S-93C76ADFJ-TBH-G [SII]

CMOS SERIAL E2PROM; CMOS串行E2PROM
S-93C76ADFJ-TBH-G
型号: S-93C76ADFJ-TBH-G
厂家: SEIKO INSTRUMENTS INC    SEIKO INSTRUMENTS INC
描述:

CMOS SERIAL E2PROM
CMOS串行E2PROM

可编程只读存储器
文件: 总33页 (文件大小:386K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Rev. 3.2_00  
CMOS SERIAL E2PROM  
S-93C76A  
The S-93C76A is  
a
high speed, low current  
consumption, 8 K-bit serial E2PROM with a wide  
operating voltage range. It is organized as 512-word  
× 16-bit respectively. Each is capable of sequential  
read, at which time addresses are automatically  
incremented in 16-bit blocks.  
„ Features  
Low current consumption  
Standby:  
2.0 µA Max. (VCC = 5.5 V)  
Operating: 0.8 mA Max. (VCC = 5.5 V)  
0.4 mA Max. (VCC = 2.5 V)  
Wide operating voltage range Read:  
Write:  
1.8 to 5.5 V (at 40 to +85°C)  
2.7 to 5.5 V (at 40 to +85°C)  
Sequential read capable  
Write disable function when power supply voltage is low  
Endurance:  
107 cycles/word*1 (at +25°C) write capable,  
106 cycles/word*1 (at +85°C)  
3 × 105 cycles/word*1 (at +105°C)  
*1. For each address (Word: 16 bits)  
Data retention: 10 years (after rewriting 106 cycles/word at +85°C)  
S-93C76A:  
8 K-bit  
High-temperature operation : +105°C Max. supported  
(Only S-93C76ADFJ-TBH-G and S-93C76AFT-TBH-G)  
Lead-free products  
„ Packages  
Drawing code  
Tape  
Package name  
Package  
DP008-F  
FJ008-A  
FT008-A  
Reel  
FJ008-D  
FT008-E  
8-Pin DIP  
8-Pin SOP(JEDEC)  
8-Pin TSSOP  
FJ008-D  
FT008-E  
Caution This product is intended to use in general electronic devices such as consumer electronics,  
office equipment, and communications devices. Before using the product in medical  
equipment or automobile equipment including car audio, keyless entry and engine control  
unit, contact to SII is indispensable.  
Seiko Instruments Inc.  
1
CMOS SERIAL E2PROM  
S-93C76A  
Rev.3.2_00  
„ Pin Configurations  
8-Pin DIP  
Top view  
Table 1  
Pin No.  
Symbol  
CS  
Description  
Chip select input  
Serial clock input  
Serial data input  
Serial data output  
Ground  
Test  
No connection  
Power supply  
1
2
3
4
5
6
7
8
VCC  
NC  
TEST  
GND  
1
2
3
4
8
7
6
5
CS  
SK  
DI  
SK  
DI  
DO  
GND  
TEST*1  
NC  
DO  
Figure 1  
VCC  
*1. Connect to GND or VCC.  
S-93C76ADP-G  
Even if this pin is not connected, performance is not affected  
so long as the absolute maximum rating is not exceeded.  
Remark See Dimensions for details of the package drawings.  
8-Pin SOP(JEDEC)  
Top view  
Table 2  
Pin No.  
Symbol  
CS  
Description  
Chip select input  
Serial clock input  
Serial data input  
Serial data output  
Ground  
Test  
No connection  
Power supply  
1
2
3
4
8
7
6
5
1
2
3
4
5
6
7
8
CS  
SK  
DI  
VCC  
NC  
SK  
DI  
DO  
TEST  
GND  
GND  
TEST*1  
NC  
DO  
Figure 2  
VCC  
*1. Connect to GND or VCC.  
S-93C76ADFJ-TB-G  
S-93C76ADFJ-TBH-G  
Even if this pin is not connected, performance is not affected  
so long as the absolute maximum rating is not exceeded.  
Remark See Dimensions for details of the package drawings.  
2
Seiko Instruments Inc.  
CMOS SERIAL E2PROM  
S-93C76A  
Rev.3.2_00  
8-Pin TSSOP  
Top view  
Table 3  
Pin No.  
Symbol  
CS  
Description  
1
2
3
4
8
7
6
5
1
2
3
4
5
6
7
8
Chip select input  
VCC  
NC  
CS  
SK  
DI  
SK  
Serial clock input  
Serial data input  
Serial data output  
Ground  
TEST  
GND  
DI  
DO  
DO  
GND  
TEST*1  
NC  
Test  
No connection  
Power supply  
Figure 3  
VCC  
S-93C76AFT-TB-G  
S-93C76AFT-TBH-G  
*1. Connect to GND or VCC.  
Even if this pin is not connected, performance is not affected  
so long as the absolute maximum rating is not exceeded.  
Remark See Dimensions for details of the package drawings.  
Seiko Instruments Inc.  
3
CMOS SERIAL E2PROM  
S-93C76A  
Rev.3.2_00  
„ Block Diagram  
VCC  
GND  
Address  
decoder  
Memory array  
Data register  
Output buffer  
DO  
DI  
Mode decode logic  
CS  
SK  
Clock generator  
Figure 4  
4
Seiko Instruments Inc.  
CMOS SERIAL E2PROM  
S-93C76A  
Rev.3.2_00  
„ Instruction Sets  
Table 4  
Instruction  
Start Bit Operation Code  
