S-93C66ADFJ [SII]

CMOS SERIAL E2PROM; CMOS串行E2PROM
S-93C66ADFJ
型号: S-93C66ADFJ
厂家: SEIKO INSTRUMENTS INC    SEIKO INSTRUMENTS INC
描述:

CMOS SERIAL E2PROM
CMOS串行E2PROM

内存集成电路 光电二极管 可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器 时钟
文件: 总53页 (文件大小:209K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Contents  
Features..............................................................1  
Pin Assignment ...................................................1  
Pin Functions ......................................................1  
Block Diagram.....................................................2  
Instruction Set .....................................................2  
Absolute Maximum Ratings.................................2  
Recommended Operating Conditions .................3  
Pin Capacitance..................................................3  
Endurance...........................................................3  
DC Electrical Characteristics ...............................4  
AC Electrical Characteristics ...............................5  
Operation ............................................................6  
Receiving a Start-Bit............................................13  
Three-wire Interface (DI-DO direct connection)...13  
Dimensions (Unit : mm).......................................14  
Ordering Information ...........................................17  
Characteristics.....................................................18  
Frequently Asked Questions................................23  
CMOS SERIAL E2PROM  
S-93C46A/56A/66A  
2
The S-93C46A/56A/66A is high speed, low power 1K/2K/4K-bit E PROM  
with a wide operating voltage range. It is organized as 64-word ´ 16-bit, 128-  
word´ 16-bit, 256-word´ 16-bit, respectivly. Each is capable of sequential  
read, at which time addresses are automatically incremented in 16-bit blocks.  
The instruction code is compatible with the NM93CS46/56/66.  
n
Features  
Ÿ Endurance : 106 cycles/word  
Ÿ Low power consumption  
Standby : 1.0 mA Max. (VCC=5.5 V)  
Operating : 0.8 mA Max. (VCC=5.5 V)  
: 0.4 mA Max. (VCC=2.5 V)  
Ÿ Data retention : 10 years  
Ÿ S-93C46A : 1K bits NM93CS46 instruction code compatible  
Ÿ S-93C56A : 2K bits NM93CS56 instruction code compatible  
Ÿ S-93C66A : 4K bits NM93CS66 instruction code compatible  
Ÿ Wide operating voltage range  
Read/Write : 1.8 to 5.5 V  
Ÿ Sequential read capable  
n
Pin Assignment  
8-pin TSSOP  
Top view  
8-pin DIP  
Top view  
8-pin SOP1  
Top view  
8-pin SOP2  
Top view  
CS  
SK  
DI  
VCC  
NC  
1
8
CS  
SK  
1
8
7
6
5
TEST  
GND  
DO  
1
2
8
7
NC  
VCC  
CS  
SK  
VCC  
CS  
SK  
DI  
1
2
3
4
8
VCC  
2
3
4
2
7
NC  
TEST  
GND  
7
6
5
DO  
NC  
3
4
6
5
3
4
6
5
DI  
TEST  
GND  
S-93C46AFT  
S-93C56AFT  
S-93C66AFT  
DO  
DI  
TEST  
GND  
S-93C46ADFJ  
S-93C56ADFJ  
S-93C66ADFJ  
S-93C46AFJ  
S-93C56AFJ  
S-93C66AFJ  
DO  
8-pin MSOP  
Top view  
S-93C46ADP  
S-93C56ADP  
S-93C66ADP  
VCC  
CS  
SK  
DI  
1
2
3
4
8
7
6
5
NC  
TEST  
GND  
DO  
S-93C46AMFN  
S-93C56AMFN  
S-93C66AMFN  
* See n Dimensions  
Figure 1  
Table 1  
n
Pin Functions  
Pin Number  
Name  
Function  
DIP  
1
SOP1 SOP2 TSSOP MSOP  
CS  
SK  
3
4
5
6
7
1
2
3
4
5
1
2
3
4
5
8
7
6
5
4
Chip select input  
Serial clock input  
Serial data input  
Serial data output  
Ground  
2
DI  
3
DO  
GND  
4
5
Test pin (normally kept open)  
6
8
6
6
3
TEST  
(can be connected to GND or Vcc)  
No Connection  
NC  
7
8
1
2
7
8
7
8
2
1
VCC  
Power supply  
Seiko Instruments Inc.  
1
 
CMOS SERIAL E2PROM  
S-93C46A/56A/66A  
n
Block Diagram  
VCC  
Address  
decoder  
Memory array  
GND  
Data register  
Output buffer  
DO  
DI  
Mode decode logic  
CS  
SK  
Clock generator  
Figure 2  
n
Instruction Set  
Table 2  
Start  
Bit  
Op  
Address  
Instruction  
Data  
Code  
S-93C46A S-93C56A S-93C66A  
A5 to A0  
A5 to A0  
A5 to A0  
01xxxx  
10xxxx  
11xxxx  
00xxxx  
XA6 to A0  
XA6 to A0  
XA6 to A0  
01xxxxxx  
10xxxxxx  
11xxxxxx  
00xxxxxx  
A7 to A0  
A7 to A0  
READ  
(Read data)  
1
1
1
1
1
1
1
10  
01  
11  
00  
00  
00  
00  
D15 to D0 Output*1  
WRITE (Write data)  
ERASE (Erase data)  
WRAL (Write all)*2  
D15 to D0 Input  
A7 to A0  
¾
01xxxxxx  
10xxxxxx  
11xxxxxx  
00xxxxxx  
D15 to D0 Input  
ERAL  
(Erase all)*2  
¾
¾
¾
EWEN (Program enable)  
EWDS (Program disable)  
Doesn’t matter.  
x :  
*1 :  
*2 :  
Addresses are continuously incremented.  
Valid only at Vcc = 2.5 V to 5.5 V.  
n
Absolute Maximum Ratings  
Table 3  
Parameter  
Symbol  
Ratings  
Unit  
Power supply voltage  
VCC  
VIN  
-0.3 to +7.0  
-0.3 to VCC+0.3  
-0.3 to VCC  
V
V
Input voltage  
Output voltage  
VOUT  
Tbias  
Tstg  
V
Storage temperature under bias  
Storage temperature  
-50 to +95  
°C  
°C  
-65 to +150  
Seiko Instruments Inc.  
2
 
CMOS SERIAL E2PROM  
S-93C46A/56A/66A  
n
Recommended Operating Conditions  
Table 4  
Conditions  
Parameter  
Symbol  
VCC  
Min.  
1.8  
Typ.  
Max.  
5.5  
Unit  
V
READ/WRITE/ERASE  
EWEN/EWDS  
¾
Power supply voltage  
2.5  
2.0  
¾
¾
¾
¾
¾
¾
¾
5.5  
Vcc  
V
V
V
V
V
V
V
WRAL/ERAL  
VCC=4.5 to 5.5 V  
VCC=2.7 to 4.5 V  
VCC=1.8 to 2.7 V  
VCC=4.5 to 5.5 V  
VCC=2.7 to 4.5 V  
VCC=1.8 to 2.7 V  
High level input voltage  
VIH  
0.8´ Vcc  
0.8´ Vcc  
0.0  
Vcc  
Vcc  
0.8  
Low level input voltage  
Operating temperature  
VIL  
0.0  
0.2´ Vcc  
0.15´ Vcc  
0.0  
Topr  
-40  
¾
+85  
°C  
n
Pin Capacitance  
Table 5  
(Ta=25 °C, f=1.0 MHz, VCC=5 V)  
Parameter  
Input Capacitance  
Output Capacitance  
Symbol  
Conditions  
VIN=0 V  
VOUT=0 V  
Min.  
Typ.  
Max.  
Unit  
CIN  
¾
¾
¾
¾
8
pF  
pF  
COUT  
10  
n
Endurance  
Table 6  
Parameter  
Endurance  
Symbol  
NW  
Min.  
106  
Typ.  
Max.  
Unit  
¾
¾
cycles/word  
Seiko Instruments Inc.  
3
 
CMOS SERIAL E2PROM  
S-93C46A/56A/66A  
n
DC Electrical Characteristics  
Table 7  
VCC=4.5 V to 5.5 V VCC=2.5 V to 4.5 V  
VCC=1.8 to 2.5 V  
Parameter  
Smbl  
ICC1  
Conditions  
DO unloaded  
DO unloaded  
Unit  
mA  
mA  
Min. Typ. Max. Min. Typ. Max. Min. Typ. Max.  
Current  
consumption  
(READ)  
¾
¾
¾
¾
0.8  
2.0  
¾
¾
¾
¾
0.6  
1.5  
¾
¾
¾
¾
0.4  
1.0  
Current  
ICC2  
consumption  
(PROGRAM)  
Table 8  
VCC=4.5 V to 5.5 V  
VCC=2.5 to 4.5 V  
VCC=1.8 to 2.5 V  
Typ. Max.  
0.4 mA  
Parameter  
Smbl  
Conditions  
Unit  
Min.  
Typ. Max. Min. Typ. Max. Min.  
Standby current  
consumption  
Input leakage  
current  
CS=GND DO=Open  
ISB  
ILI  
¾
¾
1.0  
0.6  
Connected to VCC or GND  
VIN=GND to VCC  
¾
¾
0.1 1.0  
0.1 1.0  
0.1 1.0  
0.1 1.0  
0.1 1.0 mA  
Output leakage  
current  
ILO  
VOUT=GND to VCC  
0.1 1.0 mA  
Low level output  
voltage  
VOL IOL=2.1 mA  
¾
¾
¾
¾
0.4  
0.1  
¾
V
IOL=100 mA  
¾
0.1  
0.1  
V
V
IOH=-400 mA  
2.4  
High level output  
voltage  
VOH  
IOH=-100 mA  
IOH=-10 mA  
VCC-0.7  
VCC-0.7  
¾
¾
¾
¾
VCC-0.7  
VCC-0.7  
V
V
VCC-0.2  
1.5  
Write enable latch  
data hold voltage  
Only when write disable  
mode  
VDH  
1.5  
¾
¾
1.5  
V
Seiko Instruments Inc.  
4
 
