514FCA001000BAG [SILICON]

Oscillator;
514FCA001000BAG
型号: 514FCA001000BAG
厂家: SILICON    SILICON
描述:

Oscillator

文件: 总38页 (文件大小:762K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si514  
2
ANY-FREQUENCY I C PROGRAMMABLE XO (100 kHZ TO 250 MHZ)  
Features  
602  
Programmable to any frequency  
from 100 kHz to 250 MHz  
0.026 ppb frequency tuning  
resolution  
Glitch suppression on OE, power  
on and frequency transitions  
Low jitter operation  
2- to 4-week lead times  
Total stability includes 10-year  
aging  
Comprehensive production test  
coverage includes crystal ESR and  
DLD  
On-chip LDO for power supply  
noise filtering  
3.3, 2.5, or 1.8 V operation  
Differential (LVPECL, LVDS,  
HCSL) or CMOS output options  
Optional integrated 1:2 CMOS  
fanout buffer  
5x7mm, 3.2x5mm  
2.5x3.2mm  
Industry standard 5x7, 3.2x5, and  
2.5x3.2 mm packages  
Ordering Information:  
o
–40 to 85 C operation  
See page 28.  
Pin Assignments:  
Applications  
See page 27.  
All-digital PLLs  
Datacom  
DAC+ VCXO replacement  
SONET/SDH/OTN  
3G-SDI/HD-SDI/SDI  
Industrial automation  
FPGA/ASIC clock generation  
FPGA synchronization  
VDD  
1
2
3
6
5
4
SDA  
SCL  
GND  
CLK–  
CLK+  
Description  
2
The Si514 user-programmable I C XO utilizes Silicon Laboratories' advanced PLL  
technology to provide any frequency from 100 kHz to 250 MHz with programming  
resolution of 0.026 parts per billion. The Si514 uses a single integrated crystal and  
Silicon Labs’ proprietary DSPLL synthesizer to generate any frequency across this  
2
range using simple I C commands. Ultra-fine tuning resolution replaces DACs and  
VCXOs with an all-digital PLL solution that improves performance where  
synchronization is necessary or in free-running reference clock applications. This  
solution provides superior supply noise rejection, simplifying low jitter clock  
generation in noisy environments. Crystal ESR and DLD are individually  
production-tested to guarantee performance and enhance reliability.  
The Si514 is factory-configurable for a wide variety of user specifications, including  
2
startup frequency, I C address, supply voltage, output format, and stability. Specific  
configurations are factory-programmed at time of shipment, eliminating long lead  
times and non-recurring engineering charges associated with custom frequency  
oscillators.  
Functional Block Diagram  
Rev. 1.1 12/17  
Copyright © 2017 by Silicon Laboratories  
Si514  
Si514  
TABLE OF CONTENTS  
Section  
Page  
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
2. Solder Reflow and Rework Requirements for 2.5x3.2 mm Packages . . . . . . . . . . . . . .11  
3. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
3.1. Programming a New Output Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
3.2. Programming a Small Frequency Change (sub ±1000 ppm) . . . . . . . . . . . . . . . . . .13  
3.3. Programming a Large Frequency Change (> ±1000 ppm) . . . . . . . . . . . . . . . . . . . .14  
4. All-Digital PLL Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
5. User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
5.1. Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
5.2. Register Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
5.3. I2C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
6. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
6.1. Dual CMOS (1:2 Fanout Buffer) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
7. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
8. Package Outline Diagram: 5 x 7 mm, 6-pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
9. PCB Land Pattern: 5 x 7 mm, 6-pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
10. Package Outline Diagram: 3.2 x 5.0 mm, 6-pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
11. PCB Land Pattern: 3.2 x 5.0 mm, 6-pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
12. Package Outline Diagram: 2.5 x 3.2 mm, 6-pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
13. PCB Land Pattern: 2.5 x 3.2 mm, 6-pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
14. Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
14.1. Si514 Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
14.2. Top Marking Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
2
Rev. 1.1  
Si514  
1. Electrical Specifications  
Table 1. Operating Specifications  
VDD = 1.8 V ±5%, 2.5 or 3.3 V ±10%, TA = –40 to +85 oC  
Parameter  
Supply Voltage  
Symbol  
Test Condition  
3.3 V option  
2.5 V option  
1.8 V option  
Min  
2.97  
2.25  
1.71  
Typ  
3.3  
2.5  
1.8  
21  
Max  
3.63  
2.75  
1.89  
26  
Units  
V
V
DD  
V
V
Supply Current  
I
CMOS, 100 MHz,  
single-ended  
mA  
DD  
LVDS  
(output enabled)  
19  
39  
41  
23  
43  
44  
18  
85  
mA  
mA  
mA  
mA  
LVPECL  
(output enabled)  
HCSL  
(output enabled)  
Tristate  
(output disabled)  
o
Operating Temperature  
T
–40  
C
A
Table 2. Input Characteristics  
VDD = 1.8 V ±5%, 2.5 or 3.3 V ±10%, TA = –40 to +85 oC  
Parameter  
Symbol Test Condition  
Min  
Typ  
Max  
Units  
SDA, SCL Input Voltage High  
SDA, SCL Input Voltage Low  
V
0.80 x V  
V
IH  
DD  
V
0.20 x V  
V
IL  
DD  
Rev. 1.1  
3
 
 
Si514  
Table 3. Output Clock Frequency Characteristics  
VDD = 1.8 V ±5%, 2.5 or 3.3 V ±10%, TA = –40 to +85 oC  
Parameter  
Programmable  
Symbol  
Test Condition  
CMOS, Dual CMOS  
LVDS/LVPECL/HCSL  
Min  
0.1  
0.1  
Typ  
Max  
212.5  
250  
Units  
MHz  
MHz  
ppb  
F
F
O
O
Frequency Range  
Frequency  
M
0.026  
RES  
Reprogramming  
Resolution  
Frequency Range for  
Small Frequency Change  
(Continuous Glitchless  
Output)  
From center frequency  
–1000  
+1000  
ppm  
Settling time for Small  
Frequency Change  
<±1000 ppm from  
center frequency  
100  
10  
µs  
Settling time for Large  
Frequency Change (Out-  
put Squelched during Fre-  
quency Transition)  
>±1000 ppm from  
center frequency  
ms  
Total Stability*  
Frequency Stability Grade C  
Frequency Stability Grade B  
Frequency Stability Grade A  
Frequency Stability Grade C  
Frequency Stability Grade B  
Frequency Stability Grade A  
–30  
–50  
–100  
–20  
–25  
–50  
+30  
+50  
+100  
+20  
+25  
+50  
10  
ppm  
ppm  
ppm  
ppm  
ppm  
ppm  
ms  
Temperature Stability  
Startup Time  
Disable Time  
T
Minimum V until output  
DD  
SU  
frequency (F ) within specification  
O
T
F < 10 MHz  
40  
5
µs  
µs  
µs  
µs  
D
O
F 10 MHz  
O
Enable Time  
T
F < 10 MHz  
60  
20  
E
O
F 10 MHz  
O
*Note: Total stability includes initial accuracy, operating temperature, supply voltage change, load change, shock and  
vibration (not under operation), and 10 years aging at 40 oC.  
4
Rev. 1.1  
 
