S-8233AIFE-TB [SII]

BATTERY PROTECTION IC FOR 3-SERIAL-CELL PACK; 电池保护IC的3串联用电池组
S-8233AIFE-TB
型号: S-8233AIFE-TB
厂家: SEIKO INSTRUMENTS INC    SEIKO INSTRUMENTS INC
描述:

BATTERY PROTECTION IC FOR 3-SERIAL-CELL PACK
电池保护IC的3串联用电池组

电池 光电二极管
文件: 总30页 (文件大小:646K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Rev.3.2_10  
BATTERY PROTECTION IC  
FOR 3-SERIAL-CELL PACK  
S-8233A Series  
The S-8233A Series is a series of lithium-ion rechargeable battery  
protection ICs incorporating high-accuracy voltage detection circuits and  
delay circuits. It is suitable for a 3-serial-cell lithium-ion battery pack.  
Features  
(1)  
Internal high-accuracy voltage detection circuit  
Over charge detection voltage  
4.10 0.05 V to 4.35 0.05 V  
50 mV- step  
Over charge release voltage  
3.85 0.10 V to 4.35 0.10 V  
50 mV- step  
(The over charge release voltage can be selected within the range where a difference from over  
charge detection voltage is 0 V to 0.3 V)  
Over discharge detection voltage  
2.00 0.08 V to 2.70 0.08 V  
100 mV- step  
Over discharge release voltage  
2.00 0.10 V to 3.70 0.10 V  
100 mV - step  
(The over discharge release voltage can be selected within the range where a difference from over  
discharge detection voltage is 0 V to 1.0 V)  
Over current detection voltage 1  
0.15 0.015 V to 0.5 0.05 V  
50 mV-step  
(2)  
(3)  
(4)  
(5)  
(6)  
(7)  
(8)  
High input-voltage device (absolute maximum rating: 26 V)  
Wide operating voltage range:  
2 V to 24 V  
The delay time for every detection can be set via an external capacitor.  
Three over current detection levels (protection for short-circuiting)  
Internal charge/discharge prohibition circuit via the control terminal  
The function for charging batteries from 0 V is available.  
Low current consumption  
Operation  
Power-down  
50 µA max. (+25 °C)  
0.1 µA max. (+25 °C)  
Applications  
Lithium-ion rechargeable battery packs  
Packages  
Drawing Code  
Tape  
Package Name  
Package  
FE014-A  
FT016-A  
Reel  
FE014-A  
FT016-A  
14-Pin SOP  
16-Pin TSSOP  
FE014-A  
FT016-A  
Seiko Instruments Inc.  
1
BATTERY PROTECTION IC FOR 3-SERIAL-CELL PACK  
S-8233A Series  
Rev.3.2_10  
Block Diagram  
Reference  
Over current  
detection  
circuit  
Over current  
voltage 1  
VCC  
CD1  
VMP  
COVT  
CDT  
2,3 delay  
circuit  
+
Battery 1  
Over charge  
Over current1,  
delay circuit  
+
Battery 1  
Over discharge  
Over discharge  
delay circuit  
VC1  
CD2  
Battery 1  
Over charge  
Control  
Logic  
+
Battery 2  
Over charge  
Over charge  
delay circuit  
CCT  
DOP  
COP  
CTL  
+
Battery 2  
Over discharge  
Reference  
voltage 2  
VC2  
CD3  
VSS  
Battery 2  
Over charge  
+
Battery 3  
Over charge  
+
Battery 3  
Over discharge  
Reference  
voltage 3  
Floating  
Battery 3  
detection circuit  
Over charge  
Figure 1  
Remark The delay time for over current detection 2 and 3 is fixed by an internal IC circuit. The delay time  
cannot be changed via an external capacitor.  
2
Seiko Instruments Inc.  
BATTERY PROTECTION IC FOR 3-SERIAL-CELL PACK  
S-8233A Series  
Rev.3.2_10  
Product Name Structure  
1. Product name  
x
xx  
TB  
S8233A  
IC direction in tape specifications*1  
Package name (abbreviation)  
FE: 14-Pin SOP  
FT: 16-Pin TSSOP  
Serial code  
Assigned from A to Z in alphabetical order  
*1. Refer to the taping specifications.  
Seiko Instruments Inc.  
3
BATTERY PROTECTION IC FOR 3-SERIAL-CELL PACK  
S-8233A Series  
Rev.3.2_10  
2. Product name list  
14-Pin SOP  
Table 1  
Overcharge  
Overcharge  
Overdischarge  
Overdischarge  
Overcurrent  
Product name /  
Parameter  
0 V battery  
detection voltage release voltage detection voltage release voltage detection voltage1  
charge function  
VCU  
VCD  
VDD  
VDU  
VIOV1  
S-8233ACFE-TB  
S-8233ADFE-TB  
S-8233AEFE-TB  
S-8233AFFE-TB  
S-8233AGFE-TB  
S-8233AIFE-TB  
S-8233AJFE-TB  
S-8233AKFE-TB  
S-8233ALFE-TB  
S-8233AMFE-TB  
S-8233ANFE-TB  
S-8233AOFE-TB  
S-8233APFE-TB  
S-8233AQFE-TB  
4.25±0.05 V  
4.05±0.10 V  
2.00±0.08 V  
2.30±0.10 V  
0.20±0.02 V  
4.10±0.05 V  
4.25±0.05 V  
4.35±0.05 V  
4.25±0.05 V  
4.25±0.05 V  
4.35±0.05 V  
4.35±0.05 V  
4.35±0.05 V  
4.35±0.05 V  
4.35±0.05 V  
4.35±0.05 V  
4.25±0.05 V  
4.25±0.05 V  
4.10 *1  
2.00±0.08 V  
2.30±0.08 V  
2.40±0.08 V  
2.40±0.08 V  
2.30±0.08 V  
2.40±0.08 V  
2.40±0.08 V  
2.40±0.08 V  
2.40±0.08 V  
2.40±0.08 V  
2.40±0.08 V  
2.70±0.08 V  
2.70±0.08 V  
2.30±0.10 V  
2.70±0.10 V  
2.70±0.10 V  
2.70±0.10 V  
3.00±0.10 V  
2.70±0.10 V  
2.70±0.10 V  
2.70±0.10 V  
2.70±0.10 V  
2.40±0.10 V  
2.70±0.10 V  
3.00±0.10 V  
3.00±0.10 V  
0.20±0.02 V  
0.15±0.015 V  
0.50±0.05 V  
0.40±.0.04 V  
0.15±0.015 V  
0.30±0.03 V  
0.15±0.015 V  
0.40±0.04 V  
0.30±0.03 V  
0.15±0.015 V  
0.15±0.015 V  
0.30±0.03 V  
0.30±0.03 V  
4.10±0.10 V  
4.05±0.10 V  
4.05±0.10 V  
4.10±0.10 V  
4.05±0.10 V  
4.05±0.10 V  
4.05±0.10 V  
4.05±0.10 V  
4.05±0.10 V  
4.05±0.10 V  
4.05±0.10 V  
4.25 *1  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
*1. Without over charge detection hysteresis.  
Remark Please contact the SII marketing department for the products with the detection voltage value other  
than those specified above.  
16-Pin TSSOP  
Table 2  
Overcharge  
Overcharge  
Overdischarge  
Overdischarge  
Overcurrent  
Product name /  
Parameter  
0 V battery  
detection voltage release voltage detection voltage release voltage detection voltage1  
charge function  
VCu  
VCD  
VDD  
VDU  
VIOV1  
S-8233ACFT-TB  
S-8233ADFT-TB  
S-8233AEFT-TB  
S-8233AFFT-TB  
S-8233AGFT-TB  
S-8233AIFT-TB  
S-8233AJFT-TB  
S-8233AKFT-TB  
S-8233ALFT-TB  
S-8233AMFT-TB  
S-8233ANFT-TB  
S-8233AOFT-TB  
S-8233APFT-TB  
S-8233ARFT-TB  
4.25±0.05 V  
4.05±0.10 V  
2.00±0.08 V  
2.30±0.10 V  
0.20±0.02 V  
4.10±0.05 V  
4.25±0.05 V  
4.35±0.05 V  
4.25±0.05 V  
4.25±0.05 V  
4.35±0.05 V  
4.35±0.05 V  
4.35±0.05 V  
4.35±0.05 V  
4.35±0.05 V  
4.35±0.05 V  
4.25±0.05 V  
4.35±0.05 V  
4.10 *1  
2.00±0.08 V  
2.30±0.08 V  
2.40±0.08 V  
2.40±0.08 V  
2.30±0.08 V  
2.40±0.08 V  
2.40±0.08 V  
2.40±0.08 V  
2.40±0.08 V  
2.40±0.08 V  
2.40±0.08 V  
2.70±0.08 V  
2.00±0.08 V  
2.30±0.10 V  
2.70±0.10 V  
2.70±0.10 V  
2.70±0.10 V  
3.00±0.10 V  
2.70±0.10 V  
2.70±0.10 V  
2.70±0.10 V  
2.70±0.10 V  
2.40±0.10 V  
2.70±0.10 V  
3.00±0.10 V  
2.70±0.10 V  
0.20±0.02 V  
0.15±0.015 V  
0.50±0.05 V  
0.40±.0.04 V  
0.15±0.015 V  
0.30±0.03 V  
0.15±0.015 V  
0.40±0.04 V  
0.30±0.03 V  
0.15±0.015 V  
0.15±0.015 V  
0.30±0.03 V  
0.30±0.03 V  
4.10±0.10 V  
4.05±0.10 V  
4.05±0.10 V  
4.10±0.10 V  
4.05±0.10 V  
4.05±0.10 V  
4.05±0.10 V  
4.05±0.10 V  
4.05±0.10 V  
4.05±0.10 V  
4.05±0.10 V  
4.05±0.10 V  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
