S-8541B15FN-IGKT2S [SII]

SWITCHABLE SWITCHING REGULATOR CONTROLLER;
S-8541B15FN-IGKT2S
型号: S-8541B15FN-IGKT2S
厂家: SEIKO INSTRUMENTS INC    SEIKO INSTRUMENTS INC
描述:

SWITCHABLE SWITCHING REGULATOR CONTROLLER

开关
文件: 总36页 (文件大小:2114K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
S-8540/8541 Series  
STEP-DOWN, 600 kHz PWM CONTROL or PWM/PFM  
SWITCHABLE SWITCHING REGULATOR CONTROLLER  
www.sii-ic.com  
© SII Semiconductor Corporation, 2000-2010  
Rev.4.0_01  
The S-8540/8541 Series is a family of CMOS step-down switching regulator controllers with PWM control (S-  
8540 Series) and PWM/PFM switchover control (S-8541 Series). These devices consist of a reference voltage  
source, oscillation circuit, an error amplifier, phase compensation circuit, PWM control circuit, current limit  
circuit. A high efficiency and large current switching regulator is realized with the help of small external  
components due to the high oscillation frequency, 300 kHz and 600 kHz.  
The S-8540 Series provides low-ripple voltage, high efficiency, and excellent transient characteristics which  
come from the PMW control circuit capable of varying the duty ratio linearly from 0 to 100%, the optimized error  
amplifier, and the phase compensation circuit.  
The S-8541 Series operates under PWM control when the duty ratio is 29% or higher and operates under PFM  
control when the duty ratio is less than 29% to ensure high efficiency over all load range.  
These controllers serve as ideal main power supply units for portable devices due to the high oscillation  
frequencies together with the small 8-Pin MSOP package.  
Features  
600 kHz (A, B types)  
300 kHz (C, D types)  
Oscillation frequency  
1.5 to 6.0 V, selectable in 0.1V steps (A, C types)  
2.0%  
Output voltage  
Output voltage precision  
Feed back type for output voltage (FB)  
External components:  
Built-in PWM/PFM switchover control  
circuit (S-8541 series)  
a transistor, a coil, a diode, and capacitors  
Duty ratio: 29% (PFM control)  
29 to 100% (PWM control)  
Current is set by an external resistor RSENSE  
Time is set by a capacitor CSS and a resistor RSS.  
.
Current limit circuit  
Soft-start  
Shutdown function  
Lead-free, halogen-free*1  
*1. Refer to “Product Name Structure” for details.  
Applications  
Power supplies for PDAs, electric organizers, and portable devices.  
Power supplies for audio equipment such as portable CD players and headphone stereos.  
Main or sub Power supplies for notebook computers and peripheral equipment.  
Package  
8-Pin MSOP  
1
STEP-DOWN, 600 kHz PWM CONTROL or PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER  
Rev.4.0_01  
S-8540/8541 Series  
Block Diagrams  
1. A, C types (fixed output voltage)  
Pch Power  
MOS FET  
RSENSE  
L
SENSE  
Power for IC  
VIN  
Triangular wave  
oscillation circuit  
125 mV  
VOUT  
PWM comparator  
Phase  
compensation  
circuit  
VIN  
EXT  
COUT  
Error amplifier  
SD  
PWM or PWM / PFM  
switching control  
circuit  
CIN  
VSS  
VREF=1.0 V  
Voltage/current  
reference  
Shutdown soft start  
circuit  
CVREF  
ON/OFF  
VON/OFF  
CVL  
RSS  
CSS  
Figure 1  
2. B, D types (feed back)  
Pch Power  
MOS FET  
RSENSE  
L
SENSE  
VOUT  
Power for IC  
VIN  
Triangular wave  
oscillation circuit  
125 mV  
VOUT  
Phase  
compensation  
circuit  
PWM comparator  
VIN  
EXT  
RA  
RB  
CFB  
Error amplifier  
COUT  
SD  
PWM or PWM / PFM  
switching control  
circuit  
FB  
CIN  
VSS  
Shutdown soft start  
circuit  
VREF=1.0 V  
Voltage/current  
reference  
CVREF  
ON/OFF  
VON/OFF  
CVL  
RSS  
CSS  
Figure 2  
2
STEP-DOWN, 600 kHz PWM CONTROL or PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER  
Rev.4.0_01  
S-8540/8541 Series  
Product Name Structure  
The control types, product types, and output voltage for the S-8540/8541 series can be selected at the  
user’s request. Please refer to the “1. Product name” for the definition of the product name, “2.  
Package” regarding the package drawings and “3. Product name list” for the full product names.  
1. Product name  
S-854x x x FN - xxx T2 x  
Environmental code  
S: Lead-free, halogen-free  
G: Lead-free (for details, please contact our sales office)  
IC direction in tape specifications*1  
Product name (abbreviation)*2  
Package name (abbreviation)  
FN: 8-Pin MSOP  
Output voltage*3  
15 to 60  
(e.g. When the output voltage is 1.5 V, it is expressed as 15.)  
Product type  
A: Fixed output voltage, fosc = 600 kHz  
B: Feed back type, fosc = 600kHz  
C: Fixed output voltage, fosc = 300 kHz  
D: Feed back type, fosc = 300 kHz  
Control system  
0: PWM control  
1: PWM/PFM switching control  
*1. Refer to the taping specifications at the end of this book.  
*2. Refer to the “3. Product name list”.  
*3. 00: Feed back type  
2. Package  
Drawing Code  
Package Name  
Package  
Tape  
Reel  
FN008-A-C-SD  
FN008-A-R-SD  
8-Pin MSOP  
FN008-A-P-SD  
3
STEP-DOWN, 600 kHz PWM CONTROL or PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER  
Rev.4.0_01  
S-8540/8541 Series  
3. Product name list  
3.1 A, B types (oscillation frequency: 600 kHz)  
Table 1  
Output Voltage (V)  
S-8540xxxFN Series  
S-8541xxxFN Series  
1.5  
1.6  
1.8  
2.5  
3.3  
5.0  
S-8540A15FN-IAAT2z  
S-8540A18FN-IADT2z  
S-8540A25FN-IAKT2z  
S-8540A33FN-IAST2z  
S-8540A50FN-IBBT2z  
S-8540B00FN-IMAT2z  
S-8541A16FN-IGBT2z  
S-8541A18FN-IGDT2z  
S-8541A25FN-IGKT2z  
S-8541A33FN-IGST2z  
Feed back (1.5 to 6.0)  
S-8541B00FN-IMDT2z  
3.2 C,D types (oscillation frequency: 300 kHz)  
Table 2  
Output Voltage (V)  
S-8540xxxFN Series  
S-8541xxxFN Series  
1.8  
2.5  
3.2  
3.3  
S-8540C18FN-ICDT2z  
S-8540C25FN-ICKT2z  
S-8540C33FN-ICST2z  
S-8540D00FN-IMBT2z  
S-8541C18FN-IIDT2z  
S-8541C25FN-IIKT2z  
S-8541C32FN-IIRT2z  
S-8541C33FN-IIST2z  
S-8541D00FN-IMET2z  
Feed back (1.5 to 6.0)  
Remark 1. Please consult the SII Semiconductor Corporation marketing department for products  
with an output voltage other than those specified above.  
2. z: G or S  
3. Please select products of environmental code = U for Sn 100%, halogen-free  
products.  
4
STEP-DOWN, 600 kHz PWM CONTROL or PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER  
Rev.4.0_01  
S-8540/8541 Series  
Pin Configuration  
Table 3  
Pin Description  
GND pin  
Connection pin for external transistor  
IC power supply pin  
Bypass capacitor connection pin for  
reference voltage source  
8-Pin MSOP  
TOP view  
Pin No. Pin Name  
1
2
3
VSS  
EXT  
VIN  
8
7
1
2
3
4
4
5
6
CVREF  
6
5
Shutdown pin  
Soft-start capacitor connection pin  
Normal operation (step-down operation)  
All circuit halts (no step-down operation)  
None connected (A, C types)  
Feed back pin (B, D types)  
Output voltage pin  
ON/OFF  
Figure 3  
NC*1  
FB  
7
8
VOUT  
SENSE  
Current limit detection pin  
*1.  
The NC pin is electrically open.  
The NC pin can be connected to VIN and VSS.  
5
STEP-DOWN, 600 kHz PWM CONTROL or PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER  
Rev.4.0_01  
S-8540/8541 Series  
Absolute Maximum Ratings  
Table 4  
Symbol  
(Ta = 25 °C unless otherwise specified)  
Item  
VIN pin voltage  
CVREF pin voltage  
ON/OFF pin voltage  
FB pin voltage*1  
VOUT pin voltage  
SENSE pin voltage  
EXT pin voltage  
Absolute Maximum Ratings  
Unit  
V
V
V
V
V
V
V
mA  
mW  
mW  
°C  
°C  
VIN  
VSS 0.3 to VSS + 12  
VSS 0.3 to VIN + 0.3  
VSS 0.3 to VSS + 12  
VSS 0.3 to VSS + 12  
VSS 0.3 to VSS + 12  
VSS 0.3 to VSS + 12  
VSS 0.3 to VIN + 0.3  
100  
VCVREF  
VON/OFF  
VFB  
VOUT  
VSENSE  
VEXT  
EXT pin current  
IEXT  
300 (When not mounted on board)  
Power dissipation  
PD  
500*2  
Operating ambient temperature  
Storage temperature  
Topr  
Tstg  
40 to + 85  
40 to + 125  
*1. Feed back type (B, D types)  
*2. When mounted on board  
[Mounted board]  
(1) Board size : 114.3 mm × 76.2 mm × t1.6 mm  
(2) Board name : JEDEC STANDARD51-7  
Caution The absolute maximum ratings are rated values exceeding which the product could suffer  
physical damage. These values must therefore not be exceeded under any conditions.  