Si514  
Table 4. Output Clock Levels and Symmetry  
VDD = 1.8 V ±5%, 2.5 or 3.3 V ±10%, TA = –40 to +85 oC  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Units  
CMOS Output Logic  
High  
V
0.85 x V  
V
OH  
DD  
CMOS Output Logic  
Low  
V
0.15 x V  
V
OL  
DD  
CMOS Output Logic  
High Drive  
I
3.3 V  
2.5 V  
–8  
–6  
–4  
8
0.8  
1.2  
mA  
mA  
mA  
mA  
mA  
mA  
ns  
OH  
1.8 V  
CMOS Output Logic  
Low Drive  
I
3.3 V  
OL  
2.5 V  
6
1.8 V  
4
CMOS Output  
Rise/Fall Time  
T /T  
0.1 to 125 MHz,  
R
F
C = 15 pF  
L
(20 to 80% V  
)
DD  
0.1 to 212.5 MHz,  
0.6  
0.9  
ns  
ps  
C = no load  
L
LVPECL/HCSL Out-  
put Rise/Fall Time  
(20 to 80% V  
T /T  
565  
R
F
F
)
DD  
LVDS Output Rise/Fall T /T  
Time (20 to 80% V  
800  
ps  
V
R
)
DD  
LVPECL Output Com-  
mon Mode  
V
V
50 to V – 2 V, single-ended  
V
DD  
OC  
DD  
1.4 V  
LVPECL Output Swing  
V
50 to V – 2 V, single-ended  
0.55  
1.13  
0.83  
0.25  
0.8  
0.90  
1.33  
1.00  
0.45  
V
V
O
DD  
PPSE  
LVDS Output Common  
Mode  
100 line-line, 3.3/2.5 V  
100 line-line, 1.8 V  
1.23  
0.92  
0.35  
V
OC  
V
LVDS Output Swing  
V
Single-ended 100 differential  
O
PPSE  
termination  
HCSL Output  
V
50 to ground  
0.35  
0.38  
0.42  
V
OC  
Common Mode  
HCSL Output Swing  
Duty Cycle  
V
Single-ended  
0.58  
48  
0.73  
50  
0.85  
52  
V
O
PPSE  
DC  
%
Rev. 1.1  
5
Si514  
Table 5. Output Clock Jitter and Phase Noise (LVPECL)  
VDD = 2.5 or 3.3 V ±10%, TA = –40 to +85 oC; Output Format = LVPECL  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
1.3  
11  
Units  
ps  
1
Period Jitter (RMS) JPRMS  
Period Jitter (Pk-Pk) JPPKPK  
10 k samples  
1
10 k samples  
ps  
Phase Jitter (RMS)  
φJ  
1.875 MHz to 20 MHz integration  
0.31  
0.5  
ps  
2
bandwidth (brickwall)  
12 kHz to 20 MHz integration band-  
0.8  
1.0  
ps  
2
width  
Phase Noise,  
156.25 MHz  
φN  
100 Hz  
1 kHz  
–86  
–109  
–116  
–123  
–136  
3.0  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
ps  
10 kHz  
100 kHz  
1 MHz  
Additive RMS  
JPSR  
SPR  
10 kHz sinusoidal noise  
100 kHz sinusoidal noise  
500 kHz sinusoidal noise  
1 MHz sinusoidal noise  
Jitter Due to Power  
3
3.5  
ps  
Supply Noise  
3.5  
ps  
3.5  
ps  
Spurious  
LVPECL output, 156.25 MHz,  
offset > 10 kHz  
–75  
dBc  
Notes:  
1. Applies to output frequencies: 74.17582, 74.25, 75, 77.76, 100, 106.25, 125, 148.35165, 148.5, 150, 155.52, 156.25,  
212.5, 250 MHz.  
2. Applies to output frequencies: 100, 106.25, 125, 148.35165, 148.5, 150, 155.52, 156.25, 212.5 and 250 MHz.  
3. 156.25 MHz. Increase in jitter on output clock due to sinewave noise added to VDD (2.5/3.3 V = 100 mVPP).  
6
Rev. 1.1  
 
Si514  
Table 6. Output Clock Jitter and Phase Noise (LVDS)  
VDD = 1.8 V ±5%, 2.5 or 3.3 V ±10%, TA = –40 to +85 oC; Output Format = LVDS  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Parameter  
1
Period Jitter  
(RMS)  
JPRMS  
10k samples  
2.1  
ps  
1
Period Jitter  
(Pk-Pk)  
JPPKPK  
10k samples  
18  
ps  
ps  
Phase Jitter  
(RMS)  
φJ  
1.875 MHz to 20 MHz integration  
0.25  
0.55  
2
bandwidth (brickwall)  
12 kHz to 20 MHz integration band-  
0.8  
1.0  
ps  
2
width (brickwall)  
Phase Noise,  
156.25 MHz  
φN  
100 Hz  
1 kHz  
–86  
–109  
–116  
–123  
–136  
–75  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc  
10 kHz  
100 kHz  
1 MHz  
Spurious  
SPR  
LVPECL output, 156.25 MHz,  
offset>10 kHz  
Notes:  
1. Applies to output frequencies: 74.17582, 74.25, 75, 77.76, 100, 106.25, 125, 148.35165, 148.5, 150, 155.52, 156.25,  
212.5, 250 MHz.  
2. Applies to output frequencies: 100, 106.25, 125, 148.35165, 148.5, 150, 155.52, 156.25, 212.5 and 250 MHz.  
Rev. 1.1  
7
 
Si514  
Table 7. Output Clock Jitter and Phase Noise (HCSL)  
VDD = 1.8 V ±5%, 2.5 or 3.3 V ±10%, TA = –40 to +85 oC; Output Format = HCSL  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Parameter  
*
Period Jitter  
(RMS)  
JPRMS  
10k samples  
1.2  
ps  
*
Period Jitter  
(Pk-Pk)  
JPPKPK  
10k samples  
11  
ps  
ps  
Phase Jitter  
(RMS)  
φJ  
1.875 MHz to 20 MHz integration  
0.25  
0.30  
*
bandwidth (brickwall)  
12 kHz to 20 MHz integration band-  
0.8  
1.0  
ps  
*
width (brickwall)  
Phase Noise,  
156.25 MHz  
φN  
100 Hz  
1 kHz  
–90  
–112  
–120  
–127  
–140  
–75  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc  
10 kHz  
100 kHz  
1 MHz  
Spurious  
SPR  
LVPECL output, 156.25 MHz,  
offset>10 kHz  
*Note: Applies to an output frequency of 100 MHz.  
8
Rev. 1.1  
 
Si514  
Table 8. Output Clock Jitter and Phase Noise (CMOS, Dual CMOS)  
VDD = 1.8 V ±5%, 2.5 or 3.3 V ±10%, TA = –40 to +85 oC; Output Format = CMOS, Dual CMOS  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Parameter  
Phase Jitter  
φJ  
1.875 MHz to 20 MHz integration  
0.25  
0.35  
ps  
2
(RMS)  
bandwidth (brickwall)  
12 kHz to 20 MHz integration band-  
0.8  
1.0  
ps  
2
width (brickwall)  
Phase Noise,  
156.25 MHz  
φN  
100 Hz  
1 kHz  
–86  
–108  
–115  
–123  
–136  
–75  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc  
10 kHz  
100 kHz  
1 MHz  
Spurious  
SPR  
LVPECL output, 156.25 MHz,  
offset>10 kHz  
Notes:  
1. Applies to output frequencies: 74.17582, 74.25, 75, 77.76, 100, 106.25, 125, 148.35165, 148.5, 150, 155.52, 156.25,  
212.5 MHz.  
2. Applies to output frequencies: 100, 106.25, 125, 148.35165, 148.5, 150, 155.52, 156.25, 212.5 MHz.  
Table 9. Environmental Compliance and Package Information  
Parameter  
Conditions/Test Method  
MIL-STD-883, Method 2002  
MIL-STD-883, Method 2007  
MIL-STD-883, Method 2003  
MIL-STD-883, Method 1014  
MIL-STD-883, Method 2036  
Gold over Nickel  
Mechanical Shock  
Mechanical Vibration  
Solderability  
Gross and Fine Leak  
Resistance to Solder Heat  
Contact Pads  
Rev. 1.1  
9
 