CMOS SERIAL E2PROM  
S-93C46A/56A/66A  
n
AC Electrical Characteristics  
Table 9  
Input pulse voltage  
0.1´ VCC to 0.9´ VCC  
0.5´ VCC  
Output reference voltage  
Output load  
100pF  
Table 10  
VCC=4.5 to 5.5V VCC=2.5 to 4.5 V VCC=1.8 to 2.5V  
Parameter  
Smbl  
Unit  
Min. Typ. Max. Min. Typ. Max. Min. Typ. Max.  
CS setup time  
tCSS  
tCSH  
tCDS  
tDS  
0.2  
0
0.4  
0
1.0  
0
2.0  
ms  
ms  
ms  
ms  
ms  
ms  
CS hold time  
CS deselect time  
Data setup time  
Data hold time  
0.2  
0.1  
0.1  
0
0.2  
0.2  
0.2  
0
0.4  
0.4  
0.4  
2.0  
0
tDH  
Output delay  
tPD  
0.4  
2.0  
1.0  
0.5  
Clock frequency  
Clock pulse width  
Output disable time  
Output enable time  
Programming time  
fSK  
0.25 MHz  
tSKH, tSKL 0.25  
1.0  
0
1.0  
1.0  
ms  
ms  
ms  
tHZ1, tHZ2  
tSV  
0
0
0.15  
0.15  
0.5  
0.5  
0
0
tPR  
4.0 10.0  
4.0 10.0  
4.0 10.0 ms  
tCSS  
tCDS  
CS  
SK  
tSKL  
tCSH  
tSKH  
tDS  
tDH  
tDS tDH  
DI  
Valid data  
Valid data  
tPD  
tPD  
Hi-Z  
DO  
Hi-Z  
tSV  
(READ)  
tHZ1  
tHZ2  
Hi-Z  
DO  
Hi-Z  
(VERIFY)  
Figure 3 Read Timing  
Seiko Instruments Inc.  
5
 
CMOS SERIAL E2PROM  
S-93C46A/56A/66A  
n
Operation  
Instructions (in the order of start-bit, instruction, address, and data) are latched to DI in synchronization with the rising  
edge of SK after CS goes high. A start-bit can only be recognized when the high of DI is latched to the rising edge of SK  
when CS goes from low to high, it is impossible for it to be recognized as long as DI is low, even if there are SK pulses after  
CS goes high. Any SK pulses input while DI is low are called "dummy clocks." Dummy clocks can be used to adjust the  
number of clock cycles needed by the serial IC to match those sent out by the CPU. Instruction input finishes when CS  
goes low, where it must be low between commands during tCDS  
.
All input, including DI and SK signals, is ignored while CS is low, which is stand-by mode.  
1. Read  
The READ instruction reads data from a specified address. After A0 is latched at the rising edge of SK, DO output  
changes from a high-impedance state (Hi-Z) to low level output. Data is continuously output in synchronization with the rise  
of SK.  
When all of the data (D0) in the specified address has been read, the data in the next address can be read with the input  
of another SK clock. Thus, it is possible for all of the data addresses to be read through the continuous input of SK clocks  
as long as CS is high.  
The last address (An ŸŸŸ A1 A0 = 1 ŸŸŸ 11) rolls over to the top address (An ŸŸŸ A1 A0 = 0 ŸŸŸ 00).  
CS  
1
2
3
4
5
6
7
8
9
10  
11  
12  
23  
24  
26  
27  
28  
39  
40  
41 42  
43  
44  
SK  
DI  
25  
1
0
A5  
A4  
A3  
A2  
A1  
A0  
1
Hi-Z  
Hi-Z  
DO  
D15 D14 D13  
0
D2  
D1 D0 D15 D14 D13  
D2  
D1 D0 D15 D14 D13  
A5A4A3A2A1A0+1  
A5A4A3A2A1A0+2  
Figure 4 Read Timing (S-93C46A)  
CS  
SK  
11  
12  
13  
1
2
3
4
5
6
7
8
9
10  
14  
24 25  
26  
27  
28  
29  
40  
41 42  
43  
44  
45  
1
1
0
X
A6  
A5  
A4  
A3  
A2  
A1  
A0  
DI  
Hi-Z  
Hi-Z  
D15 D14 D13  
0
D2  
D1 D0 D15 D14 D13  
D1 D0 D15 D14 D13  
DO  
A6A5A4A3A2A1A0+1  
A6A5A4A3A2A1A0+2  
Figure 5 Read Timing (S-93C56A)  
Seiko Instruments Inc.  
6
 
