S-8241ADFMC-GDFT2G [SII]

BATTERY PROTECTION IC FOR 1-CELL PACK; 电池保护IC 1格包
S-8241ADFMC-GDFT2G
型号: S-8241ADFMC-GDFT2G
厂家: SEIKO INSTRUMENTS INC    SEIKO INSTRUMENTS INC
描述:

BATTERY PROTECTION IC FOR 1-CELL PACK
电池保护IC 1格包

电池 光电二极管
文件: 总38页 (文件大小:655K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Rev.7.6_00  
BATTERY PROTECTION IC  
FOR 1-CELL PACK  
S-8241 Series  
The S-8241 Series is a series of lithium ion/lithium polymer rechargeable battery  
protection ICs incorporating high-accuracy voltage detection circuits and delay  
circuits.  
These ICs are suitable for protection of 1-cell lithium ion/lithium polymer battery  
packs from overcharge, overdischarge and overcurrent.  
„ Features  
(1) Internal high-accuracy voltage detection circuit  
Overcharge detection voltage: 3.9 to 4.4 V (5 mV-step)  
Accuracy of ±25 mV(+25 °C) and ± 30 mV(5 to +55 °C)  
3.8 to 4.4 V *1 Accuracy of ±50 mV  
Overdischarge detection voltage: 2.0 to 3.0 V (100 mV-step) Accuracy of ±80 mV  
Overdischarge release voltage: Accuracy of ±100 mV  
2.0 to 3.4 V *2  
Overcurrent 1 detection voltage: 0.05 to 0.3 V (5 mV-step) Accuracy of ±20 mV  
Accuracy of ±100 mV  
Overcharge release voltage:  
Overcurrent 2 detection voltage: 0.5 V (fixed)  
(2) A high voltage withstand device is used for charger connection pins  
(VM and CO pins: Absolute maximum rating = 26 V)  
(3) Delay times (overcharge: tCU; overdischarge: tDL; overcurrent 1: tlOV1; overcurrent 2: tlOV2) are generated  
by an internal circuit. (External capacitors are unnecessary.) Accuracy of ±30%  
(4) Internal three-step overcurrent detection circuit (overcurrent 1, overcurrent 2, and load short-circuiting)  
(5) Either the 0 V battery charging function or 0 V battery charge inhibiting function can be selected.  
(6) Products with and without a power-down function can be selected.  
(7) Charger detection function and abnormal charge current detection function  
The overdischarge hysterisis is released by detecting a negative VM pin voltage (typ. 1.3 V) (Charger detection  
function).  
If the output voltage at DO pin is high and the VM pin voltage becomes equal to or lower than the charger detection  
voltage (typ. 1.3 V), the output voltage at CO pin goes low (Abnormal charge current detection function).  
(8) Low current consumption  
Operation:  
3.0 μA typ. 5.0 μA max.  
Power-down mode: 0.1 μA max.  
(9) Wide operating temperature range: 40 to +85 °C  
(10) Small package SOT-23-5, SNT-6A  
(11) Lead-free products  
*1. Overcharge release voltage = Overcharge detection voltage - Overcharge hysteresis  
The overcharge hysteresis can be selected in the range 0.0, or 0.1 to 0.4 V in 50 mV steps. (However, selection  
“Overcharge release voltage<3.8 V” is enabled.)  
*2. Overdischarge release voltage = Overdischarge detection voltage + Overdischarge hysteresis  
The overdischarge hysteresis can be selected in the range 0.0 to 0.7 V in 100 mV steps. (However, selection  
“Overdischarge release voltage>3.4 V” is enabled.)  
„ Applications  
Lithium-ion rechargeable battery packs  
Lithium- polymer rechargeable battery packs  
„ Packages  
Drawing code  
Package name  
Package  
MP005-A  
PG006-A  
Tape  
Reel  
Land  
PG006-A  
SOT-23-5  
SNT-6A  
MP005-A  
PG006-A  
MP005-A  
PG006-A  
Seiko Instruments Inc.  
1
BATTERY PROTECTION IC FOR 1-CELL PACK  
S-8241 Series  
Rev.7.6_00  
„ Block Diagram  
Delay circuit  
Clock generation circuit  
DO  
CO  
VDD  
Counter circuit  
Load  
short-circuiting  
detection circuit  
Level conversion circuit  
0V battery charging circuit  
0V battery charge  
+
RCOL  
Overcharge  
detection  
inhibition circuit  
comparator  
Overdischarge  
detection  
RVMD  
+
VM  
comparator  
+
Overcurrent 1  
RVMS  
detection comparator  
Charger  
detection circuit  
The overdischarge  
hysterisis is released when  
a charger is detected.  
+
Overcurrent 2  
detection comparator  
VSS  
Remark The diodes in the IC are parasitic diodes.  
Figure 1  
2
Seiko Instruments Inc.  
BATTERY PROTECTION IC FOR 1-CELL PACK  
S-8241 Series  
Rev.7.6_00  
„ Product Name Structure  
1. Product Name  
S-8241A xx xx - xxx xx G  
IC direction in tape specifications*1  
T2 : SOT-23-5  
TF : SNT-6A  
Product code*2  
Package code  
MC : SOT-23-5  
PG : SNT-6A  
Serial code  
Sequentially set from BA to ZZ  
*1. Refer to the taping specifications.  
*2. Refer to the “2. Product Name List”.  
Seiko Instruments Inc.  
3
BATTERY PROTECTION IC FOR 1-CELL PACK  
S-8241 Series  
Rev.7.6_00  
2. Product Name List  
(1) SOT-23-5  
Table 1 (1/2)  
Over-  
charge  
detection  
voltage  
VCU  
Over-  
charge  
release  
voltage  
VCL  
Over-  
discharge  
detection  
voltage  
VDL  
Over-  
discharge  
release  
voltage  
VDU  
Over-  
current 1  
detection  
voltage  
VIOV1  
Delay  
time  
combi-  
nation*1  
0 V battery  
charging  
function  
Power down  
function  
Product Name / Item  
S-8241ABAMC-GBAT2G  
S-8241ABBMC-GBBT2G  
S-8241ABCMC-GBCT2G  
S-8241ABDMC-GBDT2G  
S-8241ABEMC-GBET2G  
S-8241ABFMC-GBFT2G  
S-8241ABGMC-GBGT2G  
S-8241ABHMC-GBHT2G  
S-8241ABIMC-GBIT2G  
S-8241ABKMC-GBKT2G  
S-8241ABLMC-GBLT2G  
S-8241ABOMC-GBOT2G  
S-8241ABPMC-GBPT2G  
S-8241ABQMC-GBQT2G  
S-8241ABRMC-GBRT2G  
S-8241ABTMC-GBTT2G  
S-8241ABUMC-GBUT2G  
S-8241ABVMC-GBVT2G  
S-8241ABWMC-GBWT2G  
S-8241ABXMC-GBXT2G  
S-8241ABYMC-GBYT2G  
S-8241ACAMC-GCAT2G  
S-8241ACBMC-GCBT2G  
S-8241ACDMC-GCDT2G  
S-8241ACEMC-GCET2G  
S-8241ACFMC-GCFT2G  
S-8241ACGMC-GCGT2G  
S-8241ACHMC-GCHT2G  
S-8241ACIMC-GCIT2G  
S-8241ACKMC-GCKT2G  
S-8241ACLMC-GCLT2G  
S-8241ACNMC-GCNT2G  
S-8241ACOMC-GCOT2G  
S-8241ACPMC-GCPT2G  
S-8241ACQMC-GCQT2G  
S-8241ACRMC-GCRT2G  
S-8241ACSMC-GCST2G  
4.275 V  
4.280 V  
4.350 V  
4.275 V  
4.295 V  
4.325 V  
4.200 V  
4.325 V  
4.280 V  
4.325 V  
4.320 V  
4.350 V  
4.350 V  
4.280 V  
4.325 V  
4.300 V  
4.200 V  
4.295 V  
4.280 V  
4.350 V  
4.220 V  
4.280 V  
4.300 V  
4.275 V  
4.295 V  
4.295 V  
4.295 V  
4.280 V  
4.350 V  
4.350 V  
4.200 V  
4.350 V  
4.100 V  
4.325 V  
4.275 V  
4.350 V  
4.180 V  
4.075 V  
3.980 V  
4.100 V  
4.175 V  
4.095 V  
4.075 V  
4.100 V  
4.125 V  
4.080 V  
4.075 V  
4.070 V  
4.150 V  
4.150 V  
4.080 V  
4.075 V  
4.100 V  
4.100 V  
4.095 V  
4.080 V  
4.000 V  
4.220 V  
4.080 V  
4.100 V  
4.075 V  
4.095 V  
4.095 V  
4.095 V  
4.080 V  
4.150 V  
4.150 V  
4.200 V  
4.150 V  
3.850 V  
4.075 V  
4.175 V  
4.150 V  
3.930 V  
2.30 V  
2.30 V  
2.30 V  
2.30 V  
2.30 V  
2.50 V  
2.30 V  
2.30 V  
2.30 V  
2.50 V  
2.50 V  
2.30 V  
2.30 V  
2.30 V  
2.50 V  
2.30 V  
2.30 V  
2.30 V  
2.30 V  
2.60 V  
2.30 V  
2.30 V  
2.30 V  
2.30 V  
2.30 V  
2.30 V  
2.30 V  
2.60 V  
2.05 V  
2.00 V  
2.50 V  
2.10 V  
2.50 V  
2.50 V  
2.30 V  
2.30 V  
2.50 V  
2.90 V  
2.40 V  
2.80 V  
2.40 V  
3.00 V  
2.90 V  
3.00 V  
2.30 V  
2.30 V  
2.90 V  
2.90 V  
3.00 V  
3.00 V  
2.30 V  
2.90 V  
2.30 V  
2.30 V  
2.30 V  
2.30 V  
3.30 V  
2.30 V  
2.30 V  
2.30 V  
2.30 V  
2.30 V  
2.30 V  
2.30 V  
2.60 V  
2.75 V  
2.00 V  
3.00 V  
2.20 V  
2.90 V  
2.90 V  
2.40 V  
3.00 V  
2.90 V  
0.100 V  
0.125 V  
0.075 V  
0.100 V  
0.200 V  
0.100 V  
0.100 V  
0.100 V  
0.160 V  
0.150 V  
0.100 V  
0.150 V  
0.200 V  
0.130 V  
0.100 V  
0.100 V  
0.150 V  
0.130 V  
0.130 V  
0.200 V  
0.200 V  
0.200 V  
0.150 V  
0.100 V  
0.080 V  
0.090 V  
0.060 V  
0.200 V  
0.200 V  
0.200 V  
0.100 V  
0.200 V  
0.150 V  
0.150 V  
0.100 V  
0.100 V  
0.150 V  
Unavailable  
Available  
(1)  
(2)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(2)  
(2)  
(1)  
(4)  
(1)  
(1)  
(1)  
(3)  
(1)  
(3)  
(1)  
(1)  
(4)  
(1)  
(1)  
(1)  
(1)  
(2)  
(2)  
(1)  
(2)  
(1)  
(1)  
(1)  
(1)  
(1)  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
Unavailable  
Available  
Unavailable  
Unavailable  
Unavailable  
Available  
Unavailable  
Unavailable  
Unavailable  
Available  
Available  
Unavailable  
Unavailable  
Available  
Unavailable  
Available  
Unavailable  
Unavailable  
Available  
Available  
Available  
Unavailable  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Unavailable  
Unavailable  
Available  
No  
No  
Available  
No  
Unavailable  
No  
4
Seiko Instruments Inc.  
BATTERY PROTECTION IC FOR 1-CELL PACK  
S-8241 Series  
Rev.7.6_00  
Table 1 (2/2)  
Over-  
charge  
detection  
voltage  
VCU  
Over-  
charge  
release  
voltage  
VCL  
Over-  
discharge  
detection  
voltage  
VDL  
Over-  
discharge  
release  
voltage  
VDU  
Over-  
current 1  
detection  
voltage  
VIOV1  
Delay  
time  
combi-  
nation*1  
0 V battery  
charging  
function  
Power down  
function  
Product Name / Item  
S-8241ACTMC-GCTT2G  
S-8241ACUMC-GCUT2G  
S-8241ACXMC-GCXT2G  
S-8241ACYMC-GCYT2G  
S-8241ADAMC-GDAT2G  
S-8241ADDMC-GDDT2G  
S-8241ADEMC-GDET2G  
S-8241ADFMC-GDFT2G  
S-8241ADGMC-GDGT2G  
S-8241ADLMC-GDLT2G  
S-8241ADMMC-GDMT2G  
S-8241ADNMC-GDNT2G  
S-8241ADOMC-GDOT2G  
S-8241ADQMC-GDQT2G  
S-8241ADTMC-GDTT2G  
S-8241ADVMC-GDVT2G  
4.100 V  
4.180 V  
4.275 V  
4.275 V  
4.350 V  
4.185 V  
4.350 V  
4.350 V  
4.275 V  
4.220 V  
4.230 V  
4.250 V  
4.275 V  
4.250 V  
4.180 V  
3.900 V  
4.000 V  
4.080 V  
4.075 V  
4.075 V  
4.150 V  
4.085 V  
4.150 V  
4.150 V  
4.075 V  
4.070 V  
4.080 V  
4.100 V  
4.175 V  
4.100 V  
4.180 V  
3.900 V  
2.50 V  
2.50 V  
2.50 V  
2.60 V  
2.30 V  
2.80 V  
2.10 V  
2.10 V  
2.10 V  
2.70 V  
2.70 V  
2.70 V  
2.30 V  
2.00 V  
2.50 V  
2.00 V  
2.90 V  
2.90 V  
2.90 V  
2.90 V  
3.00 V  
2.90 V  
2.20 V  
2.10 V  
2.10 V  
3.00 V  
3.00 V  
3.00 V  
2.40 V  
2.70 V  
3.00 V  
2.30 V  
0.150 V  
0.150 V  
0.150 V  
0.100 V  
0.100 V  
0.150 V  
0.150 V  
0.150 V  
0.150 V  
0.300 V  
0.300 V  
0.300 V  
0.100 V  
0.150 V  
0.100 V  
0.150 V  
