AN84 [SILICON]

DIGITAL HYBRID WITH THE Si305X DAAS; WITH THE Si305X DAAS数字混合
AN84
型号: AN84
厂家: SILICON    SILICON
描述:

DIGITAL HYBRID WITH THE Si305X DAAS
WITH THE Si305X DAAS数字混合

文件: 总26页 (文件大小:989K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AN84  
DIGITAL HYBRID WITH THE Si305X DAAS  
1. Introduction  
Z-4  
b0  
This application note is a guide to understanding and  
implementing the digital hybrid feature found in Si305x  
DAA products. The Si305x contains an on-chip analog  
hybrid that performs the 2- to 4-wire conversion and  
near-end echo cancellation. This hybrid circuit is  
adjusted for each ac termination setting selected to  
achieve a minimum transhybrid balance of 20 dB. The  
Z-1  
b1  
+
Z-1  
Si305x also offers a digital filter for additional near-end  
echo cancellation to compensate for any line  
impedance mismatch. For each ac termination setting,  
the eight programmable hybrid registers (Registers 45-  
52) can be programmed with coefficients to increase the  
Z-1  
cancellation under real-world line conditions. This digital  
filter can produce 10 dB or greater of near-end echo  
cancellation in addition to the 20 dB from the analog  
hybrid circuitry.  
b7  
1.1. Digital Hybrid Overview  
Figure 1. Digital Hybrid Structure  
Figure 1 describes the basic architecture of the digital  
hybrid. It is composed of an 8-tap FIR filter. “b0” through  
“b7” represent the filter coefficients in 2s complement  
form. The initial 4-sample bulk delay is used to  
compensate for the round trip delay through the line-  
side device. This architecture is designed to delay and  
filter the transmit signal to match the portion not  
cancelled by the analog hybrid.  
Figure 2 illustrates the basic signal flow of the DAA. The  
digital signal has been upsampled to 16 kHz at the  
digital hybrid stage. The transmit signal goes through a  
digital filter, digital-to-analog converter, and analog filter  
before going out on the line or being used in the analog  
hybrid circuitry. After the analog hybrid, the receive  
signal passes through an analog filter, analog-to-digital  
converter, and digital filter before going back into the  
digital hybrid. The analog hybrid path adds  
approximately four samples of delay to the signal. The  
digital hybrid structure matches this filter delay by  
delaying the digital samples by the same amount.  
AC  
Termination  
Line Driver  
Analog  
Filters  
Digital  
Filters  
TX  
DAC  
ADC  
Line  
Digital  
Hybrid  
@16kHz  
Analog  
Filters  
Analog  
Hybrid  
Digital  
Filters  
RX  
Figure 2. Signal Flow Diagram  
Rev. 0.6 6/07  
Copyright © 2007 by Silicon Laboratories  
AN84  
AN84  
DAC  
at 16 kHz  
TX  
HT(ω)  
HR(ω)  
HL(ω)  
HD(ejω)  
at 16 kHz  
-
+
+
ADC at  
16 kHz  
+
+
RX  
+
Figure 3. Model  
A model of the DAA and the phone line is shown in Substituting for H (ω) in the equation results in:  
L
Figure 3. In an ideal system, the analog hybrid yields  
perfect cancellation of the near-end echo from the  
ZLine  
ZLine + ZACT  
ZLine ZACT  
ZLine + ZACT  
transmit path. A mismatch between the ac termination  
and the load produces an echo that is not removed by  
the analog hybrid. To increase the near-end echo  
cancellation, the digital hybrid must equalize the  
disparity between the impedance mismatch of the ac  
termination and the line.  
---------------------------------  
---------------------------------  
1 =  
HL 1 = 2 ×  
If Z  
and Z  
are matched, the analog hybrid  
ACT  
perfectly cancels the transmit signal.  
LINE  
Substituting this result into the echo equation yields:  
From the above model, the echo is equal to:  
ZLine ZACT  
ZLine + ZACT  
---------------------------------  
echo = HT(ω) × HR(ω)  
echo = HT(ω) × HL(ω) × HR(ω) HT(ω) × HR(ω)  
= HT(ω) × HR(ω)[HL(ω) 1]  
The model for the H (ω) and H (ω) plays a critical role  
T
R
in this calculation. The models are quite complex, and  
sampled data of the models are necessary to calculate  
the hybrid coefficients. Contact Silicon Labs to acquire  
the sampled data of the H (ω) and H (ω) models.  
