S-8211EAA-I6T1U [SII]

BATTERY PROTECTION IC;
S-8211EAA-I6T1U
型号: S-8211EAA-I6T1U
厂家: SEIKO INSTRUMENTS INC    SEIKO INSTRUMENTS INC
描述:

BATTERY PROTECTION IC

文件: 总29页 (文件大小:1551K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
S-8211E Series  
BATTERY PROTECTION IC  
FOR 1-CELL PACK  
www.sii-ic.com  
© SII Semiconductor Corporation, 2009-2015  
Rev.2.4_02  
The S-8211E Series has high-accuracy voltage detections circuit and delay circuits.  
The S-8211E Series is suitable for monitoring overcharge and overdischarge of 1-cell lithium ion / lithium polymer  
rechargeable battery pack.  
Features  
(1) High-accuracy voltage detection circuit  
Overcharge detection voltage  
3.6 V to 4.5 V (5 mV step)  
Accuracy 25 mV (+25°C)  
Accuracy 30 mV (5°C to +55°C)  
Accuracy 50 mV  
Accuracy 50 mV  
Accuracy 100 mV  
Overcharge release voltage  
Overdischarge detection voltage  
Overdischarge release voltage  
3.5 V to 4.4 V*1  
2.0 V to 3.0 V (10 mV step)  
2.0 V to 3.4 V*2  
(2) Detection delay times are generated by an internal circuit  
(external capacitors are unnecessary)  
Accuracy 20%  
(3) Wide operating temperature range  
(4) Low current consumption  
During operation  
During overdischarge  
(5) Output logic of CO pin is selectable.  
(6) Lead-free, Sn 100%, halogen-free*3  
40°C to +85°C  
3.0 μA typ., 5.5 μA max. (+25°C)  
2.0 μA typ., 3.5 μA max. (+25°C)  
Active “H”, Active “L”  
*1. Overcharge release voltage = Overcharge detection voltage Overcharge hysteresis voltage  
(Overcharge hysteresis voltage can be selected as 0 V or from a range of 0.1 V to 0.4 V in 50 mV step.)  
*2. Overdischarge release voltage = Overdischarge detection voltage + Overdischarge hysteresis voltage  
(Overdischarge hysteresis voltage can be selected as 0 V or from a range of 0.1 V to 0.7 V in 100 mV step.)  
*3. Refer to “Product Name Structure” for details.  
Applications  
Lithium-ion rechargeable battery pack  
Lithium-polymer rechargeable battery pack  
Packages  
SOT-23-5  
SNT-6A  
1
BATTERY PROTECTION IC FOR 1-CELL PACK  
S-8211E Series  
Rev.2.4_02  
Block Diagram  
VDD  
Output control circuit  
Divider control  
circuit  
Oscillator control  
circuit  
DO  
CO  
Overcharge  
detection  
comparator  
Overdischarge  
detection  
comparator  
VM  
VSS  
Remark All diodes shown in figure are parasitic diodes.  
Figure 1  
2
BATTERY PROTECTION IC FOR 1-CELL PACK  
S-8211E Series  
Rev.2.4_02  
Product Name Structure  
1. Product Name  
S-8211E xx  
-
xxxx  
U
Environmental code  
U: Lead-free (Sn 100%), halogen-free  
Package name (abbreviation) and IC packing specifications*1  
M5T1: SOT-23-5, Tape  
I6T1: SNT-6A, Tape  
Serial code*2  
Sequentially set from AA to ZZ  
*1. Refer to the tape drawing.  
*2. Refer to “3. Product Name List”.  
2. Packages  
Drawing Code  
Package Name  
Package  
Tape  
Reel  
Land  
SOT-23-5  
SNT-6A  
MP005-A-P-SD  
PG006-A-P-SD  
MP005-A-C-SD  
PG006-A-C-SD  
MP005-A-R-SD  
PG006-A-R-SD  
PG006-A-L-SD  
3
BATTERY PROTECTION IC FOR 1-CELL PACK  
S-8211E Series  
Rev.2.4_02  
3. Product Name List  
3. 1 SOT-23-5  
Table 1  
Overcharge Overcharge Overdischarge Overdischarge  
Detection  
Voltage  
Release  
Voltage  
Detection  
Voltage  
Release  
Voltage  
Delay Time  
Combination*1  
CO Pin  
Output Form  
Product Name  
[VCU  
]
[VCL  
]
[VDL  
]
[VDU]  
S-8211EAC-M5T1U  
S-8211EAF-M5T1U  
S-8211EAG-M5T1U  
S-8211EAJ-M5T1U  
S-8211EAK-M5T1U  
3.600 V  
3.650 V  
3.800 V  
4.180 V  
3.600 V  
3.600 V  
3.550 V  
3.600 V  
4.180 V  
3.600 V  
2.00 V  
2.00 V  
2.00 V  
2.50 V  
2.00 V  
2.00 V  
2.30 V  
2.30 V  
3.00 V  
2.30 V  
(1)  
(2)  
(2)  
(1)  
(1)  
CMOS output active “L”  
CMOS output active “L”  
CMOS output active “L”  
CMOS output active “H”  
CMOS output active “H”  
*1. Refer to the Table 3 about the details of the delay time combinations (1), (2).  
Remark Please contact our sales office for the products with detection voltage value other than those specified above.  
3. 2 SNT-6A  
Table 2  
Overcharge Overcharge Overdischarge Overdischarge  
Detection  
Voltage  
Release  
Voltage  
Detection  
Voltage  
Release  
Voltage  
Delay Time  
Combination*1  
CO Pin  
Output Form  
Product Name  
[VCU  