(1) When mounted on board  
(2) When not mounted on board  
350  
600  
300  
250  
200  
150  
500  
400  
300  
200  
100  
100  
0
50  
0
0
50  
Ambient temperature Ta (°C)  
Figure 4 Power Dissipation of Package  
100  
150  
0
50  
100  
150  
Ambient temperature Ta (°C)  
6
STEP-DOWN, 600 kHz PWM CONTROL or PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER  
Rev.4.0_01  
S-8540/8541 Series  
Electrical Characteristics  
1. S-8540/8541 Series A, C types  
Table 5  
(Ta = 25 °C, unless otherwise specified)  
Measure-  
Parameter  
Symbol  
Conditions  
Min.  
Typ.  
Max.  
Units  
ment  
Circuit  
V
IN = VOUT (S)  
×
1.5  
1.5  
VOUT (S)  
VOUT (S)  
Output voltage *1  
Input voltage  
VOUT (E)  
VIN  
VOUT (S)  
V
V
2
1
1
I
OUT = 120 mA  
×
0.980  
2.5  
×
1.020  
10.0  
300  
180  
S-8540/8541Axx  
S-8540/8541Cxx  
V
IN = VOUT (S) ×  
Current consumption 1  
ISS1  
μ
A
A
100 % duty ratio  
140  
240  
Current consumption  
during shutdown  
V
V
ON/OFF = 0 V  
ISSS  
1.0  
μ
1
OUT = VOUT (S)  
× 0.95  
IEXTH  
IEXTL  
VIN = 10 V, VEXT = VIN  
0.2 V  
45  
32  
66  
48  
60  
mA  
mA  
mV  
mV  
ppm/  
°C  
1
1
2
2
EXT pin output current  
VIN = 10 V, VEXT = 0.2 V  
Line regulation  
Δ
Δ
VOUT1  
VOUT2  
VOUT (S)  
×
1.1  
×
×
VIN  
1.5, 10  
1.5, IOUT = 120 mA  
10 V, IOUT = 120 mA  
30  
30  
Load regulation  
Output voltage temperature  
coefficient  
VIN = VOUT (S)  
μ
A
IOUT  
150 mA  
60  
ΔVOUT  
ΔTaVOUT  
VIN = VOUT (S)  
100  
2
2
40 Ta ≤ + 85 °C  
S-8540/8541Axx  
S-8540/8541Cxx  
510  
255  
100  
600  
300  
690  
345  
Measure waveform at the EXT  
pin.  
Oscillation frequency  
fOSC  
kHz  
%
Maximum duty ratio  
PWM/PFM-control switch  
duty ratio *2  
MaxDuty  
PFMDuty  
Measure waveform at the EXT pin.  
2
2
VIN = VOUT (S)  
IN = VOUT (S)  
×
×
1.5, no load  
1.5,  
19  
29  
39  
%
Current limit detection  
voltage  
V
VSENSE  
100  
125  
150  
mV  
1
Measure waveform at the EXT pin.  
SENSE pin input current  
ISENSE  
VSH  
VSL  
ISH  
VIN = VOUT (S)  
VIN = VOUT (S)  
VIN = VOUT (S)  
VIN = VOUT (S)  
VIN = VOUT (S)  
×
×
×
×
×
1.5, VSENSE = VIN  
0.1 V  
0.98.  
6.7  
2.3  
11.2  
16.8  
μ
V
A
1
2
1
1
1
2
2
1.5, Judge VOUT(S)  
×
Shutdown pin  
input voltage  
1.5, Judge CVREF pin "L".  
0.3  
0.1  
0.1  
17.0  
V
1.5, VON/OFF = VOUT  
0.1  
μA  
Shutdown pin  
input leakage current  
ISL  
1.5, VON/OFF = 0 V  
0.1  
μA  
Soft-start time  
tSS  
Time until VOUT (E) reaches 90% or higher of the VOUT(S)  
7.0  
12.0  
ms  
Efficiency  
EFFI  
90  
%
External components  
Coil (L)  
:Sumida Corporation. CDRH6D28-100  
Diode (SD)  
:Matsushita Electric Inducstrial Co., Ltd. MA2Q737 (Schottky diode)  
Output capacitor (COUT  
Input capacitor (CIN)  
)
:Nichicon Corporation F93 (16 V, 47 μF, tantalum)  
:Nichicon Corporation F93 (16 V, 47 μF, tantalum)  
Transistor (PSW  
)
:Toshiba Corporation 2SA1213  
Base resistor (Rb)  
Base capacitor (Cb)  
CVL  
CSS  
RSS  
RSENSE  
:100 mΩ  
:2200 pF  
:1.0 μF  
:0.047 μF  
:220 kΩ  
:100 mΩ  
Condition: Recommended parts are used unless otherwise specified.  
VIN =VOUT (S) ×1.5 V, IOUT = 120 mA (When VOUT (S) 1.6 V, then VIN = 2.5 V)  
*1. VOUT (S) : Specified output voltage value, VOUT (E) : Actual output voltage value  
*2. Applied to the S-8541 series only  
Caution 1. Line regulation and load regulation may change greatly due to GND wiring when VIN is high.  
2. In the S-8540 series (PWM control), a state in which the duty ratio 0% continues for several  
clocks may occur when the input voltage is high and the output current is low. In this case,  
the operation changes to the pseudo PFM mode, but the ripple voltage hardly increases.  
7
STEP-DOWN, 600 kHz PWM CONTROL or PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER  
Rev.4.0_01  
S-8540/8541 Series  
2. S-8540/8541 Series B, D types  
Table 6  
(Ta = 25 °C,unless otherwise specified)  
Measure-  
Parameter  
Symbol  
Conditions  
Min.  
Typ.  
Max.  
Units  
ment  
Circuit  
VOUT (S)  
VOUT (S)  
VIN = 4.5 V  
OUT = 120 mA  
VOUT (S)  
= 3.000  
*1, *2  
Output voltage  
Input voltage  
VOUT (E)  
VIN  
V
V
4
3
3
I
×
0.980  
2.5  
×
1.020  
10.0  
300  
180  
S-8540/8541B00  
S-8540/8541D00  
VIN = 4.5 V  
100 duty ratio  
Current consumption 1  
ISS1  
μ
A
A
%
140  
240  
VON/OFF = 0 V  
VOUT = VOUT (S)  
Current consumption  
during shutdown  
ISSS  
1.0  
3
μ
×
0.95  
IEXTH  
IEXTL  
mA  
mA  
mV  
mV  
3
3
4
4
VIN = 10 V, VEXT = VIN  
VIN = 10 V, VEXT = 0.2 V  
0.2 V  
45  
32  
66  
48  
60  
EXT pin output current  
Line regulation  
Load regulation  
30  
30  
Δ
Δ
VOUT1  
VOUT2  
3.3  
10  
VIN  
10 V, IOUT = 120 mA  
60  
μA  
IOUT  
×
150 mA  
1.5, IOUT = 120 mA  
ΔVOUT  
Output voltage  
temperature coefficient  
VIN = VOUT (S)  
ppm/  
°C  
4
100  
ΔTaVOUT  
40  
Ta ≤ + 85°C  
Measure waveform at  
S-8540/8541B00  
S-8540/8541D00  
510  
255  
100  
600  
300  
690  
345  
Oscillation frequency  
Maximum duty ratio  
fOSC  
kHz  
%
4
4
4
the EXT pin.  
Measure waveform at the EXT pin.  
MaxDuty  
PFM Duty  
PWM/PFM-control switch  
19  
29  
39  
%
V
IN = VOUT (S) 1.5 V, no load  
×
duty ratio *3  
Current limit detection  
voltage  
SENSE pin input current  
VSENSE  
VIN = 4.5 V, Measure waveform at the EXT pin.  
VIN = 4.5 V, VSENSE = VIN 0.1 V  
VIN = 4.5 V, Judge VOUT (S) 0.98.  
VIN = 4.5 V, Judge CVREF pin "L".  
VIN = 4.5 V, VON/OFF = VOUT  
VIN = 4.5 V, VON/OFF = 0 V  
100  
125  
150  
mV  
3
ISENSE  
VSH  
VSL  
ISH  
6.7  
2.3  
11.2  
16.8  
0.3  
0.1  
0.1  
3
4
3
3
3
μA  
V
×
Shutdown pin  
input voltage  
V
0.1  
μA  
Shutdown pin  
input leakage current  
ISL  
0.1  
μA  
Time until VOUT (E) reaches 90  
VOUT (S)  
% or higher of the  
Soft-start time  
tSS  
7.0  
12.0  
90  
17.0  
ms  
4
4
Efficiency  
EFFI  
%
External components:  
Coil (L)  
:Sumida Corporation CDRH6D28-100  
:Matsushita Electric Inducstrial Co., Ltd. MA2Q737 (Schottky diode)  
Diode (SD)  
Output capacitor (COUT  
Input capacitor (CIN)  
Transistor (PSW  
)
:Nichicon Corporation F93 (16 V, 47  
:Nichicon Corporation F93 (16 V, 47  
:Toshiba Corporation 2SA1213  
μ
F, tantalum)  
F, tantalum)  
μ
)
Base resistor (Rb)  
Base capacitor (Cb)  
:100 m  
:2200 pF  
:1.0  
:0.047  
:220 k  
:100 m  
Ω
CVL  
CSS  
RSS  
RSENSE  
RA  
μ
F
μF  
Ω
Ω
:200 k  
:100 k  
Ω
Ω
RB  
CFB  
:50 pF  
Condition: Connect recommended parts unless otherwise specified. VIN =4.5 V, IOUT =120 mA  
*1. VOUT (S) : Specified output voltage value, VOUT (E) : Actual output voltage value  
*2. The typical value (specified output voltage value) is VOUT (S) = 1  
*3. S-8541 series only  
+ RA/RB = 3.0 V. See “Output Voltage adjustment”.  
Caution 1. Line regulation and load regulation may change greatly due to GND wiring when VIN is high.  
2. In the S-8540 series (PWM control), a state in which the duty ratio 0% continues for several  
clocks may occur when the input voltage is high and the output current is low. In this case,  
the operation changes to the pseudo PFM mode, but the ripple voltage hardly increases.  
8
STEP-DOWN, 600 kHz PWM CONTROL or PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER  
Rev.4.0_01  
S-8540/8541 Series  
Measurement Circuits  
1.  
A
CVREF  
ON/OFF  
A
A
VIN  
VOUT  
CVL  
CIN  
A
EXT  
A
SENSE  
VSS  
A
Figure 5  
2.  
CVREF  
ON/OFF  
RSENSE  
RSS  
CSS  
VIN  
VOUT  
Rb  
Cb  
PSW  
+
EXT  
SENSE  
VSS  
+
COUT  
CIN  
VIN  
CVL  
VON/OFF  
L
SD  
Figure 6  
3.  
A
CVREF  
VIN  
ON/OFF  
VOUT  
FB  
A
A
RFB1  
CVL  
CIN  
CFB  
A
EXT  
SENSE  
A
RFB2  
A
VSS  
Figure 7  
4.  
CVREF  
ON/OFF  
VOUT  
FB  
CFB  
RFB1  
RSS  
VIN  
CSS  
PSW  
Rb  
Cb  
EXT  
+
+
COUT  
SENSE  
VSS  
CVL  
CIN  
VIN  
L
VON/OFF  
RSENSE  
SD  
RFB2  
Figure 8  
9
STEP-DOWN, 600 kHz PWM CONTROL or PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER  
Rev.4.0_01  
S-8540/8541 Series  
Operation  
1. Switching control method  
1. 1 PWM control (S-8540 Series)  
The S-8540 series consists of pulse width modulation (PWM) DC/DC converters. In conventional  
pulse frequency modulation (PFM) DC/DC converters, pulses are skipped when they operate at low  
