF  
IF=5mA  
RG=47Ω  
tPCOtf  
25  
8
6
4
CG=3 000pF  
RC=1kΩ  
CP=1 000pF  
IF=5mA  
20  
15  
10  
tPCOHL  
2
0
5
0
25  
0
25  
50  
75  
100  
25  
0
25  
50  
75  
100  
Ambient temperature Ta (°C)  
Ambient temperature Ta (°C)  
Sheet No.: D2-A06302EN  
12  
PC929 Series  
Fig.33 Error Signal "High-Low" Propagation  
Delay Time vs. Ambient Temperature  
Fig.34 O2 Output Voltage at Protection from  
Overcurrent vs. Ambient Temperature  
1.5  
2.0  
VCC=24V  
IF=5mA  
RG=47Ω  
CG=3 000pF  
RC=1kΩ  
VCC=24V  
IF=5mA  
RFS=1.8kΩ  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
RG=47Ω  
1.2  
0.9  
0.6  
CG=3 000pF  
RC=1kΩ  
CP=1 000pF  
CP=1 000pF  
0.3  
0
0.2  
0.0  
25  
0
25  
50  
75  
100  
25  
0
25  
50  
75  
100  
Ambient temperature Ta (˚C)  
Ambient temperature Ta (°C)  
Fig.36 High Level Error Signal Current vs.  
Fig.35 Low Level Error Signal Voltage vs.  
Ambient Temperature  
Ambient Temperature  
106  
0.5  
VCC=24V  
IF=5mA  
VCC=24V  
IF=5mA  
RG=47Ω  
CG=3 000pF  
VC=0  
IFS=10mA  
RG=47Ω  
0.4  
CG=3 000pF  
107  
C=OPEN  
0.3  
0.2  
108  
0.1  
0
109  
25  
25  
0
25  
50  
75  
100  
0
25  
50  
75  
100  
Ambient temperature Ta (°C)  
Ambient temperature Ta (˚C)  
Fig.37 Error signal output pulse width vs.  
Ambient Temperature  
Fig.38 Overcurrent Detecting Voltage vs.  
Supply Voltage  
50  
25  
VCC=24V  
IF=5mA  
RFS=1.8kΩ  
Ta=25˚C  
IF=5mA  
VCC=24V  
RG=47Ω  
Added resistance=0Ω  
RG=47Ω  
40  
30  
20  
20  
15  
10  
CG=3 000pF  
RC=1kΩ  
CG=3 000pF  
RC=1kΩ  
FS=OPEN  
CP=1 000pF  
CP=1 000pF  
0.5kΩ  
1kΩ  
10  
0
5
0
1.5kΩ  
25  
0
25  
50  
75  
100  
15  
18  
21  
24  
27  
30  
Ambient temperature Ta (°C)  
Supply voltage VCC (V)  
Sheet No.: D2-A06302EN  
13  
PC929 Series  
Fig.39 Overcurrent Detecting Voltage - Supply Voltage Characteristics Test Circuit  
VCC  
Anode  
O1  
IF  
VCC  
Cathode  
RG  
O2  
C
RC  
VO2  
V
CP  
CG  
VC  
V
FS  
GND  
Fig.40 Example of The Application Circuit (IGBT Drive for Inverter)  
Anode  
VCC  
(+)  
R1  
V
CC1=12V  
+
+
O1  
O2  
Cathode  
Cathode  
RG  
CB  
RC  
Cp  
R2  
D2  
D1  
R3  
C
FS  
TTL, microcomputer,  
etc.  
V
CC2=12V  
GND  
()  
RFS  
To microcomputer  
PC817X etc.  
CFS  
• In order to stabilize the power supply line, we recommend to locate a bypass capacitor CB (0.01µF or more)  
between VCC and GND near photocoupler.  
• In order to stabilize the detecting voltage of pin-C, we recommend to locate a capacitor CP (approximately  
1 000pF) between pin-C and GND, and a resistor RC (approximately 1.0k) between VCC and pin-C.  
However, the rise time of the detection voltage at Pin-C varies along with the time constants of CP and RC.  
So, please make sure the device works properly in actual conditions.  
• For the diode D, which is located between pin-C and collector of IGBT, we recommend to use a diode that  
has the withstand voltage characteristic equivalent to IGBT and also has little leak current.  
• In order to prevent the failure mode or breakdown of pin-C from VCE variation of IGBT, we recommend to  
locate a resistor R2 (approximately 10k) and a diode D1 at near pin-C, and a resistor R3 (approximately  
50k) and a diode D2 at between pin-C and GND.  
This application circuit shows the general example of a circuit, and is not a design guarantee  
for right operation.  
Sheet No.: D2-A06302EN  
14  
PC929 Series  
Fig.41 Operations of Shortcircuit Protector Circuit  
VCC  
PC929  
VCC  
13  
Anode  
3
O1  
O2  
12  
11  
Cathode  
Constant voltage circuit  
Amp.  
1
2
Tr. 1  
Cathode  
RG  
IGBT  
Tr. 2  
VC  
RC  
TTL, microcomputer, etc.  
Typ. 150kΩ  
C
9
8
IGBT protector  
circuit  
FS  
CP  
GND  
14 10  
VEE  
Feedback to primary side  
1. Detection of increase in VCE(sat) of IGBT due to overcurrent by means of C terminal (pin  
2. Reduction of the IGBT gate voltage, and suppression of the collector current  
)
9
3. Simultaneous output of signals to indicate the shortcircuit condition (FS signal) from FS (pin  
the microcomputer  
) terminal to  
8
4. Judgement and processing by the microcomputer  
In the case of instantaneous shortcircuit, run continues.  
At fault, input to the photocoupler is cut off, and IGBT is  
turned OFF.  
Remarks : Please be aware that all data in the graph are just for reference and not for guarantee.  
Sheet No.: D2-A06302EN  
15  
PC929 Series  
Design Considerations  
Notes about static electricity  