H (ω) consists of the DAA’s ac termination in  
L
combination with the impedance of the twisted pair  
transmission line terminated at the central office (CO)  
by a reference impedance. Figure 4 shows the analog  
T
R
A group delay, which was not illustrated in the model,  
must also be taken into consideration. Internal DSP and  
filters cause this delay. Taking the group delay into  
account, the echo is equal to:  
hybrid circuitry and the H (ω) model expanded to  
include the ac termination and line.  
L
ZACT  
2
j2π  
----------------  
× gd  
echo = H (ω) × HR(ω) × [HL(ω) 1]e16000  
T
where gd is the group delay.  
ZLINE  
The digital hybrid must cancel the echo by intentionally  
-
+
adding the negative of the echo. The H (ω) should be:  
D
+
j2π  
----------------  
× gd  
HD(ω) = –H (ω) × H (ω) × [HL(ω) 1]e16000  
R
T
Figure 4. HL(ω)–1 Model  
2
Rev. 0.6  
AN84  
To use the Digital Hybrid Calculation Tool, simply enter  
the ACIM value recommended in Table 13 of the Si3050  
datasheet into the ACIM control. This value determines  
the impedance presented by the DAA to the line. It is  
governed by the region in which the application will be  
deployed. Next, enter values for R1 and R2 in ohms and  
C in farads into the appropriate controls. These values  
will represent the impedance presented by the central  
office to the line. This value is also governed by the  
region in which the application will be deployed. Also,  
select the line-side device used in the application in the  
pull-down box. Finally, select the line model to be used  
that will most closely model the line connecting the DAA  
to the central office. This is done by either picking a  
specific EIA line model or by specifying a wire gauge  
and length. Once this is complete, hitting the  
"CALCULATE" button will generate the coefficients that  
provide the best performance.  
1.2. Digital Hybrid Calculation Tool  
Silicon Labs has developed a useful graphical user  
interface tool (shown in Figure 5) that will assist in  
calculating the coefficients to use with the digital hybrid  
in the Si305x DAA product family. The tool allows the  
user to enter the reference termination of the central  
office (in an R + R||C format) and the model for the  
phone line between the DAA and the central office. The  
line can be represented by one of the EIA models,  
shown in " Appendix C—EIA Line Models" on page 24,  
or as a specified length of wire. The software then  
executes the Matlab code found in " Appendix A—  
Sample MATLAB Code" on page 7, which graphically  
shows the expected trans-hybrid response of the digital  
hybrid and lists the best hybrid coefficients to use given  
the line characteristics.  
Three graphs are shown in Figure 6. An echo graph is  
created by intentionally mismatching the 600 Ω ac  
termination with the TBR21 mode CO termination. The  
digital hybrid response is the 8-tap FIR filter response  
calculated using the sample code found in Appendix A.  
The cancelled graph is obtained by adding the echo and  
the digital hybrid response. The digital hybrid response  
looks very similar to an echo. Figure 7 shows the phase  
of the echo and the digital hybrid response. The phase  
of an echo and the digital hybrid have the opposite  
polarity. Figure 8 compares the rejection in dB with and  
without the digital hybrid. By properly using the digital  
hybrid, near-end echo cancellation has increased by  
approximately 20 dB.  
For example, if we assume that an application will be  
deployed within the U.S., we enter a 0 for the ACIM  
value. Also, the central office impedance in the US is  
900 Ω in series with 2.16 µF. To enter this information in  
the GUI, we enter 900 for R1 and a fairly large value for  
R2, since it is not present. For this example, the value of  
100,000 Ω was used. For the C value, we enter 2.16e-6  
since the expected units are farads. Also, for this  
example, we use an EIA model of 0. This means  
essentially no loop length, and the central office  
impedance is connected directly to the application. Now,  
