BGM13S32F512GN-V3R [SILICON]

Blue Gecko Bluetooth ® SiP Module;
BGM13S32F512GN-V3R
型号: BGM13S32F512GN-V3R
厂家: SILICON    SILICON
描述:

Blue Gecko Bluetooth ® SiP Module

文件: 总142页 (文件大小:3362K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
BGM13S Blue Gecko Bluetooth SiP  
Module Data Sheet  
The BGM13S is Silicon Labs’ first SiP module solution for Bluetooth 5 connectivity. It  
supports 2 Mbps, 1 Mbps and coded LE Bluetooth PHYs. Also, with 512 kB of flash and  
KEY FEATURES  
64 kB of RAM, the BGM13S is suited to meet Bluetooth Mesh networking memory re-  
quirements effectively.  
• Bluetooth 5 compliant  
• Fit for Bluetooth Mesh  
Based on the EFR32BG13 Blue Gecko SoC, the BGM13S delivers robust RF perform-  
ance, low energy consumption, a wide selection of MCU peripherals, regulatory test cer-  
tificates for various regions and countries, and a simplified development experience, all  
in a 6.5 × 6.5 mm package. Together with the certified software stacks and powerful  
tools also offered by Silicon Labs, the BGM13S minimizes the area requirements, engi-  
neering efforts and development costs associated with adding Bluetooth 5.0 or Bluetooth  
Mesh connectivity to any product, accelerating its time-to-market.  
• Antenna or RF Pin variants  
• Up to +19 dBm TX power  
• -94.1 dBm RX sensitivity at 1 Mbps  
• 32-bit ARM® Cortex®-M4 core at 38.4  
MHz  
• 512/64 kB of flash/RAM memory  
• Precision Low Frequency Oscillator meets  
Bluetooth Low Energy Sleep Clock  
accuracy requirements  
The BGM13S is intended for a broad range of applications, including:  
• Wearables  
• Autonomous Hardware Crypto  
Accelerators  
• IoT end-node devices and gateways  
• Health, sports, and wellness  
• Industrial, home, and building automation  
• Beacons  
• Integrated DC-DC converter  
• 32 GPIO pins  
• 6.5 mm × 6.5 mm × 1.4 mm  
• Smart phone, tablet, and PC accessories  
Core / Memory  
Crystal  
Clock Management  
Energy Management  
Other  
H-F Crystal  
Oscillator  
H-F  
RC Oscillator  
Voltage  
38.4 MHz  
CRYPTO  
CRC  
Voltage Monitor  
Regulator  
ARM CortexTM M4 processor  
with DSP extensions, FPU and MPU  
Flash Program  
Memory  
Precision L-F RC  
Oscillator  
Auxiliary H-F RC  
Oscillator  
DC-DC  
Power-On Reset  
Converter  
L-F Crystal  
Oscillator  
L-F  
True Random  
Number Generator  
RC Oscillator  
Brown-Out  
Detector  
LDMA  
Controller  
Ultra L-F RC  
Oscillator  
ETM  
Debug Interface  
RAM Memory  
SMU  
32-bit bus  
Peripheral Reflex System  
Antenna  
Radio Transceiver  
Serial  
I/O Ports  
Timers and Triggers  
Analog I/F  
Interfaces  
DEMOD  
IFADC  
AGC  
ADC  
External  
Interrupts  
USART  
Timer/Counter  
Protocol Timer  
Chip Antenna  
Matching  
Analog  
Comparator  
PGA  
I
Low Energy  
UARTTM  
General  
Purpose I/O  
Low Energy  
Timer  
Low Energy  
Sensor Interface  
LNA  
IDAC  
RF Frontend  
PA  
Capacitive  
Touch  
I2C  
Pin Reset  
Pulse Counter  
Watchdog Timer  
Cryotimer  
Frequency  
Synthesizer  
Q
VDAC  
MOD  
Real Time  
Counter and  
Calendar  
Pin Wakeup  
Op-Amp  
Lowest power mode with peripheral operational:  
EM0—Active EM1—Sleep  
EM2—Deep Sleep  
EM3—Stop  
EM4—Hibernate  
EM4—Shutoff  
silabs.com | Building a more connected world.  
Rev. 1.1  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Feature List  
1. Feature List  
Supported Protocols  
• Bluetooth 5  
Support for Internet Security  
• General Purpose CRC  
• Bluetooth Mesh  
• True Random Number Generator (TRNG)  
Wireless System-on-Chip  
• 2.4 GHz radio  
• 2 × Hardware Cryptographic Accelerators (CRYPTO) for  
AES 128/256, SHA-1, SHA-2 (SHA-224 and SHA-256) and  
ECC  
• TX power up to +19 dBm  
Wide Selection of MCU Peripherals  
• 12-bit 1 Msps SAR Analog to Digital Converter (ADC)  
• 2 × Analog Comparator (ACMP)  
High Performance 32-bit 38.4 MHz ARM Cortex®-M4 with  
DSP instruction and floating-point unit for efficient signal  
processing  
• 2 × Digital to Analog Converter (VDAC)  
• 3 × Operational Amplifier (Opamp)  
• 512 kB flash program memory  
• 64 kB RAM data memory  
• Digital to Analog Current Converter (IDAC)  
• Low-Energy Sensor Interface (LESENSE)  
• Multi-channel Capacitive Sense Interface (CSEN)  
• Embedded Trace Macrocell (ETM) for advanced debugging  
• Integrated DC-DC converter  
High Receiver Performance  
• 32 pins connected to analog channels (APORT) shared be-  
tween analog peripherals  
• -102.1 dBm sensitivity at 125 kbit/s GFSK  
• -97.9 dBm sensitivity at 500 kbit/s GFSK  
• -94.1 dBm sensitivity at 1 Mbit/s GFSK  
• -90.2 dBm sensitivity at 2 Mbit/s GFSK  
Low Energy Consumption  
• 32 General Purpose I/O pins with output state retention and  
asynchronous interrupts  
• 8 Channel DMA Controller  
• 12 Channel Peripheral Reflex System (PRS)  
• 2 ×16-bit Timer/Counter  
• 9.7 mA RX current at 1 Mbps, GFSK  
• 8.9 mA TX current at 0 dBm output power  
• 87 μA/MHz in Active Mode (EM0)  
• 3 or 4 Compare/Capture/PWM channels  
• 1 × 32-bit Timer/Counter  
• 1.4 μA EM2 DeepSleep current (full RAM retention and  
RTCC running from LFXO)  
• 3 Compare/Capture/PWM channels  
• Precision Low Frequency RC Oscillator (PLFRCO)  
• 32-bit Real Time Counter and Calendar  
• 16-bit Low Energy Timer for waveform generation  
• 1.14 μA EM3 Stop current (State/RAM retention)  
• Wake on Radio with signal strength detection, preamble  
pattern detection, frame detection and timeout  
• 32-bit Ultra Low Energy Timer/Counter for periodic wake-up  
from any Energy Mode  
Regulatory Certifications  
• FCC  
• 16-bit Pulse Counter with asynchronous operation  
• 2 × Watchdog Timer  
• CE  
• IC / ISEDC  
• 3 × Universal Synchronous/Asynchronous Receiver/Trans-  
mitter (UART/SPI/SmartCard (ISO 7816)/IrDA/I2S)  
• MIC / Telec  
Wide Operating Range  
• 1.8 V to 3.8 V single power supply  
• -40 °C to +85 °C  
Dimensions  
Low Energy UART (LEUART)  
2 × I2C interface with SMBus support and address recogni-  
tion in EM3 Stop  
• 6.5 mm × 6.5 mm × 1.4 mm  
silabs.com | Building a more connected world.  