Address  
Data  
SK input clock  
1
1
1
1
1
1
1
1
2
1
0
1
0
0
0
0
3
0
1
1
0
0
0
0
4
x
x
x
0
1
1
0
5
6
7
8
9
10 11 12 13  
14 to 29  
READ (Read data)  
WRITE (Write data) *2  
ERASE (Erase data) *2  
WRAL (Write all) *2  
ERAL (Erase all) *2  
EWEN (Write enable) *2  
EWDS (Write disable)  
A8 A7 A6 A5 A4 A3 A2 A1 A0 D15 to D0 Output*1  
A8 A7 A6 A5 A4 A3 A2 A1 A0  
A8 A7 A6 A5 A4 A3 A2 A1 A0  
D15 to D0 Input  
1
0
1
0
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
D15 to D0 Input  
*1. When the 16-bit data in the specified address has been output, the data in the next address is output.  
*2. WRITE, ERASE, WRAL, ERAL, and EWEN are guaranteed only at VCC 2.7 V.  
Remark x: Don’t care  
Seiko Instruments Inc.  
5
CMOS SERIAL E2PROM  
S-93C76A  
Rev.3.2_00  
„ Absolute Maximum Ratings  
Table 5  
Item  
Power supply voltage  
Input voltage  
Symbol  
Ratings  
0.3 to +7.0  
0.3 to VCC +0.3  
0.3 to VCC  
40 to +105  
65 to +150  
Unit  
V
VCC  
VIN  
V
Output voltage  
VOUT  
Topr  
Tstg  
V
°C  
°C  
Operating ambient temperature  
Storage temperature  
Caution The absolute maximum ratings are rated values exceeding which the product could  
suffer physical damage. These values must therefore not be exceeded under any  
conditions.  
„ Recommended Operating Conditions  
Table 6  
40 to  
+
Typ.  
85  
°
C
+
85 to  
+105°C  
Item  
Symbol  
Conditions  
Unit  
Min.  
1.8  
Max.  
5.5  
Min. Typ. Max.  
4.5  
4.5  
READ/EWDS  
WRITE/ERASE/  
5.5  
5.5  
V
V
Power supply voltage VCC  
High level input voltage VIH  
Low level input voltage VIL  
2.7  
2.0  
0.8  
0.8  
5.5  
WRAL/ERAL/EWEN  
VCC  
VCC  
VCC  
0.8  
2.0  
0.0  
VCC  
0.8  
V
V
V
V
V
V
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
=
=
=
=
=
=
4.5 to 5.5 V  
2.7 to 4.5 V  
1.8 to 2.7 V  
4.5 to 5.5 V  
2.7 to 4.5 V  
1.8 to 2.7 V  
×
×
VCC  
VCC  
0.0  
0.0  
0.0  
0.2  
×
×
VCC  
VCC  
0.15  
„ Pin Capacitance  
Table 7  
(Ta = 25°C, f = 1.0 MHz,  
V
CC = 5.0 V)  
Item  
Symbol  
Conditions  
Min.  
Typ.  
Max.  
Unit  
pF  
pF  
Input Capacitance  
Output Capacitance  
CIN  
8
10  
V
IN = 0 V  
COUT  
V
OUT = 0 V  
„ Endurance  
Table 8  
Operating  
Item  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Temperature  
106  
40 to +85°C  
+85 to +105°C  
Endurance  
NW  
cycles/word*1  
3 × 105  
*1. For each address (Word: 16 bits)  
6
Seiko Instruments Inc.  
CMOS SERIAL E2PROM  
S-93C76A  
Rev.3.2_00  
„ DC Electrical Characteristics  
Table 9  
40 to  
4.5 to 5.5 V VCC 2.5 to 4.5 V VCC  
Min. Typ. Max. Min. Typ. Max. Min. Typ. Max. Min. Typ. Max.  
DO no load 0.8 0.5 0.4 0.8 mA  
+
85  
°
C
+
85 to  
Unit  
1.8 to 2.5 V VCC 4.5 to 5.5 V  
+105°C  
Item  
Symbol Conditions  
VCC  
=
=
=
=
Current consumption (READ) ICC1  
Table 10  
40 to  
4.5 to 5.5 V VCC  
Min. Typ. Max. Min. Typ. Max. Min. Typ. Max.  
2.0 1.5 2.0  
+
85  
°
C
+
85 to  
+105°C  
Item  
Symbol Conditions  
DO no load  
Unit  
mA  
VCC  
=
=
2.7 to 4.5 V VCC 4.5 to 5.5 V  
=
Current consumption (WRITE) ICC2  
Table 11  
40 to  
+
85  
2.5 to 4.5 V VCC  
Min. Typ. Max. Min. Typ. Max. Min. Typ. Max. Min. Typ. Max.  
°
C
+
85 to  
Unit  
1.8 to 2.5 V VCC 4.5 to 5.5 V  
+105°C  
Item  
Symbol  
ISB  
Conditions  
VCC  
=
4.5 to 5.5 V VCC  
=
=
=
CS = GND, DO = Open,  
Standby current  
consumption  
2.0  
2.0  
2.0  
2.0  
µ
Other inputs to VCC or  
GND  
A
Input leakage  
current  
ILI  
VIN  
=
GND to VCC  
0.1 1.0  
0.1 1.0  
0.1 1.0  
0.1 1.0  
0.1 1.0  
0.1 1.0  
0.1 1.0  
0.1 1.0  
µA  
Output leakage  
current  
ILO  
VOL  
VOUT  
=
GND to VCC  
2.1 mA  
100  
µA  
0.4  
0.1  
0.4  
0.1  
V
Low level  
IOL  
IOL  
=
=
2.4  
0.1  
0.1  
2.4  
output voltage  
V
V
V
V
µ
A
I
OH = −400  
OH = −100  
OH = −10  
µA  
High level  
VOH  
I
µ
A
µA  
VCC  
VCC−  
0.3  
0.2  
VCC  
0.3  
0.2  
VCC  
VCC−  
0.3  
0.2  
output voltage  
I
VCC  
VCC  
0.2  
Write enable  
Only when write  
disable mode  
latch data hold VDH  
voltage  
1.5  
1.5  
1.5  
1.5  
V
Seiko Instruments Inc.  
7
CMOS SERIAL E2PROM  
S-93C76A  
Rev.3.2_00  
„ AC Electrical Characteristics  
