S-8333CACC-I8T1U [SII]

STEP-UP, FOR LCD BIAS SUPPLY, 1-CHANNEL, PWM CONTROL SWITCHING REGULATOR CONTROLLER;
S-8333CACC-I8T1U
型号: S-8333CACC-I8T1U
厂家: SEIKO INSTRUMENTS INC    SEIKO INSTRUMENTS INC
描述:

STEP-UP, FOR LCD BIAS SUPPLY, 1-CHANNEL, PWM CONTROL SWITCHING REGULATOR CONTROLLER

CD 开关
文件: 总44页 (文件大小:2669K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
S-8333 Series  
STEP-UP, FOR LCD BIAS SUPPLY, 1-CHANNEL,  
PWM CONTROL SWITCHING REGULATOR CONTROLLER  
www.sii-ic.com  
© SII Semiconductor Corporation, 2004-2015  
Rev.4.2_01  
The S-8333 Series is a CMOS step-up switching regulator which mainly consists of a reference voltage circuit, an oscillator,  
an error amplifier, a PWM controller, an under voltage lockout circuit (UVLO), and a timer latch short-circuit protection  
circuit. Because its minimum operating voltage is as low as 1.8 V, this switching regulator is ideal for the power supply of  
an LCD or for portable systems that operate on a low voltage. The internal oscillation frequency can be set up to 1.08 MHz,  
via the resistor connected to the ROSC pin.  
The maximum duty ratio of PWM control can be controlled by the resistor connected to the RDuty pin. The soft-start  
function at power application is accomplished by combining the reference voltage control and maximum duty control  
methods. Even if the voltage of the FB pin is retained lower than the reference voltage due to the factor outside the IC, the  
output voltage is raised by controlling the maximum duty. The phase compensation and gain value can be adjusted  
according to the values of the resistor and capacitor connected to the CC pin. Therefore, the operation stability and  
transient response can be correctly set for each application. The reference voltage accuracy is as high as 1.0 V 1.5%, and  
any voltage can be output by using an external output voltage setting resistor.  
In addition, the delay time of the short-circuit protection circuit can be set by using the capacitor connected to the CSP pin.  
If the maximum duty condition continues because of short-circuiting, the capacitor externally connected to the CSP pin is  
charged, and oscillation stops after a specific time. The short-circuit protection function is cancelled when the power supply  
is raised to the UVLO release voltage after it has been lowered to the UVLO detection voltage. A ceramic capacitor or a  
tantalum capacitor is used as the output capacitor, depending on the setting. This controller IC allows various settings and  
selections and employs a small package, making it very easy to use.  
Features  
Low voltage operation:  
Oscillation frequency:  
Maximum duty:  
1.8 V to 6.0 V  
280 kHz to 1.08 MHz (selectable by external resistor)  
Settable up to 88.5% by external resistor  
47 to 88.5% (oscillation frequency; 500 kHz or more)  
47 to 80% (oscillation frequency; less than 500 kHz)  
1.0 V 1.5%  
Reference voltage:  
Range of operation temperature: 40 to +85°C  
UVLO (under-voltage lockout) function:  
Detection voltage can be selected from between 1.5 V and 2.3 V in 0.1 V step.  
Hysteresis width can be selected from between 0.1 V and 0.3 V in 0.1 V step.  
Timer latch short-circuit protection circuit:  
Delay time can be set using an external capacitor.  
Soft-start function:  
Soft-start time can be selected in three steps, 10 ms, 15 ms, and 20 ms.  
Both reference voltage control and maximum duty control methods are applied  
Phase compensation external setting:  
Control is possible via the resistor connected between the CC and GND pins  
and capacitor  
Lead-free, Sn 100%, halogen-free*1  
*1. Refer to “Product Name Structure” for details.  
Applications  
Power supplies for LCDs and CCDs  
Power supplies for portable equipment  
Packages  
SNT-8A  
8-Pin TSSOP  
1
STEP-UP, FOR LCD BIAS SUPPLY, 1-CHANNEL, PWM CONTROL SWITCHING REGULATOR CONTROLLER  
S-8333 Series  
Rev.4.2_01  
Block Diagram  
VOUT  
SD  
L
RDuty  
ROSC  
VIN  
UVLO  
PWM  
CFB RFB1  
CL  
Oscillator  
Maximum duty  
soft-start circuit  
M1  
+
CIN  
EXT  
+
comparator  
Error amplifier  
FB  
Timer latch  
short-circuit  
Reference voltage  
(1.0 V) soft-start  
circuit  
protection circuit  
RFB2  
VSS  
CSP  
CC  
RZ CZ  
Figure 1 Block Diagram  
2
STEP-UP, FOR LCD BIAS SUPPLY, 1-CHANNEL, PWM CONTROL SWITCHING REGULATOR CONTROLLER  
Rev.4.2_01  
S-8333 Series  
Product Name Structure  
1. Product name  
(1) SNT-8A  
S-8333  
C
x
x
x
-
I8T1  
U
Environmental code  
U:  
Lead-free (Sn 100%), halogen-free  
Package abbreviation and packing specifications*1  
I8T1: SNT-8A, tape product  
Soft-start time setting  
A:  
B:  
C:  
10 ms  
15 ms  
20 ms  
UVLO setting  
A:  
B:  
C:  
D:  
E:  
F:  
G:  
H:  
I:  
2.3 V  
2.2 V  
2.1 V  
2.0 V  
1.9 V  
1.8 V  
1.7 V  
1.6 V  
1.5 V  
UVLO hysteresis setting  
A:  
B:  
C:  
0.1 V  
0.2 V  
0.3 V  
*1. Refer to the tape drawing.  
3
STEP-UP, FOR LCD BIAS SUPPLY, 1-CHANNEL, PWM CONTROL SWITCHING REGULATOR CONTROLLER  
S-8333 Series  
Rev.4.2_01  
(2) 8-Pin TSSOP  
S-8333  
C
x
x
x
-
T8T1  
x
Environmental code  
U:  
S:  
Lead-free (Sn 100%), halogen-free  
Lead-free, halogen-free  
Package abbreviation and packing specifications*1  
T8T1: 8-Pin TSSOP, tape product  
Soft-start time setting  
A:  
B:  
C:  
10 ms  
15 ms  
20 ms  
UVLO setting  
A:  
B:  
C:  
D:  
E:  
F:  
G:  
H:  
I:  
2.3 V  
2.2 V  
2.1 V  
2.0 V  
1.9 V  
1.8 V  
1.7 V  
1.6 V  
1.5 V  
UVLO hysteresis setting  
A:  
B:  
C:  
0.1 V  
0.2 V  
0.3 V  
*1. Refer to the tape drawing.  
2. Packages  
Drawing Code  
Tape Reel  
Package Name  
Package  
Land  
SNT-8A  
PH008-A-P-SD PH008-A-C-SD PH008-A-R-SD PH008-A-L-SD  
FT008-A-P-SD FT008-E-C-SD FT008-E-R-SD  
8-Pin TSSOP  
4
STEP-UP, FOR LCD BIAS SUPPLY, 1-CHANNEL, PWM CONTROL SWITCHING REGULATOR CONTROLLER  
Rev.4.2_01  
S-8333 Series  
Pin Configurations  
1. SNT-8A  
Table 1  
Top view  
Pin No.  
1
Symbol  
CC  
Description  
1
2
3
4
8
7
6
5
Error amplifier circuit output phase  
compensation pin  
2
3
4
5
6
FB  
Output voltage feedback pin  
Short-circuit protection delay time setting pin  
Power supply input pin  
CSP  
VIN  
EXT  
VSS  
Figure 2  
External transistor connection pin  
GND pin  
Oscillation frequency setting resistor  
connection pin  
7
8
ROSC  
RDuty  
Maximum duty setting resistor connection pin  
2. 8-Pin TSSOP  
Table 2  
Pin No.  
1
Symbol  
Description  
Top view  
Error amplifier circuit output phase  
compensation pin  
CC  
1
2
3
4
8
7
6
5
2
3
4
5
6
FB  
Output voltage feedback pin  
Short-circuit protection delay time setting pin  
Power supply input pin  
CSP  
VIN  
EXT  
VSS  
External transistor connection pin  
GND pin  
Figure 3  
Oscillation frequency setting resistor  
connection pin  
7
8
ROSC  
RDuty  
Maximum duty setting resistor connection pin  
5
STEP-UP, FOR LCD BIAS SUPPLY, 1-CHANNEL, PWM CONTROL SWITCHING REGULATOR CONTROLLER  
S-8333 Series  
Rev.4.2_01  
Absolute Maximum Ratings  
Table 3 Absolute Maximum Ratings  
(Unless otherwise specified: Ta = 25°C, VSS = 0 V)  
Parameter  
VIN pin voltage  
FB pin voltage  
Symbol  
VIN  
Ratings  
Unit  
V
VSS 0.3 to VSS + 6.5  
VSS 0.3 to VSS + 6.5  
VSS 0.3 to VIN + 0.3  
VSS 0.3 to VIN + 0.3  
VSS 0.3 to VIN + 0.3  
10  
VFB  
V
EXT pin voltage  
CSP pin voltage  
CC pin voltage  
CC pin current  
VEXT  
VCSP  
VCC  
V
V
V
ICC  
mA  
V
ROSC pin voltage  
ROSC pin current  
RDuty pin voltage  
RDuty pin current  
SNT-8A  
VROSC  
IROSC  
VRDuty  
IRDuty  
VSS 0.3 to VIN + 0.3  
10  
mA  
V
VSS 0.3 to VIN + 0.3  
10  
mA  
mW  
mW  
mW  
°C  
°C  
450*1  
Power dissipation  
8-Pin TSSOP  
PD  
300 (When not mounted on board)  
700*1  
Operating ambient temperature  
Storage temperature  
Topr  
Tstg  
40 to +85  
40 to +125  
*1. When mounted on board  
[Mounted board]  
(1) Board size: 114.3 mm × 76.2 mm × t1.6 mm  
(2) Name: JEDEC STANDARD51-7  
Caution  
The absolute maximum ratings are rated values exceeding which the product could suffer  
physical damage. These values must therefore not be exceeded under any conditions.  
800  
600  
8-Pin TSSOP  
SNT-8A  
400  
200  
0
0
50  
100  
150  
Ambient temperature (Ta) [°C]  
Figure 4 Power Dissipation of Package (When mounted on board)  
6
STEP-UP, FOR LCD BIAS SUPPLY, 1-CHANNEL, PWM CONTROL SWITCHING REGULATOR CONTROLLER  
Rev.4.2_01  
S-8333 Series  
Electrical Characteristics  
Table 4 Electrical Characteristics  
(Unless otherwise specified: VIN = 3.3 V, Ta = 25°C)  
Test  
Circuit  
Parameter  
Symbol  
Conditions  
Min.  
Typ.  
Max.  
Unit  
Operating input voltage VIN  
1.8  
1.000  
6.0  
V
V
2
2
FB voltage  
VFB  
ISS1  
0.985  
1.015  
fosc = 650 kHz  
VFB = 0.95 V  
Current consumption  
450  
700  
μA  
1
IEXTH  
VEXT = VIN 0.4 V  
VEXT = 0.4 V  
100  
100  
160  
60  
mA  
mA  
1
1
EXT pin output current  
IEXTL  
FB voltage temperature ΔVFB  