CMOS SERIAL E2PROM  
S-93C46A/56A/66A  
CS  
SK  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13 14  
29  
40  
41 42  
43  
44  
45  
24  
27  
28  
25  
26  
1
1
0
A7  
A6 A5  
A4  
A3  
A2  
A1  
A0  
DI  
Hi-Z  
Hi-Z  
D15 D14 D13  
0
D2  
D1 D0 D15 D14 D13  
D2  
D1 D0 D15 D14 D13  
DO  
A7A6A5A4A3A2A1A0+1  
A7A6A5A4A3A2A1A0+2  
Figure 6 Read Timing (S-93C66A)  
2. Write (WRITE, ERASE, WRAL, ERAL)  
There are four write instructions, WRITE, ERASE, WRAL, and ERAL. Each automatically begins writing to the non-  
volatile memory when CS goes low at the completion of the specified clock input.  
The write operation is completed in 10 ms (tPR Max.), and the typical write period is less than 5 ms. In the S-  
93C46A/56A/66A, it is easy to VERIFY the completion of the write operation in order to minimize the write cycle by setting  
CS to high and checking the DO pin, which is low during the write operation and high after its completion. This VERIFY  
procedure can be executed over and over again.  
Because all SK and DI inputs are ignored during the write operation, any input of instruction will also be disregarded.  
When DO outputs high after completion of the write operation or if it is in the high-impedence state (Hi-Z), the input of  
instructions is available. Even if the DO pin remains high, it will enter the high-impedence state upon the recognition of a  
high of DI (start-bit) attached to the rising edge of an SK pulse. (see Figure 3).  
DI input should be low during the VERIFY procedure.  
Seiko Instruments Inc.  
7
CMOS SERIAL E2PROM  
S-93C46A/56A/66A  
2.1 WRITE  
This instruction writes 16-bit data to a specified address.  
After changing CS to high, input a start-bit, op-code (WRITE), address, and 16-bit data. If there is a data overflow of more  
than 16 bits, only the last 16 bits of the data is considered valid. Changing CS to low will start the WRITE operation. It is not  
necessary to make the data "1" before initiating the WRITE operation.  
tCDS  
CS  
VERIFY  
SK  
DI  
1
2
3
4
5
6
7
8
9
10  
25  
D0  
0
A5 A4 A3 A2 A1 A0 D15  
Hi-Z  
1
1
tSV  
tHZ1  
busy  
ready  
DO  
Hi-Z  
tPR  
Figure 7 WRITE Timing (S-93C46A)  
tCDS  
CS  
SK  
VERIFY  
1
2
3
4
5
6
7
8
9
10 11 12  
27  
D0  
1
0
1
X
A6 A5 A4 A3 A2 A1 A0 D15  
DI  
tSV  
tHZ1  
Hi-Z  
busy  
ready  
DO  
Hi-Z  
tPR  
Figure 8 WRITE Timing (S-93C56A)  
tCDS  
CS  
SK  
VERIFY  
1
2
3
4
5
6
7
8
9
10 11 12  
27  
D0  
0
A7 A6 A5 A4 A3 A2 A1 A0 D15  
Hi-Z  
DI  
1
1
tSV  
tHZ1  
busy  
ready  
DO  
Hi-Z  
tPR  
Figure 9 WRITE Timing (S-93C66A)  
Seiko Instruments Inc.  
8
CMOS SERIAL E2PROM  
S-93C46A/56A/66A  
2.2 ERASE  
This command erases 16-bit data in a specified address.  
After changing CS to high, input a start-bit, op-code (ERASE), and address. It is not necessary to input data. Changing CS  
to low will start the ERASE operation, which changes every bit of the 16-bit data to "1."  
tCDS  
CS  
VERIFY  
SK  
DI  
D
1
2
3
4
5
6
7
8
9
1
1
1
A5 A4 A3 A2 A1  
Hi-Z  
A0  
tSV  
tHZ1  
busy  
ready  
Hi-Z  
tPR  
Figure 10 ERASE Timing (S-93C46A)  
tCDS  
CS  
SK  
VERIFY  
1
2
1
3
4
5
6
7
8
9
10 11  
1
1
X
A6 A5 A4 A3 A2 A1 A0  
DI  
tSV  
tHZ1  
Hi-Z  
busy  
ready  
DO  
Hi-Z  
tPR  
Figure 11 ERASE Timing (S-93C56A)  
tCDS  
CS  
SK  
VERIFY  
1
2
1
3
4
5
6
7
8
9
10 11  
1
1
A7 A6 A5 A4 A3 A2 A1  
Hi-Z  
A0  
DI  
tSV  
tHZ1  
busy  
ready  
DO  
Hi-Z  
tPR  
Figure 12 ERASE Timing (S-93C66A)  
Seiko Instruments Inc.  
9
CMOS SERIAL E2PROM  
S-93C46A/56A/66A  
2.3 WRAL  
This instruction writes the same 16-bit data into every address.  
After changing CS to high, input a start-bit, op-code (WRAL), address (optional), and 16-bit data. If there is a data overflow  
of more than 16 bits, only the last 16 bits of the data is considered valid. Changing CS to low will start the WRAL operation.  
It is not necessary to make the data "1" before initiating the WRAL operation.  
tCDS  
CS  
VERIFY  
SK  
DI  
1
2
0
3
4
5
6
7
8
9
10  
25  
D0  
0
0
D15  
1
1
4Xs  
tSV  
tHZ1  
Hi-Z  
busy  
ready  
DO  
Hi-Z  
tPR  
Figure 13 WRAL Timing (S-93C46A)  
tCDS  
CS  
SK  
VERIFY  
1
2
3
4
5
6
7
8
9
10 11 12  
D15  
27  
0
0
0
D0  
DI  
1
1
tSV  
tHZ1  
6Xs  
Hi-Z  
busy  
ready  
DO  
Hi-Z  
tPR  
Figure 14 WRAL Timing (S-93C56A)  
tCDS  
CS  
SK  
VERIFY  
1
2
0
3
4
5
6
7
8
9
10 11 12  
D15  
27  
DI  
0
0
D0  
1
1
tSV  
tHZ1  
6Xs  
Hi-Z  
busy  
ready  
DO  
Hi-Z  
tPR  
Figure 15 WRAL Timing (S-93C66A)  
Seiko Instruments Inc.  
10  
CMOS SERIAL E2PROM  
S-93C46A/56A/66A  
2.4 ERAL  
This instruction erases the data in every address.  
After changing CS to high, input a start-bit, op-code (ERAL), and address (optional). It is not necessary to input data.  
Changing CS to low will start the ERAL operation, which changes every bit of data to "1."  
CS  
SK  
VERIFY  
tCDS  
1
2
0
3
0
4
5
6
7
8
9
1
1
0
DI  
4Xs  
tHZ1  
tSV  
busy  
ready  
DO  
Hi-Z  
tPR  
Figure 16 ERAL Timing (S-93C46A)  
CS  
SK  
VERIFY  
tCDS  
11  
1
2
3
4
5
6
7
8
9
10  
1
0
0
1
0
DI  
6Xs  
tHZ1  
tSV  
busy  
ready  
DO  
Hi-Z  
tPR  
Figure 17 ERAL Timing (S-93C56A)  
CS  
SK  
VERIFY  
tCDS  
11  
1
2
3
0
4
5
6
7
8
9
10  
DI  
1
0
1
0
6Xs  
tHZ1  
tSV  
busy  
ready  
DO  
Hi-Z  
tPR  
Figure 18 ERAL Timing (S-93C66A)  
Seiko Instruments Inc.  
11  
CMOS SERIAL E2PROM  
S-93C46A/56A/66A  
3. Write enable (EWEN) and Write disable (EWDS)  
The EWEN instruction puts the S-93C46A/56A/66A into write enable mode, which accepts WRITE, ERASE, WRAL,  
and ERAL instructions. The EWDS instruction puts the S-93C46A/56A/66A into write disable mode, which refuses WRITE,  
ERASE, WRAL, and ERAL instructions.  
The S-93C46A/56A/66A powers on in write disable mode, which protects data against unexpected, erroneous write  
operations caused by noise and/or CPU malfunctions. It should be kept in write disable mode except when performing write  
operations.  
STANDBY  
CS  
1
2
3
4
5
6
7
8
9
SK  
DI  
1
0
0
4Xs  
11=EWEN  
00=EWDS  
Figure 19 EWEN/EWDS Timing (S-93C46A)  
STANDBY  
CS  
SK  
1
2
3
4
5
6
7
8
9
10  
11  
1
0
0
DI  
6Xs  
11=EWEN  
00=EWDS  
Figure 20 EWEN/EWDS Timing (S-93C56A)  
STANDBY  
CS  
SK  
1
2
3
4
5
6
7
8
9
10  
11  
1
0
0
DI  
6Xs  
11=EWEN  
00=EWDS  
Figure 21 EWEN/EWDS Timing (S-93C66A)  
Seiko Instruments Inc.  
12  
CMOS SERIAL E2PROM  
S-93C46A/56A/66A  
n
Receiving a Start-Bit  
Both the recognition of a start-bit and the VERIFY procedure occur when CS is high. Therefore, only after a write  
operation, in order to accept the next command by having CS go high, the DO pin switch from a state of high-impedence to  
a state of data output; but if it recognizes a start-bit, the DO pin returns to a state of high-impedence.  
n
Three-wire Interface (DI-DO direct connection)  
Although the normal configuration of a serial interface is a 4-wire interface to CS, SK, DI, and DO, a 3-wire interface is  
also a possibility by connecting DI and DO. However, since there is a possibility that the DO output from the serial memory  
IC will interfere with the data output from the CPU with a 3-wire interface, install a resistor between DI and DO in order to  
give preference to data output from the CPU to DI(See Figure 22).  
CPU  
S-93C46A/56A/66A  
SIO  
DI  
DO  
R : 10k ~ 100kW  
Figure 22  
Seiko Instruments Inc.  
13  
 
CMOS SERIAL E2PROM  
S-93C46A/56A/66A  
n
Dimensions (Unit : mm)  
1. 8-pin DIP  
9.3 (9.6 max.)  
S-93C46ADP  
S-93C56ADP  
S-93C66ADP  
5
8
6.5  
4
1
7.62  
1.0  
1.5  
3.4±0.1  
4.5 max.  
3.1 min.  
0.4 min.  
0°~15°  
+0.1  
0.3  
0.5±0.1  
2.54  
-0.05  
Figure 23  
Markings  
1
: (Blank)  
2 to 7 : Product name S93C46”  
1
2
3
4
5
6
7
:
S93C56”  
S93C66”  
:
8
9
: Assembly code  
8
9
10  
14  
: Year of assembly (Last digit of the year)  
10  
: Month of assembly (1 to 9, X, Y,and Z)  
11  
12  
13  
11 to 14 : Lot No. (Last four digits of the Lot No.)  
Figure 24  
Seiko Instruments Inc.  
14  
 
CMOS SERIAL E2PROM  
S-93C46A/56A/66A  
2. 8-pin SOP  
<SOP1>  
4.90 (4.95 max.)  
5
8
S-93C46AFJ  
0.60±0.20  
S-93C56AFJ  
S-93C66AFJ  
<SOP2>  
3.90  
6.00±0.20  
S-93C46ADFJ  
S-93C56ADFJ  
S-93C66ADFJ  
4
1
0.20±0.05  
1.50±0.05  
1.75max.  
0.10 min.  
1.27 0.40±0.05  
Figure 25  
Markings (SOP1)  
1 to 6 : Product name “S93C46”  
1
2
6
3
7
4
8
5
9
“S93C56”  
“S93C66”  
7
8
9
: Assembly code  
: Year of assembly (Last digit of the year)  
: Month of assembly (“1 to 9, X, Y,and Z”)  
10  
11  
12  
13  
10 to 13 : Lot No. (Last four digits of the Lot No.)  
Figure 26  
Markings (SOP2)  
1 to 7 : Product name “S93C46D”  
“S93C56D”  
1
6
2
7
3
8
4
9
5
“S93C66D”  
10  
14  
8
9
: Assembly code  
: Year of assembly (Last digit of the year)  
: Month of assembly (“1 to 9, X, Y,and Z”)  
10  
11  
12  
13  
11 to 14 : Lot No. (Last four digits of the Lot No.)  
Figure 27  
Seiko Instruments Inc.  
15  
CMOS SERIAL E2PROM  
S-93C46A/56A/66A  
3. 8-pin TSSOP  
+0.30  
-0.20  
3.0  
S-93C46AFT  
S-93C56AFT  
S-93C66AFT  
8
5
0.5  
4.4±0.2  
6.4±0.2  
+0.08  
-0.05  
1
4
0.17  
1.10max.  
0~0.1  
0.65 0.20±0.10  
Figure 28  
Markings  
1
:Assembly code  
1
7
2
8
3
9
4
2
:Year of assembly (Last digit of the year)  
:Lot No. (abbreviation)  
3 to 4  
5 to 10 :Product name “S93C46”  
5
6
10  
“S93C56”  
“S93C66”  
Figure 29  
Seiko Instruments Inc.  
16  
CMOS SERIAL E2PROM  
S-93C46A/56A/66A  
4. 8-pin MSOP  
S-93C46AMFN  
2.95±0.2  
S-93C56AMFN  
S-93C66AMFN  
8
5
0.45±0.2  
2.8±0.2  
4.0±0.3  
4
1
0.13±0.1  
1.3 max.  
1.10±0.1  
+0.05  
-0.10  
0.1  
0.65±0.1  
0.2±0.1  
Figure 30  
Markings  
1 to 3 : Product name (abbreviation)  
“46M” : In case of “S-93C46A”  
“56M” : In case of “S-93C56A”  
“66M” : In case of “S-93C66A”  
1
4
2
5
3
6
4
: Year of assembly (Last digit of the year)  
5 to 6 : Lot No. (abbreviation)  
Figure 31  
n
Ordering Information  
S-93CXXA  
XXX  
Package  
DP  
FJ  
: DIP  
: SOP1  
: SOP2  
: TSSOP  
DFJ  
FT  
MFN : MSOP  
Product name  
S-93C46A: 1K bits  
S-93C56A: 2K bits  
S-93C66A: 4K bits  
Seiko Instruments Inc.  
17  
 