Table 12 Measurement Conditions  
Input pulse voltage  
Output reference voltage  
Output load  
0.1 × VCC to 0.9 × VCC  
0.5 × VCC  
100 pF  
Table 13  
40 to +85°C  
CC = 4.5 to 5.5 V VCC = 2.5 to 4.5 V VCC = 1.8 to 2.5 V VCC = 4.5 to 5.5 V  
+85 to +105°C  
Item  
Symbol  
Unit  
V
Min. Typ. Max. Min. Typ. Max. Min. Typ. Max. Min. Typ. Max.  
CS setup time  
CS hold time  
tCSS  
0.2  
0
0.4  
0
0.2  
0.2  
0.2  
0
1.0  
0
0.4  
0.4  
0.4  
0
0.2  
0
0.2  
0.1  
0.1  
0.6  
µs  
µs  
µs  
µs  
µs  
µs  
tCSH  
tCDS  
tDS  
CS deselect time  
Data setup time  
Data hold time  
Output delay time  
Clock frequency  
Clock pulse width  
0.2  
0.1  
0.1  
0
tDH  
tPD  
fSK  
0.4  
2.0  
0.15  
0.15  
0.8  
0.5  
0.5  
0.5  
2.0  
0.25  
1.0  
1.0  
0
1.0 MHz  
tSKL, tSKH 0.25  
1.0  
0
0
2.0  
0
0
0.25  
0
µs  
µs  
µs  
Output disable time tHZ1, tHZ2  
Output enable time tSV  
0
0
0.15  
0.15  
0
Table 14  
40 to +85°C  
+85 to +105°C  
Item  
Write time  
Symbol  
Unit  
ms  
V
CC = 2.7 to 5.5 V  
V
CC = 4.5 to 5.5 V  
Min.  
Typ.  
4.0  
Max.  
10.0  
Min.  
Typ.  
4.0  
Max.  
10.0  
tPR  
tCSS  
tCDS  
CS  
SK  
tSKL  
tSKH  
tCSH  
tDS  
tDH  
tDS  
tDH  
DI  
Valid data  
tPD  
Valid data  
tPD  
Hi-Z  
Hi-Z  
Hi-Z  
DO  
tSV  
tHZ2  
tHZ1  
(READ)  
Hi-Z  
DO  
(VERIFY)  
Figure 5 Timing Chart  
8
Seiko Instruments Inc.  
CMOS SERIAL E2PROM  
S-93C76A  
Rev.3.2_00  
„ Operation  
All instructions are executed by making CS “H” and then inputting DI at the rising edge of the SK pulse. An  
instruction is input in the order of its start bit, instruction, address, and data. The start bit is recognized  
when “H” of DI is input at the rising edge of SK after CS has been made “H”. As long as DI remains “L”,  
therefore, the start bit is not recognized even if the SK pulse is input after CS has been made “H”. The SK  
clock input while DI is “L” before the start bit is input is called a dummy clock. By inserting as many dummy  
clocks as required before the start bit, the number of clocks the internal serial interface of the CPU can  
send out and the number of clocks necessary for operation of the serial memory IC can be adjusted.  
Inputting the instruction is complete when CS is made “L”. CS must be made “L” once during the period of  
tCDS in between instructions.  
“L” of CS indicates a standby status. In this status, input of SK and DI is invalid, and no instruction is  
accepted.  
1. Reading (READ)  
The READ instruction is used to read the data at a specified address. When this instruction is  
executed, the address A0 is input at the rising edge of SK and the DO pin, which has been in a high-  
impedance (Hi-Z) state, outputs “L”. Subsequently, 16 bits of data are sequentially output at the rising  
edge of SK.  
If SK is output after the 16-bit data of the specified address has been output, the address is  
automatically incremented, and the 16-bit data of the next address is then output. By inputting SK  
sequentially with CS kept at “H”, the data of the entire memory space can be read. When the address  
is incremented from the last address (A8 … A1 A0 = 1 … 1 1), it returns to the first address (A8 … A1 A0  
= 0 … 0 0).  
CS  
SK  
DI  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
26 27 28 29 30 31 32  
42 43 44 45 46 47 48  
1
1
0
X
A8 A7 A6 A5 A4 A3 A2 A1 A0  
Hi-Z  
Hi-Z  
DO  
0
D15 D14 D13  
D2 D1 D0 D15 D14 D13  
A8A7A6A5A4A3A2A1A0+1  
D2 D1 D0 D15 D14 D13  
A8A7A6A5A4A3A2A1A0+2  
Figure 6 Read Timing  
Seiko Instruments Inc.  
9
CMOS SERIAL E2PROM  
S-93C76A  
Rev.3.2_00  
2. Writing (WRITE, ERASE, WRAL, ERAL)  
Write instructions (WRITE, ERASE, WRAL, and ERAL) are used to start writing data to the non-volatile  
memory by making CS “L” after the specified number of clocks has been input.  
The write operation is completed within the write time tPR (10 ms) no matter which write instruction is  
used. The typical write time is less than half 10 ms. If the end of the write operation is known,  
therefore, the write cycle can be minimized. To ascertain the end of a write operation, make CS “L” to  