Ta = −40 to +85°C  
100  
ppm/°C  
μA  
2
1
coefficient  
ΔTa  
FB pin input current  
IFB  
0.1  
+0.1  
When fosc = 1080 kHz is set  
(ROSC = 120 kΩ)  
When fosc = 650 kHz is set  
(ROSC = 200 kΩ)  
When fosc = 280 kHz is set  
(ROSC = 470 kΩ)  
fosc  
× 0.9  
fosc  
× 1.1  
Oscillation frequency*1 fosc  
fosc  
kHz  
1
VFB = 0.9 V  
Waveform on EXT pin is measured.  
Oscillation frequency  
temperature coefficient ΔTa  
Δfosc  
Ta = −40 to +85°C  
fosc = 650 kHz  
1000  
ppm/°C  
1
1
fosc = 1080 kHz (ROSC = 120 kΩ)  
MaxDuty = 88.5% (RDuty = 62 kΩ)  
MaxDuty = 73% (RDuty = 180 kΩ)  
MaxDuty = 47% (RDuty = 390 kΩ)  
fosc = 650 kHz (ROSC = 200 kΩ)  
MaxDuty = 88.5% (RDuty = 100 kΩ)  
tSS = 10 ms, 15 ms, 20 ms  
Selected in three steps  
tPRO = 50 ms  
MaxDuty  
MaxDuty  
Max. duty*2  
MaxDuty  
MaxDuty  
%
5  
+ 5  
tSS  
× 0.75  
tSS  
× 1.5  
Soft-start time  
tSS  
tSS  
50  
ms  
ms  
V
1
1
1
1
Short-circuit protection  
delay time*3  
tPRO  
37.5  
75  
(CSP = 0.1 μF)  
VUVLO = 1.5 V to 2.3 V  
Selected in 0.1 V steps  
VUVLOHYS = 0.1 V to 0.3 V  
Selected in 0.1 V steps  
VFB = 2 V  
VUVLO  
× 0.95  
VUVLOHYS  
× 0.6  
60  
34.5  
VUVLO  
× 1.05  
VUVLOHYS  
× 1.4  
34.5  
60  
UVLO detection voltage VUVLO  
VUVLO  
VUVLOHYS  
UVLO hysteresis width VUVLOHYS  
V
ICCH  
CC pin output current  
ICCL  
45  
45  
μA  
μA  
1
1
VFB = 0 V  
Within short-circuit protection delay  
time  
VRTLT1  
Timer latch reset voltage  
VRTLT2  
0.7  
1.0  
1.3  
V
1
1
After short-circuit protection circuit  
operated  
VUVLO  
× 0.95  
VUVLO  
× 1.05  
VUVLO  
V
*1. The recommended range of the resistance (Rosc) for oscillation frequency is Rosc  
= 120 kΩ to 470 kΩ (fOSC = 280 kHz to 1.08 MHz).  
This range of oscillation frequency is the typical value when an ideal resistor is connected externally. In actual use, it is necessary to  
take account the dispersion of an IC ( 10%) into this value.  
*2. Set max. duty; Between 47 and 88.5 % (RDuty/ROSC = 0.5 to 3.2); the oscillation frequency is 500 kHz or more  
Between 47 and 80 % (RDuty/ROSC = 1.0 to 3.2); the oscillation frequency is less than 500 kHz  
This range of max. duty is the typical value when an ideal resistor is connected externally. In actual use, it is necessary to take  
account the dispersion of an IC ( 5%) into this value.  
*3. The short-circuit protection time can be set by the external capacitor. Although the maximum set value by the external capacitor is  
unlimited under the ideal condition, set CSP  
= approx. 0.47 μF as a target maximum value due to discharge time of the capacitor.  
7
STEP-UP, FOR LCD BIAS SUPPLY, 1-CHANNEL, PWM CONTROL SWITCHING REGULATOR CONTROLLER  
S-8333 Series  
Rev.4.2_01  
External Parts When Measuring Electrical Characteristics  
Table 5 External Parts  
Element Name  
Symbol  
Manufacturer  
TDK Corporation  
Rohm Co., Ltd.  
Part Number  
LDR655312T 10 μH  
RB491D  
Inductor  
Diode  
L
SD  
CL  
M1  
Output capacitor  
Transistor  
Ceramic 10 μF  
Sanyo Electric Co., Ltd. MCH3406  
Oscillation frequency setting resistor ROSC  
200 kΩ (when fOSC = 650 kHz)  
300 kΩ (when MaxDuty = 73%)  
Maximum duty ratio setting resistor  
Short-circuit protection delay time  
setting capacitor  
RDuty  
CSP  
0.1 μF (when tPRO = 50 ms)  
Output voltage setting resistor 1  
Output voltage setting resistor 2  
FB pin capacitor  
RFB1  
RFB2  
CFB  
RZ  
8.2 kΩ (when VOUT = 9.2 V)  
1.0 kΩ (when VOUT = 9.2 V)  
180 pF  
Phase compensation resistor  
Phase compensation capacitor  
200 kΩ  
0.01 μF  
CZ  
8
STEP-UP, FOR LCD BIAS SUPPLY, 1-CHANNEL, PWM CONTROL SWITCHING REGULATOR CONTROLLER  
Rev.4.2_01  
S-8333 Series  
Measurement Circuits  
1.  
RDuty  
ROSC  
CC  
FB  
RZ  
CZ  
CSP  
VIN  
VSS  
EXT  
ROSC RDuty  
A
CSP  
CIN  
Oscilloscope  
Figure 5  
2.  
RDuty  
CC  
ROSC  
FB  
RFB1  
CFB  
CSP  
VIN  
VSS  
EXT  
RZ  
CZ  
L
SD  
ROSC RDuty  
RFB2  
M1 CIN  
CL  
CSP  
V
Figure 6  
9
STEP-UP, FOR LCD BIAS SUPPLY, 1-CHANNEL, PWM CONTROL SWITCHING REGULATOR CONTROLLER  
S-8333 Series  
Rev.4.2_01  
Operation  
1. Switching control method  
1. 1 PWM control  
The S-8333 Series is a DC-DC converter using a pulse width modulation method (PWM).  
The pulse width of the S-8333 Series varies from 0% to the maximum duty set by RDuty depending on the load  
current, but its switching frequency does not change. Consequently, the ripple voltage generated from switching  
can be removed easily via a filter.  
2. Soft-start function  
For this IC, the built-in soft-start circuit controls the rush current and overshoot of the output voltage when  
powering on. Reference voltage adjustment and maximum duty control methods are adopted as the soft-start  
methods. The following describes the soft-start function at power application.  
In the circuit where the input voltage is not directly output at shutdown by inserting a switch (SW) between the  
diode (SD) and VOUT output, the VOUT voltage when the VIN voltage is applied with the SW OFF stays 0 V.  
Therefore, the voltage of the FB pin stays 0 V and the EXT output is in the step up status between the “H” and “L”  
levels due to the maximum duty. The maximum duty at this time is approximately 7% and the rush current at  
power application is controlled. The maximum duty soft start is accomplished by gradually increasing the duty  
width up to the maximum duty set by the external resistor RDuty (refer to Figure 8).  
The reference voltage of the error amplifier input also gradually increases from 0 V at the same time as the  
maximum duty soft start. The increasing of the output voltage is controlled by turning the SW ON. The soft-start  
function is realized by controlling the voltage of the FB pin so that it is the same potential as the reference voltage  
that is slowly raised. A Rail-to-Rail amplifier is adopted as the error amplifier, which means that the voltage is  
loop controlled so that it can be the same as the reference voltage.  
Once the reference voltage rises, the voltage cannot be reset (the reference voltage is 0 V) unless making the  
power supply voltage lower than the UVLO detection voltage. Conversely, when the power supply voltage rises  
up to the reset voltage after it is lowered to the UVLO detection voltage or lower, the output voltage is stepped up  
by the soft-start function.  
SD  
SW  
VOUT  
L
PWM  
Comparator  
RFB1  
0.5 V  
0 V  
+
M1  
VIN  
CL  
FB  
EXT  
Error amplifier  
+
Error amplifier  
reference voltage  
CC  
RFB2  
RZ  
CZ  
Vref  
Figure 7  
10  
STEP-UP, FOR LCD BIAS SUPPLY, 1-CHANNEL, PWM CONTROL SWITCHING REGULATOR CONTROLLER  
Rev.4.2_01  
S-8333 Series  
(VIN = 0 V3.3 V, VOUT = 9.2 V, RFB1 = 8.2 kΩ, RFB2 = 1.0 kΩ)  
3.3 V  
Input voltage  
(VIN  
)
0 V  
tSS  
9.2 V  
Output voltage  
(VOUT  
VOUT×0.95  
)
SW : ON  
0 V  
1.0 V  
Error amplifier  
reference voltage  
0 V  
Reference voltage soft-start period  
1.0 V  
FB pin voltage  
(VFB  
)
0 V  
3.3 V  
EXT pin voltage  
(VEXT  
)
0 V  
Maximum duty  
soft-start period  
t (ms)  
Figure 8  
11  
STEP-UP, FOR LCD BIAS SUPPLY, 1-CHANNEL, PWM CONTROL SWITCHING REGULATOR CONTROLLER  
S-8333 Series  
Rev.4.2_01  
3. Timer latch short-circuit protection function  
This IC has a timer latch short-circuit protection circuit that stops the switching operation when the output voltage  
drops for a specific time due to output short-circuiting. A capacitor (CSP) that is used to set the delay time of this  
short-circuit protection circuit can be connected to the CSP pin.  
This IC operates at the maximum duty ratio if the output voltage drops due to output short-circuiting. At the  
maximum duty ratio, constant-current charging of CSP starts. If this status lasts for a short-circuit protection  
delay time and the CSP pin voltage rises above the reference voltage, the latch mode is set. Note that the latch  
mode is different from the shutdown status in that the switching operation is stopped but the internal circuitry  
operates normally.  
To reset the latch operation to protect the IC from short-circuiting, lower VIN than the UVLO detection voltage.  
The latch mode within the short-circuit protection delay time is reset by decreasing VIN to 1.0 V (Typ.) or lower.  
Note that the mode is not reset even if the VIN is lowered to the UVLO detection voltage (refer to Figure 9).  
UVLO release  
UVLO detection  
1.0 V  
Input voltage  
(VIN)  
Output load  
Short-circuit status  
Reference  
voltage  
CSP pin voltage  
(VCSP  
)
50 ms (CSP = 0.1 μF)  
Latch mode  
Normal  
status  
Short-circuit  
protection time  
Latch  
period  
Short-circuit  
protection time  
Short-circuit  
protection time  
Reset period  
Reset period  
Figure 9  
4. UVLO function  
This IC includes a UVLO (under-voltage lockout) circuit to prevent the IC from malfunctioning due to a transient  