output load current, causing the variation in the ripple frequency and the increase in the ripple voltage of  
the output voltage both of which constitute inherent drawbacks to those converters.  
In the S-8540 series the pulse width varies in the range from 0 to 100% according to the load current,  
yet ripple voltage produced by the switching can easily be removed by a filter since the switching  
frequency is always constant. These converters thus provide a low-ripple voltage over wide range of  
input voltage and load current. And it will be skipped to be low current consumption when the pulse  
width is 0% or it is no load, input current voltage is high.  
1. 2 PWM/PFM switchover control (S-8541 Series)  
The S-8541 series is a DC-DC converter that automatically switches between a pulse width modulation  
method (PWM) and a pulse frequency modulation method (PFM), depending on the load current, and  
features low current consumption.  
The S-8541 series operates under PWM control with the pulse width duty changing from 29 to 100%  
when the output load current is high. On the other hand, when the output current is low, the S-8541  
series operates under PFM control with the pulse width duty fixed at 29%, and pulses are skipped  
according to the load current. The oscillation circuit thus oscillates intermittently so that the resultant  
lower self current consumption prevents a reduction in the efficiency when the load current is low. The  
switching point from PWM control to PFM control depends on the external devices (coil, diode, etc.),  
input voltage, and output voltage. This series is an especially efficient DC-DC converter at an output  
current of around 100 μA.  
10  
STEP-DOWN, 600 kHz PWM CONTROL or PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER  
Rev.4.0_01  
S-8540/8541 Series  
2. Soft-start function  
The S-8540/8541 series has a built-in soft-start circuit. This circuit enables the output voltage to rise  
gradually over the specified soft-start time to suppress the overshooting of the output voltage and the  
rush current from the power source when the power is switched on or the power-off pin is set to "H"  
The soft-start function of this IC, however, can not suppress rush current to the load completely (Refer  
to Figure 9). The rush current is affected by the input voltage and the load. Please evaluate the rush  
current under the actual test condition.  
S-8540A33FN (VIN = VON / OFF = 0 5 V)  
3.0 V  
VOU T  
(1 V/div)  
0 V  
1 A  
Rush current  
(0.5 A/div)  
0 A  
time (1 ms/div)  
Figure 9 Waveforms of output voltage and rush current at soft-start  
The soft-start function of the IC is achieved by raising internal reference voltage gradually, which is  
caused by the raising of shutdown pin voltage through RC components (RSS and CSS) connected to  
shutdown pin.  
A soft-start time (tSS) is changed by RSS, CSS and the input voltage V ON/OFF to RSS.  
tSS is calculated from the following formula:  
tSS [ms]=R [kΩ] × C [μF] × In (V ON/OFF [V] / (V ON/OFF [V] 1.8))  
e.g. When RSS = 220 kΩ, CSS = 0.047 μF, V ON/OFF = 2.7 V , then tSS = 11.4 ms.  
11  
STEP-DOWN, 600 kHz PWM CONTROL or PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER  
Rev.4.0_01  
S-8540/8541 Series  
3. ON/OFF pin (shutdown pin)  
This pin deactivates or activates the step-down operation.  
When the ON/ OFF pin is set to "L", the VIN voltage appears through the EXT pin, prodding the  
switching transistor to go off. All the internal circuits stop working, and substantial savings in current  
consumption are thus achieved.  
The ON/ OFF pin is configured as shown in Figure 10. Since pull-up or pull-down is not performed  
internally, please avoid operating the pin in a floating state. Also, try to refrain from applying a voltage of  
0.3 to 1.8 V to the pin, lest the current consumption increase. When this ON/ OFF pin is not used,  
leave it coupled to the VIN pin.  
Table 7  
CR Oscillation Circuit  
Output Voltage  
ON/ OFF Pin  
“H”  
“L”  
Activated  
Deactivated  
Set value  
OPEN  
VIN  
ON/OFF  
VSS  
Figure 10  
12  
STEP-DOWN, 600 kHz PWM CONTROL or PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER  
Rev.4.0_01  
S-8540/8541 Series  
4. Current limit circuit  
The S-8540/8541 series contains a current limit circuit.  
The current limit circuit is designed to prevent thermal destruction of external transistors due to overload  
or magnetic saturation of the coil.  
The current limit circuit can be enabled by inserting a SENSE resistor (RSENSE) between the external coil  
and the output pin VOUT, and connecting the node for the SENSE resistor and the coil to the SENSE  
pin.  
A current limit comparator in the IC is used to check whether the voltage between the SENSE pin and  
VOUT pin reaches the current limit detection voltage (VSENSE = 125 mV (typ.) ). The current flowing  
through the external transistor is limited by turning it off during the left time of the oscillation period after  
detection. The transistor is turned on again at the next clock and current limit detection resumes. If  
the overcurrent state still persists, the current limit circuit operates again, and the process is repeated.  
If the overcurrent state is eliminated, the normal operation resumes. Slight overshoot occurs in the  
output voltage when the overcurrent state is eliminated.  
Current limit setting value (ILimit) is calculated by the following formula:  
Vsense ( = 125 mV)  
ILimit  
=
Rsense  
If the change with time of the current flowing through the sense resistor is higher than the response  
speed of the current limit comparator in the IC, the actual current limit value becomes higher than the  
ILimit (current limit setting value) calculated by the above formula. When the voltage difference between  
VIN pin and VOUT pin is large, the actual current limit value increases since the change with time of the  
current flowing through the sense resistor becomes large.  
4. 1 VIN vs. Ipeak in the overcurrent state  
VIN vs. Ipeak  
(IC: S-8540A33FN, coil: CDRH6D28-100, RSENSE: 100 mΩ)  
3.0  
2.5  
2.0  
1.5  
1.0  
1.25 A  
0.5  
0.0  
2.5  
4.0  
5.5  
7.0  
8.5  
10.0  
VIN (V)  
Figure 11 lpeak change by input voltage  
When the output voltage is approximate 1.0 V or less, the load short-circuit protection does not work,  
since the current limit circuit does not operate.  
When the current limit circuit is not used, remove the SENSE resistor and connect the SENSE pin to the  
VSS or VOUT pin.  
5. 100% duty cycle  
The S-8540/8541 series operates up to the maximum duty cycle of 100%. The switching transistor is  
kept on continuously to supply current to the load, when the input voltage falls below the preset output  
voltage value. The output voltage in this case is equal to the subtraction of lowering causes by DC  
resistance of the coil and on resistance of the switching FET from the input voltage.  
Even when the duty cycle is 100%, the current limit circuit works when overcurrent flows.  
13  
STEP-DOWN, 600 kHz PWM CONTROL or PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER  
Rev.4.0_01  
S-8540/8541 Series  
Selection of Series Products and Associated External Components  
1. Selecting a product  
The S-8540/8541 series is classified into eight types according to the way of control (PWM and  
PWM/PFM switching), the oscillation frequencies, and output voltage settings (fixed and feed back).  
Please select the type that suits your needs best by taking the advantage described below into account.  
1. 1 Control method:  
Two different control methods are available: PWM control (S-8540 series) and PWM/PFM switching  
control (S-8541 series).  
1. 2 Oscillation frequencies:  
The oscillation frequencies are selectable in 600 kHz (A and B types) or 300 kHz (C and D types).  
Because of their high oscillation frequency, the products in the A and B types allow the use of small  
size inductors since the peak current decreases when the same load current flows. In addition, they  