Rev. 1.1 | 2  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Ordering Information  
2. Ordering Information  
Table 2.1. Ordering Information  
Flash  
(kB)  
RAM  
(kB)  
Ordering Code  
Protocol Stack  
Max TX Power  
19 dBm  
19 dBm  
19 dBm  
19 dBm  
8 dBm  
Antenna  
GPIO  
32  
Packaging  
Cut Tape  
Reel  
BGM13S32F512GA-V3  
BGM13S32F512GA-V3R  
BGM13S32F512GN-V3  
BGM13S32F512GN-V3R  
BGM13S22F512GA-V3  
BGM13S22F512GA-V3R  
BGM13S22F512GN-V3  
BGM13S22F512GN-V3R  
Bluetooth LE  
Bluetooth LE  
Bluetooth LE  
Bluetooth LE  
Bluetooth LE  
Bluetooth LE  
Bluetooth LE  
Bluetooth LE  
Built-in  
Built-in  
RF pin  
RF pin  
Built-in  
Built-in  
RF pin  
RF pin  
512  
512  
512  
512  
512  
512  
512  
512  
64  
64  
64  
64  
64  
64  
64  
64  
32  
32  
Cut Tape  
Reel  
32  
32  
Cut Tape  
Reel  
8 dBm  
32  
8 dBm  
32  
Cut Tape  
Reel  
8 dBm  
32  
Radio board development hardware is also available:  
SLWRB4305A for BGM13S32 Blue Gecko Module Radio Board  
SLWRB4305C for BGM13S22 Blue Gecko Module Radio Board  
End-product manufacturers must verify that the module is configured to meet regulatory limits for each region in accordance with the  
formal certification test reports.  
Devices ship with the Gecko UART DFU bootloader 1.4.1 + NCP application from Bluetooth SDK 2.8.1.0. The firmware settings con-  
form to the diagram shown in .  
silabs.com | Building a more connected world.  
Rev. 1.1 | 3  
Table of Contents  
1. Feature List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
2. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
3. System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
3.2 Radio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
3.2.1 Antenna Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
3.2.2 RFSENSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
3.2.3 Packet and State Trace . . . . . . . . . . . . . . . . . . . . . . . . . 8  
3.2.4 Random Number Generator . . . . . . . . . . . . . . . . . . . . . . . . 8  
3.3 Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.3.1 Energy Management Unit (EMU) . . . . . . . . . . . . . . . . . . . . . .10  
3.3.2 DC-DC Converter . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
3.3.3 Power Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
3.4 General Purpose Input/Output (GPIO) . . . . . . . . . . . . . . . . . . . . . .10  
3.5 Clocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
3.5.1 Clock Management Unit (CMU) . . . . . . . . . . . . . . . . . . . . . . .10  
3.5.2 Internal Oscillators and Crystal . . . . . . . . . . . . . . . . . . . . . . .11  
3.6 Counters/Timers and PWM . . . . . . . . . . . . . . . . . . . . . . . . . .11  
3.6.1 Timer/Counter (TIMER) . . . . . . . . . . . . . . . . . . . . . . . . .11  
3.6.2 Wide Timer/Counter (WTIMER) . . . . . . . . . . . . . . . . . . . . . . .11  
3.6.3 Real Time Counter and Calendar (RTCC) . . . . . . . . . . . . . . . . . . .11  
3.6.4 Low Energy Timer (LETIMER) . . . . . . . . . . . . . . . . . . . . . . .11  
3.6.5 Ultra Low Power Wake-up Timer (CRYOTIMER) . . . . . . . . . . . . . . . . .11  
3.6.6 Pulse Counter (PCNT) . . . . . . . . . . . . . . . . . . . . . . . . . .12  
3.6.7 Watchdog Timer (WDOG). . . . . . . . . . . . . . . . . . . . . . . . .12  
3.7 Communications and Other Digital Peripherals . . . . . . . . . . . . . . . . . . .12  
3.7.1 Universal Synchronous/Asynchronous Receiver/Transmitter (USART) . . . . . . . . . .12  
3.7.2 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART) . . . . . . . . . .12  
2
3.7.3 Inter-Integrated Circuit Interface (I C) . . . . . . . . . . . . . . . . . . . . .12  
3.7.4 Peripheral Reflex System (PRS) . . . . . . . . . . . . . . . . . . . . . .12  
3.7.5 Low Energy Sensor Interface (LESENSE) . . . . . . . . . . . . . . . . . . .12  
3.8 Security Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
3.8.1 General Purpose Cyclic Redundancy Check (GPCRC) . . . . . . . . . . . . . . .12  
3.8.2 Crypto Accelerator (CRYPTO) . . . . . . . . . . . . . . . . . . . . . . .13  
3.8.3 True Random Number Generator (TRNG) . . . . . . . . . . . . . . . . . . .13  
3.8.4 Security Management Unit (SMU) . . . . . . . . . . . . . . . . . . . . . .13  
3.9 Analog. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
3.9.1 Analog Port (APORT) . . . . . . . . . . . . . . . . . . . . . . . . . .13  
3.9.2 Analog Comparator (ACMP) . . . . . . . . . . . . . . . . . . . . . . . .13  
3.9.3 Analog to Digital Converter (ADC) . . . . . . . . . . . . . . . . . . . . . .13  
3.9.4 Capacitive Sense (CSEN). . . . . . . . . . . . . . . . . . . . . . . . .13  
3.9.5 Digital to Analog Current Converter (IDAC) . . . . . . . . . . . . . . . . . . .14  
silabs.com | Building a more connected world.  