start the write operation and then make CS “H” again to check the status of the DO output pin. This  
series of operations is called a verify operation.  
If DO outputs “L” during the verify operation period in which CS is “H”, it indicates that a write operation  
is in progress. If DO outputs “H”, it indicates that the write operation is finished. The verify operation  
can be executed as many times as required. This operation can be executed in two ways. One is  
detecting the positive transition of DO output from “L” to “H” while holding CS at “H”. The other is  
detecting the positive transition of DO output from “L” to “H” by making CS “H” once and checking DO  
output, and then returning CS to “L”.  
During the write period, SK and DI are invalid. Do not input any instructions during this period. Input an  
instruction while the DO pin is outputting “H” or is in a high-impedance state. Even while the DO pin is  
outputing “H”, DO immediately goes into a high-impedance (Hi-Z) state if “H” of DI (start bit) is input at  
the rising edge of SK.  
Keep DI “L” during the verify operation period.  
2. 1 Writing data (WRITE)  
This instruction is used to write 16-bit data to a specified address.  
After making CS “H”, input a start bit, the WRITE instruction, an address, and 16-bit data. If data of  
more than 16 bits is input, the written data is sequentially shifted at each clock, and the 16 bits input  
last are the valid data. The write operation is started when CS is made “L”. It is not necessary to  
set data to “1” before it is written.  
tCDS  
Verify  
Stand by  
CS  
SK  
DI  
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
29  
D0  
<1>  
0
1
X
A8 A7 A6 A5 A4 A3 A2 A1 A0 D15  
tHZ1  
Ready  
tSV  
Hi-Z  
Busy  
DO  
Hi-Z  
tPR  
Figure 7 Data Write Timing  
10  
Seiko Instruments Inc.  
CMOS SERIAL E2PROM  
S-93C76A  
Rev.3.2_00  
2. 2 Erasing data (ERASE)  
This instruction is used to erase specified 16-bit data. All the 16 bits of the data are “1”. After  
making CS “H”, input a start bit, the ERASE instruction, and an address. It is not necessary to input  
data. The data erase operation is started when CS is made “L”.  
tCDS  
Verify  
Stand by  
CS  
SK  
DI  
1
2
3
4
5
6
7
8
9
10 11 12 13  
<1>  
1
1
X
A8 A7 A6 A5 A4 A3 A2 A1 A0  
tHZ1  
Ready  
tSV  
Hi-Z  
Busy  
DO  
Hi-Z  
tPR  
Figure 8 Data Erase Timing  
2. 3 Writing to chip (WRAL)  
This instruction is used to write the same 16-bit data to the entire address space of the memory.  
After making CS “H”, input a start bit, the WRAL instruction, an address, and 16-bit data. Any  
address may be input. If data of more than 16 bits is input, the written data is sequentially shifted at  
each clock, and the 16-bit data input last is the valid data. The write operation is started when CS  
is made “L”. It is not necessary to set the data to “1” before it is written.  
tCDS  
Verify  
Stand by  
CS  
SK  
DI  
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
D15  
29  
D0  
<1>  
0
0
0
1
tHZ1  
Ready  
tSV  
8Xs  
Hi-Z  
Busy  
DO  
Hi-Z  
tPR  
Figure 9 Chip Write Timing  
2. 4 Erasing chip (ERAL)  
This instruction is used to erase the data of the entire address space of the memory.  
All the data is “1”. After making CS “H”, input a start bit, the ERAL instruction, and an address. Any  
address may be input. It is not necessary to input data. The chip erase operation is started when  
CS is made “L”.  
tCDS  
Verify  
Stand by  
CS  
SK  
DI  
1
2
3
4
5
6
7
8
9
10 11 12 13  
<1>  
0
0
1
0
tHZ1  
Ready  
tSV  
8Xs  
Hi-Z  
Busy  
DO  
Hi-Z  
tPR  
Figure 10 Chip Erase Timing  
Seiko Instruments Inc.  
11  
CMOS SERIAL E2PROM  
S-93C76A  
Rev.3.2_00  
3. Write enable (EWEN) and write disable (EWDS)  
The EWEN instruction is used to enable a write operation. The status in which a write operation is  
enabled is called the program-enabled mode.  
The EWDS instruction is used to disable a write operation. The status in which a write operation is  
disabled is called the program-disabled mode.  