the "CALCULATE" button is pressed, and the resulting  
coefficients, 0xF8, 0xF9, 0x03, 0xFE, 0xFE, 0x00,  
0xFE, and 0x00, are generated.  
Rev. 0.6  
3
AN84  
Figure 5. Digital Hybrid  
4
Rev. 0.6  
AN84  
To generate the coefficients, the 8-tap FIR filter  
structure used in the digital hybrid must be taken into  
account. This digital filter structure requires the hybrid  
response to be represented in the z-domain.  
1.3. Conclusion  
The Si305x DAA product family is designed to increase  
the near-echo cancellation with an additional hybrid in  
the digital path operating at 16 kHz. Near-end echo is  
primarily caused by the mismatch between the ac  
termination and the CO termination. The transmit and  
receive signal path also affects the echo to a lesser  
extent. By introducing a filter that models the near-end  
“Appendix A—Sample MATLAB Code” contains sample  
MATLAB code to calculate the hybrid coefficients. This  
code should help in understanding the process of  
calculating the hybrid coefficients.  
echo 180 degrees out-of-phase to the receive path A hybrid coefficient lookup table can be found in  
echo, the hybrid response can be improved. This " Appendix B—Hybrid Coefficient Lookup Tables" on  
improvement in the hybrid response results in greater page 10. These tables provide a set of coefficients to  
cancellation of the transmit signal when the near-end use for different line conditions.  
echo and digital hybrid response are added together at  
the digital hybrid stage.  
Figure 6. Echo  
Rev. 0.6  
5
AN84  
Figure 7. Echo Phase  
Figure 8. Rejection  
6
Rev. 0.6  
AN84  
APPENDIX A—SAMPLE MATLAB CODE  
A sample MATLAB program for use in setting the hybrid coefficients is shown below. The code takes the ACIM  
(Register 30) setting and line model as an input and outputs the best coefficient for the digital hybrid to match the  
line.  
function hdh  
HrPhase);  
=
dig_hybrid(ACIM, R1line, R2line, Cline, HtMag, HtPhase, HrMag,  
% hdh = dig_hybrid(ACIM, R1line, R2line, Cline, HtMag, HtPhase, HrMag, HrPhase);  
%
% This function calculates the coefficient values for the digital  
% hybrid given a R1+R2||C model for the line.  
%
% ACIM : register setting of the AC termination  
% R1line : line R1  
% R2line : line R2  
% Cline : line C  
% HtMag : Transmit path response  
% HtPhase : Transmit path response  
% HrMag : Receive path response  
% HrPhase : Receive path response  
%
% hdh : digital hybrid coefficients  
Nact=ACIM+1;  
if(R1line==0), R1line=eps; end  
if(R2line==0), R2line=eps; end  
if(Cline==0), Cline=eps; end  
%eps is the smallest value after 0  
% Set sample rate and frequency grid  
fs=16000;  
f=[eps:1:7999];  
w=2*pi*f/fs;  
%%%%%% Transmit path (Ht)  
Ht = HtMag .* exp(j*HtPhase)  
%%%%%%%  
Receive path (Hr)  
Hr = HrMag .* exp(j*HrPhase)  
Rev. 0.6  
7
AN84  
%%%%%%%%%% Near end echo (H2)  
% Calculate Zline  
Zcline=1./(j*2*pi*f*Cline);  
Zline=R1line + R2line.*Zcline./(R2line+Zcline);  
% Calculate Zref, assume perfect ACT  
R1ref=[eps eps 270 220 370 320 370 275 120 350 eps 600 900 900 600 270];  
R2ref=[600 900 750 820 620 1050 820 780 820 1000 900 1e9 1e9 1e9 1e9 750];  
Cref =[eps eps 150 117 310 230 110 132 110 210 30 2160 1000 2160 1000 150]*1e-9;  
Zcact=1./(j*2*pi*f*Cref(Nact));  
Zact=R1ref(Nact) + R2ref(Nact).*Zcact./(R2ref(Nact)+Zcact);  
C9r=0*1e-9;  
Ycact2=(j*2*pi*f*C9r);  
Zact=1./(1./Zact + Ycact2);  
%%%%%  
HL=2*Zline./(Zact+Zline);  
HL(1)=0;  
% Add extra group delay to match measurements  
gde=-0.225;  
Hd=-Ht.*Hr.*(HL-1).*exp(j*2*pi/16000*gde*[0:length(Ht)-1]);  
Hd=[Hd conj(fliplr(Hd))];  
% Estimate impulse response to match  
hd=real(ifft(Hd));  
% Truncate coefficients and express in [0 255]  
hdh=round(hd(5:12)*64);  
ind=find(hdh<0);  
hdh(ind)=hdh(ind)+256;  
echo = Ht.*Hr.*(HL-1).*exp(j*2*pi/16000*gde*[0:length(Ht)-1]);  
hyb_coef = [0 0 0 0 hd(5:12)];  
dig_hyb = freqz(hyb_coef,1,w);  
figure  
plot(f,abs(echo),'-',f,abs(dig_hyb),'-.',f,abs(echo+dig_hyb),':')  
axis([0 4000 0 0.4])  
legend('echo','digital hybrid response','cancelled signal')  
