SC63C0316 [SILAN]

AUDIO CONTROL SYSTEM WITH BUILTIN; 带有内置的音频控制系统
SC63C0316
型号: SC63C0316
厂家: SILAN MICROELECTRONICS JOINT-STOCK    SILAN MICROELECTRONICS JOINT-STOCK
描述:

AUDIO CONTROL SYSTEM WITH BUILTIN
带有内置的音频控制系统

文件: 总24页 (文件大小:281K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SC63C0316  
AUDIO CONTROL SYSTEM WITH BUILT•IN 4•BIT MCU  
DESCRIPTION  
The SC63C0316 singlechip CMOS microcontroller is designed fo  
very high performance. With an up•to•14•digit dLiCreDct drive  
capability, 4•channel A/D converter, 8bit timer/counter, PLL frequency  
synthesizer. The SC63C0316 offers you an excellent design solutio  
for  
a wide variety of applications, especiathlloyse requiring DTS  
support.  
Up to 56 pins of the 80pin QFP package can be dedicated to I/O  
Eight vectored interrupts provide fast responseto internal and external  
events. In addition, the SC63C0316's advanced CMOS technol  
ensures low power consumption and a wide operating voltage range.  
QFP•80•14×20•0.8  
ORDERING INFORMATION  
Device Package  
FEATURES  
Memory  
SC63C0316 QFP•80•14 x 20•0.8  
* 512•nibble RAM  
* 16K•byte ROM  
A/D Converter  
I/O Pins  
* 4•channels with 8•bit resolution  
Bit Sequential Carrier Buffer  
* Support 16•bit serial data transfer in  
arbitrary format  
* Input only: 4 pins  
* Output only: 28 pins  
* I/O: 24 pins  
LCD Controller/Driver  
PLL Frequency Synthesizer  
* Level = 300 mVp•p (min)  
* AMVCO range = 0.5 MHz to 30 MHz  
* FMVCO range = 30 MHz to 150 MHz  
16•Bit Intermediate Frequency (IF)  
Counter  
* Maximum 14•digit LCD direct drive capability  
* 28 segment x 4 common signals  
* Display modes: Static, 1/2 duty (1/2 bias)  
1/3 duty (1/2 or 1/3 bias), 1/4 duty (1/3 bias)  
8•Bit Basic Timer  
* Programmable interval timer functions  
* Watch•dog timer function  
8•Bit Timer/Counter  
* Level = 300 mVp•p (min)  
* AMIF range = 100 kHz to 1 MHz  
* FMIF range =5MHz to 15 MHz  
Watch Timer  
* Programmable 8•bit timer  
* External event counter  
* Time interval generation  
0.5 s, 3.9 ms at 32.768 kHz  
* Frequency outputs to BUZ pin  
* Clock source generation for LCD  
Interrupts  
* Arbitrary clock frequency output  
* External clock signal divider  
* Serial I/O interface clock generator  
8•Bit Serial I/O Interface  
* 8•bit transmit/receive mode  
* 8•bit receive mode  
* Four internal vectored interrupts  
* Four external vectored interrupts  
* Two quasi•interrupts  
* Data direction selectable (LSB•first or MSB•first)  
* Internal or external clock source  
Memory•Mapped I/O Structure  
* Data memory bank 15  
HANGZHOU SILAN MICROELECTRONICS CO.,LTD  
REV:1.0  
2004.08.03  
Http: www.silan.com.cn  
Page 1 of 24  
SC63C0316  
Three Power•Down Modes  
Operating Temperature  
* Idle: Only CPU clock stops  
* – 40 °C to 85 °C  
* Stop1: Main system or subsystem clock stops  
* Stop2: Main system and subsystem clock stop  
* CE low: PLL and IFC stop  
Operating Voltage Range  
* 1.8 V to 5.5 V at 3MHz  
* PLL/IFC operation: 2.5V to 3.5V or  
4.0V to 5.5V  
Oscillation Sources  
* Crystal or ceramic oscillator for main system clock  
* Crystal for subsystem clock  
APPLICATIONS  
* Main system clock frequency: 4.5 MHz (Typ)  
* Subsystem clock frequency: 32.768 kHz (Typ)  
* CPU clock divider circuit (by 4, 8, or 64)  
Instruction Execution Times  
* Auto audio system  
* Other audio system  
* 0.9, 1.8, 14.2 ms at 4.5 MHz  
* 122 ms at 32.768 kHz (subsystem)  
BLOCK DIAGRAM  
ABSOLUTE MAXIMUM RATINGS (Tamb=25°C)  
Characteristics  
Supply Voltage  
Symbol  
Value  
•0.3 • 6.5  
•0.3 • V +0.3  
Unit  
V
V
DD  
V
I1  
V
DD  
Input Voltage  
V
I2  
•0.3 • V +0.3  
DD  
Output Voltage  
Output Current High  
V
•0.3 • V +0.3  
V
O
DD  
•15  
•30  
I
mA  
OH  
(To be continued)  
HANGZHOU SILAN MICROELECTRONICS CO.,LTD  
REV:1.0  
2004.08.03  
Http: www.silan.com.cn  
Page 2 of 24  
SC63C0316  
(Continued)  
Characteristics  
Symbol  
Value  
Unit  
+30˄Peak value˅  
Output Current Low  
mA  
IOL  
+100˄Peak value˅  
Operating Temperature  
Storage Temperature  
T
•40 ~ 85  
•65~150  
°C  
°C  
amb  
T
stg  
DC CHARACTERISTICS (Tamb=•40°C to +85°C, VDD=3.5V to 6.0V)  
Characteristics  
Symbol  
Test condition  
Min.  
Typ.  
Max.  
Unit  
All  
input nspi except  
tho  
V
0.7V  
V
V
V
IH1  
IH2  
DD  
DD  
DD  
DD  
DD  
DD  
specified below for VIH2•VIH4  
Port 0, 1, 6, 7, and  
RESET  
V
0.8V  
0.7V  
Ports 4, 5, 7 and 8 with pupll•  
resistors assigned  
Input High Voltage  
•••  
V
V
V
IH3  
Ports 4, 5, 7 and 8 are open•  
0.7V  
9
DD  
drain  
Xin, Xout and Xtin  
V
DD  
•0.5  
V
DD  
IH4  
All  
input  
pins  
except  
V
0.3V  
IL1  
DD  
DD  
specified below for CIL2•Vil3  
Ports 0, 1, 6, 7, 9, 10  
RESET  
Input Low Voltage  
•••  
•••  
V
V
V
V
0.2V  
IL2  
Xin, Xout and XTin  
0.4  
IL3  
V
=4.5V to 6.0V, I=•1mA,  
OH  
DD  
V
DD  
V
DD  
V
DD  
V
DD  
•1.0  
•0.5  
•2.0  
•1.0  
V
OH1  
Ports 0, 2•10  
=•100mA  
I
OH  
Output High Voltage  
•••  
•••  
V
DD  
=4.5V to 6.0V, I =•100mA,  
OH  
V
OH2  
Ports 11•13 only  
=•30mA  
I
OH  
V
=4.5V to 6.0V, I=1.6mA,  
OL  
DD  
0.8  
2
Ports 4,5,7 and 8only  
=•1.6mA, Ports 0,2,3,6,9,10  
I
OL  
V
V
OL1  
0.4  
0.2  
EO1, and Eo2 only  
=400mA, Ports 0, 2, 3, 6,  
Output Low Voltage  
•••  
V
I
OL  
•••  
•••  
10, EO1 and EO2 only  
=4.5V to 6.0V, I =100mA,  
V
DD  
OL  
1
1
Port 11, 12 and 13 only  
=50mA  
OL2  
I
OL  
VI=V  
,
all input pins exc  
and those speci  
below for ILIH2•ILIH3  
DD  
RESET  
Input High Leakage Current  
I
•••  
3
mA  
LIH1  
(To be continued)  
HANGZHOU SILAN MICROELECTRONICS CO.,LTD  