]
[VCL  
]
[VDL  
]
[VDU]  
S-8211EAA-I6T1U  
S-8211EAB-I6T1U  
S-8211EAD-I6T1U  
S-8211EAE-I6T1U  
S-8211EAH-I6T1U  
S-8211EAI-I6T1U  
S-8211EAP-I6T1U  
4.220 V  
4.270 V  
4.220 V  
4.220 V  
4.000 V  
3.800 V  
4.280 V  
4.220 V  
4.270 V  
4.220 V  
4.220 V  
3.800 V  
3.700 V  
4.080 V  
2.00 V  
2.00 V  
2.50 V  
2.30 V  
3.00 V  
2.30 V  
2.50 V  
2.00 V  
2.00 V  
2.50 V  
2.30 V  
3.20 V  
2.40 V  
2.50 V  
(2)  
(2)  
(2)  
(2)  
(1)  
(1)  
(1)  
CMOS output active “L”  
CMOS output active “L”  
CMOS output active “L”  
CMOS output active “L”  
CMOS output active “L”  
CMOS output active “L”  
CMOS output active “L”  
*1. Refer to the Table 3 about the details of the delay time combinations (1), (2).  
Remark Please contact our sales office for the products with detection voltage value other than those specified above.  
Table 3  
Overcharge Detection Delay Time  
[tCU  
Overdischarge Detection Delay Time  
[tDL]  
Delay Time  
Combination  
]
(1)  
(2)  
1.2 s  
150 ms  
300 ms  
573 ms  
Remark The delay times can be changed within the range listed Table 4. For details, please contact our sales office.  
Table 4  
Delay Time  
Symbol  
tCU  
Selection Range  
Remark  
Overcharge detection delay time  
Overdischarge detection delay time  
143 ms  
38 ms  
573 ms  
150 ms  
1.2 s  
Select a value from the left.  
Select a value from the left.  
tDL  
300 ms  
Remark The value surrounded by bold lines is the delay time of the standard products.  
4
BATTERY PROTECTION IC FOR 1-CELL PACK  
S-8211E Series  
Rev.2.4_02  
Pin Configurations  
1. SOT-23-5  
Table 5  
SOT-23-5  
Top view  
Pin No.  
Symbol  
VM  
Description  
1
2
3
Negative power supply input pin for CO pin  
Input pin for positive power supply  
Input pin for negative power supply  
Output pin for overdischarge detection  
(CMOS output)  
5
1
4
VDD  
VSS  
4
5
DO  
CO  
Output pin for overcharge detection  
(CMOS output)  
2
3
Figure 2  
2. SNT-6A  
SNT-6A  
Table 6  
Top view  
Pin No.  
1
Symbol  
NC*1  
Description  
No connection  
1
2
3
6
5
4
Output pin for overcharge detection  
(CMOS output)  
2
3
CO  
Output pin for overdischarge detection  
(CMOS output)  
DO  
4
5
6
VSS  
VDD  
VM  
Input pin for negative power supply  
Input pin for positive power supply  
Negative power supply input pin for CO pin  
Figure 3  
*1. The NC pin is electrically open.  
The NC pin can be connected to VDD pin or VSS pin.  
5
BATTERY PROTECTION IC FOR 1-CELL PACK  
S-8211E Series  
Rev.2.4_02  
Absolute Maximum Ratings  
Table 7  
(Ta = +25°C unless otherwise specified)  
Item  
Symbol  
VDS  
Applied pin  
VDD  
Absolute Maximum Ratings  
Unit  
Input voltage between VDD pin and  
VSS pin  
VSS 0.3 to VSS + 12  
V
VM pin input voltage  
VVM  
VDO  
VCO  
VM  
DO  
CO  
VDD 28 to VDD + 0.3  
VSS 0.3 to VDD + 0.3  
VVM 0.3 to VDD + 0.3  
600*1  
V
V
DO pin output voltage  
CO pin output voltage  
V
SOT-23-5  
Power dissipation  
SNT-6A  
mW  
mW  
°C  
°C  
PD  
400*1  
Operating ambient temperature  
Storage temperature  
Topr  
Tstg  
40 to +85  
55 to +125  
*1. When mounted on board  
[Mounted board]  
(1) Board size: 114.3 mm × 76.2 mm × t1.6 mm  
(2) Board name: JEDEC STANDARD51-7  
Caution The absolute maximum ratings are rated values exceeding which the product could suffer physical  
damage. These values must therefore not be exceeded under any conditions.  
700  
600  
SOT-23-5  
500  
SNT-6A  
400  
300  
200  
100  
0
100  
Ambient Temperature (Ta) [°C]  
Figure 4 Power Dissipation of Package (When Mounted on Board)  
150  
50  
0
6
BATTERY PROTECTION IC FOR 1-CELL PACK  
S-8211E Series  
Rev.2.4_02  
Electrical Characteristics  
1. Except Detection Delay Time (+25°C)  
Table 8  
(Ta = +25°C unless otherwise specified)  
Test  
Condi-  
tion  
Test  
Circuit  
Item  
Symbol  
Condition  
Min.  
Typ.  
Max. Unit  
DETECTION VOLTAGE  
VCU  
VCU  
VCL  
VCL  
VDL  
VDU  
VDU  
VCU  
0.025  
VCU  
0.025  
3.60 V to 4.50 V, Adjustable  
3.60 V to 4.50 V, Adjustable,  
V
1
1
1
1
2
2
2
1
1
1
1
2
2
2
+
VCU  
Overcharge detection voltage  
VCU  
VCU  
V
V
V
V
V
V
Ta =  
5°  
C to  
+
55  
°
C*1  
0.03  
+0.03  
VCL  
VCL  
VCL  
VCU  
0.05  
+0.05  
3.50 V to 4.40 V,  
Adjustable  
