554HBXXXXXXBG [SILICON]

SiPHY OC-192/STM-64 TRANSMITTER; SiPHY的OC-192 / STM-64发射机
554HBXXXXXXBG
型号: 554HBXXXXXXBG
厂家: SILICON    SILICON
描述:

SiPHY OC-192/STM-64 TRANSMITTER
SiPHY的OC-192 / STM-64发射机

发射机
文件: 总20页 (文件大小:296K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si5540  
PRELIMINARY DATA SHEET  
SiPHYOC-192/STM-64 TRANSMITTER  
Features  
Complete SONET/SDH transmitter for OC-192/STM-64 data rates with integrated  
16:1 multiplexer and DSPLL based clock multiplier unit:  
Data Rates Supported: OC-192/STM-64,  
10GbE, and 10.7 Gbps FEC  
Low Power Operation 0.6 W (typ)  
Small Footprint: 99-Pin BGA Package  
(11 x 11 mm)  
OIF SFI-4 Compliant Interface  
Output Clock Powerdown  
Operates with 155 or 622 MHz  
Reference Sources  
Optional 3.3 V Supply Pin for  
LVTTL Compatible Outputs  
Single 1.8 V Supply Operation  
DSPLL™ Based Clock Multiplier Unit  
w/ selectable loop filter bandwidths  
Bottom View  
Applications  
Ordering Information:  
See page 17.  
Sonet/SDH/ATM Routers  
Add/Drop Multiplexers  
Digital Cross Connects  
Optical Transceiver Modules  
Sonet/SDH Test Equipment  
Description  
The Si5540 is a fully integrated low-power transmitter for high-speed serial  
communication systems. It combines high speed clock generation with a 16:1  
multiplexer to serialize data for OC-192/STM-64 applications. The Si5540 is based  
on Silicon Laboratories’ DSPLL technology which eliminates the external loop  
filter components required by traditional clock multiplier units. In addition,  
selectable loop filter bandwidths are provided to ensure superior jitter performance  
while relaxing the jitter requirements on external clock distribution subsystems.  
Support for data streams up to 10.7 Gbps is also provided for applications that  
employ forward error correction (FEC).  
The Si5540 represents a new standard in low jitter, low power and small size for  
10 Gbps serial transmitters. It operates from a single 1.8 V supply over the  
industrial temperature range (–40°C to 85°C).  
Functional Block Diagram  
REFSEL  
2
REFCLK  
REFRATE  
TXCLK16IN  
DSPLLTM  
CMU  
TXLOL  
BWSEL  
2
16  
TXCLK16OUT  
TXCLK16IN  
÷
TXCLKDSBL  
TXCLKOUT  
2
2
2
32  
TXDIN[15:0]  
FIFORST  
TXDOUT  
Reset  
Control  
Bias  
FIFOERR  
TXMSBSEL  
REXT  
RESET  
TXSQLCH  
Preliminary Rev. 0.31 8/01  
Copyright © 2001 by Silicon Laboratories  
Si5540-DS031  
This information applies to a product under development. Its characteristics and specifications are subject to change without notice.  
Si5540  
2
Preliminary Rev. 0.31  
Si5540  
TABLE OF CONTENTS  
Section  
Page  
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
DSPLL™ Clock Multiplier Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Reference Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Serialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Clock Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Bias Generation Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Differential Output Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Si5540 Pinout: 99-Pin BGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Pin Descriptions: Si5540 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Preliminary Rev. 0.31  
3
Si5540  
Electrical Specifications  
Table 1. Recommended Operating Conditions  
Parameter  
Symbol  
Test Condition  
Min*  
Typ  
Unit  
Max*  
85  
Ambient Temperature  
T
–40  
1.71  
1.71  
25  
°C  
V
A
LVTTL Output Supply Voltage  
Si5540 Supply Voltage  
