S-812C50BMC-C5E-T2 [SII]

HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR; 高工作电压CMOS电压稳压器
S-812C50BMC-C5E-T2
型号: S-812C50BMC-C5E-T2
厂家: SEIKO INSTRUMENTS INC    SEIKO INSTRUMENTS INC
描述:

HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
高工作电压CMOS电压稳压器

稳压器
文件: 总26页 (文件大小:329K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Rev.1.0  
HIGH OPERATING VOLTAGE  
CMOS VOLTAGE REGULATOR  
S-812C Series  
The S-812C series is a family of high-voltage positive  
regulators developed using CMOS technology.  
The  
maximum operating voltage of 16V makes the S-812C  
series best in high-voltage applications. Not only current  
consumption is small but also power-off function is  
included, the regulator is also suitable in constructing low-  
power portable devices. Combination of power-off function  
and short-current protection can be selected.  
„ Features  
Low current consumption  
„ Applications  
Power source for battery-powered devices  
Operating current: Typ. 1.0 µA, Max. 1.8 µA (3.0 V)  
Output voltage: 2.0 to 6.0 V (0.1 V step)  
Output voltage accuracy: ±2.0%  
Power source for personal communication  
devices  
Power source for home electric/electronic  
Output current:  
appliances  
50mA capable (3.0 V output product, VIN=5 V) Note1  
75mA capable (5.0 V output product, VIN=7 V) Note1  
Dropout voltage  
Typ. 120 mV (VOUT = 5.0 V, IOUT = 10 mA)  
Power-off function: Polarity for power-off switch or removal of the power-off function can be selected.  
Short-circuit protection: Product with/without short-circuit protection is available.  
Short-circuited current : 40 mA typ. for products with protection  
Packages: SOT-23-5 (Package drawing code : MP005-A)  
SOT-89-5 (Package drawing code : UP003-A)  
SOT-89-3 (Package drawing code : UP005-A)  
TO-92  
(Package drawing code : YF003-A)  
Note1 Power dissipation of the package should be taken into account when the output current is large.  
„ Block Diagram  
(1) Product without power-off function  
VIN  
(2) Product with power-off function  
VIN  
(1)  
(1)  
VOUT  
VOUT  
(2)  
Short-circuit  
protection  
(2)  
Short-circuit  
protection  
ON/OFF  
Reference  
voltage  
Reference  
voltage  
VSS  
(1) : Parasitic diode  
(2) : In case of a product with short-circuit protection  
VSS  
(1) : Parasitic diode  
(2) : In case of a product with short-circuit protection  
Figure 1 Block Diagram  
Seiko Instruments Inc.  
1
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR  
S-812C Series  
Rev.1.0  
„ Absolute Maximum Ratings  
Table 1  
(Ta=25°C unless otherwise specified)  
Item  
Symbol  
VIN  
Absolute Maximum Rating  
18  
Units  
V
Input voltage  
VON/OFF  
VOUT  
PD  
VSS-0.3 to 18  
V
Output voltage  
VSS-0.3 to VIN+0.3  
V
Power dissipation  
250(SOT-23-5),500 (SOT-89-5)  
500(SOT-89-3),400(TO-92)  
-40 to +85  
mW  
Operating temperature range  
Storage temperature range  
Topr  
Tstg  
°C  
°C  
-40 to +125  
Note: Although the IC contains protection circuit against static electricity, excessive static electricity  
or voltage which exceeds the limit of the protection circuit should not be applied to.  
„ Selection Guide  
Product Name  
S-812C xx Axx - xxx - T2  
IC orientation for taping specifications  
Product code  
Package code  
MC: SOT-23-5  
UA: SOT-89-3  
Y : TO-92  
UC: SOT-89-5  
WI: WAFER  
Function  
A: No short-circuit protection and no power-off function  
B: Short-circuit protection and power-off function  
ON/OFF pin; Positive logic  
Output voltage x 10  
Table 2.1 Selection Guide  
S-812CxxB series (Short-circuit protection and power-off fuction)  
Output Voltage  
2.0 V ± 2.0%  
3.0 V ± 2.0%  
3.3 V ± 2.0%  
3.5 V ± 2.0%  
3.8 V ± 2.0%  
4.0 V ± 2.0%  
5.0 V ± 2.0%  
SOT-23-5  
SOT-89-5  
S-812C30BMC-C4K-T2  
S-812C50BMC-C5E-T2  
Please contact our sales office for products with an output voltage not listed above.  
2
Seiko Instruments Inc.  
Rev.1.0  
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR  
S-812C Series  
Table 2.2  
S-812CxxA series (No short-circuit protection and no power-off function)  
Output voltage  
SOT-23-5  
SOT-89-3  
TO-92*  
SOT-89-5  
2.0 V± 2.0%  
2.1 V± 2.0%  
2.2 V± 2.0%  
2.3 V± 2.0%  
2.4 V± 2.0%  
2.5 V± 2.0%  
2.6 V± 2.0%  
2.7 V± 2.0%  
2.8 V± 2.0%  
2.9 V± 2.0%  
3.0 V± 2.0%  
3.1 V± 2.0%  
3.2 V± 2.0%  
3.3 V± 2.0%  
3.4 V± 2.0%  
3.5 V± 2.0%  
3.6 V± 2.0%  
3.7 V± 2.0%  
3.8 V± 2.0%  
3.9 V± 2.0%  
4.0 V± 2.0%  
4.1 V± 2.0%  
4.2 V± 2.0%  
4.3 V± 2.0%  
4.4 V± 2.0%  
4.5 V± 2.0%  
4.6 V± 2.0%  
4.7 V± 2.0%  
4.8 V± 2.0%  
4.9 V± 2.0%  
5.0 V± 2.0%  
5.1 V± 2.0%  
5.2 V± 2.0%  
5.3 V± 2.0%  
5.4 V± 2.0%  
5.5 V± 2.0%  
5.6 V± 2.0%  
5.7 V± 2.0%  
5.8 V± 2.0%  
5.9 V± 2.0%  
6.0 V± 2.0%  
S-812C20AMC-C2A-T2  
S-812C21AMC-C2B-T2  
S-812C22AMC-C2C-T2  
S-812C23AMC-C2D-T2  
S-812C24AMC-C2E-T2  
S-812C25AMC-C2F-T2  
S-812C26AMC-C2G-T2  
S-812C27AMC-C2H-T2  
S-812C28AMC-C2I-T2  
S-812C29AMC-C2J-T2  
S-812C30AMC-C2K-T2  
S-812C31AMC-C2L-T2  
S-812C32AMC-C2M-T2  
S-812C33AMC-C2N-T2  
S-812C34AMC-C2O-T2  
S-812C35AMC-C2P-T2  
S-812C36AMC-C2Q-T2  