Si514  
Table 10. Thermal Characteristics  
Parameter  
Symbol  
Test Condition  
Still air  
Value  
110  
Units  
°C/W  
°C/W  
*
CLCC, Thermal Resistance Junction to Ambient  
JA  
*
2x5 x 3.2 mm, Thermal Resistance Junction to Ambient  
Still air  
164  
JA  
*Note: Applies to 5 x 7 and 3.2 x 5 mm packages.  
Table 11. Absolute Maximum Ratings1  
Parameter  
Maximum Operating Temperature  
Storage Temperature  
Symbol  
Rating  
Units  
o
T
85  
C
AMAX  
o
T
–55 to +125  
–0.5 to +3.8  
C
S
Supply Voltage  
V
V
V
DD  
Input Voltage (any input pin)  
ESD Sensitivity (HBM, per JESD22-A114)  
V
–0.5 to V + 0.3  
I
DD  
HBM  
2
kV  
2
o
Soldering Temperature (Pb-free profile)  
T
260  
C
PEAK  
2
Soldering Temperature Time at T  
(Pb-free profile)  
T
20–40  
sec  
PEAK  
P
Notes:  
1. Stresses beyond those listed in this table may cause permanent damage to the device. Functional operation or  
specification compliance is not implied at these conditions. Exposure to maximum rating conditions for extended  
periods may affect device reliability.  
2. The device is compliant with JEDEC J-STD-020E.  
10  
Rev. 1.1  
Si514  
2. Solder Reflow and Rework Requirements for 2.5x3.2 mm Packages  
Reflow of Silicon Labs' components should be done in a manner consistent with the IPC/JEDEC J-STD-20E  
standard. The temperature of the package is not to exceed the classification Temperature provided in the standard.  
The part should not be within -5°C of the classification or peak reflow temperature (T  
) for longer than 30  
PEAK  
seconds. Key to maintaining the integrity of the component is providing uniform heating and cooling of the part  
during reflow and rework. Uniform heating is achieved through having a preheat soak and controlling the  
temperature ramps in the process. J-STD-20E provides minimum and maximum temperatures and times for the  
preheat/Soak step that need to be followed, even for rework. The entire assembly area should be heated during  
rework. Hot air should be flowed from both the bottom of the board and the top of the component. Heating from the  
top only will cause un-even heating of component and can lead to part integrity issues. Temperature Ramp-up rate  
are not to exceed 3°C/second. Temperature ramp-down rates from peak to final temperature are not to exceed  
6°C/second. Time from 25°C to peak temperature is not to exceed 8 min for Pb-free solders.  
Rev. 1.1  
11  
Si514  
3. Functional Description  
The Si514 offers system designers a programmable, low jitter XO solution with exceptionally fine frequency tuning  
resolution. To enable designers to take full advantage of this flexibility and performance, Silicon Laboratories  
provides an easy-to-use evaluation kit and intuitive suite of Windows-based software utilities to simplify the Si514  
programming process.  
®
The Si5xx-PROG-EVB kit contains the Programmable Oscillator Software suite and an EVB Driver (USBXpress )  
for use with USB-equipped PCs. Go to  
http://www.silabs.com/products/clocksoscillators/Pages/DevelopmentTools.aspx for more information.  
Alternatively, “3.1. Programming a New Output Frequency” provides designers a detailed description, along with  
examples, of the frequency programming requirements and process for designers who are interested in learning  
more about the programming algorithms implemented within the Programmable Oscillator Software suite.  
3.1. Programming a New Output Frequency  
The output frequency (Fout) is determined by programming the feedback multiplier (M=M_Int.M_Frac), High-  
Speed Divider (HS_DIV), and Low-Speed Divider (LS_DIV) according to the following formula:  
FXO M  
-------------------------------------------------  
=
Fout  
HS_DIV LS_DIV  
where FXO = 31.98MHz  
Figure 1. Block Diagram of Si514  
The value of the feedback multiplier M is adjustable in the following range:  
65.04065041 M 78.17385866.  
This keeps the VCO frequency within the range of 2080 MHz F  
2500 MHz, since the VCO frequency is the  
VCO  
product of the internal fixed-frequency crystal (F ) and the high-resolution 29-bit fractional multiplier (M). This 29-  
XO  
bit resolution of M allows the VCO frequency to have a frequency tuning resolution of 0.026 ppb.  
The device comes from the factory with a pre-programmed center frequency within the range of  
100 kHz  F  
  250 MHz, as specified by the 6-digit code in the part number. (See section “7. Ordering  
OUT  
Information” for more information.) To change from the factory-programmed frequency to a different value, the user  
must follow one of two algorithms based on the magnitude of the frequency change.  
“Small Frequency Change.” To change the frequency by < ±1000 ppm, the user must keep the same center  
frequency and only update the value of M. Refer to section "3.2. Programming a Small Frequency Change (sub  
±1000 ppm)" on page 13.  
“Large Frequency Change.” To change the frequency by ±1000 ppm, the user must change the center  
frequency. This may require updates to the output dividers (HS_DIV and/or LS_DIV) and possibly the LP1 and  
12  
Rev. 1.1  
 
Si514  
LP2 values, in addition to updating the value of M, which requires the VCO to be recalibrated. Refer to section  
"3.3. Programming a Large Frequency Change (> ±1000 ppm)" on page 14. Figure 2 provides a graphic  
depiction of the difference between small and large frequency changes.  
Small Frequency Change  
Range of small  
Large Frequency Change  
frequency change  
FCENTER  
FCENTER  
-1000 ppm  
+1000 ppm  
FVCO_MIN  
FVCO_MAX  
(2080 MHz)  
(2500 MHz)  
FCENTER  
F'CENTER  
Programming a new center frequency requires a VCO  
calibration and the output should be squelched  
Figure 2. Small vs. Large Frequency Change Illustration  
3.2. Programming a Small Frequency Change (sub ±1000 ppm)  
The value of the feedback multiplier, M is the only parameter that needs to be updated for output frequency  
changes less than ±1000 ppm from the center frequency (recalibrating the VCO is NOT required). This enables  
the output to remain continuous during the change. For example, the output frequency can be swept continuously  
between 148.5 MHz and 148.352 MHz (i.e., –0.997 ppm) with no output discontinuities or glitches by changing M  
in either multiple steps or in a single step. For small frequency changes, each update of M requires 100 µs to settle.  
Note: It is not possible to implement a frequency change ±1000 ppm using multiple small frequency changes  
without changing the center frequency and recalibrating the VCO.  
Use the following procedure to make small frequency changes:  
1. If the current value of M is already known, then skip to step 2; else, using the serial port, read the current M  
value (Registers 5-9).  
2. Calculate the new value of M as follows (all values are in decimal format):  
29  
a. Mcurrent = M_Int + M_Frac/2 (Eq 2.2)  
b. Mnew = Mcurrent x F _new / F _current (Eq 2.3)  
out  
out  
c. M_Intnew = INT[Mnew]*  
(Eq 2.4)  
29  
d. M_Fracnew = (Mnew – INT[Mnew]) x 2  
(Eq 2.5)  
*Where INT[n] rounds n down to the nearest integer (e.g., INT[3.9] = 3)  
2
3. Using the I C port, write the new value of M_Frac[23:0] (Not all registers need to be updated.)  
(Registers: 5, 6, 7)  
4. If necessary, write new value of M_Int[2:0] and M_Frac[28:24] register. (Register 8)  
5. Write M_Int[8:3]. (Register 9) Frequency changes take effect when M_Int[8:3] is written.  
Example 2.1:  
An Si514 generating a 148.5 MHz clock must be reconfigured “on-the-fly” to generate a 148.352 MHz clock. This  
represents a change of –0.996.633 ppm which is within the ±1000 ppm window.  
1. Read the current value of M:  
a. Register 5 = 0xD3 (M_Frac[7:0])  
b. Register 6 = 0x65 (M_Frac[15:8])  
c. Register 7 = 0x7C (M_Frac[23:16])  
Rev. 1.1  
13  
 