V
3.47  
1.89  
DD33  
V
1.8  
V
DD  
*Note: All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions.  
Typical values apply at nominal supply voltages and an operating temperature of 25°C unless otherwise stated.  
V
SIGNAL +  
Differential  
I/Os  
VIS  
Single Ended Voltage  
VICM, VOCM  
SIGNAL –  
(SIGNAL +) – (SIGNAL –)  
Differential Peak-to-Peak Voltage  
t
VID,VOD (VID = 2VIS)  
Differential  
Voltage Swing  
Figure 1. Differential Voltage Measurement (TXDIN, TXDOUT, TXCLK16IN, TXCLK16OUT)  
tsu  
thd  
TXDOUT,  
TXDIN  
tCP  
tCH  
TXCLKOUT,  
TXCLK16IN  
Figure 2. Data to Clock Delay  
80%  
20%  
All Differential  
IOs  
tF  
tR  
Figure 3. Rise/Fall Time Measurement  
4
Preliminary Rev. 0.31  
Si5540  
Table 2. DC Characteristics, V = 1.8 V  
DD  
(VDD = 1.8 V ±5%, TA = –40°C to 85°C)  
Parameter  
Symbol Test Condition  
Min  
Typ  
333  
0.6  
0.9  
Max  
TBD  
TBD  
1.0  
Unit  
mA  
W
Supply Current  
Power Dissipation  
IDD  
PD  
Common Mode Output Voltage  
(TXDOUT,TXCLKOUT)  
VOCM  
.8  
V
Differential Output Voltage Swing  
VOD  
See Figure 1  
800  
1000  
1200  
mV  
(pk-pk)  
(TXDOUT,TXCLKOUT), Differential pk-pk  
LVPECL Input Voltage High (REFCLK)  
LVPECL Input Voltage Low (REFCLK)  
VIH  
VIL  
VID  
1.975  
1.32  
250  
2.3  
1.6  
2.59  
1.99  
2600  
V
V
LVPECL Input Voltage Swing (REFCLK),  
Differential pk-pk  
mV  
(pk-pk)  
LVPECL Input Common Mode (REFCLK)  
VICM  
RIN  
1.65  
42  
1.95  
50  
2.30  
58  
V
Input Impedance  
Each input to  
common mode  
(REFCLK, TXDIN, TXCLK16IN)  
LVDS Input High Voltage (TXDIN,  
TXCLK16IN)  
VIH  
VIL  
0.0  
100  
2.4  
V
V
LVDS Input Low Voltage (TXDIN,  
TXCLK16IN)  
LVDS Input Voltage, Single Ended pk-pk  
(TXDIN, TXCLK16IN)  
VISE  
600  
mV  
(pk-pk)  
LVDS Input Common Mode Voltage  
(TXDIN, TXCLK16IN)  
VICM  
VOH  
.8  
2.0  
2.4  
V
LVDS Output High Voltage  
(TXCLK16OUT)  
100 Load  
Line-to-Line  
TBD  
1.475  
V
LVDS Output Low Voltage  
(TXCLK16OUT)  
VOL  
100 Load  
Line-to-Line  
0.925  
250  
TBD  
550  
V
LVDS Output Voltage, Single Ended pk-pk  
(TXCLK16OUT)  
VOSE  
100 Load  
Line-to-Line, See  
Figure 1  
400  
mV  
(pk-pk)  
LVDS Output Common Mode Voltage  
(TXCLK16OUT)  
VOCM  
ISC–  
ISC+  
VIL2  
1.125  
1.20  
25  
1.275  
TBD  
V
mA  
µA  
V
Output Short to GND  
(TXCLK16OUT, TXDOUT, TXCLKOUT)  
Output Short to VDD  
(TXCLK16OUT, TXDOUT, TXCLKOUT)  
TBD  
–100  
LVTTL Input Voltage Low  
0.8  
(TXCLKDSBL, FIFORST, TXSQLCH,  
BWSEL, REFRATE, REFSEL, TXMSBSEL,  
RESET)  
Preliminary Rev. 0.31  
5
Si5540  
Table 2. DC Characteristics, V = 1.8 V (Continued)  
DD  
(VDD = 1.8 V ±5%, TA = –40°C to 85°C)  
Parameter  
Symbol Test Condition  
VIH2  
Min  
Typ  
Max  
Unit  
Input Voltage High  
2.0  
V
(TXCLKDSBL, FIFORST, TXSQLCH,  
BWSEL, REFRATE, REFSEL, TXMSBSEL,  
RESET)  
Input Low Current  
IIL  
10  
10  
10  
µA  
µA  
kΩ  
(TXCLKDSBL, FIFORST, TXSQLCH,  
BWSEL, REFRATE, REFSEL, TXMSBSEL,  
RESET)  
Input High Current  
IIH  
(TXCLKDSBL, FIFORST, TXSQLCH,  
BWSEL, REFRATE, REFSEL, TXMSBSEL,  
RESET)  
Input Impedance  
RIN  
(TXCLKDSBL, FIFORST, TXSQLCH,  
BWSEL, REFRATE, REFSEL, TXMSBSEL,  
RESET)  
LVTTL Output Voltage Low  
(FIFOERR, TXLOL)  
VOL2  
VDD33 = 1.8 V  
VDD33 = 3.3 V  
VDD33 = 1.8 V  
VDD33 = 3.3 V  
0.4  
0.4  
V
V
LVTTL Output Voltage High  
(FIFOERR, TXLOL)  
VOH2  
1.4  
2.4  
6
Preliminary Rev. 0.31  
Si5540  
Table 3. AC Characteristics (TXCLK16OUT, TXCLK16IN, TXCLKOUT, TXDIN, TXDOUT)  