S-812C37AMC-C2R-T2  
S-812C38AMC-C2S-T2  
S-812C39AMC-C2T-T2  
S-812C40AMC-C2U-T2  
S-812C41AMC-C2V-T2  
S-812C42AMC-C2W-T2  
S-812C43AMC-C2X-T2  
S-812C44AMC-C2Y-T2  
S-812C45AMC-C2Z-T2  
S-812C46AMC-C3A-T2  
S-812C47AMC-C3B-T2  
S-812C48AMC-C3C-T2  
S-812C49AMC-C3D-T2  
S-812C50AMC-C3E-T2  
S-812C51AMC-C3F-T2  
S-812C52AMC-C3G-T2  
S-812C53AMC-C3H-T2  
S-812C54AMC-C3I-T2  
S-812C55AMC-C3J-T2  
S-812C56AMC-C3K-T2  
S-812C20AUA-C2A-T2  
S-812C21AUA-C2B-T2  
S-812C22AUA-C2C-T2  
S-812C23AUA-C2D-T2  
S-812C24AUA-C2E-T2  
S-812C25AUA-C2F-T2  
S-812C26AUA-C2G-T2  
S-812C27AUA-C2H-T2  
S-812C28AUA-C2I-T2  
S-812C29AUA-C2J-T2  
S-812C30UA-C2K-T2  
S-812C31AUA-C2L-T2  
S-812C32AUA-C2M-T2  
S-812C33AUA-C2N-T2  
S-812C34AUA-C2O-T2  
S-812C35AUA-C2P-T2  
S-812C36AUA-C2Q-T2  
S-812C37AUA-C2R-T2  
S-812C38AUA-C2S-T2  
S-812C39AUA-C2T-T2  
S-812C40AUA-C2U-T2  
S-812C41AUA-C2V-T2  
S-812C42AUA-C2W-T2  
S-812C43AUA-C2X-T2  
S-812C44AUA-C2Y-T2  
S-812C45AUA-C2Z-T2  
S-812C46AUA-C3A-T2  
S-812C47AUA-C3B-T2  
S-812C48AUA-C3C-T2  
S-812C49AUA-C3D-T2  
S-812C50AUA-C3E-T2  
S-812C51AUA-C3F-T2  
S-812C52AUA-C3G-T2  
S-812C53AUA-C3H-T2  
S-812C54AUA-C3I-T2  
S-812C55AUA-C3J-T2  
S-812C56AUA-C3K-T2  
S-812C57AUA-C3L-T2  
S-812C58AUA-C3M-T2  
S-812C59AUA-C3N-T2  
S-812C60AUA-C3O-T2  
S-812C20AY-X  
S-812C21AY-X  
S-812C22AY-X  
S-812C23AY-X  
S-812C24AY-X  
S-812C25AY-X  
S-812C26AY-X  
S-812C27AY-X  
S-812C28AY-X  
S-812C29AY-X  
S-812C30AY-X  
S-812C31AY-X  
S-812C32AY-X  
S-812C33AY-X  
S-812C34AY-X  
S-812C35AY-X  
S-812C36AY-X  
S-812C37AY-X  
S-812C38AY-X  
S-812C39AY-X  
S-812C40AY-X  
S-812C41AY-X  
S-812C42AY-X  
S-812C43AY-X  
S-812C44AY-X  
S-812C45AY-X  
S-812C46AY-X  
S-812C47AY-X  
S-812C48AY-X  
S-812C49AY-X  
S-812C50AY-X  
S-812C51AY-X  
S-812C52AY-X  
S-812C53AY-X  
S-812C54AY-X  
S-812C55AY-X  
S-812C56AY-X  
S-812C57AY-X  
S-812C58AY-X  
S-812C59AY-X  
S-812C60AY-X  
*: X changes according to the packing form in TO-92. Standard forms are B; Bulk and Z; Zigzag (tape and ammo).  
If tape and reel (T) is needed, please contact SII sales office.  
Seiko Instruments Inc.  
3
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR  
S-812C Series  
Rev.1.0  
„ Pin Configuration  
For details of package, refer to the attached drawing.  
Table 3 Pin Assignment  
SOT-23-5  
Top view  
Pin No.  
Symbol  
VSS  
Description  
GND pin  
1
2
3
4
5
5
4
VIN  
Input voltage pin  
VOUT  
N.C. (1)  
ON/OFF  
N.C. (1)  
Output voltage pin  
ON/OFF pin  
(1) N.C. pin is electrically open. N.C. pin can be connected to  
VIN or VSS. The ON/OFF pin becomes N.C. pin, when the  
power-off function is removed.  
2
3
1
Figure 2  
Table 4 Pin Assignment  
SOT-89-5  
Top view  
Pin No.  
Symbol  
Description  
1
2
3
4
VOUT Output voltage pin  
4
5
VIN  
Input voltage pin  
GND pin  
VSS  
ON/OFF. ON/OFF pin  
N.C. (1)  
5
N.C. (1)  
(1) N.C. pin is electrically open. N.C. pin can be connected to  
VIN or VSS. The ON/OFF pin becomes N.C. pin, when the  
power-off function is removed.  
1
3
2
Figure 3  
Table 5 Pin Assignment  
SOT-89-3  
Top view  
Pin No.  
Symbol  
VSS  
Description  
GND pin  
1
2
3
VIN  
Input voltage pin  
VOUT  
Output voltage pin  
1
2
3
Figure 4  
Table 6 Pin Assignment  
Pin No.  
Symbol  
VSS  
Description  
1
2
3
GND pin  
VIN  
Input voltage pin  
Output voltage pin  
TO-92  
Bottom view  
VOUT  
1
2
3
Figure 5  
4
Seiko Instruments Inc.  
Rev.1.0  
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR  
S-812C Series  
„ Electrical Characteristics  
1. S-812C Series  
Table 7 Electrical Characteristics  
Conditions  
(Ta=25°C unless otherwise specified)  
Test  
circuits  
Parameter  
Output voltage  
Symbol  
Min.  
Typ.  
Max.  
Units  
V
1)  
2)  
VOUT(E) VIN=VOUT(S)+2V, IOUT=10mA  
VOUT(S)× VOUT(S) VOUT(S)  
1
0.98  
30  
50  
65  
75  
× 1.02  
Output current  
IOUT  
VOUT(S)+2V2.0V VOUT(S) 2.9V  
0.46  
0.32  
0.23  
0.19  
0.16  
0.14  
0.12  
0.11  
5
mA  
mA  
mA  
mA  
V
V
V
V
V
3
3
3
3
1
1
1
1
1
1
1
1
1
VIN16V 3.0V VOUT(S) 3.9V  
4.0V VOUT(S) 4.9V  
5.0V VOUT(S) 5.9V  
0.95  
0.68  
0.41  
0.35  
0.30  
0.27  
0.25  
0.23  
20  
Dropout voltage  
3)  
Vdrop  
IOUT  
10mA  
=
2.0V VOUT(S) 2.4V  
2.5V VOUT(S) 2.9V  
3.0V VOUT(S) 3.4V  
3.5V VOUT(S) 3.9V  
4.0V VOUT(S) 4.4V  
4.5V VOUT(S) 4.9V  
5.0V VOUT(S) 5.4V  
5.5V VOUT(S) 6.0V  
V
V
V
Line regulation 1  
Line regulation 2  
Load regulation  
VOUT11 VOUT(S) + 1 V VIN 16 V,  
IOUT = 1mA  
VOUT21 VOUT(S) + 1 V VIN 16 V,  
IOUT = 1µA  
mV  
5
20  
30  
45  
65  
80  
mV  
mV  
mV  
mV  
mV  
ppm  
1
1
1
1
1
1
VOUT31 VIN=  
2.0V VOUT(S) 2.9V,  
6
VOUT(S)+ 2 V 1µA IOUT 20mA  
3.0V VOUT(S) 3.9V,  
1µA IOUT 30mA  
4.0V VOUT(S) 4.9V,  
1µA IOUT 40mA  
5.0V VOUT(S) 5.9V,  
1µA IOUT 50mA  
10  
13  
17  
Output voltage temperature  
coefficient  
Current consumption  
V  
OUT  
1 VIN = VOUT(S) + 1 V, IOUT = 10mA  
±
100  
OUT  
°
=
°
°
4)  
Ta V  
-40 C Ta 85 C  
VIN 2.0V VOUT(S) 2.7V  
VOUT(S)+2V, 2.8V VOUT(S) 3.7V  
/ C  
µA  
µA  
µA  
µA  
V
ISS  
0.9  
1.0  
1.2  
1.5  
1.6  
1.8  
2.1  
2.5  
16  
2
2
2
2
1
no load  