status when power is applied or a momentary drop of the power supply voltage. When UVLO is in the detection  
state, switching is stopped and the external FET is held in the off status. Once UVLO enters the detection state,  
the soft-start function is reset.  
Note that the other internal circuits operate normally and that the status is different from the power-off status.  
12  
STEP-UP, FOR LCD BIAS SUPPLY, 1-CHANNEL, PWM CONTROL SWITCHING REGULATOR CONTROLLER  
Rev.4.2_01  
S-8333 Series  
5. Error amplifier  
The error amplifier outputs the PWM control signal so that the voltage of the FB pin is held at a specific value  
(1 V). By connecting a resistor (RZ) and capacitor (CZ) to the output pin (CC pin) of the error amplifier in series,  
an optional loop gain can be set, enabling stabilized phase compensation.  
6. Operation  
The following are basic equations [(1) through (7)] of the step-up switching regulator (refer to Figure 10).  
L
D
CONT  
VOUT  
VIN  
EXT  
M1  
CL  
FB  
VSS  
Figure 10 Step-up Switching Regulator Circuit for Basic Equations  
Voltage at the CONT pin at the moment M1 is turned ON (current IL flowing through L is zero), VA:  
*1  
VA = VS .................................................................................................................................................(1)  
*1. VS: Non-saturated voltage of M1  
Change in IL over time:  
dlL  
dt  
VL  
L
VIN VS  
=
=
.............................................................................................................................(2)  
L
Integration of the above equation:  
V
VS  
L
IN  
I =  
× t ..................................................................................................................................(3)  
L
IL flows while M1 is ON (ton). This time is determined by the oscillation frequency of OSC.  
Peak current (IPK) after tON  
:
V
VS  
L
IN  
IPK  
=
× t  
...........................................................................................................................(4)  
1
ON  
The energy stored in L is represented by × L (IPK)2.  
2
When M1 is turned OFF (tOFF), the energy stored in L is released via a diode, generating a reverse voltage (VL).  
VL:  
*2  
VL  
=
(
VOUT + VD  
)
VIN .........................................................................................................................(5)  
*2. VD: Diode forward voltage  
The voltage on the CONT pin rises only by VOUT + VD.  
13  
STEP-UP, FOR LCD BIAS SUPPLY, 1-CHANNEL, PWM CONTROL SWITCHING REGULATOR CONTROLLER  
S-8333 Series  
Rev.4.2_01  
Change in current (IL) flowing through the diode into VOUT during tOFF  
:
dIL  
dt  
VL  
L
VOUT + VD VIN  
=
=
.................................................................................................................(6)  
L
Integration of the above equation is as follows:  
V
+ VD VIN  
L
OUT  
IL = IPK  
×t ..................................................................................................................(7)  
During tON, energy is stored in L and is not transmitted to VOUT. When receiving output current (IOUT) from VOUT  
,
the energy of the capacitor (CL) is used. As a result, the pin voltage of CL is reduced, and goes to the lowest level  
after M1 is turned ON (tON). When M1 is turned OFF, the energy stored in L is transmitted via the diode to CL, and  
the pin voltage of CL rises drastically. Because VOUT is a time function indicating the maximum value (ripple  
voltage: Vp-p) when the current flowing through the diode into VOUT and the load current IOUT match.  
Next, this ripple voltage is determined as follows.  
IOUT vs t1 (time) from after tON, when VOUT reaches the maximum level:  
V
+ VD VIN  
L
OUT  
IOUT = IPK  
× t .............................................................................................................(8)  
1
L
...........................................................................................................(9)  
t  
1
=
(
IPK IOUT  
)
×  
VOUT + VD VIN   
When tOFF, IL = 0 (when the energy of the inductor is completely transmitted):  
Based on equation (7),  
t OFF  
L
=
............................................................................................................(10)  
VOUT + VD VIN  
IPK  
When substituting equation (10) for equation (9):  
= tOFF IOUT ×tOFF  
............................................................................................................................(11)  
t
1
IPK  
Electrical charge ΔQ1 which is charged in CL during t1:  
t1  
t1  
t1  
VOUT + VD VIN  
VOUT + VD VIN  
1
2
2
ΔQ1 = IL dt = IPK  
×
dt −  
×
tdt = IPK × t1 −  
×
t1 ......................(12)  
0  
0  
0  
L
L
When substituting equation (12) for equation (9):  
1
IPK + IOUT  
Q1 = IPK  
(IPK IOUT  
)
× t1 =  
× t1 ...........................................................................(13)  
2
2
A rise voltage (Vp-p) due to ΔQ1:  
×IPK +IOUT × t  
1
Q1  
CL  
1
CL  
............................................................................................................(14)  
V
P - P  
=
=
2
When taking into consideration IOUT consumed during t1 and ESR*1 (RESR) of CL:  
Q1  
1
IPK + IOUT  
IPK + IOUT  
IOUT × t1  
VPP  
=
=
×
× t +  
× R  
...............................................(15)  
1
ESR  
CL  
CL  
2
2
CL  
*1. Equivalent Series Resistance  
When substituting equation (11) for equation (15):  
2
(IPK IOUT  
)
tOFF  
CL  
IPK + IOUT  
VP P  
=
×
+
× R  
...............................................................................(16)  
ESR  
2 IPK  
2
Therefore to reduce the ripple voltage, it is important that the capacitor connected to the output pin has a large  
capacity and a small ESR.  
14  
STEP-UP, FOR LCD BIAS SUPPLY, 1-CHANNEL, PWM CONTROL SWITCHING REGULATOR CONTROLLER  
Rev.4.2_01  
S-8333 Series  
External Parts Selection  
1. Inductor  
The inductance has a strong influence on the maximum output current (IOUT) and efficiency (η).  
The peak current (IPK) increases by decreasing L and the stability of the circuit improves and IOUT increases. If L  
is decreased further, the efficiency falls, and IOUT decreases if the current drive capability of the external  
transistor is insufficient.  
The loss of IPK by the switching transistor decreases by increasing L and the efficiency becomes maximum at a  
certain L value. Further increasing L decrease the efficiency due to the loss of the DC resistance of the inductor.  
IOUT also decreases.  
If the oscillation frequency is higher, a smaller L value can be chosen, making the inductor smaller. In the S-8333  
Series, the oscillation frequency can be varied within the range of 280 kHz to 1.08 MHz by the external resistor,  
so select an L value best suited to the frequency. The recommended value is between 2.2 μH and 22 μH.  
When selecting an inductor, note the allowable current of the inductor. If a current exceeding this allowable  
current flows through the inductor, magnetic saturation occurs, substantially lowering the efficiency and  
increasing the current, which results in damage to the IC.  
Therefore, select an inductor so that IPK does not exceed the allowable current. IPK is expressed by the following  
equations in the discontinuous mode and continuous mode.  
2IOUT(VOUT + VD VIN)  
IPK =  
( discontinuous mode ) .................................................(17)  
(continuous mode) .......................................................(18)  
fosc ×L  
(VOUT + VD VIN)× VIN  
2×(VOUT + VD)× fosc ×L  
IPK = VOUT + VD ×IOUT +  
VIN  
fOSC = Oscillation frequency, VD 0.4 V.  
2. Diode  
Use an external diode that meets the following requirements.  
Low forward voltage  
High switching speed  
Reverse breakdown voltage: VOUT + [Spike voltage] or more  
Rated current: IPK or more  
3. Capacitors (CIN, CL)  
The capacitor on the input side (CIN) can lower the supply impedance and level the input current for better  
efficiency. Select CIN according to the impedance of the power supply to be used.  
The capacitor on the output side (CL) is used to smooth the output voltage. Select an appropriate capacitance  
value based on the I/O conditions and load conditions. A capacitance of 10 μF or more is recommended.  
By adjusting the phase compensation of the feedback loop using the external resistor (RZ) and capacitor (CZ), a  
ceramic capacitor can be used as the capacitor on the output side. If a capacitor whose equivalent series  
resistance is between 30 mΩ and 500 mΩ is used as the output capacitor, the adjustable range of the phase  
compensation is wider; however, note that other characteristics may be affected by ripple voltage or other  
conditions at this time. The optimal capacitor differs depending on the L value, capacitance value, wiring, and  