VCL  
VDL  
VDU  
Overcharge release voltage  
Overdischarge detection voltage  
Overdischarge release voltage  
VCL  
VCL  
0.025  
VCL = VCU  
0.05  
+
VDL  
VDL  
2.00 V to 3.00 V, Adjustable  
0.05  
+0.05  
VDU  
VDU  
VDU  
VDL  
0.10  
+0.10  
2.00 V to 3.40 V,  
Adjustable  
VDU  
VDU  
VDU = VDL  
0.05  
+0.05  
INPUT VOLTAGE  
VDSOP1  
1.5  
8
V
Operating voltage between VDD pin and VSS pin  
INPUT CURRENT  
IOPE  
VDD = 3.5 V, VVM = 0 V  
VDD = 1.5 V, VVM = 0 V  
1.0  
0.3  
μ
μ
A
A
Current consumption during operation  
Current consumption during overdischarge  
OUTPUT RESISTANCE  
3.0  
2.0  
5.5  
3.5  
3
3
2
2
IOPED  
RCOH  
RCOL  
2.5  
2.5  
2.5  
2.5  
2.5  
5
9
5
5
5
10  
15  
10  
10  
10  
k
k
k
k
k
Ω
Ω
Ω
Ω
Ω
CO pin resistance “H”  
4
4
4
5
5
3
3
3
3
3
CO pin output logic active “H”  
CO pin resistance “L”  
CO pin output logic active “L”  
RDOH  
RDOL  
DO pin resistance “H”  
DO pin resistance “L”  
*1. Since products are not screened at high and low temperature, the specification for this temperature range is guaranteed  
by design, not tested in production.  
7
BATTERY PROTECTION IC FOR 1-CELL PACK  
S-8211E Series  
Rev.2.4_02  
2. Except Detection Delay Time (40°C to +85°C *1)  
Table 9  
(Ta = 40°C to +85°C *1 unless otherwise specified)  
Test  
Condi-  
tion  
Test  
Circuit  
Item  
Symbol  
Condition  
Min.  
Typ.  
Max. Unit  
DETECTION VOLTAGE  
VCU  
VCL  
VCL  
VDL  
VDU  
VDU  
VCU  
0.060  
VCU  
0.040  
Overcharge detection voltage  
VCU  
VCL  
VDL  
VDU  
3.60 V to 4.50 V, Adjustable  
V
1
1
1
2
2
2
1
1
1
2
2
2
+
+
VCL  
0.08  
VCL  
0.065  
VCL  
VCU  
V
3.50 V to 4.40 V,  
Adjustable  
Overcharge release voltage  
Overdischarge detection voltage  
Overdischarge release voltage  
VCL  
0.08  
VCL  
0.04  
VCL = VCU  
V
+
VDL  
0.11  
VDL  
0.13  
V
V
V
2.00 V to 3.00 V, Adjustable  
+
VDU  
0.15  
VDU  
0.19  
VDU  
VDL  
+
+
2.00 V to 3.40 V,  
Adjustable  
VDU  
0.11  
VDU  
0.13  
VDU = VDL  
INPUT VOLTAGE  
VDSOP1  
V
Operating voltage between VDD pin and VSS pin  
INPUT CURRENT  
1.5  
8
IOPE  
VDD = 3.5 V, VVM = 0 V  
VDD = 1.5 V, VVM = 0 V  
μ
A
A
Current consumption during operation  
Current consumption during overdischarge  
OUTPUT RESISTANCE  
0.7  
0.2  
3.0  
2.0  
6.0  
3.8  
3
3
2
2
IOPED  
μ
RCOH  
RCOL  
k
k
k
k
k
Ω
Ω
Ω
Ω
Ω
CO pin resistance “H”  
1.2  
1.2  
1.2  
1.2  
1.2  
5
9
5
5
5
15  
27  
15  
15  
15  
4
4
4
5
5
3
3
3
3
3
CO pin output logic active “H”  
CO pin resistance “L”  
CO pin output logic active “L”  
RDOH  
RDOL  
DO pin resistance “H”  
DO pin resistance “L”  
*1. Since products are not screened at high and low temperature, the specification for this temperature range is guaranteed  
by design, not tested in production.  
8
BATTERY PROTECTION IC FOR 1-CELL PACK  
S-8211E Series  
Rev.2.4_02  
3. Detection Delay Time  
3. 1 S-8211EAC, S-8211EAH, S-8211EAI, S-8211EAJ, S-8211EAK, S-8211EAP  
Table 10  
Test  
Condi-  
tion  
Test  
Circuit  
Item  
Symbol  
Condition  
Min.  
Typ.  
Max. Unit  
DELAY TIME (Ta =  
+
25°C)  
tCU  
tDL  
0.96  
120  
1.2  
1.4  
s
6
6
4
4
Overcharge detection delay time  
150  
180  
ms  
Overdischarge detection delay time  
DELAY TIME (Ta = 40°C to +  
85°C) *1  
tCU  
tDL  
0.7  
83  
1.2  
2.0  
s
6
6
4
4
Overcharge detection delay time  
Overdischarge detection delay time  
150  
255  
ms  
*1. Since products are not screened at high and low temperature, the specification for this temperature range is guaranteed  
by design, not tested in production.  
3. 2 S-8211EAA, S-8211EAB, S-8211EAD, S-8211EAE, S-8211EAF, S-8211EAG  
Table 11  
Test  
Test  
Condi-  
tion  
Item  
Symbol  
Condition  
Min.  
Typ.  
Max. Unit  
Circuit  
DELAY TIME (Ta =  
+
25°C)  
ms  
6
6
4
4
Overcharge detection delay time  
tCU  
tDL  
458  
240  
573  
300  
687  
ms  
Overdischarge detection delay time  
360  
DELAY TIME (Ta = 40°C to +  
85°C) *1  
ms  
ms  
6
6
4
4
Overcharge detection delay time  
Overdischarge detection delay time  
tCU  
tDL  
334  
166  
573  
300  
955  
510  
*1. Since products are not screened at high and low temperature, the specification for this temperature range is guaranteed  
by design, not tested in production.  
9
