SI5350A-B09240-GM [SILICON]

Processor Specific Clock Generator,;
SI5350A-B09240-GM
型号: SI5350A-B09240-GM
厂家: SILICON    SILICON
描述:

Processor Specific Clock Generator,

外围集成电路
文件: 总29页 (文件大小:622K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si5350A-B  
FACTORY-PROGRAMMABLE ANY-FREQUENCY CMOS  
CLOCK GENERATOR  
Features  
www.silabs.com/custom-timing  
Generates up to 8 non-integer-related  
frequencies from 2.5 kHz to 200 MHz  
Exact frequency synthesis at each  
output (0 ppm error)  
Operates from a low-cost, fixed  
frequency crystal: 25 or 27 MHz  
Separate voltage supply pins provide  
level translation:  
Core VDD: 1.8 V, 2.5 V or 3.3 V  
Output VDDO: 1.8 V, 2.5 V or 3.3 V  
10-MSOP  
Glitchless frequency changes  
Low output period jitter: < 70 ps pp, typ Excellent PSRR eliminates external  
Configurable Spread Spectrum  
selectable at each output  
User-configurable control pins:  
Output Enable (OEB_0/1/2)  
Power Down (PDN)  
Frequency Select (FS_0/1)  
Spread Spectrum Enable (SSEN)  
Supports static phase offset  
Rise/fall time control  
power supply filtering  
Very low power consumption  
(25 mA core, typ)  
Available in 2 packages types:  
10-MSOP: 3 outputs  
20-QFN (4x4 mm): 8 outputs  
PCIE Gen 1 compatible  
Supports HCSL jitter compatible  
swing  
20-QFN  
Ordering Information:  
See page 17  
Applications  
HDTV, DVD/Blu-ray, set-top box  
Audio/video equipment, gaming  
Printers, scanners, projectors  
Handheld instrumentation  
Residential gateways  
Networking/communication  
Servers, storage  
XO replacement  
Description  
The Si5350A is a highly-flexible, user-definable custom clock generator that is ideally  
suited for replacing crystals and crystal oscillators in cost-sensitive applications.  
Based on a PLL + high resolution fractional divider MultiSynthTM architecture, the  
Si5350A can generate any frequency up to 200 MHz on each of its outputs with  
0 ppm error. Spread spectrum is selectable (on/off) on any of the outputs. Custom  
pin-controlled Si5350A devices can be requested using the ClockBuilder web-based  
part number utility (www.silabs.com/ClockBuilder).  
Functional Block Diagram  
Si5350A (20-QFN)  
VDDOA  
XA  
MultiSynth  
PLL  
A
CLK0  
CLK1  
0
VDDO  
OSC  
Si5350A (10-MSOP)  
MultiSynth  
1
XB  
XA  
XB  
VDDOB  
CLK2  
PLL  
B
PLL  
MultiSynth  
2
MultiSynth 0  
MultiSynth 1  
MultiSynth 2  
CLK0  
CLK1  
CLK2  
OSC  
A
MultiSynth  
3
CLK3  
PLL  
B
P0  
P1  
VDDOC  
CLK4  
MultiSynth  
4
Control  
Logic  
P0  
P1  
MultiSynth  
5
CLK5  
Control  
Logic  
P2  
P3  
P4  
VDDOD  
CLK6  
MultiSynth  
6
MultiSynth  
7
CLK7  
Rev. 1.1 9/18  
Copyright © 2018 by Silicon Laboratories  
Si5350A-B  
Si5350A-B  
Table 1. The Complete Si5350/51 Clock Generator Family  
Part Number  
I2C or Pin  
I2C  
Frequency Reference  
XTAL only  
Programmed?  
Blank  
Outputs Datasheet  
3
8
8
8
3
8
8
8
3
8
3
8
3
8
Si5351-B  
Si5351-B  
Si5351-B  
Si5351-B  
Si5351-B  
Si5351-B  
Si5351-B  
Si5351-B  
Si5350A-B  
Si5350A-B  
Si5350B-B  
Si5350B-B  
Si5350C-B  
Si5350C-B  
Si5351A-B-GT  
I2C  
XTAL only  
Blank  
Si5351A-B-GM  
I2C  
XTAL and/or Voltage  
XTAL and/or CLKIN  
XTAL only  
Blank  
Si5351B-B-GM  
I2C  
Blank  
Si5351C-B-GM  
I2C  
Factory Pre-Programmed  
Factory Pre-Programmed  
Factory Pre-Programmed  
Factory Pre-Programmed  
Factory Pre-Programmed  
Factory Pre-Programmed  
Factory Pre-Programmed  
Factory Pre-Programmed  
Factory Pre-Programmed  
Factory Pre-Programmed  
Si5351A-Bxxxxx-GT  
Si5351A-Bxxxxx-GM  
Si5351B-Bxxxxx-GM  
Si5351C-Bxxxxx-GM  
Si5350A-Bxxxxx-GT  
Si5350A-Bxxxxx-GM  
Si5350B-Bxxxxx-GT  
Si5350B-Bxxxxx-GM  
Si5350C-Bxxxxx-GT  
Si5350C-Bxxxxx-GM  
Notes:  
I2C  
XTAL only  
I2C  
XTAL and/or Voltage  
XTAL and/or CLKIN  
XTAL only  
I2C  
Pin  
Pin  
XTAL only  
Pin  
XTAL and/or Voltage  
XTAL and/or Voltage  
XTAL and/or CLKIN  
XTAL and/or CLKIN  
Pin  
Pin  
Pin  
1. XTAL = 25/27 MHz, Voltage = 0 to VDD, CLKIN = 10 to 100 MHz. "xxxxx" = unique custom code.  
2. Create custom, factory pre-programmed parts at www.silabs.com/ClockBuilder.  
2
Rev. 1.1  
Si5350A-B  
TABLE OF CONTENTS  
Section  
Page  
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
2. Typical Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
2.1. Si5350A Replaces Multiple Clocks and XOs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
2.2. Applying a Reference Clock at XTAL Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
2.3. HCSL Compatible Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
3. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
4. Configuring the Si5350A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
4.1. Crystal Inputs (XA, XB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