The write operation is disabled upon power application and detection of a low supply voltage. To  
prevent an unexpected write operation due to external noise or a CPU malfunctions, it should be kept in  
write disable mode except when performing write operations, after power-on and before shutdown.  
Stand by  
CS  
SK  
DI  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
<1>  
0
0
8Xs  
11 = EWEN  
00 = EWDS  
Figure 11 Write Enable/Disable Timing  
„ Start Bit  
A start bit is recognized by latching the high level of DI at the rising edge of SK after changing CS to high  
(start bit recognition). A write operation begins by inputting the write instruction and setting CS to low.  
Subsequently, by setting CS to high again, the DO pin outputs a low level if the write operation is still in  
progress and a high level if the write operation is complete (verify operation). Therefore, only after a write  
operation, in order to input the next command, CS is set to high, which switches the DO pin from a high-  
impedance state (Hi-Z) to a data output state. However, if start bit is recognized, the DO pin returns to the  
high-impedance state (refer to Figure 5 Timing Chart).  
Make sure that data output from the CPU does not interfere with the data output from the serial memory IC  
when configuring a 3 -wire interface by connecting the DI input pin and DO output pin, as such interference  
may cause a start bit fetch problem. Take the measures described in “„ 3-Wire Interface (Direct  
Connection between DI and DO)”.  
12  
Seiko Instruments Inc.  
CMOS SERIAL E2PROM  
S-93C76A  
Rev.3.2_00  
„ Write Disable Function when Power Supply Voltage is Low  
The S-93C76A provides a built-in detector to detect a low power supply voltage and disable writing. When  
the power supply voltage is low or at power application, the write instructions (WRITE, ERASE, WRAL, and  
ERAL) are cancelled, and the write disable state (EWDS) is automatically set. The detection voltage is 1.75  
V typ., the release voltage is 2.05 V typ., and there is a hysteresis of about 0.3 V (refer to Figure 12).  
Therefore, when a write operation is performed after the power supply voltage has dropped and then risen  
again up to the level at which writing is possible, a write enable instruction (EWEN) must be sent before a  
write instruction (WRITE, ERASE, WRAL, or ERAL) is executed.  
When the power supply voltage drops during a write operation, the data being written to an address at that  
time is not guaranteed.  
Hysteresis  
About 0.3 V  
Power supply voltage  
Release voltage (+VDET  
)
Detection voltage (VDET  
1.75 V Typ.  
)
2.05 V Typ.  
Write instruction cancelled  
Write disable state (EWDS) automatically set  
Figure 12 Operation when Power Supply Voltage is Low  
Seiko Instruments Inc.  
13  
CMOS SERIAL E2PROM  
S-93C76A  
Rev.3.2_00  
„ 3-Wire Interface (Direct Connection between DI and DO)  
There are two types of serial interface configurations: a 4-wire interface configured using the CS, SK, DI,  
and DO pins, and a 3-wire interface that connects the DI input pin and DO output pin.  
When the 3-wire interface is employed, a period in which the data output from the CPU and the data output  
from the serial memory collide may occur, causing a malfunction. To prevent such a malfunction, connect  
the DI and DO pins of the S-93C76A via a resistor (10 to 100 k) so that the data output from the CPU  
takes precedence in being input to the DI pin (refer to Figure 13).  
CPU  
S-93C76A  
SIO  
DI  
DO  
R: 10 to 100 kΩ  
Figure 13 Connection of 3-Wire Interface  
„ I/O Pins  
1. Connection of input pins  
All the input pins of the S-93C76A employ a C-MOS structure, so design the equipment so that high  
impedance will not be input while the S-93C76A is operating. Especially, deselect the CS input (a low  
level) when turning on/off power and during standby. When the CS pin is deselected (a low level),  
incorrect data writing will not occur. Connect the CS pin to GND via a resistor (10 to 100 kpull-down  