Rev. 1.1 | 4  
3.9.6 Digital to Analog Converter (VDAC) . . . . . . . . . . . . . . . . . . . . .14  
3.9.7 Operational Amplifiers . . . . . . . . . . . . . . . . . . . . . . . . . .14  
3.10 Reset Management Unit (RMU) . . . . . . . . . . . . . . . . . . . . . . . .14  
3.11 Core and Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
3.11.1 Processor Core . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
3.11.2 Memory System Controller (MSC) . . . . . . . . . . . . . . . . . . . . .14  
3.11.3 Linked Direct Memory Access Controller (LDMA) . . . . . . . . . . . . . . . .14  
3.12 Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
3.13 Configuration Summary . . . . . . . . . . . . . . . . . . . . . . . . . .16  
4. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
4.1 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . .17  
4.1.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . .18  
4.1.2 Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . .19  
4.1.3 DC-DC Converter . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
4.1.4 Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . .22  
4.1.5 Wake Up Times . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
4.1.6 Brown Out Detector (BOD) . . . . . . . . . . . . . . . . . . . . . . . .28  
4.1.7 Frequency Synthesizer. . . . . . . . . . . . . . . . . . . . . . . . . .29  
4.1.8 2.4 GHz RF Transceiver Characteristics . . . . . . . . . . . . . . . . . . . .30  
4.1.9 Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
4.1.10 Flash Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . .42  
4.1.11 General-Purpose I/O (GPIO) . . . . . . . . . . . . . . . . . . . . . . .43  
4.1.12 Voltage Monitor (VMON). . . . . . . . . . . . . . . . . . . . . . . . .45  
4.1.13 Analog to Digital Converter (ADC) . . . . . . . . . . . . . . . . . . . . .46  
4.1.14 Analog Comparator (ACMP) . . . . . . . . . . . . . . . . . . . . . . .48  
4.1.15 Digital to Analog Converter (VDAC) . . . . . . . . . . . . . . . . . . . . .51  
4.1.16 Current Digital to Analog Converter (IDAC) . . . . . . . . . . . . . . . . . .54  
4.1.17 Capacitive Sense (CSEN) . . . . . . . . . . . . . . . . . . . . . . . .56  
4.1.18 Operational Amplifier (OPAMP) . . . . . . . . . . . . . . . . . . . . . .58  
4.1.19 Pulse Counter (PCNT) . . . . . . . . . . . . . . . . . . . . . . . . .61  
4.1.20 Analog Port (APORT) . . . . . . . . . . . . . . . . . . . . . . . . . .61  
4.1.21 I2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62  
4.1.22 USART SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
5. Typical Connection Diagrams . . . . . . . . . . . . . . . . . . . . . . . . 67  
5.1 Typical BGM13S Connections . . . . . . . . . . . . . . . . . . . . . . . . .67  
6. Layout Guidelines  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
6.1 Layout Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69  
6.2 Effect of PCB Width . . . . . . . . . . . . . . . . . . . . . . . . . . . .70  
6.3 Effect of Plastic and Metal Materials . . . . . . . . . . . . . . . . . . . . . . .70  
6.4 Effects of Human Body . . . . . . . . . . . . . . . . . . . . . . . . . . .71  
6.5 2D Radiation Pattern Plots . . . . . . . . . . . . . . . . . . . . . . . . . .71  
7. Pin Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
7.1 BGM13S Device Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . .73  
silabs.com | Building a more connected world.  
Rev. 1.1 | 5  
7.2 GPIO Functionality Table . . . . . . . . . . . . . . . . . . . . . . . . . .75  
7.3 Alternate Functionality Overview . . . . . . . . . . . . . . . . . . . . . . . 103  
7.4 Analog Port (APORT) Client Maps  
8. Package Specifications . . . . . . . . . . . . . . . . . . . . . . . . . 1.24  
8.1 BGM13S Package Dimensions . . . . . . . . . . . . . . . . . . . . . . 1. 24  
8.2 BGM13S Recommeded PCB Land Pattern . . . . . . . . . . . . . . . . . . .127  
. . . . . . . . . . . . . . . . . . . . . .115  
8.3 BGM13S Package Marking  
. . . . . . . . . . . . . . . . . . . . . . . 1.31  
9. Tape and Reel Specifications  
. . . . . . . . . . . . . . . . . . . . . . . .132  
9.1 Tape and Reel Packaging . . . . . . . . . . . . . . . . . . . . . . . . .132  
9.2 Reel and Tape Specifications . . . . . . . . . . . . . . . . . . . . . . . . 132  
9.3 Orientation and Tape Feed . . . . . . . . . . . . . . . . . . . . . . . . . 133  
9.4 Tape and Reel Box Dimensions . . . . . . . . . . . . . . . . . . . . . . .134  
9.5 Moisture Sensitivity Level  
. . . . . . . . . . . . . . . . . . . . . . . . .134  
10. Soldering Recommendations . . . . . . . . . . . . . . . . . . . . . . . . 135  
10.1 Soldering Recommendations. . . . . . . . . . . . . . . . . . . . . . . . 135  
11. Certifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
11.1 Qualified Antenna Types . . . . . . . . . . . . . . . . . . . . . . . . .136  
11.2 Bluetooth  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136  
11.3 CE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.36  
11.4 FCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
11.5 ISED Canada . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
11.6 Japan  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1. 40  
11.7 KC South Korea . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
12. Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
silabs.com | Building a more connected world.  
Rev. 1.1 | 6  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
System Overview  
3. System Overview  
3.1 Introduction  
The BGM13S product family combines an energy-friendly MCU with a highly integrated radio transceiver and a high performance, ultra  
robust antenna. The devices are well suited for any battery operated application, as well as other system where ultra-small size, reliable  
high performance RF, low-power consumption and easy application development are key requirements. This section gives a short intro-  
duction to the full radio and MCU system.  