4.2. Output Clocks (CLK0–CLK7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
4.3. Programmable Control Pins (P0–P4) Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
4.4. Design Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
5. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
5.1. 20-pin QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
5.2. 10-pin MSOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
6. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
7. 20-Pin QFN Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
8. Land Pattern: 20-Pin QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
9. 10-pin MSOP Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
10. Land Pattern: 10-Pin MSOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
11. Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
11.1. 20-Pin QFN Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
11.2. Top Marking Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
11.3. 10-Pin MSOP Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
11.4. Top Marking Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
Rev. 1.1  
3
Si5350A-B  
1. Electrical Specifications  
Table 2. Recommended Operating Conditions  
Parameter  
Symbol  
Test Condition  
Min  
–40  
1.71  
2.25  
3.0  
Typ  
25  
Max  
85  
Unit  
°C  
V
Ambient Temperature  
T
A
1.8  
2.5  
3.3  
1.8  
2.5  
3.3  
1.89  
2.75  
3.60  
1.89  
2.75  
3.60  
Core Supply Voltage  
Output Buffer Voltage  
V
V
DD  
V
1.71  
2.25  
3.0  
V
V
V
DDOx  
V
Note: All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions.  
Typical values apply at nominal supply voltages and an operating temperature of 25 °C unless otherwise noted. VDD  
and VDDOx can be operated at independent voltages. Power supply sequencing for VDD and VDDOx requires that all  
VDDOx be powered up either before or at the same time as VDD.  
Table 3. DC Characteristics  
(VDD = 1.8 V ±5%, 2.5 V ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Enabled 3 outputs  
Min  
Typ  
20  
Max  
30  
Unit  
mA  
mA  
µA  
Core Supply Current*  
I
Enabled 8 outputs  
25  
40  
DD  
Power Down (PDN = VDD)  
50  
Output Buffer Supply  
Current (Per Output)*  
I
C = 5 pF  
2.2  
5.6  
mA  
DDOx  
L
Pins P1, P2, P3, P4  
I
50  
10  
30  
µA  
µA  
P1-P4  
V
< 3.6 V  
Input Current  
P1-P4  
I
Pin P0  
P0  
3.3 V VDDO, default high  
drive.  
Output Impedance  
Z
OI  
*Note: Output clocks less than or equal to 100 MHz.  
4
Rev. 1.1  
Si5350A-B  
Table 4. AC Characteristics  
(VDD = 1.8 V ±5%, 2.5 V ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)  
Parameter  
Powerup Time  
Symbol  
Test Condition  
From V = V to valid output  
Min  
Typ  
Max Unit  
DD  
DDmin  
T
2
10  
1
ms  
ms  
RDY  
clock, C = 5 pF, f  
> 1 MHz  
L
CLKn  
From V = V  
to valid output  
DDmin  
DD  
Powerup Time, PLL Bypass Mode  
T
0.5  
BYP  
clock, C = 5 pF, f  
> 1 MHz  
L
CLKn  
From OEB assertion to valid clock  
output, C = 5 pF, f > 1 MHz  
Output Enable Time  
T
10  
10  
µs  
µs  
OE  
L
CLKn  
Output Frequency Transition Time  
T
f
> 1 MHz  
FREQ  
CLKn  
Spread Spectrum Frequency  
Deviation  
Down spread.  
Selectable in 0.1% steps.  
SS  
–0.1  
30  
–2.5  
33  
%
DEV  
Spread Spectrum Modulation Rate  
SS  
31.5  
kHz  
MOD  
Table 5. Input Characteristics  
(VDD = 1.8 V ±5%, 2.5 V ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
25  
Typ  
Max  
27  
Unit  
Crystal Frequency  
f
MHz  
V
XTAL  
P0-P4 Input Low Voltage  
V
–0.1  
0.3 x V  
3.60  
IL_P0-4  
DD  
V
= 2.5 V or 3.3 V 0.7 x V  
V
DD  
DD  
DD  
P0-P4 Input High Voltage  
V
IH_P0-4  
V
= 1.8 V  
0.8 x V  
3.60  
V
DD  
Table 6. Output Characteristics  
(VDD = 1.8 V ±5%, 2.5 V ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)  
Parameter Symbol Test Condition  
Min  
Typ  
50  
50  
1
Max  
Unit  
1
Frequency Range  
Load Capacitance  
F
0.0025  
200  
15  
MHz  
pF  
%
CLK  
C
F
< 100 MHz  
CLK  
L
F
F
< 160 MHz, Measured at V /2  
45  
55  
CLK  
DD  
Duty Cycle  
DC  
t /t  
> 160 MHz, Measured at V /2  
40  
60  
%
CLK  
DD  
Rise/Fall Time  
Output High Voltage  
Output Low Voltage  
Notes:  
20%–80%, C = 5 pF  
1.5  
ns  
V
r f  
L
V
V
– 0.6  
DD  
OH  
V
0.6  
V
OL  
1. Only two unique frequencies above 112.5 MHz can be simultaneously output.  
2. Measured over 10k cycles. Jitter is only specified at the default high drive strength (50 output impedance).  
3. Jitter is highly dependent on device frequency configuration. Specifications represent a “worst case, real world”  
frequency plan; actual performance may be substantially better. Three-output 10MSOP package measured with clock  
outputs of 74.25, 24.576, and 48 MHz. Eight-output 20QFN package measured with clock outputs of 33.33, 74.25, 27,  