REV:1.0  
2004.08.03  
Http: www.silan.com.cn  
Page 3 of 24  
SC63C0316  
(Continued)  
Characteristics  
Symbol  
Test condition  
V =V , Xin, Xout, Xtin only  
Min.  
Typ.  
Max.  
Unit  
I
25  
mA  
LIH2  
I
DD  
Input High Leakage Current  
Input Low Leakage Current  
V =9V, Ports 4,5,7 and  
8
I
I
20  
mA  
LIH3  
open•drain  
V =0V, all input pins except Xin  
I
I
•3  
•20  
3
LIL1  
LIL2  
Xout, XTin and  
RESET  
•••  
•••  
mA  
I
V =0V, Xin, Xout, and XTin only  
I
V =V , all output pins excep  
O
DD  
I
I
LOH1  
LOH2  
Output  
High  
Low  
ageLeak  
L
for ports 4, 5, 7 and 8  
•••  
•••  
•••  
•••  
mA  
mA  
Current  
V =9V, Ports 4, 5, 7 and 8 are  
O
20  
3
open•drain  
Output  
I
V =0V  
O
LOL  
Current  
V =0V; V =5V±10%, Port 03,  
I
DD  
15  
30  
15  
46  
90  
40  
80  
200  
70  
R
L1  
6, 9, and 10 (except P1.3)  
=3V±10%,  
V
DD  
V =V •2V,  
V =5V±10%,  
DD  
O
DD  
Pull•up Resistor  
kW  
R
L2  
Ports 4, 5, 7 and 8 only  
=3V±10%,  
V
DD  
10  
100  
200  
2.5  
60  
V =0V; V =5V±10%,  
I
DD  
RESET  
230  
490  
400  
800  
VDD  
R
L3  
V
••  
=3V±10%,  
DD  
LCD Drive Voltage  
V
LCD  
V
LCD  
Voltage  
D
R
••  
50  
•••  
•••  
100  
140  
kW  
LCD  
Resistor  
V
V
V
V
V
=5V±10%,  
=3V±10%,  
=5V±10%,  
=3V±10%,  
=5V±10%,(3),  
3
10  
3
6
DD  
DD  
DD  
DD  
DD  
COM Output Impedance  
SEG Output Impedance  
R
COM  
kW  
kW  
15  
20  
60  
R
SEG  
10  
4.  
I
crystal oscillator, C1=C2=22pF  
CE high; PLL operates  
12  
25  
DD1 (2)  
Idle  
mode;  
=5VV±10%,  
DD  
•••  
•••  
mA  
4.5MHz crystal oscillator, CP  
clock =fxx/4, CE low; PLL stops.  
1.4  
1.8  
I
DD2  
Supply Current (1)  
V
DD  
=3V±10%,  
CPU  
0.23  
25  
1.0  
120  
30  
=fxx/64  
=3V±10%,  
V
DD  
32kzH  
crysta  
I
I
DD3 (4)  
DD4 (5)  
oscillator, CE low; PLL stops.  
mA  
Idle mode; V =3V±10%, 32kHz  
DD  
20  
crystal oscillator.  
HANGZHOU SILAN MICROELECTRONICS CO.,LTD  
REV:1.0  
2004.08.03  
Http: www.silan.com.cn  
Page 4 of 24  
SC63C0316  
DC CHARACTERISTICS (concluded) (Tamb=•40°C to +85°C, VDD=2.7V to 6.0V)  
Characteristics  
Supply Current (cont)  
NOTES:  
Symbol  
Test condition  
Min.  
Typ.  
0.6  
Max.  
5
Unit  
Stop 1 mode; XTin=0V  
V
=5V±10%, CPU clock=fxx/4,  
DD  
I
I
mA  
DD5  
DD6  
CE low; PLL stops  
V
V
=3V±10%, CPU clock=fxx/64  
=5V±10%, 4.5MHz crystal  
0.2  
3
DD  
DD  
•••  
4.2  
8
oscillator, CPU clock=fxx/4, CE  
low; PLL stops  
mA  
V
DD  
=3V±10%, CPU clock=fxx/64  
0.7  
1.2  
2.0  
Stop 2 mode; Xtin=0V,  
V =5V±10%, CPU clock=fxx/4,  
DD  
I
0.12  
mA  
DD7 (2)  
CE low; PLL stops  
1. Currents in the following circuits are not included; on•chip pull•up resistors, output port drive currents, internal  
LCD voltage dividing resistors and A/D converter.  
2. IDD1 and IDD7 are guaranteed in Tamb = – 20 °C to + 85 °C  
3. Data includes power consumption for subsystem clock oscillation.  
4. For high•speed controller operation, the power control register (PCON) must be set to 0011B.  
5. For low•speed controller operation, the power control register (PCON) must be set to 0000B.  
6. When the system clock control register, SCMOD, is set to 1001B, main system clock oscillation stops and the  
subsystem clock is used.  
MAIN SYSTEM OSCILLATOR CHARACTERISTICS (Tamb=•40°C to +85°C, VDD=2.7V to 6.0V)  
Oscillator  
Characteristics  
Test condition  
Min  
Typ  
Max Units  
Oscillation frequency (1)  
••  
0.4  
••  
5.0  
MHz  
Ceramic  
Stabilization occurs when VDD is  
equal to the mini mum oscillator  
voltage range  
Oscillator  
Stabilization time (2)  
••  
••  
4
ms  
Oscillation frequency (1)  
Stabilization (2)  
••  
0.4  
4.5  
6.0  
MHz  
ms  
Crystal  
VDD=4.5V~6.0V  
VDD=2.7V~4.5V  
••  
••  
••  
••  
10  
30  
Oscillator  
XIN input frequency (1)  
••  
••  
0.4  
••  
••  
4.5  
MHz  
ns  
External  
Clock  
XIN input high and low  
level width  
111  
1250  
NOTES:  
1. Oscillation frequency and Xin input frequency data are for oscillator characteristics only.  
2. Stabilization time is the interval required for oscillator stabilization after a power•on occurs, or when Stop mode  
is terminated.  
HANGZHOU SILAN MICROELECTRONICS CO.,LTD  
REV:1.0  
2004.08.03  
Http: www.silan.com.cn  
Page 5 of 24  
SC63C0316  
SUBSYSTEM CLOCK OSCILLATOR CHARACTERISTICS  
Oscillator  
Characteristics  
Test condition  
Min  
32  
••  
Typ  
32.768  
1.0  
Max  
35  
Units  
Oscillation frequency(1)  
••  
kHz  
Crystal  
VDD=4.5V~5.5V  
VDD=1.8V~4.5V  
••  
2
Oscillator  
Stabilization time (2)  
s
••  
••  
10  
XTIN input frequency (1)  
XTIN input high and low  
level width (tXH, tXL)  
32  
••  
100  
kHz  
ms  
External  
clock  
••  
5
••  
15  
Note:1. Oscillation frequency and XTIN input frequency data are for oscillator characteristics only.  
2. Stabilization time is the interval required for oscillator stabilization after a power•on occurs.  
PIN CONFIGURATIONS  
80  
79 78 77 76 75 74 73 72 71 70 69 68  
67 66 65  
P4.1/SO  
P4.2/SI  
1
2
3
4
5
6
7
8
9
FMIF  
64  
63  
62  
61  
60  
59  
58  
57  
AMIF  
VSS1  
P4.3/CLO  
P5.0/ADC0  
VCOAM  
VCOFM  
P5.1/ADC1  
P5.2/ADC2  
P2.3  
P2.2  
P5.3/ADC3  
P6.0/KS0  
P2.1  
P6.1/KS1  
56 P2.0  
SEG27/P13.3  
SDAT/P6.2/KS2 10  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
SCLK/P6.3/KS3  
VDD/VDD0  
11  
l2  
SEG26/P13.2  
SEG25/P13.1  
SEG24/P13.0  
SC63C0316  
13  
14  
15  
16  
17  
18  
19  
VSS/VSS0  
XOUT  
SEG23/P12.3  
XIN  
SEG22/P12.2  
SEG21/P12.1  
SEG20/P12.0  
VPP/TEST  
XTIN  
XTOUT  
SEG19/P11.3  
SEG18/P11.2  
RESET/RESET  
BIAS  
20  
21  
22  
23  
SEG17/P11.1  