can also be used with small output capacitors. These outstanding features make the A and B types  
ideal for downsized devices.  
On the other hand, the C and D types, having lower oscillation frequency, are characterized by small  
self-consumption current and excellent efficiency under light load.  
1. 3 Output voltage setting:  
Two different types are available: fixed output (A and C types) and feed back type (B and D types).  
Table 8 provides a rough guide for selecting a product depending on the requirements of the  
application. Choose the product that has the best score ().  
Table 8  
S-8540  
S-8541  
A
B
C
D
A
B
C
D
The set output voltage is fixed (1.5 to 6.0 V)  
Set an output voltage freely (1.5 to 6.0 V)  
The efficiency at light load (less than 10 mA) is  
important.  
The efficiency at 100 mA or more is important.  
Low-ripple voltage is important.  
Use of small external parts is Important.  
Remark  
: Indispensable condition  
: Superiority of requirement  
: Particularly superiority of requirement  
14  
STEP-DOWN, 600 kHz PWM CONTROL or PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER  
Rev.4.0_01  
S-8540/8541 Series  
2. Inductor  
The inductance value (L) greatly affects the maximum output current (IOUT) and the efficiency (η).  
The peak current (IPK) increases by decreasing L and the stability of the circuit improves and IOUT  
increases. If L is made even smaller, the efficiency falls causing a decline in the current drive capacity  
for the switching transistor, and IOUT decreases.  
The loss of IPK by the switching transistor decreases by increasing L and the efficiency becomes  
maximum at a certain L value. Increasing L further decreases the efficiency due to the loss of coil DC  
resistance. IOUT also decreases.  
When the inductance is large in an S-8540/8541 series product, the output voltage may grow unstable  
in some cases, depending on the conditions of the input voltage, output voltage, and the load current.  
Perform sufficient evaluation under the actual condition and decide an optimum inductance.  
The recommended inductances are 10 μH for A, B types and 22 μH for C, D types.  
When choosing an inductor, attention to its allowable current should be paid since the current over the  
allowable value will cause magnetic saturation in the inductor, leading to a marked decline in efficiency.  
An inductor should therefore be selected so as not IPK to surpass its allowable current. The peak current  
(IPK) is represented by the following equation in non-continuous operation mode:  
V
OUT ×(VIN VOUT)  
IPK =IOUT +  
2×fOSC×L× VIN  
Where fOSC is the oscillation frequency.  
3. Diode  
The diode to be externally coupled to the IC should be a type that meets the following conditions:  
The forward voltage is low (Schottky barrier diode recommended).  
The switching speed is high (50 ns max.).  
The reverse direction voltage is higher than VIN.  
The current rating is larger than IPK.  
4. Capacitors  
4. 1 Capacitors (CIN, COUT  
)
The capacitor inserted in the input side (CIN) serves to reduce the power impedance and to average  
the input current for better efficiency. The CIN value should be selected according to the impedance of  
the power supply. It should be 47 to 100 μF, although the actual value depends on the impedance of  
the power source used and load current value.  
For the output side capacitor (COUT), select a large capacitance with low ESR (Equivalent Series  
Resistance) to smoothen the ripple voltage. When the input voltage is extremely high or the load  
current is extremely large, the output voltage may become unstable. In this case the unstable area  
will become narrow by selecting a large capacitance for an output side capacitor. A tantalum  
electrolytic capacitor is recommended since the unstable area widens when a capacitor with a large  
ESR, such as an aluminum electrolytic capacitor, or a capacitor with a small ESR, such as a ceramic  
capacitor, is chosen. The range of the capacitance should generally be 47 to 100 μF.  
4. 2 Internal power source stabilization capacitor (CVL)  
The main circuits of the IC work on an internal power source connected to the CVREF pin. The CVL  
is a bypass capacitor for stabilizing the internal Power source. CVL should be a 1 μF ceramic  
capacitor and wired in a short distance and at a low impedance.  
15  
STEP-DOWN, 600 kHz PWM CONTROL or PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER  
Rev.4.0_01  
S-8540/8541 Series  
5. External transistor  
The S-8540/8541 series can work with an enhancement (Pch) MOS FET or a bipolar (PNP) transistor as  
an external transistor.  
5. 1 Enhancement (Pch) MOS FET  
The EXT pin can directly drive the Pch MOS FET with a gate capacity of approximate 1200 pF.  
When a Pch MOS FET is chosen, efficiency will be 2 to 3 % higher than that achieved by a PNP  
bipolar transistor since the MOS FET switching speed is faster than that of the bipolar transistor and  
power loss due to the base current is avoided.  
The important parameters in selecting a Pch MOS FET are the threshold voltage, breakdown voltage  
between gate and source, breakdown voltage between drain and source, total gate capacity, on-  
resistance, and the current ratings.  
The EXT pin swings from voltage VIN to VSS. When the input voltage is low, a MOS FET with a low  
threshold voltage has to be used so that the MOS FET will turn on as required. When, conversely, the  
input voltage is high, select a MOS FET whose gate-source breakdown voltage is higher than the  
input voltage by at least several volts.  
Immediately after the power is turned on, or the power is turned off (that is, when the step-down  
operation is terminated), the input voltage is applied across the drain and the source of the MOS FET.  
The transistor therefore needs to have drain-source breakdown voltage that is also several volts  
higher than the input voltage.  
The total gate capacity and the on-resistance affect the efficiency.  
The power loss for charging and discharging the gate capacity by switching operation will affect the  
efficiency at low load current region more when the total gate capacity becomes larger and the input  
voltage becomes higher. If the efficiency at low load is a matter of concern, select a MOS FET with a  
small total gate capacity.  
In regions where the load current is high, the efficiency is affected by power loss caused by the on-  
resistance of the MOS FET. If the efficiency under heavy load is particularly important in the  
application, choose a MOS FET having on-resistance as low as possible.  
As for the current rating, select a MOS FET whose maximum continuous drain current rating is higher  
than IPK.  
16  
STEP-DOWN, 600 kHz PWM CONTROL or PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER  
Rev.4.0_01  
S-8540/8541 Series  
5. 2 Bipolar (PNP) transistor  
Figure 12 shows a circuit diagram using Toshiba Corporation 2SA1213-Y for the bipolar transistor  
(PNP). Using a bipolar transistor, the driving capacity for increasing the output current is determined  
by the hFE value and the Rb value.  
2SA1213-Y  
VIN  
Rb  
Cb  
EXT  
VIN  
Figure 12  
The Rb value is given by the following equation:  
V
IN 0.7 0.4  
Rb =  
Ib  
I
EXTL  
Calculate the necessary base current Ib using the hFE value of the bipolar transistor from the relation,  
Ib = IPK/hFE, and select a smaller value for Rb which is calculated from the above equation.  
A small Rb value will certainly contribute to increase the output current, but it will also decrease the  
efficiency. Determine the optimum value through experiment since the base current flows as pulses  
and voltage drop may takes place due to the wiring resistance and so on.  
In addition, if speed-up capacitor Cb is inserted in parallel with resistance Rb, as shown in Figure 12,  
the switching loss will be reduced, leading to a higher efficiency.  
by using the following equation :  
1
Cb ≤  
2π ×R × fOSC ×0.7  
b
Select a Cb value after performing sufficient evaluation since the optimum Cb value differs depending  