3.8V VOUT(S) 5.1V  
5.2V VOUT(S) 6.0V  
Input voltage  
Applied to products with Power-off Function  
Current consumption at power-  
off  
ON/OFF pin  
Input voltage for high level  
ON/OFF pin  
Input voltage for low level  
ON/OFF pin  
Input current at high level  
ON/OFF pin  
VIN  
ISS2  
VIN = VOUT(S) + 2V,  
0.1  
0.5  
µA  
V
2
4
4
4
4
VON/OFF = 0V, no load  
VIN = VOUT(S) + 2V, RL = 1kχ,  
judged by VOUT output level  
VIN = VOUT(S) + 2V, RL = 1k,  
judged by VOUT output level  
VIN=VOUT(S) + 2V,  
VSH  
VSL  
ISH  
2.0  
0.4  
0.1  
-0.1  
V
µA  
µA  
VON/OFF = 7V  
ISL  
VIN=VOUT(S) + 2V,  
Input current at low level  
VON/OFF = 0V  
Applied to products with Short-circuit Protection  
Short-circuit current  
IOS  
VIN = VOUT(S) + 2 V,  
VOUT pin = 0 V  
40  
mA  
3
1) VOUT(S)=Specified output voltage  
VOUT(E)=Effective output voltage, i.e., the output voltage when fixing IOUT(=10 mA) and inputting VOUT(S)+2.0 V.  
2) Output current at which output voltage becomes 95% of VOUT(E) after gradually increasing output current.  
3) Vdrop = VIN1-(VOUT(E) × 0.98), where VIN1 is the Input voltage at which output voltage becomes 98% of VOUT(E) after  
gradually decreasing input voltage.  
4) Temperature change ratio for the output voltage [mV/°C] is calculated using the following equation.  
OUT  
OUT  
V
V
°
=
OUT  
V
×
° ÷  
ppm/ C 1000  
mV/ C  
(S) V  
[ ]  
[
]
[
]
OUT  
Ta  
Ta V  
Temperature change ratio for output voltage  
Specified output voltage  
Output voltage temperature coefficient  
Seiko Instruments Inc.  
5
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR  
Rev.1.0  
S-812C Series  
„ Test Circuits  
3.  
2.  
VIN  
VOUT  
A
VIN  
VOUT  
A
(ON/OFF)*  
VSS  
V
(ON/OFF)*  
VSS  
VIN or GND  
Set power ON  
3.  
4.  
VIN  
VOUT  
VOUT  
VIN  
(ON OFF)*  
A
RL  
/
V
V
(ON/OFF)*  
A
VSS  
VSS  
Set power ON  
Figure 6 Test Circuits  
„ Standard Circuit  
OUTPUT  
INPUT  
VIN  
VOUT  
In addition to a tantalum capacitor, a ceramic  
capacitor can be used for CL. See terms below.  
CIN is a capacitor used to stabilize input.  
(ON/OFF)  
VSS  
CL  
CIN  
GND  
One point GND  
Figure 7 Standard Circuit  
„ Terms  
1. Output capacitors (CL)  
Output capacitors are generally used to stabilize regulation operation and to improve transient response  
characteristics. But the S-812C series can provide stable operation without output capacitors. Capacitors  
are used only to improve transient response characteristics. Output capacitors can hence be removed in  
applications in which transient response can be negligible. When an output capacitor is used, a low ESR  
(Equivalent Series Resistance) capacitor like ceramic capacitor can also be used.  
2. Output voltage (VOUT  
)
The accuracy of the output voltage is ± 2.0% guaranteed under the specified conditions for input voltage,  
which differs depending upon the product items, output current, and temperature.  
Note: If the above conditions change, the output voltage value may vary and go out of the accuracy range  
of the output voltage. See the electrical characteristics and characteristics data for details.  
3. Line regulations 1 and 2 (VOUT1, VOUT2  
)
These parameters indicate the input voltage dependence on the output voltage. That is, the values show  
how much the output voltage changes due to a change in the input voltage with the output current remained  
unchanged.  
4. Load regulation (VOUT3  
)
This parameter indicates the output current dependence on the output voltage. That is, the value shows how  
much the output voltage changes due to a change in the output current with the input voltage remained  
unchanged.  
6
Seiko Instruments Inc.  
Rev.1.0  
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR  
S-812C Series  
5. Dropout voltage (Vdrop)  
This parameter indicates the difference between the input voltage (VIN1) and the output voltage when output  
voltage falls to 98 % of VOUT (E) by gradually decreasing the input voltage (VIN).  
Vdrop = VIN1-[VOUT(E) × 0.98]  
6. Temperature coefficient of output voltage [VOUT/(Ta VOUT)]  
The output voltage lies in the shaded area in the whole operating temperature shown in figure 8 when the  
temperature coefficient of the output voltage is ±100 ppm/°C.  
VOUT  
[V]  
+0.30mV/ C  
°
VOUT (E) is a measured value of  
output voltage at 25°C.  
V
OUT(E)  
-0.30mV/ C  
°
-40  
Figure 8 Example for the S-812C30A  
Temperature change ratio for output voltage [mV/°C] is calculated by using the following equation.  
25  
Ta [ C]  
°
85  
OUT  
OUT  
V
V
mV/°C = VOUT(S) V ×  
[ ]  
ppm/°C ÷1000  
[
]
[
]
OUT  
Ta  
Ta V  
Specified output voltage  
Temperatures change ratio for output voltage  
Output voltage temperature coefficient  
„ Description of Operation  
VIN  
*
1. Basic operation  
Current  
source  
Figure 9 shows the block diagram of the S-812C  
series.  
Error amplifier  
The error amplifier compares a reference voltage  
VOUT  
Vref  
V
ref  
with a part of the output voltage divided by the  
Rf  
feedback resistors Rs and Rf, and supplies the gate  