(VDD = 1.8 V ±5%, TA = –40°C to 85°C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
9.95  
Max  
10.7  
55  
Unit  
GHz  
%
TXCLKOUT Frequency  
TXCLKOUT Duty Cycle  
fclkout  
tch/tcp, Figure 2  
Figure 3  
45  
Output Rise Time  
(TXCLKOUT, TXDOUT)  
tR  
tF  
25  
ps  
Output Fall Time  
Figure 3  
25  
ps  
(TXCLKOUT, TXDOUT)  
TXCLKOUT Setup to TXDOUT  
TXCLKOUT Hold From TXDOUT  
Output Return Loss  
tsu  
thd  
Figure 2  
Figure 2  
25  
25  
ps  
ps  
400 kHz–10 GHz  
10 GHz–16 GHz  
TBD  
TBD  
dB  
dB  
TXCLK16OUT Frequency  
TXCLK16OUT Duty Cycle  
TXCLK16OUT Rise & Fall Times  
TXDIN Setup to TXCLK16IN  
TXDIN Hold from TXCLK16IN  
TXCLK16IN Frequency  
fCLKIN  
Figure 2  
40  
622  
667  
60  
MHz  
%
tch/tcp, Figure 2  
tR, tF  
tDSIN  
tDHIN  
fCLKIN  
100  
300  
300  
300  
667  
60  
ps  
ps  
ps  
622  
MHz  
%
TXCLK16IN Duty Cycle  
tch/tcp, Figure 2  
40  
TXCLK16IN Rise & Fall Times  
tR, tF  
100  
300  
ps  
Table 4. AC Characteristics (Clock Multiplier Characteristics)  
(VDD = 1.8 V ±5%, TA = –40°C to 85°C)  
Parameter  
Symbol  
JDET(PP)  
JGEN(RMS)  
JBW  
Test Condition  
Min  
40  
Typ  
0.020  
0.005  
Max  
TBD  
TBD  
12  
Unit  
UIPP  
UIRMS  
kHz  
kHz  
dB  
Jitter Generation—Deterministic  
Jitter Generation—Random  
Jitter Transfer Bandwidth  
PRBS-23  
BWSEL = 0  
BWSEL = 1  
50  
Jitter Transfer Peaking  
Acquisition Time  
0.05  
15  
0.1  
20  
TAQ  
Valid REFCLK  
REFRATE = 1  
REFRATE = 0  
ms  
Input Reference Clock Frequency RCFREQ  
622  
155  
667  
167  
60  
MHz  
MHz  
%
Input Reference Clock Duty  
Cycle  
RCDUTY  
RCTOL  
Input Reference Clock Frequency  
Tolerance  
–100  
100  
ppm  
Note: Bellcore specifications: GR-1377-CORE, Issue 5, December 1998.  
Preliminary Rev. 0.31  
7
Si5540  
Table 5. Absolute Maximum Ratings  
Parameter  
Symbol  
VDD  
Value  
–0.5 to 3.0  
–0.5 to 3.6  
–0.3 to (VDD+ 0.3)  
±50  
Unit  
V
DC Supply Voltage  
LVTTL Input Voltage  
VDD33  
VDIF  
V
Differential Input Voltages  
Maximum Current any output PIN  
Operating Junction Temperature  
Storage Temperature Range  
V
mA  
°C  
°C  
°C  
TJCT  
TSTG  
–55 to 150  
–55 to 150  
275  
Package Temperature  
(soldering 10 seconds)  
ESD HBM Tolerance (100 pf, 1.5 k)  
TBD  
V
Note: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation  
should be restricted to the conditions as specified in the operational sections of this data sheet. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
Table 6. Thermal Characteristics  
Parameter  
Symbol  
Test Condition  
Value  
Unit  
Thermal Resistance Junction to Ambient  
ϕ
Still Air  
35  
°C/W  
JA  
8
Preliminary Rev. 0.31  
Si5540  
Functional Description  
The Si5540 is a fully integrated, low power, SONET/ bandwidth is selected via the BWSEL control input. In  
SDH transmitter for OC-192/STM-64 applications. It traditional PLL implementations, changing the loop filter  
combines a high performance clock multiplier unit bandwidth would require changing the values of  
(CMU) with a 16:1 serializer that has a low-speed external loop filter components.  
interface compliant with the Optical Interface Forum  
(OIF) SFI-4 standard.  
In narrowband mode, a loop filter cutoff of 12 kHz is  
provided. This setting makes the Si5540 more tolerant  
The CMU uses a phase-locked loop (PLL) architecture of jitter on the reference clock source. As a result, the  
based on Silicon Laboratories’ proprietary DSPLLcomplexity of the clock distribution circuitry used to  