A detailed block diagram of the BGM13S module is shown in the figure below.  
Antenna  
Radio Transciever  
Port I/O Configuration  
Digital Peripherals  
IOVDD  
DEMOD  
IFADC  
AGC  
Chip  
Antenna  
RF Frontend  
LETIMER  
PGA  
I
Port A  
Drivers  
LNA  
PAn  
TIMER  
CRYOTIMER  
PCNT  
Matching  
PA  
Frequency  
Synthesizer  
Q
Port B  
Drivers  
PBn  
PCn  
PDn  
PFn  
MOD  
RTC / RTCC  
USART  
Port  
Mapper  
Reset  
Management  
Unit  
Port C  
Drivers  
ARM Cortex-M4 Core  
RESETn  
LEUART  
I2C  
Serial Wire  
and ETM  
Debug /  
512 KB ISP Flash  
Program Memory  
Debug Signals  
(shared w/GPIO)  
Brown Out /  
Power-On  
Reset  
Port D  
Drivers  
CRYPTO  
CRC  
64 KB RAM  
Memory Protection Unit  
Floating Point Unit  
DMA Controller  
Programming  
A
H
B
A
P
B
Port F  
Drivers  
LESENSE  
Energy Management  
IOVDD  
1V8  
Analog Peripherals  
PAVDD / RFVDD / DVDD  
bypass  
Voltage  
Monitor  
IDAC  
Watchdog  
Timer  
-
VDAC  
+
DC-DC  
Converter  
VBATT  
Voltage  
Regulator  
Op-Amp  
VDD  
Internal  
Reference  
Clock Management  
VREGVDD / AVDD  
ULFRCO  
LFXO  
LFXTAL_P  
LFXTAL_N  
12-bit ADC  
Temp  
Sense  
AUXHFRCO  
LFRCO  
Internal Crystal  
38.4 MHz Crystal  
Capacitive  
Touch  
HFRCO  
HFXO  
+
-
PLFRCO  
Analog Comparator  
Figure 3.1. BGM13S Block Diagram  
3.2 Radio  
The BGM13S features a radio transceiver supporting Bluetooth® low energy protocol. It features a memory buffer and a low-voltage  
circuit that can withstand extremely high data rates.  
3.2.1 Antenna Interface  
The BGM13S has two antenna solution variants. One of them is a high-performance integrated chip antenna (BGM13SxxFxxxxA) and  
the other is a 50 Ohm matched RF pin to attach an external antenna to the module (BGM13SxxFxxxxN).  
silabs.com | Building a more connected world.  
Rev. 1.1 | 7  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
System Overview  
Table 3.1. Antenna Efficiency and Peak Gain  
Parameter  
Efficiency  
Peak gain  
With optimal layout Note  
-1 to -2 dB  
1 dBi  
Antenna efficiency, gain and radiation pattern are highly depend-  
ent on the application PCB layout and mechanical design. Refer  
to for PCB layout and antenna integration guidelines for optimal  
performance.  
3.2.2 RFSENSE  
The RFSENSE block generates a system wakeup interrupt upon detection of wideband RF energy at the antenna interface, providing  
true RF wakeup capabilities from low energy modes including EM2, EM3 and EM4.  
RFSENSE triggers on a relatively strong RF signal and is available in the lowest energy modes, allowing exceptionally low energy con-  
sumption. RFSENSE does not demodulate or otherwise qualify the received signal, but software may respond to the wakeup event by  
enabling normal RF reception.  
Various strategies for optimizing power consumption and system response time in presence of false alarms may be employed using  
available timer peripherals.  
3.2.3 Packet and State Trace  
The BGM13S Frame Controller has a packet and state trace unit that provides valuable information during the development phase. It  
features:  
• Non-intrusive trace of transmit data, receive data and state information  
• Data observability on a single-pin UART data output, or on a two-pin SPI data output  
• Configurable data output bitrate / baudrate  
• Multiplexed transmitted data, received data and state / meta information in a single serial data stream  
3.2.4 Random Number Generator  
The Frame Controller (FRC) implements a random number generator that uses entropy gathered from noise in the RF receive chain.  
The data is suitable for use in cryptographic applications.  
Output from the random number generator can be used either directly or as a seed or entropy source for software-based random num-  
ber generator algorithms such as Fortuna.  
silabs.com | Building a more connected world.  
Rev. 1.1 | 8  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
System Overview  
3.3 Power  
The BGM13S has an Energy Management Unit (EMU) and efficient integrated regulators to generate internal supply voltages. Only a  
single external supply voltage is required, from which all internal voltages are created. An integrated DC-DC buck regulator is utilized to  
further reduce the current consumption. Figure 3.2 Power Supply Configuration for BGM13S22xxx Devices on page 9 and Figure  
3.3 Power Supply Configuration for BGM13S32xxx Devices on page 9 show how the external and internal supplies of the module  
are connected for different part numbers.  
BGM13S22 Module  
EFR32BG13 SoC  
IOVDD  
IOVDD  
I/O Interfaces  
RF  
220nF  
RFVDD  
PAVDD  
DVDD  
RF PA  
1V8  
Digital  
10nF  
4.7µF  
VREGSW  
DC-DC  
DECOUPLE  
4.7µH  
2.2µF  
VREGVDD  
VBATT  
4.9µF  
AVDD  
Analog  
Figure 3.2. Power Supply Configuration for BGM13S22xxx Devices  
BGM13S32 Module  
EFR32BG13 SoC  
IOVDD  
IOVDD  
1V8  
I/O Interfaces  
RF  
220nF  
RFVDD  
DVDD  
Digital  
10nF  
4.7µF  
VREGSW  
DC-DC  
DECOUPLE  
4.7µH  
2.2µF  
VREGVDD  
VBATT  
4.9µF  
AVDD  
Analog  
RF PA  
PAVDD  
Figure 3.3. Power Supply Configuration for BGM13S32xxx Devices  
silabs.com | Building a more connected world.  