BATTERY PROTECTION IC FOR 1-CELL PACK  
S-8211E Series  
Rev.2.4_02  
Test Circuits  
Caution Unless otherwise specified, the output voltage levels “H” and “L” at CO pin (VCO) are judged by VVM  
+
1.0 V, and the output voltage levels “H” and “L” at DO pin (VDO) are judged by VSS + 1.0 V. Judge the  
CO pin level with respect to VVM and the DO pin level with respect to VSS  
.
1. Overcharge Detection Voltage, Overcharge Release Voltage  
(Test Condition 1, Test Circuit 1)  
1. 1 CO pin output logic = Active “H”  
Overcharge detection voltage (VCU) is defined as the voltage between the VDD pin and VSS pin at which VCO  
goes from “L” to “H” when the voltage V1 is gradually increased from the starting condition of V1 = 3.5 V.  
Overcharge release voltage (VCL) is defined as the voltage between the VDD pin and VSS pin at which VCO goes  
from “H” to “L” when the voltage V1 is then gradually decreased. Overcharge hysteresis voltage (VHC) is defined  
as the difference between overcharge detection voltage (VCU) and overcharge release voltage (VCL).  
1. 2 CO pin output logic = Active “L”  
Overcharge detection voltage (VCU) is defined as the voltage between the VDD pin and VSS pin at which VCO  
goes from “H” to “L” when the voltage V1 is gradually increased from the starting condition of V1 = 3.5 V.  
Overcharge release voltage (VCL) is defined as the voltage between the VDD pin and VSS pin at which VCO goes  
from “L” to “H” when the voltage V1 is then gradually decreased. Overcharge hysteresis voltage (VHC) is defined  
as the difference between overcharge detection voltage (VCU) and overcharge release voltage (VCL).  
2. Overdischarge Detection Voltage, Overdischarge Release Voltage  
(Test Condition 2, Test Circuit 2)  
Overdischarge detection voltage (VDL) is defined as the voltage between the VDD pin and VSS pin at which VDO goes  
from “H” to “L” when the voltage V1 is gradually decreased from the starting condition of V1 = 3.5 V, V2 = 0 V.  
Overdischarge release voltage (VDU) is defined as the voltage between the VDD pin and VSS pin at which VDO goes  
from “L” to “H” when the voltage V1 is then gradually increased. Overdischarge hysteresis voltage (VHD) is defined as  
the difference between overdischarge release voltage (VDU) and overdischarge detection voltage (VDL).  
3. Current Consumption during Operation  
(Test Condition 3, Test Circuit 2)  
The current consumption during operation (IOPE) is the current that flows through the VDD pin (IDD) under the set  
conditions of V1 = 3.5 V and V2 = 0 V (normal status).  
4. Current Consumption during Overdischarge  
(Test Condition 3, Test Circuit 2)  
The current consumption during overdischarge (IOPED) is the current that flows through the VDD pin (IDD) under the  
set conditions of V1 = 1.5 V, V2 = 0V (overdischarge status).  
10  
BATTERY PROTECTION IC FOR 1-CELL PACK  
S-8211E Series  
Rev.2.4_02  
5. CO Pin Resistance “H”  
(Test Condition 4, Test Circuit 3)  
5. 1 CO pin output logic = Active “H”  
The CO pin resistance “H” (RCOH) is the resistance at the CO pin under the set conditions of V1 = 4.5 V, V2 =  
0 V, V3 = 4.0 V.  
5. 2 CO pin output logic = Active “L”  
The CO pin resistance “H” (RCOH) is the resistance at the CO pin under the set conditions of V1 = 3.5 V, V2 =  
0 V, V3 = 3.0 V.  
6. CO Pin Resistance “L”  
(Test Condition 4, Test Circuit 3)  
6. 1 CO pin output logic = Active “H”  
The CO pin resistance “L” (RCOL) is the resistance at the CO pin under the set conditions of V1 = 3.5 V, V2 =  
0 V, V3 = 0.5 V.  
6. 2 CO pin output logic = Active “L”  
The CO pin resistance “L” (RCOL) is the resistance at the CO pin under the set conditions of V1 = 4.5 V, V2 =  
0 V, V3 = 0.5 V.  
7. DO Pin Resistance “H”  
(Test Condition 5, Test Circuit 3)  
The DO pin “H” resistance (RDOH) is the resistance at the DO pin under the set conditions of V1 = 3.5 V, V2 =  
0 V, V4 = 3.0 V.  
8. DO Pin Resistance “L”  
(Test Condition 5, Test Circuit 3)  
The DO pin “L” resistance (RDOL) is the resistance at the DO pin under the set conditions of V1 = 1.8 V, V2 =  
0 V, V4 = 0.5 V.  
9. Overcharge Detection Delay Time  
(Test Condition 6, Test Circuit 4)  
9. 1 CO pin output logic = Active “H”  