technology. This technology is used to generate ultra- generate the physical layer reference clocks can be  
low jitter clock and data outputs that provide significant simplified without compromising jitter margin to the  
margin to the SONET/SDH specifications. The DSPLL SONET/SDH specification.  
architecture also utilizes a digitally implemented loop  
In wideband mode, the loop filter provides a cutoff of  
filter that eliminates the need for external loop filter  
50 kHz. This setting is desirable in applications where  
components. As a result, sensitive noise coupling nodes  
the reference clock is provided by a low jitter source like  
that typically cause degraded jitter performance in  
the Si5364 Clock Synchronization IC or Si5320  
Precision Clock Multiplier/Jitter Attenuator IC. This  
crowded PCB environments are removed.  
The DSPLL also reduces the complexity and allows the DSPLL to more closely track the precision  
performance requirements of reference clock reference source resulting in the best possible jitter  
distribution strategies for OC-192/STM-64 optical port performance.  
cards. This is possible because the DSPLL provides  
selectable wideband and narrowband loop filter settings  
Reference Clock  
that allow the user to set the jitter attenuation The CMU within the Si5530 is designed to operate with  
characteristics of the CMU to accommodate reference reference clock sources that are either 1/16th or 1/64th  
clock sources that have a high jitter content. Unlike the desired output data rate. The CMU will support  
traditional analog PLL implementations, the loop filter operation with data rates between 9.9 Gbps and  
bandwidth is controlled by a digital filter inside the 10.7 Gbps and the reference clock should be scaled  
DSPLL and can be changed without any modification to accordingly. For example, to support 10.66 Gbps  
external components.  
operation the reference clock source would be  
approximately 167 MHz or 666 MHz. The REFRATE  
input pin is used to configure the device for operation  
with one of the two supported reference clock  
submultiples of the data rate.  
DSPLLClock Multiplier Unit  
The Si5540’s clock multiplier unit (CMU) uses Silicon  
Laboratories’ proprietary DSPLL technology to generate  
a low jitter, high frequency clock source capable of  
producing a high speed serial clock and data output with  
significant margin to the SONET/SDH specifications.  
This is achieved by using a digital signal processing  
(DSP) algorithm to replace the loop filter commonly  
found in analog PLL designs. This algorithm processes  
the phase detector error term and generates a digital  
control value to adjust the frequency of the voltage  
controlled oscillator (VCO). Because external loop filter  
components are not required, sensitive noise entry  
points are eliminated, thus making the DSPLL less  
susceptible to board-level noise sources. Therefore,  
SONET/SDH jitter compliance is easier to attain in the  
application.  
The Si5540 supports operation with two selectable  
reference clock sources. The first configuration uses an  
externally provided reference clock that is input via  
REFCLK. The second configuration uses the parallel  
data clock, TXCLK16IN, as the reference clock source.  
When using TXCLK16IN as the reference source, the  
narrowband loop filter setting may be preferable to  
remove jitter that may be present on the data clock. The  
selection of reference clock configuration is controlled  