Si514  
d. Register 8 = 0x49 (M_Int[2:0],M_Frac[28:24])  
e. Register 9 = 0x09 (M_Int[8:3])  
f. M_Int = 0b001001010 = 0x4A = 0d74  
g. M_Frac = 0x097C65D3 = 159,147,475  
29  
29  
h. M= M_Int + M_Frac/2 = 74 + 159,147,475/2 = 74.296435272321105  
2. Calculate Mnew:  
a. Mnew = 74.296435272321105 x 148.352/148.5 = 74.2223889933965  
b. M_Intnew = 74 = 0x4A  
29  
c. M_Fracnew = 0.2223889933965 x 2 = 119,394,181 = 0x071DCF85  
3. Write Mnew to Registers 5-7:  
a. Register 5 = 0x85  
b. Register 6 = 0xCF  
c. Register 7 = 0x1D  
4. Write Mnew to Register 8:  
a. Register 8 = 0x47  
5. Write Mnew to Register 9:  
a. Register 9 = 0x09  
3.3. Programming a Large Frequency Change (> ±1000 ppm)  
Large frequency changes are those that vary the F  
frequency by an amount greater than ±1000 ppm from an  
VCO  
operating F  
. Figure 2 illustrates the difference between large and small frequency changes. Changing from  
CENTER  
F
to F'  
requires a calibration cycle that resets internal circuitry to establish F'  
as the new  
CENTER  
CENTER  
CENTER  
operating center frequency. The below steps are recommended when performing large frequency changes:  
1. Disable the output: Write OE register bit to a 0 (Register 132, bit2)  
2. If using one of the standard frequencies listed in Table 12, then write the new LP1, LP2, M_Frac, M_Int,  
HS_DIV and LS_DIV register values according to the table (be sure to write M_Int[8:3] (Register 9) after writing  
to the M_Frac registers (Registers 5-8)). Skip to Step 9. If the desired frequency is not in the table, then follow  
steps 4-8 below.  
3. Determine the minimum value of LS_DIV (minimizing LS_DIV minimizes the number of dividers on the output  
stage, thus minimizing jitter) according to the following formula:  
a. LS_DIV = F  
(MIN)/(F  
x HS_DIV(MAX)) (Eq 2.6)  
OUT  
VCO  
b. LS_DIV = 2080/(F  
(MHz) x 1022) (Eq 2.7)  
OUT  
i. Since LS_DIV is restricted to: dividing by 1,2,4,8,16,32, choose the next largest value over the  
result derived in Eq 2.7 (e.g., if result is 4.135, choose LS_DIV = 8)  
4. Determine the minimum value for HS_DIV (this optimizes timing margins)  
a. HS_DIV(MIN) = F  
(MIN)/(F  
x LS_DIV) (Eq 2.8)  
OUT  
VCO  
b. HS_DIV(MIN) = 2080/(F  
(MHz) x LS_DIV) (Eq 2.9)  
OUT  
i.HS_DIV(MIN) will be the next even number greater than or equal to the result derived in Eq 2.9  
(keeping in the range of 10-1022)  
Note: SPEED_GRADE_MIN (Reg 48) LS_DIV x HS_DIV SPEED_GRADE_MAX (Reg 49); If outside this range, the output  
will be forced to the disabled state.  
5. Determine a value for M according to the following formula (all values are in decimal format):  
a. M = LS_DIV x HS_DIV x F  
b. M = LS_DIV x HS_DIV x F  
c. M_Int = INT[M] (Eq 2.12)  
/F (Eq 2.10)  
OUT XO  
(MHz)/31.98 (Eq 2.11)  
OUT  
29  
d. M_Frac = (M – INT[M]) x 2 (Eq 2.13)  
14  
Rev. 1.1  
Si514  
Table 12. Standard Frequency Table  
HEX  
DEC  
Fout  
M
M_INT M_FRAC HSDIV LSDIV LP1 LP2 M_INTX M_FRACX HSDIVX LSDIVX LP1_X LP2_X  
(MHz)  
0.100000 65.04065041  
1.544000 65.08167605  
2.048000 65.06466542  
4.096000 65.06466542  
4.915200 65.16712946  
19.440000 65.65103189  
24.576000 66.08930582  
25.000000 65.66604128  
27.000000 65.85365854  
38.880000 65.65103189  
44.736000 67.14596623  
54.000000 67.54221388  
62.500000 66.44777986  
65.536000 65.57698562  
74.175824 69.58332458  
74.250000 69.65290807  
77.760000 68.08255159  
106.250000 66.44777986  
125.000000 70.3564728  
148.351648 74.22221288  
148.500000 74.29643527  
150.000000 65.66604128  
155.520000 68.08255159  
156.250000 68.40212633  
212.500000 66.44777986  
250.000000 78.17385866  
65  
65  
65  
65  
65  
65  
66  
65  
65  
65  
67  
67  
66  
65  
69  
69  
68  
66  
70  
74  
74  
65  
68  
68  
66  
78  
21824021  
43849494  
34716981  
34716981  
89726943  
349520087  
47945695  
357578187  
458304437  
349520087  
78365022  
291098862  
240399983  
309766794  
313169998  
350527350  
44319550  
240399983  
191379875  
119299633  
159147475  
357578187  
44319550  
215889929  
240399983  
93339658  
650  
674  
1016  
508  
424  
108  
86  
5
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
2
3
3
3
2
3
3
2
4
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
4
4
3
3
3
3
4
41  
41  
41  
41  
41  
41  
42  
41  
41  
41  
43  
43  
42  
41  
45  
45  
44  
42  
46  
4A  
4A  
41  
44  
44  
42  
4E  
14D0215  
29D1716  
211BD35  
211BD35  
5591FDF  
14D540D7  
2DB97DF  
155035CB  
1B512BB5  
14D540D7  
4ABC15E  
1159D0EE  
E54366F  
1276AA8A  
12AA984E  
14E49F76  
2A4433E  
E54366F  
B6839A3  
71C5E31  
97C65D3  
155035CB  
2A4433E  
CDE3809  
E54366F  
590400A  
28A  
2A2  
3F8  
1FC  
1A8  
6C  
56  
54  
4E  
36  
30  
28  
22  
20  
1E  
1E  
1C  
14  
12  
10  
10  
E
5
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
2
3
3
3
2
3
3
2
4
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
4
4
3
3
3
3
4
84  
78  
54  
48  
40  
34  
32  
30  
30  
28  
20  
18  
16  
16  
14  
14  
E
14  
E
10  
A
10  
A
Rev. 1.1  
15  
Si514  
6. Determine values for LP1 and LP2 according to Table 13:  
Table 13. LP1, LP2 Values  
Fvco_max  
Fvco_min  
M_max  
M_min  
LP1  
4
LP2  
4
2500000000.00000  
2425467616.18572  
2332545246.89005  
2170155235.53450  
2087014168.27005  
2425467616.18572  
2332545246.89005  
2170155235.53450  
2087014168.27005  
2080000000.00000  
78.173858662  
75.843265046  
72.937624981  
67.859763463  
65.259980246  
75.843265046  
72.937624981  
67.859763463  
65.259980246  
65.040650407  
3
4
3
3
2
3
2
2
7. Write new LP1, LP2, M_Frac, M_Int, HS_DIV and LS_DIV register values (be sure to write M_Int[8:3] (Register  
9) after writing to the M_Frac registers (Registers 5-8)  
8. Write FCAL (Register 132, bit 0) to a 1 (this bit auto-resets, so it will always read as 0).  
9. Enable the output: Write OE register bit to a 1.  
The Si514 does not automatically detect large frequency changes. The user needs to assert the FCAL register bit  
to initiate the calibration cycle required to re-center the VCO around the new frequency. Large frequency changes  
are discontinuous and output may skip to intermediate frequencies or generate glitches. Resetting the OE bit  
before FCAL will prevent intermediate frequencies from appearing on the output while Si514 completes a  
calibration cycle and settles to F'  
. Settling time for large frequency changes is 10 msec maximum.  
CENTER  
Example 2.2:  
The user has a part that is programmed with SPEED_GRADE_MIN = 20 and SPEED_GRADE_MAX = 250 that is  
programmed from the factory for F = 50 MHz and wants to change to an STS-1 rate of 51.84 MHz. This  
OUT  
represents a change of +36,800 ppm which exceeds ±1000 ppm and therefore requires a large frequency change  
process.  
1. Write Reg 132, bit 2 to a 0 to disable the output.  
2. Since 51.84 MHz is not in Table 2.1, the divider parameters must be calculated.  
3. Calculate LS_DIV by using Eq 2.7:  
a. LS_DIV = 2080/(51.84 x 1022) = 0.039  
b. Since 0.039 < 1, use a divide-by-one (bypass), therefore LS_DIV = 0  
4. Calculate HS_DIV(MIN) by using Eq 2.9:  
a. HS_DIV(MIN) = 2080/(51.84 x 1) = 40.123  
b. Since 40.123 > 40, use HS_DIV(MIN) = 42 = 0x2A  
5. From Eq 2.11:  
a. M = 1 x 42 x 51.84/31.98 = 68.08255159474  
b. M_Int = 68 = 0x44  
29  
c. M_Frac = 0.08255259474 x 2 = 44,320,087 = 0x2A44557  
6. From Table 2.2:  
a. LP1 = 3  
b. LP2 = 3  
16  
Rev. 1.1  
 