resistor). To prevent malfunction, it is recommended to use equivalent pull-down resistors for pins other  
than the CS pin.  
2. Input and output pin equivalent circuits  
The following shows the equivalent circuits of input pins of the S-93C76A. None of the input pins  
incorporate pull-up and pull-down elements, so special care must be taken when designing to prevent a  
floating status.  
Output pins are high-level/low-level/high-impedance tri-state outputs. The TEST pin is disconnected  
from the internal circuit by a switching transistor during normal operation. As long as the absolute  
maximum rating is satisfied, the TEST pin and internal circuit will never be connected.  
14  
Seiko Instruments Inc.  
CMOS SERIAL E2PROM  
S-93C76A  
Rev.3.2_00  
2. 1 Input pin  
CS  
Figure 14 CS Pin  
SK, DI  
Figure 15 SK DI Pin  
TEST  
Figure 16 TEST Pin  
Seiko Instruments Inc.  
15  
CMOS SERIAL E2PROM  
S-93C76A  
Rev.3.2_00  
2. 2 Output pin  
Vcc  
DO  
Figure 17 DO Pin  
3. Input pin noise elimination time  
The S-93C76A includes a built-in low-pass filter to eliminate noise at the SK, DI, and CS pins. This means  
that if the supply voltage is 5.0 V (at room temperature), noise with a pulse width of 20 ns or less can be  
eliminated.  
Note, therefore, that noise with a pulse width of more than 20 ns will be recognized as a pulse if the voltage  
exceeds VIH/VIL.  
„ Precaution  
Do not apply an electrostatic discharge to this IC that exceeds the performance ratings of the built-in  
electrostatic protection circuit.  
SII claims no responsibility for any and all disputes arising out of or in connection with any infringement of  
the products including this IC upon patents owned by a third party.  
16  
Seiko Instruments Inc.  
CMOS SERIAL E2PROM  
S-93C76A  
Rev.3.2_00  
„ Characteristics (Typical Data)  
1. DC Characteristics  
1. 1 Current consumption (READ) ICC1  
vs. ambient temperature Ta  
1. 2 Current consumption (READ) ICC1  
vs. ambient temperature Ta  
VCC = 3.3 V  
VCC = 5.5 V  
fSK = 500 kHz  
DATA = 0101  
f
SK = 2 MHz  
DATA = 0101  
0.4  
0.4  
0.2  
0
ICC1  
ICC1  
(mA)  
(mA)  
0.2  
0
40  
0
85  
40  
85  
0
Ta (°C)  
Ta (°C)  
1. 3 Current consumption (READ) ICC1  
vs. ambient temperature Ta  
1. 4 Current consumption (READ) ICC1  
vs. power supply voltage VCC  
VCC = 1.8 V  
fSK = 10 kHz  
DATA = 0101  
Ta = 25°C  
f
SK = 1 MHz, 500 kHz  
DATA = 0101  
0.4  
0.4  
0.2  
0
ICC1  
ICC1  
(mA)  
1 MHz  
(mA)  
0.2  
0
500 kHz  
40  
0
85  
2
3
4
5
6
7
Ta (°C)  
VCC (V)  
1. 5 Current consumption (READ) ICC1  
vs. power supply voltage VCC  
1. 6 Current consumption (READ) ICC1  
vs. Clock frequency fSK  
VCC = 5.0 V  
Ta = 25°C  
Ta = 25°C  
f
SK = 100 kHz, 10 kHz  
DATA = 0101  
0.4  
0.4  
0.2  
0
ICC1  
ICC1  
(mA)  
(mA)  
100 kHz  
0.2  
10 kHz  
0
10 k 100 k 1 M 2M 10M  
2
3
7
4
5 6  
f
SK (Hz)  
VCC (V)  
Seiko Instruments Inc.  
17  
CMOS SERIAL E2PROM  
S-93C76A  
Rev.3.2_00  
1. 7 Current consumption (WRITE) ICC2  
vs. ambient temperature Ta  
1. 8 Current consumption (WRITE) ICC2  
vs. ambient temperature Ta  
VCC = 3.3 V  
VCC = 5.5 V  
1.0  
1.0  
ICC2  
ICC2  
(mA)  
(mA)  
0.5  
0
0.5  
0
0
85  
40  
40  
0
85  
Ta (°C)  
Ta (°C)  
1. 9 Current consumption (WRITE) ICC2  
vs. ambient temperature Ta  
1. 10 Current consumption (WRITE) ICC2  
vs. power supply voltage VCC  
VCC = 2.7 V  
Ta = 25°C  
1.0  
1.0  
ICC2  
ICC2  
(mA)  
(mA)  
0.5  
0
0.5  
0
40  
0
85  
2
3
4
5 6  
7
VCC (V)  
Ta (°C)  
1. 11 Current consumption in standby mode ISB  
vs. ambient temperature Ta  
1. 12 Current consumption in standby mode ISB  
vs. power supply voltage VCC  
Ta = 25°C  
VCC = 5.5 V  
CS = GND  
CS = GND  
1.0  
ISB  
1.0  
ISB  
(µA)  
(µA)  
0.5  
0.5  
0
0
2
3
4
5 6  
7
0
85  
40  
VCC (V)  
Ta (°C)  
18  
Seiko Instruments Inc.  
CMOS SERIAL E2PROM  
S-93C76A  
Rev.3.2_00  
1. 13 Input leakage current ILI  
1. 14 Input leakage current IL1  
vs. ambient temperature Ta  
vs. ambient temperature Ta  
VCC = 5.5 V  
CS, SK, DI,  
TEST = 0 V  
VCC = 5.5 V  
CS, SK, DI,  
TEST = 5.5 V  
1.0  
1.0  
ILI  
(µA)  
ILI  