SEG16/P11.0  
SEG15/P10.3  
VLC0  
VLC1  
VLC2  
SEG14/P10.2  
SEG13/P10.1  
COM0 24  
3
25 26 27 28 29 30 31 32 33 34 35 36 37  
38 39 40  
HANGZHOU SILAN MICROELECTRONICS CO.,LTD  
REV:1.0  
2004.08.03  
Http: www.silan.com.cn  
Page 6 of 24  
SC63C0316  
PIN DESCRIPTION  
Pin No.  
72  
Symbol  
Description  
P0.0  
P0.1  
P0.2  
P0.3  
P1.0  
P1.1  
P1.2  
P1.3  
4•bit I/O port.  
73  
1•bit or 4•bit read, write, and test are possible.  
Pull•up resistors can be configured by software.  
74  
75  
76  
4•bit input port.  
77  
1•bit or 4•bit read and test are possible.  
Pull•up resistors can be configured by software.  
78  
79  
4•bit I/O ports.  
56•59  
68•71  
P2.0~ P2.3  
P3.0~P3.3  
1•bit, 4•bit or 8•bit read, write and test are possible.  
Pull•up resistors can be configured by software.  
Ports 2 and 3 can be paired to support 8•bit data transfer.  
80  
1
P4.0  
P4.1  
P4.2  
P4.3  
P5.0  
P5.1  
P5.2  
P5.3  
P6.0  
P6.1  
P6.2  
P6.3  
P7.0  
P7.1  
P7.2  
P7.3  
P8.0  
P8.1  
P8.2  
P8.3  
P9.0  
P9.1  
P9.2  
P9.3  
P10.0  
P10.1  
P10.2  
P10.3  
4•bit I/O ports.  
1•bit, 4•bit or 8•bit read, write and test are possible.  
Pull•up resistors can be configured by software.  
2
3
4
5
Ports 4 and 5 can be paired to support 8•bit data transfer.  
6
7
8
4•bit I/O port.  
9
1•bit, 4•bit or 8•bit read, write and test are possible.  
Pull•up resistors can be configured by software.  
10  
11  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
1•bit or 4•bit output port.  
Alternatively used for LCD segment output.  
1•bit or 4•bit output port.  
Alternatively used for LCD segment output.  
1•bit or 4•bit output port.  
Alternatively used for LCD segment output.  
1•bit or 4•bit output port.  
Alternatively used for LCD segment output.  
(To be continued)  
HANGZHOU SILAN MICROELECTRONICS CO.,LTD  
REV:1.0  
2004.08.03  
Http: www.silan.com.cn  
Page 7 of 24  
SC63C0316  
(Continued)  
Pin No.  
44  
Symbol  
P11.0  
P11.1  
P11.2  
P11.3  
P12.0  
P12.1  
P12.2  
P12.3  
P13.0  
P13.1  
P13.2  
P13.3  
COM0•COM3  
BIAS  
Description  
1•bit or 4•bit output port.  
45  
46  
Alternatively used for LCD segment output.  
47  
48  
49  
1•bit or 4•bit output port.  
Alternatively used for LCD segment output.  
50  
51  
52  
53  
1•bit or 4•bit output port.  
Alternatively used for LCD segment output.  
54  
55  
24•27  
20  
Common signal output for LCD display  
LCD power control  
21  
VLC0  
LCD power supply.  
22  
VLC1  
Voltage dividing resistors are assignable by  
software  
23  
VLC2  
12  
VDD0  
VSS0  
Main power supply  
13  
Main Ground  
19  
RESET  
XOUT  
XIN  
System reset pin  
14  
Crystal, or ceramic oscillator pin for main system clock. (For external clock  
input, use XIN and input XIN’s reverse phase to XOUT)  
15  
18  
XTOUT  
XTIN  
Crystal oscillator pin for subsystem clock. (For external clock input, use XTIN  
and input XTIN’s reverse phase to XTOUT)  
17  
16  
TEST  
Test signal input (must be connected to VSS for normal operation)  
Input pin for checking device power.  
67  
CE  
Normal operation is high level and PLL/IFC operation is stopped at low level.  
60  
61  
66  
64  
63  
65  
62  
72  
73  
74  
VCOFM  
VCOAM  
EO  
External VCOFM/AM signal inputs.  
PLL’s phase error output  
FMIF  
FM/AM intermediate frequency signal inputs.  
AMIF  
VDD1  
VSS1  
BTCO  
TCLO0  
TCL0  
PLL/IFC power supply  
PLL/IFC ground  
Basic timer overflow output signal  
Timer/counter 0 clock output signal  
External clock input for timer/counter 0  
2,4,8 or 16 kHz frequency output for buzzer sound for 4.19 MHz main system  
clock or 32.768 kHz subsystem clock  
75  
BUZ  
(To be continued)  
HANGZHOU SILAN MICROELECTRONICS CO.,LTD  
REV:1.0  
2004.08.03  
Http: www.silan.com.cn  
Page 8 of 24  
SC63C0316  
(Continued)  
Pin No.  
76  
Symbol  
INT0  
Description  
External interrupt. The triggering edges (rising/falling) are selectable. Only  
INT0 is synchronized with system clock.  
Quasi•interrupt with detection of rising edge signal.  
External interrupt input with detection of rising or falling edges.  
SIO interface clock signal  
77  
INT1  
78  
INT2  
79  
INT4  
80  
SCK  
1
SI  
SIO interface data input signal  
2
SO  
SIO interface data output signal  
3
CLO  
CPU clock output  
8•11  
4•7  
28•55  
KS0•KS3  
ADC0•ADC3  
SEG0•SEG27  
Quasi•interrupt input with falling edge detection  
ADC input ports.  
LCD segment signal output.  
FUNCTION DESCRIPTION  
INTERRUPTS  
The SC63C0316 has four external interrupts, four internal interrupts and two quasi•interrupts. Table 1 shows  
the conditions for interrupt generation. The request flags that allow these interrupts to be generated are cleared  
by hardware when the service routine is vectored. The quasi•interrupt's request flags must be cleared by  
software.  
Figure 1. Interrupt Control Circuit Diagram  
IE0 IE4 IEB  
IE2 IEW IEIF IECE IET0 IE1  
IMOD1  
IMOD0  
INTB  
IRQB  
IRQ4  
IRQ0  
IRQ1  
IRQS  
IRQT0  
INT4  
#
@
INT0  
INT1  
@
INTS  
INTT0  
INTCE  
INTIF  
IRQCE  
IRQIF  
INTW  
IRQW  
IRQ2  
INT2  
KS0•KS3  
SELECTOR  
IMOD2  
POWER•DOWN  
MODE RELEASE  
SIGNAL  
IME IPR  
IS1 IS0  
INTERRUPT CONTROL UNIT  
VECTOR INTERRUPT  
GENERATOR  
# = NOISE FILTERING CIRCUIT  
@ = EDGE DETECTION CIRCUIT  
Note : INT0 can release idle mode only when fxx/64 is selected as a asmpling clock  
HANGZHOU SILAN MICROELECTRONICS CO.,LTD  
REV:1.0  
2004.08.03  
Http: www.silan.com.cn  
Page 9 of 24  
SC63C0316  
TABLE1. Interrupt request flag conditions and priorities  
Interrupt Internal/  
Interrupt  