*1. Without over charge detection hysteresis.  
Remark Please contact the SII marketing department for the products with the detection voltage value other  
than those specified above.  
4
Seiko Instruments Inc.  
BATTERY PROTECTION IC FOR 3-SERIAL-CELL PACK  
S-8233A Series  
Rev.3.2_10  
Pin Assignment  
Table 3  
Pin No. Symbol  
Pin description  
14-Pin SOP  
Top view  
1
2
DOP Connects FET gate for discharge control (CMOS output)  
COP Connects FET gate for charge control (Nch open-drain output)  
VMP Detects voltage between VCC to VMP(Over current detection pin)  
COVT Connects capacitor for over current detection1delay circuit  
CDT Connects capacitor for over discharge detection delay circuit  
CCT Connects capacitor for over charge detection delay circuit  
VSS Negative power input, and connects negative voltage for battery 3  
CTL Charge/discharge control signal input  
DOP  
COP  
VMP  
COVT  
CDT  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
VCC  
CD1  
VC1  
CD2  
VC2  
CD3  
CTL  
3
4
5
6
7
8
9
CCT  
CD3 Battery 3 conditioning signal output  
VSS  
8
10  
11  
12  
13  
14  
VC2  
CD2  
VC1  
CD1  
VCC  
Connects battery 2 negative voltage and battery 3 positive voltage  
Battery 2 conditioning signal output  
Connects battery 1 negative voltage and battery 2 positive voltage  
Battery 1 conditioning signal output  
Positive power input and connects battery 1 positive voltage  
Figure 2  
Table 4  
Pin No. Symbol  
Pin description  
16-Pin TSSOP  
Top view  
1
2
DOP Connects FET gate for discharge control (CMOS output)  
NC  
No connection*1  
DOP  
NC  
VCC  
NC  
1
2
3
4
5
6
16  
15  
14  
13  
12  
11  
10  
9
3
COP Connects FET gate for charge control (Nch open-drain output)  
VMP Detects voltage between VCC to VMP(Over current detection pin)  
COVT Connects capacitor for over current detection1 delay circuit  
CDT Connects capacitor for over discharge detection delay circuit  
CCT Connects capacitor for over charge detection delay circuit  
VSS Negative power input, and connects negative voltage for battery 3  
CTL Charge/discharge control signal input  
4
5
6
7
8
9
COP  
VMP  
COVT  
CDT  
CCT  
VSS  
CD1  
VC1  
CD2  
VC2  
CD3  
CTL  
7
8
Figure 3  
10  
11  
12  
13  
14  
15  
CD3 Battery 3 conditioning signal output  
VC2  
CD2  
VC1  
CD1  
NC  
Connects battery 2 negative voltage and battery 3 positive voltage  
Battery 2 conditioning signal output  
Connects battery 1 negative voltage and battery 2 positive voltage  
Battery 1 conditioning signal output  
No connection*1  
Positive power input and connects battery 1 positive voltage  
16  
VCC  
*1. The NC pin is electrically open. The NC pin can be connected to  
VCC or VSS.  
Seiko Instruments Inc.  
5
BATTERY PROTECTION IC FOR 3-SERIAL-CELL PACK  
S-8233A Series  
Rev.3.2_10  
Absolute Maximum Ratings  
Table 5  
(Ta = 25 °C unless otherwise specified)  
Parameter  
Input voltage between VCC  
and VSS  
Symbol  
VDS  
Applicable Pins  
Absolute Maximum Ratings Unit  
VSS0.3 ~ VSS+26  
V
Input pin voltage  
VMP Input terminal voltage  
CD1 output terminal voltage  
CD2 output terminal voltage  
CD3 output terminal voltage  
DOP output terminal voltage  
COP output terminal voltage  
Power dissipation  
VIN  
VVMP  
VCD1  
VCD2  
VCD3  
VDOP  
VCOP  
PD  
VC1, VC2, CTL, CCT, CDT, COVT  
VSS0.3 ~ VCC+0.3  
VSS0.3 ~ VSS+26  
VC10.3 ~ VCC+0.3  
VC20.3 ~ VCC+0.3  
VSS0.3 ~ VCC+0.3  
VSS0.3 ~ VCC+0.3  
VSS0.3 ~ VSS+26  
V
V
V
V
V
V
V
mW  
mW  
°C  
°C  
VMP  
CD1  
CD2  
CD3  
DOP  
COP  
14-Pin SOP  
16-Pin TSSOP  
20 ~ +70  
40 ~ +125  
400  
300  
Topr  
Tstg  
Operating temperature range  
Storage temperature range  
Caution The absolute maximum ratings are rated values exceeding which the product could suffer  
physical damage. These values must therefore not be exceeded under any conditions.  
6
Seiko Instruments Inc.  
BATTERY PROTECTION IC FOR 3-SERIAL-CELL PACK  
S-8233A Series  
Rev.3.2_10  
Electrical Characteristics  
Table 6 (1 / 2)  
(Ta = 25 °C unless otherwise specified)  
Measure-Measure-  
Item  
Detection voltage  
Symbol  
Condition  
Min.  
Typ. Max.  
Unit  
ment  
ment  
condition circuit  
Over charge detection voltage1  
Over charge release voltage1  
Over discharge detection voltage1  
Over discharge release voltage1  
Over charge detection voltage 2  
Over charge release voltage 2  
Over discharge detection voltage 2  
Over discharge release voltage 2  
Over charge detection voltage3  
Over charge release voltage3  
Over discharge detection voltage3  
Over discharge release voltage3  
VCU1  
VCD1  
VDD1  
VDU1  
VCU2  
VCD2  
VDD2  
VDU2  
VCU3  
VCD3  
VDD3  
VDU3  
VIOV1  
VIOV2  
VIOV3  
TCOE1  
TCOE2  
4.10 to 4.35 Adjustment  
3.85 to 4.35 Adjustment  
2.00 to 2.70 Adjustment  
2.00 to 3.70 Adjustment  
4.10 to 4.35 Adjustment  
3.85 to 4.35 Adjustment  
2.00 to 2.70 Adjustment  
2.00 to 3.70 Adjustment  
4.10 to 4.35 Adjustment  
3.85 to 4.35 Adjustment  
2.00 to 2.70 Adjustment  
2.00 to 3.70 Adjustment  
0.15 to 0.50V Adjustment  
VCC Reference  
VCU1  
VCD1  
VDD1  
VDU1  
VCU2  
VCD2  
VDD2  
VDU2  
VCU3  
VCD3  
VDD3  
VDU3  
0.05 VCU1 VCU1+0.05  
0.10 VCD1 VCD1+0.10  
0.08 VDD1 VDD1+0.08  
0.10 VDU1 VDU1+0.10  
0.05 VCU2 VCU2+0.05  
0.10 VCD2 VCD2+0.10  
0.08 VDD2 VDD2+0.08  
0.10 VDU2 VDU2+0.10  
0.05 VCU3 VCU3+0.05  
0.10 VCD3 VCD3+0.10  
0.08 VDD3 VDD3+0.08  
0.10 VDU3 VDU3+0.10  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
1
1
1
1
2
2
2
2
3
3
3
3
4
4
4
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
*1  
Over current detection voltage1  
VIOV1 x 0.9 VIOV1 VIOV1 x 1.1  
0.54  
1.0  
Over current detection voltage 2  
Over current detection voltage3  
0.6  
2.0  
0
0.66  
3.0  
1.0  
VSS Reference  
Ta=-20 to 70°C  
Ta=-20 to 70°C  
*2  
Voltage temperature factor 1  
Voltage temperature factor 2  
1.0  
0.5  
mV/  
°
°
C
C
*3  
0
0.5  
mV/  
Delay time  
Over charge detection delay time1  
Over charge detection delay time 2  
Over charge detection delay time3  
Over discharge detection delay time1  
Over discharge detection delay time 2  
Over discharge detection delay time3  
Over current detection delay time1  
Over current detection delay time 2  
Over current detection delay time3  
Operating voltage  
tCU1  
tCU2  
tCU3  
tDD1  
tDD2  
tDD3  
tIOV1  
tIOV2  
tIOV3  
CCCT=0.47 µF  
CCCT=0.47 µF  
CCCT=0.47 µF  
CCDT=0.1 µF  
CCDT=0.1 µF  
CCDT=0.1 µF  
0.5  
0.5  
0.5  
20  
20  
20  
10  
2
1.0  
1.0  
1.0  
40  
40  
40  
20  
4
1.5  
1.5  
1.5  
60  
60  
60  
30  
8
s
s
s
ms  
ms  
ms  
ms  
ms  
9
6
6
6
6
6
6
7
7
7
10  
11  
9
10  
11  
12  
12  
12  
CCOVT=0.1 µF  
FET gate capacitor =2000 pF  
100  
300  
550  
µ
s
Operating voltage between VCC and  
VSS  
VDSOP  
2.0  