CMOS SERIAL E2PROM  
S-93C46A/56A/66A  
n Chracteristics  
1. DC Characteristics  
1.2 Current consumption (READ) ICC1  
1.1 Current consumption (READ) ICC1  
Ambient temperature Ta  
Ambient temperature Ta  
VCC=5.5 V  
fSK=2 MHz  
DATA=0101  
VCC=3.3 V  
fSK=500 KHz  
DATA=0101  
0.4  
0.4  
ICC1  
(mA)  
ICC1  
(mA)  
0.2  
0
0.2  
0
-40  
0
85  
-40  
0
85  
Ta (°C)  
Ta (°C)  
1.4 Current consumption (READ) ICC1  
1.3 Current consumption (READ) ICC1  
Ambient temperature Ta  
Power supply voltage VCC  
VCC=1.8 V  
fSK=10 KHz  
DATA=0101  
Ta=25 °C  
fSK=1 MHz, 500 KHz  
DATA=0101  
0.4  
0.4  
ICC1  
ICC1  
(mA)  
1MHz  
(mA)  
~
0.2  
0
0.2  
~
500KHz  
0
5
2
3
4
6
7
-40  
0
85  
Ta (°C)  
VCC (V)  
1.6 Current consumption (READ) ICC1  
1.5 Current consumption (READ) ICC1  
Power supply voltage VCC  
Clock frequency fSK  
VCC=5.0 V  
Ta=25 °C  
Ta=25 °C  
fSK=100 KHz, 10 KHz  
DATA=0101  
0.4  
0.4  
ICC1  
(mA)  
ICC1  
(mA)  
100KHz  
0.2  
0
0.2  
~
~
10KHz  
0
5
2
3
4
6
7
10K 100K 1M 2M  
VCC (V)  
fSK(Hz)  
1.8 Current consumption (WRITE) ICC2  
1.7 Current consumption (WRITE) ICC2  
Ambient temperature Ta  
Ambient temperature Ta  
VCC=5.5 V  
VCC=3.3 V  
1.0  
1.0  
ICC2  
(mA)  
ICC2  
(mA)  
0.5  
0
0.5  
0
-40  
0
85  
-40  
0
85  
Ta (°C)  
Ta (°C)  
Seiko Instruments Inc.  
18  
 