Request flag  
name  
Condition for IRQx flag setting  
source  
INTB  
External  
priority  
I
Reference time interval signal from basic timer  
Both rising and falling edges detected at INT4  
Rising or falling edge detected at INT0 pin  
Rising or falling edge detected at INT1 pin  
Completion signal for serial transmit•and•receive or  
receive•only operation  
1
1
2
3
IRQB  
INT4  
E
E
E
IRQ4  
INT0  
IRQ0  
INT1  
IRQ1  
INTS  
I
4
IRQS  
INTT0  
INTCE  
INTIF  
I
E
I
Signals for TCNT0 and TREF0 retgisters match  
When falling edge is detected at CE pin  
When gate closes  
5
6
7
IRQT0  
IRQCE  
IRQIF  
Rising edge detected at INT2 or else a falling edge is  
detected at any of the KS0•KS3 pins  
Time interval of 0.5s or 3.19ms  
INT2*  
E
••  
••  
IRQ2  
INTW  
I
IRQW  
* The quasi•interrupt INT2 is only used for testing incoming signals.  
INTERRUPT ENABLE FLAGS (IEx)  
IEx flags, when set to "1", enable specific interrupt requests to be serviced. When the interrupt request flag is  
set to "1", an interrupt will not be serviced until its corresponding IEx flag is also enabled. The IPR register  
contains a global disable bit, IME, which disables all interrupt at once.  
INTERRUPT PRIORITY  
Each interrupt source can also be individually programmed to high levels by modifying the IPR register. When  
IS1 = 0 and IS0 = 1, a low•priority interrupt can itself be interrupted by a high•priority interrupt, but not by another  
low•priority interrupt.  
If you clear the interrupt status flags (IS1 and IS0) to "0" in a interrupt service routine, a high•priority interrupt  
can be interrupted by low•priority interrupt (multi•level interrupt). Before the IPR can be modified by 4•bit write  
instructions, all interrupts must first be disabled by a DI instruction.  
When all interrupts are low priority (the lower three bits of the IPR register are "0"), the interrupt requested first  
will have high priority. Therefore, the first•requested interrupt cannot be superseded by any other interrupt.  
If two or more interrupt requests are received simultaneously, the priority level is determined according to the  
standard interrupt priorities, where the default priority is assigned by hardware when the lower three IPR bits =  
"0".  
In this case, the higher•priority interrupt request is serviced and the other interrupt is inhibited. Then, when the  
high•priority interrupt is returned from its service routine by an IRET instruction, the inhibited service routine is  
started.  
Table 2. Interrupt Priority Register Settings  
IPR.2  
IPR.1  
IPR.0  
Result of IPR Bit Setting  
Process all interrupt requests at default priority settings.  
INTB and INT4 at highest priority.  
INT0 at highest priority.  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
INT1 at highest priority.  
INTS at highest priority.  
INTT0 at highest priority.  
INTCE at highest priority.  
INTIF at highest priority.  
HANGZHOU SILAN MICROELECTRONICS CO.,LTD  
REV:1.0  
2004.08.03  
Http: www.silan.com.cn  
Page 10 of 24  
SC63C0316  
Table 3. Default Priorities  
Source  
INTB, INT4  
INT0  
Default Priority  
1
2
3
4
5
6
7
INT1  
INTS  
INTT0  
INTCE  
INTIF  
The interrupt controller can service multiple interrupts in two ways: as two•level interrupts, where either all  
interrupt requests or only those of highest priority are serviced (see Figure 2), or as multi•level interrupts, when  
the interrupt service routine for a lower•priority request is accepted during the execution of a higher priority  
routine. (See Figure 3)  
Figure 2: Two•level Interrupt handling  
Figure 3: Multi•level Interrupt handling  
Normal program  
Single  
processing (status 0)  
interrupt  
2•level  
INT disable  
interrupt  
3•level  
interrupt  
INT disable  
Status 1  
Status 0  
Set IPR  
Modify status  
INT enable  
INT enable  
Low or  
High level  
Interrupt  
Low or  
High level  
Interrupt  
High level  
Interrupt  
Generated  
Status 1  
Status 2  
Generated  
Generated  
Status 0  
NOTE: If more than four interrupts are being processed at one time, you can avoid possible loss of working  
register data by using the PUSH RR instruction to save register contents to the stack before the service  
routines are executed in the same register bank. When the routines have executed successfully, you can  
restore the register contents from the stack to working memory using the POP instruction.  
HANGZHOU SILAN MICROELECTRONICS CO.,LTD  
REV:1.0  
2004.08.03  
Http: www.silan.com.cn  
Page 11 of 24  
SC63C0316  
Interrupt execute flowchart  
A vectored interrupt is generated when the following flags and register settings, corresponding to the specific  
interrupt (INTn) are set to logic one:  
— Interrupt enable flag (IEx)  
— Interrupt master enable flag (IME)  
— Interrupt request flag (IRQx)  
— Interrupt status flags (IS0, IS1)  
— Interrupt priority register (IPR)  
If all conditions are satisfied for the execution of a requested service routine, the start address of the interrupt is  
loaded into the program counter and the program starts executing the service routine from this address.  
Figure 4 Interrupt execution flowchart  
Interrupt is generated (INT xx)  
Request flag (IRQx)  
1
No  
IEx=1?  
Yes  
Retain value until IEx=1  
Generate corresponding vector  
interrupt and release power•down mode  
No  
IME=1?  
Retain value until IME=1  
Yes  
Yes  
Retain vaule until interrupt  
service routine is completed  
IS1,0=0,0?  
No  
No  
IS1,0=0,1?  
Yes  
No  
High•priorityinterrupt  
IS1, 0=0, 1  
Yes  
IS1, 0=1, 0  