24.576, 22.5792, 28.322, 125, and 48 MHz.  
Rev. 1.1  
5
Si5350A-B  
Table 6. Output Characteristics (Continued)  
(VDD = 1.8 V ±5%, 2.5 V ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
20-QFN, 4 outputs running,  
1 per VDDO  
40  
95  
ps pk-  
pk  
2,3  
Period Jitter  
J
PER  
10-MSOP or 20-QFN,  
all outputs running  
70  
50  
70  
155  
90  
20-QFN, 4 outputs running,  
1 per VDDO  
2,3  
Cycle-to-Cycle Jitter  
J
ps pk  
CC  
10-MSOP or 20-QFN,  
all outputs running  
150  
Notes:  
1. Only two unique frequencies above 112.5 MHz can be simultaneously output.  
2. Measured over 10k cycles. Jitter is only specified at the default high drive strength (50 output impedance).  
3. Jitter is highly dependent on device frequency configuration. Specifications represent a “worst case, real world”  
frequency plan; actual performance may be substantially better. Three-output 10MSOP package measured with clock  
outputs of 74.25, 24.576, and 48 MHz. Eight-output 20QFN package measured with clock outputs of 33.33, 74.25, 27,  
24.576, 22.5792, 28.322, 125, and 48 MHz.  
Table 7. 25 MHz Crystal Requirements1,2  
Parameter  
Symbol  
Min  
Typ  
25  
Max  
Unit  
MHz  
pF  
Crystal Frequency  
Load Capacitance  
f
XTAL  
C
6
12  
L
Equivalent Series Resistance  
Crystal Max Drive Level  
Notes:  
r
150  
ESR  
d
100  
µW  
L
1. Crystals which require load capacitances of 6, 8, or 10 pF should use the device’s internal load capacitance for  
optimum performance. See register 183 bits 7:6. A crystal with a 12 pF load capacitance requirement should use a  
combination of the internal 10 pF load capacitance in addition to external 2 pF load capacitance (e.g., by using 4pF  
capacitors on XA and XB).  
2. Refer to “AN551: Crystal Selection Guide” for more details.  
Table 8. 27 MHz Crystal Requirements1,2  
Parameter  
Symbol  
Min  
Typ  
27  
Max  
Unit  
MHz  
pF  
Crystal Frequency  
Load Capacitance  
f
XTAL  
C
6
12  
L
Equivalent Series Resistance  
Crystal Max Drive Level Spec  
Notes:  
r
150  
ESR  
d
100  
µW  
L
1. Crystals which require load capacitances of 6, 8, or 10 pF should use the device’s internal load capacitance for  
optimum performance. See register 183 bits 7:6. A crystal with a 12 pF load capacitance requirement should use a  
combination of the internal 10 pF load capacitance in addition to external 2 pF load capacitance (e.g., by using 4pF  
capacitors on XA and XB).  
2. Refer to “AN551: Crystal Selection Guide” for more details.  
6
Rev. 1.1  
Si5350A-B  
Table 9. Thermal Characteristics  
Parameter  
Symbol  
Test Condition  
Package  
10-MSOP  
20-QFN  
Value  
Unit  
°C/W  
°C/W  
131  
119  
Thermal Resistance  
Junction to Ambient  
Still Air  
JA  
Thermal Resistance  
Junction to Case  
Still Air  
20-QFN  
16  
°C/W  
JC  
Table 10. Absolute Maximum Ratings  
Parameter  
DC Supply Voltage  
Symbol  
Test Condition  
Value  
Unit  
V
–0.5 to 3.8  
–0.5 to 3.8  
V
V
DD_max  
V
Pins P1, P2, P3, P4  
P0  
IN_P1-4  
Input Voltage  
V
–0.5 to (V +0.3)  
V
IN_P0  
DD  
V
Pins XA, XB  
–0.5 to 1.3 V  
–55 to 150  
V
IN_XA/B  
Junction Temperature  
T
°C  
J
Note: Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be  
restricted to the conditions as specified in the operational sections of this data sheet. Exposure to absolute maximum  
rating conditions for extended periods may affect device reliability.  
Rev. 1.1  
7
Si5350A-B  
2. Typical Application  
2.1. Si5350A Replaces Multiple Clocks and XOs  
The Si5350A is a user-definable custom clock generator that is ideally suited for replacing crystals and crystal  
oscillators in cost-sensitive applications. An example application is shown in Figure 1.  
74.25  
MHz  
74.25 MHz or  
1.001  
33.3333 MHz  
Video  
Processor  
CPU  
27 MHz  
XA  
24.576 MHz  
CLK3  
Audio  
Processor  
27 MHz  
Si5350A  
22.5792 MHz  
CLK4  
XB  
48 MHz  
USB  
Controller  
28.322 MHz  
HDMI  
Port  
125 MHz  
Ethernet  
PHY  
Figure 1. Example of an Si5350A in an Audio/Video Application  
2.2. Applying a Reference Clock at XTAL Input  
The Si5350A can be driven with a clock signal through the XA input pin.  
VIN = 1 VPP  
25/27 MHz  
Multi  
Synth  
0
PLLA  
PLLB  
XA  
Multi  
Synth  
1
0.1 µF  
OSC  
XB  
Multi  
Synth  
N
Note: Float the XB input while driving  
the XA input with a clock  
Figure 2. Si5350A Driven by a Clock Signal  
8
Rev. 1.1  
Si5350A-B  
2.3. HCSL Compatible Outputs  
The Si5350A can be configured to support HCSL compatible swing when the VDDO of the output pair of interest is  
set to 2.5 V (i.e., VDDOA must be 2.5 V when using CLK0/1; VDDOB must be 2.5 V for CLK2/3 and so on).  
The circuit in Figure 3 must be applied to each of the two clocks used, and one of the clocks in the pair must also  