upon the characteristics of the bipolar transistor.  
17  
STEP-DOWN, 600 kHz PWM CONTROL or PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER  
Rev.4.0_01  
S-8540/8541 Series  
Standard Circuits  
1. Fixed output voltage (Pch MOS FET)  
RSENSE  
L
SENSE  
Tr  
Triangular wave  
oscillation circuit  
Power for IC  
VIN  
+
125mV  
PWM comparator  
Phase  
compensation  
circuit  
VOUT  
EXT  
+
Error amplifier  
SD  
VIN  
COUT  
+
PWM, PWM/PFM  
switching control  
circuit  
CIN  
VREF=1.0 V  
Voltage/current  
reference  
VSS  
Shutdown soft start  
circuit  
CVREF  
ON/OFF  
VON/OFF  
One point ground  
Figure 13  
2. Feed back type (Pch MOS FET)  
RSENSE  
L
SENSE  
Tr  
Power for IC  
Triangular wave  
oscillation circuit  
VIN  
+
Phase  
compensation  
circuit  
PWM comparator  
VOUT  
125mV  
EXT  
+
RA  
CFB  
Error amplifier  
SD  
VIN  
PWM, PWM/PFM  
switching control  
circuit  
COUT  
CIN  
FB  
+
Shutdown soft start  
VREF=1.0 V  
VSS  
RB  
circuit  
Voltage/current  
reference  
CVREF  
ON/OFF  
VON/OFF  
One point ground  
Figure 14  
Caution The above connection diagram and constant will not guarantees successful operation.  
Perform through evaluation using the actual application to set the constant.  
18  
STEP-DOWN, 600 kHz PWM CONTROL or PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER  
Rev.4.0_01  
S-8540/8541 Series  
Precautions  
Install the external capacitors, diode, coil, and other peripheral components as close to the IC as possible,  
and make a one-point grounding.  
When the input voltage is 9 to 10 V, VOUT may vary largely according to the grounding method.  
When it is difficult to make one-point grounding, use two grounds: one for VIN, CIN, and SD GND, and the  
other for VOUT, VCVREF, and IC GND.  
Characteristics ripple voltage and spike noise occur in IC containing switching regulators. Moreover rush  
current flows at the time of a power supply injection. Because these largely depend on the inductor, the  
capacitor and impedance of power supply used, fully check them using an actually mounted model.  
If the input voltage is high and output current is low, pulses with a low duty ratio may appear, and then the  
0% duty ratio continues for several clocks. In this case the operation changes to the pseudo pulse  
frequency modulation (PFM) mode, but the ripple voltage hardly increases.  
If the input power supply voltage is lower than 1.0 V, the IC operation is unstable and the external switch  
may be turned on.  
If input power supply voltage is 10.0 V or higher, the circuit operation is unstable and the IC may be  
damaged.  
The input voltage must be in the standard range (2.5 to 10.0 V).  
The current limit circuit of the IC limits current by detecting a voltage difference of external resistor RSENSE  
.
In choosing the components, make sure that overcurrent will not surpass the allowable dissipation of the  
switching transistor and the inductor.  
Make sure that dissipation of the switching transistor will not surpass the allowable power dissipation of the  
package (especially at high temperature).  
Do not apply an electrostatic discharge to this IC that exceeds the performance ratings of the built-in  
electrostatic protection circuit.  
SII Semiconductor Corporation shall bear no responsibility for any patent infringement by a product that  
includes an IC manufactured by SII Semiconductor Corporation in relation to the method of using the IC in  
that product, the product specifications, or the destination country.  
19  
STEP-DOWN, 600 kHz PWM CONTROL or PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER  
Rev.4.0_01  
S-8540/8541 Series  
Application Circuits  
1. External adjustment of output voltage  
The output voltage can be adjusted or changed in the output voltage setting range (1.5 to 6.0 V) by  
adding external resistors (RA, RB) and a capacitor (CFB) in the S-8540/8541B00AFN and S-  
8540/8541D00AFN, as shown in Figure 15. Temperature gradient can be given by inserting a  
thermistor in series to RA and RB.  
RSENSE  
L
SENSE  
Tr  
Power for IC  
Triangular wave  
oscillation circuit  
VIN  
+
Phase  
PWM comparator  
VOUT  
CFB  
125mV  
compensation  
circuit  
EXT  
+
RA  
Error amplifier  
SD  
VIN  
PWM, PWM/PFM  
switching control  
circuit  
COUT  
CIN  
FB  
+
Shutdown soft start  
circuit  
VREF=1.0 V  
VSS  
RB  
Voltage/current  
reference  
CVREF  
ON/OFF  
VON/OFF  
One point ground  
Figure 15  
Caution The above connection diagram and constant will not guarantees successful operation.  
Perform through evaluation using the actual application to set the constant.  
20  
STEP-DOWN, 600 kHz PWM CONTROL or PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER  
Rev.4.0_01  
S-8540/8541 Series  
RA, RB must be RA + RB 2 MΩ and the ratio of RA to RB should be set so that the FB pin is 1.0 V. Add a  
capacitor (CFB) in parallel to RA to prevent unstable operation like output oscillation.  
Set the CFB so that f = 1/(2 × πCFB × RA) is 0.1 to 20 kHz (normally 10 kHz).  
e.g. When VOUT = 3.0 V, RA = 200 kΩ, RB = 100 kΩ, then CFB = 100 pF.  
The precision of output voltage (VOUT) determined by RA, RB is affected by the precision of the voltage at  
the FB pin (1 V 2.0%), the precision of RA and RB, current input to the FB pin, and IC power supply  
voltage VDD.  
Suppose that the FB pin input current is 0 nA, and that the maximum absolute values of the external  
resistors RA and RB are RA max. and RB max, and the minimum absolute values of the external resistors  
RA and RB are  
RA min. and RB min., and that the output voltage shift due to the VDD voltage  
dependency is ΔV, the minimum value VOUT min. and maximum value VOUT max. of the output voltage  
VOUT variation is calculated by the following formula:  
RAmin.  
V
OUTmin. = (1 +  
) × 0.98 − ΔV [V]  
) × 1.02 + ΔV [V]  
RBmax.  
RAmax.  
VOUTmax. = (1 +  
RBmin.  
The precision of the output voltage VOUT cannot be made lower than the precision of the IC output voltage  
without adjustment of external resistors RA and RB. The lower the RA/RB, the less it is affected by the  
absolute value precision of the external resistors RA and RB. The lower the RA and RB, the less it is  
affected by the FB pin input current.  
To suppress the influence of FB pin input current on the variation of output voltage VOUT, the external  
resistor RB value must be made sufficiently lower than the input impedance of the FB pin, 1 V/50 nA =  
20 MΩ max.  
Waste current flows through external resistors RA and RB. When it is not a negligible value with respect  
to load current in actual use, the efficiency decreases. The RA and RB values of the external resistors  
must therefore be made sufficiently high.  
Evaluation of the influence of the noise is needed in the actual condition If the RA and RB values of  
resistors are high (1 MΩ or higher) since they are susceptible to external noise.  
The output voltage VOUT precision and the waste current are in a trade-off relation. They must be  
considered according to application requests.  
21  
STEP-DOWN, 600 kHz PWM CONTROL or PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER  
Rev.4.0_01  
S-8540/8541 Series  
Typical Characteristics  
1. Examples of major parameters characteristics  
(1) ISS1 VIN S-8540/8541(300 kHz)  
(2) ISS1 VIN S-8540/8541(600 kHz)  
250  
250  
85°C  
200  
85°C  
200  
150  
100  
50  
25°C  
150  
100  
25°C  
Ta=−40°C  
Ta=−40°C  
50  
0
0
2.5  
4.0  
5.5  
7.0  
8.5  
10.0  
2.5  
4.0  
5.5  
7.0  
8.5  
10.0  
10.0  
10.0  
VIN (V)  
VIN (V)  
(3) fOSC VIN S-8540/8541(300 kHz)  
(4) fOSC VIN S-8540/8541(600 kHz)  
360  
720  
85°C  
340  
680  
640  
600  
560  
520  
480  
85°C  
320  
300  
Ta=−40°C  
Ta=−40°C  
25°C  
280  
25°C  
260  
240  
2.5  
4.0  
5.5  
7.0  
8.5  
2.5  
4.0  
5.5  
7.0  
8.5  
10.0  
VIN (V)  
VIN (V)  
(5) IEXTH VIN S-8540/8541  
(6) IEXTL VIN S-8540/8541  
100  
100  
80  
80  
Ta=−40°C  
60  
Ta=−40°C  
60  
40  
20  
0
25°C  
40  
25°C  
20  
0
85°C  
8.5  
85°C  
2.5  
4.0  