Si514  
7. Write Registers 0, 5-11:  
a. Register 0 = 0x33  
b. Register 5 = 0x57 (M_Frac[7:0])  
c. Register 6 = 0x45 (M_Frac[15:8])  
d. Register 7 = 0xA4 (M_Frac[23:16])  
e. Register 8 = 0x42 (M_Int[2:0],M_Frac[28:24])  
f. Register 9 = 0x05 (M_Int[8:3])  
g. Register 10 = 0x2A  
h. Register 11 = 0x00  
8. Calibrate the VCO by writing Register 132, bit 0 to a 1.  
9. Enable the output by writing Register 132, bit 2 to a 1.  
Rev. 1.1  
17  
Si514  
4. All-Digital PLL Applications  
The Si514 uses a high resolution divider M that enables fine frequency adjustments with resolution better than  
0.026 parts per billion. Fine frequency adjustments are useful when making frequency corrections that compensate  
for changing ambient conditions, long term aging or when locking the Si514 to an input clock reference. Figure 3  
shows a typical implementation using a system IC such as an FPGA to control the output of the Si514 in a phase-  
locked application. Refer to “AN575: An Introduction to FPGA-Based ADPLLs” for more information.  
Si514  
SCL  
SDA  
Fin  
I2C Control  
÷
Loop  
Filter  
Command  
Conversion  
I2C  
Master  
PD  
CLK_OUT  
FB  
Any Frequency  
DSPLL  
÷
FPGA  
Figure 3. All-Digital PLL Application Using Si514 with Dual CMOS Output  
Since small frequency changes must be within ±1000 ppm of the center frequency, HS_DIV and LS_DIV remain  
constant. The below expression can be used to calculate a new M divider value based on a desired output  
2
frequency shift, where F  
is in ppm.  
OUT  
M2 = M11 FOUT 106  
Some systems, particularly those that use feedback control, can simplify the computation by implementing an  
approximate frequency change based on toggling a bit position or adding/subtracting a bit to the existing M_Frac  
value. Since M ranges approximately ±10% between 65.04065041 and 78.17385866, the effect of changing  
M_Frac by a single bit depends only slightly on the absolute value of M.  
For M=71 near the midpoint of the range, toggling M_Frac[0] changes the output frequency by 0.026 ppb. Each  
higher order bit doubles the influence such that toggling M_Frac[1] is 0.052 ppb, M_Frac[2] is 0.1 ppb, etc. Figure 4  
shows this trend across multiple registers generalized to M_Frac[N]. Coarse changes greater than ±1.7 ppm are  
possible but most applications require finer transitions. Toggling each bit involves incrementing or decrementing  
the bit position. Writing M_Int[8:3] in register 9 completes the operation.  
1.7ppm  
6.7ppb  
M = 71.000000000000  
0.026ppb  
M_Int[8:0] = 000100111  
M_Frac[28:0] = 00000000000000000000000000000  
M_Frac[23:16] = 00000000  
M_Frac[15:8] = 00000000  
M_Frac[7:0] = 00000000  
Figure 4. Output Frequency Change When Toggling M_Frac[N], M=71  
18  
Rev. 1.1  
 
 
Si514  
5. User Interface  
5.1. Register Map  
Table 14 displays the Si514 user register map. Registers not shown are reserved. Registers with reserved bits are  
read-modify-write.  
Table 14. User Register Map  
Address  
Bit  
7
6
5
4
3
2
1
0
0
5
LP1[3:0]  
LP2[3:0]  
M_Frac [7:0]  
M_Frac [15:8]  
M_Frac [23:16]  
6
7
8
M_Int [2:0]  
M_Frac [28:24]  
M_Int [8:3]  
HS_DIV [7:0]  
9
10  
11  
14  
128  
132  
LS_DIV [ 2:0]  
OE_STATE [1:0]  
HS_DIV [9:8]  
RST  
OE  
FCAL  
Rev. 1.1  
19  
 