be inverted to generate a differential pair.  
ZO = 50  
R1  
Multi  
Synth  
0
PLLA  
PLLB  
0   
0   
511   
240   
R2  
OSC  
HCSL  
CLKIN  
ZO = 50   
R1  
Multi  
Synth  
1
511   
240   
R2  
Multi  
Synth  
N
Note: The complementary -180 degree  
out of phase output clock is generated  
using the INV function  
Figure 3. Si5350A Output is HCSL Compatible  
Rev. 1.1  
9
Si5350A-B  
3. Functional Description  
The Si5350A’s synthesis architecture consists of two high-frequency PLLs in addition to one high-resolution  
fractional MultiSynthTM divider per output. A block diagram of both the 3-output and 8-output versions are shown in  
Figure 4. This unique architecture allows the Si5350A to simultaneously generate up to eight independent, non-  
integer-related frequencies. In addition, each MultiSynthTM is configurable with two different frequencies (F1_x,  
F2_x). This allows a pin controlled glitchless frequency change at each output (CLK0 to CLK5).  
VDDO  
VDD  
10-MSOP  
MultiSynth 0  
F1_0  
XA  
XB  
PLL  
A
R0  
R1  
R2  
CLK0  
CLK1  
CLK2  
OSC  
F2_0  
FS  
FS  
FS  
MultiSynth 1  
F1_1  
PLL  
B
F2_1  
MultiSynth 2  
F1_2  
P0  
P1  
Control  
Logic  
F2_2  
MultiSynth 3  
GND  
VDD  
20-QFN  
MultiSynth 0  
F1_0  
F2_0  
VDDOA  
CLK0  
R0  
R1  
R2  
R3  
R4  
R5  
FS  
FS  
FS  
FS  
FS  
FS  
XA  
XB  
PLL  
A
OSC  
MultiSynth 1  
F1_1  
CLK1  
PLL  
B
F2_1  
MultiSynth 2  
F1_2  
VDDOB  
CLK2  
F2_2  
MultiSynth 3  
F1_3  
CLK3  
F2_3  
MultiSynth 4  
F1_4  
VDDOC  
CLK4  
F2_4  
MultiSynth 5  
F1_5  
CLK5  
P0  
P1  
P2  
P3  
P4  
F2_5  
Control  
Logic  
VDDOD  
CLK6  
MultiSynth 6  
F1_6  
R6  
R7  
MultiSynth 7  
CLK7  
F1_7  
GND  
Figure 4. Block Diagrams of 3-Output and 8-Output Si5350A Devices  
10  
Rev. 1.1  
Si5350A-B  
4. Configuring the Si5350A  
The Si5350A is a factory-programmed custom clock generator that is user definable with a simple to use web-  
based utility (www.silabs.com/ClockBuilder). The ClockBuilder utility provides a simple graphical interface that  
allows the user to enter input and output frequencies along with other custom features as described in the following  
sections. All synthesis calculations are automatically performed by ClockBuilder to ensure an optimum  
configuration. A unique part number is assigned to each custom configuration.  
4.1. Crystal Inputs (XA, XB)  
The Si5350A uses a fixed-frequency standard AT-cut crystal as a reference to synthesize its output clocks.  
4.1.1. Crystal Frequency  
The Si5350A can operate using either a 27 MHz or a 25 MHz crystal.  
4.1.2. Internal XTAL Load Capacitors  
Internal load capacitors are provided to eliminate the need for external components when connecting a XTAL to the  
Si5350A. The total internal XTAL load capacitance (C ) can be selected to be 0, 6, 8, or 10 pF. XTALs with  
L
alternate load capacitance requirements are supported using additional external load capacitance 2 pF (e.g., by  
using 4 pF capacitors on XA and XB) as shown in Figure 5.  
XA  
XB  
Optional internal  
load capacitance  
0, 6, 8,10 pF  
Optional additional  
external load  
capacitance  
(< 2 pF)  
Figure 5. External XTAL with Optional Load Capacitors  
4.2. Output Clocks (CLK0–CLK7)  
The Si5350A is orderable as a 3-output (10-MSOP) or 8-output (20-QFN) clock generator. Output clocks CLK0 to  
CLK5 can be ordered with two clock frequencies (F1_x, F2_x) which are selectable with the optional frequency  
select pins (FS0/1). See “4.3.3. Frequency Select (FS_0, FS_1)” for more details on the operation of the frequency  
select pins.  
4.2.1. Output Clock Frequency  
Outputs can be configured at any frequency from 2.5 kHz up to 200 MHz. However, only two unique frequencies  
above 112.5 MHz can be simultaneously output. For example, 125 MHz (CLK0), 130 MHz (CLK1), and 150 MHz  
(CLKx) is not allowed. Note that multiple copies of frequencies above 112.5 MHz can be provided, for example,  
125 MHz could be provided on four outputs (CLKS0-3) simultaneously with 130 MHz on four different outputs  
(CLKS4-7).  
4.2.2. .Spread Spectrum  
Spread spectrum can be enabled on any of the clock outputs that use PLLA as its reference. Spread spectrum is  
useful for reducing electromagnetic interference (EMI). Enabling spread spectrum on an output clock modulates its  
frequency, which effectively reduces the overall amplitude of its radiated energy. Note that spread spectrum is not  
available on clocks synchronized to PLLB.  
The Si5350A supports several levels of spread spectrum allowing the designer to choose an ideal compromise  
between system performance and EMI compliance.  
An optional spread spectrum enable pin (SSEN) is configurable to enable or disable the spread spectrum feature.  