(µA)  
0.5  
0.5  
0
0
40  
0
85  
40  
0
85  
Ta (°C)  
Ta (°C)  
1. 15 Output leakage current ILO  
1. 16 Output leakage current ILO  
vs. ambient temperature Ta  
vs. ambient temperature Ta  
VCC = 5.5 V  
VCC = 5.5 V  
DO = 0 V  
DO = 5.5 V  
1.0  
1.0  
ILO  
(µA)  
ILO  
(µA)  
0.5  
0
0.5  
0
40  
0
85  
40  
0
85  
Ta (°C)  
Ta (°C)  
1. 17 High-level output voltage VOH  
vs. ambient temperature Ta  
1. 18 High-level output voltage VOH  
vs. ambient temperature Ta  
VCC = 4.5 V  
VCC = 2.7 V  
I
OH = 400 µA  
I
OH = 100 µA  
4.6  
4.4  
4.2  
2.7  
2.6  
2.5  
V
OH  
(V)  
VOH  
(V)  
0
85  
40  
0
85  
40  
Ta (°C)  
Ta (°C)  
Seiko Instruments Inc.  
19  
CMOS SERIAL E2PROM  
S-93C76A  
Rev.3.2_00  
1. 19 High-level output voltage VOH  
vs. ambient temperature Ta  
1. 20 High-level output voltage VOH  
vs. ambient temperature Ta  
VCC = 2.5 V  
VCC = 1.8 V  
I
OH = 100 µA  
IOH = 10 µA  
2.5  
2.4  
2.3  
1.9  
VOH  
(V)  
VOH  
(V)  
1.8  
1.7  
40  
0
85  
0
85  
40  
Ta (°C)  
Ta (°C)  
1. 21 Low-level output voltage VOL  
vs. ambient temperature Ta  
1. 22 Low-level output voltage VOL  
vs. ambient temperature Ta  
VCC = 4.5 V  
VCC = 1.8 V  
IOL = 2.1 mA  
0.3  
IOL = 100 µA  
0.03  
VOL  
(V)  
0.2  
0.1  
VOL  
(V)  
0.02  
0.01  
0
85  
40  
0
85  
40  
Ta (°C)  
Ta (°C)  
1. 23 High-level output current IOH  
vs. ambient temperature Ta  
1. 24 High-level output current IOH  
vs. ambient temperature Ta  
VCC = 2.7 V  
VCC = 4.5 V  
V
OH = 2.4 V  
V
OH = 2.4 V  
2  
1  
0
20.0  
10.0  
0
IOH  
IOH  
(mA)  
(mA)  
0
85  
40  
0
85  
40  
Ta (°C)  
Ta (°C)  
20  
Seiko Instruments Inc.  
CMOS SERIAL E2PROM  
S-93C76A  
Rev.3.2_00  
1. 25 High-level output current IOH  
1. 26 High-level output current IOH  
vs. ambient temperature Ta  
vs. ambient temperature Ta  
VCC = 2.5 V  
VCC = 1.8 V  
V
OH = 2.2 V  
V
OH = 1.6 V  
2  
1  
0
1.0  
IOH  
IOH  
(mA)  
(mA)  
0.5  
0
0
85  
40  
40  
0
85  
Ta (°C)  
Ta (°C)  
1. 27 Low-level output current IOL  
vs. ambient temperature Ta  
1. 28 Low-level output current IOL  
vs. ambient temperature Ta  
VCC = 1.8 V  
VCC = 4.5 V  
V
OL = 0.1 V  
V
OL = 0.4 V  
1.0  
0.5  
20  
10  
0
IOL  
IOL  
(mA)  
(mA)  
0
40  
0
85  
40  
0
85  
Ta (°C)  
Ta (°C)  
1. 29 Input inverted voltage VINV  
1. 30 Input inverted voltage VINV  
vs. power supply voltage VCC  
vs. ambient temperature Ta  
Ta = 25°C  
CS, SK, DI  
VCC = 5.0 V  
CS, SK, DI  
3.0  
VINV  
3.0  
VINV  
(V)  
(V)  
1.5  
0
2.0  
0
1
2
3
4 5  
6
7
40  
85  
0
V
CC (V)  
Ta (°C)  
Seiko Instruments Inc.  
21  
CMOS SERIAL E2PROM  
S-93C76A  
Rev.3.2_00  
1. 31 Low supply voltage detection voltage  
vs. ambient temperature Ta  
VDET  
1. 32 Low supply voltage release voltage  
vs. ambient temperature Ta  
+VDET  
2.0  
2.0  
VDET  
+VDET  
(V)  
(V)  
1.0  
0
1.0  
0
40  
0
85  
40  
0
85  
Ta (°C)  
Ta (°C)  
22  
Seiko Instruments Inc.  
CMOS SERIAL E2PROM  
S-93C76A  
Rev.3.2_00  
2. AC Characteristics  
2. 1 Maximum operating frequency fMAX.  
vs. power supply voltage VCC  
2. 2 Write time tPR  
vs. power supply voltage VCC  
Ta = 25°C  
Ta = 25°C  
2M  
4
2
1M  
fMAX.  
tPR  
(Hz)  
(ms)  
100k  
10k  
1
2
3
4
5 6  
7
1
2
3
4
5
VCC (V)  
VCC (V)  
2. 3 Write time tPR  
2. 4 Write time tPR  
vs. ambient temperature Ta  
vs. ambient temperature Ta  
VCC = 3.0 V  
VCC = 5.0 V  
6
6
tPR  
tPR  
(ms)  
4
(ms)  
4
2
2
0
85  
40  
0
85  
40  
Ta (°C)  
Ta (°C)  
2. 5 Write time tPR  
2. 6 Data output delay time tPD  
vs. ambient temperature Ta  
vs. ambient temperature Ta  
VCC = 2.7 V  
VCC = 4.5 V  
6
0.3  
tPD  
t
PR  
(ms)  
4
(µs)  
0.2  
2
0.1  
40  
0
85  
40  
0
85  
Ta (°C)  
Ta (°C)  
Seiko Instruments Inc.  
23  
CMOS SERIAL E2PROM  
S-93C76A  
Rev.3.2_00  
2. 7 Data output delay time tPD  
vs. ambient temperature Ta  
2. 8 Data output delay time tPD  
vs. ambient temperature Ta  
VCC = 2.7 V  
VCC = 1.8 V  
0.6  
tPD  
1.5  
tPD  
(µs)  
(µs)  
0.4  
1.0  
0.2  
0.5  
0
85  
0
85  
40  
40  
Ta (°C)  
Ta (°C)  
24  
Seiko Instruments Inc.  
CMOS SERIAL E2PROM  
S-93C76A  
Rev.3.2_00  