CMOS SERIAL E2PROM  
S-93C46A/56A/66A  
1.9 Current consumption (WRITE) ICC2  
1.10 Current consumption (WRITE) ICC2—  
Ambient temperature Ta  
Power supply voltage VCC  
VCC=1.8 V  
Ta=25°C  
1.0  
1.0  
0.5  
0
ICC2  
(mA)  
ICC2  
(mA)  
0.5  
0
2
3
4
5
6
7
-40  
0
85  
Ta (°C)  
VCC (V)  
1.11 Standby current consumption ISB  
Ambient temperature Ta  
1.12 Input leakage current ILI—  
Ambient temperature Ta  
VCC=5.5 V  
10-6  
10-7  
10-8  
10-9  
10-10  
10-11  
VCC=5.5 V  
CS, SK, DI,  
TEST=0 V  
ISB  
(A)  
1.0  
ILI  
(mA)  
0.5  
0
-40  
0
85  
-40  
0
85  
Ta (°C)  
Ta (°C)  
1.13 Input leakage current ILI—  
Ambient temperature Ta  
1.14 Output leakage current ILO  
Ambient temperature Ta  
VCC=5.5 V  
DO=0 V  
VCC=5.5 V  
CS, SK, DI,  
TEST=5.5 V  
1.0  
1.0  
ILO  
(mA)  
ILI  
(mA)  
0.5  
0
0.5  
0
-40  
0
85  
-40  
0
85  
Ta (°C)  
Ta (°C)  
1.15 Output leakage current ILO  
1.16 High level output voltage VOH  
Ambient temperature Ta  
Ambient temperature Ta  
VCC=5.5 V  
DO=5.5 V  
VCC=4.5 V  
IOH=-400mA  
4.6  
1.0  
ILO  
(mA)  
VOH  
(V)  
4.4  
4.2  
0.5  
0
-40  
0
85  
-40  
0
85  
Ta (°C)  
Ta (°C)  
Seiko Instruments Inc.  
19  
CMOS SERIAL E2PROM  
S-93C46A/56A/66A  
1.17 High level output voltage VOH  
Ambient temperature Ta  
1.18 High level output voltage VOH  
Ambient temperature Ta  
VCC=2.7 V  
IOH=-100mA  
VCC=2.5 V  
IOH=-100mA  
2.7  
2.5  
VOH  
(V)  
VOH  
(V)  
2.6  
2.5  
2.4  
2.3  
-40  
0
85  
-40  
0
85  
Ta (°C)  
Ta (°C)  
1.19 High level output voltage VOH  
Ambient temperature Ta  
1.20 Low level output voltage VOL  
Ambient temperature Ta  
VCC=1.8 V  
IOH=-10mA  
VCC=4.5 V  
IOL=2.1 mA  
1.9  
0.3  
VOH  
(V)  
VOL  
(V)  
1.8  
1.7  
0.2  
0.1  
-40  
0
85  
-40  
0
85  
Ta (°C)  
Ta (°C)  
1.21 Low level output voltage VOL  
1.22 High level output current IOH  
Ambient temperature Ta  
Ambient temperature Ta  
VCC=1.8 V  
IOL=100mA  
VCC=4.5 V  
VOH=2.4 V  
0.03  
-20.0  
VOL  
(V)  
IOH  
(mA)  
0.02  
0.01  
-10.0  
0
-40  
0
85  
-40  
0
85  
Ta (°C)  
Ta (°C)  
1.23 High level output current IOH  
Ambient temperature Ta  
1.24 High level output current IOH  
Ambient temperature Ta  
VCC=2.7 V  
VOH=2.0 V  
VCC=2.5 V  
VOH=1.8 V  
-4  
-4  
IOH  
(mA)  
IOH  
(mA)  
-2  
0
-2  
0
-40  
0
85  
-40  
0
85  
Ta (°C)  
Ta (°C)  
Seiko Instruments Inc.  
20  
CMOS SERIAL E2PROM  
S-93C46A/56A/66A  
1.25 High level output current IOH  
Ambient temperature Ta  
1.26 Low level output current IOL  
Ambient temperature Ta  
VCC=1.8 V  
VOH=1.6 V  
VCC=4.5 V  
VOL=0.4 V  
-1.0  
20  
10  
0
IOH  
(mA)  
IOL  
(mA)  
-0.5  
0
-40  
0
85  
-40  
0
85  
Ta (°C)  
Ta (°C)  
1.27 Low level output current IOL  
1.28 Input voltage VIN(VIL,VIH) —  
Power supply voltage VCC  
Ambient temperature Ta  
VCC=1.8 V  
VOL=0.1 V  
Ta=25°C  
CS, SK, DI  
1.0  
3.0  
VINV  
(V)  
IOL  
(mA)  
0.5  
0
1.5  
0
1
2
3
4
5
6
7
-40  
0
85  
Ta (°C)  
VCC (V)  
1.29 Input voltage VIN(VIL,VIH) —  
Ambient temperature Ta  
VCC=5.0 V  
CS, SK, DI  
3.0  
VINV  
(V)  
2.0  
0
-40  
0
85  
Ta (°C)  
Seiko Instruments Inc.  
21  
CMOS SERIAL E2PROM  
S-93C46A/56A/66A  
2. AC Characteristics  
2.2 Program time tPR  
2.1 Maximum operating frequency fmax  
Power supply voltage VCC  
Power supply voltage VCC  
Ta=25°C  
2M  
Ta=25°C  
4
2
1M  
fmax  
(Hz)  
tPR  
(ms)  
100K  
10K  
1
2
3
4
5
85  
85  
1
2
3
4
5 6  
7
VCC (V)  
VCC (V)  
2.3 Program time tPR  
2.4 Program time tPR—  
Ambient temperature Ta  
Ambient temperature Ta  
VCC=5.0 V  
6
VCC=3.0 V  
6
tPR  
(ms)  
tPR  
(ms)  
4
2
4
2
-40  
0
-40  
0
85  
Ta (°C)  
Ta (°C)  
2.6 Data output delay time tPD  
Ambient temperature Ta  
2.5 Program time tPR  
Ambient temperature Ta  
VCC=1.8 V  
6
VCC=4.5 V  
0.3  
tPD  
(ms)  
tPR  
(ms)  
4
2
0.2  
0.1  
-40  
0
-40  
0
85  
Ta (°C)  
Ta (°C)  
2.7 Data output delay time tPD  
Ambient temperature Ta  
2.8 Data output delay time tPD  
Ambient temperature Ta  
VCC=2.7 V  
VCC=1.8 V  
0.6  
tPD  
(ms)  
1.5  
tPD  
(ms)  
0.4  
0.2  
1.0  
0.5  
-40  
0
85  
-40  
0
85  
Ta (°C)  
Ta (°C)  
Seiko Instruments Inc.  
22  
Collection of Product FAQs  
Author: Kano Tomoo  
Date: 98/11/12 (Thursday) 10:17 (modified: 99/01/13 (Wednesday)  
<Information level>  
A:  
Public (Printing O.K.)  
D: Technical terms  
Index:  
<Product>  
Division name: 01 IC  
Category:  
1: 12 Memory  
Category:  
Cal No.:  
2: 2. Serial EEPROM  
S-93C46A/56A/66A  
Related documents:  
Question:  
What about the basic term (dummy clock)?  
Answer:  
Dummy clock  
Competing manufacturers have released products that require “0” to be input (dummy clocks) before the  
start bit (see FAQ). In SII’s products, a command is normally executed regardless of the presence of an  
input dummy clock. These products are compatible.  
<Remarks>  
FAQ No.: 12016  
23  
Collection of Product FAQs  
Author: Kano Tomoo  
Date: 98/11/12 (Thursday) 10:17 (modified: 99/01/22 (Friday))  
<Information Level>  
A:  
Public (Printing O.K.)  
D: Technical terms  
Index:  
<Product>  
Division name: 01 IC  
Category 1:  
12 Memory  
Category 2:  
Cal No.:  
2. Serial EEPROM  
S-93C46A/56A/66A  
Related documents:  
Question:  
What about the basic term (start bit)?  
Answer:  
Start bit  
serial 3-wire bus EEPROM (a 2-wire bus type is used for the start condition)  
When a command is issued the 3-wire bus EEPROM must obtain “1” from a DI input in order to  
recognize this command (this is a rule).  
Address  
Operation  
code  
Command  
READ(Data read)  
Data  
Start bit  
S-29L130A S-29L220A S-29L330A  
1
1
1
1
1
10  
01  
11  
00  
00  
A5-A0  
A5-A0  
A5-A0  
XA6-A0  
XA6-A0  
XA6-A0  
A7-A0 D15-D0 Output*  
A7-A0 D15-D0 Input  
WRITE(Data write)  
ERASE(Data erase)  
EWEN(Program enable)  
EWDS(Program disable)  
A7-A0  
-
-
-
11xxxx 11xxxxxx 11xxxxxx  
00xxxx 00xxxxxx 00xxxxxx  
<Remarks>  
FAQ No.: 12015  
24  
Collection of Product FAQs  
Author: Kano Tomoo  
Date: 98/11/12 (Thursday) 10:17 (modified: 99/01/13 (Wednesday))  
<Information level>  
A:  
Public (Printing O.K.)  
B: Technical  
Index:  
<Product>  
Division name: 01 IC  
Category 1:  
12 Memory  
Category 2:  
Cal No.:  
2. Serial EEPROM  
S-93C46A/56A/66A  
Related documents:  
Question:  
What about the equivalent circuit for I/O terminals?  
Answer:  
Equivalent circuit for I/O terminals  
Users may require a circuit for I/O terminals, as they may desire to establish a circuit configuration and  
anti-static measures for the application based on circuit information.  
Equivalent circuit diagram for the S-93C-series I/O terminals  
CS  
Internal CS signal  
DI  
Vcc  
SK  
GND  
25  
TEST  
Data output signal  
DO  
Internal OE signal  
<Remarks>  
FAQ No.: 12013  
26  
Collection of Product FAQs  
Author: Ebisawa Takashi  
Date: 99/01/13 (Wednesday) 18:19 (modified: 99/01/14)  
<Information level>  
A:  
Public (Printing O.K.)  
C: quality, reliability  
Index:  
<Product>  
Division name: 01 IC  
Category 1:  
12 Memory  
Category 2:  
Cal No.:  
2. Serial EEPROM  
Overall  
Related documents:  
Question:  
What about the reliability and quality of the EEPROM?  
Answer:  
1. The EEPROM must have a quality that is “special in a sense” and that differs from that of the other  
ICs.  
<What is this special quality?>  
(1) Number of possible rewrites: 105 or 106  
A specified minimum number of data rewrites must be assured.  
(2) Data retention: 10 years  
It must be ensured that written data (‘1’ and ‘0’) will be stored for at least 10 years.  
Ensuring (1) and (2) is very difficult in a technical sense, as well as in the sense that high quality must  
be maintained despite the need for mass production.  
2. Why this guarantee is technically difficult  
As shown in the figure below, the EEPROM functions as a non-volatile memory by holding charges  
in FG.  
27  
Source electrode Control gate electrode Select gate electrode Drain electrode  
CG  
SG  
FG  
Thin oxide film  
UTO  
N+  
N+  
N+  
P substrate  
GND  
[Data rewrite]  
Data rewrite refers to the injection or removal of electrons into or from the FG. In this process, electrons  
pass through a thin oxide film (UTO). The oxide film inherently acts as an insulator, but in this case the  
film conducts electricity (electrons are transferred).  
[Data retention]  
Data retention refers to the prevention of leakage of electrons stored in the FG. This must be assured  
for at least 10 years.  
To meet the above stated contradictory properties, high-quality thin oxide films (UTO) must be  
manufactured. Such UTOs are very thin (on the order of 10 nm), and stably manufacturing them  
requires a very difficult technique.  
<Remarks>  
FAQ No.: 12022  
28  
Collection of Product FAQs  
Author: Ebisawa Takashi  
Date: 99/01/13 (Wednesday) 18:57 (modified: 99/01/13)  
<Information level>  
X:  
Working  
A: General  
Index:  
<Product>  
Division name: 01 IC  
Category 1:  
12 Memory  
Category 2:  
Cal. No.:  
2. Serial EEPROM  
Overall  
Related documents:  
Question:  
What about the distribution of application notes, usage notes, and malfunctions?  
Answer:  
Distribution of application notes  
All EEPROMS, including ours, may malfunction (false-writes may occur) due to an “operation in a low-  