Si514  
5.2. Register Detailed Description  
Note: Registers not shown are reserved. Registers with reserved bits are read-modify-write.  
Register 0.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
LP1[3:0]  
R/W  
LP2[3:0]  
R/W  
Default  
Varies  
Varies  
Bit  
Name  
Function  
7:4  
3:0  
LP1[3:0]  
LP2[3:0]  
Sets loop compensation factor LP1. Value depends on VCO frequency.  
Sets loop compensation factor LP2. Value depends on VCO frequency.  
Register 5.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
M_Frac[7:0]  
R/W  
Default  
Varies  
Bit  
Name  
Function  
7:0  
M_Frac[7:0] Fractional part of feedback divider M that sets up the output frequency. Frequency  
updates take effect when M_Int[8:3] is written.  
Register 6.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
M_Frac[15:8]  
R/W  
Default  
Varies  
Bit  
Name  
Function  
7:0  
M_Frac[15:8] Fractional part of feedback divider M that sets up the output frequency. Frequency  
updates take effect when M_Int[8:3] is written.  
20  
Rev. 1.1  
Si514  
Register 7.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
M_Frac[23:16]  
R/W  
Default  
Varies  
Bit  
Name  
Function  
7:0  
M_Frac[23:16] Fractional part of feedback divider M that sets up the output frequency. Frequency  
updates take effect when M_Int[8:3] is written.  
Register 8.  
Bit  
7
6
5
4
3
2
M_Frac[28:24]  
R/W  
1
0
Name  
Type  
M_Int[2:0]  
R/W  
Default  
Varies  
Varies  
Bit  
Name  
M_Int[2:0]  
Function  
7:5  
Integer part of feedback divider M that sets the output frequency. Frequency updates  
take effect when M_Int[8:3] is written.  
4:0  
M_Frac[28:24] Fractional part of feedback divider M that sets up the output frequency. Frequency  
updates take effect when M_Int[8:3] is written.  
Rev. 1.1  
21  
Si514  
Register 9.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
M_Int[8:3]  
R/W  
R/W  
R/W  
Default  
Varies  
Bit  
7:6  
5:0  
Name  
Function  
Reserved  
M_Int[8:3]  
Integer part of feedback divider M that sets the output frequency. Frequency updates  
take effect when M_Int[8:3] is written.  
Register 10.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
HS_DIV[7:0]  
R/W  
Default  
Varies  
Bit  
Name  
Function  
7:0  
HS_DIV[7:0] Integer divider that divides VCO frequency and provides output to LS_DIV. Follow the  
large frequency change procedure when updating. The allowed values are even num-  
bers in the range from 10 to 1022 (i.e., 10, 12, 14, 16, ...., 1022). The decimal value  
represents the actual divide value (i.e. 12 means divide-by-12).  
22  
Rev. 1.1  
Si514  
Register 11.  
Bit  
7
6
5
LS_DIV[2:0]  
R/W  
4
3
2
1
0
Name  
Type  
HS_DIV[9:8]  
R/W  
R/W  
R/W  
R/W  
Default  
Varies  
Varies  
Bit  
7
Name  
Reserved  
Function  
6:4  
LS_DIV[2:0] Last output divider stage. Used during large frequency changes. To update, follow  
large frequency change procedure. LS_DIV value updates asynchronously.  
000: divide-by-1  
001: divide-by-2  
010: divide-by-4  
011: divide-by-8  
100: divide-by-16  
101: divide-by-32  
All others reserved.  
3:2  
1:0  
Reserved  
HS_DIV[9:8] Integer divider that divides VCO frequency and provides output to LS-DIV. Follow the  
large frequency change procedure when updating. The allowed values are even num-  
bers in the range from 10 to 1022 (i.e., 10, 12, 14, 16, ..., 1022). The decimal value  
represents the actual divide value (i.e., 12 means divide-by-12).  
Register 14.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
OE_STATE[1:0]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Default  
0
0
Bit  
7:6  
5:4  
Name  
Reserved  
Function  
OE_STATE[1:0] Sets logic state of output when output disabled.  
00: high impedance  
10: logic low when output disabled  
01: logic high when output disabled  
11: reserved  
3:0  
Reserved  
Rev. 1.1  
23  
Si514  
Register 128.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
RST  
R/W  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Default  
Bit  
Name  
Function  
7
RST  
Global Reset.  
Resets all register values to default values. Self-clearing.  
6:0  
Reserved  
Register 132.  
Bit  
7
6
5
4
3
2
OE  
R/W  
1
1
0
FCAL  
R/W  
0
Name  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Default  
Bit  
7:3  
2
Name  
Reserved  
OE  
Function  
Output Enable.  
OE can stop in high, low or high impedance state.  
1: Output driver enabled.  
0: Output driver powered down. OE_STATE register determines output state when dis-  
abled.  
1
0
Reserved  
FCAL  
Initiates frequency calibration cycle. Necessary when making large frequency  
changes. Frequency calibration cycle takes 10 msec maximum. To prevent intermedi-  
ate frequencies on the output, set disable output using OE register. Self-clearing.  
24  
Rev. 1.1  
Si514  
2
5.3. I C Interface  
2
Configuration and operation of the Si514 is controlled by reading and writing to the RAM space using the I C  
interface. The device operates in slave mode with 7-bit addressing and can operate in Standard-Mode (100 kbps)  
or Fast-Mode (400 kbps). Burst data transfer with auto address increments are also supported.  
2
The I C bus consists of a bidirectional serial data line (SDA) and a serial clock input (SCL). Both the SDA and SCL  
2
pins must be connected to the VDD supply via an external pull-up as recommended by the I C specification. The  
2
Si514 7-bit I C slave address is user-customized during the part number configuration process. See "6. Pin  
Descriptions" on page 27 for more details.  
2
Data is transferred MSB first in 8-bit words as specified by the I C specification. A write command consists of a 7-  
bit device (slave) address + a write bit, an 8-bit register address, and 8 bits of data as shown in Figure 5.  
A write burst operation is also shown where every additional data word is written using an auto-incremented  
address.  
Write Operation – Single Byte  
S
Slv Addr [6:0]  
0
A
Reg Addr [7:0]  
A
Data [7:0]  
A
A
P
Write Operation - Burst (Auto Address Increment)  
Slv Addr [6:0] Reg Addr [7:0] Data [7:0]  
S
0
A
A
Data [7:0]  
A
P
Reg Addr +1  
1 – Read  
0 – Write  
A – Acknowledge (SDA LOW)  
N – Not Acknowledge (SDA HIGH)  
S – START condition  
From slave to master  
From master to slave  
P – STOP condition  
Figure 5. I2C Write Operation  
A read operation is performed in two stages. A data write is used to set the register address, then a data read is  
performed to retrieve the data from the set address. A read burst operation is also supported. This is shown in  
Figure 6.  
Rev. 1.1  
25  
 