Rev. 1.1  
11  
Si5350A-B  
See “4.3.1. Spread Spectrum Enable (SSEN)” for details.  
Reduced  
Center  
Amplitude  
Frequency  
and EMI  
Amplitude  
fc  
fc  
No Spread  
Spectrum  
Down Spread  
Figure 6. Available Spread Spectrum Profiles  
4.2.3. Invert/Non-Invert  
By default, each of the output clocks are generated in phase (non-inverted) with respect to each other. An option to  
invert any of the clock outputs is also available.  
4.2.4. Output State When Disabled  
There are up to three output enable pins configurable on the Si5350A as described in “4.3.4. Output Enable  
(OEB_0, OEB_1, OEB_2)” . The output state when disabled for each of the outputs is configurable as output high,  
output low, or high-impedance.  
4.2.5. Powering Down Unused Outputs  
Unused clock outputs can be completely powered down to conserve power.  
4.3. Programmable Control Pins (P0–P4) Options  
Up to five programmable control pins (P0-P4) are configurable allowing direct pin control of the following features:  
4.3.1. Spread Spectrum Enable (SSEN)  
An optional control pin allows disabling the spread spectrum feature for all outputs that were configured with  
spread spectrum enabled. Hold SSEN low to disable spread spectrum. The SSEN pin provides a convenient  
method of evaluating the effect of using spread spectrum clocks during EMI compliance testing.  
4.3.2. Power Down (PDN)  
An optional power down control pin allows a full shutdown of the Si5350A to minimize power consumption when its  
output clocks are not being used. The Si5350A is in normal operation when the PDN pin is held low and is in power  
down mode when held high. Power consumption when the device is in power down mode is indicated in Table 3 on  
page 4.  
4.3.3. Frequency Select (FS_0, FS_1)  
The Si5350A offers the option of configuring up to two frequencies per clock output on CLK0-CLK5. This is a useful  
feature for applications that need to support more than one clock rate on the same output. An example of this is  
shown in Figure 7 where the FS pins selects which frequency is generated from the clock output: F1_0 is  
generated when FS is set low, and F2_0 is generated when FS is set high.  
27 MHz  
74.25  
MHz  
MHz  
FS0  
Bit Level  
or  
Output Frequency Selected  
XA  
XB  
74.25  
1.001  
0
F1_0:  
F2_0:  
74.25 MHz  
74.25  
MHz  
1.001  
Video  
Processor  
CLK0  
1
FS0  
Si5350A  
Figure 7. Example of Generating Two Clock Frequencies from the Same Clock Output  
12  
Rev. 1.1  
Si5350A-B  
Up to two frequency select pins are available on the Si5350A. Each of the frequency select pins can be linked to  
any of the clock outputs as shown in Figure 8. For example, FS_0 can be linked to control clock frequency  
selection on CLK0, CLK3, and CLK5; FS_1 can be used to control clock frequency selection on CLK1, CLK2, and  
CLK4. Any other combination is also possible. The frequency select feature is not available for CLKs 6 and 7.  
The Si5350A uses control circuitry to ensure that frequency changes are glitchless. This ensures that the clock  
always completes its last cycle before starting a new clock cycle of a different frequency.  
Customizable FS Control  
Glitchless Frequency Changes  
FS  
MultiSynth 0  
CLK0  
CLK1  
FS  
New frequency starts  
at its leading edge  
MultiSynth 1  
FS_0  
FS_1  
FS_0  
Output Frequency  
F1_0, F1_3, F1_5  
F2_0, F2_3, F2_5  
0
1
FS  
MultiSynth 2  
CLK2  
CLK3  
Frequency_A  
Frequency_B  
FS  
Frequency_A  
MultiSynth 3  
CLKx  
FS  
MultiSynth 4  
CLK4  
CLK5  
CLK6  
CLK7  
FS_1  
Output Frequency  
F1_1, F1_2, F1_4  
F2_1, F2_2, F2_4  
0
1
MultiSynth 5  
FS  
Full cycle completes before  
changing to a new frequency  
Cannot be controlled  
by FS pins  
Figure 8. Example Configuration of a Pin-Controlled Frequency Select (FS)  
4.3.4. Output Enable (OEB_0, OEB_1, OEB_2)  
Up to three output enable pins (OEB_0/1/2) are available on the Si5350A. Similar to the FS pins, each OEB pin can  
be linked to any of the output clocks. In the example shown in Figure 9, OEB_0 is linked to control CLK0, CLK3,  
and CLK5; OEB_1 is linked to control CLK6 and CLK7, and OEB_2 is linked to control CLK1, CLK2, CLK4, and  
CLK5. Any other combination is also possible. If more than one OEB pin is linked to the same CLK output, the pin  
forcing a disable state will be dominant. Clock outputs are enabled when the OEB pin is held low.  
The output enable control circuitry ensures glitchless operation by starting the output clock cycle on the first leading  
edge after OEB is asserted (OEB = low). When OEB is released (OEB = high), the clock is allowed to complete its  
full clock cycle before going into a disabled state. This is shown in Figure 9. When disabled, the output state is  