The overcharge detection delay time (tCU) is the time needed for VCO to change from “L” to “H” just after the  
voltage V1 momentarily increases (within 10 μs) from overcharge detection voltage (VCU) 0.2 V to overcharge  
detection voltage (VCU) +0.2 V under the set conditions of V2 = 0 V.  
9. 2 CO pin output logic = Active “L”  
The overcharge detection delay time (tCU) is the time needed for VCO to change from “H” to “L” just after the  
voltage V1 momentarily increases (within 10 μs) from overcharge detection voltage (VCU) 0.2 V to overcharge  
detection voltage (VCU) +0.2 V under the set conditions of V2 = 0 V.  
10. Overdischarge Detection Delay Time  
(Test Condition 6, Test Circuit 4)  
The overdischarge detection delay time (tDL) is the time needed for VDO to change from “H” to “L” just after the voltage  
V1 momentarily decreases (within 10 μs) from overdischarge detection voltage (VDL) +0.2 V to overdischarge  
detection voltage (VDL) 0.2 V under the set condition of V2 = 0 V.  
11  
BATTERY PROTECTION IC FOR 1-CELL PACK  
S-8211E Series  
Rev.2.4_02  
R1 =  
220 Ω  
VDD  
IDD  
A
VDD  
VSS  
V1  
V1  
S-8211E Series  
S-8211E Series  
VM  
VSS  
VM  
DO  
CO  
DO  
CO  
V2  
V VDO  
V VCO  
V VDO  
V VCO  
COM  
COM  
Figure 5 Test Circuit 1  
Figure 6 Test Circuit 2  
VDD  
VDD  
V1  
V1  
S-8211E Series  
S-8211E Series  
VSS  
VM  
VSS  
VM  
DO  
CO  
DO  
A
CO  
A
IDO  
V4  
ICO  
V3  
Oscilloscope  
Oscilloscope  
V2  
V2  
COM  
COM  
Figure 7 Test Circuit 3  
Figure 8 Test Circuit 4  
12  
BATTERY PROTECTION IC FOR 1-CELL PACK  
S-8211E Series  
Rev.2.4_02  
Operation  
Remark Refer to the “Battery Protection IC Connection Example”.  
1. Normal Status  
The S-8211E Series monitors the voltage of the battery connected between the VDD and VSS pins.  
In case of overdischarge detection voltage (VDL) battery voltage overcharge detection voltage (VCU), the output  
levels of CO and DO pins are as follows. This is the normal status.  
Table 12  
CO Pin Output Logic  
Active “H”  
CO Pin  
VVM  
DO Pin  
VDD  
Active “L”  
VDD  
VDD  
2. Overcharge Status  
When the battery voltage in the normal status exceeds the overcharge detection voltage (VCU) during charge, and this  
status is held for the overcharge detection delay time (tCU) or more, the output levels of CO and DO pins are as  
follows. This is the overcharge status.  
This overcharge status is released when the battery voltage decreases to the overcharge release voltage (VCL) or  
less.  
Table 13  
CO Pin Output Logic  
Active “H”  
CO Pin  
VDD  
DO Pin  
VDD  
Active “L”  
VVM  
VDD  
3. Overdischarge Status  
When the battery voltage in the normal status decreases than the overcharge detection voltage (VDL) during  
discharge, and this status is held for the overdischarge detection delay time (tDL) or more, the output levels of CO and  
DO pins are as follows. This is the overdischarge status.  
This overdischarge status is released when the battery voltage increases to the overdischarge release voltage (VDU  
or more.  
)
Table 14  
CO Pin Output Logic  
Active “H”  
CO Pin  
VVM  
DO Pin  
VSS  
Active “L”  
VDD  
VSS  
4. Delay Circuit  
The detection delay times are determined by dividing a clock of approximately 3.5 kHz by the counter.  
13  
BATTERY PROTECTION IC FOR 1-CELL PACK  
S-8211E Series  
Rev.2.4_02  
Timing Chart  
1. Overcharge Detection, Overdischarge Detection  
VCU  
VCL  
Battery voltage  
VDU  
VDL  
VDD  
DO pin voltage  
VSS  
VDD  
CO pin voltage  
(active ”H”)  
VM  
VDD  
CO pin voltage  
(active ”L”)  
VM  
Overcharge detection delay time (tCU  
)
Overdischarge detection delay time (tDL)  
*1  
(1)  
(2)  
(1)  
(3)  
(1)  
Status  
*1. (1) : Normal status  
(2) : Overcharge status  
(3) : Overdischarge status  
Figure 9  
14  
BATTERY PROTECTION IC FOR 1-CELL PACK  
S-8211E Series  
Rev.2.4_02  
Battery Protection IC Connection Example  
R1  
VDD  
Battery C1  
S-8211E Series  
VSS  
R2  
DO  
CO  
VM  
CO  
DO  
Figure 10  
Table 15 Constants for External Components  
Symbol  
R1  
Part  
Purpose  
Min.  
Typ.  
Max.  
Remark  
Resistance should be as small as possible to  
avoid lowering the overcharge detection  