„ Product Name Structure  
S-93C76A xxx TB x G  
Operation temperature  
none:  
H:  
40 to +85°C  
40 to +105°C (Only 8-Pin SOP(JEDEC) and 8-Pin TSSOP)  
IC direction in tape specification (Except 8-Pin DIP)  
Package code  
DP:  
DFJ:  
FT:  
8-Pin DIP  
8-Pin SOP(JEDEC)  
8-Pin TSSOP  
Product name  
S-93C76A : 8k bit  
Seiko Instruments Inc.  
25  
9.6(10.6max.)  
8
5
1
4
7.62  
0.89  
1.3  
+0.11  
-0.05  
0.25  
2.54  
0.48±0.1  
0° to 15°  
No. DP008-F-P-SD-3.0  
DIP8-F-PKG Dimensions  
DP008-F-P-SD-3.0  
TITLE  
No.  
SCALE  
UNIT  
mm  
Seiko Instruments Inc.  
5.02±0.2  
8
5
1
4
0.20±0.05  
1.27  
0.4±0.05  
No. FJ008-A-P-SD-2.1  
SOP8J-D-PKG Dimensions  
FJ008-A-P-SD-2.1  
TITLE  
No.  
SCALE  
UNIT  
mm  
Seiko Instruments Inc.  
4.0±0.1(10 pitches:40.0±0.2)  
2.0±0.05  
ø1.55±0.05  
0.3±0.05  
8.0±0.1  
ø2.0±0.05  
2.1±0.1  
5°max.  
6.7±0.1  
8
5
1
4
Feed direction  
No. FJ008-D-C-SD-1.1  
SOP8J-D-Carrier Tape  
FJ008-D-C-SD-1.1  
TITLE  
No.  
SCALE  
UNIT  
mm  
Seiko Instruments Inc.  
60°  
2±0.5  
13.5±0.5  
Enlarged drawing in the central part  
ø21±0.8  
2±0.5  
ø13±0.2  
No. FJ008-D-R-SD-1.1  
SOP8J-D-Reel  
TITLE  
FJ008-D-R-SD-1.1  
No.  
SCALE  
UNIT  
QTY.  
2,000  
mm  
Seiko Instruments Inc.  
+0.3  
-0.2  
3.00  
5
8
1
4
0.17±0.05  
0.2±0.1  
0.65  
No. FT008-A-P-SD-1.1  
TSSOP8-E-PKG Dimensions  
FT008-A-P-SD-1.1  
TITLE  
No.  
SCALE  
UNIT  
mm  
Seiko Instruments Inc.  
4.0±0.1  
2.0±0.05  
ø1.55±0.05  
0.3±0.05  
+0.1  
-0.05  
8.0±0.1  
ø1.55  
(4.4)  
+0.4  
-0.2  
6.6  
8
1
4
5
Feed direction  
No. FT008-E-C-SD-1.0  
TITLE  
TSSOP8-E-Carrier Tape  
FT008-E-C-SD-1.0  
No.  
SCALE  
UNIT  
mm  
Seiko Instruments Inc.  
13.4±1.0  
17.5±1.0  
Enlarged drawing in the central part  
ø21±0.8  
2±0.5  
ø13±0.5  
No. FT008-E-R-SD-1.0  
TSSOP8-E-Reel  
FT008-E-R-SD-1.0  
TITLE  
No.  
SCALE  
UNIT  
QTY.  
3,000  
mm  
Seiko Instruments Inc.  
·
·
The information described herein is subject to change without notice.  
Seiko Instruments Inc. is not responsible for any problems caused by circuits or diagrams described herein  
whose related industrial properties, patents, or other rights belong to third parties. The application circuit  
examples explain typical applications of the products, and do not guarantee the success of any specific  
mass-production design.  
·
·
·
When the products described herein are regulated products subject to the Wassenaar Arrangement or other  
agreements, they may not be exported without authorization from the appropriate governmental authority.  
Use of the information described herein for other purposes and/or reproduction or copying without the  
express permission of Seiko Instruments Inc. is strictly prohibited.  
The products described herein cannot be used as part of any device or equipment affecting the human  
body, such as exercise equipment, medical equipment, security systems, gas equipment, or any apparatus  
installed in airplanes and other vehicles, without prior written permission of Seiko Instruments Inc.  
Although Seiko Instruments Inc. exerts the greatest possible effort to ensure high quality and reliability, the  
failure or malfunction of semiconductor products may occur. The user of these products should therefore  
give thorough consideration to safety design, including redundancy, fire-prevention measures, and  
malfunction prevention, to prevent any accidents, fires, or community damage that may ensue.  
·

相关型号:

S-93C76ADP-TB-G

CMOS SERIAL E2PROM
SII

S-93C76ADP-TBH-G

CMOS SERIAL E2PROM
SII

S-93C76AFT-TB-G

CMOS SERIAL E2PROM
SII

S-93C76AFT-TBH-G

CMOS SERIAL E2PROM
SII

S-93C76C

3-WIRE SERIAL E2PROM
SII

S-93C76CD0H-A8T1U3

FOR AUTOMOTIVE OPERATION 3-WIRE SERIAL E2PROM
SII

S-93C76CD0H-J8T2U3

FOR AUTOMOTIVE OPERATION 3-WIRE SERIAL E2PROM
SII

S-93C76CD0H-K8T2U3

FOR AUTOMOTIVE OPERATION 3-WIRE SERIAL E2PROM
SII

S-93C76CD0H-T8T2U3

FOR AUTOMOTIVE OPERATION 3-WIRE SERIAL E2PROM
SII

S-93C76CD0I-I8T1U3

3-WIRE SERIAL E2PROM
SII

S-93C76CD0I-J8T1U3

3-WIRE SERIAL E2PROM
SII

S-93C76CD0I-K8T3U3

3-WIRE SERIAL E2PROM
SII