voltage region upon power-on/off” or “improper recognition of a command due to a noise signal.” This  
defect is particularly common in the voltage region of the microcomputer transmitting commands to the  
EEPROM, where the voltage is lower than the lowest operating voltage of the microcomputer.  
To prevent this defect, usage notes have been prepared for the EEPROM.  
-
-
-
S-93C series, S29 series  
S-24CxxA series  
S-24CxxB series  
<Remarks>  
FAQ No.: 12022  
29  
Collection of Product FAQs  
Author: Ebisawa Takashi  
Date: 99/01/13 (Wednesday) 17:43 (modified: 99/01/13)  
<Information level>  
A:  
Public (Printing O.K.)  
A: General  
Index:  
<Product>  
Division name: 01 IC  
Category 1:  
12 Memory  
Category 2:  
Cal. No.:  
2. Serial EEPROM  
Overall  
Related documents:  
Question:  
What are some applications of the serial EEPROM?  
Answer:  
1. Applications of the EEPROM  
The applications of the EEPROM can be roughly divided into the following types:  
-
-
-
Tuning memory, mode setting, ID codes: Arbitrary data can easily be rewritten and data can be  
retained during power-off.  
Replacement of a DIP switch (from a mechanical to an electronic switch): User costs are  
substantially reduced.  
Adjustment data for IC elements and other electronics: The accuracy of final products is increased.  
Adjustments, which had been performed manually, can be automated.  
2. Specific examples of applications  
Based on the above applications, general examples are shown below. Basically, the EEPROM (a  
non-volatile memory) is useful for electronic applications.  
[Television]  
TV channel memory, screen setting data, data backup during power-off  
S-24C series  
[Video]  
VTR channel memory, program reservation data, image-quality adjustment data,  
data backup during power-off  
S-93Cx6A, S-29xx0A, S-24C series  
[White goods]  
Maintenance data, adjustment data  
S-93Cx6A, S-29xx0A, S-24C series  
[Vehicle-mounted] Troubleshooting data, maintenance data, adjustment data: Air bags, ABS,  
distance meters  
S-93Cx6A, S-29xx0A, S-24C series  
[Printers]  
Printer maintenance data  
S-93Cx6A, S-29xx0A, S-24C series  
30  
[Modems]  
Replacement of DIP switches, software (firmware) data  
S-93Cx6A, S-29xx0A, S-24C series  
[Mobile telephones] Personal ID, telephone-number data, address data, adjustment data  
S-24C series  
[Pagers]  
Personal ID, telephone-number data, address data  
S-93Cx6A, S-29Z series, S-24C series  
[PC cards]  
LAN cards and modem cards, replacement of dip switches, software data  
S-93C46A, S-29, S-24C series  
<Remarks>  
FAQ No.: 12021  
31  
Collection of Product FAQs  
Author: Kano Tomoo  
Date: 98/11/12 (Thursday) 10:17 (modified: 99/01/13)  
<Information level>  
A:  
Public (Printing O.K.)  
D: Technical terms  
Index:  
<Product>  
Division name: 01 IC  
Category 1:  
12 Memory  
Category 2:  
Cal. No.:  
2. Serial EEPROM  
Overall  
Related documents:  
Question:  
What about the basic terms (verify, ready/busy function)?  
Answer:  
Verify, ready/busy (R/B) function  
This is a function to find out about an actual write operation (time). There are two methods, a  
“monitoring method based on the output condition of the DO pin” and a “method for monitoring the  
output condition of the Ready/Busy pin.” This function eliminates the need to wait 10 ms for writing to be  
completed, thereby minimizing the write time according to the performance of the IC (performance  
value: 4 ms to 5 ms; 1 ms is ensured for the S-24C series).  
tCDS  
Standby  
VERIFY  
CS  
SK  
4
7
9
1
2
3
5
6
8
10  
25  
0
1
A5 A4 A3 A2 A1 A0 D15  
Hi-Z  
D0  
1
DI  
tSV  
tHZ1  
Hi-Z  
busy  
ready  
DO  
tPR  
(Note) Note that this differs from a normal verify function, which checks written data for errors.  
<Remarks>  
FAQ No.: 12018  
32  
Collection of Product FAQs  
Author: Kano Tomoo  
Date: 98/11/12 (Thursday) 10:17 (modified: 99/01/13)  
<Information level>  
A:  
Public (Printing O.K.)  
Technical terms  
Index: D:  
<Product>  
Division name: 01 IC  
Category 1:  
12 Memory  
Category 2:  
Cal. No.:  
2. Serial EEPROM  
Overall  
Related documents:  
Question:  
What about the basic term (page write)?  
Answer:  
Page write S-24C series  
Writing to memory is normally executed in addresses. With the page write function, however, writing  
can be executed in pages (multiple addresses). This function can improve the efficiency of write  
commands and reduce writing time.  
Ex.:S-24C04B (4 K = 512 addresses x 8 bits) 16-byte page write function  
Writing in addresses: A write time of 10 msec. x 512 = 5.1 sec. is required.  
Page write: 10 msec. x 512 / 16 = 320 msec.  
However, compatibility with products from other companies must be confirmed.  
<Remarks>  
FAQ No.: 12017  
33  
Collection of Product FAQs  
Author: Kano Tomoo  
Date: 98/11/12 (Thursday) 10:17 (modified: 99/01/13)  
<Information level>  
A:  
Public (Printing)  
Index:  
D: Technical terms  
<Product>  
Division name: 01 IC  
Category 1:  
12 Memory  
Category 2:  
Cal. No.:  
2. Serial EEPROM  
Overall  
Related documents:  
Question:  
What about the basic terms (Test pin, ORG pin)  
Answer:  
TEST pin  
This is an input pin used to enter a test mode when tests are conducted during an SII inspection  
process. This information is not provided to users. It can be used with a GND or Vcc connection, or in  
an open state (see note). This is important in maintaining compatibility with the pin layouts of other  
companies. Some users fear that the test mode may be inadvertently entered during operation, but such  
fears are unnecessary, as a potential of at least 10 V must be constantly supplied to enter the test  
mode.  
(Note) Since the TEST pin has a C-MOS input structure, the GND or Vcc connection is most suited for  
this pin.  
ORG (Organization) pin  
Input pin used to specify a memory configuration. A normal memory has a “16 bit/1 address” data  
configuration and includes no ORG pin. Competing manufacturers, however, have released products  
that enable data to be switched between “x16” and “x8” using “H” or “L” of the ORG pin. Since this  
function is provided for the 93C series of the NS code, there is a compatibility problem. SII has not yet  
released products featuring this function.  
<Remarks>  
FAQ No.: 12014  
34  
Collection of Product FAQs  
Author: Kano Tomoo  
Date: 98/11/12 (Thursday) 10:17 (modified: 99/01/13)  
<Information level>  
A:  
Public (Printing O.K.)  
B: Technical  
Index:  
<Product>  
Division name: 01 IC  
Category 1:  
12 Memory  
Category 2:  
Cal. No.:  
2. Serial EEPROM  
Overall  
Related documents:  
Question:  
Malfunction (false-write, illegal data)  
Answer:  
[Malfunction of the EEPROM] (key words: false-store(illegal data)  
The EEPROM may malfunction (false-store) due to power-on/off or noise from the microcomputer. The  
defect rate, however, is on the order of ppm. Even though, this could be a serious problem for the users  
and to the applications.  
-
This problem essentially results from users’ design techniques, but the manufacturer should make  
efforts to prevent this defect. As the unit price continuously decreases, this is particularly important in  
discriminating us from our competitors.  
-
Improving the business techniques of the manufacturer  
Malfunction basically results from a user’s inappropriate operation, so the user is the responsible  
party. We, however, must bear responsibility for defects in the IC. Thus, the best action to take  
depends on whether the user or SII is responsible for the defect. In practice, however, it is difficult to  
determine from a user’s claim or inquiry, or through an agent, who is responsible for a defect.  
In such a case, inform the Business Techniques section of the situation as soon as possible. In addition,  
see FAQ on other “malfunctions” for technical information.  
<Remarks>  
FAQ No.: 12012  
35  
Collection of Product FAQs  
Author: Kano Tomoo  
Date: 98/11/12 (Thursday) 10:17 (modified: 99/01/13)  
<Information level>  
A:  
Public (Printing O.K.)  
B: Technical  
Index:  
<Product>  
Division name: 01 IC  
Category 1:  
12 Memory  
Category 2:  
Cal. No.:  
2. Serial EEPROM  
Overall  
Related documents:  
Question:  
Power-on clear in S-93CxxA, S-29xxxA, notes for power-on (malfunction)  
Answer:  
1. This IC series has a built-in power-on clear circuit.  
This circuit instantly initializes the EEPROM when the power voltage is activated. Since malfunction  
may occur if initialization has not been completed normally, the conditions specified below are  
required to activate the power voltage in order to operate the power-on clear circuit normally.  
2. Notes on power-on  
Method for activating the power voltage  
As shown in Fig. 1, activate the power voltage starting from a maximum of 0.2 V so that the power  
voltage reaches the operating value within the time specified as tRISE. If the operating power  
voltage is, for example, 5.0 V, tRISE = 200 ms, as shown in Fig. 2. Thus, the power voltage must be  
activated within 200 ms.  
36  
trise (max)  
Power voltage VCC  
0.2v  
Vinit (max)  
0v (Note1)  
*1 At 0 V, there is no potential difference  
between the VCC and GND terminals of  
the EEPROM.  
*2 t.nit is the time required for EEPROM to  