configurable as disabled high, disabled low, or disabled in high-impedance.  
Customizable OEB Control  
Glitchless Output Enable  
CLK0  
OEB  
OEB_0  
Output State  
CLK Enabled  
CLK Disabled  
OEB_0  
OEB_1  
CLK1  
0
1
OEB  
Clock continues until  
cycle is complete  
Clock starts on the  
first leading edge  
CLK2  
CLK3  
OEB  
OEB  
OEB_1  
Output State  
CLK Enabled  
CLK Disabled  
CLKx  
OEBx  
0
1
CLK4  
CLK5  
CLK6  
CLK7  
OEB  
OEB  
OEB_2  
Output State  
CLK Enabled  
CLK Disabled  
OEB_2  
OEB  
OEB  
0
1
Figure 9. Example Configuration of a Pin-Controlled Output Enable  
Rev. 1.1  
13  
Si5350A-B  
4.4. Design Considerations  
The Si5350A is a self-contained clock generator that requires very few external components. The following general  
guidelines are recommended to ensure optimum performance.  
4.4.1. Power Supply Decoupling/Filtering  
The Si5350A has built-in power supply filtering circuitry to help keep the number of external components to a  
minimum. All that is recommended is one 0.1 to 1.0 µF decoupling capacitor per power supply pin. This capacitor  
should be mounted as close to the VDD and VDDO pins as possible without using vias.  
4.4.2. Power Supply Sequencing  
The VDD and VDDOx (i.e., VDDO0, VDDO1, VDDO2, VDDO3) power supply pins have been separated to allow  
flexibility in output signal levels. Power supply sequencing for VDD and VDDOx requires that all VDDOx be  
powered up either before or at the same time as VDD. Unused VDDOx pins should be tied to VDD.  
4.4.3. External Crystal  
The external crystal should be mounted as close to the pins as possible using short PCB traces. The XA and XB  
traces should be kept away from other high-speed signal traces. See “AN551: Crystal Selection Guide” for more  
details.  
4.4.4. External Crystal Load Capacitors  
The Si5350A provides the option of using internal and external crystal load capacitors. If external load capacitors  
are used, they should be placed as close to the XA/XB pads as possible. See “AN551: Crystal Selection Guide” for  
more details.  
4.4.5. Unused Pins  
Unused control pins (P0–P4) should be tied to GND.  
Unused output pins (CLK0–CLK7) should be left floating.  
4.4.6. Trace Characteristics  
The Si5350A features various output drive strength settings. It is recommended to configure the trace  
characteristics as shown in Figure 10 when the default high output drive setting is used.  
ZO = 50 ohms  
R = 0 ohms  
CLK  
(Optional resistor for  
EMI management)  
Figure 10. Recommended Trace Characteristics with Default Drive Strength Setting  
14  
Rev. 1.1  
Si5350A-B  
5. Pin Descriptions  
5.1. 20-pin QFN  
XA  
XB  
P0  
P1  
P2  
1
2
3
4
5
15 CLK7  
14 VDDOD  
13 CLK0  
12 CLK1  
11 VDDOA  
GND  
PAD  
Figure 11. Si5350A 20-Pin QFN Top View  
Pin Name Pin Number  
Pin Type*  
Function  
XA  
XB  
1
I
Input pin for external XTAL  
Input pin for external XTAL  
Output clock 0  
2
I
CLK0  
CLK1  
CLK2  
CLK3  
CLK4  
CLK5  
CLK6  
CLK7  
P0  
13  
O
O
O
O
O
O
O
O
I
12  
Output clock 1  
9
Output clock 2  
8
Output clock 3  
19  
Output clock 4  
17  
Output clock 5  
16  
Output clock 6  
15  
Output clock 7  
3
User configurable input pin 0. See 4.4.5.  
User configurable input pin 1. See 4.4.5.  
User configurable input pin 2. See 4.4.5.  
User configurable input pin 3. See 4.4.5.  
User configurable input pin 4. See 4.4.5.  
Core voltage supply pin. See 4.4.2  
P1  
4
I
P2  
5
I
P3  
6
I
P4  
7
I
VDD  
VDDOA  
VDDOB  
VDDOC  
VDDOD  
GND  
20  
P
P
P
P
P
P
11  
Output voltage supply pin for CLK0 and CLK1. See 4.4.2  
Output voltage supply pin for CLK2 and CLK3. See 4.4.2  
Output voltage supply pin for CLK4 and CLK5. See 4.4.2  
Output voltage supply pin for CLK6 and CLK7. See 4.4.2  
Ground  
10  
18  
14  
Center Pad  
*Note: I = Input, O = Output, P = Power  
Rev. 1.1  
15  
Si5350A-B  
5.2. 10-pin MSOP  
VDD  
XA  
CLK0  
CLK1  
GND  
1
2
3
10  
9
XB  
8
P0  
P1  
VDDO  
CLK2  
4
5
7
6
Figure 12. Si5350A 10-pin MSOP Top View  
Pin  
Pin Name  
Pin Type*  
Function  
Number  
XA  
XB  
2
3
I
I
Input pin for external XTAL  
Input pin for external XTAL  
Output clock 0  
CLK0  
CLK1  
CLK2  
P0  
10  
9
O
O
O
I
Output clock 1  
6
Output clock 2  
4
User configurable input pin 0  
User configurable input pin 1  
P1  
5
I
VDD  
VDDO  
GND  
1
P
P
P
Core voltage supply pin. See 4.4.2  
7
Output clock voltage supply pin for CLK0, CLK1, and CLK2. See 4.4.2  
Ground  
8
*Note: I = Input, O = Output, P = Power  
16  
Rev. 1.1  
Si5350A-B  
6. Ordering Information  
Factory programmed Si5350A devices can be requested using the ClockBuilder web-based utility available at:  