application (output load), so select the capacitor after performing sufficient evaluation under the actual usage  
conditions.  
15  
STEP-UP, FOR LCD BIAS SUPPLY, 1-CHANNEL, PWM CONTROL SWITCHING REGULATOR CONTROLLER  
S-8333 Series  
Rev.4.2_01  
4. External transistor  
A bipolar (NPN) or enhancement (N-channel) MOS FET transistor can be used as the external capacitor.  
4. 1 Bipolar (NPN) type  
The driving capability when the output current is increased by using a bipolar transistor is determined by hFE  
and Rb of the bipolar transistor. Figure 11 shows a peripheral circuit.  
VIN  
Cb  
2200 pF  
IPK  
Pch  
Nch  
Rb  
EXT 1 kΩ  
Figure 11 External Transistor Periphery  
1 kΩ is recommended for Rb. Actually, calculate the necessary base current (Ib) from hFE of the bipolar  
transistor as follows and select an Rb value lower than this.  
IPK  
Ib =  
hFE  
VIN 0.7  
0.4  
Rb =  
Ib  
IEXTH  
A small Rb increases the output current, but the efficiency decreases. Actually, a pulsating current flows and  
a voltage drop occurs due to the wiring capacitance. Determine the optimum value by experiment.  
A speed-up capacitor (Cb) connected in parallel with Rb resistance as shown in Figure 11 decreases the  
switching loss and improves the efficiency.  
Select Cb by observing the following equation.  
1
Cb ≤  
2 π × Rb × fosc × 0.7  
However, in practice, the optimum Cb value also varies depending on the characteristics of the bipolar  
transistor employed. Therefore, determine the optimum value of Cb by experiment.  
4. 2 Enhancement MOS FET type  
Use an Nch power MOS FET. For high efficiency, using a MOS FET with a low ON resistance (RON) and  
small input capacitance (CISS) is ideal, however, ON resistance and input capacitance generally share a  
trade-off relationship. The ON resistance is efficient in a range in which the output current is relatively great  
during low-frequency switching, and the input capacitance is efficient in a range in which the output current  
is middling during high-frequency switching. Select a MOS FET whose ON resistance and input  
capacitance are optimal depending on the usage conditions.  
The input voltage (VIN) is supplied for the gate voltage of the MOS FET, so select a MOS FET with a gate  
withstanding voltage that is equal to the maximum usage value of the input voltage or higher and a drain  
withstanding voltage that is equal to the amount of the output voltage (VOUT) and diode voltage (VD) or  
higher.  
If a MOS FET with a threshold that is near the UVLO detection voltage is used, a large current may flow,  
stopping the output voltage from rising and possibly generating heat in the worst case. Select a MOS FET  
with a threshold that is sufficiently lower than the UVLO detection voltage value.  
16  
STEP-UP, FOR LCD BIAS SUPPLY, 1-CHANNEL, PWM CONTROL SWITCHING REGULATOR CONTROLLER  
Rev.4.2_01  
S-8333 Series  
5. Oscillation frequency and maximum duty ratio setting resistors (ROSC, RDuty)  
With the S-8333 Series, the oscillation frequency can be set in a range of 280 kHz to 1.08 MHz using external  
resistance. Connect a resistor across the ROSC and VSS pins. Select the resistor by using the following  
equation and referring to Figure 12. However, the following equation and figure assume that the resistance  
value is the desired value and show the theoretical values when the IC is in the typical conditions. Note that  
fluctuations of resistance and IC are not considered.  
130 × 103  
fOSC [kHz]  
1400  
ROSC [kΩ] ≅  
1200  
1000  
800  
600  
400  
200  
0
400  
600  
0
200  
ROSC [kΩ]  
Figure 12 ROSC vs. fOSC  
With the S-8333 Series, the maximum duty ratio can be set in a range of 47% to 88.5% (between 47 to 80%, if the  
oscillation frequency is less than 500 kHz) by an external resistor. Connect the resistor across the RDuty and  
VSS pins. Select the resistance by using the following equation and referring to Figure 13. The maximum duty  
ratio fluctuates according to the oscillation frequency. If the value of ROSC is changed, therefore, be sure to  
change the value of RDuty so that it is always in proportion to RDuty / ROSC. However, the following equation  
and figure assume that the resistance value is the desired value and show the theoretical values when the IC is  
in the typical conditions. Note that fluctuations of resistance and IC are not considered.  
Caution Set max. duty 80% or less if the oscillation frequency is less than 500 kHz.  
100  
90  
80  
70  
60  
50  
40  
RDuty  
ROSC  
(95.5 MaxDuty)  
15.0  
4
0
1
2
3
RDuty / ROSC  
Figure 13 RDuty / ROSC vs. MaxDuty  
Connect resistors ROSC and RDuty as close to the IC as possible.  
17  
STEP-UP, FOR LCD BIAS SUPPLY, 1-CHANNEL, PWM CONTROL SWITCHING REGULATOR CONTROLLER  
S-8333 Series  
Rev.4.2_01  
6. Short-circuit protection delay time setting capacitor (CSP)  
With the S-8333 Series, the short-circuit protection delay time can be set to any value by an external capacitor.  
Connect the capacitor across the CSP and VSS pins. Select the capacitance by using the following equation and  
referring to Figure 14. However, the following equation and figure assume that the capacitor value is the desired  
value and show the theoretical values when the IC is in the typical conditions. Note that fluctuations of capacitor  
and IC are not considered.  
3
× 2 ×  
10−  
120  
t
PRO [ms]  
1.0  
CSP [μF] ≅  
100  
80  
60  
40  
20  
0
0.20  
0
0.05  
0.10  
0.15  
0.25  
CSP [μF]  
Figure 14 CSP vs. tPRO  
7. Output voltage setting resistors (RFB1, RBF2)  
With the S-8333 Series, the output voltage can be set to any value by external divider resistors.  
Connect the divider resistors across the VOUT and VSS pins. Because VFB = 1 V, the output voltage can be  
calculated by this equation.  
(RFB1 + RFB2  
)
VOUT  
=
RFB2  
Connect divider resistors RFB1 and RFB2 as close to the IC to minimize effects from of noise. If noise does have  
an effect, adjust the values of RFB1 and RFB2 so that RFB1 + RFB2 < 100 kΩ.  
CFB connected in parallel with RFB1 is a capacitor for phase compensation. Select the optimum value of this  
capacitor at which the stable operation can be ensured from the values of the inductor and output capacitor.  
8. Phase compensation setting resistor and capacitor (RZ, CZ)  
The S-8333 Series needs appropriate compensation for the voltage feedback loop to prevent excessive output  
ripple and unstable operation from deteriorating the efficiency. This compensation is implemented by connecting  
RZ and CZ in series across the CC and VSS pins. RZ sets the high-frequency gain for a high-speed transient  
response. CZ sets the pole and zero of the error amplifier and keeps the loop stable. Adjust RZ and CZ, taking  
into consideration conditions such as the inductor, output capacitor, and load current, so that the optimum  
transient characteristics can be obtained.  
18  
STEP-UP, FOR LCD BIAS SUPPLY, 1-CHANNEL, PWM CONTROL SWITCHING REGULATOR CONTROLLER  
Rev.4.2_01  
S-8333 Series  
Standard Circuit  
SD  
VOUT  
L
RDuty  
ROSC  
VIN  
UVLO  
PWM  
CFB RFB1  
CL  
Oscillator  
Maximum duty  
soft-start circuit  
M1  
+
ROSC RDuty  
CIN  
EXT  
+
comparator  
Error amplifier  
FB  
Timer latch  
0.1 μF  
short-circuit  
Reference voltage  
(1.0 V)  
soft-start circuit  
protection circuit  
RFB2  
VSS  
CSP  
CC  
RZ  
CZ  
Ground point  
Figure 15 Standard Circuit  
Caution  
The above connection diagram and constant will not guarantee successful operation.  
Perform thorough evaluation using the actual application to set the constant.  
19  
STEP-UP, FOR LCD BIAS SUPPLY, 1-CHANNEL, PWM CONTROL SWITCHING REGULATOR CONTROLLER  
S-8333 Series  
Rev.4.2_01  
Precaution  
Mount external capacitors, diodes, and inductor as close as possible to the IC.  
Characteristics ripple voltage and spike noise occur in IC containing switching regulators. Moreover rush current  
flows at the time of a power supply injection. Because these largely depend on the inductor, the capacitor and  
impedance of power supply used, fully check them using an actually mounted model.  
Make sure the dissipation of the switching transistor (especially at a high temperature) does not exceed the  
allowable power dissipation of the package.  
The performance of a switching regulator varies depending on the design of the PCB patterns, peripheral circuits,  
and external parts. Thoroughly test all settings with your device.  
The capacitor, diode, inductor and others used as external parts do not assure the operation at high temperature.  
Evaluate fully using the actual application when designing.  
This IC builds in soft start function, starts reference voltage gradually, and it is controlled so that FB pin voltage and  
reference voltage become this potential. Therefore, keep in mind that it will be in a maximum duty state according  