Unavailable  
Unavailable  
Unavailable  
Unavailable  
Available  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(2)  
(5)  
(5)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
No  
No  
No  
No  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
Unavailable  
Available  
Unavailable  
Unavailable  
Available  
Available  
Available  
Unavailable  
Available  
Yes  
Yes  
Yes  
Available  
Available  
*1. Refer to the Table 3 about the details of the delay time combinations (1) to (5).  
Remark Please contact our sales office for the products with detection voltage value other than those specified above.  
Seiko Instruments Inc.  
5
BATTERY PROTECTION IC FOR 1-CELL PACK  
S-8241 Series  
Rev.7.6_00  
(2) SNT-6A  
Table 2  
Over-  
charge  
detection  
voltage  
VCU  
Over-  
charge  
release  
voltage  
VCL  
Over-  
discharge  
detection  
voltage  
VDL  
Over-  
discharge  
release  
voltage  
VDU  
Over-  
current 1  
detection  
voltage  
VIOV1  
Delay  
time  
combi-  
nation*1  
0 V battery  
charging  
function  
Power down  
function  
Product Name / Item  
S-8241ABDPG-KBDTFG  
S-8241ABSPG-KBSTFG  
S-8241ABZPG-KBZTFG  
S-8241ACZPG-KCZTFG  
S-8241ADFPG-KDFTFG  
S-8241ADHPG-KDHTFG  
4.275 V  
4.350 V  
4.275 V  
4.350 V  
4.350 V  
4.250 V  
4.175 V  
4.150 V  
4.075 V  
4.150 V  
4.150 V  
4.050 V  
2.30 V  
2.35 V  
2.30 V  
2.70 V  
2.10 V  
2.40 V  
2.40 V  
2.65 V  
2.40 V  
2.70 V  
2.10 V  
2.90 V  
0.100 V  
0.200 V  
0.140 V  
0.200 V  
0.150 V  
0.100 V  
Available  
Available  
(1)  
(2)  
(1)  
(2)  
(5)  
(1)  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
Available  
Unavailable  
Unavailable  
Available  
*1. Refer to the Table 3 about the details of the delay time combinations (1) to (5).  
Remark Please contact our sales office for the products with detection voltage value other than those specified above.  
6
Seiko Instruments Inc.  
BATTERY PROTECTION IC FOR 1-CELL PACK  
S-8241 Series  
Rev.7.6_00  
Table 3  
Delay time  
combination  
Overcharge detection  
Overdischarge detection  
Overcurrent 1 detection  
delay time  
delay time  
tCU  
delay time  
tDL  
tlOV1  
(1)  
(2)  
(3)  
(4)  
(5)  
1.0 s  
0.125 s  
0.25 s  
2.0 s  
125 ms  
31 ms  
8 ms  
16 ms  
8 ms  
125 ms  
125 ms  
31 ms  
8 ms  
0.25 s  
16 ms  
Remark The delay times can be changed within the range listed Table 4. For details, please contact our sales office.  
Table 4  
Delay time  
Symbol  
tCU  
Selection range  
0.5 s 1.0 s  
62.5 ms 125 ms  
8 ms 16 ms  
Remarks  
Overcharge detection delay time  
0.25 s  
31 ms  
4 ms  
2.0 s  
Select a value from the left.  
Select a value from the left.  
Select a value from the left.  
Overdischarge detection delay time tDL  
Overcurrent 1 detection delay time tlOV1  
Remark The value surrounded by bold lines is the delay time of the standard products.  
Seiko Instruments Inc.  
7
BATTERY PROTECTION IC FOR 1-CELL PACK  
S-8241 Series  
Rev.7.6_00  
„ Pin Configurations  
Table 5  
SOT-23-5  
Top view  
Pin No.  
1
Symbol  
VM  
Description  
5
4
Voltage detection pin between VM and VSS  
(Overcurrent detection pin)  
Positive power input pin  
Negative power input pin  
2
3
VDD  
VSS  
FET gate connection pin for discharge control  
(CMOS output)  
FET gate connection pin for charge control  
(CMOS output)  
4
5
DO  
CO  
1
2
3
Figure 2  
Table 6  
SNT-6A  
Top view  
Pin No.  
1
Symbol  
NC*1  
Description  
No connection  
1
2
3
6
5
4
FET gate connection pin for charge control  
2
CO  
(CMOS output)  
FET gate connection pin for discharge control  
(CMOS output)  
3
DO  
4
5
VSS  
VDD  
Negative power input pin  
Positive power input pin  
Voltage detection pin between VM and VSS  
(Overcurrent detection pin)  
Figure 3  
6
VM  
*1. The NC pin is electrically open.  
The NC pin can be connected to VDD or VSS.  
8
Seiko Instruments Inc.  
BATTERY PROTECTION IC FOR 1-CELL PACK  
S-8241 Series  
Rev.7.6_00  
„ Absolute Maximum Ratings  
Table 7  
(Ta = 25 °C unless otherwise specified)  
Item  
Symbol  
Applicable pin  
Rating  
VSS 0.3 to VSS +12  
VDD 26 to VDD +0.3  
VVM 0.3 to VDD +0.3  
VSS 0.3 to VDD +0.3  
250 (When not mounted on board)  
600*1  
Unit  
V
Input voltage between VDD and VSS VDS  
VDD  
VM  
VM input pin voltage  
CO output pin voltage  
DO output pin voltage  
VVM  
VCO  
VDO  
V
CO  
V
DO  
V
mW  
mW  
mW  
°C  
°C  
SOT-23-5  
SNT-6A  
Power dissipation  
PD  
400*1  
Operation ambient temperature  
Storage temperature  
Topr  
Tstg  
40 to +85  
40 to +125  
*1. When mounted on board  
[Mounted board]  
(1) Board size: 114.3 mm × 76.2 mm × t1.6 mm  
(2) Board name: JEDEC STANDARD51-7  
Caution The absolute maximum ratings are rated values exceeding which the product could suffer physical  
damage. These values must therefore not be exceeded under any conditions.  
700  
600  
SOT-23-5  
500  
SNT-6A  
400  
300  
200  
100  
0
100  
150  
50  
0
Ambient Temperature (Ta) [°C]  
Figure 4 Power Dissipation of Package (When Mounted on Board)  
Seiko Instruments Inc.  
9
BATTERY PROTECTION IC FOR 1-CELL PACK  
S-8241 Series  
Rev.7.6_00  
„ Electrical Characteristics  
1. Other than detection delay time (25 °C)  
Table 8  
(Ta = 25  
Max.  
°
C unless otherwise specified)  
Test  
Test  
Item  
Symbol  
VCU  
Condition  
Min.  
Typ.  
Unit  
Condition Circuit  
DETECTION VOLTAGE  
VCU-0.025  
VCU-0.030  
VCU  
VCU  
VCU+0.025  
VCU+0.030  
Overcharge detection voltage  
V
1
1
Ta = -5 to +55  
When VCL VCU  
When VCL = VCU  
°
C*1  
V
CU = 3.9 to 4.4 V, 5 mV Step  
Overcharge release voltage  
VCU VCL = 0 to 0.4 V, 50 mV Step  
Overdischarge detection voltage  
DL = 2.0 to 3.0 V, 100 mV Step  
Overdischarge release voltage  
VDU VDL = 0 to 0.7 V, 100 mV Step  
Overcurrent 1 detection voltage  
IOV1 = 0.05 to 0.3V, 5 mV Step  
Overcurrent 2 detection voltage  
Load short-circuiting detection  
voltage  
Charger detection voltage  
Overcharge detection voltage  
temperature factor *1  
VCL-0.050  
VCL-0.025  
VCL  
VCL  
VCL+0.050  
VCL+0.025  
VCL  
VDL  
VDU  
V
V
V
1
1
1
1
1
1
VDL-0.080  
VDL  
VDL+0.080  
V
VDU-0.100  
VDU-0.080  
VDU  
VDU  
VDU+0.100  
VDU+0.080  
When VDU  
VDL  
When VDU = VDL  
VIOV1  
VIOV2  
VIOV1-0.020  
0.4  
VIOV1 VIOV1+0.020  
V
V
V
V
2
2
1
1
V
0.5  
-1.3  
-1.3  
0
0.6  
-0.9  
-0.6  
0.5  
VSHORT VM voltage based on VDD  
-1.7  
2
1
VCHA  
-2.0  
3
1
TCOE1  
-0.5  
Ta = -5 to +55  
Ta = -5 to +55  
°
°
C
mV/  
mV/  
°
°
C
Overcurrent 1 detection voltage  
TCOE2  
-0.1  
0
0.1  
C
C
temperature factor *1  
INPUT VOLTAGE, OPERATING VOLTAGE  
Input voltage between VDD and  
VSS  
Input voltage between VDD and  
VM  
Operating voltage between VDD  
and VSS  
Operating voltage between VDD  
and VM  
VDS1  
VDS2  
absolute maximum rating  
absolute maximum rating  
-0.3  
-0.3  
1.5  
12  
26  
8
V
V
V
V
VDSOP1 Internal circuit operating voltage  
VDSOP2 Internal circuit operating voltage  
1.5  
24  
CURRENT CONSUMPTION Power-down function available  
Current consumption during  
IOPE  
IPDN  
VDD = 3.5 V, VVM = 0 V  
VDD = VVM = 1.5 V  
1.0  
3.0  
5.0  
0.1  
4
4
1
1
μ
A
A
normal operation  
Current consumption at power  
down  
μ
CURRENT CONSUMPTION Power-down function unavailable  
Current consumption during  
normal operation  
Overdischarge current  
consumption  
IOPE  
VDD = 3.5 V, VVM = 0 V  
VDD = VVM = 1.5 V  
1.0  
1.0  
3.0  
2.0  
5.0  
3.5  
4
4
1
1
μ
μ
A
A
IOPED  
OUTPUT RESISTANCE  
CO pin H resistance  
CO pin L resistance  
DO pin H resistance  
DO pin L resistance  
RCOH  
RCOL  
RDOH  
RDOL  
VCO = 3.0 V, VDD = 3.5 V, VVM = 0 V  
VCO = 0.5 V, VDD = 4.5 V, VVM = 0 V  
VDO = 3.0 V, VDD = 3.5 V, VVM = 0 V  
VDO = 0.5 V, VDD = VVM = 1.8 V  
0.1  
150  
0.1  
0.1  
2
10  
2400  
6.0  
6
6
7
7
1
1
1
1
k
k
k
k
Ω
Ω
Ω
Ω
600  
1.3  
0.5  
2.0  
VM INTERNAL RESISTANCE  
Internal resistance between VM  
and VDD  
Internal resistance between VM  
and VSS  
RVMD  
RVMS  
VDD = 1.8 V, VVM = 0 V  
VDD = VVM = 3.5 V  
100  
50  
300  
100  
900  
150  
5
5
1
1
k
k
Ω
Ω
0 V BATTERY CHARGING FUNCTION The 0 V battery function is either "0 V battery charging function" or "0 V battery charge inhibiting function"  
depending upon the product type.  
0 V battery charge starting charger  
voltage  
0 V battery charge inhibiting  
battery voltage  
V0CHA 0 V battery charging Available  
V0INH 0 V battery charging Unavailable  
0.0  
0.6  
0.8  
0.9  
1.5  
1.2  
V
V
10  
11  
1
1
*1. Since products are not screened at high and low temperatures, the specification for this temperature range is guaranteed by design, not tested in  
production.  
10  
Seiko Instruments Inc.  
BATTERY PROTECTION IC FOR 1-CELL PACK  
S-8241 Series  
Rev.7.6_00  
2. Other than detection delay time (-40 to +85 °C*1)  
Table 9  
(Ta = -40 to +85 °  
C*1 unless otherwise specified)  
Test  
Test  
Item  
Symbol  
Condition  
Min.  
Typ.  
Max.  
Unit  
Condition Circuit  
DETECTION VOLTAGE  
Overcharge detection voltage  
VCU  
VCL  
VDL  
VDU  
VCU-0.055  
VCU  
VCU+0.040  
V
V
V
V
1
1
1
1
1
1
1
1
V
CU = 3.9 to 4.4 V, 5 mV Step  
Overcharge release voltage  
VCU VCL = 0 to 0.4 V, 50 mV Step  
Overdischarge detection voltage  
DL = 2.0 to 3.0 V, 100 mV Step  
Overdischarge release voltage  
VDU VDL = 0 to 0.7 V, 100 mV Step  
Overcurrent 1 detection voltage  
IOV1 = 0.05 to 0.3V, 5 mV Step  
VCL-0.095  
VCL-0.055  
VCL  
VCL  
VCL+0.060  
VCL+0.040  
When VCL  
VCU  
When VCL = VCU  
VDL-0.120  
VDL  
VDL+0.120  
V
VDU-0.140  
VDU-0.120  
VDU  
VDU  
VDU+0.140  
VDU+0.120  
When VDU  
VDL  
When VDU = VDL  
VIOV1  
VIOV2  
VIOV1-0.026  
0.37  
VIOV1 VIOV1+0.026  
V
V
V
V
2
2
1
1
V
Overcurrent 2 detection voltage  
Load short-circuiting detection  
voltage  
Charger detection voltage  