www.silabs.com/ClockBuilder. A unique part number is assigned to each custom configuration as indicated in  
Figure 13. Use ClockBuilder to create custom part numbers or consult a Silicon Labs sales representative for other  
custom NVM configurations.  
Si5350A  
BXXXXX  
XXX  
Blank = Coil Tape  
R = Tape and Reel  
GT =10-MSOP  
GM=20-QFN  
B
= Product Revision B  
XXXXX = Unique Custom Cod.e A five character code will be  
assigned for each unique custom configuration  
Evaluation Boards  
Si535x-TMSTK  
For evaluation of  
Si5350A-Bxxxxx-GT (10 MSOP)  
For evaluation of  
Si5350A-Bxxxxx-GM (20 QFN)  
Si535x-B20QFN-EVB  
Figure 13. Custom Clock Part Numbers  
Rev. 1.1  
17  
Si5350A-B  
7. 20-Pin QFN Package Outline  
Figure 14 illustrates the package details for the Si5350A-B in a 20-pin QFN package. Table 11 lists the values for  
the dimensions shown in the illustration.  
C
D2  
A
D
B
D2/2  
A1  
L
E
E2  
E2/2  
b
A
e
Figure 14. 20-pin QFN Package Drawing  
18  
Rev. 1.1  
Si5350A-B  
Table 11. Package Dimensions  
Dimension  
Min  
0.80  
0.00  
0.20  
Nom  
0.85  
Max  
A
A1  
b
0.90  
0.05  
0.30  
0.25  
D
4.00 BSC  
2.70  
D2  
e
2.65  
2.75  
0.50 BSC  
4.00 BSC  
2.70  
E
E2  
L
2.65  
0.35  
2.75  
0.45  
0.10  
0.40  
aaa  
bbb  
ccc  
ddd  
0.10  
0.08  
0.10  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to JEDEC Outline MO-220, variation VGGD-5.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for  
Small Body Components.  
Rev. 1.1  
19  
Si5350A-B  
8. Land Pattern: 20-Pin QFN  
Figure 15 shows the recommended land pattern details for the Si5350 in a 20-Pin QFN package. Table 12 lists the  
values for the dimensions shown in the illustration.  
Figure 15. 20-Pin QFN Land Pattern  
20  
Rev. 1.1  
Si5350A-B  
Table 12. PCB Land Pattern Dimensions  
Symbol  
C1  
Millimeters  
4.0  
C2  
4.0  
E
0.50 BSC  
0.30  
X1  
X2  
2.70  
Y1  
0.80  
Y2  
2.70  
Notes:  
General  
1. All dimensions shown are in millimeters  
(mm) unless otherwise noted.  
2. This land pattern design is based on IPC-  
7351 guidelines.  
Solder Mask Design  
3. All metal pads are to be non-solder mask  
defined (NSMD). Clearance between the  
solder mask and the metal pad is to be  
60 µm minimum, all the way around the pad.  
Stencil Design  
4. A stainless steel, laser-cut and electro-  
polished stencil with trapezoidal walls should  
be used to assure good solder paste release.  
5. The stencil thickness should be 0.125 mm  
(5 mils).  
6. The ratio of stencil aperture to land pad size  
should be 1:1 for all perimeter pads.  
7. A 2x2 array of 1.10 x 1.10 mm openings on  
1.30 mm pitch should be used for the center  
ground pad.  
Card Assembly  
8. A No-Clean, Type-3 solder paste is  
recommended.  
9. The recommended card reflow profile is per  
the JEDEC/IPC J-STD-020 specification for  
Small Body components.  
Rev. 1.1  
21  
Si5350A-B  
9. 10-pin MSOP Package Outline  
Figure 16 illustrates the package details for the Si5350A-B in a 10-pin MSOP package. Table 13 lists the values for  
the dimensions shown in the illustration.  
Figure 16. 10-pin MSOP Package Drawing  
22  
Rev. 1.1  
Si5350A-B  
Table 13. 10-MSOP Package Dimensions  
Dimension  
Min  
Nom  
Max  
1.10  
0.15  
0.95  
0.33  
0.23  
A
A1  
A2  
b
0.00  
0.75  
0.17  
0.08  
0.85  
c
D
3.00 BSC  
4.90 BSC  
3.00 BSC  
0.50 BSC  
0.60  
E
E1  
e
L
0.40  
0.80  
L2  
q
0.25 BSC  
0
8
aaa  
bbb  
ccc  
ddd  
0.20  
0.25  
0.10  
0.08  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to the JEDEC Solid State Outline MO-137, Variation C  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body  
Components.  
Rev. 1.1  
23  
Si5350A-B  
10. Land Pattern: 10-Pin MSOP  
Figure 17 shows the recommended land pattern details for the Si5350A-B in a 10-Pin MSOP package. Table 14  
lists the values for the dimensions shown in the illustration.  
Figure 17. 10-Pin MSOP Land Pattern  
24  
Rev. 1.1  
Si5350A-B  
Table 14. PCB Land Pattern Dimensions  
Symbol  
Millimeters  
Min  
Max  
C1  
E
4.40 REF  
0.50 BSC  
G1  
X1  
Y1  
Z1  
3.00  
0.30  
1.40 REF  
5.80  
Notes:  
General  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ASME Y14.5M-1994.  
3. This Land Pattern Design is based on the IPC-7351 guidelines.  
4. All dimensions shown are at Maximum Material Condition (MMC). Least  
Material Condition (LMC) is calculated based on a Fabrication  
Allowance of 0.05mm.  
Solder Mask Design  
5. All metal pads are to be non-solder mask defined (NSMD). Clearance  
between the solder mask and the metal pad is to be 60 µm minimum, all  
the way around the pad.  
Stencil Design  
6. A stainless steel, laser-cut and electro-polished stencil with trapezoidal  
walls should be used to assure good solder paste release.  