to the factor of IC exterior if FB pin voltage is held less than reference voltage.  
Although the IC contains a static electricity protection circuit, static electricity or voltage that exceeds the limit of the  
protection circuit should not be applied.  
SII Semiconductor Corporation assumes no responsibility for the way in which this IC is used on products created  
using this IC or for the specifications of that product, nor does SII Semiconductor Corporation assume any  
responsibility for any infringement of patents or copyrights by products that include this IC either in Japan or in  
other countries.  
20  
STEP-UP, FOR LCD BIAS SUPPLY, 1-CHANNEL, PWM CONTROL SWITCHING REGULATOR CONTROLLER  
Rev.4.2_01  
S-8333 Series  
Characteristics (Typical Data)  
1. Example of Major Temperature Characteristics (Ta = −40 to +85°C)  
ISS1 vs. Ta (VIN = 3.3 V)  
I
EXTH vs. Ta (VIN = 3.3 V)  
IEXTL vs. Ta (VIN = 3.3 V)  
IFB vs. Ta (VIN = 3.3 V)  
fOSC vs. Ta (VIN = 3.3 V)  
0.10  
0.08  
0.06  
0.04  
0.02  
0
0.02  
0.04  
0.06  
0.08  
0.10  
100  
40 20  
0
20 40 60 80  
Ta [C]  
MaxDuty vs. Ta (VIN = 3.3 V)  
tSS vs. Ta (VIN = 3.3 V)  
100  
90  
25.0  
t
SS = 20 ms  
MaxDuty = 88.5% (ROSC = 200 kRDuty = 100 k)  
80  
70  
60  
50  
40  
30  
20  
10  
0
20.0  
15.0  
10.0  
5.0  
MaxDuty = 73% (ROSC = 200 kRDuty = 300 k)  
MaxDuty = 47% (ROSC = 200 kRDuty = 640 k)  
t
SS = 10 ms  
0
100  
40 20  
0
20 40 60 80  
Ta [C]  
40 20  
0
20 40 60 80 100  
Ta [C]  
21  
STEP-UP, FOR LCD BIAS SUPPLY, 1-CHANNEL, PWM CONTROL SWITCHING REGULATOR CONTROLLER  
S-8333 Series  
Rev.4.2_01  
tPRO vs. Ta (VIN = 3.3 V)  
VUVLO vs. Ta  
70.0  
2.5  
tPRO = 50 ms (CSP = 0.1 F)  
60.0  
2.0  
1.5  
1.0  
0.5  
0
50.0  
40.0  
30.0  
20.0  
10.0  
0
V
UVLO = 2.3 V  
UVLO = 1.5 V  
V
100  
40 20  
0
20 40 60 80  
Ta [C]  
100  
40 20  
0
20 40 60 80  
Ta [C]  
VUVLOHYS vs. Ta  
ICCH vs. Ta (VIN = 3.3 V)  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
V
UVLOHYS = 0.3 V  
V
UVLOHYS = 0.1 V  
0
100  
40 20  
0
20 40 60 80  
Ta [C]  
ICCL vs. Ta (VIN = 3.3 V)  
VRTLT1 vs. Ta (VIN = 3.3 V)  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
100  
40 20  
0
20 40 60 80  
Ta [C]  
22  
STEP-UP, FOR LCD BIAS SUPPLY, 1-CHANNEL, PWM CONTROL SWITCHING REGULATOR CONTROLLER  
Rev.4.2_01  
S-8333 Series  
2. Example of Major Power Supply Dependence Characteristics (Ta = 25°C)  
ISS1 vs. VIN  
IEXTH vs. VIN  
IEXTL vs. VIN  
IFB vs. VIN  
fOSC vs. VIN  
0.10  
0.08  
0.06  
0.04  
0.02  
0
0.02  
0.04  
0.06  
0.08  
0.10  
7
0
1
2
3
4
5
6
VIN [V]  
MaxDuty vs. VIN  
tSS vs. VIN  
25.0  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
20.0  
15.0  
10.0  
5.0  
MaxDuty = 88.5% (ROSC = 200 kRDuty = 100 k)  
MaxDuty = 73% (ROSC = 200 kRDuty = 300 k)  
tSS = 20 ms  
tSS = 10 ms  
MaxDuty = 47% (ROSC = 200 kRDuty = 640 k)  
0
0
7
1
2
3
V
4
IN [V]  
5
6
7
0
1
2
3
4
5
6
VIN [V]  
23  
STEP-UP, FOR LCD BIAS SUPPLY, 1-CHANNEL, PWM CONTROL SWITCHING REGULATOR CONTROLLER  
S-8333 Series  
Rev.4.2_01  
tPRO vs. VIN  
ICCH vs. VIN  
70.0  
tPRO=50 ms (CSP = 0.1 F)  
60.0  
50.0  
40.0  
30.0  
20.0  
10.0  
0
7
0
1
2
3
4
5
6
VIN [V]  
ICCL vs. VIN  
24  
STEP-UP, FOR LCD BIAS SUPPLY, 1-CHANNEL, PWM CONTROL SWITCHING REGULATOR CONTROLLER  
Rev.4.2_01  
S-8333 Series  
3. Example of External Parts Dependence Characteristics  
fOSC vs. ROSC (VIN = 3.3 V)  
MaxDuty vs. RDuty / ROSC (ROSC = 200 kΩ, VIN = 3.3 V)  
100  
90  
Ta = 40C  
80  
Ta = 25C  
70  
60  
Ta = 85C  
50  
40  
30  
20  
10  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
R
Duty / ROSC  
tPRO vs. CSP (VIN = 3.3 V)  
350  
300  
250  
200  
150  
100  
50  
Ta = 40C  
Ta = 25C  
Ta = 85C  
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
CSP [F]  
25  
STEP-UP, FOR LCD BIAS SUPPLY, 1-CHANNEL, PWM CONTROL SWITCHING REGULATOR CONTROLLER  
S-8333 Series  
Rev.4.2_01  
4. Examples of Transient Response Characteristics  
4.1 Powering ON (VOUT = 9.2 V, VIN = 0 V 3.3 V, Ta = 25°C)  
Remark The switch (SW) is inserted between the diode (SD) and VOUT output.  
Controlled externally to turn SW on a few ms later after the VIN voltage is applied.  
(1) fOSC = 1080 kHz, IOUT = 0 mA, tSS = 10 ms  
(2) fOSC = 1080 kHz, IOUT = 100 mA, tSS = 10 ms  
12  
8
12  
8
4
4
4
2
0
0
4
2
0
0
5  
0
5
10  
15  
20  
5  
0
5
10  
15  
20  
20  
20  
time [ms]  
time [ms]  
(3) fOSC = 650 kHz, IOUT = 0 mA, tSS = 10 ms  
(4) fOSC = 650 kHz, IOUT = 100 mA, tSS = 10 ms  
12  
8
12  
8
4
4
4
2
0
4
2
0
0
0
5  
0
5
10  
15  
20  
5  
0
5
10  
15  
time [ms]  
time [ms]  
(5) fOSC = 280 kHz, IOUT = 0 mA, tSS = 10 ms  
(6) fOSC = 280 kHz, IOUT = 100 mA, tSS = 10 ms  
12  
8
12  
8
4
4
4
2
0
0
4
2
0
0
5  
0
5
10  
15  
20  
5  
0
5
10  
15  
time [ms]  
time [ms]  
26  
STEP-UP, FOR LCD BIAS SUPPLY, 1-CHANNEL, PWM CONTROL SWITCHING REGULATOR CONTROLLER  
Rev.4.2_01  
S-8333 Series  
4.2 Load fluctuations (VOUT = 9.2 V, VIN = 3.3 V, Ta = 25°C, RZ = 200 kΩ, CZ = 0.01 μF)  
(1) fOSC = 1080 kHz, IOUT = 0.1 mA100 mA  
(2) fOSC = 1080 kHz, IOUT = 100 mA0.1 mA  
10.0  
9.8  
9.6  
9.4  
9.2  
9.0  
8.8  
10.0  
9.8  
9.6  
9.4  
9.2  
9.0  
8.8  
IOUT  
IOUT  
100 mA  
0.1 mA  
100 mA  
0.1 mA  
V
OUT  
V
OUT  
[0.2 V/div]  
[0.2 V/div]  
20  
10  
0
10  
20  
20  
20  
20  
10  
0
10  
20  
20  
20  
time [ms]  
time [ms]  
(3) fOSC = 650 kHz, IOUT = 0.1 mA100 mA  
IOUT  
(4) fOSC = 650 kHz, IOUT = 100 mA0.1 mA  
10.0  
9.8  
9.6  
9.4  
9.2  
9.0  
8.8  
10.0  
9.8  
9.6  
9.4  
9.2  
9.0  
8.8  
IOUT  
100 mA  
100 mA  
0.1 mA  
0.1 mA  
VOUT  
[0.2 V/div]  
V
OUT  
[0.2 V/div]  
20  
10  
0
10  
20  
10  
0
10  
time [ms]  
time [ms]  
(5) fOSC = 280 kHz, IOUT = 0.1 mA100 mA  
(6) fOSC = 280 kHz, IOUT = 100 mA0.1 mA  
10.0  
9.8  
9.6  
9.4  
9.2  
9.0  
8.8  
10.0  
9.8  
9.6  
9.4  
9.2  
9.0  
8.8  
IOUT  
IOUT  
100 mA  
0.1 mA  
100 mA  
0.1 mA  
V
OUT  
V
OUT  
[0.2 V/div]  
[0.2 V/div]  
20  
10  
0
10  
20  
10  
0
10  
time [ms]  
time [ms]  
27  
STEP-UP, FOR LCD BIAS SUPPLY, 1-CHANNEL, PWM CONTROL SWITCHING REGULATOR CONTROLLER  
S-8333 Series  
Rev.4.2_01  
4.3 Input voltage fluctuations (VOUT = 9.2 V, IOUT = 100 mA, RZ = 200 kΩ, CZ = 0.01 μF)  
(1) fOSC = 1080 kHz, VIN = 2.8 V3.8 V  
(2) fOSC = 1080 kHz, VIN = 3.8 V2.8 V  
4.0  
4.0  
3.5  
3.0  
2.5  
3.5  
3.0  
2.5  
VIN  
[V]  
VIN  
[V]  
9.40  
9.30  
9.20  
9.10  
9.40  
9.30  
9.20  
9.10  
VOUT  
[V]  
VOUT  
[V]  
20  
10  
0
10  
20  
20  
10  
0
10  
20  
time [ms]  
time [ms]  
(3) fOSC = 650 kHz, VIN = 2.8 V3.8 V  
(4) fOSC = 650 kHz, VIN = 3.8 V2.8 V  
4.0  
4.0  
3.5  
3.0  
2.5  
3.5  
3.0  
2.5  
V
IN  
V
IN  
[V]  
[V]  
9.40  
9.30  
9.20  
9.10  
9.40  
9.30  
9.20  
9.10  
V
OUT  
V
OUT  
[V]  
[V]  
20  
10  
0
10  
20  
20  
10  
0
10  
20  
time [ms]  
time [ms]  
(5) fOSC = 280 kHz, VIN = 2.8 V3.8 V  
(6) fOSC = 280 kHz, VIN = 3.8 V2.8 V  
4.0  
4.0  
3.5  
3.0  
2.5  
3.5  
3.0  
2.5  
VIN  
[V]  
VIN  
[V]  
9.40  
9.30  
9.20  
9.10  
9.40  
9.30  
9.20  
9.10  
VOUT  
[V]  
VOUT  
[V]  
20  
10  
0
10  
20  
20  
10  
0
10  
20  
time [ms]  
time [ms]  
28  
STEP-UP, FOR LCD BIAS SUPPLY, 1-CHANNEL, PWM CONTROL SWITCHING REGULATOR CONTROLLER  
Rev.4.2_01  
S-8333 Series  
Reference Data  
1. Reference data for external parts  
Table 6 Properties of External Parts  
Element Name  
Inductor  
Product Name  
LDR655312T  
RB491D  
Manufacture  
Characteristics  
*2  
10 μH, DCR*1 = 307 mΩ, IMAX = 0.7 A,  
TDK Corporation  
Rohm Co., Ltd.  
Height = 1.2 mm  
*3  
*4  
Diode  
VF = 0.45 V, IF = 1.0 A  
16 V, 10 μF  
Output capacitor  
(ceramic)  
*5  
*6  
*7  
VDSS = 20 V, VGSS = 10 V, Ciss = 280 pF,  
Transistor  
MCH3406  
Sanyo Electric Co., Ltd.  
*8  
*9  
*10  
RDS(ON) = 82 mΩ max. (VGS = 2.5 V, ID = 1 A)  
*1. DCR :  
DC resistance  
*2. IMAX  
*3. VF :  
*4. IF :  
:
Maximum allowable current  
Forward voltage  
Forward current  
*5. VDSS  
:
:
Drain to source voltage (when short circuited between the gate and source)  
Gate to source voltage (when short circuited between the drain and source)  
Input capacitance  
*6. VGSS  
*7. Ciss  
:
*8. RDS(ON) : Drain to source on resistance  
*9. VGS  
*10. ID :  
:
Gate to source voltage  
Drain current  
Caution The values shown in the characteristics column of Table 6 above are based on the materials  
provided by each manufacturer. However, consider the characteristics of the original materials  
when using the above products.  
29  
STEP-UP, FOR LCD BIAS SUPPLY, 1-CHANNEL, PWM CONTROL SWITCHING REGULATOR CONTROLLER  
S-8333 Series  
Rev.4.2_01  
2. Reference data (1)  
The data of (a) output current (IOUT) vs. efficiency (η) characteristics and (b) output current (IOUT) vs. output voltage  
(VOUT) characteristics is shown below.  
2. 1 VOUT = 13.1 V (RFB1 = 7.5 kΩ, RFB2 = 620 Ω)  
(1) fOSC = 1080 kHz, MaxDuty = 73% (ROSC = 120 kΩ, RDuty = 180 kΩ)  