Overcharge detection voltage  
temperature factor *1  
0.5  
-1.3  
-1.3  
0
0.63  
-0.7  
-0.4  
0.7  
VSHORT VM voltage based on VDD  
-1.9  
2
1
VCHA  
-2.2  
3
1
TCOE1  
-0.7  
Ta = -40 to +85  
Ta = -40 to +85  
°
°
C
mV/  
mV/  
°
°
C
Overcurrent 1 detection voltage  
TCOE2  
-0.2  
0
0.2  
C
C
temperature factor *1  
INPUT VOLTAGE, OPERATING VOLTAGE  
Input voltage between VDD and  
VSS  
Input voltage between VDD and  
VM  
Operating voltage between VDD  
and VSS  
Operating voltage between VDD  
and VM  
VDS1  
VDS2  
absolute maximum rating  
absolute maximum rating  
-0.3  
-0.3  
1.5  
12  
26  
8
V
V
V
V
VDSOP1 Internal circuit operating voltage  
VDSOP2 Internal circuit operating voltage  
1.5  
24  
CURRENT CONSUMPTION Power-down function available  
Current consumption during  
IOPE  
IPDN  
VDD = 3.5 V, VVM = 0 V  
VDD = VVM = 1.5 V  
0.7  
3.0  
6.0  
0.1  
4
4
1
1
μ
A
A
normal operation  
Current consumption at power  
down  
μ
CURRENT CONSUMPTION Power-down function unavailable  
Current consumption during  
normal operation  
Overdischarge current  
consumption  
IOPE  
VDD = 3.5 V, VVM = 0 V  
VDD = VVM = 1.5 V  
0.7  
0.6  
3.0  
2.0  
6.0  
4.5  
4
4
1
1
μ
μ
A
A
IOPED  
OUTPUT RESISTANCE  
CO pin H resistance  
CO pin L resistance  
DO pin H resistance  
DO pin L resistance  
RCOH  
RCOL  
RDOH  
RDOL  
VCO = 3.0 V, VDD = 3.5 V, VVM = 0 V  
VCO = 0.5 V, VDD = 4.5 V, VVM = 0 V  
VDO = 3.0 V, VDD = 3.5 V, VVM = 0 V  
VDO = 0.5 V, VDD = VVM = 1.8 V  
0.07  
100  
0.07  
0.07  
2
13  
3500  
7.3  
6
6
7
7
1
1
1
1
k
k
k
k
Ω
Ω
Ω
Ω
600  
1.3  
0.5  
2.5  
VM INTERNAL RESISTANCE  
Internal resistance between VM  
and VDD  
Internal resistance between VM  
and VSS  
RVMD  
RVMS  
VDD = 1.8 V, VVM = 0 V  
VDD = VVM = 3.5 V  
78  
39  
300  
100  
1310  
220  
5
5
1
1
k
k
Ω
Ω
0 V BATTERY CHARGING FUNCTION The 0 V battery function is either "0 V battery charging function" or "0 V battery charge inhibiting function"  
depending upon the product type.  
0 V battery charge starting charger  
voltage  
0 V battery charge inhibiting  
battery voltage  
V0CHA 0 V battery charging Available  
V0INH 0 V battery charging Unavailable  
0.0  
0.4  
0.8  
0.9  
1.7  
1.4  
V
V
10  
11  
1
1
*1. Since products are not screened at high and low temperatures, the specification for this temperature range is guaranteed by design, not tested in  
production.  
Seiko Instruments Inc.  
11  
BATTERY PROTECTION IC FOR 1-CELL PACK  
S-8241 Series  
Rev.7.6_00  
3 Detection delay time  
(1) S-8241ABA, S-8241ABC, S-8241ABD, S-8241ABE, S-8241ABF, S-8241ABG, S-8241ABH,  
S-8241ABI, S-8241ABK, S-8241ABL, S-8241ABQ, S-8241ABT, S-8241ABU, S-8241ABV,  
S-8241ABX, S-8241ABZ, S-8241ACA, S-8241ACB, S-8241ACE, S-8241ACF, S-8241ACG,  
S-8241ACH, S-8241ACL, S-8241ACO, S-8241ACP, S-8241ACQ, S-8241ACR, S-8241ACS,  
S-8241ACT, S-8241ACU, S-8241ACX, S-8241ACY, S-8241ADA, S-8241ADD, S-8241ADH,  
S-8241ADL, S-8241ADM, S-8241ADN, S-8241ADO, S-8241ADQ, S-8241ADT, S-8241ADV  
Table 10  
Test  
Test  
Item  
Symbol  
Condition  
Min.  
Typ.  
Max.  
Unit  
Condition Circuit  
DELAY TIME (Ta = 25 °C)  
Overcharge detection delay time  
Overdischarge detection delay time  
Overcurrent 1 detection delay time  
Overcurrent 2 detection delay time  
tCU  
0.7  
87.5  
5.6  
1.4  
1.0  
125  
8
1.3  
162.5  
10.4  
2.6  
s
8
8
9
9
9
1
1
1
1
1
tDL  
ms  
ms  
ms  
tlOV1  
tlOV2  
2
Load short-circuiting detection delay time tSHORT  
DELAY TIME (Ta = 40 to  
85 °C) *1  
10  
50  
μs  
+
1
1
1
1
1
Overcharge detection delay time  
Overdischarge detection delay time  
Overcurrent 1 detection delay time  
Overcurrent 2 detection delay time  
tCU  
0.55  
69  
1.0  
125  
8
1.7  
212  
14  
s
8
8
9
9
9
tDL  
ms  
ms  
ms  
tIOV1  
tIOV2  
4.4  
1.1  
2
3.4  
73  
Load short-circuiting detection delay time tSHORT  
10  
μs  
*1. Since products are not screened at high and low temperature, the specification for this temperature range is guaranteed by  
design, not tested in production.  
(2) S-8241ABB, S-8241ABO, S-8241ABP, S-8241ABS, S-8241ACI, S-8241ACK, S-8241ACN,  
S-8241ACZ, S-8241ADE  
Table 11  
Test  
Test  
Item  
Symbol  
Condition  
Min.  
Typ.  
Max.  
Unit  
Condition Circuit  
DELAY TIME (Ta = 25 °C)  
Overcharge detection delay time  
Overdischarge detection delay time  
Overcurrent 1 detection delay time  
Overcurrent 2 detection delay time  
tCU  
87.5  
21  
125  
31  
16  
2
162.5  
41  
ms  
ms  
ms  
ms  
8
8
9
9
9
1
1
1
1
1
tDL  
tlOV1  
tlOV2  
11  
21  
1.4  
2.6  
50  
Load short-circuiting detection delay time tSHORT  
DELAY TIME (Ta = 40 to  
85 °C) *1  
10  
μs  
+
1
1
1
1
1
Overcharge detection delay time  
Overdischarge detection delay time  
Overcurrent 1 detection delay time  
Overcurrent 2 detection delay time  
tCU  
69  
17  
9
125  
31  
16  
2
212  
53  
ms  
ms  
ms  
ms  
8
8
9
9
9
tDL  
tIOV1  
tIOV2  
27  
1.1  
3.4  
73  
Load short-circuiting detection delay time tSHORT  
10  
μs  
*1. Since products are not screened at high and low temperature, the specification for this temperature range is guaranteed by  
design, not tested in production.  
12  
Seiko Instruments Inc.  
BATTERY PROTECTION IC FOR 1-CELL PACK  
S-8241 Series  
Rev.7.6_00  
(3) S-8241ABW, S-8241ABY  
Table 12  
Test  
Test  
Item  
Symbol  
Condition  
Min.  
Typ.  
Max.  
Unit  
Condition Circuit  
DELAY TIME (Ta = 25 °C)  
Overcharge detection delay time  
Overdischarge detection delay time  
Overcurrent 1 detection delay time  
Overcurrent 2 detection delay time  
tCU  
0.175  
87.5  
5.6  
0.25  
125  
8
0.325  
162.5  
10.4  
2.6  
s
8
8
9
9
9
1
1
1
1
1
tDL  
ms  
ms  
ms  
tlOV1  
tlOV2  
1.4  
2
Load short-circuiting detection delay time tSHORT  
DELAY TIME (Ta = 40 to  
85 °C) *1  
10  
50  
μs  
+
1
1
1
1
1
Overcharge detection delay time  
Overdischarge detection delay time  
Overcurrent 1 detection delay time  
Overcurrent 2 detection delay time  
tCU  
0.138  
69  
0.25  
125  
8
0.425  
212  
14  
s
8
8
9
9
9
tDL  
ms  
ms  
ms  
tIOV1  
tIOV2  
4.4  
1.1  
2
3.4  
Load short-circuiting detection delay time tSHORT  
10  
73  
μs  
*1. Since products are not screened at high and low temperature, the specification for this temperature range is guaranteed by  
design, not tested in production.  
(4) S-8241ABR, S-8241ACD  
Table 13  
Test  
Test  
Item  
Symbol  
Condition  
Min.  
Typ.  
Max.  
Unit  
Condition Circuit  
DELAY TIME (Ta = 25 °C)  
Overcharge detection delay time  
Overdischarge detection delay time  
Overcurrent 1 detection delay time  
Overcurrent 2 detection delay time  
tCU  
8
8
9
9
9
1
1
1
1
1
1.4  
87.5  
5.6  
1.4  
2.0  
125  
8
2.6  
162.5  
10.4  
2.6  
s
tDL  
ms  
ms  
ms  
tlOV1  
tlOV2  
2
Load short-circuiting detection delay time tSHORT  
DELAY TIME (Ta = 40 to  
85 °C) *1  
10  
50  
μs  
+
1
1
1
1
1
Overcharge detection delay time  
Overdischarge detection delay time  
Overcurrent 1 detection delay time  
Overcurrent 2 detection delay time  
tCU  
1.1  
69  
2.0  
125  
8
3.4  
212  
14  
s
8
8
9
9
9
tDL  
ms  
ms  
ms  
tIOV1  
tIOV2  
4.4  
1.1  
2
3.4  
73  
Load short-circuiting detection delay time tSHORT  
10  
μs  
*1. Since products are not screened at high and low temperature, the specification for this temperature range is guaranteed by  
design, not tested in production.  
Seiko Instruments Inc.  
13  
BATTERY PROTECTION IC FOR 1-CELL PACK  
S-8241 Series  
Rev.7.6_00  
(5) S-8241ADF, S-8241ADG  
Table 14  
Test  
Test  
Item  
Symbol  
Condition  
Min.  
Typ.  
Max.  
Unit  
Condition Circuit  
DELAY TIME (Ta = 25 °C)  
Overcharge detection delay time  
Overdischarge detection delay time  
Overcurrent 1 detection delay time  
Overcurrent 2 detection delay time  
tCU  
0.175  
21  
0.25  
31  
16  
2
0.325  
41  
ms  
ms  
ms  
ms  
8
8
9
9
9
1
1
1
1
1
tDL  
tlOV1  
tlOV2  
11  
21  
1.4  
2.6  
50  
Load short-circuiting detection delay time tSHORT  
DELAY TIME (Ta = 40 to  
85 °C) *1  
10  
μs  
+
Overcharge detection delay time  
Overdischarge detection delay time  
Overcurrent 1 detection delay time  
Overcurrent 2 detection delay time  
tCU  
0.138  
17  
0.25  
31  
16  
2
0.425  
53  
s
8
8
9
9
9
1
1
1
1
1
tDL  
ms  
ms  
ms  
tIOV1  
tIOV2  
9
27  
1.1  
3.4  
73  
Load short-circuiting detection delay time tSHORT  
10  
μs  
*1. Since products are not screened at high and low temperature, the specification for this temperature range is guaranteed by  
design, not tested in production.  
14  
Seiko Instruments Inc.  
BATTERY PROTECTION IC FOR 1-CELL PACK  
S-8241 Series  
Rev.7.6_00  
„ Test Circuits  
Caution Unless otherwise specified, the output voltage levels “H” and “L” at CO pin (VCO) and DO pin (VDO) are  
judged by the threshold voltage (1.0 V) of the N-channel FET. Judge the CO pin level with respect to VVM  
and the DO pin level with respect to VSS  
.
(1) Test Condition 1, Test Circuit 1  
(Overcharge detection voltage, Overcharge release voltage, Overdischarge detection voltage, Overdischarge  
release voltage)  
The overcharge detection voltage (VCU) is defined by the voltage between VDD and VSS at which VCO goes “L” from “H”  
when the voltage V1 is gradually increased from the normal condition V1 = 3.5 V and V2 = 0 V. The overcharge release  
voltage (VCL) is defined by the voltage between VDD and VSS at which VCO goes “H” from “L” when the voltage V1 is  
then gradually decreased.  
Gradually decreasing the voltage V1, the overdischarge detection voltage (VDL) is defined by the voltage between VDD  
and VSS at which VDO goes “L” from “H”. The overdischarge release voltage (VDU) is defined by the voltage between  
VDD and VSS at which VDO goes “H” from “L” when the voltage V1 is then gradually increased.  
(2) Test Condition 2, Test Circuit 1  