initialize internally. During this time period,  
the EEPROM will not accept commands.  
tinit(max) (Note2)  
Fig. 1 Activation of the Power Voltage  
5.0  
4.0  
3.0  
2.0  
Example) If the operating power voltage is  
5 V, ensure that the power voltage reaches  
5 V within 20.0 ms.  
50 100 150 200 (msec)  
Power-voltage activation time trise (max)  
Fig. 2 Maximum power-voltage activation time  
Initialize time tinit  
The EEPROM is instantly initialized when the power voltage is activated.  
Since the EEPROM does not accept commands during initialization, the transmission of commands  
to the EEPROM must be started after this initialization time period.  
Fig. 3 shows the time required to initialize the EEPROM.  
37  
100m  
10m  
1m  
100  
10  
µ
µ
µ
1
trise (seconds)  
1
10 100 1m 10m 100m  
µ µ µ  
Power-voltage activation time  
Fig. 3 EEPROM initialization time  
When the power-on clear circuit has finished initialization normally, the EEPROM enters a program-  
disabled state. If the power-on clear circuit does not operate, the following situation is likely:  
-
In some cases, a previously entered command has been enabled. If, for example, a program-  
enabled command has been enabled and the input terminal mistakenly recognizes a write command  
due to extraneous noise while the next command is being entered, writing may be executed.  
The following may prevent the power-on clear circuit from operating:  
-
If the power lines of the microcomputer and EEPROM are separated from each other, and the output  
terminals of the microcomputer and EEPROM are wired or connected to each other, there may be a  
potential difference between the power lines of the EEPROM and microcomputer. If the voltage of  
the microcomputer is higher, a current may flow from the output terminal of the microcomputer to the  
power line of the EEPROM via a parasitic diode in the DO pin of the EEPROM. Therefore, the power  
voltage of the EEPROM has an intermediate potential to prevent power-on from being cleared.  
-
During an access to the EEPROM, the voltage may decrease due to power-off. Even if the  
microcomputer has been reset due to a decrease in voltage, the EEPROM may malfunction if  
EEPROM power-on clear operation conditions are not met. For the EEPROM power-on clear  
operation conditions, see “Method for Activating the Power Voltage.”  
<Remarks>  
FAQ No.: 12011  
38  
Collection of Product FAQs  
Author: Kano Tomoo  
Date: 98/11/12 (Thursday) 10:17 (modified: 99/01/13)  
<Information level>  
B:  
For Distri & Rep (Printing N.G.)  
B: Technical  
Index:  
<Product>  
Division name: 01 IC  
Category 1:  
12 Memory  
Category 2:  
Cal. No.:  
2. Serial EEPROM  
Overall  
Related documents:  
Question:  
False-writes in S-93C, S-29 series: inadvertent activation of CS (malfunction)  
Answer:  
Inadvertent writing in the S-29 series  
In the S-29 series, when a CS input is inadvertently activated during a write command, undefined data  
may be written. Relevant timings are shown below.  
A command is composed of the following: “start bit + two command bits + address + (data).”  
The figure below shows the timings in which commands are set (In the figure, the portion denotes the  
rising edge of SK.)  
In the case of a write command, after a final address has been input and while 16-bit data is being input,  
undefined data is written when the CS input is changed from H to L.  
Activation of SK obtaining A  
tCDS  
[WRITE]  
VERIFY  
CS  
4
7
9
SK  
1
2
3
5
6
8
10  
25  
0
1
A5 A4 A3 A2 A1 A0 D15  
Hi-Z  
D0  
1
DI  
tSV  
tHZ1  
Hi-Z  
busy  
ready  
DO  
tPR  
Case in which, during a command entry, CS is changed from H to L with a timing that differs by a  
predetermined minimum number of clocks.  
39  
In the case of a write command, if the number of clocks is smaller than the predetermined value, data is  
loaded so as to be changed from D15 to D0. When, for example, CS is shifted from H to L after three  
clocks, data, which would otherwise have been stored in D15 to D13, is stored in D2 to D0, while  
undefined data is stored on the upper side a storage state in which the internal logic has been changed  
to either H or L). In addition, if the number of clocks is greater than the predetermined value, the last 16  
pieces of data are stored correctly.  
<Remarks>  
FAQ No.: 12008  
40  
Collection of Product FAQs  
Author: Kano Tomoo  
Date: 98/11/12 (Thursday) 10:17 (modified: 99/01/13)  
<Information level>  
A:  
Public (Printing O.K.)  
A: General  
Index:  
<Product>  
Division name: 01 IC  
Category 1:  
12 Memory  
Category 2:  
Cal. No.:  
2. Serial EEPROM  
Overall  
Related documents:  
Question:  
EEPROM compatibility table, cross reference  
Answer:  
EEPROM compatibility table  
Product name  
Key word  
NATIONAL  
ATMEL  
ST Micro electronic  
SEMICONDUCTOR  
S-29130ADPA  
EE,1KB,DIP,3W  
NM93C(S)46ZEN  
AT93C46-10PI-2.5  
ST93C46(7)AB6  
S-93C46ADP  
S-29130AFJA-TB  
S-93C46AFJ-TB  
S-29130ADFJA-TB  
S-93C46ADFJ-TB  
S-29131ADPA  
EE,1KB,SOP1,3W  
NM93C(S)46ZEM8  
AT93C46R-10SI-2.5  
ST93C46(7)TM6013TR  
EE,1KB,SOP2,3W  
AT93C46W-10SI-2.5  
ST93C46(7)AM6013TR  
EE,1KB,DIP,3W,PROT  
EE,1KB,SOP1,3W,PROT  
EE,2KB,DIP,3W  
EE,2KB,SOP1,3W  
EE,2KB,SOP2,3W  
EE,2KB,DIP,3W,PROT  
EE,2KB,SOP1,3W,PROT  
EE,4KB,DIP,3W  
EE,4KB,SOP1,3W  
EE,4KB,SOP2,3W  
EE,4KB,DIP,3W,PROT  
EE,4KB,SOP1,3W,PROT  
EE,8KB,DIP,3W  
EE,8KB,SOP1,3W  
EE,1KB,DIP,2W  
NM93C46ZEN  
AT93C46-10PI-2.5  
AT93C46R-10SI-2.5  
AT93C56-10PI-2.5  
AT93C56R-10SI-2.5  
AT93C56W-10SI-2.5  
AT93C56-10PI-2.5  
AT93C56R-10SI-2.5  
AT93C66-10PI-2.5  
AT93C66R-10SI-2.5  
AT93C66W-10SI-2.5  
AT93C66-10PI-2.5  
AT93C66R-10SI-2.5  
ST93C46(7)B6  
S-29131AFJA-TB  
S-29220ADPA  
NM93C46ZEM8  
NM93C(S)56ZEN  
NM93C(S)56ZEM8  
ST93C46(7)TM6013TR  
ST93C56(7)AB6  
ST93C56(7)TM6013TR  
ST93C56(7)AM6013TR  
ST93C56(7)B6  
S-29220AFJA-TB  
S-29220ADFJA-TB  
S-29221ADPA  
NM93C56ZEN  
S-29221AFJA-TB  
S-29330ADPA  
NM93C56ZEM8  
NM93C(S)66ZEN  
NM93C(S)66ZEM8  
ST93C56(7)TM6013TR  
ST93C66(7)AB6  
ST93C66(7)TM6013TR  
ST93C66(7)AM6013TR  
ST93C66(7)B6  
S-29330AFJA-TB  
S-29330ADFJA-TB  
S-29331ADPA  
NM93C66ZEN  
NM93C66ZEM8  
S-29331AFJA-TB  
S-29430ADP  
ST93C66(7)TM6013TR  
S-29430AFE-TF  
S-24C01ADPA-01  
AT24C01A-10PI-2.5  
AT24C01A-10SI-2.5  
AT24C02-10PI-2.5  
AT24C02N-10SI-2.5  
AT24C04-10PI-2.5  
ST24(25)C(W)01B6  
ST24(25)C(W)01M6TR  
ST24(25)C(W)02B6  
ST24(25)C(W)02M6TR  
ST24(25)C(W)04B6  
S-24C01AFJA-TB-01 EE,1KB,SOP,2W  
S-24C02ADPA-01 EE,2KB,DIP,2W  
S-24C02AFJA-TB-01 EE,2KB,SOP,2W  
S-24C04ADPA-01 EE,4KB,DIP,2W  
NM24C02(03)LEN  
NM24C02(03)LEM8  
NM24C04(05)LEN  
41  
S-24C04AFJA-TB-01 EE,4KB,SOP,2W  
S-24C08ADPA-01 EE,8KB,DIP,2W  
S-24C08AFJA-TB-01 EE,8KB,SOP,2W  
S-24C16ADPA-01 EE,16KB,DIP,2W  
S-24C16AFJA-TB-01 EE,16KB,SOP,2W  
NM24C04(05)LEM8  
NM24C08(09)LEN  
NM24C08(09)LEM8  
NM24C16(17)LEN  
NM24C16(17)LEM8  
NM93C(S)46XLZEM8  
AT24C04N-10SI-2.5  
AT24C08-10PI-2.5  
AT24C08N-10SI-2.5  
AT24C16-10PI-2.5  
AT24C16N-10SI-2.5  
AT93C46R-10SI-1.8  
AT93C46W-10SI-1.8  
AT93C46W-10SI-1.8  
AT93C56R-10SI-1.8  
AT93C56W-10SI-1.8  
AT93C56W-10SI-1.8  
AT93C66R-10SI-1.8  
AT93C66W-10SI-1.8  
AT93C66W-10SI-1.8  
ST24(25)C(W)04M6TR  
ST24(25)C(W)08B6  
ST24(25)C(W)08M6TR  
ST24(25)C(W)16B6  
ST24(25)C(W)16M6TR  
ST93C46(7)TM6013TR  
ST93C46(7)AM6013TR  
ST93C46(7)AM6013TR  
ST93C56(7)TM6013TR  
ST93C56(7)AM6013TR  
ST93C56(7)AM6013TR  
ST93C66(7)TM6013TR  
ST93C66(7)AM6013TR  
ST93C66(7)AM6013TR  
S-29L130AFE-TB  
S-29L130ADFE-TB  
S-29L131ADFE-TB  
S-29L220AFE-TB  
S-29L220ADFE-TB  
S-29L221ADFE-TB  
S-29L330AFE-TB  
S-29L330ADFE-TB  
S-29L331ADFE-TB  
EE,1KB,SOP1,3W,L/V  
EE,1KB,SOP2,3W,L/V  
EE,1KB,SOP2,3W,L/V,PROT NM93C(S)46XLZEM8  
EE,2KB,SOP1,3W,L/V  
EE,2KB,SOP2,3W,L/V  
NM93C(S)56XLZEM8  
EE,2KB,SOP2,3W,L/V,PROT NM93C(S)56XLZEM8  
EE,4KB,SOP1,3W,L/V  
EE,4KB,SOP2,3W,L/V  
NM93C(S)66XLZEM8  
EE,4KB,SOP2,3W,L/V,PROT NM93C(S)66XLZEM8  
<Remarks>  
FAQ No.: 12007  
42  
Collection of Product FAQs  
Author: Kano Tomoo  
Date: 98/11/12 (Thursday) 10:17 (modified: 99/01/13)  
<Information level>  
A:  
Public (Printing O.K.)  
D (Technical terms)  
Index:  
<Product>  
Division name: 01 IC  
Category 1:  
12 Memory  
Category 2:  
Cal. No.:  
2. Serial EEPROM  
Overall  
Related documents:  
Question:  
What about the basic terms (memory protect, reset, CS)?  
Answer:  
Memory protect, reset S-29xx1A, S-29x94A, S-29x55A  
Function for prohibiting a write command from being executed in a certain region of the memory space.  
This function is enabled by controlling the protect or reset input pin (select/deselect protect). This reset  
prevents the microcomputer from running uncontrollably and also prevents false-writes caused by noise  
in order to protect data.  
Ex.: Storage of ID codes and product shipment adjustment data  
(Note) S-29xx1A and S-29x94A protect 50% of memory, starting with the leading address.  
CS, /CS (/CS: S-29x55A, S-29x94A)  
CS is an input pin used to select the execution of a command. It is selected using “H” and deselected  
using “L” (the reverse is true for /CS)  
/CS is useful on the interface of the microcomputer (L active is mainly used for the microcomputer).  