(a) IOUT vs. η  
(b) IOUT vs. VOUT  
13.20  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
13.15  
13.10  
13.05  
13.00  
12.95  
V
IN = 5.0 V  
VIN = 5.0 V  
12.90  
0.01  
0.1  
0.1  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
IOUT [mA]  
IOUT [mA]  
(2) fOSC = 650 kHz, MaxDuty = 73% (ROSC = 200 kΩ, RDuty = 300 kΩ)  
(a) IOUT vs. η  
(b) IOUT vs. VOUT  
13.20  
13.15  
13.10  
13.05  
13.00  
12.95  
12.90  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
IN = 5.0 V  
VIN = 5.0 V  
0.01  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
IOUT [mA]  
IOUT [mA]  
(3) fOSC = 280 kHz, MaxDuty = 73% (ROSC = 470 kΩ, RDuty = 750 kΩ)  
(a) IOUT vs. η  
(b) IOUT vs. VOUT  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
13.20  
13.15  
13.10  
13.05  
13.00  
12.95  
V
IN = 5.0 V  
VIN = 5.0 V  
12.90  
0.01  
0.01  
0.1  
1
10  
100  
1000  
1
10  
100  
1000  
IOUT [mA]  
IOUT [mA]  
30  
STEP-UP, FOR LCD BIAS SUPPLY, 1-CHANNEL, PWM CONTROL SWITCHING REGULATOR CONTROLLER  
Rev.4.2_01  
S-8333 Series  
2. 2 VOUT = 9.2 V (RFB1 = 8.2 kΩ, RFB2 = 1.0 kΩ)  
(1) fOSC = 1080 kHz, MaxDuty = 73% (ROSC = 120 kΩ, RDuty = 180 kΩ)  
(a) IOUT vs. η  
(b) IOUT vs. VOUT  
9.30  
9.25  
9.20  
9.15  
9.10  
9.05  
9.00  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
V
IN = 3.3 V  
IN = 5.0 V  
V
V
IN = 3.3 V  
IN = 5.0 V  
0.01  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
IOUT [mA]  
IOUT [mA]  
(2) fOSC = 650 kHz, MaxDuty = 73% (ROSC = 200 kΩ, RDuty = 300 kΩ)  
(a) IOUT vs. η  
(b) IOUT vs. VOUT  
9.30  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
9.25  
9.20  
9.15  
9.10  
9.05  
V
V
IN = 3.3 V  
IN = 5.0 V  
V
V
IN = 3.3 V  
IN = 5.0 V  
9.00  
0.01  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
IOUT [mA]  
IOUT [mA]  
(3) fOSC = 280 kHz, MaxDuty = 73% (ROSC = 470 kΩ, RDuty = 750 kΩ)  
(a) IOUT vs. η  
(b) IOUT vs. VOUT  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
9.30  
9.25  
9.20  
9.15  
9.10  
9.05  
9.00  
V
V
IN = 3.3 V  
IN = 5.0 V  
V
V
IN = 3.3 V  
IN = 5.0 V  
0.01  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
IOUT [mA]  
IOUT [mA]  
31  
STEP-UP, FOR LCD BIAS SUPPLY, 1-CHANNEL, PWM CONTROL SWITCHING REGULATOR CONTROLLER  
S-8333 Series  
Rev.4.2_01  
2. 3 VOUT = 6.1 V (RFB1 = 5.1 kΩ, RFB2 = 1.0 kΩ)  
(1) fOSC = 1080 kHz, MaxDuty = 73% (ROSC = 120 kΩ, RDuty = 180 kΩ)  
(a) IOUT vs. η  
(b) IOUT vs. VOUT  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
6.20  
6.15  
6.10  
6.05  
6.00  
5.95  
5.90  
V
V
IN = 2.5 V  
IN = 3.3 V  
V
V
IN = 2.5 V  
IN = 3.3 V  
0.01  
0.1  
1
10  
100  
1000  
0.01  
0.1  
0.1  
0.1  
1
10  
10  
10  
100  
1000  
IOUT [mA]  
I
OUT [mA]  
(2) fOSC = 650 kHz, MaxDuty = 73% (ROSC = 200 kΩ, RDuty = 300 kΩ)  
(a) IOUT vs. η  
(b) IOUT vs. VOUT  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
6.20  
6.15  
6.10  
6.05  
6.00  
5.95  
V
V
IN = 2.5 V  
IN = 3.3 V  
V
V
IN = 2.5 V  
IN = 3.3 V  
5.90  
0.01  
0.01  
0.1  
1
10  
100  
1000  
1
100  
1000  
IOUT [mA]  
I
OUT [mA]  
(3) fOSC = 280 kHz, MaxDuty = 73% (ROSC = 470 kΩ, RDuty = 750 kΩ)  
(a) IOUT vs. η  
(b) IOUT vs. VOUT  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
6.20  
6.15  
6.10  
6.05  
6.00  
5.95  
5.90  
V
V
IN = 2.5 V  
IN = 3.3 V  
V
V
IN = 2.5 V  
IN = 3.3 V  
0.01  
0.1  
1
10  
100  
1000  
0.01  
1
100  
1000  
IOUT [mA]  
I
OUT [mA]  
32  
STEP-UP, FOR LCD BIAS SUPPLY, 1-CHANNEL, PWM CONTROL SWITCHING REGULATOR CONTROLLER  
Rev.4.2_01  
S-8333 Series  
3. Reference data (2)  
The data of output current (IOUT) vs. ripple voltage (Vr) characteristics is shown below.  
3. 1 VOUT = 13.1 V (RFB1 = 7.5 kΩ, RFB2 = 620 Ω)  
(1) fOSC = 1080 kHz, MaxDuty = 73 %  
(ROSC = 120 kΩ, RDuty = 180 kΩ)  
100  
(2) fOSC = 650 kHz, MaxDuty = 73%  
(ROSC = 200 kΩ, RDuty = 300 kΩ)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
VIN = 5.0 V  
V
IN = 5.0 V  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.01  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
IOUT [mA]  
IOUT [mA]  
(3) fOSC = 280 kHz, MaxDuty = 73%  
(ROSC = 470 kΩ, RDuty = 750 kΩ)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
IN = 5.0 V  
0.01  
0.1  
1
10  
100  
1000  
IOUT [mA]  
3. 2 VOUT = 9.2 V (RFB1 = 8.2 kΩ, RFB2 = 1.0 kΩ)  
(1) fOSC = 1080 kHz, MaxDuty = 73%  
(ROSC = 120 kΩ, RDuty = 180 kΩ)  
100  
(2) fOSC = 650 kHz, MaxDuty = 73%  
(ROSC = 200 kΩ, RDuty = 300 kΩ)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
IN = 3.3 V  
IN = 5.0 V  
V
V
IN = 3.3 V  
IN = 5.0 V  
V
0.01  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
IOUT [mA]  
IOUT [mA]  
(3) fOSC = 280 kHz, MaxDuty = 73%  
(ROSC = 470 kΩ, RDuty = 750 kΩ)  
100  
V
V
IN = 3.3 V  
IN = 5.0 V  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.01  
0.1  
1
10  
100  
1000  
IOUT [mA]  
33  
STEP-UP, FOR LCD BIAS SUPPLY, 1-CHANNEL, PWM CONTROL SWITCHING REGULATOR CONTROLLER  
S-8333 Series  
Rev.4.2_01  
3. 3 VOUT = 6.1 V (RFB1 = 5.1 kΩ, RFB2 = 1.0 kΩ)  
(1) fOSC = 1080 kHz, MaxDuty = 73%  
(ROSC = 120 kΩ, RDuty = 180 kΩ)  
100  
(2) fOSC = 650 kHz, MaxDuty = 73%  
(ROSC = 200 kΩ, RDuty = 300 kΩ)  
100  
VIN = 2.5 V  
IN = 3.3 V  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
V
IN = 2.5 V  
IN = 3.3 V  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
0.01  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
IOUT [mA]  
IOUT [mA]  
(3) fOSC = 280 kHz, MaxDuty = 73%  
(ROSC = 470 kΩ, RDuty = 750 kΩ)  
100  
VIN = 2.5 V  
VIN = 3.3 V  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.01  
0.1  
1
10  
100  
1000  
I
OUT [mA]  
34  
STEP-UP, FOR LCD BIAS SUPPLY, 1-CHANNEL, PWM CONTROL SWITCHING REGULATOR CONTROLLER  
Rev.4.2_01  
S-8333 Series  
Marking Specifications  
1. SNT-8A  
Top view  
(1):  
Blank  
8
7
6
5
(2) to (4):  
(5), (6):  
(7) to (11):  
Product code (Refer to Product name vs. Product code)  
Blank  
Lot number  
(1) (2) (3) (4)  
(5) (6) (7) (8)  
(9) (10) (11  
)
1
2
3
4
Product name vs. Product code  
Product code  
Product code  
Product name  
Product name  
(2)  
(3)  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
(4)  
A
B
C
D
E
F
G
H
I
(2)  
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
(3)  
3
3
3
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
(4)  
O
P
Q
R
S
T
U
V
W
X
Y
Z
S-8333CAAA-I8T1U  
S-8333CAAB-I8T1U  
S-8333CAAC-I8T1U  
S-8333CABA-I8T1U  
S-8333CABB-I8T1U  
S-8333CABC-I8T1U  
S-8333CACA-I8T1U  
S-8333CACB-I8T1U  
S-8333CACC-I8T1U  
S-8333CADA-I8T1U  
S-8333CADB-I8T1U  
S-8333CADC-I8T1U  
S-8333CAEA-I8T1U  
S-8333CAEB-I8T1U  
S-8333CAEC-I8T1U  
S-8333CAFA-I8T1U  
S-8333CAFB-I8T1U  
S-8333CAFC-I8T1U  
S-8333CAGA-I8T1U  
S-8333CAGB-I8T1U  
S-8333CAGC-I8T1U  
S-8333CAHA-I8T1U  
S-8333CAHB-I8T1U  
S-8333CAHC-I8T1U  
S-8333CAIA-I8T1U  
S-8333CAIB-I8T1U  
S-8333CAIC-I8T1U  
S-8333CBAA-I8T1U  
S-8333CBAB-I8T1U  
S-8333CBAC-I8T1U  
S-8333CBBA-I8T1U  
S-8333CBBB-I8T1U  
S-8333CBBC-I8T1U  
S-8333CBCA-I8T1U  
S-8333CBCB-I8T1U  
S-8333CBCC-I8T1U  
S-8333CBDA-I8T1U  
S-8333CBDB-I8T1U  
S-8333CBDC-I8T1U  
S-8333CBEA-I8T1U  
S-8333CBEB-I8T1U  
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
S-8333CBEC-I8T1U  
S-8333CBFA-I8T1U  
S-8333CBFB-I8T1U  
S-8333CBFC-I8T1U  
S-8333CBGA-I8T1U  
S-8333CBGB-I8T1U  
S-8333CBGC-I8T1U  
S-8333CBHA-I8T1U  
S-8333CBHB-I8T1U  
S-8333CBHC-I8T1U  
S-8333CBIA-I8T1U  
S-8333CBIB-I8T1U  
S-8333CBIC-I8T1U  
S-8333CCAA-I8T1U  
S-8333CCAB-I8T1U  
S-8333CCAC-I8T1U  
S-8333CCBA-I8T1U  
S-8333CCBB-I8T1U  
S-8333CCBC-I8T1U  
S-8333CCCA-I8T1U  
S-8333CCCB-I8T1U  
S-8333CCCC-I8T1U  
S-8333CCDA-I8T1U  
S-8333CCDB-I8T1U  
S-8333CCDC-I8T1U  
S-8333CCEA-I8T1U  
S-8333CCEB-I8T1U  
S-8333CCEC-I8T1U  
S-8333CCFA-I8T1U  
S-8333CCFB-I8T1U  
S-8333CCFC-I8T1U  
S-8333CCGA-I8T1U  
S-8333CCGB-I8T1U  
S-8333CCGC-I8T1U  
S-8333CCHA-I8T1U  
S-8333CCHB-I8T1U  
S-8333CCHC-I8T1U  
S-8333CCIA-I8T1U  
S-8333CCIB-I8T1U  
S-8333CCIC-I8T1U  
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
3
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
3
A
B
C
D
E
F
G
H
I
J
K
L
M
N
3
35  
STEP-UP, FOR LCD BIAS SUPPLY, 1-CHANNEL, PWM CONTROL SWITCHING REGULATOR CONTROLLER  
S-8333 Series  
Rev.4.2_01  
2. 8-Pin TSSOP  
Top view  
(1) to (4):  
(5) to (8):  
(9) to (14): Lot number  
Product name: 8333 (Fixed)  
Function code (Refer to Product name vs. Function code)  
1
2
3
4
8
7
6
5
(1) (2) (3) (4)  
(5) (6) (7) (8)  
(9) (10) (11) (12) (13) (14  
)
Product name vs. Function code  
Function code  
(5) (6) (7) (8)  
Function code  
Product name  
Product name  
(5)  
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
(6)  
B
B
B
B
B
B
B
B
B
B
B
B
B
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
(7)  
E
F
F
F
G
G
G
H
H
H
I
(8)  
C
A
B
C
A
B
C
A
B
C
A
B
C
A
B
C
A
B
C
A
B
C
A
B
C
A
B
C
A
B
C
A
B
C
A
B
C
A
B
C
S-8333CAAA-T8T1y  
S-8333CAAB-T8T1y  
S-8333CAAC-T8T1y  
S-8333CABA-T8T1y  