Store contents of PC and PSW in the stack area;  
set PC contens to corresponding vector address  
Yes  
Are both interrupt sources of shared  
vector address used?  
IRQx flag vaule remains 1  
No  
Jump to interrupt start address  
Reset corresponding IRQx flag  
Jump to interrupt start address  
Verify interrupt source and clear  
IRQx with a BTSTZ instruction  
HANGZHOU SILAN MICROELECTRONICS CO.,LTD  
REV:1.0  
2004.08.03  
Http: www.silan.com.cn  
Page 12 of 24  
SC63C0316  
EXTERNAL INTERRUPTS  
The external interrupt mode registers IMOD0 and IMOD1 are used to control the triggering edge of the input  
signal at INT0 and INT1, respectively. The INT4 interrupt is an exception because its input signal generates an  
interrupt request on both rising and falling edges.  
When a sampling clock rate of fxx/64 is used for INT0, an interrupt request flag must be cleared before 16  
machine cycles have elapsed. Since the INT0 pin has a clock•driven noise filtering circuit built into it, please take  
the following precautions when you use it:  
To trigger an interrupt, the input signal width at INT0 must be at least two times wider than the pulse width of  
the clock selected by IMOD0. This is true even when the INT0 pin is used for general•purpose input.  
— Because the INT0 input sampling clock does not operate during Stop or Idle mode, you cannot use INT0 to  
release power•down mode.  
EXTERNAL INTERRUPT MODE REGISTER  
The external interrupt 2 (INT2) mode register, IMOD2, is used to select INT2 and KSn pins as interrupt input. If  
a rising edge is detected at the INT2 pin, or when a falling edge is detected at any one of the pins (KS0–KS3),  
the IRQ2 flag is set to "1" and a release signal for power•down mode is generated.  
If one or more of the pins which are configured as key Interrupt (KS0–KS7) are in Low input or Low output  
state, the key Interrupt can not be occured.  
Figure 5.  
INT2  
Rising Edge Detection Circuit  
P6.3/KS3  
P6.2/KS2  
P6.1/KS1  
P6.0/KS0  
Falling Edge  
Detection  
Circuit  
Clock  
Selector  
IRQ2  
IMOD2  
Note: To generate a key interrupt on a falling edge at KS0•KS3, all  
KS0•KS3 pins must be configured to input mode.  
I/O PORTS  
The SC63C0316 has 14 ports. There are total of 4 input pins, 28 output pins, 16 configurable I/O pins, and 8  
nchannel open•drain I/O pins, for a maximum number of 56 I/O pins.  
Pin addresses for all ports except ports 7•13 are mapped in bank 15 of the RAM. Ports 7•13 pin addresses are  
in bank 1 of the RAM. The contents of I/O port pin latches can be read, written, or tested at the corresponding  
address using bit manipulation instructions.  
HANGZHOU SILAN MICROELECTRONICS CO.,LTD  
REV:1.0  
2004.08.03  
Http: www.silan.com.cn  
Page 13 of 24  
SC63C0316  
PORT MODE FLAGS (PM FLAGS)  
Port mode flags (PM) are used to configure I/O ports to input or output mode by setting or clearing the  
corresponding I/O buffer. If a PM bit is "0", the corresponding I/O pin is set to input mode. If the PM bit is "1", the  
pin is set to output mode. PM flags are addressable by 8•bit write instructions only.  
PULL•UP RESISTOR MODE REGISTER (PUMOD)  
The pull•up resistor mode register, PUMOD, is an 8•bit register used to assign internal pull•up resistors by  
software to specific I/O ports. When a PUMOD bit is "1", a pull•up resistor is assigned to the corresponding I/O  
port: When a configurable I/O port pin is used as an output pin, its assigned pull•up resistor is automatically  
disabled, even though the pin's pull•up is enabled by a corresponding PUMOD bit setting.  
PUMOD is addressable by 8•bit write instructions only. A system reset clears PUMOD values to logic zero,  
automatically disconnecting all software•assignable port pull•up resistors.  
Table 4. Pull•Up Resistor Mode Register (PUMOD) Organization  
PUMOD ID  
Address  
FDCH  
Bit3  
PUR3  
"0"  
Bit2  
Bit1  
Bit0  
PUR2  
PUR6  
PUR1  
PUR5  
PUR0  
PUR4  
PUMOD  
FDDH  
Table 5. Port Mode Group Flags (8•Bit W)  
PM Group ID  
Address  
FE6H  
FE7H  
FE8H  
FE9H  
FEAH  
FEBH  
FECH  
FEDH  
Bit3/7  
PM0.3  
“0”  
Bit2/6  
PM0.2  
“0”  
Bit1/5  
PM0.1  
“0”  
Bit0/4  
PM0.0  
“0”  
PMG0  
PM2.3  
PM3.3  
PM4.3  
PM5.3  
PM6.3  
“0”  
PM2.2  
PM3.2  
PM4.2  
PM5.2  
PM6.2  
“0”  
PM2.1  
PM3.1  
PM4.1  
PM5.1  
PM6.1  
“0”  
PM2.0  
PM3.0  
PM4.0  
PM5.0  
PM6.0  
“0”  
PMG1  
PMG2  
PMG3  
N•CHANNEL OPEN•DRAIN MODE REGISTER(PNE)  
The N•channel, open•drain mode register, PNE, is used to configure port 7 to 13 to N•channel open•drain  
modes or push•pull modes.  
When a bit in the PNE register is set to “1”, the corresponding output pin is configured to N•channel open•drain;  
when set to “0”, the output pin is configured to push•pull mode.  
The PNE register consists of an 8•bit register, as shown below, PNE can be addressed by 8•bit write  
instructions only.  
Table 6. N•channel open drain mode register (PNE) setting  
ID  
Address  
FD6H  
Bit 3/7  
PNE10  
“0”  
Bit 2/6  
PNE9  
Bit1/5  
PNE8  
Bit0/4  
PNE7  
PNE  
FD7H  
PNE13  
PNE12  
PNE11  
HANGZHOU SILAN MICROELECTRONICS CO.,LTD  
REV:1.0  
2004.08.03  
Http: www.silan.com.cn  
Page 14 of 24  
SC63C0316  
A/D CONVERTER  
To operate the A/D converter, one of the four analog input channels is selected by writing the appropriate value  
to the ADC mode register.  
To start the converter, the ADSTR flag in the control register AFLAG must be set to "1". Conversion speed is  
determined by the oscillator frequency and the CPU clock. When the A/D operation is complete, the EOC flag  