Rev. 1.1 | 9  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
System Overview  
3.3.1 Energy Management Unit (EMU)  
The Energy Management Unit manages transitions of energy modes in the device. Each energy mode defines which peripherals and  
features are available and the amount of current the device consumes. The EMU can also be used to turn off the power to unused RAM  
blocks, and it contains control registers for the dc-dc regulator and the Voltage Monitor (VMON). The VMON is used to monitor multiple  
supply voltages. It has multiple channels which can be programmed individually by the user to determine if a sensed supply has fallen  
below a chosen threshold.  
3.3.2 DC-DC Converter  
The DC-DC buck converter covers a wide range of load currents and provides up to 90% efficiency in energy modes EM0, EM1, EM2  
and EM3. Patented RF noise mitigation allows operation of the DC-DC converter without degrading sensitivity of radio components.  
Protection features include programmable current limiting, short-circuit protection, and dead-time protection. The DC-DC converter may  
also enter bypass mode when the input voltage is too low for efficient operation. In bypass mode, the DC-DC input supply is internally  
connected directly to its output through a low resistance switch. Bypass mode also supports in-rush current limiting to prevent input  
supply voltage droops due to excessive output current transients.  
3.3.3 Power Domains  
The BGM13S has two peripheral power domains for operation in EM2 and EM3. If all of the peripherals in a peripheral power domain  
are configured as unused, the power domain for that group will be powered off in the low-power mode, reducing the overall current  
consumption of the device.  
Table 3.2. Peripheral Power Subdomains  
Peripheral Power Domain 1  
Peripheral Power Domain 2  
ACMP0  
PCNT0  
ADC0  
ACMP1  
CSEN  
VDAC0  
LEUART0  
I2C0  
LETIMER0  
LESENSE  
APORT  
-
I2C1  
IDAC  
3.4 General Purpose Input/Output (GPIO)  
BGM13S has up to 32 General Purpose Input/Output pins. Each GPIO pin can be individually configured as either an output or input.  
More advanced configurations including open-drain, open-source, and glitch-filtering can be configured for each individual GPIO pin.  
The GPIO pins can be overridden by peripheral connections, like SPI communication. Each peripheral connection can be routed to sev-  
eral GPIO pins on the device. The input value of a GPIO pin can be routed through the Peripheral Reflex System to other peripherals.  
The GPIO subsystem supports asynchronous external pin interrupts.  
3.5 Clocking  
3.5.1 Clock Management Unit (CMU)  
The Clock Management Unit controls oscillators and clocks in the BGM13S. Individual enabling and disabling of clocks to all peripher-  
als is performed by the CMU. The CMU also controls enabling and configuration of the oscillators. A high degree of flexibility allows  
software to optimize energy consumption in any specific application by minimizing power dissipation in unused peripherals and oscilla-  
tors.  
silabs.com | Building a more connected world.  
Rev. 1.1 | 10  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
System Overview  
3.5.2 Internal Oscillators and Crystal  
The BGM13S fully integrates two crystal oscillators, four RC oscillators, and a 38.4 MHz crystal.  
• The high-frequency crystal oscillator (HFXO) and integrated 38.4 MHz crystal provide a precise timing reference for the MCU and  
radio.  
• The low-frequency crystal oscillator (LFXO) provides an accurate timing reference for low energy modes and the real-time-clock cir-  
cuits.  
• An integrated high frequency RC oscillator (HFRCO) is available for the MCU system, when crystal accuracy is not required. The  
HFRCO employs fast startup at minimal energy consumption combined with a wide frequency range.  
• An integrated auxilliary high frequency RC oscillator (AUXHFRCO) is available for timing the general-purpose ADC and the Serial  
Wire Viewer port with a wide frequency range.  
• An integrated low frequency 32.768 kHz RC oscillator (LFRCO) for low power operation where high accuracy is not required.  
• An integrated low frequency precision 32.768 kHz RC oscillator (PLFRCO) can be used as a timing reference in low energy modes,  
with 500 ppm accuracy.  
• An integrated ultra-low frequency 1 kHz RC oscillator (ULFRCO) is available to provide a timing reference at the lowest energy con-  
sumption in low energy modes.  
3.6 Counters/Timers and PWM  
3.6.1 Timer/Counter (TIMER)  
TIMER peripherals keep track of timing, count events, generate PWM outputs and trigger timed actions in other peripherals through the  
PRS system. The core of each TIMER is a 16-bit counter with up to 4 compare/capture channels. Each channel is configurable in one  
of three modes. In capture mode, the counter state is stored in a buffer at a selected input event. In compare mode, the channel output  
reflects the comparison of the counter to a programmed threshold value. In PWM mode, the TIMER supports generation of pulse-width  
modulation (PWM) outputs of arbitrary waveforms defined by the sequence of values written to the compare registers, with optional  
dead-time insertion available in timer unit TIMER_0 only.  
3.6.2 Wide Timer/Counter (WTIMER)  
WTIMER peripherals function just as TIMER peripherals, but are 32 bits wide. They keep track of timing, count events, generate PWM  
outputs and trigger timed actions in other peripherals through the PRS system. The core of each WTIMER is a 32-bit counter with up to  
4 compare/capture channels. Each channel is configurable in one of three modes. In capture mode, the counter state is stored in a  
buffer at a selected input event. In compare mode, the channel output reflects the comparison of the counter to a programmed thresh-  
old value. In PWM mode, the WTIMER supports generation of pulse-width modulation (PWM) outputs of arbitrary waveforms defined by  
the sequence of values written to the compare registers, with optional dead-time insertion available in timer unit WTIMER_0 only.  
3.6.3 Real Time Counter and Calendar (RTCC)  
The Real Time Counter and Calendar (RTCC) is a 32-bit counter providing timekeeping in all energy modes. The RTCC includes a  
Binary Coded Decimal (BCD) calendar mode for easy time and date keeping. The RTCC can be clocked by any of the on-board oscilla-  
tors with the exception of the AUXHFRCO, and it is capable of providing system wake-up at user defined instances. When receiving  
frames, the RTCC value can be used for timestamping. The RTCC includes 128 bytes of general purpose data retention, allowing easy  
and convenient data storage in all energy modes down to EM4H.  
A secondary RTC is used by the RF protocol stack for event scheduling, leaving the primary RTCC block available exclusively for appli-  
cation software.  