8
Rev. 0.6  
AN84  
xlabel('frequency')  
ylabel('echo')  
figure  
plot(f,angle(echo),'-',f,angle(dig_hyb),'-.')  
axis([0 4000 -pi pi])  
legend('echo','digital hybrid response')  
xlabel('frequency')  
ylabel('echo')  
figure  
plot(f,20*log10(abs(echo)),'-',f,20*log10(abs(echo+dig_hyb)),'-.')  
axis([0 4000 -42 0])  
legend('echo','cancelled signal')  
xlabel('frequency')  
ylabel('rejection')  
Rev. 0.6  
9
AN84  
APPENDIX B—HYBRID COEFFICIENT LOOKUP TABLES  
Tables 1–14 (for Rev C and prior versions of the Si3019) and Tables 15–28 (for Rev E and later versions of the  
Si3019) provide fixed digital hybrid coefficients to best match the line load with specific EIA line models. For this  
calculation, the EIA line model was incorporated into the HL(w) model. The first column shows which line type was  
used to calculate the hybrid coefficient. The remaining columns display the hybrid coefficients (Registers 45–52).  
Table 1. ACIM = 0000 and CO Termination = 900 Ω + 2.16 µF  
Line Type  
Hybrid Coefficient #  
1
248  
251  
2
2
3
4
254  
5
5
6
0
7
254  
254  
2
8
EIA 0  
EIA 1  
249  
240  
240  
239  
242  
244  
244  
230  
242  
240  
240  
3
254  
250  
253  
252  
252  
250  
7
0
255  
238  
235  
240  
233  
228  
8
2
255  
254  
254  
255  
254  
253  
255  
255  
255  
255  
EIA 2  
7
254  
254  
255  
253  
247  
2
EIA 3  
5
7
2
EIA 4  
1
1
0
EIA 5  
7
1
0
EIA 6  
4
6
1
EIA 7  
248  
253  
252  
251  
18  
5
234  
250  
250  
250  
1
2000 ft. 22 awg  
2000 ft. 24 awg  
2000 ft 26 awg  
254  
254  
255  
2
255  
254  
254  
5
2
5
2
Table 2. ACIM = 0000 and CO Termination = 600 Ω  
Line Type  
Hybrid Coefficient #  
1
0
2
3
4
0
5
6
0
7
0
0
2
2
1
1
1
1
0
0
0
8
0
EIA 0  
EIA 1  
0
0
0
255  
2
247  
243  
240  
242  
244  
244  
230  
250  
249  
247  
255  
241  
238  
241  
234  
228  
8
4
253  
253  
252  
253  
251  
7
2
0
EIA 2  
8
255  
255  
255  
254  
247  
2
254  
254  
255  
254  
253  
255  
0
EIA 3  
5
9
EIA 4  
1
2
EIA 5  
7
2
EIA 6  
4
6
EIA 7  
248  
2
18  
4
234  
253  
253  
253  
2000 ft. 22 awg  
2000 ft. 24 awg  
2000 ft 26 awg  
254  
254  
255  
1
1
4
1
0
255  
4
2
0
10  
Rev. 0.6  
AN84  
Table 3. ACIM = 0000 and CO Termination = 1200 Ω + 376 Ω + 112 nF  
Line Type  
Hybrid Coefficient #  
1
240  
247  
2
2
3
4
255  
8
5
6
3
7
254  
255  
2
8
1
EIA 0  
EIA 1  
242  
232  
238  
237  
241  
244  
244  
230  
233  
232  
232  
7
254  
249  
253  
252  
251  
249  
7
254  
234  
231  
239  
233  
228  
8
4
0
EIA 2  
6
254  
254  
254  
252  
247  
2
254  
254  
255  
253  
253  
255  
0
EIA 3  
4
5
2
EIA 4  
1
255  
0
0
EIA 5  
7
0
EIA 6  
4
6
1
EIA 7  
248  
249  
248  
247  
18  
8
234  
249  
249  
249  
1
2000 ft. 22 awg  
2000 ft. 24 awg  
2000 ft 26 awg  
253  
253  
254  
3
255  
255  
255  
8
4
0
8
4
0
Table 4. . ACIM = 0000 and CO Termination = 150 Ω + 510 Ω + 47 nF  
Line Type  
Hybrid Coefficient #  
1
3
2
3
4
5
5
6
1
7
0
1
2
2
1
1
1
1
1
1
1
8
EIA 0  
EIA 1  
249  
246  
244  
241  
242  
244  
244  
230  
248  
247  
246  
252  
249  
240  
238  
241  
234  
228  
8
253  
252  
254  
252  
252  
251  
7
255  
255  
255  
254  
255  
254  
253  
255  
255  
255  
255  
2
7
1
EIA 2  
3
5
255  
255  
255  
253  
247  
2
EIA 3  
5
6
EIA 4  
1
2
EIA 5  
7
2
EIA 6  
4
6
EIA 7  
248  
4
18  
7
234  
253  
253  
252  
2000 ft. 22 awg  
2000 ft. 24 awg  
2000 ft 26 awg  
246  
247  
249  
0
3
8
0
2
7
1
Rev. 0.6  
11  
AN84  
Table 5. ACIM = 0000 and CO Termination = 220 Ω + 820 Ω + 150 nF  
Line Type  
Hybrid Coefficient #  
1
6
2
3
4
5
5
6
7
2
1
1
0
0
0
1
1
2
2
1
8
EIA 0  
EIA 1  
246  
246  
245  
242  
242  
244  
244  
230  
249  
247  
246  
239  
241  
240  
238  
241  
234  
228  
8
253  
254  
252  
250  
251  
250  
7
255  
255  
254  
255  
254  
252  
247  
2
255  
255  
255  
254  
254  
253  
253  
255  
254  
255  
255  
3
2
EIA 2  
3
1
EIA 3  
5
4
EIA 4  
1
2
EIA 5  
7
2
EIA 6  
4
6
EIA 7  
248  
6
18  
2
234  
255  
254  
254  
2000 ft. 22 awg  
2000 ft. 24 awg  
2000 ft 26 awg  
237  
239  
241  
253  
254  
255  
5
3
3
2
Table 6. ACIM = 0000 and CO Termination = 600 Ω + 1.5 µF  