must be tested in order to verify that the conversion was successful. When the EOC value is "0", the converted  
digital values stored in the data register ADATA can be read.  
Figure 6. A/D Converter Circuit Diagram  
DATA BUS  
ADMOD  
"0"  
AFLAG  
"0"  
.2  
.1  
.0  
ADSTR EOC  
"0"  
ADATA  
8
AD3  
AD2  
AD1  
AD0  
VAin  
VDA  
Successive  
Approximation  
Logic  
CMP  
MULRIPLEXER  
DAC  
Resistor String  
8
AVREF  
AVSS  
Digital•To•Analog Converter  
Figure 7. A/D Converter Timing Diagram  
tinit  
tconv = 10 x 8/fx  
One Machine Cycle  
ADSTR  
EOC  
ADATA  
Previous  
Value  
Valid  
DATA  
Value Remains Undetermined  
ADC DIGITAL•TO•ANALOG CONVERTER (DAC)  
The 8•bit digital•to•analog converter (DAC) generates analog voltage reference values for the comparator.  
The DAC is a 256•step resistor string type digital•to•analog converter that uses successive approximation logic  
to convert digital input into the reference analog voltage, VDA. The VDA values are input from the DAC to the  
comparator where they are compared to the multiplexed external analog source voltage, VAin. Since the DAC  
has 8•bit resolution, it generates the 256•step analog reference voltage.  
HANGZHOU SILAN MICROELECTRONICS CO.,LTD  
REV:1.0  
2004.08.03  
Http: www.silan.com.cn  
Page 15 of 24  
SC63C0316  
ADC DATA REGISTER (ADATA)  
The A/D converter data register, ADATA, is an 8•bit register in which digital data values are stored as an A/D  
conversion operation is completed. Digital values stored in ADATA are retained until another conversion  
operation is initiated. ADATA is addressable by 8•bit read instructions only.  
ADC MODE REGISTER (ADMOD)  
The analog•to•digital converter mode register, ADMOD, is used to select one of four analog channels as the  
analog data input source. Bit 3 in the ADMOD register is always "0".  
Table 7. A/D Converter Mode Register Settings (1, 4•Bit R/W)  
ADMOD.2 ADMOD.1 ADMOD.0  
Effect of ADMOD Bit Setting  
Select input channel AD0  
1
0
0
0
0
0
1
1
0
1
0
1
Select input channel AD1  
Select input channel AD2  
Select input channel AD3  
NOTE: If ADMOD.2–ADMOD.0 = 0, disable analog input channel selection.  
PLL FREQUENCY SYNTHESIZER  
The phase locked loop (PLL) frequency synthesizer locks medium frequency (MF), high frequency (HF), and  
very high frequency (VHF) signals to a fixed frequency using a phase difference comparison system.  
Figure 8. PLL Frequency Synthesizer Block Diagram  
4
8
PLMOD  
2 NF  
PLLD(16•bit)  
PLMOD.3,2  
4
12  
1
Input  
Circuit  
Swallow  
Counter  
Prescaler  
VCOFM  
VCOAM  
PLMOD.3  
Input  
Circuit  
Programmable  
Counter  
Selector  
Phase  
Comparator  
Charge  
Pump  
EO  
PLMOD.2  
Reference Frequency  
Generator  
Unlock  
Detector  
PLLREF  
4
ULFG  
PLL FREQUENCY SYNTHESIZER FUNCTIONS  
The PLL frequency synthesizer divides the signal frequency at the VCOAM or VCOFM pin using the  
programmable divider. It then outputs the phase difference between the divided frequency and reference  
frequency at the EO pins.  
NOTE  
The PLL frequency synthesizer operates only when the CE pin is high level; it enters the disable mode when  
the CE pin is low.  
HANGZHOU SILAN MICROELECTRONICS CO.,LTD  
REV:1.0  
2004.08.03  
Http: www.silan.com.cn  
Page 16 of 24  
SC63C0316  
PHASE DETECTOR, CHARGE PUMP, AND UNLOCK DETECTOR  
The phase comparator compares the phase difference between divided frequency (fN) output from the  
programmable divider and the reference frequency (fr) output from the reference frequency generator.  
The charge pump outputs the phase comparator's output from error output pins EO. The relation between the  
error output pin output, divided frequency fN, and reference frequency fr is shown below:  
fr > fN = Low level output  
fr < fN = High level output  
fr = fN = Floating level  
When PLL operation is started by setting PLMOD register, PLL unlock flag (ULFG) in the PLL flag register  
(PLLREG) has unlock state information between the reference frequency and divided frequency. The unlock  
detector detects the unlock state of the PLL frequency synthesizer. The unlock flag in the PLLREG register is set  
to "1" in unlock state. If ULFG = "0", the PLL lock state is selected.  
PLLREG  
ULFG  
CEFG  
IFCFG  
0
ULFG is set continuously at a period of reference frequency f r by unlock detector. You must therefore read  
ULFG flag in the PLLREG register at periods longer than 1/f r of the reference frequency. ULFG is reset when it  
is read. PLLREG register can be read by 1•bit or 4•bit RAM control register instructions.  
PLL operation is decided by CE (chip enable) pin state. The PLL frequency synthesizer is disabled and the  
error output pin is set to floating state while the CE pin is low. When CE pin is high level, PLL is operating  
normally.  
The chip enable flag (CEFG) in the PLLREG register has information about CE pin state. When the CE pin  
changes its low state to high, CEFG flag is set to logic one and CE reset operation occurs. When the CE pin  
changes its high state to low, CEFG flag is set to logic zero and CE interrupt is generated.  
INTERMEDIATE FREQUENCY COUNTER  
The SC63C0316 uses an intermediate frequency counter (IFC) to count the frequency of the AM or FM signal  
at FMIF or AMIF pin. The IFC block consists of a 1/2 divider, gate control circuit, IFC mode register (IFMOD) and  
a 16•bit binary counter.  
During gate time, the 16•bit IFC counts the input frequency at the FMIF or AMIF pins. The FMIF or AMIF pin  
input signal for the 16•bit counter is selected by IFMOD register. The 16•bit binary counter (IFCNT1–IFCNT0) can  