7. The stencil thickness should be 0.125 mm (5 mils).  
8. The ratio of stencil aperture to land pad size should be 1:1.  
Card Assembly  
9. A No-Clean, Type-3 solder paste is recommended.  
10. The recommended card reflow profile is per the JEDEC/IPC J-STD-  
020C specification for Small Body components.  
Rev. 1.1  
25  
Si5350A-B  
11. Top Marking  
11.1. 20-Pin QFN Top Marking  
Figure 18. 20-Pin QFN Top Marking  
11.2. Top Marking Explanation  
Mark Method:  
Pin 1 Mark:  
Laser  
Filled Circle = 0.50 mm Diameter  
(Bottom-Left Corner)  
Font Size:  
0.60 mm (24 mils)  
Line 1 Mark Format  
Line 2 Mark Format:  
Device Part Number  
TTTTTT = Mfg Code*  
Si5350  
Manufacturing Code from the Assembly Purchase  
Order Form.  
Line 3 Mark Format:  
YY = Year  
WW = Work Week  
Assigned by the Assembly House. Corresponds to  
the year and work week of the assembly date.  
*Note: The code shown in the “TTTTTT” line does not correspond to the orderable part number or frequency plan. It is used  
for package assembly quality tracking purposes only.  
26  
Rev. 1.1  
Si5350A-B  
11.3. 10-Pin MSOP Top Marking  
Figure 19. 10-Pin MSOP Top Marking  
11.4. Top Marking Explanation  
Mark Method:  
Pin 1 Mark:  
Laser  
Mold Dimple (Bottom-Left Corner)  
0.60 mm (24 mils)  
Device Part Number  
TTTT = Mfg Code*  
Font Size:  
Line 1 Mark Format  
Line 2 Mark Format:  
Si5350  
Line 2 from the “Markings” section of the Assembly  
Purchase Order form.  
Line 3 Mark Format:  
YWW = Date Code  
Assigned by the Assembly House.  
Y = Last Digit of Current Year (Ex: 2013 = 3)  
WW = Work Week of Assembly Date.  
*Note: The code shown in the “TTTT” line does not correspond to the orderable part number or frequency plan. It is used for  
package assembly quality tracking purposes only.  
Rev. 1.1  
27  
Si5350A-B  
DOCUMENT CHANGE LIST  
Revision 0.75 to Revision 1.0  
Extended frequency range from 8 MHz-160 MHz to  
2.5 kHz-200 MHz.  
Added 1.8 V VDD support.  
Updated block diagrams for clarity.  
Added complete Si5350/1 family table, Table 1.  
Added top mark information.  
Added land pattern drawings.  
Added PowerUp Time, PLL Bypass mode, Table 4.  
Clarified Down Spread step sizes in Table 4.  
Updated max jitter specs (typ unchanged) in Table 6.  
Clarified power supply sequencing requirement,  
Section 4.4.2.  
Revision 1.0 to Revision 1.1  
Updated "6. Ordering Information" on page 17.  
Changed “Blank = Bulk” to “Blank = Coil Tape” in  
Figure 13.  
28  
Rev. 1.1  
ClockBuilder Pro  
One-click access to Timing tools,  
documentation, software, source  
code libraries & more. Available for  
Windows and iOS (CBGo only).  
www.silabs.com/CBPro  
Timing Portfolio  
www.silabs.com/timing  
SW/HW  
www.silabs.com/CBPro  
Quality  
www.silabs.com/quality  
Support and Community  
community.silabs.com  
Disclaimer  
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or  
intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical"  
parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes  
without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included  
information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted  
hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of  
Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant  
personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass  
destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.  
Trademark Information  
Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®,  
EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®,  
Gecko®, ISOmodem®, Micrium, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress®, Zentri, Z-Wave, and others are trademarks or  
registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited.  
All other products or brand names mentioned herein are trademarks of their respective holders.  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
USA  
http://www.silabs.com  

相关型号:

SI5350A-B09240-GMR

Processor Specific Clock Generator,
SILICON

SI5350A-B09600-GT

Processor Specific Clock Generator,
SILICON

SI5350A-B09600-GTR

Processor Specific Clock Generator,
SILICON

SI5350A-B09684-GT

Processor Specific Clock Generator,
SILICON

SI5350A-B09684-GTR

Processor Specific Clock Generator,
SILICON

SI5350A-B09815-GMR

Processor Specific Clock Generator,
SILICON

SI5350A-B09866-GT

Processor Specific Clock Generator,
SILICON

SI5350A-B09866-GTR

Processor Specific Clock Generator,
SILICON

SI5350A-B10722-GMR

Processor Specific Clock Generator,
SILICON

Si5350B-A-GM

Factory-Programmable Any-Frequency CMOS Clock Generator
ETC

Si5350B-A-GT

Factory-Programmable Any-Frequency CMOS Clock Generator
ETC

Si5350B-A-GU

Factory-Programmable Any-Frequency CMOS Clock Generator
ETC