(Overcurrent 1 detection voltage, Overcurrent 2 detection voltage, Load short-circuiting detection voltage)  
The overcurrent 1 detection voltage (VIOV1) is defined by the voltage between VDD and VSS at which VDO goes “L” from  
“H” when the voltage V2 is gradually increased from the normal condition V1 = 3.5 V and V2 = 0 V.  
The overcurrent 2 detection voltage (VIOV2) is defined by the voltage between VDD and VSS at which VDO goes “L” from  
“H” when the voltage V2 is increased at the speed between 1 ms and 4 ms from the normal condition V1 = 3.5 V and V2  
= 0 V.  
The load short-circuiting detection voltage (VSHORT) is defined by the voltage between VDD and VSS at which VDO goes  
“L” from “H” when the voltage V2 is increased at the speed between 1 μs and 50 μs from the normal condition V1 = 3.5  
V and V2 = 0 V.  
(3) Test Condition 3, Test Circuit 1  
(Charger detection voltage, ( = abnormal charge current detection voltage) )  
Applied only for products with overdischarge hysteresis  
Set V1 = 1.8 V and V2 = 0 V under overdischarge condition. Increase V1 gradually, set V1 = (VDU+VDL) / 2 (within  
overdischarge hysteresis, overdischarge condition), then decrease V2 from 0 V gradually. The voltage between VM  
and VSS at which VDO goes “H” from “L” is the charger detection voltage (VCHA).  
Applied only for products without overdischarge hysteresis  
Set V1 = 3.5 V and V2 = 0 V under normal condition. Decrease V2 from 0 V gradually. The voltage between VM and  
VSS at which VCO goes “L” from “H” is the abnormal charge current detection voltage. The abnormal charge current  
detection voltage has the same value as the charger detection voltage (VCHA).  
(4) Test Condition 4, Test Circuit 1  
(Normal operation current consumption, Power-down current consumption, Overdischarge current  
consumption)  
Set V1 = 3.5 V and V2 = 0 V under normal condition. The current IDD flowing through VDD pin is the normal operation  
consumption current (IOPE).  
For products with power-down function  
Set V1 = V2 = 1.5 V under overdischarge condition. The current IDD flowing through VDD pin is the power-down  
current consumption (IPDN).  
For products without power-down function  
Set V1 = V2 = 1.5 V under overdischarge condition. The current IDD flowing through VDD pin is the overdischarge  
current consumption (IOPED).  
Seiko Instruments Inc.  
15  
BATTERY PROTECTION IC FOR 1-CELL PACK  
S-8241 Series  
Rev.7.6_00  
(5) Test Condition 5, Test Circuit 1  
(Internal resistance between VM and VDD, Internal resistance between VM and VSS)  
Set V1 = 1.8 V and V2 = 0 V under overdischarge condition. Measure current IVM flowing through VM pin. 1.8V / |IVM  
|
gives the internal resistance (RVMD) between VM and VDD.  
Set V1 = V2 = 3.5 V under overcurrent condition. Measure current IVM flowing through VM pin. 3.5 V / |IVM| gives the  
internal resistance (RVMS) between VM and VSS.  
(6) Test Condition 6, Test Circuit 1  
(CO pin H resistance, CO pin L resistance)  
Set V1 = 3.5 V, V2 = 0 V and V3 = 3.0 V under normal condition. Measure current ICO flowing through CO pin. 0.5 V /  
|ICO| is the CO pin H resistance (RCOH).  
Set V1 = 4.5 V, V2 = 0 V and V3 = 0.5 V under overcharge condition. Measure current ICO flowing through CO pin. 0.5  
V / |ICO| is the CO pin L resistance (RCOL).  
(7) Test Condition 7, Test Circuit 1  
(DO pin H resistance, DO pin L resistance)  
Set V1 = 3.5 V, V2 = 0 V and V4 = 3.0 V under normal condition. Measure current IDO flowing through DO pin. 0.5 V /  
|IDO| gives the DO pin H resistance (RDOH).  
Set V1 = 1.8 V, V2 = 0 V and V4 = 0.5 V under overdischarge condition. Measure current IDO flowing through DO pin.  
0.5 V / |IDO| gives the DO pin L resistance (RDOL).  
(8) Test Condition 8, Test Circuit 1  
(Overcharge detection delay time, Overdischarge detection delay time)  
Set V1 = 3.5 V and V2 = 0 V under normal condition. Increase V1 gradually to overcharge detection voltage VCU - 0.2 V  
and increase V1 to the overcharge detection voltage VCU + 0.2 V momentarily (within 10 μs). The time after V1 becomes  
the overcharge detection voltage until VCO goes "L" is the overcharge detection delay time (tCU).  
Set V1 = 3.5 V and V2 = 0 V under normal condition. Decrease V1 gradually to overdischarge detection voltage VDL  
+
0.2 V and decrease V1 to the overdischarge detection voltage VDL - 0.2 V momentarily (within 10 μs). The time after V1  
becomes the overdischarge detection voltage VDL until VDO goes "L" is the overdischarge detection delay time (tDL).  
(9) Test Condition 9, Test Circuit 1  
(Overcurrent 1 detection delay time, Overcurrent 2 detection delay time, Load short-circuiting detection delay  
time, Abnormal charge current detection delay time)  
Set V1 = 3.5 V and V2 = 0 V under normal condition. Increase V2 from 0 V to 0.35 V momentarily (within 10 μs). The  
time after V2 becomes overcurrent 1 detection voltage (VIOV1) until VDO goes "L" is overcurrent 1 detection delay time  
(tIOV1).  
Set V1 = 3.5 V and V2 = 0 V under normal condition. Increase V2 from 0 V to 0.7 V momentarily (within 1 μs). The time  
after V2 becomes overcurrent 1 detection voltage (VIOV1) until VDO goes "L" is overcurrent 2 detection delay time (tIOV2).  
Caution The overcurrent 2 detection delay time starts when the overcurrent 1 is detected, since the delay  
circuit is common.  
Set V1 = 3.5 V and V2 = 0 V under normal condition. Increase V2 from 0 V to 3.0 V momentarily (within 1 μs). The time  
after V2 becomes the load short-circuiting detection voltage (VSHORT) until VDO goes "L" is the load short-circuiting  
detection delay time (tSHORT).  
Set V1 = 3.5 V and V2 = 0 V under normal condition. Decrease V2 from 0 V to -2.5 V momentarily (within 10 μs). The  
time after V2 becomes the charger detection voltage (VCHA) until VCO goes "L" is the abnormal charge current detection  
delay time. The abnormal charge current detection delay time has the same value as the overcharge detection delay  
time.  
16  
Seiko Instruments Inc.  
BATTERY PROTECTION IC FOR 1-CELL PACK  
S-8241 Series  
Rev.7.6_00  
(10) Test Condition 10, Test Circuit 1 (Product with 0 V battery charging function)  
(0 V battery charge start charger voltage)  
Set V1 = V2 = 0 V and decrease V2 gradually. The voltage between VDD and VM at which VCO goes “H” (VVM + 0.1 V  
or higher) is the 0 V battery charge start charger voltage (V0CHA).  
(11) Test Condition 11, Test Circuit 1 (Product with 0 V battery charge inhibiting function)  
(0 V battery charge inhibiting battery voltage)  
Set V1 = 0 V and V2 = -4 V. Increase V1 gradually. The voltage between VDD and VSS at which VCO goes “H” (VVM  
0.1 V or higher) is the 0 V battery charge inhibiting battery voltage (V0INH).  
+
IDD  
A
VDD  
S-8241 Series  
V1  
VM  
CO  
VSS  
I
A
DO  
VM  
V2  
I
IDO  
V4  
A
A
CO  
V
VCO  
V
V
DO  
V3  
COM  
Test circuit 1  
Figure 5  
Seiko Instruments Inc.  
17  
BATTERY PROTECTION IC FOR 1-CELL PACK  
S-8241 Series  
Rev.7.6_00  
„ Operation  
Remark Refer to the “„ Battery Protection IC Connection Example”.  
1. Normal Condition  
The S-8241 monitors the voltage of the battery connected to VDD and VSS pins and the voltage difference between VM  
and VSS pins to control charging and discharging. When the battery voltage is in the range from the overdischarge  
detection voltage (VDL) to the overcharge detection voltage (VCU), and the VM pin voltage is in the range from the  
charger detection voltage (VCHA) to the overcurrent 1 detection voltage (VIOV1) (the current flowing through the battery is  
equal to or lower than a specified value), the IC turns both the charging and discharging control FETs on. This condition  
is called normal condition and in this condition charging and discharging can be carried out freely.  
2. Overcurrent Condition  
When the discharging current becomes equal to or higher than a specified value (the VM pin voltage is equal to or higher  
than the overcurrent detection voltage) during discharging under normal condition and the state continues for the  
overcurrent detection delay time or longer, the S-8241 turns the discharging control FET off to stop discharging. This  
condition is called overcurrent condition. (The overcurrent includes overcurrent 1, overcurrent 2, or load  
short-circuiting.)  
The VM and VSS pins are shorted internally by the RVMS resistor under the overcurrent condition. When a load is  
connected, the VM pin voltage equals the VDD voltage due to the load.  
The overcurrent condition returns to the normal condition when the load is released and the impedance between the  
EB+ and EB- pins (see the Figure 12 for a connection example) becomes higher than the automatic recoverable  
impedance (see the equation [1] below). When the load is removed, the VM pin goes back to the VSS potential since the  
VM pin is shorted the VSS pin with the RVMS resistor. Detecting that the VM pin potential is lower than the overcurrent 1  
detection voltage (VIOV1), the IC returns to the normal condition.  
Automatic recoverable impedance = {Battery voltage / (Minimum value of overcurrent 1 detection voltage) 1} x (RVMS  
maximum value) --- [1]  
Example: Battery voltage = 3.5 V and overcurrent 1 detection voltage (VIOV1) = 0.1 V  
Automatic recoverable impedance = (3.5 V / 0.07 V 1) x 200 kΩ = 9.8 MΩ  
Remark The automatic recoverable impedance varies with the battery voltage and overcurrent 1 detection voltage  
settings. Determine the minimum value of the open load using the above equation [1] to have automatic  
recovery from the overcurrent condition work after checking the overcurrent 1 detection voltage setting for the  
IC.  
18  
Seiko Instruments Inc.  
BATTERY PROTECTION IC FOR 1-CELL PACK  