24  
V
*4  
Current consumption  
Current consumption (during normal  
operation)  
IOPE  
V1=V2=V3=3.5 V  
20  
50  
µ
A
5
3
Current consumption for cell 2  
Current consumption for cell 3  
Current consumption at power down  
Internal resistance  
ICELL2  
ICELL3  
IPDN  
V1=V2=V3=3.5 V  
V1=V2=V3=3.5 V  
V1=V2=V3=1.5 V  
300  
300  
0
0
300  
300  
0.1  
nA  
nA  
5
5
5
3
3
3
µ
A
Resistance between  
VCC and VMP  
Resistance between  
VSS and VMP  
RVCM  
RVSM  
V1=V2=V3=3.5 V  
V1=V2=V3=3.5 V  
V1=V2=V3=1.5 V  
V1=V2=V3=1.5 V  
0.40  
0.20  
0.40  
0.20  
0.90  
0.50  
0.90  
0.50  
1.40  
0.80  
1.40  
0.80  
M
6
6
6
6
3
3
3
3
*5  
M
M
M
*5  
Input voltage  
CTL"H" Input voltage  
CTL"L" Input voltage  
VCTL(H)  
VCTL(L)  
VCCx0.8  
V
V
VCCx0.2  
Seiko Instruments Inc.  
7
BATTERY PROTECTION IC FOR 3-SERIAL-CELL PACK  
S-8233A Series  
Rev.3.2_10  
Table 6 (2 / 2)  
(Ta = 25 °C unless otherwise specified)  
Measure- Measure-  
Item  
Output voltage  
Symbol  
Condition  
Min.  
Typ.  
Max.  
Unit  
ment  
ment  
circuit  
condition  
DOP"H" voltage  
DOP"L" voltage  
COP"L" voltage  
COP OFF LEAK current  
CD1"H" voltage  
CD1"L" voltage  
CD 2"H" voltage  
CD 2"L" voltage  
CD3"H" voltage  
VDO(H)  
VDO(L)  
VCO(L)  
ICOL  
VCD1(H)  
VCD1(L)  
VCD2(H)  
VCD2(L)  
VCD3(H)  
VCD3(L)  
IOUT=10 µA  
IOUT=10 µA  
IOUT=10 µA  
V1=V2=V3=4.5 V  
IOUT=0.1 µA  
IOUT=10 µA  
IOUT=0.1 µA  
IOUT=10 µA  
IOUT=0.1 µA  
IOUT=10 µA  
VCC-0.5  
V
V
V
nA  
V
V
V
V
V
V
7
7
8
14  
13  
13  
13  
13  
13  
13  
4
4
5
9
8
8
8
8
8
8
V
V
SS+0.1  
SS+0.1  
100  
VCC -0.5  
VCC -0.5  
V
V
V
C1+0.1  
-
C2+0.1  
SS+0.1  
VCC -0.5  
CD3"L" voltage  
0 V battery charging function  
0 V charging start voltage  
*5  
V0CHAR  
1.4  
V
15  
10  
*1.  
If over current detection voltage 1 is 0.50 V, both over current detection voltages 1 and 2 are 0.54 to  
0.55 V, but VIOV2 > VIOV1  
.
*2.  
Voltage temperature factor 1 indicates over charge detection voltage, over charge release voltage, over  
discharge detection voltage, and over discharge release voltage.  
*3.  
*4.  
*5.  
Voltage temperature factor 2 indicates over current detection voltage.  
The DOP and COP logic must be established for the operating voltage.  
This spec applies for only 0 V battery charging function available type.  
8
Seiko Instruments Inc.  
BATTERY PROTECTION IC FOR 3-SERIAL-CELL PACK  
S-8233A Series  
Rev.3.2_10  
Measurement Circuits  
(1) Measurement 1 Measurement circuit 1  
Set V1, V2, and V3 to 3.5 V under normal condition. Increase V1 from 3.5 V gradually. The V1 voltage  
when COP = 'H' is over charge detection voltage 1 (VCU1). Decrease V1 gradually. The V1 voltage when  
COP = 'L' is over charge release voltage 1 (VCD1). Further decrease V1. The V1 voltage when DOP = 'H'  
is over discharge voltage 1 (VDD1). Increase V1 gradually. The V1 voltage when DOP = 'L' is over  
discharge release voltage 1 (VDU1).  
Remark The voltage change rate is 150 V/s or less.  
(2) Measurement 2 Measurement circuit 1  
Set V1, V2, and V3 to 3.5 V under normal condition. Increase V2 from 3.5 V gradually. The V2 voltage  
when COP = 'H' is over charge detection voltage 2 (VCU2). Decrease V2 gradually. The V2 voltage when  
COP = 'L' is over charge release voltage 2 (VCD2). Further decrease V2. The V2 voltage when DOP = 'H'  
is over discharge voltage 2 (VDD2). Increase V2 gradually. The V2 voltage when DOP = 'L' is over  
discharge release voltage 2 (VDU2).  
Remark The voltage change rate is 150 V/s or less.  
(3) Measurement 3 Measurement circuit 1  
Set V1, V2, and V3 to 3.5 V under normal condition. Increase V3 from 3.5 V gradually. The V3 voltage  
when COP = 'H' is over charge detection voltage 3 (VCU3). Decrease V3 gradually. The V3 voltage when  
COP = 'L' is over charge release voltage 3 (VCD3). Further decrease V3. The V3 voltage when DOP = 'H'  
is over discharge voltage 3 (VDD3). Increase V3 gradually. The V3 voltage when DOP = 'L' is over  
discharge release voltage 3 (VDU3).  
Remark The voltage change rate is 150 V/s or less.  
(4) Measurement 4 Measurement circuit 2  
Set V1, V2, V3 to 3.5 V and V4 to 0 V under normal condition. Increase V4 from 0 V gradually. The V4  
voltage when DOP = 'H' and COP = 'H', is over current detection voltage 1 (VIOV1).  
Set V1, V2, and V3 to 3.5 V and V4 to 0 V under normal condition. Fix the COVT terminal at VSS,  
increase V4 from 0 V gradually. The V4 voltage when DOP = 'H' and COP = 'H' is over current detection  
voltage 2 (VIOV2).  
Set V1, V2, and V3 to 3.5 V and V4 to 0 V under normal condition. Fix the COVT terminal at VSS,  
increase V4 gradually from 0 V at 400 µs to 2 ms. The V4 voltage when DOP = 'H' and COP = 'H' is over  
current detection voltage 3 (VIOV3).  
(5) Measurement 5 Measurement circuit 3  
Set S1 to ON, V1, V2, and V3 to 3.5 V, and V4 to 0 V under normal condition and measure current  
consumption. I1 is the normal condition current consumption (IOPE), I2, the cell 2 current consumption  
(ICELL2), and I3, the cell 3 current consumption (ICELL3).  
Set S1 to ON, V1, V2, and V3 to 1.5 V, and V4 to 4.5 V under over discharge condition. Current  
consumption I1 is power-down current consumption (IPDN).  
(6) Measurement 6 Measurement circuit 3  
Set S1 to ON, V1, V2, and V3 to 3.5 V, and V4 to 10.5 V under normal condition. V4/I4 is the internal  
resistance between VCC and VMP (RVCM).  
Set S1 to ON, V1, V2, and V3 to 1.5 V, and V4 to 4.1 V under over discharge condition. (4.5-V4)/I4 is the  
internal resistance between VSS and VMP (RVSM).  
Seiko Instruments Inc.  
9
BATTERY PROTECTION IC FOR 3-SERIAL-CELL PACK  
S-8233A Series  
Rev.3.2_10  
(7) Measurement 7 Measurement circuit 4  
Set S1 to ON, S2 to OFF, V1, V2, and V3 to 3.5 V, and V4 to 0 V under normal condition. Increase V5  
from 0 V gradually. The V5 voltage when I1 = 10 µA is DOP'L' voltage (VD0(L)).  
Set S1 to OFF, S2 to ON, V1, V2, V3 to 3.5 V, and V4 to VIOV2+0.1 V under over current condition.  
Increase V6 from 0 V gradually. The V6 voltage when I2 = 10 µA is the DOP'H' voltage (VDO(H)).  
(8) Measurement 8 Measurement circuit 5  
Set V1, V2, V3 to 3.5 V and V4 to 0 V under normal condition. Increase V5 from 0 V gradually. The V5  
voltage when I1 = 10 µA is the COP'L' voltage (VC0(L)).  
(9) Measurement 9 Measurement circuit 6  
Set V1, V2, V3 to 3.5 V under normal condition. Increase V1 from 3.5 V to 4.5 V immediately (within 10  
µs). The time after V1 becomes 4.5 V until COP goes 'H' is the over charge detection delay time 1 (tCU1).  
Set V1, V2, V3 to 3.5 V under normal condition. Decrease V1 from 3.5 V to 1.9 V immediately (within 10  
µs). The time after V1 becomes 1.9 V until DOP goes 'H' is the over discharge detection delay time 1  
(tDD1).  