3.6.4 Low Energy Timer (LETIMER)  
The unique LETIMER is a 16-bit timer that is available in energy mode EM2 Deep Sleep in addition to EM1 Sleep and EM0 Active. This  
allows it to be used for timing and output generation when most of the device is powered down, allowing simple tasks to be performed  
while the power consumption of the system is kept at an absolute minimum. The LETIMER can be used to output a variety of wave-  
forms with minimal software intervention. The LETIMER is connected to the Real Time Counter and Calendar (RTCC), and can be con-  
figured to start counting on compare matches from the RTCC.  
3.6.5 Ultra Low Power Wake-up Timer (CRYOTIMER)  
The CRYOTIMER is a 32-bit counter that is capable of running in all energy modes. It can be clocked by either the 32.768 kHz crystal  
oscillator (LFXO), the 32.768 kHz RC oscillator (LFRCO), or the 1 kHz RC oscillator (ULFRCO). It can provide periodic Wakeup events  
and PRS signals which can be used to wake up peripherals from any energy mode. The CRYOTIMER provides a wide range of inter-  
rupt periods, facilitating flexible ultra-low energy operation.  
silabs.com | Building a more connected world.  
Rev. 1.1 | 11  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
System Overview  
3.6.6 Pulse Counter (PCNT)  
The Pulse Counter (PCNT) peripheral can be used for counting pulses on a single input or to decode quadrature encoded inputs. The  
clock for PCNT is selectable from either an external source on pin PCTNn_S0IN or from an internal timing reference, selectable from  
among any of the internal oscillators, except the AUXHFRCO. The peripheral may operate in energy mode EM0 Active, EM1 Sleep,  
EM2 Deep Sleep, and EM3 Stop.  
3.6.7 Watchdog Timer (WDOG)  
The watchdog timer can act both as an independent watchdog or as a watchdog synchronous with the CPU clock. It has windowed  
monitoring capabilities, and can generate a reset or different interrupts depending on the failure mode of the system. The watchdog can  
also monitor autonomous systems driven by PRS.  
3.7 Communications and Other Digital Peripherals  
3.7.1 Universal Synchronous/Asynchronous Receiver/Transmitter (USART)  
The Universal Synchronous/Asynchronous Receiver/Transmitter is a flexible serial I/O interface. It supports full duplex asynchronous  
UART communication with hardware flow control as well as RS-485, SPI, MicroWire and 3-wire. It can also interface with devices sup-  
porting:  
• ISO7816 SmartCards  
• IrDA  
I2S  
3.7.2 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART)  
The unique LEUARTTM provides two-way UART communication on a strict power budget. Only a 32.768 kHz clock is needed to allow  
UART communication up to 9600 baud. The LEUART includes all necessary hardware to make asynchronous serial communication  
possible with a minimum of software intervention and energy consumption.  
3.7.3 Inter-Integrated Circuit Interface (I2C)  
The I2C interface enables communication between the MCU and a serial I2C bus. It is capable of acting as both a master and a slave  
and supports multi-master buses. Standard-mode, fast-mode and fast-mode plus speeds are supported, allowing transmission rates  
from 10 kbit/s up to 1 Mbit/s. Slave arbitration and timeouts are also available, allowing implementation of an SMBus-compliant system.  
The interface provided to software by the I2C peripheral allows precise timing control of the transmission process and highly automated  
transfers. Automatic recognition of slave addresses is provided in active and low energy modes.  
3.7.4 Peripheral Reflex System (PRS)  
The Peripheral Reflex System provides a communication network between different peripherals without software involvement. Peripher-  
als producing Reflex signals are called producers. The PRS routes Reflex signals from producers to consumer peripherals, which in  
turn perform actions in response. Edge triggers and other functionality such as simple logic operations (AND, OR, NOT) can be applied  
by the PRS to the signals. The PRS allows peripheral to act autonomously without waking the MCU core, saving power.  
3.7.5 Low Energy Sensor Interface (LESENSE)  
The Low Energy Sensor Interface LESENSETM is a highly configurable sensor interface with support for up to 16 individually configura-  
ble sensors. By controlling the analog comparators, ADC, and DAC, LESENSE is capable of supporting a wide range of sensors and  
measurement schemes, and can for instance measure LC sensors, resistive sensors and capacitive sensors. LESENSE also includes a  
programmable finite state machine which enables simple processing of measurement results without CPU intervention. LESENSE is  
available in energy mode EM2, in addition to EM0 and EM1, making it ideal for sensor monitoring in applications with a strict energy  
budget.  
3.8 Security Features  
3.8.1 General Purpose Cyclic Redundancy Check (GPCRC)  
The GPCRC block implements a Cyclic Redundancy Check (CRC) function. It supports both 32-bit and 16-bit polynomials. The suppor-  
ted 32-bit polynomial is 0x04C11DB7 (IEEE 802.3), while the 16-bit polynomial can be programmed to any value, depending on the  
needs of the application.  
silabs.com | Building a more connected world.  
Rev. 1.1 | 12  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
System Overview  
3.8.2 Crypto Accelerator (CRYPTO)  
The Crypto Accelerator is a fast and energy-efficient autonomous hardware encryption and decryption accelerator. EFR32 devices sup-  
port AES encryption and decryption with 128- or 256-bit keys, ECC over both GF(P) and GF(2m), SHA-1 and SHA-2 (SHA-224 and  
SHA-256).  
Supported block cipher modes of operation for AES include: ECB, CTR, CBC, PCBC, CFB, OFB, GCM, CBC-MAC, GMAC and CCM.  
Supported ECC NIST recommended curves include P-192, P-224, P-256, K-163, K-233, B-163 and B-233.  
The CRYPTO1 block is tightly linked to the Radio Buffer Controller (BUFC) enabling fast and efficient autonomous cipher operations on  
data buffer content. It allows fast processing of GCM (AES), ECC and SHA with little CPU intervention.  
CRYPTO also provides trigger signals for DMA read and write operations.  
3.8.3 True Random Number Generator (TRNG)  
The TRNG is a non-deterministic random number generator based on a full hardware solution. The TRNG is validated with NIST800-22  
and AIS-31 test suites as well as being suitable for FIPS 140-2 certification (for the purposes of cryptographic key generation).  
3.8.4 Security Management Unit (SMU)  
The Security Management Unit (SMU) allows software to set up fine-grained security for peripheral access, which is not possible in the  
Memory Protection Unit (MPU). Peripherals may be secured by hardware on an individual basis, such that only priveleged accesses to  
the peripheral's register interface will be allowed. When an access fault occurs, the SMU reports the specific peripheral involved and  
can optionally generate an interrupt.  