5.5  
7.0  
IN (V)  
V
2.5  
4.0  
5.5  
7.0  
IN (V)  
8.5  
10.0  
V
(7) VSH VIN S-8540/8541  
(8) VSL VIN S-8540/8541  
2.3  
2.2  
0.9  
0.8  
Ta=−40°C  
Ta=−40°C  
2.1  
2.0  
1.9  
1.8  
1.7  
0.7  
0.6  
0.5  
0.4  
0.3  
25°C  
25°C  
85°C  
8.5  
85°C  
8.5  
2.5  
4.0  
5.5  
7.0  
IN (V)  
10.0  
2.5  
4.0  
5.5  
7.0  
10.0  
V
VIN (V)  
22  
STEP-DOWN, 600 kHz PWM CONTROL or PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER  
Rev.4.0_01  
S-8540/8541 Series  
(9) tSS VIN  
16  
15  
14  
13  
12  
11  
10  
9
Ta=−40°C  
25°C  
85°C  
8.5  
8
2.5  
4.0  
5.5  
7.0  
10.0  
V
IN (V)  
(10) VOUT VIN 1.8 V PWM/PFM 600 kHz  
(11) VOUT VIN 3.3 V PWM/PFM 600 kHz  
1.85  
3.40  
3.35  
3.30  
3.25  
3.20  
IOUT  
=0.1 mA  
100 mA  
IOUT  
=0.1 mA  
1.83  
1.81  
1.79  
1.77  
1.75  
400 mA  
8.5  
100 mA  
400 mA  
8.5  
2.5  
4
5.5  
7
10  
2.5  
4.0  
5.5  
7.0  
10.0  
V
IN (V)  
VIN (V)  
(12) VOUT VIN 3.3 V PWM 600 kHz  
(13) VOUT VIN 3.3 V PWM/PFM 300 kHz  
3.40  
3.40  
IOUT=0.1 mA  
100 mA  
I
100 mA  
OU T =0.1 mA  
3.35  
3.30  
3.25  
3.20  
3.35  
3.30  
400 mA  
8.5  
400 mA  
3.25  
3.20  
2.5  
4.0  
5.5  
7.0  
10.0  
2.5  
4.0  
5.5  
VIN  
7.0  
(V)  
8.5  
10.0  
VIN (V)  
23  
STEP-DOWN, 600 kHz PWM CONTROL or PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER  
Rev.4.0_01  
S-8540/8541 Series  
2. Transient Response Characteristics  
2. 1 Power-on (IOUT: no Load)  
(1) S-8540A33FN (VIN: 0 4.95 V)  
(2) S-8540A33FN (VIN: 0 10 V)  
10 V  
10 V  
VIN  
VIN  
(2.5 V/div)  
(2.5 V/div)  
0 V  
3 V  
0 V  
3 V  
VOUT  
(1 V/div)  
0 V  
VOUT  
(1 V/div)  
0 V  
t (2 ms/div)  
t (1 ms/div)  
(3) S-8540C33FN (VIN: 0 4.95 V)  
(4) S-8540C33FN (VIN: 0 10 V)  
10 V  
10 V  
VIN  
VIN  
(2.5 V/div)  
(2.5 V/div)  
0 V  
3 V  
0 V  
3 V  
VOUT  
(1 V/div)  
VOU T  
(1 V/div)  
0 V  
0 V  
t (2 ms/div)  
t (1 ms/div)  
(5) S-8540A18FN (VIN: 0 2.7 V)  
(6) S-8540A18FN (VIN: 0 10 V)  
10 V  
10 V  
VIN  
VIN  
(2.5 V/div)  
(2.5 V/div)  
0 V  
2 V  
0 V  
2 V  
VOUT  
(0.5 V/div)  
VOUT  
(0.5 V/div)  
0 V  
0 V  
t (4 ms/div)  
t (1 ms/div)  
24  
STEP-DOWN, 600 kHz PWM CONTROL or PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER  
Rev.4.0_01  
S-8540/8541 Series  
2. 2 Shutdown pin response (VON/OFF : 0 2.5 V IOUT: no Load)  
(1) S-8540A33FN (VIN: 4.95V)  
(2) S-8540A33FN (VIN: 10V)  
4 V  
4 V  
VON/OFF  
(1 V/div)  
VON/OFF  
(1 V/div)  
0 V  
3 V  
VOUT  
0 V  
3 V  
VOUT  
(1 V/div)  
0 V  
(1 V/div)  
0 V  
t (4 ms/div)  
t (4 ms/div)  
(3) S-8540C33FN (VIN: 4.95 V)  
(4) S-8540C33FN (VIN: 10 V)  
4 V  
4 V  
VON/OFF  
VON/OFF  
(1 V/div)  
(1 V/div)  
0 V  
0 V  
3 V  
3 V  
VOUT  
(1 V/div)  
VOUT  
(1 V/div)  
0 V  
0 V  
t (4 ms/div)  
t (4 ms/div)  
(5) S-8540A18FN (VIN: 4.95 V)  
(6) S-8540A18FN (VIN: 10 V)  
4 V  
4 V  
VON /OF F  
(1 V/div)  
VON /OF F  
(1 V/div)  
0 V  
0 V  
1.5 V  
1.5 V  
VOUT  
(0.5 V/div)  
0 V  
VOUT  
(0.5 V/div)  
0 V  
t (4 ms/div)  
t (4 ms/div)  
25  
STEP-DOWN, 600 kHz PWM CONTROL or PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER  
Rev.4.0_01  
S-8540/8541 Series  
2. 3 Supply Voltage Variation (VIN: 3.69.03.6 V)  
(1) S-8540A33FN (IOUT: 10 mA)  
(2) S-8540A33FN (IOUT: 500 mA)  
10 V  
VIN  
10 V  
VIN  
(2.5 V/div)  
(2.5 V/div)  
0 V  
0 V  
VOUT  
(0.1 V/div)  
VOUT  
(0.1 V/div)  
t (0.4 ms/div)  
t (0.4 ms/div)  
(3) S-8540C33FN (IOUT: 10 mA)  
(4) S-8540C33FN (IOUT: 500 mA)  
10 V  
10 V  
VIN  
VIN  
(2.5 V/div)  
(2.5 V/div)  
0 V  
0 V  
VOUT  
(0.1 V/div)  
VOUT  
(0.1 V/div)  
t (0.4 ms/div)  
t (0.4 ms/div)  
(5) S-8540A18FN (IOUT: 10 mA)  
(6) S-8540A18FN (IOUT: 500 mA)  
10 V  
VIN  
10 V  
VIN  
(2.5 V/div)  
(2.5 V/div)  
0 V  
0 V  
VOUT  
(0.1 V/div)  
VOUT  
(0.1 V/div)  
t (0.4 ms/div)  
t (0.4 ms/div)  
26  
STEP-DOWN, 600 kHz PWM CONTROL or PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER  
Rev.4.0_01  
S-8540/8541 Series  
2. 4 Load Variation (VIN: 2.7 V or 5.0 V or 7.5 V, IOUT: 0.1500 mA, 5000.1 mA)  
(1) S-8540A33FN (VIN: 4.95 V) (2) S-8540A33FN (VIN: 4.95 V)  
500 mA  
IOU T  
500 mA  
0.1 mA  
IOUT  
0.1 mA  
VOUT  
(0.1 V/div)  
VOUT  
(0.1 V/div)  
t (4 ms/div)  
(4) S-8540C33FN(VIN: 4.95 V)  
t (0.2 ms/div)  
(3) S-8540C33FN(VIN: 4.95 V)  
500 mA  
IOUT  
500 mA  
IOUT  
0.1 mA  
0.1 mA  
VOUT  
VOUT  
(0.1 V/div)  
(0.1 V/div)  
t (0.2 ms/div)  
t (8 ms/div)  
(6) S-8540A18FN (VIN: 2.7 V)  
(5) S-8540A18FN (VIN: 2.7 V)  
500 mA  
500 mA  
IOU T  
IOU T  
0.1 mA  
0.1 mA  
VOUT  
(0.1 V/div)  
VOU T  
(0.1 V/div)  
t (0.2 ms/div)  
t (4 ms/div)  
27  
STEP-DOWN, 600 kHz PWM CONTROL or PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER  
Rev.4.0_01  
S-8540/8541 Series  
Reference Data  
This reference data is intended to help you select peripheral components to be externally connected to the  
IC. Therefore, this information provides recommendations on external components selected with a view to  
accommodating a wide variety of IC applications. Characteristic data is duly indicated in the table below.  
Table 9. External components list for efficiency  
(Small and thin application using 1.3 mm or less tall components, maximum load current : IOUT = 0.9 A)  
Output  
Voltage  
No. Product Name  
Modulation fOSC  
Inductor  
Transistor Diode Output Capacitor  
1.1 S-8540A33FN  
1.2 S-8541A33FN  
1.3 S-8540A25FN  
1.4 S-8541A25FN  
1.5 S-8540A18FN  
1.6 S-8541A18FN  
PWM  
PWM/PFM  
PWM  
3.3 V  
2.5 V  
1.8 V  
600kHz LDR655312T-4R7 CPH6301 RB491D  
F920J476MB × 2  
PWM/PFM  
PWM  
PWM/PFM  
Table 10 External components list for efficiency  
(High efficiency application using 3.0mm or less tall components, maximum load current : IOUT = 1.0 A)  
Output  
Voltage  
No. Product Name  
Modulation fOSC  
Inductor  
Transistor Diode Output Capacitor  
1.7 S-8540C33FN  
1.8 S-8541C33FN  
1.9 S-8540C25FN  
1.10 S-8541C25FN  
1.11 S-8540C18FN  
1.12 S-8541C18FN  
PWM  
PWM/PFM  
PWM  
3.3 V  
2.5 V  
1.8 V  
300kHz CDRH6D28-220 CPH6301 RB491D  
F931A476MC × 1  
PWM/PFM  
PWM  
PWM/PFM  
Table 11 External components list for ripple voltage  
Product  
Name  
Output  
Voltage  
Output  
Capacitor  
No.  
Modulation fOSC  
Inductor  
Transistor Diode  
2.1 S-8540A33FN  
2.2 S-8541A33FN  
2.3 S-8540A18FN  
2.4 S-8541A18FN  
2.5 S-8540C33FN  
2.6 S-8541C33FN  
2.7 S-8540C18FN  
2.8 S-8541C18FN  
PWM  
3.3 V  
1.8 V  
3.3 V  
1.8 V  
PWM/PFM  
600kHz LDR655312T-4R7 CPH6301 RB491D  
300kHz CDRH6D28-220 CPH6301 RB491D  
F920J476MB × 2  
F931A476MC × 1  
PWM  
PWM/PFM  
PWM  
PWM/PFM  
PWM  
PWM/PFM  
28  
STEP-DOWN, 600 kHz PWM CONTROL or PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER  
Rev.4.0_01  
S-8540/8541 Series  
Table 12 External parts function  
DC  
Manufacturer L-Value  
Resistance  
Maximum  
Current  
Size (L × W × H)  
Component  
Inductor  
Diode  
Product Name  
LDR655312T-4R7  
CDRH6D28-220  
RB491D  
[mm]  
TDK  
Corporation  
Sumida  
4.7 μH  
0.19 Ω  
0.9 A  
6.5 × 5. 3 × 1.25  
7.0 × 7.0 × 3.0  
3.0 × 3.1 × 1.3  
3.6 × 3.0 × 1.2  
6.2 × 3.4 × 2.7  
2.9 × 2.8 × 0.9  
22.0 μH  
0.128 Ω  
1.2 A  
Corporation  
Rohm  
Corporation  
Nichicon  
Forward current 1.0 A at VF = 0.45 V,  
rm = 25V  
V
Output  
Capacity  
(tantalum  
electrolytic)  
Transistor  
(MOS FET)  
F920J476MB  
F931A476MC  
CPH6301  
47 μF, 6.3 V  
Corporation  
Nichicon  
Corporation  
47 μF, 10.0 V  
Sanyo Electric Vdss =20 V max., Vgss =10 V max.,  
Co., Ltd.  
ID =3.0 A max., Ciss =360 pF, Ron =110 mΩ  
29  
STEP-DOWN, 600 kHz PWM CONTROL or PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER  
Rev.4.0_01  
S-8540/8541 Series  
1. Efficiency Characteristics : Efficiency (η) Output current (IOUT  
)
1. 1 S-8540A33FN  
1. 2 S-8541A33FN  
(3.3 V, 600 kHz, PWM control)  
(3.3 V, 600 kHz, PWM/PFM control)  
100  
100  
90  
VIN=4.0 V  
90  
80  
70  
60  
50  
VIN=4.0 V  
80  
5.0 V  
7.2 V  
70  
60  
50  
5.0 V  
7.2 V  
1
10  
100  
1000  
1
10  
100  
1000  
IOUT (mA)  
IOUT (mA)  
1. 4 S-8541A25FN  
1. 3 S-8540A25FN  
(2.5 V, 600 kHz, PWM control)  
(2.5 V, 600 kHz, PWM/PFMcontrol)  
100  
90  
100  
90  
80  
70  
60  
50  