S-8333CABB-T8T1y  
S-8333CABC-T8T1y  
S-8333CACA-T8T1y  
S-8333CACB-T8T1y  
S-8333CACC-T8T1y  
S-8333CADA-T8T1y  
S-8333CADB-T8T1y  
S-8333CADC-T8T1y  
S-8333CAEA-T8T1y  
S-8333CAEB-T8T1y  
S-8333CAEC-T8T1y  
S-8333CAFA-T8T1y  
S-8333CAFB-T8T1y  
S-8333CAFC-T8T1y  
S-8333CAGA-T8T1y  
S-8333CAGB-T8T1y  
S-8333CAGC-T8T1y  
S-8333CAHA-T8T1y  
S-8333CAHB-T8T1y  
S-8333CAHC-T8T1y  
S-8333CAIA-T8T1y  
S-8333CAIB-T8T1y  
S-8333CAIC-T8T1y  
S-8333CBAA-T8T1y  
S-8333CBAB-T8T1y  
S-8333CBAC-T8T1y  
S-8333CBBA-T8T1y  
S-8333CBBB-T8T1y  
S-8333CBBC-T8T1y  
S-8333CBCA-T8T1y  
S-8333CBCB-T8T1y  
S-8333CBCC-T8T1y  
S-8333CBDA-T8T1y  
S-8333CBDB-T8T1y  
S-8333CBDC-T8T1y  
S-8333CBEA-T8T1y  
S-8333CBEB-T8T1y  
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
B
B
B
B
B
B
B
B
B
B
B
B
B
B
A
A
A
B
B
B
C
C
C
D
D
D
E
E
E
F
F
F
G
G
G
H
H
H
I
A
B
C
A
B
C
A
B
C
A
B
C
A
B
C
A
B
C
A
B
C
A
B
C
A
B
C
A
B
C
A
B
C
A
B
C
A
B
C
A
B
S-8333CBEC-T8T1y  
S-8333CBFA-T8T1y  
S-8333CBFB-T8T1y  
S-8333CBFC-T8T1y  
S-8333CBGA-T8T1y  
S-8333CBGB-T8T1y  
S-8333CBGC-T8T1y  
S-8333CBHA-T8T1y  
S-8333CBHB-T8T1y  
S-8333CBHC-T8T1y  
S-8333CBIA-T8T1y  
S-8333CBIB-T8T1y  
S-8333CBIC-T8T1y  
S-8333CCAA-T8T1y  
S-8333CCAB-T8T1y  
S-8333CCAC-T8T1y  
S-8333CCBA-T8T1y  
S-8333CCBB-T8T1y  
S-8333CCBC-T8T1y  
S-8333CCCA-T8T1y  
S-8333CCCB-T8T1y  
S-8333CCCC-T8T1y  
S-8333CCDA-T8T1y  
S-8333CCDB-T8T1y  
S-8333CCDC-T8T1y  
S-8333CCEA-T8T1y  
S-8333CCEB-T8T1y  
S-8333CCEC-T8T1y  
S-8333CCFA-T8T1y  
S-8333CCFB-T8T1y  
S-8333CCFC-T8T1y  
S-8333CCGA-T8T1y  
S-8333CCGB-T8T1y  
S-8333CCGC-T8T1y  
S-8333CCHA-T8T1y  
S-8333CCHB-T8T1y  
S-8333CCHC-T8T1y  
S-8333CCIA-T8T1y  
S-8333CCIB-T8T1y  
S-8333CCIC-T8T1y  
I
I
A
A
A
B
B
B
C
C
C
D
D
D
E
E
E
F
F
F
G
G
G
H
H
H
I
I
I
A
A
A
B
B
B
C
C
C
D
D
D
E
E
I
I
Remark 1. y: S or U  
2. Please select products of environmental code = U for Sn 100%, halogen-free products.  
36  
1.97±0.03  
6
5
8
7
+0.05  
-0.02  
0.08  
1
2
3
4
0.5  
0.48±0.02  
0.2±0.05  
No. PH008-A-P-SD-2.0  
SNT-8A-A-PKG Dimensions  
PH008-A-P-SD-2.0  
TITLE  
No.  
SCALE  
UNIT  
mm  
SII Semiconductor Corporation  
+0.1  
-0  
4.0±0.1  
2.0±0.05  
0.25±0.05  
ø1.5  
0.65±0.05  
ø0.5±0.1  
4.0±0.1  
2.25±0.05  
5°  
4 3 2 1  
5 6 7 8  
Feed direction  
No. PH008-A-C-SD-1.0  
SNT-8A-A-Carrier Tape  
PH008-A-C-SD-1.0  
TITLE  
No.  
SCALE  
UNIT  
mm  
SII Semiconductor Corporation  
12.5max.  
9.0±0.3  
Enlarged drawing in the central part  
ø13±0.2  
(60°)  
(60°)  
No. PH008-A-R-SD-1.0  
SNT-8A-A-Reel  
TITLE  
PH008-A-R-SD-1.0  
No.  
SCALE  
UNIT  
5,000  
QTY.  
mm  
SII Semiconductor Corporation  
0.52  
2
2.01  
0.52  
1
0.2  
0.3  
1.  
2.  
(0.25 mm min. / 0.30 mm typ.)  
(1.96 mm ~ 2.06 mm)  
1.  
2.  
0.03 mm  
3.  
4.  
SNT  
1. Pay attention to the land pattern width (0.25 mm min. / 0.30 mm typ.).  
2. Do not widen the land pattern to the center of the package (1.96 mm to 2.06mm).  
Caution 1. Do not do silkscreen printing and solder printing under the mold resin of the package.  
2. The thickness of the solder resist on the wire pattern under the package should be 0.03 mm  
or less from the land pattern surface.  
3. Match the mask aperture size and aperture position with the land pattern.  
4. Refer to "SNT Package User's Guide" for details.  
(0.25 mm min. / 0.30 mm typ.)  
(1.96 mm ~ 2.06 mm)  
1.  
2.  
SNT-8A-A  
-Land Recommendation  
TITLE  
No. PH008-A-L-SD-4.1  
PH008-A-L-SD-4.1  
No.  
SCALE  
UNIT  
mm  
SII Semiconductor Corporation  
+0.3  
-0.2  
3.00  
5
8
1
4
0.17±0.05  
0.2±0.1  
0.65  
No. FT008-A-P-SD-1.1  
TSSOP8-E-PKG Dimensions  
FT008-A-P-SD-1.1  
TITLE  
No.  
SCALE  
UNIT  
mm  
SII Semiconductor Corporation  
4.0±0.1  
2.0±0.05  
ø1.55±0.05  
0.3±0.05  
+0.1  
-0.05  
8.0±0.1  
ø1.55  
(4.4)  
+0.4  
-0.2  
6.6  
8
1
4
5
Feed direction  
No. FT008-E-C-SD-1.0  
TITLE  
TSSOP8-E-Carrier Tape  
FT008-E-C-SD-1.0  
No.  
SCALE  
UNIT  
mm  
SII Semiconductor Corporation  
13.4±1.0  
17.5±1.0  
Enlarged drawing in the central part  
ø21±0.8  
2±0.5  
ø13±0.5  
No. FT008-E-R-SD-1.0  
TSSOP8-E-Reel  
FT008-E-R-SD-1.0  
TITLE  
No.  
SCALE  
UNIT  
QTY.  
3,000  
mm  
SII Semiconductor Corporation  
Disclaimers (Handling Precautions)  
1. All the information described herein (product data, specifications, figures, tables, programs, algorithms and  
application circuit examples, etc.) is current as of publishing date of this document and is subject to change without  
notice.  
2. The circuit examples and the usages described herein are for reference only, and do not guarantee the success of  
any specific mass-production design.  
SII Semiconductor Corporation is not responsible for damages caused by the reasons other than the products or  
infringement of third-party intellectual property rights and any other rights due to the use of the information described  
herein.  
3. SII Semiconductor Corporation is not responsible for damages caused by the incorrect information described herein.  
4. Take care to use the products described herein within their specified ranges. Pay special attention to the absolute  
maximum ratings, operation voltage range and electrical characteristics, etc.  
SII Semiconductor Corporation is not responsible for damages caused by failures and/or accidents, etc. that occur  
due to the use of products outside their specified ranges.  
5. When using the products described herein, confirm their applications, and the laws and regulations of the region or  
country where they are used and verify suitability, safety and other factors for the intended use.  
6. When exporting the products described herein, comply with the Foreign Exchange and Foreign Trade Act and all  
other export-related laws, and follow the required procedures.  
7. The products described herein must not be used or provided (exported) for the purposes of the development of  
weapons of mass destruction or military use. SII Semiconductor Corporation is not responsible for any provision  
(export) to those whose purpose is to develop, manufacture, use or store nuclear, biological or chemical weapons,  
missiles, or other military use.  
8. The products described herein are not designed to be used as part of any device or equipment that may affect the  
human body, human life, or assets (such as medical equipment, disaster prevention systems, security systems,  
combustion control systems, infrastructure control systems, vehicle equipment, traffic systems, in-vehicle equipment,  
aviation equipment, aerospace equipment, and nuclear-related equipment), excluding when specified for in-vehicle  
use or other uses. Do not use those products without the prior written permission of SII Semiconductor Corporation.  
Especially, the products described herein cannot be used for life support devices, devices implanted in the human  
body and devices that directly affect human life, etc.  
Prior consultation with our sales office is required when considering the above uses.  
SII Semiconductor Corporation is not responsible for damages caused by unauthorized or unspecified use of our  
products.  
9. Semiconductor products may fail or malfunction with some probability.  
The user of these products should therefore take responsibility to give thorough consideration to safety design  
including redundancy, fire spread prevention measures, and malfunction prevention to prevent accidents causing  
injury or death, fires and social damage, etc. that may ensue from the products' failure or malfunction.  
The entire system must be sufficiently evaluated and applied on customer's own responsibility.  
10. The products described herein are not designed to be radiation-proof. The necessary radiation measures should be  
taken in the product design by the customer depending on the intended use.  
11. The products described herein do not affect human health under normal use. However, they contain chemical  
substances and heavy metals and should therefore not be put in the mouth. The fracture surfaces of wafers and chips  
may be sharp. Take care when handling these with the bare hands to prevent injuries, etc.  
12. When disposing of the products described herein, comply with the laws and ordinances of the country or region where  
they are used.  
13. The information described herein contains copyright information and know-how of SII Semiconductor Corporation.  
The information described herein does not convey any license under any intellectual property rights or any other  
rights belonging to SII Semiconductor Corporation or a third party. Reproduction or copying of the information  
described herein for the purpose of disclosing it to a third-party without the express permission of SII Semiconductor  
Corporation is strictly prohibited.  
14. For more details on the information described herein, contact our sales office.  
1.0-2016.01  
www.sii-ic.com  