Transistor of detector side in bipolar configuration may be damaged by static electricity due to its minute de-  
sign.  
When handling these devices, general countermeasure against static electricity should be taken to avoid  
breakdown of devices or degradation of characteristics.  
Design guide  
In order to stabilize power supply line, we should certainly recommend to connect a by-pass capacitor of  
0.01µF or more between VCC and GND near the device.  
We recommed to use approximately 1 000pF of capacitor between C-pin and GND in order to prevent miss  
opration by noise.  
In the case that capacitor is used approximately 1kof resistance shall be recommended to use between  
VCC and C-pin However, the rise time of C-pin shall be changed by time constant of added CR, so that  
please use this device after confirmation.  
In case that some sudden big noise caused by voltage variation is provided between primary and secondary  
terminals of photocoupler some current caused by it is floating capacitance may be generated and result in  
false operation since current may go through LED or current may change.  
If the photocoupler may be used under the circumstances where noise will be generated we recommend to  
use the bypass capacitors at the both ends of LED.  
The detector which is used in this device, has parasitic diode between each pins and GND.  
There are cases that miss operation or destruction possibly may be occurred if electric potential of any pin  
becomes below GND level even for instant.  
Therefore it shall be recommended to design the circuit that electric potential of any pin does not become  
below GND level.  
This product is not designed against irradiation and incorporates non-coherent LED.  
Sheet No.: D2-A06302EN  
16  
PC929 Series  
Degradation  
In general, the emission of the LED used in photocouplers will degrade over time.  
In the case of long term operation, please take the general LED degradation (50% degradation over 5years)  
into the design consideration.  
Please decide the input current which become 2times of MAX. IFLH  
.
Recommended Foot Print (reference)  
9.0  
1.8  
(Unit : mm)  
For additional design assistance, please review our corresponding Optoelectronic Application Notes.  
Sheet No.: D2-A06302EN  
17  
PC929 Series  
Manufacturing Guidelines  
Soldering Method  
Reflow Soldering:  
Reflow soldering should follow the temperature profile shown below.  
Soldering should not exceed the curve of temperature profile and time.  
Please don't solder more than twice.  
(˚C)  
300  
Terminal : 260˚C peak  
( package surface : 250˚C peak)  
200  
Reflow  
220˚C or more, 60s or less  
Preheat  
100  
150 to 180˚C, 120s or less  
0
0
1
2
3
4
(min)  
Flow Soldering :  
Due to SHARP's double transfer mold construction submersion in flow solder bath is allowed under the below  
listed guidelines.  
Flow soldering should be completed below 260˚C and within 10s.  
Preheating is within the bounds of 100 to 150˚C and 30 to 80s.  
Please don't solder more than twice.  
Hand soldering  
Hand soldering should be completed within 3s when the point of solder iron is below 400˚C.  
Please don't solder more than twice.  
Other notices  
Please test the soldering method in actual condition and make sure the soldering works fine, since the impact  
on the junction between the device and PCB varies depending on the tooling and soldering conditions.  
Sheet No.: D2-A06302EN  
18  
PC929 Series  
Cleaning instructions  
Solvent cleaning:  
Solvent temperature should be 45˚C or below Immersion time should be 3minutes or less  
Ultrasonic cleaning:  
The impact on the device varies depending on the size of the cleaning bath, ultrasonic output, cleaning time,  
size of PCB and mounting method of the device.  
Therefore, please make sure the device withstands the ultrasonic cleaning in actual conditions in advance of  
mass production.  
Recommended solvent materials:  
Ethyl alcohol, Methyl alcohol and Isopropyl alcohol  
In case the other type of solvent materials are intended to be used, please make sure they work fine in ac-  
tual using conditions since some materials may erode the packaging resin.  
Presence of ODC  
This product shall not contain the following materials.  
And they are not used in the production process for this device.  
Regulation substances : CFCs, Halon, Carbon tetrachloride, 1.1.1-Trichloroethane (Methylchloroform)  