accuracy due to current consumption. *1  
Connect a capacitor of 0.022 μF or higher  
between VDD pin and VSS pin. *2  
-
ESD protection,  
For power fluctuation  
Resistor  
100 Ω  
220 Ω  
330 Ω  
C1  
Capacitor  
Resistor  
For power fluctuation  
ESD protection  
0.022 μF  
300 Ω  
0.1 μF  
1 kΩ  
1.0 μF  
4 kΩ  
R2*3  
*1. Insert a resistor of 100 Ω or higher as R1 for ESD protection.  
*2. If a capacitor of less than 0.022 μF is connected to C1, DO pin may oscillate. Be sure to connect a capacitor of 0.022 μF  
or higher to C1.  
*3. Be sure to using R2, connect the VM pin with the VSS pin.  
Caution  
1. The above constants may be changed without notice.  
2. It has not been confirmed whether the operation is normal or not in circuits other than the above  
example of connection. In addition, the example of connection shown above and the constant do not  
guarantee proper operation. Perform thorough evaluation using the actual application to set the  
constant.  
15  
BATTERY PROTECTION IC FOR 1-CELL PACK  
S-8211E Series  
Rev.2.4_02  
Application Circuit Examples  
1. Protection circuits series multi-cells  
R1  
VDD  
Battery  
C1  
S-8211E Series  
VSS  
R2  
DO  
CO  
VM  
CO  
DO  
R1  
VDD  
C1  
Battery  
S-8211E Series  
VSS  
R2  
DO  
CO  
VM  
CO  
DO  
R1  
VDD  
C1  
Battery  
S-8211E Series  
VSS  
R2  
DO  
CO  
VM  
CO  
DO  
R1  
VDD  
C1  
Battery  
S-8211E Series  
VSS  
R2  
DO  
CO  
VM  
CO  
DO  
Figure 11  
16  
BATTERY PROTECTION IC FOR 1-CELL PACK  
S-8211E Series  
Rev.2.4_02  
2. Charge cell-balance detection circuit  
R1  
EB+  
VDD  
C1  
Battery  
S-8211E Series  
VSS  
DO  
CO  
VM  
R2  
R1  
VDD  
C1  
Battery  
S-8211E Series  
VSS  
R2  
DO  
CO  
VM  
R1  
VDD  
C1  
Battery  
S-8211E Series  
VSS  
R2  
DO  
CO  
VM  
Protection IC  
R1  
VDD  
C1  
Battery  
S-8211E Series  
VSS  
R2  
DO  
CO  
VM  
EB−  
Figure 12  
17  
BATTERY PROTECTION IC FOR 1-CELL PACK  
S-8211E Series  
Rev.2.4_02  
Precautions  
The application conditions for the input voltage, output voltage, and load current should not exceed the package  
power dissipation.  
Be sure to using R2, connect the VM pin with the VSS pin.  
Do not apply an electrostatic discharge to this IC that exceeds the performance ratings of the built-in electrostatic  
protection circuit.  
SII Semiconductor Corporation claims no responsibility for any and all disputes arising out of or in connection with any  
infringement by products including this IC of patents owned by a third party.  
18  
BATTERY PROTECTION IC FOR 1-CELL PACK  
S-8211E Series  
Rev.2.4_02  
Characteristics (Typical Data)  
1. Current Consumption  
1. 1 IOPE vs. Ta  
1. 2 IOPED vs. Ta  
6
4
5
4
3
2
1
0
3
2
1
0
4025  
0
25  
Ta [°C]  
50  
7585  
4025  
0
25  
Ta [°C]  
50  
7585  
1. 3 IOPE vs. VDD  
6
5
4
3
2
1
0
4
8
0
2
6
V
DD [V]  
2. Overcharge Detection / Release Voltage, Overdischarge Detection / Release Voltage, Overcurrent  
Detection Voltage, and Delay Time  
2. 1 VCU vs. Ta  
2. 2 VCL vs. Ta  
4.350  
4.345  
4.340  
4.335  
4.330  
4.325  
4.320  
4.315  
4.125  
4.115  
4.105  
4.095  
4.085  
4.075  
4.065  
4.055  
4.045  
4.035  
4.025  
4.310  
4.305  
4.300  
4025  
0
25  
Ta [°C]  
50  
7585  
0
4025  
25  
Ta [°C]  
50  
7585  
2. 3 VDU vs. Ta  
2.95  
2. 4 VDL vs. Ta  
2.60  
2.58  
2.56  
2.54  
2.52  
2.50  
2.48  
2.46  
2.44  
2.42  
2.40  
2.94  
2.93  
2.92  
2.91  
2.90  
2.89  
2.88  
2.87  
2.86  
2.85  
40 25  
0
25  
50  
7585  
40 25  
0
25  
Ta [°C]  
50  
7585  
Ta [°C]  
19  
BATTERY PROTECTION IC FOR 1-CELL PACK  
S-8211E Series  
Rev.2.4_02  
2. 5 tCU vs. Ta  
2. 6 tDL vs. Ta  
1.50  
1.45  
1.40  
1.35  
200  
190  
180  
170  
1.30  
160  
1.25  
150  
1.20  
1.15  
1.10  
140  
130  
120  
1.05  
110  
1.00  
100  
40 25  
0
25  
50  
7585  
40 25  
0
25  
Ta [°C]  
50  
7585  
Ta [°C]  
3. CO pin / DO pin  
3. 1 ICOH vs. VCO  
3. 2 ICOL vs. VCO  
0
0.5  
0.1  
0.2  
0.3  
0.4  
0.4  
0.3  
0.2  
0.1  
0.5  
0
0
1
2
3
4
0
1
2
3
4
VCO [V]  
VCO [V]  
3. 3 IDOH vs. VDO  
3. 4 IDOL vs. VDO  
0
0.20  
0.05  
0.10  
0.15  
0.20  
0.25  
0.15  
0.10  
0.05  
0.30  
0
0
0.5  
1.0  
VDO [V]  
1.5  
0
1
2
DO [V]  
3
4
V
20  
BATTERY PROTECTION IC FOR 1-CELL PACK  