(10) Measurement 10 Measurement circuit 6  
Set V1, V2, V3 to 3.5 V under normal condition. Increase V2 from 3.5 V to 4.5 V immediately (within 10  
µs). The time after V2 becomes 4.5 V until COP goes 'H' is the over charge detection delay time 2 (tCU2).  
Set V1, V2, V3 to 3.5 V under normal condition. Decrease V2 from 3.5 V to 1.9 V immediately (within 10  
µs). The time after V2 becomes 1.9 V until DOP goes 'H' is the over discharge detection delay time 2  
(tDD2).  
(11) Measurement 11 Measurement circuit 6  
Set V1, V2, V3 to 3.5 V under normal condition. Increase V3 from 3.5 V to 4.5 V immediately (within 10  
µs). The time after V3 becomes 4.5 V until COP goes 'H' is the over charge detection delay time 3 (tCU3).  
Set V1, V2, V3 to 3.5 V under normal condition. Decrease V3 from 3.5 V to 1.9 V immediately (within 10  
µs). The time after V3 becomes 1.9 V until DOP goes 'H' is the over discharge detection delay time 3  
(tDD3).  
(12) Measurement 12 Measurement circuit 7  
Set V1, V2, V3 to 3.5 V and S1 to OFF under normal condition. Increase V4 from 0 V to 0.55 V  
immediately (within 10 µs). The time after V4 becomes 0.55 V until DOP goes 'H' is the over current  
detection delay time 1 (tI0V1).  
Set V1, V2, V3 to 3.5 V and S1 to OFF under normal condition. Increase V4 from 0 V to 0.75 V  
immediately (within 10 µs). The time after V4 becomes 0.75 V until DOP goes 'H' is the over current  
detection delay time 2 (tIOV2  
)
Set S1 to ON to inhibit over discharge detection. Set V1, V2, V3 to 4.0 V and increase V4 from 0 V to 6.0  
V immediately (within 1 µs) and decrease V1, V2, and V3 to 2.0 V at a time. The time after V4 becomes  
6.0 V until DOP goes 'H' is the over current detection delay time 3 (tIOV3).  
10  
Seiko Instruments Inc.  
BATTERY PROTECTION IC FOR 3-SERIAL-CELL PACK  
S-8233A Series  
Rev.3.2_10  
(13) Measurement 13 Measurement circuit 8  
Set S4 to ON, S1, S2, S3, S5, and S6 to OFF, V1, V2, V3 to 3.5 V and V4, V6, and V7 to 0 V under  
normal condition. Increase V5 from 0 V gradually. The V5 voltage when I2 = 10 µA is the CD1'L' voltage  
(VCD1(L)  
)
Set S5 to ON, S1, S2, S3, S4, and S6 to OFF, V1, V2, and V3 to 3.5 V and V4, V5, and V7 to 0 V under  
normal condition. Increase V6 from 0 V gradually. The V6 voltage when I3 = 10 µA is the CD2'L' voltage  
(VCD2(L)).  
Set S6 to ON, S1, S2, S3, S4, and S5 to OFF, V1, V2, and V3 to 3.5 V and V4, V5, and V6 to 0 V under  
normal condition. Increase V7 from 0 V gradually. The V7 voltage when I4 = 10 µA is the CD3'L' voltage  
(VCD3(L)).  
Set S1 to ON, S2, S3, S4, S5, and S6 to OFF, V1 to 4.5 V, V2 and V3 to 3.5 V and V5, V6, and V7 to 0 V  
under over charge condition. Increase V4 from 0 V gradually. The V4 voltage when I1 = 0.1 µA is the  
CD1'H' voltage (VCD1(H)).  
Set S2 to ON, S1, S3, S4, S5, and S6 to OFF, V2 to 4.5 V, V1 and V3 to 3.5 V and V5, V6, and V7 to 0 V  
under over charge condition. Increase V4 from 0 V gradually. The V4 voltage when I1 = 0.1 µA is the  
CD2'H' voltage (VCD2(H)).  
Set S3 to ON, S1, S2, S4, S5, and S6 to OFF, V3 to 4.5 V, V1 and V2 to 3.5 V and V5, V6, and V7 to 0 V  
under over charge condition. Increase V4 from 0 V gradually. The V4 voltage when I1 = 0.1 µA is the  
CD3'H' voltage (VCD3(H)).  
(14) Measurement 14 Measurement circuit 9  
Set V1, V2, and V3 to 4.5 V under over charge condition. The current I1 flowing to COP terminal is COP  
OFF LEAK current (ICOL).  
(15) Measurement 15 Measurement circuit 10  
Set V1, V2, and V3 to 0 V, and V8 to 2 V, and decrease V8 gradually. The V8 voltage when COP = 'H'  
(VSS + 0.1 V or higher) is the 0V charge start voltage (V0CHAR).  
Seiko Instruments Inc.  
11  
BATTERY PROTECTION IC FOR 3-SERIAL-CELL PACK  
S-8233A Series  
Rev.3.2_10  
V4  
1 MΩ  
COP  
1 MΩ  
COP  
DOP  
DOP  
VCC  
CD1  
VMP  
VCC  
CD1  
VMP  
V1  
V1  
CTL  
CTL  
VC1  
CD2  
VC1  
CD2  
CCT  
CDT  
CCT  
CDT  
V2  
V3  
S-8233A  
V2  
V3  
S-8233A  
VC2  
VC2  
CD3  
VSS  
CD3  
VSS  
COVT  
COVT  
Measurement circuit 1  
Measurement circuit 2  
V5  
I4  
I1  
S1  
S2  
I1  
I2  
S1  
V4  
V6  
V4  
COP  
DOP  
VCC  
VMP  
CTL  
V1  
DOP  
COP  
CD1  
VCC  
VMP  
CTL  
V1  
I2  
CD1  
VC1  
CD2  
V2  
CCT  
CDT  
VC1  
CD2  
S-8233A  
CCT  
CDT  
V2  
V3  
S-8233A  
I3  
VC2  
V3  
VC2  
CD3  
VSS  
CD3  
VSS  
COVT  
COVT  
Measurement circuit 3  
Measurement circuit 4  
V5  
I1  
1 MΩ  
V4  
DOP  
COP  
COP  
DOP  
VCC  
VCC  
CD1  
VMP  
CTL  
VMP  
CTL  
V1  
V1  
CD1  
VC1  
CD2  
VC1  
CD2  
CCT  
CDT  
S-8233A  
V2  
V3  
CCT  
CDT  
C1  
C2  
C3  
V2  
V3  
S-8233A  
C1=0.47 µF  
C2=0.1 µF  
C3=0.1 µF  
VC2  
VC2  
CD3  
VSS  
COVT  
CD3  
VSS  
COVT  
Measurement circuit 6  
Measurement circuit 5  
Figure 4 (1/2)  
12  
Seiko Instruments Inc.  
BATTERY PROTECTION IC FOR 3-SERIAL-CELL PACK  
S-8233A Series  
Rev.3.2_10  
V4  
1 MΩ  
1 MΩ  
DOP  
COP  
DOP  
COP  
VCC  
CD1  
I1  
V4  
S1  
VMP  
CTL  
VMP  
CTL  
VCC  
CD1  
V1  
V2  
V3  
V1  
S4  
I2  
V5  
VC1  
CD2  
VC1  
CD2  
S2  
S5  
CCT  
CDT  
CCT  
CDT  
S-8233A  
S-8233A  
C1  
C2  
V2  
V3  
I3  
V6  
S1  
VC2  
CD3  
C1=0.47 µF  
C2=0.1 µF  
C3=0.1 µF  
VC2  
S3  
S6  
I4  
V7  
CD3  
VSS  
COVT  
COVT  
VSS  
C3  
Measurement circuit 7  
Measurement circuit 8  
V8  
I1  
1 MΩ  
DOP  
COP  
DOP  
COP  
VCC  
CD1  
VMP  
CTL  
VMP  
CTL  
VCC  
CD1  
V1  
V1  
VC1  
CD2  
VC1  
CD2  
CCT  
CDT  
V2  
V3  
CCT  
CDT  
S-8233A  
V2  
V3  
S-8233A  
VC2  
VC2  
CD3  
VSS  
CD3  
VSS  
COVT  
COVT  
Measurement circuit 9  
Measurement circuit 10  
Figure 4 (2/2)  
Seiko Instruments Inc.  
13  
BATTERY PROTECTION IC FOR 3-SERIAL-CELL PACK  
S-8233A Series  
Rev.3.2_10  
Operation  
Remark Refer to “Battery Protection IC Connection Example”.  
Normal condition  
This IC monitors the voltages of the three serially-connected batteries and the discharge current to control  
charging and discharging. If the voltages of all the three batteries are in the range from the over  
discharge detection voltage (VDD) to the over charge detection voltage (VCU), and the current flowing  
through the batteries becomes equal or lower than a specified value (the VMP terminal voltage is equal or  
lower than over current detection voltage 1), the charging and discharging FETs turn on. In this condition,  
charging and discharging can be carried out freely. This condition is called the normal condition. In this  
condition, the VMP and VCC terminals are shorted by the RVCM resistor.  
Over current condition  
This IC is provided with the three over current detection levels (VIOV1,VIOV2 and VIOV3) and the three over  
current detection delay time (tIOV1,tIOV2 and tIOV3) corresponding to each over current detection level.  