Line Type  
Hybrid Coefficient #  
1
255  
255  
2
2
3
4
254  
3
5
6
7
254  
254  
1
8
EIA 0  
EIA 1  
254  
246  
242  
240  
242  
244  
244  
230  
249  
247  
246  
254  
253  
241  
237  
241  
234  
228  
8
254  
251  
252  
252  
252  
251  
7
254  
0
254  
254  
253  
253  
254  
254  
253  
255  
254  
254  
254  
EIA 2  
7
254  
254  
255  
253  
247  
2
EIA 3  
5
8
1
EIA 4  
1
2
0
EIA 5  
7
1
1
EIA 6  
4
6
1
EIA 7  
248  
1
18  
2
234  
251  
251  
251  
1
2000 ft. 22 awg  
2000 ft. 24 awg  
2000 ft 26 awg  
251  
252  
253  
255  
0
254  
254  
254  
0
3
255  
3
0
12  
Rev. 0.6  
AN84  
Table 7. ACIM = 0010 and CO Termination = 220 Ω + 120 Ω + 115 nf  
Line Type  
Hybrid Coefficient #  
1
9
2
3
5
4
5
2
6
255  
0
7
0
8
0
EIA 0  
EIA 1  
16  
254  
255  
2
2
10  
9
1
255  
0
1
EIA 2  
255  
1
0
3
0
1
0
EIA 3  
253  
252  
253  
254  
241  
15  
0
4
254  
0
1
0
0
EIA 4  
253  
4
0
255  
255  
4
0
0
0
EIA 5  
249  
242  
19  
6
254  
8
255  
246  
2
0
255  
254  
1
EIA 6  
1
2
EIA 7  
244  
6
11  
244  
3
253  
0
2000 ft. 22 awg  
2000 ft. 24 awg  
2000 ft 26 awg  
254  
255  
255  
255  
0
0
5
12  
7
2
0
0
2
10  
9
1
0
255  
1
Table 8. ACIM = 0011 and CO Termination = 220 Ω + 820 Ω + 115 nF  
Line Type  
Hybrid Coefficient #  
1
0
2
0
3
4
5
0
6
7
0
8
0
EIA 0  
EIA 1  
0
0
0
255  
255  
1
0
255  
253  
252  
255  
249  
242  
18  
254  
252  
253  
251  
252  
2
1
255  
254  
255  
254  
253  
245  
0
0
0
EIA 2  
0
255  
253  
254  
253  
9
255  
255  
254  
254  
3
0
EIA 3  
254  
255  
0
255  
255  
254  
253  
1
EIA 4  
253  
4
EIA 5  
EIA 6  
1
1
EIA 7  
245  
1
243  
2
10  
245  
1
253  
1
2000 ft. 22 awg  
2000 ft. 24 awg  
2000 ft 26 awg  
252  
253  
255  
255  
255  
254  
254  
255  
255  
255  
0
0
1
1
0
255  
0
1
0
0
Rev. 0.6  
13  
AN84  
Table 9. ACIM = 0100 and CO Termination = 370 Ω + 620 Ω + 310 nF  
Line Type  
Hybrid Coefficient #  
1
0
2
3
0
4
0
5
6
0
7
0
8
0
EIA 0  
EIA 1  
0
0
254  
255  
1
252  
248  
246  
247  
248  
249  
236  
255  
253  
252  
2
1
255  
253  
252  
253  
252  
8
1
255  
0
0
EIA 2  
253  
251  
253  
246  
240  
18  
255  
0
4
0
255  
255  
255  
254  
254  
1
EIA 3  
6
1
0
EIA 4  
252  
3
2
0
255  
255  
2
EIA 5  
3
255  
247  
5
EIA 6  
0
8
EIA 7  
244  
1
14  
0
241  
255  
255  
255  
254  
0
2000 ft. 22 awg  
2000 ft. 24 awg  
2000 ft 26 awg  
0
0
0
1
1
0
0
254  
2
1
1
255  
0
Table 10. ACIM = 0100 and CO Termination = 220 Ω + 820 Ω + 120 nF  
Line Type  
Hybrid Coefficient #  
1
0
2
3
4
6
5
6
2
7
1
8
0
EIA 0  
EIA 1  
248  
249  
249  
246  
247  
248  
249  
236  
251  
249  
249  
254  
253  
251  
250  
253  
246  
240  
18  
255  
255  
254  
252  
253  
252  
8
254  
255  
1
4
1
1
0
EIA 2  
2
0
0
0
EIA 3  
4
1
0
255  
255  
254  
254  
1
EIA 4  
252  
3
1
0
255  
255  
2
EIA 5  
2
254  
247  
5
EIA 6  
0
8
EIA 7  
244  
1
14  
5
241  
0
254  
2
2000 ft. 22 awg  
2000 ft. 24 awg  
2000 ft 26 awg  
249  
251  
253  
0
255  
0
0
5
255  
255  
0
1
254  
4
1
1
0
14  
Rev. 0.6  
AN84  
Table 11. ACIM = 0101 and CO Termination = 300 Ω + 1000 Ω + 220 nF  
Line Type  
Hybrid Coefficient #  
1
1
2
3
255  
2
4
1
5
6
0
7
0
8
0
EIA 0  
EIA 1  
0
0
254  
255  
1
255  
252  
249  
250  
251  
252  
239  
1
0
255  
254  
252  
254  
253  
9
1
0
0
EIA 2  
0
2
0
255  
255  
255  
255  
3
255  
255  
255  
254  
254  
1
EIA 3  
255  
1
4
1
EIA 4  
252  
3
1
0
EIA 5  
251  
244  
21  
254  
0
2
255  
247  
5
EIA 6  
0
8
EIA 7  
244  
1
14  
255  
0
244  
1
254  
0
2000 ft. 22 awg  
2000 ft. 24 awg  
2000 ft 26 awg  
255  
0
0
0
0
0
0
0
254  
255  
2
0
255  
1
0
0
Table 12. ACIM = 0101 and CO Termination = 370 Ω + 620 Ω + 310 nF  
Line Type  
Hybrid Coefficient #  
1
0
2
4
3
4
4
0
5
1
6
1
7
0
8
1
EIA 0  
EIA 1  
254  
255  
1
0
6
1
0
2
255  
0
1
EIA 2  
252  
249  
250  
251  
252  
239  
3
1
3
254  
253  
255  
254  
9
1
0
EIA 3  
255  
1
5
1
0
255  
0
EIA 4  
252  
3
2
0
255  
255  
3
EIA 5  
250  
244  
21  
3
3
255  
247  
5
255  
254  
1
EIA 6  
0
8
EIA 7  
244  
1
14  
0
244  
1
254  
0
2000 ft. 22 awg  
2000 ft. 24 awg  
2000 ft 26 awg  
0
0
0
1
4
1
0
1
0
0