S-8211E Series  
Rev.2.4_02  
Marking Specifications  
1. SOT-23-5  
Top view  
(1) to (3):  
Product Code (refer to Product Name vs. Product Code)  
5
4
(4)  
:
Lot number  
(1) (2) (3) (4)  
1
2
3
Product Name vs. Product Code  
Product Code  
(2)  
Product Name  
(1)  
(3)  
C
F
S-8211EAC-M5T1U  
S-8211EAF-M5T1U  
S-8211EAG-M5T1U  
S-8211EAJ-M5T1U  
S-8211EAK-M5T1U  
R
3
3
3
3
3
R
R
R
R
G
J
K
2. SNT-6A  
Top view  
(1) to (3):  
(4) to (6):  
Product Code (refer to Product Name vs. Product Code)  
Lot number  
6
5
4
(1) (2) (3)  
(4) (5) (6)  
1
2
3
Product Name vs. Product Code  
Product Code  
Product Name  
(1)  
(2)  
(3)  
A
B
D
E
H
I
S-8211EAA-I6T1U  
S-8211EAB-I6T1U  
S-8211EAD-I6T1U  
S-8211EAE-I6T1U  
S-8211EAH-I6T1U  
S-8211EAI-I6T1U  
S-8211EAP-I6T1U  
R
3
3
3
3
3
3
3
R
R
R
R
R
R
P
21  
2.9±0.2  
1.9±0.2  
4
5
+0.1  
-0.06  
1
2
3
0.16  
0.95±0.1  
0.4±0.1  
No. MP005-A-P-SD-1.2  
TITLE  
SOT235-A-PKG Dimensions  
MP005-A-P-SD-1.2  
No.  
SCALE  
UNIT  
mm  
SII Semiconductor Corporation  
4.0±0.1(10 pitches:40.0±0.2)  
+0.1  
-0  
2.0±0.05  
0.25±0.1  
ø1.5  
+0.2  
-0  
4.0±0.1  
ø1.0  
1.4±0.2  
3.2±0.2  
3
4
2 1  
5
Feed direction  
No. MP005-A-C-SD-2.1  
TITLE  
SOT235-A-Carrier Tape  
MP005-A-C-SD-2.1  
No.  
SCALE  
UNIT  
mm  
SII Semiconductor Corporation  
12.5max.  
9.0±0.3  
Enlarged drawing in the central part  
ø13±0.2  
(60°)  
(60°)  
No. MP005-A-R-SD-1.1  
TITLE  
SOT235-A-Reel  
MP005-A-R-SD-1.1  
No.  
SCALE  
UNIT  
QTY.  
3,000  
mm  
SII Semiconductor Corporation  
1.57±0.03  
6
5
4
+0.05  
-0.02  
0.08  
1
2
3
0.5  
0.48±0.02  
0.2±0.05  
No. PG006-A-P-SD-2.0  
SNT-6A-A-PKG Dimensions  
PG006-A-P-SD-2.0  
TITLE  
No.  
SCALE  
UNIT  
mm  
SII Semiconductor Corporation  
+0.1  
-0  
ø1.5  
4.0±0.1  
2.0±0.05  
0.25±0.05  
+0.1  
ø0.5  
-0  
4.0±0.1  
0.65±0.05  
1.85±0.05  
5°  
3
2
5
1
6
4
Feed direction  
No. PG006-A-C-SD-1.0  
TITLE  
SNT-6A-A-Carrier Tape  
PG006-A-C-SD-1.0  
No.  
SCALE  
UNIT  
mm  
SII Semiconductor Corporation  
12.5max.  
9.0±0.3  
Enlarged drawing in the central part  
ø13±0.2  
(60°)  
(60°)  
No. PG006-A-R-SD-1.0  
SNT-6A-A-Reel  
TITLE  
PG006-A-R-SD-1.0  
No.  
SCALE  
UNIT  
QTY.  
5,000  
SII Semiconductor Corporation  
0.52  
2
1.36  
0.52  
1
0.3  
0.2  
1.  
2.  
(0.25 mm min. / 0.30 mm typ.)  
(1.30 mm ~ 1.40 mm)  
0.03 mm  
SNT  
1. Pay attention to the land pattern width (0.25 mm min. / 0.30 mm typ.).  
2. Do not widen the land pattern to the center of the package ( 1.30 mm ~ 1.40 mm ).  
Caution 1. Do not do silkscreen printing and solder printing under the mold resin of the package.  
2. The thickness of the solder resist on the wire pattern under the package should be 0.03 mm  
or less from the land pattern surface.  
3. Match the mask aperture size and aperture position with the land pattern.  
4. Refer to "SNT Package User's Guide" for details.  
(0.25 mm min. / 0.30 mm typ.)  
(1.30 mm ~ 1.40 mm)  
1.  
2.  
SNT-6A-A  
-Land Recommendation  
TITLE  
No. PG006-A-L-SD-4.1  
No.  
PG006-A-L-SD-4.1  
SCALE  
UNIT  
mm  
SII Semiconductor Corporation  
Disclaimers (Handling Precautions)  
1. All the information described herein (product data, specifications, figures, tables, programs, algorithms and  
application circuit examples, etc.) is current as of publishing date of this document and is subject to change without  
notice.  
2. The circuit examples and the usages described herein are for reference only, and do not guarantee the success of  
any specific mass-production design.  
SII Semiconductor Corporation is not responsible for damages caused by the reasons other than the products or  
infringement of third-party intellectual property rights and any other rights due to the use of the information described  
herein.  
3. SII Semiconductor Corporation is not responsible for damages caused by the incorrect information described herein.  
4. Take care to use the products described herein within their specified ranges. Pay special attention to the absolute  
maximum ratings, operation voltage range and electrical characteristics, etc.  
SII Semiconductor Corporation is not responsible for damages caused by failures and/or accidents, etc. that occur  