If the discharging current becomes equal to or higher than a specified value (the VMP terminal voltage is  
equal to or higher than the over current detection voltage) during discharging under normal condition and  
it continues for the over current detection delay time (tIOV) or longer, the discharging FET turns off to stop  
discharging. This condition is called an over current condition. The VMP and VCC terminals are shorted  
by the RVCM resistor at this time. The charging FET turns off.  
When the discharging FET is off and a load is connected, the VMP terminal voltage equals the VSS  
potential.  
The over current condition returns to the normal condition when the load is released and the impedance  
between the EB- and EB+ terminals (see Figure 9 for a connection example) is 100 Mor higher. When  
the load is released, the VMP terminal, which and the VCC terminal are shorted with the RVCM resistor,  
goes back to the VCC potential. The IC detects that the VMP terminal potential returns to over current  
detection voltage 1 (VIOV1) or lower (or the over current detection voltage 2 (VIOV2) or lower if the COVT  
terminal is fixed at the 'L' level and over current detection 1 is inhibited) and returns to the normal  
condition.  
Over charge condition  
If one of the battery voltages becomes higher than the over charge detection voltage (VCU) during  
charging under normal condition and it continues for the over charge detection delay time (tCU) or longer,  
the charging FET turns off to stop charging. This condition is called the over charge condition. The 'H'  
level signal is output to the conditioning terminal corresponding to the battery which exceeds the over  
charge detection voltage until the battery becomes equal to lower than the over charge release voltage  
(VCD). The battery can be discharged by connecting an Nch FET externally. The discharging current can  
be limited by inserting R11, R12 and R13 resistors (see Figure 9 for a connection example). The VMP  
and VCC terminals are shorted by the RVCM resistor under the over charge condition.  
The over charge condition is released in two cases:  
1) The battery voltage which exceeded the over charge detection voltage (VCU) falls below the over  
charge release voltage (VCD), the charging FET turns on and the normal condition returns.  
2) If the battery voltage which exceeded the over charge detection voltage (VCU) is equal or higher than  
the over charge release voltage (VCD), but the charger is removed, a load is placed, and discharging  
starts, the charging FET turns on and the normal condition returns.  
The release mechanism is as follows: the discharge current flows through an internal parasitic diode of  
the charging FET immediately after a load is installed and discharging starts, and the VMP terminal  
voltage decreases by about 0.6 V from the VCC terminal voltage momentarily. The IC detects this  
voltage (over current detection voltage 1 or higher), releases the over charge condition and returns to the  
normal condition.  
14  
Seiko Instruments Inc.  
BATTERY PROTECTION IC FOR 3-SERIAL-CELL PACK  
S-8233A Series  
Rev.3.2_10  
Over discharge condition  
If any one of the battery voltages falls below the over discharge detection voltage (VDD) during discharging  
under normal condition and it continues for the over discharge detection delay time (tDD) or longer, the  
discharging FET turns off and discharging stops. This condition is called the over discharge condition.  
When the discharging FET turns off, the VMP terminal voltage becomes equal to the VSS voltage and the  
IC's current consumption falls below the power-down current consumption (IPDN). This condition is called  
the power-down condition. The VMP and VSS terminals are shorted by the RVSM resistor under the over  
discharge and power-down conditions.  
The power-down condition is canceled when the charger is connected and the voltage between VMP and  
VSS is 3.0 V or higher (over current detection voltage 3). When all the battery voltages becomes equal to  
or higher than the over discharge release voltage (VDU) in this condition, the over discharge condition  
changes to the normal condition.  
Delay circuits  
The over charge detection delay time (tCU1 to tCU3), over discharge detection delay time (tDD1 to tDD3), and  
over current detection delay time 1 (tIOV1) are changed with external capacitors (C4 to C6).  
The delay times are calculated by the following equations:  
Min. Typ. Max.  
tCU[s] =Delay factor ( 1.07, 2.13, 3.19)×C4 [uF]  
tDD[s] =Delay factor ( 0.20, 0.40, 0.60)×C5 [uF]  
tIOV1[s]=Delay factor ( 0.10, 0.20, 0.30)×C6 [uF]  
Caution: The delay time for over current detection 2 and 3 is fixed by an internal IC circuit. The  
delay time cannot be changed via an external capacitor.  
CTL terminal  
If the CTL terminal is floated under normal condition, it is pulled up to the VCC potential in the IC, and both  
the charging and discharging FETs turn off to inhibit charging and discharging. Both charging and  
discharging are also inhibited by applying the VCC terminal to the CTL terminal externally. At this time,  
the VMP and VCC terminals are shorted by the RVCM resistor.  
When the CTL terminal becomes equal to VSS potential, charging and discharging are enabled and go  
back to their appropriate conditions for the battery voltages.  
Caution Please note unexpected behavior might occur when electrical potential difference  
between the CTL pin ('L' level) and VSS is generated through the external filter  
(RVSS and CVSS) as a result of input voltage fluctuations.  
0 V battery charging function  
This function is used to recharge the three serially-connected batteries after they self-discharge to 0 V.  
When the 0 V charging start voltage (V0CHAR) or higher is applied to between VMP and VSS by connecting  
the charger, the charging FET gate is fixed to VSS potential.  
When the voltage between the gate sources of the charging FET becomes equal to or higher than the  
turn-on voltage by the charger voltage, the charging FET turns on to start charging. At this time, the  
discharging FET turns off and the charging current flows through the internal parasitic diode in the  
discharging FET. If all the battery voltages become equal to or higher than the over discharge release  
voltage (VDU), the normal condition returns.  
Caution: In the products without 0 V battery charging function, the resistance between VCC and  
VMP and between VSS and VMP are lower than the products with 0 V battery charging  
function. It causes to that over charge detection voltage increases by the drop voltage of  
R5 (see Figure 9 for a connection example) with sink current at VMP.  