3.9 Analog  
3.9.1 Analog Port (APORT)  
The Analog Port (APORT) is an analog interconnect matrix allowing access to many analog peripherals on a flexible selection of pins.  
Each APORT bus consists of analog switches connected to a common wire. Since many clients can operate differentially, buses are  
grouped by X/Y pairs.  
3.9.2 Analog Comparator (ACMP)  
The Analog Comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is high-  
er. Inputs are selected from among internal references and external pins. The tradeoff between response time and current consumption  
is configurable by software. Two 6-bit reference dividers allow for a wide range of internally-programmable reference sources. The  
ACMP can also be used to monitor the supply voltage. An interrupt can be generated when the supply falls below or rises above the  
programmable threshold.  
3.9.3 Analog to Digital Converter (ADC)  
The ADC is a Successive Approximation Register (SAR) architecture, with a resolution of up to 12 bits at up to 1 Msps. The output  
sample resolution is configurable and additional resolution is possible using integrated hardware for averaging over multiple samples.  
The ADC includes integrated voltage references and an integrated temperature sensor. Inputs are selectable from a wide range of  
sources, including pins configurable as either single-ended or differential.  
3.9.4 Capacitive Sense (CSEN)  
The CSEN peripheral is a dedicated Capacitive Sensing block for implementing touch-sensitive user interface elements such a  
switches and sliders. The CSEN peripheral uses a charge ramping measurement technique, which provides robust sensing even in  
adverse conditions including radiated noise and moisture. The peripheral can be configured to take measurements on a single port pin  
or scan through multiple pins and store results to memory through DMA. Several channels can also be shorted together to measure the  
combined capacitance or implement wake-on-touch from very low energy modes. Hardware includes a digital accumulator and an aver-  
aging filter, as well as digital threshold comparators to reduce software overhead.  
silabs.com | Building a more connected world.  
Rev. 1.1 | 13  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
System Overview  
3.9.5 Digital to Analog Current Converter (IDAC)  
The IDAC can source or sink a configurable constant current. This current can be driven on an output pin or routed to the selected ADC  
input pin for capacitive sensing. The full-scale current is programmable between 0.05 µA and 64 µA with several ranges consisting of  
various step sizes.  
3.9.6 Digital to Analog Converter (VDAC)  
The Digital to Analog Converter (VDAC) can convert a digital value to an analog output voltage. The VDAC is a fully differential, 500  
ksps, 12-bit converter. The opamps are used in conjunction with the VDAC, to provide output buffering. One opamp is used per single-  
ended channel, or two opamps are used to provide differential outputs. The VDAC may be used for a number of different applications  
such as sensor interfaces or sound output. The VDAC can generate high-resolution analog signals while the MCU is operating at low  
frequencies and with low total power consumption. Using DMA and a timer, the VDAC can be used to generate waveforms without any  
CPU intervention. The VDAC is available in all energy modes down to and including EM3.  
3.9.7 Operational Amplifiers  
The opamps are low power amplifiers with a high degree of flexibility targeting a wide variety of standard opamp application areas, and  
are available down to EM3. With flexible built-in programming for gain and interconnection they can be configured to support multiple  
common opamp functions. All pins are also available externally for filter configurations. Each opamp has a rail to rail input and a rail to  
rail output. They can be used in conjunction with the VDAC peripheral or in stand-alone configurations. The opamps save energy, PCB  
space, and cost as compared with standalone opamps because they are integrated on-chip.  
3.10 Reset Management Unit (RMU)  
The RMU is responsible for handling reset of the BGM13S. A wide range of reset sources are available, including several power supply  
monitors, pin reset, software controlled reset, core lockup reset, and watchdog reset.  
3.11 Core and Memory  
3.11.1 Processor Core  
The ARM Cortex-M processor includes a 32-bit RISC processor integrating the following features and tasks in the system:  
• ARM Cortex-M4 RISC processor achieving 1.25 Dhrystone MIPS/MHz  
• Memory Protection Unit (MPU) supporting up to 8 memory segments  
• Up to 512 kB flash program memory  
• Up to 64 kB RAM data memory  
• Configuration and event handling of all peripherals  
• 2-pin Serial-Wire debug interface  
3.11.2 Memory System Controller (MSC)  
The Memory System Controller (MSC) is the program memory unit of the microcontroller. The flash memory is readable and writable  
from both the Cortex-M and DMA. The flash memory is divided into two blocks; the main block and the information block. Program code  
is normally written to the main block, whereas the information block is available for special user data and flash lock bits. There is also a  
read-only page in the information block containing system and device calibration data. Read and write operations are supported in en-  
ergy modes EM0 Active and EM1 Sleep.  
3.11.3 Linked Direct Memory Access Controller (LDMA)  
The Linked Direct Memory Access (LDMA) controller allows the system to perform memory operations independently of software. This  
reduces both energy consumption and software workload. The LDMA allows operations to be linked together and staged, enabling so-  
phisticated operations to be implemented.  
silabs.com | Building a more connected world.  
Rev. 1.1 | 14  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
System Overview  
3.12 Memory Map  
The BGM13S memory map is shown in the figures below. RAM and flash sizes are for the largest memory configuration.  
Figure 3.4. BGM13S Memory Map — Core Peripherals and Code Space  
silabs.com | Building a more connected world.  
Rev. 1.1 | 15  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
System Overview  
Figure 3.5. BGM13S Memory Map — Peripherals  
3.13 Configuration Summary  
Many peripherals on the BGM13S are available in multiple instances. However, certain USART, TIMER and WTIMER instances imple-  
ment only a subset of the full features for that peripheral type. The table below describes the specific features available on these periph-  
eral instances. All remaining peripherals support full configuration.  
Table 3.3. Configuration Summary  
Peripheral  
USART0  
USART1  
Configuration  
Pin Connections  
IrDA SmartCard  
US0_TX, US0_RX, US0_CLK, US0_CS  
US1_TX, US1_RX, US1_CLK, US1_CS  
IrDA I2S SmartCard  
IrDA SmartCard  
with DTI  
USART2  
TIMER0  
TIMER1  
WTIMER0  
US2_TX, US2_RX, US2_CLK, US2_CS  
TIM0_CC[2:0], TIM0_CDTI[2:0]  
TIM1_CC[3:0]  
-
with DTI  
WTIM0_CC[2:0], WTIM0_CDTI[2:0]  
silabs.com | Building a more connected world.  