via the REFSEL input. The Si5540 will drive the TXLOL  
output high to indicate the DSPLL has locked to the  
selected reference source.  
Serialization  
The Si5540 includes serialization circuitry that  
combines a FIFO with a parallel to serial shift register.  
Low speed data on the parallel input bus, TXDIN[15:0],  
is latched into the FIFO on the rising edge of  
TXCLK16IN. The data in the FIFO is clocked into the  
Programmable Loop Filter Bandwidth  
The digital loop filter in the Si5530 provides two  
bandwidth settings that support either wideband or  
narrowband jitter transfer characteristics. The filter  
Preliminary Rev. 0.31  
9
Si5540  
shift register by an output clock, TXCLK16OUT, that is  
produced by dividing down the high speed transmit  
clock, TXCLKOUT, by a factor of 16. The TXCLK16OUT  
clock output is provided to support 16 bit word transfers  
between the Si5540 and upstream devices using a  
counter clocking scheme. The high-speed serial data  
stream is clocked out of the shift register using  
TXCLKOUT.  
Clock Disable  
The Si5540 provides a clock disable pin, TXCLKDSBL,  
that is used to disable the high-speed serial data clock  
output, TXCLKOUT. When the TXCLKDSBL pin is  
asserted, the positive and negative terminals of CLK-  
OUT are tied to 1.5 V through 50 on-chip resistors.  
This feature is used to reduce power consumption in  
applications that do not use the high speed transmit  
data clock.  
Input FIFO  
The Si5540 integrates a FIFO to decouple data  
transferred into the FIFO via TXCLK16IN from data  
Bias Generation Circuitry  
transferred into the shift register via TXCLK16OUT. The The Si5540 makes use of an external resistor to set  
FIFO is eight parallel words deep and accommodates internal bias currents. The external resistor allows pre-  
any static phase delay that may be introduced between cise generation of bias currents which significantly  
TXCLK16OUT and TXCLK16IN in counter clocking reduces power consumption versus traditional imple-  
schemes. Further, the FIFO will accommodate a phase mentations that use an internal resistor. The bias gener-  
drift or wander between TXCLK16IN and TXCLK16OUT ation circuitry requires  
a
3.09 k(1%) resistor  
of up to three parallel data words.  
connected between REXT and GND.  
The FIFO circuitry indicates an overflow or underflow  
condition by asserting FIFOERR high. This output can  
be used to recenter the FIFO read/write pointers by  
tieing it directly to the FIFORST input. The Si5540 will  
also recenter the read/write pointers after the device’s  
power on reset, external reset via RESET, and each  
time the DSPLL transitions from an out of lock state to a  
locked state (TXLOL transitions from low to high).  
Parallel Input To Serial Output Relationship  
The Si5540 provides the capability to select the order in  
which data on the parallel input bus is transmitted seri-  
ally. Data on this bus can be transmitted MSB first or  
LSB first depending on the setting of TXMSBSEL. If  
TXMSBSEL is tied low, TXDIN0 is transmitted first fol-  
lowed in order by TXDIN1 through TXDIN15. If TXMSB-  
SEL is tied high, TXDIN15 is transmitted first followed in  
order by TXDIN14 through TXDIN0. This feature simpli-  
fies board routing when ICs are mounted on both sides  
of the PCB.  
Transmit Data Squelch  
To prevent the transmission of corrupted data into the  
network, the Si5540 provides a control pin that can be  
used to force the high speed data output, TXDOUT, to 0.  