voltage to the output transistor, necessary to ensure  
certain output voltage independent from change of  
input voltage and temperature.  
Reference  
voltage  
Rs  
VSS  
* : Parasitic diode  
Figure 9 Block Diagram  
2. Output transistor  
The S-812C Series uses a Pch MOS transistor as the output transistor.  
The voltage at VOUT must not exceed VIN+0.3V. When the VOUT voltage becomes higher than that of VIN,  
reverse current flows and may break the regulator since a parasitic diode between VOUT and VIN exists  
inevitably.  
Seiko Instruments Inc.  
7
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR  
S-812C Series  
Rev.1.0  
3. Power-off function (ON/OFF pin)  
The ON/OFF pin controls the start and stop of the regulation operation.  
When the ON/OFF pin is set to power-off level, halting whole internal circuit and turning off the Pch MOSFET  
between VIN and VOUT, current consumption is drastically reduced. The voltage of the VOUT pin becomes  
VSS level due to the internal resistance divider of several Mbetween VOUT and VSS.  
The ON/OFF pin should not be left afloat since no pull-up nor pull-down is made internally as shown in figure  
10. Note that the current consumption increases if a voltage between 0.3V and VIN-0.3V is applied to the  
ON/OFF pin. When the power-off function is not used, connect the pin to the VIN pin in case of positive logic  
and to the VSS pin in case of negative logic.  
VIN  
Table 8 Power-off function  
ON/OFF  
Product  
type  
ON/OFF pin  
Internal  
circuit  
VOUT pin  
voltage  
Current  
consumption  
B
B
“H” : Power on  
“L” : Power off  
Operate  
Halt  
Set value  
VSS level  
Iss  
Iss2  
VSS  
Figure 10  
When a regulation operation at light load less than 100uA is halted, output voltage  
may increase. If the increase of the output voltage should be avoided, pull down the VOUT pin to the VSS level  
as soon as ON/OFF pin goes to the power-down level.  
4. Short-circuit protection  
Installation of the short-circuit protection which protects the output transistor against short-circuit between  
VOUT and VSS can be selected in the S-812C series. The short-circuit protection controls output current as  
shown in the typical characteristics, (1) OUTPUT VOLTAGE versus OUTPUT CURRENT, and suppresses  
output current at about 40 mA even if VOUT and VSS pins are short-circuited.  
The short-circuit protection can not at the same time be a thermal protection. Attention should be paid to the  
Input voltage and the load current under the actual condition so as not to exceed the power dissipation of the  
package including the case for short-circuit.  
When the output current is large and the difference between input and output voltage is large even if not  
shorted, the short-circuit protection may work and the output current is suppressed to the specified value.  
Products without short-circuit protection can provide comparatively large current by removing a short-circuit  
protection.  
„ Selection of External Components  
Output Capacitor (CL)  
The S-812C series can provide stable operation without output capacitor (CL) since the regulator has an  
internal phase compensation circuit to stabilize operation when the load changes. The transient response of  
the regulator, however, changes with the output capacitor and the magnitude of overshoot and undershoot on  
output voltage accordingly changes. Please refer to CL dependence data in “Transient Response  
Characteristics” to select suitable value for the capacitor. .  
When a tantalum or an aluminum electrolytic capacitor is used, the ESR of the capacitor shall be 10or less.  
When an aluminum electrolytic capacitor is used attention should be especially paid to since the ESR of the  
aluminum electrolytic capacitor increases at low temperature and possibility of oscillation becomes large.  
Sufficient evaluation including temperature characteristics is indispensable.  
8
Seiko Instruments Inc.  
Rev.1.0  
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR  
S-812C Series  
„Application Circuits  
1. Output Current Boost Circuit  
As shown in Figure 11, the output current  
can be boosted by externally attaching a  
Tr1  
PNP transistor.  
The S-812C controls the  
VOUT  
VOUT  
S-812C  
Series  
VIN  
base current of the PNP transistor so that the  
output voltage VOUT becomes the voltage  
specified in the S-812C if the sufficient base-  
emitter voltage VBE to turn on the PNP  
transistor is obtained between input voltage  
VIN and S-812C power source pin VIN.  
VIN  
R1  
ON/OFF  
VSS  
CIN  
CL  
GND  
Figure 11 Output Current Boost Circuit  
As the transient response characteristics  
of the circuit shown in figure 11 is not enough in some applications, evaluation for output variation due to  
power-on, power line variation and load variation in actual condition is needed before massproduction.  
Note that the short-circuit protection incorporated in the S-812C series does not work as a short-circuit  
protection for the boost circuit.  
2. Constant Current Circuit  