The COP output is undefined below 2.0 V on VCC-VSS voltage in the products without 0 V  
battery charging function.  
Seiko Instruments Inc.  
15  
BATTERY PROTECTION IC FOR 3-SERIAL-CELL PACK  
S-8233A Series  
Rev.3.2_10  
Voltage temperature factor  
Voltage temperature factor 1 indicates over charge detection voltage, over charge release voltage, over  
discharge detection voltage, and over discharge release voltage.  
Voltage temperature factor 2 indicates over current detection voltage.  
The Voltage temperature factors 1 and 2 are expressed by the oblique line parts in Figure 5.  
Ex. Voltage temperature factor of over charge detection voltage  
VCU  
[V]  
+0.1 mV/°C  
VCU25 is the over charge detection voltage at 25°C  
VCU25  
0.1 mV/°C  
20  
25  
Ta [°C]  
70  
Figure 5  
16  
Seiko Instruments Inc.  
BATTERY PROTECTION IC FOR 3-SERIAL-CELL PACK  
S-8233A Series  
Rev.3.2_10  
Timing Chart  
1. Overcharge detection  
V1 battery  
V2 battery  
V3 battery  
VCU  
VCD  
VDU  
VDD  
Battery  
voltage  
VCC  
DOP  
terminal  
VSS  
COP  
terminal  
Hi-z  
Hi-z  
Hi-z  
Hi-z  
VSS  
VCHA  
VCC  
VMP  
terminal  
VIOV1  
VSS  
Charger  
connected  
Load  
connected  
Mode*1  
Delay  
Delay  
Delay  
Delay  
Delay  
&ꢄ  
*1. Normal mode, Over charge mode, Over discharge mode, Over current mode  
Remark The charger is assumed to charge with a constant current. VCHA indicates the open voltage of the charger.  
Figure 6  
2. Overdischarge detection  
V1 battery  
V3 battery  
V2 battery  
VCU  
Battery  
voltage  
VCD  
VDU  
VDD  
VCC  
DOP  
terminal  
VSS  
COP  
terminal  
Hi-z  
VSS  
VCHA  
VCC  
VIOV1  
VSS  
VMP  
terminal  
Charger  
connected  
Load  
connected  
Delay  
Delay  
Delay  
Delay  
Delay  
Mode*1  
*1. Normal mode, Over charge mode, Over discharge mode, Over current mode  
Remark The charger is assumed to charge with a constant current. VCHA indicates the open voltage of the charger.  
Figure 7  
Seiko Instruments Inc.  
17  
BATTERY PROTECTION IC FOR 3-SERIAL-CELL PACK  
S-8233A Series  
Rev.3.2_10  
3. Over current detection  
V1, V2, and V3 batteries  
VCU  
VCD  
VDU  
VDD  
Battery  
voltage  
VCC  
DOP  
terminal  
VSS  
COP  
terminal  
Hi-z  
Hi-z  
Hi-z  
Hi-z  
VSS  
VCC  
VIOV1  
VIOV2  
VIOV3  
VMP  
terminal  
Charger  
connected  
Load  
connected  
Mode*1  
Delay  
Delay tIOV1  
Delay tIOV2  
tIOV3  
Inhibit charging and  
discharging  
CTL terminal  
CTL terminal  
VCCVSS  
VSSVCC  
*1. Normal mode, Over charge mode, Over discharge mode, Over current mode  
Remark The charger is assumed to charge with a constant current. VCHA indicates the open voltage of the charger.  
Figure 8  
18  
Seiko Instruments Inc.  
BATTERY PROTECTION IC FOR 3-SERIAL-CELL PACK  
S-8233A Series  
Rev.3.2_10  
Battery Protection IC Connection Example  
EB+  
FET-A  
FET-B  
R5  
R6  
1 MΩ  
10 KΩ  
DOP  
COP  
VMP  
VCC  
1 KΩ  
R7  
FET1  
FET2  
Nch open  
drain  
CTL  
R11  
GND: Normal operation  
Floating: Inhibit charging  
and discharging.  
C1  
C2  
C3  
Battery 1  
Battery 2  
CD1  
R1  
Over charge delay  
time setting  
VC1  
CD2  
CCT  
CDT  
C4  
R12  
S-8233A series  
Over discharge delay  
time setting  
R2  
FET-C  
VC2  
C5  
C6  
FET3  
High: Inhibit over  
discharge  
R13  
CD3  
VSS  
detection.  
Battery 3  
COVT  
Over current delay  
time setting  
R3  
EB-  
Figure 9  
[Description of Figure 9]  
R11, R12, and R13 are used to adjust the battery conditioning current. The conditioning current  
during over charge detection is given by Vcu (over charge detection voltage)/R (R: resistance). To  
disable the conditioning function, open CD1, CD2, and CD3.  
The over charge detection delay time (tCU1 to tCU3), over discharge detection delay time (tDD1 to tDD3),  
and over current detection delay time (tIOV1) are changed with external capacitors (C4 to C6). See  
the electrical characteristics.  
R6 is a pull-up resistor that turns FET-B off when the COP terminal is opened. Connect a  
100 kto 1 Mresistor.  
R5 is used to protect the IC if the charger is connected in reverse. Connect a 10 kto 50 kΩ  
resistor.  
If capacitor C6 is absent, rush current occurs when a capacitive load is connected and the IC enters  
the over current mode. C6 must be connected to prevent it.  
If capacitor C5 is not connected, the IC may enter the over discharge condition due to variations of  
battery voltage when the over current occurs. In this case, a charger must be connected to return  
to the normal condition. To prevent this, connect an at least 0.01 µF capacitor to C5.  
If a leak current flows between the delay capacitor connection terminal (CCT, CDT, or COVT) and  
VSS, the delay time increases and an error occurs. The leak current must be 100 nA or less.  
Over discharge detection can be disabled by using FET-C. The FET-C off leak must be 0.1 µA or  
less. If over discharge is inhibited by using this FET, the current consumption does not fall below  
0.1 µA even when the battery voltage drops and the IC enters the over discharge detection mode.  
R1, R2, and R3 must be 1 kor less.  
R7 is the protection of the CTL when the CTL terminal voltage higher than VCC voltage. Connect a  
300 to 5 kresister. If the CTL terminal voltage never greater than the VCC voltage (ex. R7  
connect to VSS), without R7 resistance is allowed .  
Seiko Instruments Inc.  
19  
BATTERY PROTECTION IC FOR 3-SERIAL-CELL PACK  
S-8233A Series  
Rev.3.2_10  
Caution 1. The above constants may be changed without notice.  
2. If any electrostatic discharge of 2000 V or higher is not applied to the S-8233A series  
with a human body model, R1, R2, R3, C1, C2, and C3 are unnecessary.  
3. It has not been confirmed whether the operation is normal or not in circuits other than  
the above example of connection. In addition, the example of connection shown above  
and the constant do not guarantee proper operation. Perform through evaluation using  
the actual application to set the constant.  
Precautions  
If a charger is connected in the over discharge condition and one of the battery voltages becomes  
equal to or higher than the over charge release voltage (VCU) before the battery voltage which is  
below the over discharge detection voltage (VDD) becomes equal to or higher than the over discharge  
release voltage (VDU), the over discharge and over charge conditions are entered and the charging  
and discharging FETs turn off. Both charging and discharging are disabled. If the battery voltage  
which was higher than the over charge detection voltage (VCU) falls to the over charge release voltage  
(VCD) due to internal discharging, the charging FET turns on.  
If the charger is detached in the over charge and over discharge condition, the over charge condition  