S-8241 Series  
Rev.7.6_00  
3. Overcharge Condition  
When the battery voltage becomes higher than the overcharge detection voltage (VCU) during charging under normal  
condition and the state continues for the overcharge detection delay time (tCU) or longer, the S-8241 turns the charging  
control FET off to stop charging. This condition is called the overcharge condition.  
The overcharge condition is released in the following two cases ((1) and (2)) depending on the products with and without  
overcharge hysteresis:  
Products with overcharge hysteresis (overcharge detection voltage (VCU) > overcharge release voltage (VCL))  
(1) When the battery voltage drops below the overcharge release voltage (VCL), the S-8241 turns the charging control  
FET on and returns to the normal condition.  
(2) When a load is connected and discharging starts, the S-8241 turns the charging control FET on and returns to the  
normal condition. The release mechanism is as follows: the discharging current flows through an internal parasitic  
diode of the charging FET immediately after a load is connected and discharging starts, and the VM pin voltage  
increases about 0.7 V (Vf voltage of the diode) from the VSS pin voltage momentarily. The IC detects this voltage  
(being higher than the overcurrent 1 detection voltage) and releases the overcharge condition. Consequently, in the  
case that the battery voltage is equal to or lower than the overcharge detection voltage (VCU), the IC returns to the  
normal condition immediately, but in the case the battery voltage is higher than the overcharge detection voltage  
(VCU), the IC does not return to the normal condition until the battery voltage drops below the overcharge detection  
voltage (VCU) even if the load is connected. In addition if the VM pin voltage is equal to or lower than the overcurrent  
1 detection voltage when a load is connected and discharging starts, the IC does not return to the normal condition.  
Remark If the battery is charged to a voltage higher than the overcharge detection voltage (VCU) and the battery  
voltage does not drop below the overcharge detection voltage (VCU) even when a heavy load, which  
causes an overcurrent, is connected, the overcurrent 1 and overcurrent 2 do not work until the battery  
voltage drops below the overcharge detection voltage (VCU). Since an actual battery has, however, an  
internal impedance of several dozens of mΩ, and the battery voltage drops immediately after a heavy load  
which causes an overcurrent is connected, the overcurrent 1 and overcurrent 2 work. Detection of load  
short-circuiting works regardless of the battery voltage.  
Products without overcharge hysteresis (Overcharge detection voltage (VCU) = Overcharge release voltage (VCL))  
(1) When the battery voltage drops below the overcharge release voltage (VCL), the S-8241 turn the charging control  
FET on and returns to the normal condition.  
(2) When a load is connected and discharging starts, the S-8241 turns the charging control FET on and returns to the  
normal condition. The release mechanism is explained as follows : the discharging current flows through an internal  
parasitic diode of the charging FET immediately after a load is connected and discharging starts, and the VM pin  
voltage increases about 0.7 V (Vf voltage of the diode) from the VSS pin voltage momentarily. Detecting this voltage  
(being higher than the overcurrent 1 detection voltage), the IC increases the overcharge detection voltage about 50  
mV, and releases the overcharge condition. Consequently, when the battery voltage is equal to or lower than the  
overcharge detection voltage (VCU) + 50 mV, the S-8241 immediately returns to the normal condition. But the  
battery voltage is higher than the overcharge detection voltage (VCU) + 50 mV, the S-8241 does not return to the  
normal condition until the battery voltage drops below the overcharge detection voltage (VCU) + 50 mV even if a load  
is connected. If the VM pin voltage is equal to or lower than the overcurrent 1 detection voltage when a load is  
connected and discharging starts, the S-8241 does not return to the normal condition.  
Remark If the battery is charged to a voltage higher than the overcharge detection voltage (VCU) and the battery  
voltage does not drop below the overcharge detection voltage (VCU) + 50 mV even when a heavy load,  
which causes an overcurrent, is connected, the overcurrent 1 and overcurrent 2 do not work until the  
battery voltage drops bellow the overcharge detection voltage (VCU) + 50 mV. Since an actual battery has,  
however, an internal impedance of several dozens of mΩ, and the battery voltage drops immediately after  
a heavy load which causes an overcurrent is connected, the overcurrent 1 and overcurrent 2 work.  
Detection of load short-circuiting works regardless of the battery voltage.  
Seiko Instruments Inc.  
19  
BATTERY PROTECTION IC FOR 1-CELL PACK  
S-8241 Series  
Rev.7.6_00  
4. Overdischarge Condition  
With power-down function  
When the battery voltage drops below the overdischarge detection voltage (VDL) during discharging under normal  
condition and it continues for the overdischarge detection delay time (tDL) or longer, the S-8241 turns the discharging  
control FET off and stops discharging. This condition is called overdischarge condition. After the discharging control  
FET is turned off, the VM pin is pulled up by the RVMD resistor between VM and VDD in the IC. Meanwhile the potential  
difference between VM and VDD drops below 1.3 V (typ.) (the load short-circuiting detection voltage), current  
consumption of the IC is reduced to the power-down current consumption (IPDN). This condition is called power-down  
condition. The VM and VDD pins are shorted by the RVMD resistor in the IC under the overdischarge and power-down  
conditions.  
The power-down condition is released when a charger is connected and the potential difference between VM and VDD  
becomes 1.3 V (typ.) or higher (load short-circuiting detection voltage). At this time, the FET is still off. When the battery  
voltage becomes the overdischarge detection voltage (VDL) or higher*1, the S-8241 turns the FET on and changes to the  
normal condition from the overdischarge condition.  
*1. If the VM pin voltage is no less than the charger detection voltage (VCHA), when the battery under overdischarge  
condition is connected to a charger, the overdischarge condition is released (the discharging control FET is turned  
on) as usual, provided that the battery voltage reaches the overdischarge release voltage (VDU) or higher.  
Without power-down function  
When the battery voltage drops below the overdischarge detection voltage (VDL) during discharging under normal  
condition and it continues for the overdischarge detection delay time (tDL) or longer, the S-8241 turns the discharging  
control FET off and stops discharging. When the discharging control FET is turned off, the VM pin is pulled up by the  
RVMD resistor between VM and VDD in the IC. Meanwhile the potential difference between VM and VDD drops below 1.3  
V (typ.) (the load short-circuiting detection voltage), current consumption of the IC is reduced to the overdischarge  
current consumption (IOPED). This condition is called overdischarge condition. The VM and VDD pins are shorted by the  
RVMD resistor in the IC under the overdischarge condition.  
When a charger is connected, the overdischarge condition is released in the same way as explained above in respect to  
products having the power-down function. For products without the power-down function, in addition, even if the charger  
is not connected, the S-8241 turns the discharging control FET on and changes to the normal condition from the  
overdischarge condition provided that the load is disconnected and that the potential difference between VM and VSS  
drops below the overcurrent 1 detection voltage (VIOV1), since the VM pin is pulled down by the RVMS resistor between  
VM and VSS in the IC when the battery voltage reaches the overdischarge release voltage (VDU) or higher.  
5. Charger Detection  
If the VM pin voltage is lower than the charger detection voltage (VCHA) when a battery in overdischarge condition is  
connected to a charger, overdischarge hysteresis is released, and when the battery voltage becomes equal to or higher  
than the overdischarge detection voltage (VDL), the overdischarge condition is released (the discharging control FET is  
turned on). This action is called charger detection. (The charger detection reduces the time for charging in which  
charging current flows through the internal parasitic diode in the discharging control FET) .  
If the VM pin voltage is not lower than the charger detection voltage (VCHA) when a battery in overdischarge condition is  
connected to a charger, the overdischarge condition is released (the discharging control FET is turned on) as usual,  
when the battery voltage reaches the overdischarge release voltage (VDU) or higher.  
20  
Seiko Instruments Inc.  
BATTERY PROTECTION IC FOR 1-CELL PACK  
S-8241 Series  
Rev.7.6_00  
6. Abnormal Charge Current Detection  
If the VM pin voltage drops below the charger detection voltage (VCHA) during charging under the normal condition and  
it continues for the overcharge detection delay time (tCU) or longer, the S-8241 turns the charging control FET off and  
stops charging. This action is called abnormal charge current detection.  
Abnormal charge current detection works when the discharging control FET is on (DO pin voltage is “H”) and the VM pin  
voltage drops below the charger detection voltage (VCHA). When an abnormal charge current flows into a battery in the  