相关型号:

S-8333CACC-T8T1S

PWM CONTROL SWITCHING REGULATOR CONTROLLER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SII

S-8333CACC-T8T1U

PWM CONTROL SWITCHING REGULATOR CONTROLLER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SII

S-8333CACC-T8T1y

STEP-UP, FOR LCD BIAS SUPPLY, 1-CHANNEL, PWM CONTROL SWITCHING REGULATOR CONTROLLER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SII

S-8333CADA-I8T1U

STEP-UP, FOR LCD BIAS SUPPLY, 1-CHANNEL, PWM CONTROL SWITCHING REGULATOR CONTROLLER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SII

S-8333CADA-T8T1S

PWM CONTROL SWITCHING REGULATOR CONTROLLER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SII

S-8333CADA-T8T1U

PWM CONTROL SWITCHING REGULATOR CONTROLLER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SII

S-8333CADA-T8T1y

STEP-UP, FOR LCD BIAS SUPPLY, 1-CHANNEL, PWM CONTROL SWITCHING REGULATOR CONTROLLER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SII

S-8333CADB-I8T1U

STEP-UP, FOR LCD BIAS SUPPLY, 1-CHANNEL, PWM CONTROL SWITCHING REGULATOR CONTROLLER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SII

S-8333CADB-T8T1S

PWM CONTROL SWITCHING REGULATOR CONTROLLER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SII

S-8333CADB-T8T1U

PWM CONTROL SWITCHING REGULATOR CONTROLLER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SII

S-8333CADB-T8T1y

STEP-UP, FOR LCD BIAS SUPPLY, 1-CHANNEL, PWM CONTROL SWITCHING REGULATOR CONTROLLER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SII

S-8333CADC-I8T1U

STEP-UP, FOR LCD BIAS SUPPLY, 1-CHANNEL, PWM CONTROL SWITCHING REGULATOR CONTROLLER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SII