By driving TXSQLCH low TXDOUT will be forced to 0.  
Reset  
A device reset can be forced by holding the RESET pin  
low for at least 1 µs. When RESET is asserted low, the  
input FIFO pointers reset and the digital control circuitry  
initializes. When RESET transitions high to start normal  
operation, the DSPLL will be calibrated.  
10  
Preliminary Rev. 0.31  
Si5540  
Differential Output Circuitry  
The Si5540 utilizes a current-mode logic (CML) architecture to drive the high speed serial output clock and data on  
TXCLKOUT and TXDOUT. An example of output termination with ac coupling is shown in Figure 4. In applications  
where direct dc coupling is possible, the 250 nF capacitors may be omitted. The differential peak-to-peak voltage  
swing of the CML architecture is listed in Table 2 on page 5.  
1.5 V  
VDD  
50 Ω  
50 Ω  
50 Ω  
Zo = 50 Ω  
Zo = 50 Ω  
250 nF  
250 nF  
50 Ω  
VDD  
24 mA  
Figure 4. CML Output Driver Termination (TXCLKOUT, TXDOUT)  
Preliminary Rev. 0.31  
11  
Si5540  
Si5540 Pinout: 99 BGA  
10  
9
8
7
6
5
4
3
2
1
RSVD_  
VDD33  
A
B
C
D
E
F
TXDIN[12]–  
TXDIN[12]+  
TXDIN[14]–  
TXDIN[14]+  
REFCLK–  
REFCLK+  
TXSQLCH  
REFRATE  
RSVD_  
VDD33  
TXDIN[10]+  
TXDIN[10]–  
TXDIN[8]+  
TXDIN[8]–  
TXDIN[6]+  
TXDIN[6]–  
TXDIN[4]+  
TXDIN[4]–  
TXDIN[2]+  
TXDIN[11]+  
TXDIN[11]–  
TXDIN[9]+  
TXDIN[9]–  
TXDIN[13]–  
TXDIN[13]+  
TXDIN[15]–  
TXDIN[15]+  
TXCLKDSBL  
RESET  
VDD  
REFSEL  
VDD33  
GND  
TXCLKOUT+  
TXCLKOUT–  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
RSVD_  
GND  
GND  
VDD  
VDD  
VDD  
RSVD_  
GND  
GND  
VDD  
VDD  
VDD  
VDD  
GND  
RSVD_  
GND  
GND  
VDD  
VDD  
VDD  
VDD  
GND  
TXDOUT+  
TXDOUT–  
GND  
TXDIN[7]+  
TXDIN[7]–  
TXDIN[5]+  
RSVD_  
GND  
G
H
J
GND  
VDD  
VDD  
VDD  
VDD  
GND  
GND  
GND  
GND  
GND  
GND  
BWSEL  
NC  
RSVD_  
GND  
TXDIN[3]+  
TXDIN[0]+  
TXDIN[3]–  
TXDIN[0]–  
TXDIN[1]+  
TXDIN[1]–  
TXMSBSEL  
TXLOL  
FIFORST  
REXT  
TXDIN[5]–  
TXDIN[2]–  
TXCLK16  
IN+  
TXCLK16  
IN–  
TXCLK16  
OUT+  
TXCLK16  
OUT–  
K
FIFOERR  
Bottom View  
Figure 5. Si5540 Pin Configuration (Bottom View)  
12  
Preliminary Rev. 0.31  
Si5540  
1
2
3
4
5
6
7
8
9
10  
RSVD_  
VDD33  
A
B
C
D
E
F
REFRATE  
TXSQLCH  
REFCLK+  
REFCLK-  
TXDIN[14]+  
TXDIN[14]–  
TXDIN[12]+  
TXDIN[12]–  
RSVD_  
VDD33  
GND  
TXCLKOUT+  
TXCLKOUT–  
GND  
REFSEL  
VDD33  
TXCLKDSBL  
RESET  
VDD  
TXDIN[15]+  
TXDIN[15]–  
TXDIN[13]+  
TXDIN[13]–  
TXDIN[11]+  
TXDIN[11]–  
TXDIN[9]+  
TXDIN[9]–  
TXDIN[7]+  
TXDIN[7]–  
TXDIN[5]+  
TXDIN[5]–  
TXDIN[2]–  
TXDIN[10]+  
TXDIN[10]–  
TXDIN[8]+  
TXDIN[8]–  
TXDIN[6]+  
TXDIN[6]–  
TXDIN[4]+  
TXDIN[4]–  
TXDIN[2]+  
GND  
GND  
GND  
GND  
GND  
NC  
GND  
GND  
GND  
GND  
RSVD_  
GND  
VDD  
VDD  
VDD  
GND  
RSVD_  
GND  
VDD  
VDD  
VDD  
VDD  
GND  
RSVD_  
GND  
TXDOUT+  
TXDOUT–  
GND  
VDD  
VDD  
VDD  
VDD  
GND  
RSVD_  
GND  
G
H
J
VDD  
VDD  
VDD  
VDD  
GND  
BWSEL  
GND  
GND  
GND  
GND  
GND  
RSVD_  
GND  
REXT  
TXMSBSEL  
TXDIN[1]–  
TXDIN[1]+  
TXDIN[3]–  
TXDIN[0]–  
TXDIN[3]+  
TXDIN[0]+  
TXLOL  
TXCLK16  
OUT–  
TXCLK16  
OUT+  
TXCLK16  
IN–  
TXCLK16  
IN+  
K
FIFOERR  
FIFORST  
Top View  
Figure 6. Si5540 Pin Configuration (Transparent Top View)  
Preliminary Rev. 0.31  
13  
Si5540  
Pin Descriptions: Si5540  
Pin Number(s)  
Pin Name  
I/O  
Signal Level  
Description  
Bandwidth Select DSPLL.  
H3  
BWSEL  
I
LVTTL  
This input selects loop bandwidth of the DSPLL.  