VIN=3.0 V  
VIN=3.0 V  
80  
3.6 V  
100  
70  
60  
5.0 V  
3.6 V  
5.0 V  
50  
1
10  
1000  
1
10  
100  
1000  
IOUT (mA)  
IOUT (mA)  
1. 6 S-8541A18FN  
1. 5 S-8540A18FN  
(1.8 V, 600 kHz, PWM/PFM control)  
(1.8 V, 600 kHz, PWM control)  
100  
90  
100  
VIN=2.5 V  
VIN=2.5 V  
90  
80  
70  
60  
50  
80  
70  
60  
50  
5.0 V  
3.6 V  
3.6 V 5.0 V  
1
10  
100  
1000  
1
10  
100  
1000  
IOUT (mA)  
IOUT (mA)  
30  
STEP-DOWN, 600 kHz PWM CONTROL or PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER  
Rev.4.0_01  
S-8540/8541 Series  
1. 7 S-8540C33FN  
1. 8 S-8541C33FN  
(3.3 V, 300 kHz, PWM control)  
(3.3 V, 300 kHz, PWM/PFM control)  
100  
90  
100  
VIN=4.0 V  
VIN=4.0 V  
90  
80  
70  
60  
50  
80  
5.0 V  
7.2 V  
70  
60  
50  
5.0 V  
7.2 V  
1
10  
100  
1000  
1
10  
100  
1000  
IOUT (mA)  
1. 10 S-8541C25FN  
IOUT (mA)  
1. 9 S-8540C25FN  
(2.5 V, 300 kHz, PWM/PFM control)  
(2.5 V, 300 kHz, PWM control)  
100  
100  
90  
VIN=3.0 V  
VIN=3.0 V  
90  
80  
80  
5.0 V  
3.6 V  
5.0 V  
3.6 V  
70  
60  
50  
70  
60  
50  
1
10  
100  
1000  
1
10  
100  
1000  
IOUT (mA)  
IOUT (mA)  
1. 12 S-8541C18FN  
1. 11 S-8540C18FN  
(1.8 V,300 kHz, PWM/PFM control)  
(1.8 V, 300 kHz, PWM control)  
100  
100  
90  
VIN=2.5 V  
VIN=2.5 V  
90  
80  
80  
3.6 V  
5.0 V  
5.0 V  
3.6 V  
100  
70  
60  
50  
70  
60  
50  
1
10  
100  
1000  
1
10  
1000  
IOUT (mA)  
IOUT (mA)  
31  
STEP-DOWN, 600 kHz PWM CONTROL or PWM/PFM SWITCHABLE SWITCHING REGULATOR CONTROLLER  
Rev.4.0_01  
S-8540/8541 Series  
2. Ripple Voltage (Vrip) Output Current (IOUT) Characteristics  
2. 1 S-8540A33FN  
2. 2 S-8541A33FN  
(3.3 V, 600 kHz, PWM/PFM control)  
(3.3 V, 600 kHz, PWM control)  
100  
80  
60  
40  
20  
0
100  
7.2 V  
5.0 V  
80  
60  
40  
20  
0
5.0 V  
7.2 V  
VIN=4.0 V  
VIN=4.0 V  
1
10  
100  
1000  
1
10  
100  
1000  
IOUT (mA)  
IOUT (mA)  
2. 3 S-8540A18FN  
2. 4 S-8541A18FN  
(1.8 V, 600 kHz, PWM control)  
(1.8 V, 600 kHz, PWM/PFM control)  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
5.0 V  
3.6 V  
5.0 V  
3.6 V  
VIN=2.5 V  
VIN=2.5 V  
1
10  
100  
1000  
1
10  
100  
1000  
IOUT (mA)  
IOUT (mA)  
2. 5 S-8540C33FN  
2. 6 S-8541C33FN  
(3.3 V, 600 kHz, PWM/PFM control)  
(3.3 V, 600 kHz, PWM control)  
100  
80  
60  
40  
20  
0
100  
80  
3.6 V  
60  
40  
20  
VIN=2.5 V  
VIN=2.5 V  
3.6 V  
5.0 V  
5.0 V  
0
1
10  
100  
1000  
1
10  
100  
1000  
IOUT (mA)  
IOUT (mA)  
2. 7 S-8540C18FN  
2. 8 S-8541C18FN  
(1.8 V, 300 kHz, PWM control)  
(1.8 V, 300 kHz, PWM/PFM control)  
100  
80  
60  
40  
20  
100  
80  
60  
40  
20  
0
3.6 V  
VIN=2.5 V  
3.6 V  
5.0 V  
5.0 V  
VIN=2.5 V  
0
1
10  
100  
1000  
1
10  
100  
1000  
IOUT (mA)  
IOUT (mA)  
32  
2.95±0.2  
8
5
1
4
0.13±0.1  
0.2±0.1  
0.65±0.1  
No. FN008-A-P-SD-1.1  
MSOP8-A-PKG Dimensions  
FN008-A-P-SD-1.1  
TITLE  
No.  
SCALE  
UNIT  
mm  
SII Semiconductor Corporation  
2.0±0.05  
4.0±0.1  
1.35±0.15  
4.0±0.1  
1.55±0.05  
1.05±0.05  
0.3±0.05  
3.1±0.15  
1
8
4
5
Feed direction  
No. FN008-A-C-SD-1.1  
MSOP8-A-Carrier Tape  
FN008-A-C-SD-1.1  
TITLE  
No.  
SCALE  
UNIT  
mm  
SII Semiconductor Corporation  
16.5max.  
13.0±0.3  
Enlarged drawing in the central part  
(60°)  
(60°)  
No. FN008-A-R-SD-1.1  
MSOP8-A-Reel  
FN008-A-R-SD-1.1  
TITLE  
No.  
SCALE  
UNIT  
QTY.  
3,000  
mm  
SII Semiconductor Corporation  
Disclaimers (Handling Precautions)  
1. All the information described herein (product data, specifications, figures, tables, programs, algorithms and  
application circuit examples, etc.) is current as of publishing date of this document and is subject to change without  
notice.  
2. The circuit examples and the usages described herein are for reference only, and do not guarantee the success of  
any specific mass-production design.  
SII Semiconductor Corporation is not responsible for damages caused by the reasons other than the products or  
infringement of third-party intellectual property rights and any other rights due to the use of the information described  
herein.  
3. SII Semiconductor Corporation is not responsible for damages caused by the incorrect information described herein.  
4. Take care to use the products described herein within their specified ranges. Pay special attention to the absolute  
maximum ratings, operation voltage range and electrical characteristics, etc.  
SII Semiconductor Corporation is not responsible for damages caused by failures and/or accidents, etc. that occur  
due to the use of products outside their specified ranges.  
5. When using the products described herein, confirm their applications, and the laws and regulations of the region or  
country where they are used and verify suitability, safety and other factors for the intended use.  
6. When exporting the products described herein, comply with the Foreign Exchange and Foreign Trade Act and all  
other export-related laws, and follow the required procedures.  
7. The products described herein must not be used or provided (exported) for the purposes of the development of  
weapons of mass destruction or military use. SII Semiconductor Corporation is not responsible for any provision  
(export) to those whose purpose is to develop, manufacture, use or store nuclear, biological or chemical weapons,  
missiles, or other military use.  
8. The products described herein are not designed to be used as part of any device or equipment that may affect the  
human body, human life, or assets (such as medical equipment, disaster prevention systems, security systems,  
combustion control systems, infrastructure control systems, vehicle equipment, traffic systems, in-vehicle equipment,  
aviation equipment, aerospace equipment, and nuclear-related equipment), excluding when specified for in-vehicle  
use or other uses. Do not use those products without the prior written permission of SII Semiconductor Corporation.  
Especially, the products described herein cannot be used for life support devices, devices implanted in the human  
body and devices that directly affect human life, etc.  
Prior consultation with our sales office is required when considering the above uses.  
SII Semiconductor Corporation is not responsible for damages caused by unauthorized or unspecified use of our  
products.  
9. Semiconductor products may fail or malfunction with some probability.  
The user of these products should therefore take responsibility to give thorough consideration to safety design  
including redundancy, fire spread prevention measures, and malfunction prevention to prevent accidents causing  
injury or death, fires and social damage, etc. that may ensue from the products' failure or malfunction.  
The entire system must be sufficiently evaluated and applied on customer's own responsibility.  
10. The products described herein are not designed to be radiation-proof. The necessary radiation measures should be  
taken in the product design by the customer depending on the intended use.  
11. The products described herein do not affect human health under normal use. However, they contain chemical  
substances and heavy metals and should therefore not be put in the mouth. The fracture surfaces of wafers and chips  
may be sharp. Take care when handling these with the bare hands to prevent injuries, etc.  
12. When disposing of the products described herein, comply with the laws and ordinances of the country or region where  
they are used.  
13. The information described herein contains copyright information and know-how of SII Semiconductor Corporation.  
The information described herein does not convey any license under any intellectual property rights or any other  
rights belonging to SII Semiconductor Corporation or a third party. Reproduction or copying of the information  
described herein for the purpose of disclosing it to a third-party without the express permission of SII Semiconductor  
Corporation is strictly prohibited.  
14. For more details on the information described herein, contact our sales office.  
1.0-2016.01  
www.sii-ic.com  