Specific brominated flame retardants such as the PBBOs and PBBs are not used in this product at all.  
Sheet No.: D2-A06302EN  
19  
PC929 Series  
Package specification  
Sleeve package  
Package materials  
Sleeve : HIPS (with anti-static material)  
Stopper : Styrene-Elastomer  
Package method  
MAX. 50 pcs. of products shall be packaged in a sleeve.  
Both ends shall be closed by tabbed and tabless stoppers.  
The product shall be arranged in the sleeve with its primary side mark on the tabless stopper side.  
MAX. 20 sleeves in one case.  
Sleeve outline dimensions  
12.0  
6.7  
(Unit : mm)  
Sheet No.: D2-A06302EN  
20  
PC929 Series  
Tape and Reel package  
Package materials  
Carrier tape : A-PET (with anti-static material)  
Cover tape : PET (three layer system)  
Reel : PS  
Carrier tape structure and Dimensions  
F
J
D
E
G
I
K
Dimensions List  
(Unit : mm)  
A
B
C
D
E
F
G
+0.1  
16.0±0.3  
7.5±0.1  
1.75±0.1  
12.0±0.1  
2.0±0.1  
4.0±0.1  
φ1.5  
0  
H
I
J
K
10.4±0.1  
0.4±0.05  
4.2±0.1  
9.7±0.1  
Reel structure and Dimensions  
e
d
g
Dimensions List  
(Unit : mm)  
a
b
c
d
330  
e
23±1.0  
17.5±1.5  
100±1.0  
13±0.5  
f
f
g
b
2.0±0.5  
2.0±0.5  
a
Direction of product insertion  
Pull-out direction  
[Packing : 1 000pcs/reel]  
Sheet No.: D2-A06302EN  
21  
PC929 Series  
Important Notices  
· The circuit application examples in this publication are  
provided to explain representative applications of  
SHARP devices and are not intended to guarantee any  
circuit design or license any intellectual property rights.  
SHARP takes no responsibility for any problems rela-  
ted to any intellectual property right of a third party re-  
sulting from the use of SHARP's devices.  
with equipment that requires higher reliability such as:  
--- Transportation control and safety equipment (i.e.,  
aircraft, trains, automobiles, etc.)  
--- Traffic signals  
--- Gas leakage sensor breakers  
--- Alarm equipment  
--- Various safety devices, etc.  
(iii) SHARP devices shall not be used for or in connec-  
tion with equipment that requires an extremely high lev-  
el of reliability and safety such as:  
--- Space applications  
--- Telecommunication equipment [trunk lines]  
--- Nuclear power control equipment  
--- Medical and other life support equipment (e.g.,  
scuba).  
· Contact SHARP in order to obtain the latest device  
specification sheets before using any SHARP device.  
SHARP reserves the right to make changes in the spec-  
ifications, characteristics, data, materials, structure,  
and other contents described herein at any time without  
notice in order to improve design or reliability. Manufac-  
turing locations are also subject to change without no-  
tice.  
· If the SHARP devices listed in this publication fall with-  
in the scope of strategic products described in the For-  
eign Exchange and Foreign Trade Law of Japan, it is  
necessary to obtain approval to export such SHARP de-  
vices.  
· Observe the following points when using any devices  
in this publication. SHARP takes no responsibility for  
damage caused by improper use of the devices which  
does not meet the conditions and absolute maximum  
ratings to be used specified in the relevant specification  
sheet nor meet the following conditions:  
(i) The devices in this publication are designed for use  
in general electronic equipment designs such as:  
--- Personal computers  
· This publication is the proprietary product of SHARP  
and is copyrighted, with all rights reserved. Under the  
copyright laws, no part of this publication may be repro-  
duced or transmitted in any form or by any means, elec-  
tronic or mechanical, for any purpose, in whole or in  
part, without the express written permission of SHARP.  
Express written permission is also required before any  
use of this publication may be made by a third party.  
--- Office automation equipment  
--- Telecommunication equipment [terminal]  
--- Test and measurement equipment  
--- Industrial control  
--- Audio visual equipment  
--- Consumer electronics  
· Contact and consult with a SHARP representative if  
there are any questions about the contents of this pub-  
lication.  
(ii) Measures such as fail-safe function and redundant  
design should be taken to ensure reliability and safety  
when SHARP devices are used for or in connection  
Sheet No.: D2-A06302EN  
22  