due to the use of products outside their specified ranges.  
5. When using the products described herein, confirm their applications, and the laws and regulations of the region or  
country where they are used and verify suitability, safety and other factors for the intended use.  
6. When exporting the products described herein, comply with the Foreign Exchange and Foreign Trade Act and all  
other export-related laws, and follow the required procedures.  
7. The products described herein must not be used or provided (exported) for the purposes of the development of  
weapons of mass destruction or military use. SII Semiconductor Corporation is not responsible for any provision  
(export) to those whose purpose is to develop, manufacture, use or store nuclear, biological or chemical weapons,  
missiles, or other military use.  
8. The products described herein are not designed to be used as part of any device or equipment that may affect the  
human body, human life, or assets (such as medical equipment, disaster prevention systems, security systems,  
combustion control systems, infrastructure control systems, vehicle equipment, traffic systems, in-vehicle equipment,  
aviation equipment, aerospace equipment, and nuclear-related equipment), excluding when specified for in-vehicle  
use or other uses. Do not use those products without the prior written permission of SII Semiconductor Corporation.  
Especially, the products described herein cannot be used for life support devices, devices implanted in the human  
body and devices that directly affect human life, etc.  
Prior consultation with our sales office is required when considering the above uses.  
SII Semiconductor Corporation is not responsible for damages caused by unauthorized or unspecified use of our  
products.  
9. Semiconductor products may fail or malfunction with some probability.  
The user of these products should therefore take responsibility to give thorough consideration to safety design  
including redundancy, fire spread prevention measures, and malfunction prevention to prevent accidents causing  
injury or death, fires and social damage, etc. that may ensue from the products' failure or malfunction.  
The entire system must be sufficiently evaluated and applied on customer's own responsibility.  
10. The products described herein are not designed to be radiation-proof. The necessary radiation measures should be  
taken in the product design by the customer depending on the intended use.  
11. The products described herein do not affect human health under normal use. However, they contain chemical  
substances and heavy metals and should therefore not be put in the mouth. The fracture surfaces of wafers and chips  
may be sharp. Take care when handling these with the bare hands to prevent injuries, etc.  
12. When disposing of the products described herein, comply with the laws and ordinances of the country or region where  
they are used.  
13. The information described herein contains copyright information and know-how of SII Semiconductor Corporation.  
The information described herein does not convey any license under any intellectual property rights or any other  
rights belonging to SII Semiconductor Corporation or a third party. Reproduction or copying of the information  
described herein for the purpose of disclosing it to a third-party without the express permission of SII Semiconductor  
Corporation is strictly prohibited.  
14. For more details on the information described herein, contact our sales office.  
1.0-2016.01  
www.sii-ic.com  

相关型号:

S-8211EAB-I6T1U

BATTERY PROTECTION IC
SII

S-8211EAB-I6T1U

BATTERY PROTECTION IC FOR 1-CELL PACK
ABLIC

S-8211EAC-M5T1U

BATTERY PROTECTION IC
SII

S-8211EAC-M5T1U

BATTERY PROTECTION IC FOR 1-CELL PACK
ABLIC

S-8211EAD-I6T1U

BATTERY PROTECTION IC
SII

S-8211EAD-I6T1U

BATTERY PROTECTION IC FOR 1-CELL PACK
ABLIC

S-8211EAE-I6T1U

BATTERY PROTECTION IC
SII

S-8211EAE-I6T1U

BATTERY PROTECTION IC FOR 1-CELL PACK
ABLIC

S-8211EAF-M5T1U

BATTERY PROTECTION IC
SII

S-8211EAF-M5T1U

BATTERY PROTECTION IC FOR 1-CELL PACK
ABLIC

S-8211EAG-M5T1U

BATTERY PROTECTION IC
SII

S-8211EAG-M5T1U

BATTERY PROTECTION IC FOR 1-CELL PACK
ABLIC