254  
0
6
1
0
2
255  
1
Rev. 0.6  
15  
AN84  
Table 13. ACIM = 0101 and CO Termination = 270 Ω + 750 Ω + 150 nF  
Line Type  
Hybrid Coefficient #  
1
0
2
3
2
4
4
5
1
6
2
7
1
8
0
EIA 0  
EIA 1  
254  
253  
252  
249  
250  
251  
252  
239  
0
254  
255  
1
2
3
1
2
1
1
EIA 2  
0
2
255  
253  
254  
253  
9
1
0
0
EIA 3  
254  
1
4
1
0
0
EIA 4  
252  
3
1
0
255  
255  
3
0
EIA 5  
250  
244  
21  
255  
0
2
255  
247  
5
255  
254  
1
EIA 6  
0
8
EIA 7  
244  
1
14  
3
244  
2
254  
1
2000 ft. 22 awg  
2000 ft. 24 awg  
2000 ft 26 awg  
0
0
0
254  
253  
3
1
1
1
0
254  
2
3
1
2
1
1
Table 14. ACIM = 1010 and CO Termination = 200 Ω + 560 Ω+ 100 nF  
Line Type  
Hybrid Coefficient #  
1
6
2
5
3
4
0
5
2
6
7
2
2
2
1
1
1
4
0
3
2
2
8
EIA 0  
EIA 1  
249  
247  
243  
242  
244  
238  
231  
8
254  
253  
252  
253  
252  
250  
245  
252  
252  
253  
253  
255  
255  
255  
255  
255  
254  
251  
1
4
4
255  
253  
254  
251  
252  
2
2
EIA 2  
4
2
2
EIA 3  
6
0
0
EIA 4  
2
0
0
EIA 5  
8
1
254  
8
EIA 6  
6
2
EIA 7  
249  
7
244  
6
12  
0
245  
3
2000 ft. 22 awg  
2000 ft. 24 awg  
2000 ft 26 awg  
244  
246  
247  
255  
255  
255  
6
5
0
2
4
4
255  
2
16  
Rev. 0.6  
AN84  
Table 15. ACIM = 0000 and CO Termination = 900 Ω + 2.16 µF  
Line Type  
Hybrid Coefficient #  
1
248  
251  
2
2
3
4
254  
5
5
6
0
7
254  
254  
2
8
EIA 0  
EIA 1  
249  
240  
240  
239  
242  
244  
244  
230  
242  
240  
240  
3
254  
250  
253  
252  
252  
250  
7
0
255  
238  
235  
240  
233  
228  
8
2
255  
254  
254  
255  
254  
253  
255  
255  
255  
255  
EIA 2  
7
254  
254  
255  
253  
247  
2
EIA 3  
5
7
2
EIA 4  
1
1
0
EIA 5  
7
1
0
EIA 6  
4
6
1
EIA 7  
248  
253  
252  
251  
18  
5
234  
250  
250  
250  
1
2000 ft. 22 awg  
2000 ft. 24 awg  
2000 ft 26 awg  
254  
254  
255  
2
255  
254  
254  
5
2
5
2
Table 16. ACIM = 0000 and CO Termination = 600 Ω  
Line Type  
Hybrid Coefficient #  
1
0
2
3
4
0
5
6
0
7
0
0
2
2
1
1
1
1
0
0
0
8
0
EIA 0  
EIA 1  
0
0
0
255  
2
247  
243  
240  
242  
244  
244  
230  
250  
249  
247  
255  
241  
238  
241  
234  
228  
8
4
253  
253  
252  
253  
251  
7
2
0
EIA 2  
8
255  
255  
255  
254  
247  
2
254  
254  
255  
254  
253  
255  
0
EIA 3  
5
9
EIA 4  
1
2
EIA 5  
7
2
EIA 6  
4
6
EIA 7  
248  
2
18  
4
234  
253  
253  
253  
2000 ft. 22 awg  
2000 ft. 24 awg  
2000 ft 26 awg  
254  
254  
255  
1
1
4
1
0
255  
4
2
0
Rev. 0.6  
17  
AN84  
Table 17. ACIM = 0000 and CO Termination = 1200 Ω + 376 Ω + 112 nF  
Line Type  
Hybrid Coefficient #  
1
240  
247  
2
2
3
4
255  
8
5
6
3
7
254  
255  
2
8
1
EIA 0  
EIA 1  
242  
232  
238  
237  
241  
244  
244  
230  
233  
232  
232  
7
254  
249  
253  
252  
251  
249  
7
254  
234  
231  
239  
233  
228  
8
4
0
EIA 2  
6
254  
254  
254  
252  
247  
2
254  
254  
255  
253  
253  
255  
0
EIA 3  
4
5
2
EIA 4  
1
255  
0
0
EIA 5  
7
0
EIA 6  
4
6
1
EIA 7  
248  
249  
248  
247  
18  
8
234  
249  
249  
249  
1
2000 ft. 22 awg  
2000 ft. 24 awg  
2000 ft 26 awg  
253  
253  
254  
3
255  
255  
255  
8
4
0
8
4
0
Table 18. ACIM = 0000 and CO Termination = 150 Ω + 510 Ω + 47 nF  
Line Type  
Hybrid Coefficient #  
1
3
2
3
4
5
5
6
1
7
0
1
2
2
1
1
1
1
1
1
1
8
EIA 0  
EIA 1  
249  
246  
244  
241  
242  
244  
244  
230  
248  
247  
246  
252  
249  
240  
238  
241  
234  
228  
8
253  
252  
254  
252  
252  
251  
7
255  
255  
255  
254  
255  
254  
253  
255  
255  
255  
255  
2
7
1
EIA 2  
3
5
255  
255  
255  
253  
247  
2
EIA 3  
5
6
EIA 4  
1
2
EIA 5  
7
2
EIA 6  
4
6
EIA 7  
248  
4
18  
7
234  
253  
253  
252  
2000 ft. 22 awg  
2000 ft. 24 awg  
2000 ft 26 awg  
246  
247  
249  
0
3
8
0
2
7
1
18  
Rev. 0.6  
AN84  
Table 19. ACIM = 0000 and CO Termination = 220 Ω + 820 Ω + 150 nF  
Line Type  
Hybrid Coefficient #  
1
6
2
3
4
5
5
6
7
2
1
1
0
0
0
1
1
2
2
1
8
EIA 0  
EIA 1  
246  
246  
245  
242  
242  
244  
244  
230  
249  
247  
246  
239  
241  
240  
238  
241  
234  
228  
8
253  
254  
252  
250  
251  
250  
7
255  
255  
254  
255  
254  
252  
247  
2
255  
255  
255  
254  
254  
253  
253  
255  
254  
255  
255  
3
2