相关型号:

S-8541B15FN-IGST2G

SWITCHABLE SWITCHING REGULATOR CONTROLLER
SII

S-8541B15FN-IGST2S

SWITCHABLE SWITCHING REGULATOR CONTROLLER
SII

S-8541B60FN-IGBT2G

SWITCHABLE SWITCHING REGULATOR CONTROLLER
SII

S-8541B60FN-IGBT2S

SWITCHABLE SWITCHING REGULATOR CONTROLLER
SII

S-8541B60FN-IGKT2G

SWITCHABLE SWITCHING REGULATOR CONTROLLER
SII

S-8541B60FN-IGKT2S

SWITCHABLE SWITCHING REGULATOR CONTROLLER
SII

S-8541B60FN-IGST2G

SWITCHABLE SWITCHING REGULATOR CONTROLLER
SII

S-8541B60FN-IGST2S

SWITCHABLE SWITCHING REGULATOR CONTROLLER
SII

S-8541C15FN-IGBT2G

SWITCHABLE SWITCHING REGULATOR CONTROLLER
SII

S-8541C15FN-IGBT2S

SWITCHABLE SWITCHING REGULATOR CONTROLLER
SII

S-8541C15FN-IGKT2G

SWITCHABLE SWITCHING REGULATOR CONTROLLER
SII

S-8541C15FN-IGKT2S

SWITCHABLE SWITCHING REGULATOR CONTROLLER
SII