overdischarge condition, the S-8241 consequently turns the charging control FET off and stops charging after the  
battery voltage becomes the overdischarge detection voltage or higher (DO pin voltage becomes “H”) and the  
overcharge detection delay time (tCU) elapses.  
Abnormal charge current detection is released when the voltage difference between VM pin and VSS pin becomes  
lower than the charger detection voltage (VCHA) by separating the charger.  
Since the 0 V battery charging function has higher priority than the abnormal charge current detection function,  
abnormal charge current may not be detected by the product with the 0 V battery charging function while the battery  
voltage is low.  
7. Delay Circuits  
The detection delay times are determined by dividing a clock of approximately 2 kHz by the counter.  
[Example] Overcharge detection delay time (= abnormal charge current detection delay time): 1.0 s  
Overdischarge detection delay time: 125 ms  
Overcurrent 1 detection delay time:  
Overcurrent 2 detection delay time:  
8 ms  
2 ms  
Caution 1. Counting for the overcurrent 2 detection delay time starts when the overcurrent 1 is detected.  
Having detected the overcurrent 1, if the overcurrent 2 is detected after the overcurrent 2 detection  
delay time, the S-8241 turns the discharging control FET off as shown in the Figure 6. In this case,  
the overcurrent 2 detection delay time may seem to be longer or overcurrent 1 detection delay time  
may seem to be shorter than expected.  
VDD  
DO pin  
VSS  
Time  
Overcurrent 2 detection delay time (tIOV2  
)
VDD  
VIOV2  
VM pin  
VIOV1  
VSS  
Time  
Figure 6  
Seiko Instruments Inc.  
21  
BATTERY PROTECTION IC FOR 1-CELL PACK  
S-8241 Series  
Rev.7.6_00  
2. <For products with power-down function>  
After having detected an overcurrent (overcurrent 1, overcurrent 2, short-circuiting), the state is  
held for the overdischarge detection delay time or longer without releasing the load, the condition  
changes to the power-down condition when the battery voltage drops below the overdischarge  
detection voltage. If the battery voltage drops below the overdischarge detection voltage due to  
overcurrent, the discharging control FET is turned off when the overcurrent is detected. If the  
battery voltage recovers slowly and if the battery voltage after the overdischarge detection delay  
time is equal to or lower than the overdischarge detection voltage, the S-8241 changes to the  
power-down condition.  
<For products without power-down function>  
After having detected an overcurrent (overcurrent 1, overcurrent 2, short-circuiting), the state is  
held for the overdischarge detection delay time or longer without releasing the load, the condition  
changes to the overdischarge condition when the battery voltage drops below the overdischarge  
detection voltage. If the battery voltage drops below the overdischarge detection voltage due to  
overcurrent, the discharging control FET is turned off when the overcurrent is detected. If the  
battery voltage recovers slowly and if the battery voltage after the overdischarge detection delay  
time is equal to or lower than the overdischarge detection voltage, the S-8241 changes to the  
overdischarge condition.  
8. 0 V Battery Charging Function  
This function enables the charging of a connected battery whose voltage is 0 V by self-discharge. When a charger  
having 0 V battery start charging charger voltage (V0CHA) or higher is connected between EB+ and EB- pins, the  
charging control FET gate is fixed to VDD potential. When the voltage between the gate and the source of the charging  
control FET becomes equal to or higher than the turn-on voltage by the charger voltage, the charging control FET is  
turned on to start charging. At this time, the discharging control FET is off and the charging current flows through the  
internal parasitic diode in the discharging control FET. If the battery voltage becomes equal to or higher than the  
overdischarge release voltage (VDU), the normal condition returns.  
Caution 1. Some battery providers do not recommend charging of completely discharged batteries. Please  
refer to battery providers before the selection of 0 V battery charging function.  
2. The 0 V battery charging function has higher priority than the abnormal charge current detection  
function. Consequently, a product with the 0 V battery charging function charges a battery and  
abnormal charge current cannot be detected during the battery voltage is low (at most 1.8 V or  
lower).  
3. When a battery is connected to the IC for the first time, the IC may not enter the normal condition  
in which discharging is possible. In this case, set the VM pin voltage equal to the VSS voltage  
(short the VM and VSS pins or connect a charger) to enter the normal condition.  
9. 0 V Battery Charge Inhibiting Function  
This function forbids the charging of a connected battery which is short-circuited internally (0 V battery). When the  
battery voltage becomes 0.9 V (typ.) or lower, the charging control FET gate is fixed to EB- potential to forbid charging.  
Charging can be performed, when the battery voltage is the 0 V battery charge inhibiting voltage (V0INH) or higher.  
Caution 1. Some battery providers do not recommend charging of completely discharged batteries. Please  
refer to battery providers before the selection of 0 V battery charging function.  
2. When a battery is connected to the IC for the first time, the IC may not enter the normal condition  
in which discharging is possible. In this case, set the VM pin voltage equal to the VSS voltage  
(short the VM and VSS pins or connect a charger) to enter the normal condition.  
22  
Seiko Instruments Inc.  
BATTERY PROTECTION IC FOR 1-CELL PACK  
S-8241 Series  
Rev.7.6_00  
„ Timing Chart  
(1) Overcharge and overdischarge detection (for products with power-down function)  
VCU  
VCL  
Battery  
voltage  
VDU  
VDL  
VDD  
DO pin  
VSS  
VDD  
CO pin  
VS S  
VDD  
VM pin  
VIOV 1  
VSS  
VCHA  
Charger  
connected  
Load  
connected  
Overcharge detection delay time (tCU  
)
Overdischarge detection delay time (tDL  
)
Mode  
(1)  
(1)  
(2)  
(3)  
(1)  
Note: (1) Normal m ode, (2) Overcharge mode, (3) Overdischarge mode, (4) Overcurrent mode  
The charger is assumed to charge with a constant current.  
Figure 7  
(2) Overcharge and overdischarge detection (for products without power-down function)  
V C U  
V C L  
B atte ry  
vo lta ge  
V D U  
V D L  
V DD  
DO p in  
V SS  
V D D  
C O pin  
V SS  
V DD  
V M pin  
V IO V1  
V SS  
V CH A  
C ha rge r  
con nected  
Lo ad  
con nected  
O vercha rge d etecti on de lay tim e ( tC  
)
U
O verdi sch arg e detection d ela y tim e (tDL  
)
O verd ischarg e detectio n dela y tim e (tDL )  
M ode  
(1 )  
(2 )  
(1 )  
(3)  
(3 )  
(1 )  
(1 )  
N ote: (1) N orm al m ode, (2) O vercharge m ode, (3) O verdis charge m ode, (4) Ov erc urrent m ode  
T he charger is assum ed to c harge with a const ant current.  
Figure 8  
Seiko Instruments Inc.  
23  
BATTERY PROTECTION IC FOR 1-CELL PACK  
S-8241 Series  
Rev.7.6_00  
(3) Overcurrent detection  
VCU  
V
CL  
Battery  
voltage  
V
V
DL  
DU  
VDD  
DO pin  
CO pin  
V
SS  
VDD  
V
SS  
VDD  
V
SHORT  
IOV2  
IOV1  
VM pin  
V
V
VSS  
Charger connection  
Load connection  
Overcurrent 1 detection delay time (tIOV1  
) Overcurrent 2 detection delay time (tIOV2) Load short-circuiting detection delay time (t SHORT)  
Mode  
(1)  
(1)  
(1)  
(4)  
(4)  
(1)  
(4)  
Note: (1) Normal mode, (2) Overcharge mode, (3) Overdischarge mode, (4) Overcurrent mode  
The charger is assumed to charge with constant current.  
Figure 9  
(4) Charger detection  
VCU  
VCL  
Battery  
voltage  
VDU  
VDL  
VDD  
DO pin  
CO pin  
VSS  
VDD  
VSS  
VDD  
VM pin  
VSS  
VCHA  
Charger connection  
Load connection  
If VM pin voltage  
Overdischarge is released at  
V
CHA  
<
overdischarge detection voltage (VDL  
)
Overdischarge detection delay time (tDL  
)
Mode  
(1)  
(1)  
(3)  
Note: (1) Normal mode, (2) Overcharge mode, (3) Overdischarge mode, (4) Overcurrent mode  
The charger is assumed to charge with constant current.  
Figure 10  
24  
Seiko Instruments Inc.  
BATTERY PROTECTION IC FOR 1-CELL PACK  
S-8241 Series  
Rev.7.6_00  
(5) Abnormal charge current detection  
VCU  
VCL  
Battery  
voltage  
VDU  
VDL  
VDD  
DO pin  
VSS  
VDD  
CO pin  
VSS  
VDD  
VM pin  
VSS  
VCHA  
Charger connection  
Load connection  
Abnormal charging current detection delay time  
( = Overcharge detection delay time (tCU))  
Overdischarge detection delay time (tDL  
)
Mode  
(1)  
(3)  
(1)  
(2)  
(1)  
Note: (1) Normal mode, (2) Overcharge mode, (3) Overdischarge mode, (4) Overcurrent mode  
The charger is assumed to charge with constant current.  
Figure 11  
Seiko Instruments Inc.  
25  
BATTERY PROTECTION IC FOR 1-CELL PACK  
S-8241 Series  
Rev.7.6_00  
„ Battery Protection IC Connection Example  
EB  
+
R1 : 470  
Ω
VDD  
VSS  
Battery  
C1 :  
0.1  
S-8241 Series  
μ
F
DO  
CO  
VM  
R2 : 1 k  
Ω
FET1  
FET2  
EB  
Figure 12  
Table 15 Constants for External Components  
Symbol  
FET1  
Parts  
Nch  
Purpose  
Typ.  
min.  
max.  
Remarks  
0.4 V  
Threshold voltage  
overdischarge detection voltage. *1  
Withstand voltage between gate and  
Discharge control  
MOS_FET  
source  
0.4 V  
Charger voltage *2  
Threshold voltage   
Nch  
MOS_FET  
overdischarge detection voltage. *1  
Withstand voltage between gate and  
FET2  
Charge control  
source  
Relation R1  
Charger voltage *2  
Protection for ESD and  
power fluctuation  
Protection for power  
fluctuation  
R2 should be  
R1  
C1  
Resistor  