EIA 2  
3
1
EIA 3  
5
4
EIA 4  
1
2
EIA 5  
7
2
EIA 6  
4
6
EIA 7  
248  
6
18  
2
234  
255  
254  
254  
2000 ft. 22 awg  
2000 ft. 24 awg  
2000 ft 26 awg  
237  
239  
241  
253  
254  
255  
5
3
3
2
Table 20. ACIM = 0000 and CO Termination = 600 Ω + 1.5 µF  
Line Type  
Hybrid Coefficient #  
1
255  
255  
2
2
3
4
254  
3
5
6
7
254  
254  
1
8
EIA 0  
EIA 1  
254  
246  
242  
240  
242  
244  
244  
230  
249  
247  
246  
254  
253  
241  
237  
241  
234  
228  
8
254  
251  
252  
252  
252  
251  
7
254  
0
254  
254  
253  
253  
254  
254  
253  
255  
254  
254  
254  
EIA 2  
7
254  
254  
255  
253  
247  
2
EIA 3  
5
8
1
EIA 4  
1
2
0
EIA 5  
7
1
1
EIA 6  
4
6
1
EIA 7  
248  
1
18  
2
234  
251  
251  
251  
1
2000 ft. 22 awg  
2000 ft. 24 awg  
2000 ft 26 awg  
251  
252  
253  
255  
0
254  
254  
254  
0
3
255  
3
0
Rev. 0.6  
19  
AN84  
Table 21. ACIM = 0010 and CO Termination = 220 Ω + 120 Ω + 115 nF  
Line Type  
Hybrid Coefficient #  
1
9
2
3
5
4
5
2
6
255  
0
7
0
8
0
EIA 0  
EIA 1  
16  
254  
255  
2
2
10  
9
1
255  
0
1
EIA 2  
255  
1
0
3
0
1
0
EIA 3  
253  
252  
253  
254  
241  
15  
0
4
254  
0
1
0
0
EIA 4  
253  
4
0
255  
255  
4
0
0
0
EIA 5  
249  
242  
19  
6
254  
8
255  
246  
2
0
255  
254  
1
EIA 6  
1
2
EIA 7  
244  
6
11  
244  
3
253  
0
2000 ft. 22 awg  
2000 ft. 24 awg  
2000 ft 26 awg  
254  
255  
255  
255  
0
0
5
12  
7
2
0
0
2
10  
9
1
0
255  
1
Table 22. ACIM = 0011 and CO Termination = 220 Ω + 820 Ω + 115 nF  
Line Type  
Hybrid Coefficient #  
1
0
2
0
3
4
5
0
6
7
0
8
0
EIA 0  
EIA 1  
0
0
0
255  
255  
1
0
255  
253  
252  
255  
249  
242  
18  
254  
252  
253  
251  
252  
2
1
255  
254  
255  
254  
253  
245  
0
0
0
EIA 2  
0
255  
253  
254  
253  
9
255  
255  
254  
254  
3
0
EIA 3  
254  
255  
0
255  
255  
254  
253  
1
EIA 4  
253  
4
EIA 5  
EIA 6  
1
1
EIA 7  
245  
1
243  
2
10  
245  
1
253  
1
2000 ft. 22 awg  
2000 ft. 24 awg  
2000 ft 26 awg  
252  
253  
255  
255  
255  
254  
254  
255  
255  
255  
0
0
1
1
0
255  
0
1
0
0
20  
Rev. 0.6  
AN84  
Table 23. ACIM = 0100 and CO Termination = 370 Ω + 620 Ω + 310 nF  
Line Type  
Hybrid Coefficient #  
1
0
2
3
0
4
0
5
6
0
7
0
8
0
EIA 0  
EIA 1  
0
0
254  
255  
1
252  
248  
246  
247  
248  
249  
236  
255  
253  
252  
2
1
255  
253  
252  
253  
252  
8
1
255  
0
0
EIA 2  
253  
251  
253  
246  
240  
18  
255  
0
4
0
255  
255  
255  
254  
254  
1
EIA 3  
6
1
0
EIA 4  
252  
3
2
0
255  
255  
2
EIA 5  
3
255  
247  
5
EIA 6  
0
8
EIA 7  
244  
1
14  
0
241  
255  
255  
255  
254  
0
2000 ft. 22 awg  
2000 ft. 24 awg  
2000 ft 26 awg  
0
0
0
1
1
0
0
254  
2
1
1
255  
0
Table 24. ACIM = 0100 and CO Termination = 220 Ω + 820 Ω + 120 nF  
Line Type  
Hybrid Coefficient #  
1
0
2
3
4
6
5
6
2
7
1
8
0
EIA 0  
EIA 1  
248  
249  
249  
246  
247  
248  
249  
236  
251  
249  
249  
254  
253  
251  
250  
253  
246  
240  
18  
255  
255  
254  
252  
253  
252  
8
254  
255  
1
4
1
1
0
EIA 2  
2
0
0
0
EIA 3  
4
1
0
255  
255  
254  
254  
1
EIA 4  
252  
3
1
0
255  
255  
2
EIA 5  
2
254  
247  
5
EIA 6  
0
8
EIA 7  
244  
1
14  
5
241  
0
254  
2
2000 ft. 22 awg  
2000 ft. 24 awg  
2000 ft 26 awg  
249  
251  
253  
0
255  
0
0
5
255  
255  
0
1
254  
4
1
1
0
Rev. 0.6  
21  
AN84  
Table 25. ACIM = 0101 and CO Termination = 300 Ω + 1000 Ω + 220 nF  
Line Type  
Hybrid Coefficient #  
1
1
2
3
255  
2
4
1
5
6
0
7
0
8
0
EIA 0  
EIA 1  
0
0
254  
255  
1
255  
252  
249  
250  
251  
252  
239  
1
0
255  
254  
252  
254  
253  
9
1
0
0
EIA 2  
0
2
0
255  
255  
255  
255  
3
255  
255  
255  
254  
254  
1
EIA 3  
255  
1
4
1
EIA 4  
252  
3
1
0
EIA 5  
251  
244  
21  
254  
0
2
255  
247  
5
EIA 6  
0
8
EIA 7  
244  
1
14  
255  
0
244  
1
254  
0
2000 ft. 22 awg  
2000 ft. 24 awg  
2000 ft 26 awg  
255  
0
0
0
0
0
0
0
254  
255  
2
0
255  
1
0
0
Table 26. ACIM = 0101 and CO Termination = 370 Ω + 620 Ω + 310 nF  
Line Type  
Hybrid Coefficient #  
1
0
2
4
3
4
4
0
5
1
6
1
7
0
8
1
EIA 0  
EIA 1  
254  
255  
1
0
6
1
0
2
255  
0
1
EIA 2  
252  
249  
250  
251  
252  
239  
3
1
3
254  
253  
255  
254  
9
1
0