(1) Constant Current Circuit  
The S-812C series can be served in a  
constant current circuit as shown in the  
figure 12. Constant current IO is calculated  
from the following equation:  
VIN  
VIN  
S-812C  
Series  
VOUT  
RL  
ON/OFF  
V0  
IO  
VSS  
IO = (VOUT(E) ÷ RL) +ISS, where VOUT(E) is  
the effective output voltage.  
Please note that in case of the circuit  
shown in the figure 12 (1) the magnitude of  
the constant current IO is limited by the  
driving ability of the S-812C.  
CIN  
Device  
VO  
GND  
(2) Constant Current Boost Circuit  
Tr1  
The circuit shown in the figure 12 (2) can,  
however, provide the current beyond the  
driving ability of the S-812C by combining a  
constant current circuit with a current boost  
circuit. The maximum input voltage for the  
constant current circuit is the sum of the  
voltage VO of the device and 16 V. It is not  
VIN  
VOUT  
S-812C  
VIN  
Series  
VSS  
R1  
RL  
ON/OFF  
V0  
recommended to attach  
a
capacitor  
I
o
Device  
CIN  
between the S-812C power source VIN  
and VSS pins or between output VOUT  
and VSS pins because rush current flows  
at power-on.  
VO  
GND  
Figure 12 Constant Current Circuits  
3. Output Voltage Adjustment Circuit  
The output voltage can be increased using the configuration shown in the figure 13. The output Voltage VOUT1  
can be calculated using the following equation;  
V
OUT1 = VOUT(E) x (R1 + R2) ÷ R1 + R2 x ISS  
where VOUT(E) is the effective output voltage.  
Value of R1 and R2 should be determined so as not to be affected by the current consumption ISS  
,
.
Seiko Instruments Inc.  
9
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR  
S-812C Series  
Rev.1.0  
Capacitor C1 has an effect in minimizing output  
VIN VIN  
S-812C  
Series  
VOUT1  
VOUT  
fluctuation due to power-on, power line  
variation and load variation. Determine the  
optimum value in the actual device.  
R1  
R2  
VSS  
ON/OFF  
CL  
CIN  
C1  
GND  
It is not also recommended to attach a  
capacitor between the S-812 power source VIN  
and VSS pins or between output VOUT and  
VSS pins because output fluctuation or  
oscillation at powering on might occur.  
Figure 13 Voltage Adjustment Circuit  
„ Notice  
Wiring patterns for VIN, VOUT and GND pins should be designed to hold low impedance.  
When mounting an output capacitor, the distance from the capacitor to the VOUT pin and to the VSS pin  
should be as short as possible.  
Note that output voltage may increase when a voltage regulator is used at low load current (less than 1 µA).  
At low load current less than 100µA output voltage may increase when the regulating operation is halted by  
the ON/OFF pin.  
To prevent oscillation, it is recommended to use the external components under the following conditions:  
Equivalent Series Resistance (ESR): 10 or less when an output capacitor is used.  
Input series resistance (RIN): 10 or less  
A voltage regulator may oscillate when the impedance of the power supply is high and the input capacitor is  
small or not connected.  
The application condition for input voltage and load current should not exceed the package power  
dissipation.  
SII claims no responsibility for any and all disputes arising out of or in connection with any infringement of  
the products including this IC upon patents owned by a third party.  
10  
Seiko Instruments Inc.  
Rev.1.0  
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR  
S-812C Series  
„ Typical Characteristics  
(1) Output Voltage vs Output Current (When load current increases)  
S-812C20B (Ta=25°C) Short- circuit protection  
2.5  
S-812C30B (Ta=25°C) Short-circuit protection  
3.5  
V =2.5V  
IN  
3.0  
2.0  
8V  
5V  
7V  
2.5  
1.5  
2.0  
6V  
V =3.5V  
1.5  
1.0  
0.5  
0.0  
IN  
1.0  
5V  
4V  
3V  
0.5  
0.0  
4V  
0
50  
IOUT (mA)  
100  
150  
0
50  
100  
IOUT (mA)  
150  
200  
S-812C50B (Ta=25°C) Short-circuit protection  
6.0  
10V  
5.0  
Notice  
The condition for input voltage and load current  
should not exceed the package power dissipation.  
4.0  
8V  
V =5.5V  
IN  
3.0  
7V  
2.0  
1.0  
0.0  
6V  
0
100  
200  
300  
IOUT (mA)  
S-812C20A (Ta=25ºC)  
S-812C30A (Ta=25ºC)  
No short-circuit protection  
No short-circuit protection  
3.5  
2.5  
VIN=3.3V  
VIN=2.3V  
2.0  
3.0  
2.5  
1.5  
2.0  
7V  
8V  
2.5V  
1.0  
1.5  
3.5V  
6V  
5V  
4V  
5V  
1.0  
0.5  
0.0  
4V  
3V  
0.5  
0.0  
0
100  
200  
300  
0
100  
200  
IOUT (mA)  
300  
400  
IOUT (mA)  
S-812C50A (Ta=25ºC)  
6.0  
No short-circuit protection  
Notice  
The condition for input voltage and load current  
should not exceed the package power dissipation.  
5.0  
4.0  
3.0  
10V  
8V  
2.0  
VIN=5.3V  
7V  
6V  
1.0  
5.5V  
100  
0.0  
0
200  
IOUT (mA)  
300  
400  
Seiko Instruments Inc.  
11  
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR  
S-812C Series  
Rev.1.0  
(2) Maximum Output Current vs Input Voltage  
S-812C20B  
140  
Short-circuit protection  
S-812C30B  
200  
Short-circuit protection  
120  
100  
80  
Ta=-40°C  
150  
100  
50  
60  