R2 value  
470  
Ω
300 Ω  
maintained.*3  
Install a capacitor of 0.01 μF or  
Capacitor  
0.1  
μ
F
0.01  
μ
F
1.0  
μ
F
higher between VDD and VSS. *4  
To suppress current flow caused by  
reverse connection of a charger, set the  
Protection for charger  
reverse connection  
R2  
Resistor  
1 kΩ  
300  
Ω
1.3 kΩ  
resistance within the range from 300  
Ω to  
*5  
1.3 kΩ.  
*1. If an FET with a threshold voltage of 0.4 V or lower is used, the FET may fail to cut the charging current.  
If an FET with a threshold voltage equal to or higher than the overdischarge detection voltage is used, discharging may stop  
before overdischarge is detected.  
*2. If the withstand voltage between the gate and source is lower than the charger voltage, the FET may break.  
*3. If R1 has a higher resistance than R2 and if a charger is connected reversely, current flows from the charger to the IC and the  
voltage between VDD and VSS may exceed the absolute maximum rating. Install a resistor of 300  
protection.  
Ω or higher as R1 for ESD  
If R1 has a high resistance, the overcharge detection voltage increases by IC current consumption.  
*4. If a capacitor C1 is less than 0.01 F, DO may oscillate when load short-circuiting is detected, a charger is connected  
reversely, or overcurrent 1 or 2 is detected.  
A capacitor of 0.01 F or higher as C1 should be installed. In some types of batteries DO oscillation may not stop unless the  
C1 capacity is increased. Set the C1 capacity by evaluating the actual application.  
*5. If R2 is set to less than 300 , a current which is bigger than the power dissipation flows through the IC and the IC may break  
μ
μ
Ω
when a charger is connected reversely. If a resistor bigger than 1.3 k  
when a high-voltage charger is connected.  
Ω is installed as R2, the charging current may not be cut  
Caution 1. The above constants may be changed without notice.  
2. It has not been confirmed whether the operation is normal or not in circuits other than the above example  
of connection. In addition, the example of connection shown above and the constant do not guarantee  
proper operation. Perform thorough evaluation using the actual application to set the constant.  
26  
Seiko Instruments Inc.  
BATTERY PROTECTION IC FOR 1-CELL PACK  
S-8241 Series  
Rev.7.6_00  
„ Precautions  
Pay attention to the operating conditions for input/output voltage and load current so that the power loss in the IC does  
not exceed the power dissipation of the package.  
Do not apply an electrostatic discharge to this IC that exceeds the performance ratings of the built-in electrostatic  
protection circuit.  
SII claims no responsibility for any and all disputes arising out of or in connection with any infringement by products  
including this IC of patents owned by a third party.  
Seiko Instruments Inc.  
27  
BATTERY PROTECTION IC FOR 1-CELL PACK  
S-8241 Series  
Rev.7.6_00  
„ Characteristics (Typical Data)  
1. Detection/release voltage temperature characteristics  
Overcharge detection voltage vs. temperature  
Overcharge release voltage vs. temperature  
4.33  
4.31  
4.29  
4.27  
4.25  
4.23  
4.23  
4.21  
4.19  
4.17  
4.15  
4.13  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ta(°C)  
Ta(°C)  
Overdischarge release voltage vs. temperature  
Overdischarge detection voltage vs. temperature  
2.40  
2.36  
2.32  
2.28  
2.24  
2.20  
2.50  
2.46  
2.42  
2.38  
2.34  
2.30  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ta(°C)  
Ta(°C)  
Overcurrent 1 detection voltage vs. temperature  
Overcurrent 2 detection voltage vs. temperature  
0.110  
0.105  
0.100  
0.095  
0.090  
0.60  
0.55  
0.50  
0.45  
0.40  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ta(°C)  
Ta(°C)  
2. Current consumption temperature characteristics  
Current consumption vs. Temperature in normal mode  
Current consumption vs. Temperature in power-down mode  
6
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
5
4
3
2
1
0
-50 -25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ta(°C)  
Ta(°C)  
28  
Seiko Instruments Inc.  
BATTERY PROTECTION IC FOR 1-CELL PACK  
S-8241 Series  
Rev.7.6_00  
3. Current consumption Power voltage characteristics (Ta = 25 °C)  
Current consumption  
power supply volatge dependency  
VM = VSS  
20  
15  
10  
5
0
0
2
4
6
8
10  
VDD(V)  
4. Detection/release delay time temperature characteristics  
Overcharge detection delay time vs. temperature  
Overcharge release delay time vs. temperature  
2.0  
1.5  
1.0  
0.5  
0.0  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ta(°C)  
Ta(°C)  
Overdischarge release delay time vs. temperature  
Overdischarge detection delay time vs. temperature  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
250  
200  
150  
100  
50  
0
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ta(°C)  
Ta(°C)  
Overcurrent 1 detection delay time vs. temperature  
Overcurrent 1 release delay time vs. temperature  
16  
12  
8
500  
400  
300  
200  
100  
0
4
0
-50  
-50  
-25  
0
25  
50  
75  
-25  
0
25  
50  
75  
100  
100  
Ta(°C)  
Ta(°C)  
Seiko Instruments Inc.  
29  
BATTERY PROTECTION IC FOR 1-CELL PACK  
S-8241 Series  
Rev.7.6_00  
Overcurrent 2 detection delay time vs. temperature  
4
Load short-circuiting delay time vs. temperature  
50  
40  
30  
20  
10  
0
3
2
1
0
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ta(°C)  
Ta(°C)  
5. Delay time power-voltage characteristics (Ta = 25 °C)  
Overcurrent 1 detection delay time vs. power supply  
voltage dependency  
Overcurrent 2 detection delay time vs. power supply  
voltage dependency  
16  
12  
8
4
3
2
1
0
4
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
VDD(V)  
VDD(V)  
6. CO pin/DO pin output current characteristics (Ta = 25 °C)  
CO pin source current characteristics  
VDD = 3.5 V, VSS = VM = 0 V  
CO pin sink current characteristics  
VDD = 4.5 V, VSS = VM = 0 V  
12  
10  
8
-1.4  
-1.2  
-1.0  
-0.8  
-0.6  
-0.4  
-0.2  
0.0  
6
4
2
0
0
1
2
3
4
5
0
1
2
3
4
VCO(V)  
VCO(V)  
DO pin source current characteristics  
VDD = 3.5 V, VSS = VM = 0 V  
DO pin sink current characteristics  
VDD = 1.8 V, VSS = VM = 0 V  
-1.8  
-1.6  
-1.4  
-1.2  
-1.0  
-0.8  
-0.6  
-0.4  
-0.2  
0.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
0.0  
0.5  
1.0  
1.5  
2.0  
0
1
2
3
4
VDO(V)  
VDO(V)  
30  
Seiko Instruments Inc.  
2.9±0.2  
1.9±0.2  
4
5
+0.1  
-0.06  
1
2
3
0.16  
0.95±0.1  
0.4±0.1  
No. MP005-A-P-SD-1.2  
TITLE  
SOT235-A-PKG Dimensions  
MP005-A-P-SD-1.2  
No.  
SCALE  
UNIT  
mm  
Seiko Instruments Inc.  
4.0±0.1(10 pitches:40.0±0.2)  
+0.1  
-0  
2.0±0.05  
0.25±0.1  
ø1.5  
+0.2  
-0  
4.0±0.1  
ø1.0  
1.4±0.2  
3.2±0.2  
3
4
2 1  
5
Feed direction  
No. MP005-A-C-SD-2.1  
TITLE  
SOT235-A-Carrier Tape  
MP005-A-C-SD-2.1  
No.  
SCALE  
UNIT  
mm  
Seiko Instruments Inc.  
12.5max.  
9.0±0.3  
Enlarged drawing in the central part  
ø13±0.2  
(60°)  
(60°)  
No. MP005-A-R-SD-1.1  
TITLE  
SOT235-A-Reel  
MP005-A-R-SD-1.1  
No.  
SCALE  
UNIT  
QTY.  
3,000  
mm  
Seiko Instruments Inc.  
1.57±0.03  
6
5
4
+0.05  
-0.02  
0.08  
1
2
3
0.5  
0.48±0.02  
0.2±0.05  
No. PG006-A-P-SD-2.0  
SNT-6A-A-PKG Dimensions  
PG006-A-P-SD-2.0  
TITLE  
No.  
SCALE  
UNIT  
mm  
Seiko Instruments Inc.  
+0.1  
-0  
ø1.5  
4.0±0.1  
2.0±0.05  
0.25±0.05  
+0.1  
ø0.5  
-0  
4.0±0.1  
0.65±0.05  
1.85±0.05  
5°  
3
2
5
1
6
4
Feed direction  
No. PG006-A-C-SD-1.0  
TITLE  
SNT-6A-A-Carrier Tape  
PG006-A-C-SD-1.0  
No.  
SCALE  
UNIT  
mm  
Seiko Instruments Inc.  
12.5max.  
9.0±0.3  
Enlarged drawing in the central part  
ø13±0.2  
(60°)  
(60°)  
No. PG006-A-R-SD-1.0  
SNT-6A-A-Reel  
TITLE  
No.  
PG006-A-R-SD-1.0  
SCALE  
UNIT  
QTY.  
5,000  
mm  
Seiko Instruments Inc.  
0.52  
1.36  
0.52  
0.3  
0.3  
0.2  
0.3  
0.2  
Caution Making the wire pattern under the package is possible. However, note that the package  
may be upraised due to the thickness made by the silk screen printing and of a solder  
resist on the pattern because this package does not have the standoff.  
No. PG006-A-L-SD-3.0  
SNT-6A-A-Land Recommendation  
TITLE  
No.  
PG006-A-L-SD-3.0  
SCALE  
UNIT  
mm  
Seiko Instruments Inc.  
·
·
The information described herein is subject to change without notice.  
Seiko Instruments Inc. is not responsible for any problems caused by circuits or diagrams described herein  
whose related industrial properties, patents, or other rights belong to third parties. The application circuit  
examples explain typical applications of the products, and do not guarantee the success of any specific  
mass-production design.  
·
·
·
When the products described herein are regulated products subject to the Wassenaar Arrangement or other  
agreements, they may not be exported without authorization from the appropriate governmental authority.  
Use of the information described herein for other purposes and/or reproduction or copying without the  
express permission of Seiko Instruments Inc. is strictly prohibited.  
The products described herein cannot be used as part of any device or equipment affecting the human  
body, such as exercise equipment, medical equipment, security systems, gas equipment, or any apparatus  
installed in airplanes and other vehicles, without prior written permission of Seiko Instruments Inc.  
Although Seiko Instruments Inc. exerts the greatest possible effort to ensure high quality and reliability, the  
failure or malfunction of semiconductor products may occur. The user of these products should therefore  
give thorough consideration to safety design, including redundancy, fire-prevention measures, and  
malfunction prevention, to prevent any accidents, fires, or community damage that may ensue.  
·