is released, but the over discharge condition remains. If the charger is connected again, the battery  
condition is monitored after that. The charging FET turns off after the over charge detection delay  
time, the over charge and over discharge conditions are entered.  
If any one of the battery voltages is equal to or lower than the over discharge release voltage (VDU)  
when they are connected for the first time, the normal condition may not be entered. If the VMP  
terminal voltage is made equal to or higher than the VCC voltage (if a charger is connected), the  
normal condition is entered.  
If the CTL terminal floats in power-down mode, it is not pulled up in the IC, charging and discharging  
may not be inhibited. However, the over discharge condition becomes effective. If the charger is  
connected, the CTL terminal is pulled up, and charging and discharging are inhibited immediately.  
Do not apply an electrostatic discharge to this IC that exceeds the performance ratings of the built-in  
electrostatic protection circuit.  
SII claims no responsibility for any disputes arising out of or in connection with any infringement by  
products including this IC of patents owned by a third party.  
20  
Seiko Instruments Inc.  
BATTERY PROTECTION IC FOR 3-SERIAL-CELL PACK  
S-8233A Series  
Rev.3.2_10  
Characteristics (typical characteristics)  
1. Detection voltage temperature characteristics  
Overcharge release voltage vs. temperature  
4.20  
Overcharge detection voltage vs. temperature  
VCU=4.25[V]  
VCD=4.10[V]  
4.35  
4.10  
4.25  
4.00  
4.15  
-40  
-20  
0
20  
40  
60  
80  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
Ta(°C)  
Ta(°C)  
Overdischarge detection voltage vs. temperature  
DD=2.35[V]  
Overdischarge release voltage vs. temperature  
V
V
DU=2.85[V]  
2.45  
2.35  
2.25  
2.95  
2.85  
2.75  
-40  
-20  
0
20  
40  
60  
80  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
Ta(°C)  
Ta(°C)  
Overcurrent1 detection voltage vs. temperature  
IOV1=0.3 [V]  
Overcurrent2 detection voltage vs. temperature  
IOV2=0.6 [V]  
V
V
0.65  
0.60  
0.55  
0.35  
0.30  
0.25  
-40  
-20  
0
20  
40  
60  
80  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
Ta(°C)  
Ta(°C)  
Seiko Instruments Inc.  
21  
BATTERY PROTECTION IC FOR 3-SERIAL-CELL PACK  
S-8233A Series  
Rev.3.2_10  
2. Current consumption temperature characteristics  
Current consumption vs. temperature in normal mode  
Current consumption vs. temperature in power-down mode  
VCC=4.5 [V]  
VCC=10.5 [V]  
1.0  
0.5  
0.0  
50  
25  
0
-40  
-20  
0
20  
40  
60  
80  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
Ta(°C)  
Ta(°C)  
3. Delay time temperature characteristics  
Overcharge detection time vs. temperature  
Overdischarge detection time vs. temperature  
60  
C=0.47[uF]  
C=0.1[uF]  
VCC=11.5 [V]  
VCC=8.5 [V]  
1.5  
1.0  
0.5  
40  
20  
-40  
-20  
0
20  
40  
60  
80  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
Ta(°C)  
Ta(°C)  
Overcurrent2 detection time vs. temperature  
8
Overcurrent1 detection time vs. temperature  
30  
C=0.1[uF]  
VCC=10.5 [V]  
VCC=10.5 [V]  
20  
5
2
10  
-40  
-20  
0
20  
40  
60  
80  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
Ta(°C)  
Ta(°C)  
22  
Seiko Instruments Inc.  
BATTERY PROTECTION IC FOR 3-SERIAL-CELL PACK  
S-8233A Series  
Rev.3.2_10  
Overcurrent3 (load short) detection time vs. temperature  
VCC=6.0 [V]  
0.40  
0.25  
0.10  
-40  
-20  
0
20  
40  
60  
80  
100  
Ta(°C)  
4. Delay time vs. power supply voltage  
Over current 3 (load short) detection time vs. power supply voltage  
Ta =25(°C)  
1.0  
0.5  
0
3
6
9
12  
15  
VCC(V)  
Caution Please design all applications of the S-8233A Series with safety in mind.  
Seiko Instruments Inc.  
23  
10.06 (10.5 max.)  
+0.05  
-0.02  
0.2  
+0.1  
-0.05  
0.4  
1.27  
No. FE014-A-P-SD-1.1  
SOP14-A-PKG Dimensions  
FE014-A-P-SD-1.1  
TITLE  
No.  
SCALE  
UNIT  
mm  
Seiko Instruments Inc.  
(10 pitches:40.0±0.1)  
+0.1  
-0  
ø1.5  
4.0±0.1  
2.0±0.1  
0.3±0.05  
12.0±0.1  
ø1.6±0.1  
2.7±0.1  
8.8±0.1  
5.4±0.2  
+0.4  
-0.2  
8.5  
7
1
8
14  
Feed direction  
No. FE014-A-C-SD-1.1  
SOP14-A-Carrier Tape  
FE014-A-C-SD-1.1  
TITLE  
No.  
SCALE  
UNIT  
mm  
Seiko Instruments Inc.  
ø10  
17.4±1.0  
21.4±1.0  
Enlarged drawing in the central part  
ø21.0±0.8  
2.0±0.5  
ø13.0±0.2  
No. FE014-A-R-SD-1.1  
SOP14-A-Reel  
FE014-A-R-SD-1.1  
TITLE  
No.  
SCALE  
UNIT  
2,000  
QTY.  
mm  
Seiko Instruments Inc.  
5.1±0.2  
16  
9
8
1
0.17±0.05  
0.65  
0.22±0.08  
No. FT016-A-P-SD-1.1  
TITLE  
TSSOP16-A-PKG Dimensions  
FT016-A-P-SD-1.1  
No.  
SCALE  
UNIT  
mm  
Seiko Instruments Inc.  
+0.1  
-0  
4.0±0.1  
ø1.5  
0.3±0.05  
2.0±0.1  
8.0±0.1  
1.5±0.1  
ø1.6±0.1  
(7.2)  
4.2±0.2  
+0.4  
-0.2  
6.5  
1
16  
8
9
Feed direction  
No. FT016-A-C-SD-1.1  
TITLE  
TSSOP16-A-Carrier Tape  
FT016-A-C-SD-1.1  
No.  
SCALE  
UNIT  
mm  
Seiko Instruments Inc.  
21.4±1.0  
17.4±1.0  
+2.0  
17.4  
-1.5  
Enlarged drawing in the central part  
ø21±0.8  
2.0±0.5  
ø13.0±0.2  
No. FT016-A-R-SD-1.1  
TITLE  
TSSOP16-A- Reel  
FT016-A-R-SD-1.1  
No.  
SCALE  
UNIT  
QTY.  
2,000  
mm  
Seiko Instruments Inc.  
·
·
The information described herein is subject to change without notice.  
Seiko Instruments Inc. is not responsible for any problems caused by circuits or diagrams described herein  
whose related industrial properties, patents, or other rights belong to third parties. The application circuit  
examples explain typical applications of the products, and do not guarantee the success of any specific  
mass-production design.  
·
·
·
When the products described herein are regulated products subject to the Wassenaar Arrangement or other  
agreements, they may not be exported without authorization from the appropriate governmental authority.  
Use of the information described herein for other purposes and/or reproduction or copying without the  
express permission of Seiko Instruments Inc. is strictly prohibited.  
The products described herein cannot be used as part of any device or equipment affecting the human  
body, such as exercise equipment, medical equipment, security systems, gas equipment, or any apparatus  
installed in airplanes and other vehicles, without prior written permission of Seiko Instruments Inc.  
Although Seiko Instruments Inc. exerts the greatest possible effort to ensure high quality and reliability, the  
failure or malfunction of semiconductor products may occur. The user of these products should therefore  
give thorough consideration to safety design, including redundancy, fire-prevention measures, and  
malfunction prevention, to prevent any accidents, fires, or community damage that may ensue.  
·