be read by 8•bit RAM control instructions only.  
When the FMIF pin input signal is selected, the signal is divided by 2. When the AMIF pin input signal is  
directly connected to the IFC, it is not divided.  
By setting the IFMOD register, the gate is opened for 1•ms, 4•ms, or 8•ms periods. During the open period of  
the gate, input frequency is counted by the 16•bit counter. When the gate is closed, the counting operation is  
complete, and an interrupt is generated.  
HANGZHOU SILAN MICROELECTRONICS CO.,LTD  
REV:1.0  
2004.08.03  
Http: www.silan.com.cn  
Page 17 of 24  
SC63C0316  
Figure 9. IF Counter Block Diagram  
1/2  
Divider  
FMIF  
AMIF  
Selector  
If Counter  
(16 Bit)  
8
Gate  
Control  
Circuit  
DATA BUS  
1 ms  
4 ms  
8 ms  
IFMOD  
3
2
1
0
Gate Signal  
Generator  
DATA BUS  
1KHz Internal Signal  
Table 8. IF Counter Frequency Ranges  
Pin  
Voltage Level  
300mVpp(min)  
300mVpp(min)  
Frequency Range  
AMIF  
FMIF  
0.1MHz to 1MHz  
5MHz to 15MHz  
INPUT PIN CONFIGURATION  
The AMIF and FMIF pins have built•in AC amplifiers (see Figure 32). The DC component of the input signal  
must be stripped off by the external capacitor. When the AMIF or FMIF pin is selected for the IFC function and  
the switch is turned on voltage of each pin increases to approximately 1/2 VDD after sufficiently long time. If the  
pin voltage does not increase to approximately 1/2 VDD , the AC amplifier exceeds its operating range, possibly  
causing an IFC malfunction. To prevent this from occurring, you should program a sufficiently long time delay  
interval before starting the count operation.  
Figure 10. AMIF and FMIF Pin Configuration  
SW  
External  
Frequency  
To internal  
Counter  
FMIF  
AMIF  
LCD CONTROLLER/DRIVER  
The SC63C0316 microcontroller can directly drive 4 com x 28•segment LCD panel. Data written to the LCD  
display RAM can be transferred to the segment signal pins automatically without program control.  
When a subsystem clock is selected as the LCD clock source, the LCD display is enabled even during the  
Stop1 and Idle power•down modes.  
LCD RAM ADDRESS AREA  
RAM addresses 1E4H–1FFH are used as LCD data memory. These locations can be addressed by 1•bit or 4•  
bit instructions. When the bit value of a display segment is "1", the LCD display is turned on; when the bit value is  
"0", the display is turned off.  
Display RAM data are sent out through segment pins SEG0–SEG27 using a direct memory access (DMA)  
HANGZHOU SILAN MICROELECTRONICS CO.,LTD  
REV:1.0  
2004.08.03  
Http: www.silan.com.cn  
Page 18 of 24  
SC63C0316  
method that is synchronized with the fLCD signal.  
RAM addresses in this location that are not used for LCD display can be allocated to general•purpose use.  
Figure 11. LCD Display Data RAM Organization  
SEG0  
SEG1  
1E4H BIT3 BIT2 BIT1 BIT0  
1E5H  
SEG20  
SEG21  
SEG22  
SEG23  
SEG24  
SEG25  
SEG26  
SEG27  
1F8H  
1F9H  
1FAH  
1FBH  
1FCH  
1FDH  
1FEH  
1FFH  
COM3 COM2 COM1 COM0  
Figure 12. LCD Circuit Diaram  
1FFH.3  
1FFH.2  
1FFH.1  
1FFH.0  
P
O
R
T
M
U
X
S
E
L
4
SEG27/P13.3  
/
S
E
G
M
E
N
T
1F4H.3  
1F4H.2  
1F4H.1  
1F4H.0  
1F4H.3  
1F4H.2  
1F4H.1  
1F4H.0  
M
U
X
S
E
L
4
4
M
U
X
S
E
L
D
R
I
SEG1/P7.1  
SEG0/P7.0  
V
E
R
FFFH.3  
FFFH.2  
FFFH.1  
FFFH.0  
4
FF7H.3  
FF7H.2  
FF7H.1  
FF7H.0  
4
fLCD  
COM3  
COM2  
COM1  
TIMING  
CONTROLLER  
COM  
CONTROL  
8
LPOT  
COM0  
BIAS  
VLC0  
VLC1  
LCD  
VOLTAGE  
CONTROL  
LMOD  
LCON  
4
4
VLC2  
HANGZHOU SILAN MICROELECTRONICS CO.,LTD  
REV:1.0  
2004.08.03  
Http: www.silan.com.cn  
Page 19 of 24  
SC63C0316  
LCD CONTROL REGISTER (LCON)  
The LCON register is used to turn the LCD display on and off and to control the flow of current to dividing  
resistors in the LCD circuit. When LCON.0 is logic zero, the LCD display is turned off and the current to the  
dividing resistors is cut off, regardless of the current LMOD.3 value.  
Table 9. LCD Control Register (LCON) Organization (4•Bit W)  
LCON Bit  
LCON.3  
LCON.2  
Setting  
Description  
0
0
0
1
0
Always set to logic zero.  
Always set to logic zero.  
Port 6 input enable  
LCON.1  
Port 6 input disable  
LCD output low, cut off current to dividing resistor  
When LMOD.3=”0”: turn display off.  
LCON.0  
1
When LMOD.3=”1”: COM and SEG output in display mode.  
Table 10 Relationship of LCON.0 and LMOD.3 Bit Settings  
LCON.0 LMOD.3 COM0–COM3 SEG0–SEG31  
P11.0–P13.3  
LCD display off  
,
cut off  
0
x
0
1
Output low; LCD display off Output low; LCD display off  
current to dividing resistors  
LCD display off  
LCD display off  
LCD display off  
1
COM output correspondsSEG output corresponds to  
LCD display on  
to display mode  
display mode  
NOTE:'x' means 'don't care.'  
LCD MODE REGISTER (LMOD)  
The LCD mode control register LMOD is used to control display mode; LCD clock, segment or port output, and  
display on/off. The LCD clock signal, LCDCK, determines the frequency of COM signal scanning of each  
segment output. This is also referred to as the 'frame frequency.  
Because LCDCK is generated by dividing the watch timer clock (fw), the watch timer must be enabled when  
the LCD display is turned on. The LCD display can continue to operate during Idle and Stop modes if a  
subsystem clock is used as the watch timer source.  
Table 11. LCD Clock Signal (LCDCK) Frame Frequency  
LCDCK Frequency  
fw/29 (64Hz)  
Static  
64  
1/2 Duty  
32  
1/3 Duty  
21  
1/4 Duty  
16  
fw/28 (128Hz)  
fw/27 (256Hz)  
fw/26 (512Hz)  
128  
256  
512  
64  
43  
32  
128  
85  
64  
256  
171  
128  