相关型号:

S-8241ADFPG-KDFTFG

BATTERY PROTECTION IC FOR 1-CELL PACK
SII

S-8241ADGMC-GDGT2G

BATTERY PROTECTION IC FOR 1-CELL PACK
SII

S-8241ADHPG-KDHTFG

BATTERY PROTECTION IC FOR 1-CELL PACK
SII

S-8241ADLMC-GDLT2G

BATTERY PROTECTION IC FOR 1-CELL PACK
SII

S-8241ADMMC-GDMT2G

BATTERY PROTECTION IC FOR 1-CELL PACK
SII

S-8241ADNMC-GDNT2G

BATTERY PROTECTION IC FOR 1-CELL PACK
SII

S-8241ADOMC-GDOT2G

BATTERY PROTECTION IC FOR 1-CELL PACK
SII

S-8241ADQMC-GDQT2G

BATTERY PROTECTION IC FOR 1-CELL PACK
SII

S-8241ADTMC-GDTT2G

BATTERY PROTECTION IC FOR 1-CELL PACK
SII

S-8241ADVMC-GDVT2G

BATTERY PROTECTION IC FOR 1-CELL PACK
SII

S-8242B

BATTERY PROTECTION IC FOR 2-SERIAL-CELL PACK
SII

S-8242BAB-I8T1G

BATTERY PROTECTION IC FOR 2-SERIAL-CELL PACK
SII