相关型号:

S-8233AJFE-TB

BATTERY PROTECTION IC FOR 3-SERIAL-CELL PACK
SII

S-8233AJFE-TB

3-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO14, SOP-14
SEIKO

S-8233AKFE-TB

BATTERY PROTECTION IC FOR 3-SERIAL-CELL PACK
SII

S-8233ALFE-TB

BATTERY PROTECTION IC FOR 3-SERIAL-CELL PACK
SII

S-8233AMFE-TB

BATTERY PROTECTION IC FOR 3-SERIAL-CELL PACK
SII

S-8233ANFE-TB

BATTERY PROTECTION IC FOR 3-SERIAL-CELL PACK
SII

S-8233AOFE-TB

BATTERY PROTECTION IC FOR 3-SERIAL-CELL PACK
SII

S-8233APFE-TB

BATTERY PROTECTION IC FOR 3-SERIAL-CELL PACK
SII

S-8233AQFE-TB

BATTERY PROTECTION IC FOR 3-SERIAL-CELL PACK
SII

S-8233B

BATTERY PROTECTION IC (FOR A 3-SERIAL-CELL PACK)
SII

S-8233BAFT

BATTERY PROTECTION IC (FOR A 3-SERIAL-CELL PACK)
SII

S-8233BAFT-TB

3-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO16, TSSOP-16
SEIKO