相关型号:

PC929PJ0000F

Logic IC Output Optocoupler, 1-Element, 4000V Isolation, ROHS COMPLIANT, PLASTIC, SMT, MINIFLAT-14
SHARP

PC929PY

暂无描述
SHARP

PC929PY0000F

Logic IC Output Optocoupler, 1-Element, 4000V Isolation, ROHS COMPLIANT, PLASTIC, SMT, MINIFLAT-14
SHARP

PC929Y

暂无描述
SHARP

PC929YJ0000F

Logic IC Output Optocoupler, 1-Element, 4000V Isolation, ROHS COMPLIANT, PLASTIC, SMT, MINIFLAT-14
SHARP

PC93-10-10-0.25

THERM PAD 10MMX10MM GRAY
ETC

PC93-10-10-1

THERM PAD 10MMX10MM GRAY
ETC

PC93-10-5-0.25

THERM PAD 10MMX5MM GRAY
ETC

PC93-10-5-1

THERM PAD 10MMX5MM GRAY
ETC

PC93-100-100-0.25-0

THERM PAD 100MMX100MM GRAY
ETC

PC93-100-100-1.0-0

THERM PAD 100MMX100MM GRAY
ETC

PC93-100-100-2.0-0

THERM PAD 100MMX100MM GRAY
ETC