25°C  
85°C  
25°C  
85°C  
40  
Ta=-40°C  
20  
0
0
0
4
8
12  
16  
0
4
8
12  
16  
VIN (V)  
VIN (V)  
S-812C50B  
300  
Short-circuit protection  
Notice  
Ta=-40°C  
250  
200  
150  
100  
50  
The condition for input voltage and load current  
should not exceed the package power dissipation.  
25°C  
85°C  
12  
0
0
4
8
16  
VIN (V)  
S-812C20A  
140  
No short-circuit protection  
S-812C30A  
200  
No short-circuit protection  
120  
Ta=40ºC  
º
Ta=-40 C  
150  
100  
50  
100  
80  
60  
40  
20  
0
º
25 C  
25ºC  
85ºC  
º
85 C  
0
0
4
8
12  
16  
0
4
8
12  
16  
VIN (V)  
VIN (V)  
No short-circuit protection  
S-812C50A  
300  
Notice  
The condition for input voltage and load current  
should not exceed the package power dissipation.  
250  
200  
150  
100  
50  
º
Ta=-40 C  
º
25 C  
85ºC  
0
0
4
8
12  
16  
VIN(V)  
12  
Seiko Instruments Inc.  
Rev.1.0  
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR  
S-812C Series  
(3) Output Voltage vs Input Voltage  
S-812C20B  
2.10  
S-812C30B  
3.15  
-20mA  
-20m A  
IOUT =-1 A  
µ
3.10  
3.05  
3.00  
2.95  
2.90  
2.85  
IOUT =-1 A  
µ
2.05  
2.00  
1.95  
1.90  
-50mA  
-10m A  
-50m A  
-10mA  
m
-1  
A
m
-1  
A
1.5  
2
2.5  
3
3.5  
4
2.5  
3
3.5  
VIN (V)  
4
4.5  
5
VIN (V)  
S-812C50B  
5.25  
IOUT =-1 A  
µ
-20m A  
5.15  
5.05  
-10m A  
-1m A  
4.95  
4.85  
4.75  
-50m A  
4.5  
5
5.5  
6
6.5  
7
VIN (V)  
(4) Dropout Voltage vs Output Current  
S-812C20B  
2000  
S-812C30B  
1600  
85°C  
85°C  
1400  
1200  
1000  
800  
600  
400  
200  
0
25°C  
1500  
25°C  
1000  
500  
0
Ta=-40°C  
40  
Ta=-40°C  
0
10  
20  
30  
50  
0
10  
20  
30  
40  
50  
IOUT (mA)  
IOUT (mA)  
S-812C50B  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
85°C  
25°C  
Ta=-40°C  
40  
0
10  
20  
30  
50  
IOUT (mA)  
Seiko Instruments Inc.  
13  
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR  
S-812C Series  
Rev.1.0  
(5) Output Voltage vs Ambient Temperature  
S-812C20B  
2.04  
S-812C30B  
3.06  
3.03  
3.00  
2.97  
2.02  
2.00  
1.98  
2.94  
-50  
1.96  
-50  
0
50  
100  
0
50  
100  
Ta (°C)  
Ta (°C)  
S-812C50B  
5.10  
5.05  
5.00  
4.95  
4.90  
-50  
0
50  
100  
Ta (°C)  
(6) Line Regulation 1 vs Ambient Temperature  
20  
(7) Line Regulation 2 vs Ambient Temperature  
20  
15  
15  
10  
10  
S-812C20B  
S-812C20B  
S-812C30B  
S-812C50B  
S-812C30B  
S-812C50B  
5
0
5
0
-50  
0
50  
100  
-50  
0
50  
100  
Ta (°C)  
Ta (°C)  
(8) Load Regulation vs Ambient Temperature  
80  
60  
S-812C20B  
40  
20  
0
S-812C30B  
S-812C50B  
-50  
0
50  
100  
Ta (°C)  
14  
Seiko Instruments Inc.  
Rev.1.0  
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR  
S-812C Series  
(9) Current Consumption vs Input Voltage  
S-812C20B  
2.5  
S-812C30B  
2.5  
2.0  
2.0  
1.5  
1.0  
0.5  
85°C  
25°C  
85°C  
25°C  
1.5  
1.0  
0.5  
Ta=-40°C  
Ta=-40°C  
0.0  
0
0.0  
4
8
12  
16  
0
4
8
12  
16  
VIN (V)  
VIN (V)  
S-812C50B  
2.5  
2.0  
1.5  
1.0  
0.5  
85°C  
25°C  
Ta=-40°C  
0.0  
0
4
8
12  
16  
VIN (V)  
(10)Power-off Pin Input Threshold vs Input Voltage  
S-812C20B  
2.5  
Ta=-40°C  
25°C  
85°C  
2.0  
1.5  
Ta=-40°C  
1.0  
0.5  
25°C  
12  
85°C  
0.0  
0
4
8
16  
VIN (V)  
Seiko Instruments Inc.  
15  
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR  
S-812C Series  
Rev.1.0  
REFERENCE DATA  
„ Transient Response Characteristics (Typical data: Ta=25°C)  
INPUT VOLTAGE  
or  
LOAD CURRENT  
Overshoot  
OUTPUT VOLTAGE  
Undershoot  
(1) Power-on : S-812C30B (CL=10µF; ceramic capacitor)  
ON/OFF=05V, IOUT=10mA, C =10µF  
L
IN  
5V  
0V  
3V  
0V  
µ
TIME (100 s/div)  
Load dependence of overshoot at power-on  
CL dependence of overshoot at power-on  
VIN, ON/OFF=0  
V
(S)+2V, C =10 F  
VIN,ON/OFF=0  
VOUT(S)+2V, IOUT=10mA  
µ
OUT  
L
0.030  
0.025  
0.020  
0.015  
0.010  
0.005  
0.000  
0.8  
0.6  
0.4  
0.2  
0.0  
S-812C30B  
S-812C50B  
S-812C30B  
S-812C50B  
0
0.02  
0.04 0.06  
0.08  
0.1  
0
10  
20  
30  
40  
50  
IOUT (A)  
CL (µF)  
VDD dependence of overshoot at power-on  
Temperature dependence of overshoot at power-on  
VIN ,ON/OFF=0  
VDD, IOUT=10mA, C =10 F  
→ µ  
L
VIN, ON/OFF=0  
0.06  
V
OUT(S)+2V, IOUT=10mA, C =10 F  
µ
L
0.035  
0.030  
0.025  
0.020  
0.015  
0.010  
0.005  
0.000  
S-812C30B  
S-812C50B  
0.05  
0.04  
S-812C50B  
S-812C30B  
0.03  
0.02  
0.01  
0.00  
0
5
10  
VDD (V)  
15  
20  
-50  
0
50  
100  
Ta (°C)  
16  
Seiko Instruments Inc.  
Rev.1.0  
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR  
S-812C Series  
(2) Power-on by ON/OFF pin : S-812C30A (CL=10µF; ceramic capacitor)  
VIN=5V, ON/OFF=0 5V, IOUT=10mA, CL=10µF  
5V  
0V  
3V  
0V  
TIME (200 µs/div)  
Load dependence of overshoot at power-on  
CL dependence of overshoot at power-on  
VIN=VOUT(S)+2V, ON/OFF=0  
V
(S)+2V, C =10 F  
VIN=VOUT(S)+2V,ON/OFF=0  
0.8  
VOUT(S)+2V, IOUT=10mA  
µ
OUT  
L
0.8  
0.6  
0.4  
0.2  
0.0  
0.6  
0.4  
0.2  
0.0  
S-812C50B  
S-812C50B  
S-812C30B  
30  
S-812C30B  
0
10  
20  
40  
50  
0.001  
0.01  
0.1  
1
10  
100  
µ
CL ( F)  
IOUT (A)  