Malfunction, however, is likely to be caused by noise upon power-on if a command is executed at the  
GND level.  
CS  
SK  
DI  
29 30 31 32 33  
1
2
3
4
5
6
7
8
9
*
10 11 12 13 14 15 16 17 18 19  
34  
47 48 49 50  
45 46  
*
A7 A6 A5 A4 A3 A2 A1 A0  
X
X
X
1
0
0
0
Hi-Z  
Hi-Z  
D1 D1 D1  
DO  
D2 D1 D0 D1 D1 D1  
A7A6A5A4A3A2A1A0+1  
D2 D1 D0 D1 D1 D1  
A7A6A5A4A3A2A1A0+2  
43  
<Remarks>  
FAQ No.: 12006  
44  
Collection of Product FAQs  
Author: Kano Tomoo  
Date: 98/11/12 (Thursday) 10:17 (modified: 99/01/13(Wednesday))  
<Information level>  
A:  
Public (Printing O.K.)  
A: General  
Index:  
<Product>  
Division name: 01 IC  
Category 1:  
12 Memory  
Category 2:  
Cal No.:  
2. Serial EEPROM  
Overall  
Related documents:  
Question:  
Concept of the compatibility, features, and markets of the S-29 series  
Answer:  
[Compatibility of the EEPROM]  
In terms of memory, most SII EEPROMs are compatible with our competitors’ standard products in their  
operation codes. If another company’s product is to be replaced by a corresponding SII product, the  
DC/AC specifications desired by the user must be carefully determined.  
The key words for the products are given below.  
Our competitor’s 93C-series products are compatible with SII’s S-29xx0A-series products, and our  
competitor’s 24C-series products are compatible with SII’s S-24C-series products.  
The key word for each company is given below.  
NM93C  
AT93C  
93C  
: National Semiconductor  
: ATMEL  
: Microchip  
M93C  
: ST Micro electronic (formerly SGS Tomson ST93C)  
CAT93C  
AK93C  
BR93C  
: Catalyst  
: Asahi Kasei  
: ROHM  
<Remarks>  
FAQ No.: 12005  
45  
Collection of Product FAQs  
Author: Kano Tomoo  
Date: 98/11/12 (Thursday) 10:17 (modified: 99/01/13(Wednesday))  
<Information level>  
A:  
Public (Printing O.K.)  
General  
Index: A:  
<Product>  
Division name: 01 IC  
Category 1:  
12 Memory  
Category 2:  
Cal No.:  
2. Serial EEPROM  
Overall  
Related documents:  
Question:  
How are operation codes classified?  
A:  
[EEPROM operation codes]  
In the serial EEPROM, the operation codes can be classified into several types. Our competitors have  
released products compatible with each type of operation code. The key words of the operation codes  
are given below.  
3-wire  
NS (National Semiconductor) code  
Microwire  
GI (General Instruments) code  
4-wire type  
Mitsubishi code  
SII original code  
Serial EEPROM  
2-wire  
IICBUS  
SPI  
1. Serial and parallel  
Data reading and writing are divided into serial and parallel types.  
46  
ex.: Parallel  
1
0
1
0
0
0
0
1
A0  
A1  
A2  
A3  
D0  
D1  
D2  
D3  
Addresses and data are processed in parallel.  
[Advantage] Fast processing  
ex.: Serial  
Addresses and data are processed in serial.  
A:0101  
D:1100  
D0  
:1100  
A1  
[Advantages]  
The size can be reduced due to the  
reduced number of I/O terminals, and  
fewer wires are required for the substrate.  
The package can be downsized and manufactured inexpensively.  
2. 3-wire type, microwire, 4-wire type  
Composed of four pins, including three input pins CS, SK, and DI, and an output pin DO. Since DI  
and DO can be directly coupled together, the EEPROM can be virtually composed of three pins (the  
4-wire type includes an additional Ready/Busy pin, but is still referred to as a “3-wire type”).  
NS code: The key word is “93Cx.” Compatible with SII S-29xxOA.  
General code used by many competing companies. Mass produced and low in cost.  
GI code  
General Instrument Inc.’s original code. Its markets continue to dwindle.  
Mitsubishi code: The key word is “M6M8.”Compatible with SII S-29x55A. Serial-port direct-coupling  
type in which commands and data are composed of x8 units. Intended for the TV and VTR markets  
and primarily sold as a set with Mitsubishi microcomputers.  
SII original code: S-29x9xA  
Serial-port direct-coupling type in which commands and data are composed of x8 units. Intended  
for technology-oriented users.  
3. 2-wire type, IICBUS: The key word is “24C.” Compatible with SII S-24CxxA. Composed of two  
pins: an input pin (SCL) and an I/O pin (SDA). Phillips Inc. owns a relevant patent.  
[Advantages]  
Fewer wires are required, and the microcomputer port can be shared with  
another IICBUS. TV set maker will be main market.  
4. SPI: The key word is “25C.” Not compatible with SII. Under development. Composed of four pins:  
three input pins CS, SCK, and SI, and an input pin SO. In the case of the EEPROM, the  
advantages are high speed (5 MHz at 5v) and a high capacity (128 Kbytes).  
<Remarks>  
FAQ No.: 12004  
47  
Collection of Product FAQs  
Author: Kano Tomoo  
Date: 98/11/12 (Thursday) 10:17 (modified: 99/01/13(Wednesday))  
<Information level>  
A:  
Public (Printing O.K.)  
D: Technical Terms  
Index:  
<Product>  
Division name: 01 IC  
Category 1:  
12 Memory  
Category 2:  
Cal No.:  
2. Serial EEPROM  
Overall  
Related documents:  
Question:  
What are the basic operation codes?  
Answer:  
[Terms required to understand EEPROM data sheets (1)] Basic commands  
-
-
-
-
-
-
Data read, READ  
Reads data from a specified address  
Data write, WRITE or PROGRAM  
Writes data to a specified address  
Data erase, ERASE  
Erases data at a specified address (all “1”’s)  
Chip write, WRAL  
Writes the same (word) data in all address spaces  
Chip erase, ERAL  
Erases data in all address spaces (all “1”’s)  
Program disable, EWDS or PDS  
Prohibits write operations (WRITE), and prevents false-writes caused by noise or uncontrollable  
running of the CPU  
-
Program enable, EWES or PEN  
Enables write operations (WRITE)  
[Note]  
When the power to the EEPROM is turned on, the internal circuit of the IC is reset and the program  
disable mode is entered. Thus, following power-on, the program enable command must be entered in  
order to write data.  
48  
Memory space: In the case of the S-29130A (64 words X 16 bits)  
Address  
Data  
Memory space in which a  
command can be used to write  
data freely  
64 words  
<Remarks>  
FAQ No.: 12003  
49  
Collection of Product FAQs  
Author: Kano Tomoo  
Date: 98/11/12 (Thursday) 10:17 (modified: 99/01/13(Wednesday))  
<Information level>  
A:  
Public (Printing O.K.)  
D: Technical terms  
Index:  
<Product>  
Division name: 01 IC  
Category 1:  
12 Memory  
Category 2:  
Cal No.:  
2. Serial EEPROM  
Overall  
Related documents:  
Question:  
What about the basic terms. (continuous read, sequential read)?  
Answer:  
-
Continuous read, sequential read  
S-93C series, S-29 series, S-24C series  
Function by which data is read from a specified address using a read command, followed by the  
output of the next address. This is useful when there is a large amount of user data (ex.: ID codes).  
Continuos read  
CS  
SK  
1
2
3
4
5
6
7
8
9
10  
11  
12  
23  
24  
25 26  
27  
28  
39  
40  
41 42  
43  
44  
1
1
0
A5  
A4  
A3  
A2  
A1  
A0  
DI  
Hi-Z  
Hi-Z  
DO  
D15  
D14 D13  
0
D2  
D1  
D0 D15 D14  
D13  
D2  
D1  
D0 D15 D14  
D13  
-
Serial-port direct coupling, microcomputer interface, 8-bit command  
S-29x9xA, S-29x55A, S-2900A  
The serial port is a serial I/O port provided for a microcomputer. A device that can be easily and  
directly coupled to this port is referred to as a “serial-port direct-coupling type” or a “microcomputer  
interface.”  
1. The EEPROM is configured as follows for simple direct coupling:  
Data is input at the rising edge of the SK input clock, and output at its falling edge.  
Commands and data are input and output in 8 bits.  
2. A microcomputer with a serial port communicates in 8 bits (8 clocks).  
This configuration can substantially reduce the number of programs required for the microcomputer.  
The advantages are easy programming and a reduced ROM capacity.  
50  
<Remarks>  
FAQ No.: 12002  
51  
Collection of Product FAQs  
Creator: Takashi Ebisawa  
<Information level>  
Date: 98/01/13 (Wednesday) 10:51 (modified: 99/01/13(Wednesday))  
A:  
Public (Printing O.K.)  
D: Technical terms  
Index:  
<Product>  
Division name: 01 IC  
Category 1:  
12 Memory  
Category 2:  
Cal No.:  
2. Serial EEPROM  
Overall  
Related documents:  
Question:  
What is the EEPROM?  
Answer:  
1. Electrically Erasable Programmable Read Only Memory  
-
-
-
Why this memory is referred to as “read only” despite the fact that it enables data to be rewritten?  
The EEPROM requires a longer time for writing than a RAM, so it is used exclusively for reading.  
What is the “memory”?  
Elements storing data. Data is generally represented by the digits “0” and “1.”  
What is the “ROM”?  
Read Only Memory  
Reference: RAM is Random Access read write Memory.  
<Remarks>  
FAQ No.: 12001  
52  

相关型号:

S-93C66ADP

CMOS SERIAL E2PROM
SII

S-93C66ADP-1A

EEPROM, 256X16, Serial, CMOS, PDIP8, DIP-8
SEIKO

S-93C66AFJ

CMOS SERIAL E2PROM
SII

S-93C66AFT

CMOS SERIAL E2PROM
SII

S-93C66AMFN

CMOS SERIAL E2PROM
SII

S-93C66B

CMOS SERIAL E2PROM
SII

S-93C66BD0H-D8S1G

CMOS SERIAL E2PROM
SII

S-93C66BD0H-I8T1G

CMOS SERIAL E2PROM
SII

S-93C66BD0H-J8T1G

CMOS SERIAL E2PROM
SII

S-93C66BD0H-J8T2G

CMOS SERIAL E2PROM
SII

S-93C66BD0H-J8T2U

FOR AUTOMOTIVE OPERATION 3-WIRE SERIAL E2PROM
SII

S-93C66BD0H-K8T2U

FOR AUTOMOTIVE OPERATION 3-WIRE SERIAL E2PROM
SII