BWSEL = 0: Loop bandwidth set to 12 kHz  
BWSEL = 1: Loop bandwidth set to 50 kHz.  
FIFO Error.  
K1  
K2  
FIFOERR  
O
LVTTL  
LVTTL  
This output is driven high when a FIFO over-  
flow/underflow has occurred. This output will  
stick high until reset by asserting FIFORST.  
FIFO Reset.  
FIFORST  
GND  
I
This input, when asserted high, resets the read/  
write FIFO pointers to their initial state.  
B1, C5–8, C2, D8,  
D2, E8, E1–2, F8,  
F2, G8, G2, H4–  
8, H1  
GND  
GND.  
No Connect.  
H2  
NC  
I
Reserved for device testing; leave electrically  
unconnected.  
Differential Reference Clock.  
A5–6  
REFCLK+,  
REFCLK–  
LVPECL  
LVTTL  
The reference clock sets the operating fre-  
quency of the PLL used to generate the output  
clock frequency. The Si5540 will operate with  
reference clock frequencies that are either 1/  
16th or 1/64th the output clock rate.  
Reference Frequency Select.  
A2  
REFRATE  
I
This input configures the CMU to operate with  
one of two possible reference clock frequen-  
cies. When REFRATE = 1, the CMU will oper-  
ate with a reference that is 1/16th the output  
clock rate. When REFRATE = 0, the CMU will  
operate with a reference that is 1/64th the out-  
put clock rate.  
Reference Clock Selection.  
B3  
C4  
REFSEL  
RESET  
I
I
LVTTL  
LVTTL  
This inputs selects the reference clock source  
used by the CMU. When REFSEL = 0, the low  
speed data input clock, TXCLK16IN, is used as  
the CMU reference. When REFSEL = 1, the ref-  
erence clock provided on REFCLK is used.  
Device Reset.  
Forcing this input low for at least 1 µs will cause  
a device reset. For normal operation, this pin  
should be held high.  
14  
Preliminary Rev. 0.31  
Si5540  
Pin Number(s)  
Pin Name  
I/O  
Signal Level  
Description  
External Bias Resistor.  
J1  
REXT  
This resistor is used by onboard circuitry to  
establish bias currents within the device. This  
pin must be connected to GND through a  
3.09 kΩ (1%) resistor.  
Reserved Tie to Ground.  
D3, E3, F3, G3,  
J3  
RSVD_GND  
Must tie directly to GND for proper operation.  
Reserved Tie to VDD33.  
A3, B2  
K5–6  
RSVD_VDD33  
I
Must tie directly to VDD33 for proper operation.  
Differential Data Clock Input.  
TXCLK16IN–,  
TXCLK16IN+  
LVDS  
LVDS  
The rising edge of this input clocks data present  
on TXDIN into the device.  
Divided Down Output Clock.  
K3–4  
TXCLK16OUT+,  
TXCLK16OUT–  
O
This clock output is generated by dividing down  
the high speed output clock, TXCLKOUT, by a  
factor of 16. It is intended for use in counter  
clocking schemes that transfer data between  
the system ASIC and the Si5540.  
High Speed Clock Disable.  
B4  
TXCLKDSBL  
I
O
I
LVTTL  
CML  
When this input is high, the output driver for  
TXCLKOUT is disabled. In applications that do  
not require the output data clock, the output  
clock driver should be disabled to save power.  
High Speed Clock Output.  
C1, D1  
TXCLKOUT+,  
TXCLKOUT–  
The high speed output clock, TXCLKOUT, is  
generated by the PLL in the clock multiplier  
unit. It’s frequency is nominally 16 or 64 times  
the selected reference source.  
Differential Parallel Data Input.  
A7–10, B5–10,  
C9–10, D9–10,  
E9–10, F9–10,  
G9–10, H9–10,  
J5–10, K7–10  
TXDIN[15:0]–,  
TXDIN[15:0]+  
LVDS  
The 16-bit data word present on these pins is  
multiplexed into a high speed serial stream and  
output on TXDOUT. The data on these inputs is  
clocked into the device by the rising edge of  
TXCLKIN.  