NOTES: 'fw' is the watch timer clock frequency of 32.768 kHz.  
HANGZHOU SILAN MICROELECTRONICS CO.,LTD  
Http: www.silan.com.cn  
REV:1.0  
2004.08.03  
Page 20 of 24  
SC63C0316  
Table12. Maximum Number of Display Digits Per Duty Cycle  
LCD Duty  
Static  
1/2  
LCD Bias  
Static  
1/2  
COM Output Pins  
COM0  
Maximum Digit Display 8 Segment Pins)  
4
COM0–COM1  
COM0–COM2  
COM0–COM2  
COM0–COM3  
8
1/3  
1/2  
12  
12  
16  
1/3  
1/3  
1/4  
1/3  
Table 13. LCD Mode Control Register (LMOD) Organization (8•Bit W)  
LMOD.7  
LCD voltage dividing register control bit  
Internal voltage dividing resistor.  
0
1
External voltage dividing resistor; internal voltage dividing resistors are off.  
LMOD.6  
Always logic zero  
LMOD.5  
LMOD.4  
LCD Clock (LCDCK) Frequency  
0
0
1
1
0
1
0
1
fw/2 9 = 64 Hz  
fw/28 = 128 Hz  
fw/27 = 256 Hz  
fw/26 = 512 Hz  
LMOD.3  
LMOD.2  
LMOD.1  
LMOD.0  
Duty and Bias Selection for LCD Display  
0
1
1
1
1
1
x
0
0
0
0
1
x
0
0
1
1
0
x
0
1
0
1
0
LCD display off  
1/4 duty, 1/3 bias  
1/3 duty, 1/3 bias  
1/2 duty, 1/2 bias  
1/3 duty, 1/2 bias  
Static  
NOTE:'x' means 'don't care'.  
LCD DRIVE VOLTAGE  
The LCD display is turned on only when the voltage difference between the common and segment signals is  
greater than VLCD. The LCD display is turned off when the difference between the common and segment signal  
voltages is less than VLCD.  
NOTE: The LCD panel display may deteriorate if a DC voltage is applied that lies between the common and  
segment signal voltage. Therefore, always drive the LCD panel with AC voltage  
COMMON (COM) SIGNALS  
The common signal output pin selection (COM pin selection) varies according to the selected duty cycle.  
HANGZHOU SILAN MICROELECTRONICS CO.,LTD  
REV:1.0  
2004.08.03  
Http: www.silan.com.cn  
Page 21 of 24  
SC63C0316  
Table 14. Common Signal Pins Used Per Duty Cycle  
Display Mode  
Static  
COM0 Pin  
Selected  
Selected  
Selected  
Selected  
COM1 Pin  
N/C  
COM2 Pin  
N/C  
COM3 Pin  
N/C  
1/2 duty  
Selected  
Selected  
Selected  
N/C  
N/C  
1/3 duty  
Selected  
Selected  
N/C  
1/4 duty  
Selected  
NOTE:’NC’means that no connection is required  
Figure 13. LCD Common Signal Waveform (static)  
COM0  
VLC0  
VLCD  
VSS  
Tf=T  
T: LCDCK  
Tf: Frame Frequency  
Figure 14. LCD Common Signal Waveforms at 1/2 Bias (1/2, 1/3 Duty)  
VLC0  
COM0,1  
(1/2 Duty)  
VLC1,2  
VSS  
VLCD  
Tf=2 x T  
VLC0  
VLC1,2  
VSS  
COM0,1  
(1/3 Duty)  
VLCD  
T: LCDCK  
Tf=Frame Frequency  
Tf=3 x T  
Figure 15. LCD Common Signal Waveforms at 1/3 Bias (1/3, 1/4 Duty)  
VLC0  
VLC1  
VLCD  
COM0•2  
(1/3 Duty)  
VLC2  
VSS  
Tf = 3 x T  
VLC0  
VLC1  
VLC2  
VSS  
VLCD  
COM0•3  
(1/4 Duty)  
Tf = 4 x T  
T: LCDCK  
Tf=Frame Frequency  
HANGZHOU SILAN MICROELECTRONICS CO.,LTD  
REV:1.0  
2004.08.03  
Http: www.silan.com.cn  
Page 22 of 24  
SC63C0316  
SEGMENT (SEG) SIGNALS  
The 40 LCD segment signal pins are connected to corresponding display RAM locations at 1E0H–1FFH. Bits  
0–3 of the display RAM are synchronized with the common signal output pins COM0, COM1, COM2, and COM3.  
Figure 16. Select/No•Select Bias Signals in Static Display Mode  
Select  
No•Select  
VLC0  
COM  
SEG  
VSS  
VLC0  
VSS  
T
T
T = LCDCK  
SERIAL I/O INTERFACE  
Using the serial I/O interface, you can exchange 8•bit data with an external device. The serial interface can run  
off an internal or an external clock source, or the TOL0 signal that is generated by the 8•bit timer/counter 0, TC0.  
If you use the TOL0 clock signal, you can modify its frequency to adjust the serial data transmission rate.  
Figure 17. Serial I/O Interface Circuit Diagram  
Internal Bus  
8
LSB or MSB first  
SO  
Sbuf (8•Bit)  
SI  
R
Overflow  
IRQS  
Q
D
CK  
P4.0/SCK  
TOL0  
Q0  
Q1  
Q2  
3•Bit Counter  
CPU Clock  
Clock  
Selecor  
fxx/24  
R
S
Q
Clear  
SMOD.7 SMOD.6 SMOD.5  
SMOD.3 SMOD.2 SMOD.1 SMOD.0  
Bits*  
8
Internal Bus  
* Instruction Execution  
HANGZHOU SILAN MICROELECTRONICS CO.,LTD  
REV:1.0  
2004.08.03  
Http: www.silan.com.cn  
Page 23 of 24  
SC63C0316  
PACKAGE OUTLINE  
QFP•80•14×20•0.8  
UNIT: mm  
HANDLING MOS DEVICES:  
Electrostatic charges can exist in many things. All of our MOS devices are internally protected against  
electrostatic discharge but they can be damaged if the following precautions are not taken:  
· Persons at a work bench should be earthed via a wrist strap.  
· Equipment cases should be earthed.  
· All tools used during assembly, including soldering tools and solder baths, must be earthed.  
· MOS devices should be packed for dispatch in antistatic/conductive containers.  
HANGZHOU SILAN MICROELECTRONICS CO.,LTD  
REV:1.0  
2004.08.03  
Http: www.silan.com.cn  
Page 24 of 24  

相关型号:

SC63CB

SMD POWER INDUCTORS Magnetically shielded construction
BEL

SC63CB-100

SMD POWER INDUCTORS Magnetically shielded construction
BEL

SC63CB-101

SMD POWER INDUCTORS Magnetically shielded construction
BEL

SC63CB-120

SMD POWER INDUCTORS Magnetically shielded construction
BEL

SC63CB-150

SMD POWER INDUCTORS Magnetically shielded construction
BEL

SC63CB-151

SMD POWER INDUCTORS Magnetically shielded construction
BEL

SC63CB-180

SMD POWER INDUCTORS Magnetically shielded construction
BEL

SC63CB-220

SMD POWER INDUCTORS Magnetically shielded construction
BEL

SC63CB-270

SMD POWER INDUCTORS Magnetically shielded construction
BEL

SC63CB-2R0

SMD POWER INDUCTORS Magnetically shielded construction
BEL

SC63CB-2R7

SMD POWER INDUCTORS Magnetically shielded construction
BEL

SC63CB-330

SMD POWER INDUCTORS Magnetically shielded construction
BEL