EIA 3  
255  
1
5
1
0
255  
0
EIA 4  
252  
3
2
0
255  
255  
3
EIA 5  
250  
244  
21  
3
3
255  
247  
5
255  
254  
1
EIA 6  
0
8
EIA 7  
244  
1
14  
0
244  
1
254  
0
2000 ft. 22 awg  
2000 ft. 24 awg  
2000 ft 26 awg  
0
0
0
1
4
1
0
1
0
0
254  
0
6
1
0
2
255  
1
22  
Rev. 0.6  
AN84  
Table 27. ACIM = 0101 and CO Termination = 270 Ω + 750 Ω + 150 nF  
Line Type  
Hybrid Coefficient #  
1
0
2
3
2
4
4
5
1
6
2
7
1
8
0
EIA 0  
EIA 1  
254  
253  
252  
249  
250  
251  
252  
239  
0
254  
255  
1
2
3
1
2
1
1
EIA 2  
0
2
255  
253  
254  
253  
9
1
0
0
EIA 3  
254  
1
4
1
0
0
EIA 4  
252  
3
1
0
255  
255  
3
0
EIA 5  
250  
244  
21  
255  
0
2
255  
247  
5
255  
254  
1
EIA 6  
0
8
EIA 7  
244  
1
14  
3
244  
2
254  
1
2000 ft. 22 awg  
2000 ft. 24 awg  
2000 ft 26 awg  
0
0
0
254  
253  
3
1
1
1
0
254  
2
3
1
2
1
1
Table 28. ACIM = 1010 and CO Termination = 200 Ω + 560 Ω + 100 nF  
Line Type  
Hybrid Coefficient #  
1
1
2
2
3
4
5
0
6
7
0
8
0
EIA 0  
EIA 1  
1
0
0
255  
255  
1
1
0
255  
252  
254  
251  
252  
1
1
255  
255  
255  
254  
253  
245  
0
0
0
EIA 2  
255  
253  
253  
254  
255  
242  
4
252  
250  
253  
246  
239  
16  
0
0
0
EIA 3  
254  
255  
253  
8
0
0
EIA 4  
253  
3
255  
255  
3
0
EIA 5  
254  
253  
1
EIA 6  
1
EIA 7  
244  
2
9
245  
2
254  
1
2000 ft. 22 awg  
2000 ft. 24 awg  
2000 ft 26 awg  
253  
254  
0
255  
255  
255  
254  
255  
255  
0
1
2
1
1
0
255  
1
1
0
0
Rev. 0.6  
23  
AN84  
APPENDIX C—EIA LINE MODELS  
2 kft  
26 AWG  
EIA1  
EO  
EO  
EO  
NI  
4 kft  
26 AWG  
3 kft  
24 AWG  
NI  
NI  
EIA2  
EIA3  
1.5 kft  
26 AWG  
7 kft  
26 AWG  
12 kft  
26 AWG  
EO  
EO  
NI  
NI  
EIA4  
EIA5  
1.5 kft  
26 AWG  
9 kft  
24 AWG  
6 kft  
24 AWG  
9 kft  
22  
AWG  
6 kft  
22  
AWG  
3 kft  
24  
AWG  
6 kft  
24  
AWG  
6 kft  
24  
AWG  
EO  
EO  
NI  
NI  
EIA6  
EIA7  
88  
88  
88  
88  
88  
88  
3 kft  
24  
AWG  
6 kft  
24  
AWG  
6 kft  
24  
AWG  
6 kft  
22  
AWG  
6 kft  
22  
3 kft  
22  
AWG  
AWG  
88  
88  
88  
Figure 9. EIA Line Models  
24  
Rev. 0.6  
AN84  
DOCUMENT CHANGE LIST  
Revision 0.3 to Revision 0.4  
„ Added Figure 5 on page 4.  
„ Added " Appendix C—EIA Line Models" on page 24.  
Revision 0.4 to Revision 0.5  
„ Updated Figure 5 on page 4.  
„ Added Tables 17–32 (information for Rev E and later  
versions of the Si3019).  
Revision 0.5 to Revision 0.6  
„ Updated "1.2. Digital Hybrid Calculation Tool" on  
page 3.  
„ Updated Figure 5 on page 4.  
„ Updated " Appendix B—Hybrid Coefficient Lookup  
Tables" on page 10.  
Rev. 0.6  
25  
AN84  
CONTACT INFORMATION  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
Tel: 1+(512) 416-8500  
Fax: 1+(512) 416-9669  
Toll Free: 1+(877) 444-3032  
Email: SiDAAinfo@silabs.com  
Internet: www.silabs.com  
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.  
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from  
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features  
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-  
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-  
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to  
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-  
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-  
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.  
Silicon Laboratories, Silicon Labs, and ISOmodem are trademarks of Silicon Laboratories Inc.  
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.  
26  
Rev. 0.6  

相关型号:

AN8410SA

Servo Motor Controller/Driver
ETC

AN8420FBP

Spindle/Voice Coil Motor Drive IC
PANASONIC

AN8428GAK

For 3.5inch HDD Motor Comb IC
PANASONIC

AN8470NSA

Spindle motor driver IC for optical disk
PANASONIC

AN8472SA

Spindle motor driver IC for optical disk
PANASONIC

AN8473SA

Spindle motor driver IC for optical disk
PANASONIC

AN8480NSB

3-phase full-wave motor driver IC
PANASONIC

AN8481SB

Spindle motor driver IC for optical disk
PANASONIC

AN8482SB

Brushless DC Motor Controller, 1.2A, PDSO28, 0.400 INCH, PLASTIC, HSOP-28
PANASONIC

AN8488

3-phase full-wave motor driver and DC motor BTL driver IC
PANASONIC