Differential High Speed Data Output.  
F1, G1  
TXDOUT+,  
TXDOUT–  
O
O
CML  
The 16-bit word input on TXDIN[15:0] is multi-  
plexed into a high speed serial stream that is  
output on these pins. This output is updated by  
the rising edge of TXCLKOUT.  
CMU Loss-of-Lock.  
J2  
TXLOL  
LVTTL  
The output is asserted low when the CMU is not  
phase locked to the selected reference source.  
Preliminary Rev. 0.31  
15  
Si5540  
Pin Number(s)  
Pin Name  
I/O  
Signal Level  
Description  
Data Bus Transmit Order.  
J4  
TXMSBSEL  
I
LVTTL  
For TXMSBSEL = 0, data on TXDIN[0] is trans-  
mitted first followed by TXDIN[1] through  
TXDIN[15].  
For TXMSBSEL = 1, TXDIN[15] is transmitted  
first followed by TXDIN[14] through TXDIN[0].  
Transmit Data Squelch.  
A4  
TXSQLCH  
I
LVTTL  
1.8 V  
If TXSQLCH is asserted low, the output data  
stream on TXDOUT will be forced to 0. If  
TXSQLCH = 1, TX squelching is turned off.  
Supply Voltage.  
D4–7, E4–7,  
F4–7, G4–7,  
VDD  
VDD  
Nominally 1.8 V.  
Digital Output Supply.  
VDD33 1.8 V or 3.3 V  
C3  
VDD33  
Must be tied to either 1.8 V or 3.3 V. When tied  
to 3.3 V, LVTTL compatible output voltage  
swings on TXLOL and FIFOERR are sup-  
ported.  
16  
Preliminary Rev. 0.31  
Si5540  
Ordering Guide  
Table 7. Ordering Guide  
Part Number  
Package  
Temperature  
Si5540-BC  
99 BGA  
–40°C to 85°C  
Preliminary Rev. 0.31  
17  
Si5540  
Package Outline  
Figure 7 illustrates the package details for the Si5540. Table 8 lists the values for the dimensions shown in the  
illustration.  
A1 Ball Pad  
Corner  
A1 Ball Pad  
Corner  
A
D
10  
9
8
7
6
5
4
3
2
1
A1  
A
B
C
D
E
F
e
E
G
H
J
b
K
e
1.00 Ref  
A2  
Seating  
Plane  
Top View  
Side View  
Bottom View  
Figure 7. 99-Ball Grid Array (BGA)  
Table 8. Package Diagram Dimensions  
Symbol  
Millimeters  
Nom  
Min  
1.30  
0.31  
0.65  
Max  
1.50  
0.41  
0.75  
A
A1  
A2  
b
1.40  
0.36  
0.70  
0.46  
D
E
e
11.00  
11.00  
1.00  
18  
Preliminary Rev. 0.31  
Si5540  
NOTES:  
Preliminary Rev. 0.31  
19  
Si5540  
Contact Information  
Silicon Laboratories Inc.  
4635 Boston Lane  
Austin, TX 78735  
Tel: 1+(512) 416-8500  
Fax: 1+(512) 416-9669  
Toll Free: 1+(877) 444-3032  
Email: productinfo@silabs.com  
Internet: www.silabs.com  
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.  
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from  
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features  
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-  
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-  
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to  
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-  
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-  
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.  
Silicon Laboratories, Silicon Labs, SiPHY, and DSPLL are trademarks of Silicon Laboratories Inc.  
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.  
20  
Preliminary Rev. 0.31  

相关型号:

554HBXXXXXXBGR

SiPHY OC-192/STM-64 TRANSMITTER
SILICON

554HC000249BGR

CMOS/TTL Output Clock Oscillator, 693.48299MHz Nom, ROHS COMPLIANT, SMD, 8 PIN
SILICON

554HC000249DG

ECL Output Clock Oscillator, ROHS COMPLIANT PACKAGE-8
SILICON

554HC000249DGR

ECL Output Clock Oscillator, ROHS COMPLIANT PACKAGE-8
SILICON

554HC000468DG

Oscillator
SILICON

554HC000468DGR

Oscillator
SILICON

554HC10M000DG

Oscillator
SILICON
SILICON

554HC1213M000G

Oscillator
SILICON
SILICON
SILICON

554HC945M000BG

Oscillator
SILICON