VDD dependence of overshoot at power-on  
Temperature dependence of overshoot at power-on  
VIN=VOUT(S)+2V,ON/OFF=0  
VOUT(S)+2V,IOUT=10mA,  
VIN=VDD, ON/OFF=0  
V
DD, IOUT=10mA,C =10 F  
µ
L
C =10 F  
µ
L
0.7  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
S-812C50B  
S-812C50B  
S-812C30B  
S-812C30B  
0
0.1  
0.0  
0
5
10  
VDD (V)  
15  
20  
-50  
50  
100  
Ta (°C)  
Seiko Instruments Inc.  
17  
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR  
S-812C Series  
Rev.1.0  
(3) Line Transient Response : S-812C30B (CL=10µF; ceramic capacitor)  
V ,ON/OFF=48V, IOUT=10mA  
IN  
10V  
5V  
0V  
3V  
2.9V  
TIME (100 µs/div)  
Load dependence of overshoot at line transient  
CL dependence of overshoot at line transient  
VIN, ON/OFF=VOUT(S)+1V  
VOUT(S)+5V,  
VIN, ON/OFF=VOUT(S)+1V  
0.25  
VOUT(S)+5V,IOUT=10mA  
C =10 F  
µ
L
0.16  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
S-812C30B  
0.20  
0.15  
0.10  
0.05  
0.00  
S-812C50B  
S-812C50B  
S-812C30B  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
µ
IOUT (A)  
CL ( F)  
VDD dependence of overshoot at line transient  
Temperature dependence of overshoot at line transient  
VIN, ON/OFF=VOUT(S)+1V  
VOUT(S)+5V,  
VIN, ON/OFF=VOUT(S)+1V  
0.16  
V
IOUT=10mA C =10 F  
µ
DD  
L
IOUT=10mA C =10 F  
µ
L
0.16  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
S-812C50B  
S-812C50B  
S-812C30B  
0.02  
0.00  
S-812C30B  
50  
0
5
10  
15  
20  
-50  
0
100  
VDD (V)  
Ta (°C)  
18  
Seiko Instruments Inc.  
Rev.1.0  
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR  
S-812C Series  
V ,ON/OFF=8→4V, IOUT=10mA  
IN  
10V  
5V  
0V  
3V  
2.9V  
2.8V  
TIME (500 µs/div)  
Load dependence of undershoot at line transient  
CL dependence of undershoot at line transient  
VIN, ON/OFF=VOUT(S)+5V  
VOUT(S)+1V,IOUT=10mA  
VIN, ON/OFF=VOUT(S)+5V  
V
(S)+1V, C =10 F  
µ
OUT L  
0.35  
0.8  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
S-812C50B  
0.6  
0.4  
0.2  
0.0  
S-812C50B  
S-812C30B  
S-812C30B  
20  
0
10  
30  
40  
50  
0
10  
20  
30  
IOUT (A)  
40  
50  
µ
CL ( F)  
VDD dependence of undershoot at line transient  
Temperature dependence of undershoot at line transient  
VIN,ON/OFF=VOUT(S)+5V  
VOUT(S)+1V,  
VIN, ON/OFF=VDD  
VOUT(S)+1V IOUT=10mA C =10 F  
→ µ  
L
I
OUT=10mA C =10 F  
µ
L
0.25  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
0.20  
0.15  
0.10  
0.05  
S-812C50B  
S-812C50B  
S-812C30B  
15  
S-812C30B  
0.00  
0
5
10  
20  
-50  
0
50  
100  
VDD (V)  
Ta (°C)  
Seiko Instruments Inc.  
19  
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR  
S-812C Series  
Rev.1.0  
(4) Load Transient Response : S-812C30B (CL=10µF; ceramic capacitor)  
V =5V, IOUT=10mA1µA,CL=10µF  
IN  
10mA  
0mA  
3.1V  
3V  
2.9V  
µ
TIME (200 s/div)  
Load dependence of overshoot at load transient  
CL dependence of overshoot at load transient  
VIN, ON/OFF=VOUT(S)+2V,IOUT=10mA 1 A  
µ
VIN, ON/OFF=VOUT(S)+2V, IOUT=I  
1.2  
1 A,C =10 F  
OUT→ µ  
µ
L
0.16  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
S-812C50B  
S-812C50B  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
S-812C30B  
S-812C30B  
0
10  
20  
30  
40  
50  
0
20  
40  
60  
80  
100  
µ
IOUT (A)  
CL ( F)  
VDD dependence of overshoot at load transient  
Temperature dependence of overshoot at load transient  
IOUT=10mA 1 A, C =10 F  
→ µ  
µ
L
VIN, ON/OFF=VOUT(S)+2V, IOUT=10mA 1 A, C =10 F  
→ µ  
µ
L
0.16  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
0.16  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
S-812C50B  
S-812C50B  
S-812C30B  
S-812C30B  
0
5
10  
VDD (V)  
15  
20  
-50  
0
50  
100  
Ta (°C)  
20  
Seiko Instruments Inc.  
Rev.1.0  
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR  
S-812C Series  
V =5V, IOUT=1µA10mA, C =10µF  
IN  
L
10mA  
0mA  
3V  
2.9V  
TIME (500 µs/div)  
Load dependence of undershoot at load transient  
CL dependence of undershoot at load transient  
VIN, ON/OFF=VOUT(S)+2V, IOUT=1 A  
1.2  
I
,C =10 F  
µ
µ
OUT  
L
VIN, ON/OFF=VOUT (S)+2V,IOUT =1 A 10mA  
µ →  
0.25  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
S-812C50B  
0.20  
0.15  
0.10  
0.05  
0.00  
S-812C50B  
S-812C30B  
60  
S-812C30B  
10 20  
0
20  
40  
80  
100  
0
30  
40  
50  
µ
CL ( F)  
IOUT (A)  
VDD dependence of undershoot at load transient  
Temperature dependence of undershoot at load transient  
IOUT=1 A 10mA, C =10 F  
µ
µ
VIN, ON/OFF=VOUT(S)+2V,IOUT=1 A 10mA, C =10 F  
L
µ
µ
L
0.20  
0.15  
0.10  
0.05  
0.00  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
S-812C50B  
S-812C30B  
S-812C50B  
S-812C30B  
0
5
10  
15  
20  
-50  
0
50  
100  
VDD (V)  
Ta (°C)  
Seiko Instruments Inc.  
21  
MP005-A  
010801  
n SOT-23-5  
Unit : mm  
l Dimensions  
2.9±0.2  
1.9±0.2  
0.45  
4
5
2.8 +0.2  
1.6  
-0.3  
+0.1  
-0.06  
1
2
3
0.16  
1.1±0.1  
1.3max.  
0~0.15  
0.95±0.1  
No. MP005-A-P-SD-1.1  
0.4±0.1  
l Tape Specifications  
l Reel Specifications  
4.0±0.1(10-pitch total: 40.0±0.2)  
3000 pcs./reel  
+0.1  
-0  
2.0±0.05  
0.27±0.05  
ø1.5  
12.5max.  