Si514  
Read Operation – Single Byte  
S
Slv Addr [6:0]  
0
A Reg Addr [7:0]  
A
P
P
S
Slv Addr [6:0]  
1
A
Data [7:0]  
N
Read Operation - Burst (Auto Address Increment)  
S
S
Slv Addr [6:0]  
Slv Addr [6:0]  
0
1
A Reg Addr [7:0]  
Data [7:0]  
A
P
A
A
Data [7:0]  
N P  
Reg Addr +1  
1 – Read  
0 – Write  
A – Acknowledge (SDA LOW)  
N – Not Acknowledge (SDA HIGH)  
S – START condition  
From slave to master  
From master to slave  
P – STOP condition  
Figure 6. I2C Read Operation  
2
2
The timing specifications and timing diagram for the I C bus is compatible with the I C-Bus standard. SDA timeout  
is supported for compatibility with SMBus interfaces.  
2
The I C bus can be operated at a bus voltage of 1.71 to 3.63 V and is 3.3 V tolerant.  
26  
Rev. 1.1  
Si514  
6. Pin Descriptions  
VDD  
1
2
3
6
5
4
SDA  
SCL  
GND  
CLK–  
CLK+  
Table 15. Si514 Pin Descriptions  
Pin  
1
Name  
SDA  
Function  
I2C Serial Data.  
2
SCL  
I2C Serial Clock.  
3
GND  
CLK+  
CLK-  
Electrical and Case Ground.  
Clock Output.  
4
5
Complementary clock output (LVPECL, LVDS, HCSL, and  
Complementary dual CMOS formats).  
Clock output for in-phase dual CMOS format.  
No connect (N/C) for single-ended CMOS format.  
6
VDD  
Power Supply Voltage.  
6.1. Dual CMOS (1:2 Fanout Buffer)  
Dual CMOS output format ordering options support either complementary or in-phase output signals. This feature  
enables replacement of multiple XOs with a single Si514 device.  
~
Complementary  
Outputs  
~
In-Phase  
Outputs  
Figure 7. Integrated 1:2 CMOS Buffer Supports Complementary or In-Phase Outputs  
Rev. 1.1  
27  
Si514  
7. Ordering Information  
The Si514 supports a wide variety of options including startup frequency, stability, output format, and VDD. Specific  
device configurations are programmed into the Si514 at time of shipment. Configurations can be specified using  
the Part Number Configuration chart below. Silicon Labs provides a web browser-based part number configuration  
utility to simplify this process. To access this tool refer to www.silabs.com/oscillators and click “Customize” in the  
product table. The Si514 XO series is supplied in industry-standard, RoHS-compliant, 2.5 x 3.2 mm, 3.2 x 5.0 mm,  
and 5 x 7 mm packages. Tape and reel packaging is an ordering option.  
A = Revision: A  
G = Temp Range: -40°C to 85°C  
R = Tape & Reel; Blank = Trays.  
Series  
514  
Output Format  
Package  
6-pin  
LVPECL, LVDS, HCSL,  
CMOS, Dual CMOS  
1st Option Code:  
Output Format  
514 X X X XXXXXX X AGR  
VDD  
Output Format  
A
B
C
D
E
F
3.3V  
3.3V  
3.3V  
3.3V  
2.5V  
2.5V  
2.5V  
2.5V  
1.8V  
1.8V  
1.8V  
3.3V  
3.3V  
2.5V  
2.5V  
1.8V  
1.8V  
LVPECL  
LVDS  
3rd Option Code:  
Frequency Grade  
CMOS  
HCSL  
LVPECL  
Package Option  
Dimensions  
CMOS (MHz) LVPECL, LVDS, HCSL (MHz)  
A
B
C
0.1 to 212.5  
0.1 to 170  
0.1 to 125  
0.1 to 250  
0.1 to 170  
0.1 to 125  
LVDS  
A
5 x 7 mm  
G
H
J
CMOS  
B
C
3.2 x 5 mm  
HCSL  
2.5 x 3.2 mm  
LVDS  
K
L
CMOS  
6-digit Frequency and Default I2C Address Code  
2nd Option Code:  
HCSL  
Frequency Stability  
M
N
P
Q
R
S
Dual CMOS (In-phase)  
Dual CMOS (Complementary)  
Dual CMOS (In-phase)  
Dual CMOS (Complementary)  
Dual CMOS (In-phase)  
Dual CMOS (Complementary)  
Code  
Description  
Total  
Temperature  
±50ppm  
The Si514 supports a user-defined start-up  
frequency which must be in the same range as  
specified by the Frequency Grade code. A  
user-defined, 7-bit I2C address is supported.  
Each unique start-up frequency/I2C address  
combination is assigned a 6-digit code by:  
www.silabs.com/VCXOPartNumber.  
A
B
C
±100ppm  
±50ppm  
±30ppm  
xxxxxx  
±25ppm  
±20ppm  
Figure 8. Part Number Convention  
Example orderable part number: 514ECB000107AAG supports 2.5 V LVPECL, ±30 ppm total stability, user  
programmable output frequency range from 100 kHz to 170 MHz, 5x7 mm package and –40 to 85 °C temperature  
range. The frequency code designates 10 MHz startup with I2C address of 0x55. Refer to www.silabs.com/VCXO  
lookup to look up the attributes of any Silicon Labs orderable XO/VCXO part number.  
Note: CMOS and Dual CMOS maximum frequency is 212.5 MHz.  
28  
Rev. 1.1  
 
Si514  
8. Package Outline Diagram: 5 x 7 mm, 6-pin  
Figure 9 illustrates the 5 x 7 mm, 6-pin package details for the Si514. Table 16 lists the values for the dimensions  
shown in the illustration.  
Figure 9. Si514 Outline Diagram  
Table 16. Package Diagram Dimensions (mm)  
Dimension  
Min  
1.50  
1.30  
0.50  
Nom  
1.65  
Max  
1.80  
1.50  
0.70  
A
b
1.40  
c
0.60  
D
5.00 BSC  
4.40  
D1  
e
4.30  
4.50  
2.54 BSC  
7.00 BSC  
6.20  
E
E1  
H
6.10  
0.55  
1.17  
0.05  
1.80  
6.30  
0.75  
1.37  
0.15  
2.60  
0.65  
L
1.27  
L1  
p
0.10  
R
0.70 REF  
0.15  
aaa  
bbb  
ccc  
ddd  
eee  
0.15  
0.10  
0.10  
0.05  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
Rev. 1.1  
29  
 
 
Si514  
9. PCB Land Pattern: 5 x 7 mm, 6-pin  
Figure 10 illustrates the 5 x 7 mm, 6-pin PCB land pattern for the Si514. Table 17 lists the values for the  
dimensions shown in the illustration.  
Figure 10. Si514 PCB Land Pattern  
Table 17. PCB Land Pattern Dimensions (mm)  
Dimension  
(mm)  
4.20  
2.54  
1.55  
1.95  
C1  
E
X1  
Y1  
Notes:  
General  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.  
3. This Land Pattern Design is based on the IPC-7351 guidelines.  
4. All dimensions shown are at Maximum Material Condition (MMC). Least  
Material Condition (LMC) is calculated based on a Fabrication Allowance of  
0.05 mm.  
Solder Mask Design  
5. All metal pads are to be non-solder mask defined (NSMD). Clearance  
between the solder mask and the metal pad is to be 60 µm minimum, all the  
way around the pad.  
Stencil Design  
6. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls  
should be used to assure good solder paste release.  
7. The stencil thickness should be 0.125 mm (5 mils).  
8. The ratio of stencil aperture to land pad size should be 1:1.  
Card Assembly  
9. A No-Clean, Type-3 solder paste is recommended.  
10. The recommended card reflow profile is per the JEDEC/IPC J-STD-020  
specification for Small Body Components.  
30  
Rev. 1.1  
 
 
Si514  
10. Package Outline Diagram: 3.2 x 5.0 mm, 6-pin  
Figure illustrates the 3.2 x 5 mm package details for the Si514. Table 18 lists the values for the dimensions shown  
in the illustration.  
Figure 11. Si514 Outline Diagram  
Table 18. Package Diagram Dimensions (mm)  
Dimension  
Min  
1.06  
0.54  
0.35  
Nom  
1.17  
Max  
1.33  
0.74  
0.55  
A
b
0.64  
c
0.45  
D
3.20 BSC  
2.60  
D1  
e
2.55  
2.65  
1.27 BSC  
5.00 BSC  
4.40  
E
E1  
H
4.35  
0.45  
0.80  
0.05  
1.17  
4.45  
0.65  
1.00  
0.15  
1.37  
0.55  
L
0.90  
L1  
p
0.10  
1.27  
R
0.32 REF  
0.15  
aaa  
bbb  
ccc  
ddd  
eee  
0.15  
0.10  
0.10  
0.05  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
Rev. 1.1  
31  
 
 
Si514  
11. PCB Land Pattern: 3.2 x 5.0 mm, 6-pin  
Figure 12 illustrates the 3.2 x 5.0 mm PCB land pattern for the Si514. Table 19 lists the values for the dimensions  
shown in the illustration.  
Figure 12. Si514 Recommended PCB Land Pattern  
Table 19. PCB Land Pattern Dimensions (mm)  
Dimension  
(mm)  
2.60  
1.27  
0.80  
1.70  
C1  
E
X1  
Y1  
Notes:  
General  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.  
3. This Land Pattern Design is based on the IPC-7351 guidelines.  
4. All dimensions shown are at Maximum Material Condition (MMC). Least Material  
Condition (LMC) is calculated based on a Fabrication Allowance of 0.05 mm.  
Solder Mask Design  
5. All metal pads are to be non-solder mask defined (NSMD). Clearance between the  
solder mask and the metal pad is to be 60 µm minimum, all the way around the  
pad.  
Stencil Design  
6. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls  
should be used to assure good solder paste release.  
7. The stencil thickness should be 0.125 mm (5 mils).  
8. The ratio of stencil aperture to land pad size should be 1:1.  
Card Assembly  
9. A No-Clean, Type-3 solder paste is recommended.  
10. The recommended card reflow profile is per the JEDEC/IPC J-STD-020  
specification for Small Body Components.  
32  
Rev. 1.1  
 
 
Si514  
12. Package Outline Diagram: 2.5 x 3.2 mm, 6-pin  
Figure 13 illustrates the package details for the 2.5 x 3.2 mm Si514. Table 20 lists the values for the dimensions  
shown in the illustration.  
Figure 13. Si514 Outline Diagram  
Rev. 1.1  
33  
Si514  
Table 20. Package Diagram Dimensions (mm)  
Dimension  
Min  
Nom  
Max  
A
1.1  
A1  
A2  
W
0.26 REF  
0.7 REF  
0.65  
0.45  
0.7  
0.75  
0.55  
D
e
3.20 BSC  
1.25 BSC  
2.50 BSC  
0.30 BSC  
0.5  
E
M
L
D1  
E1  
SE  
aaa  
bbb  
ddd  
2.5 BSC  
1.65 BSC  
0.825 BSC  
0.1  
0.2  
0.08  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
34  
Rev. 1.1  
Si514  
13. PCB Land Pattern: 2.5 x 3.2 mm, 6-pin  
Figure 14 illustrates the 2.5 x 3.2 mm PCB land pattern for the Si514. Table 21 lists the values for the dimensions  
shown in the illustration.  
Figure 14. Si514 Recommended PCB Land Pattern  
Table 21. PCB Land Pattern Dimensions (mm)  
Dimension  
(mm)  
C1  
1.9  
E
2.50  
0.70  
1.05  
X1  
Y1  
Notes:  
General  
3. All dimensions shown are at Maximum Material Condition (MMC). Least Material  
Condition (LMC) is calculated based on a Fabrication Allowance of 0.05 mm.  
4. This Land Pattern Design is based on the IPC-7351 guidelines.  
Solder Mask Design  
5. All metal pads are to be non-solder mask defined (NSMD). Clearance between the  
solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.  
Stencil Design  
6. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be  
used to assure good solder paste release.  
7. The stencil thickness should be 0.125 mm (5 mils).  
8. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pins.  
Card Assembly  
9. A No-Clean, Type-3 solder paste is recommended.  
10. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification  
for Small Body Components.  
Rev. 1.1  
35  
Si514  
14. Top Marking  
Use the part number configuration utility located at: www.silabs.com/VCXOpartnumber to cross-reference the mark  
code to a specific device configuration.  
14.1. Si514 Top Marking  
4 C CC CC  
T T T T T T  
Y Y WW  
14.2. Top Marking Explanation  
Mark Method:  
Laser  
Line 1 Marking:  
4 = Si514  
4CCCCC  
CCCCC = Mark Code  
Line 2 Marking:  
Line 3 Marking:  
TTTTTT = Assembly Manufacturing Code TTTTTT  
Pin 1 indicator.  
Circle with 0.5 mm diameter;  
left-justified  
YY = Year.  
YYWW  
WW = Work week.  
Characters correspond to the year and  
work week of package assembly.  
36  
Rev. 1.1  
 
Si514  
REVISION HISTORY  
Revision 1.1  
December, 2017  
Added new 2.5 x 3.2 mm package.  
Revision 1.0  
Updated Table 1 on page 3.  
Updates to supply current typical and maximum values for CMOS, LVDS, LVPECL and HCSL.  
CMOS frequency test condition corrected to 100 MHz.  
Updates to OE VIH minimum and VIL maximum values.  
Updated Table 2 on page 3.  
Dual CMOS nominal frequency maximum added.  
Total stability footnotes clarified for 10 year aging at 40 °C.  
Disable time maximum values updated.  
Enable time parameter added.  
Updated Table 3 on page 4.  
CMOS output rise / fall time typical and maximum values updated.  
LVPECL/HCSL output rise / fall time maximum value updated.  
LVPECL output swing maximum value updated.  
LVDS output common mode typical and maximum values updated.  
HCSL output swing maximum value updated.  
Duty cycle minimum and maximum values tightened to 48/52%.  
Updated Table 5 on page 6.  
Phase jitter test condition and maximum value updated.  
Phase noise typical values updated.  
Additive RMS jitter due to external power supply noise typical values updated.  
Footnote 3 updated limiting the VDD to 2.5/3.3V  
Added Tables 6, 7, 8 for LVDS, HCSL, CMOS, and Dual CMOS operations.  
Moved Absolute Maximum Ratings table.  
Added note to Figure 8 clarifying CMOS and Dual CMOS maximum frequency.  
Updated Figure 9 outline diagram to correct pinout.  
Updated “14. Top Marking” section and moved to page 36.  
Rev. 1.1  
37  
ClockBuilder Pro  
One-click access to Timing tools,  
documentation, software, source  
code libraries & more. Available for  
Windows and iOS (CBGo only).  
www.silabs.com/CBPro  
Timing Portfolio  
www.silabs.com/timing  
SW/HW  
www.silabs.com/CBPro  
Quality  
www.silabs.com/quality  
Support and Community  
community.silabs.com  
Disclaimer  
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or  
intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical"  
parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes  
without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included  
information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted  
hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of  
Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant  
personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass  
destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.  
Trademark Information  
Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®,  
EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®,  
Gecko®, ISOmodem®, Micrium, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress®, Zentri and others are trademarks or registered  
trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other  
products or brand names mentioned herein are trademarks of their respective holders.  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
USA  
http://www.silabs.com  

相关型号:

SILICON

514FCAXXXXXXAAGR

Clock Generator, 250MHz, CMOS, PDSO6, 5 X 7 MM, ROHS COMPILANT PACKAGE-6
SILICON
SILICON
SILICON
SILICON

514FCBXXXXXXAAG

Clock Generator, 170MHz, CMOS, PDSO6, 5 X 7 MM, ROHS COMPILANT PACKAGE-6
SILICON

514FCBXXXXXXAAGR

Clock Generator, 170MHz, CMOS, PDSO6, 5 X 7 MM, ROHS COMPILANT PACKAGE-6
SILICON

514FCBXXXXXXBAG

Clock Generator, 170MHz, CMOS, PDSO6, 3.20 X 5 MM, ROHS COMPLIANT PACKAGE-6
SILICON

514FCBXXXXXXBAGR

Clock Generator, 170MHz, CMOS, PDSO6, 3.20 X 5 MM, ROHS COMPLIANT PACKAGE-6
SILICON
SILICON

514FCCXXXXXXAAG

Clock Generator, 125MHz, CMOS, PDSO6, 5 X 7 MM, ROHS COMPILANT PACKAGE-6
SILICON

514FCCXXXXXXAAGR

Clock Generator, 125MHz, CMOS, PDSO6, 5 X 7 MM, ROHS COMPILANT PACKAGE-6
SILICON