4.0±0.1  
+0.1  
-0  
ø1.0  
1.4±0.2  
+0  
-3  
3°max.  
ø180  
+1  
-0  
ø60  
3.25±0.15  
T1  
5
4
9.0±0.3  
ø13±0.2  
1 2 3  
Winding core  
2±0.2  
Feed direction  
(60°)  
(60°)  
No. MP005-A-R-SD-1 0  
UP005-A 000601  
n SOT-89-5  
Unit:mm  
lDimensions  
4.5±0.1  
1.6±0.2  
1.5±0.1  
0.65min.  
4
5
2.5±0.1  
4.5+0.2  
-0.3  
1
2
3
1.5±0.1  
1.5±0.1  
0.4±0.05  
0.65min.  
0.1  
3.1  
0.3  
0.35  
45°  
0.4±0.1  
0.45±0.1  
0.4±0.1  
0.2  
No. UP005-A-P-SD-1.1  
lTaping Specifications  
+0.1  
lReel Specifications  
ø1.5  
-0  
4.0±0.1(10 pitches:40±0.2)  
1 reel holds 1000 ICs.  
16.5max.  
1.5±0.1  
2.0±0.05  
5.65±0.05  
12.0±0.2  
4.35±0.1  
3°max.  
+1  
ø60  
-0  
+0.1  
-0  
0.3±0.05  
2.0±0.1  
8.0±0.1  
ø1.5  
5°max.  
+0  
-3  
ø180  
4.75±0.1  
T2  
13.0±0.3  
Winding core  
ø13±0.2  
ø21±0.5  
2±0.2  
Feed direction  
(60°)  
(60°)  
No. UP005-A-R-SD-1.0  
No. UP005-A-C-SD-1.0  
UP003-A 010515  
n SOT-89-3  
Unit:mm  
lDimensions  
4.5±0.1  
1.6±0.2  
1.5±0.1  
4.0+0.25  
2.5±0.1  
0.8min.  
-0.35  
2
1
3
1.5±0.1  
1.5±0.1  
0.4±0.05  
0.4  
2.5  
45°  
0.4±0.1  
0.4±0.1  
0.4  
0.45±0.1  
No. UP003-A-P-SD-1.0  
lTaping Specifications  
lReel Specifications  
1 reel holds 1000 ICs.  
+0.1  
-0  
ø1.5  
1.5±0.1  
4.0±0.1(10 pitches:40.0±0.2)  
2.0±0.05  
16.5max.  
5.65±0.05  
4.35±0.1  
12.0±0.2  
+0.1  
-0  
ø1.5  
8.0±0.1  
0.3±0.05  
2.0±0.1  
5° max.  
+1  
-0  
ø60  
+0  
-3  
ø180  
4.75±0.1  
T2  
13.0±0.3  
Winding core  
Feed direction  
(60°)  
(60°)  
No. UP003-A-R-SD-1.0  
No. UP003-A-C-SD-1.0  
YF003-A 010515  
Unit:mm  
(2) Leadforming for tape (reel/zigzag)  
n TO-92  
lDimensions  
(1) Bulk  
5.2max.  
4.2max.  
4.2max.  
5.2max.  
Marked side  
Marked side  
5.0±0.2  
5.0±0.2  
0.6max.  
0.6max.  
0.8max.  
2.3max.  
0.8max.  
2.3max.  
10.0min.  
12.7min.  
0.45±0.1  
0.45±0.1  
0.45±0.1  
0.45±0.1  
+0.4  
-0.1  
2.5  
1.27  
No. YS003-A-P-SD-1.0  
No. YF003-A-P-SD-1.0  
1.27  
lTape  
lZigzag  
12.7±1.0  
1.0max.  
1.0max.  
Marked side  
[Type Z]  
Side spacer  
24.7max.  
165  
16.0±0.5  
19.0±0.5  
#
0.5max.  
1 pin  
1.45max.  
0.7±0.2  
2.5min.  
6.0±0.5  
9.0±0.5  
320  
Spacer  
+1.0  
-0.5  
18.0  
ø4.0±0.2  
6.35±0.4  
60  
12.7±0.3 (20-pitch total:254.0±1.0)  
320  
40  
Feed direction  
[Type F]  
[Type T]  
Marked side  
Feed direction  
Feed direction  
Side Spacer placed in front side  
Space more than 4 strokes  
No. YF003-A-C-SD-1.0  
lReel  
1 reel holds 2000 ICs.  
262  
45±0.5  
330  
ø30±0.5  
ø79±1  
47  
2±0.5  
1 box holds 2500 ICs.  
5±0.5  
43±0.5  
Feed direction  
ø358±2  
53±0.5  
No. YF003-A-Z-SD-1.0  
No. YF003-A-R-SD-1.0  
·
·
The information described herein is subject to change without notice.  
Seiko Instruments Inc. is not responsible for any problems caused by circuits or diagrams described herein  
whose related industrial properties, patents, or other rights belong to third parties. The application circuit  
examples explain typical applications of the products, and do not guarantee the success of any specific  
mass-production design.  
·
·
·
When the products described herein are regulated products subject to the Wassenaar Arrangement or other  
agreements, they may not be exported without authorization from the appropriate governmental authority.  
Use of the information described herein for other purposes and/or reproduction or copying without the  
express permission of Seiko Instruments Inc. is strictly prohibited.  
The products described herein cannot be used as part of any device or equipment affecting the human  
body, such as exercise equipment, medical equipment, security systems, gas equipment, or any apparatus  
installed in airplanes and other vehicles, without prior written permission of Seiko Instruments Inc.  
Although Seiko Instruments Inc. exerts the greatest possible effort to ensure high quality and reliability, the  
failure or malfunction of semiconductor products may occur. The user of these products should therefore  
give thorough consideration to safety design, including redundancy, fire-prevention measures, and  
malfunction prevention, to prevent any accidents, fires, or community damage that may ensue.  
·

相关型号:

S-812C50BMC-C5ET2G

HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
SII

S-812C50BMC-C5ET2X

16 V INPUT, 75 mA VOLTAGE REGULATOR
ABLIC

S-812C50BPI-C5ETFG

HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
SII

S-812C50BPI-C5ETFU

16 V INPUT, 75 mA VOLTAGE REGULATOR
ABLIC

S-812C50BUC-C5ET2G

HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
SII

S-812C50BUC-C5ET2X

16 V INPUT, 75 mA VOLTAGE REGULATOR
ABLIC

S-812C51AMC-C3F-T2

HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
SII

S-812C51AMC-C3FT2G

HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
SII

S-812C51AMC-C3FT2X

16 V INPUT, 75 mA VOLTAGE REGULATOR
ABLIC

S-812C51AUA-C3F-T2

HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
SII

S-812C51AUA-C3FT2G

HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
SII

S-812C51AUA-C3FT2X

16 V INPUT, 75 mA VOLTAGE REGULATOR
ABLIC