Rev. 1.1 | 16  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Electrical Specifications  
4. Electrical Specifications  
4.1 Electrical Characteristics  
All electrical parameters in all tables are specified under the following conditions, unless stated otherwise:  
• Typical values are based on TAMB=25 °C and VDD= 3.3 V, by production test and/or technology characterization.  
• Radio performance numbers are measured in conducted mode, based on Silicon Laboratories reference designs using output pow-  
er-specific external RF impedance-matching networks for interfacing to a 50 Ω antenna.  
• Minimum and maximum values represent the worst conditions across supply voltage, process variation, and operating temperature,  
unless stated otherwise.  
The BGM13S module is powered primarily from the VBATT supply pin. GPIO are powered from the IOVDD supply pin. There are also  
several internal supply rails mentioned in the electrical specifications, whose connections vary based on transmit power configuration.  
Refer to 3.3 Power for the relationship between the module's external supply pins and the internal voltage supply rails.  
Refer to Table 4.2 General Operating Conditions on page 19 for more details about operational supply and temperature limits.  
silabs.com | Building a more connected world.  
Rev. 1.1 | 17  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Electrical Specifications  
4.1.1 Absolute Maximum Ratings  
Stress levels beyond those listed below may cause permanent damage to the device. This is a stress rating only and functional opera-  
tion of the devices at those or any other conditions beyond those indicated in the operation listings of this specification is not implied.  
Exposure to maximum rating conditions for extended periods may affect device reliability. For more information on the available quality  
and reliability data, see the Quality and Reliability Monitor Report at http://www.silabs.com/support/quality/pages/default.aspx.  
Table 4.1. Absolute Maximum Ratings  
Parameter  
Symbol  
TSTG  
Test Condition  
Min  
-40  
-0.3  
Typ  
Max  
85  
Unit  
°C  
Storage temperature range  
Voltage on any supply pin  
VDDMAX  
VDDRAMPMAX  
3.8  
1
V
Voltage ramp rate on any  
supply pin  
V / µs  
5V tolerant GPIO pins1 2 3  
Standard GPIO pins  
DC voltage on any GPIO pin VDIGPIN  
-0.3  
Min of 5.25  
and IOVDD  
+2  
V
-0.3  
IOVDD+0.3  
V
Maximum RF level at input  
PRFMAX2G4  
10  
dBm  
mA  
mA  
Total current into supply pins IVDDMAX  
Source  
Sink  
200  
200  
Total current into VSS  
ground lines  
IVSSMAX  
Current per I/O pin  
IIOMAX  
Sink  
50  
50  
mA  
mA  
mA  
mA  
°C  
Source  
Sink  
Current for all I/O pins  
IIOALLMAX  
200  
200  
105  
Source  
Junction temperature  
TJ  
-40  
Note:  
1. When a GPIO pin is routed to the analog block through the APORT, the maximum voltage = IOVDD.  
2. Valid for IOVDD in valid operating range or when IOVDD is undriven (high-Z). If IOVDD is connected to a low-impedance source  
below the valid operating range (e.g. IOVDD shorted to VSS), the pin voltage maximum is IOVDD + 0.3 V, to avoid exceeding the  
maximum IO current specifications.  
3. To operate above the IOVDD supply rail, over-voltage tolerance must be enabled according to the GPIO_Px_OVTDIS register.  
Pins with over-voltage tolerance disabled have the same limits as Standard GPIO.  
silabs.com | Building a more connected world.  
Rev. 1.1 | 18  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Electrical Specifications  
4.1.2 Operating Conditions  
The following subsections define the operating conditions for the module.  
4.1.2.1 General Operating Conditions  
Table 4.2. General Operating Conditions  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Operating ambient tempera- TA  
ture range  
-G temperature grade  
-40  
25  
85  
°C  
VBATT operating supply  
voltage1  
VVBATT  
DCDC in regulation  
2.4  
1.8  
3.3  
3.3  
3.8  
3.8  
V
V
DCDC in bypass 50mA load  
DCDC in bypass, T ≤ 85 °C  
VBATT current  
IVBATT  
200  
mA  
V
IOVDD operating supply volt- VIOVDD  
age  
1.62  
VVBATT  
HFCORECLK frequency  
HFCLK frequency  
Note:  
fCORE  
VSCALE2, MODE = WS1  
VSCALE0, MODE = WS2  
VSCALE2  
40  
20  
40  
20  
MHz  
MHz  
MHz  
MHz  
fHFCLK  
VSCALE0  
1. The minimum voltage required in bypass mode is calculated using RBYP from the DCDC specification table. Requirements for  
other loads can be calculated as VVBATT_min+ILOAD * RBYP_max  
.
silabs.com | Building a more connected world.  
Rev. 1.1 | 19  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Electrical Specifications  
4.1.3 DC-DC Converter  
Test conditions: V_DCDC_I=3.3 V, V_DCDC_O=1.8 V, I_DCDC_LOAD=50 mA, Heavy Drive configuration, F_DCDC_LN=7 MHz, un-  
less otherwise indicated.  
Table 4.3. DC-DC Converter  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Input voltage range  
VDCDC_I  
Bypass mode, IDCDC_LOAD = 50  
mA  
1.8  
VVREGVDD_  
V
MAX  
Low noise (LN) mode, 1.8 V out-  
put, IDCDC_LOAD = 100 mA, or  
Low power (LP) mode, 1.8 V out-  
put, IDCDC_LOAD = 10 mA  
2.4  
VVREGVDD_  
V
MAX  
Output voltage programma- VDCDC_O  
ble range1  
1.8  
VVREGVDD  
V
Regulation DC accuracy  
ACCDC  
Low Noise (LN) mode, 1.8 V tar-  
get output  
1.7  
1.9  
2.2  
V
V
Regulation window2  
WINREG  
Low Power (LP) mode,  
LPCMPBIASEMxx3 = 0, 1.8 V tar-  
get output, IDCDC_LOAD ≤ 75 µA  
1.63  
Low Power (LP) mode,  
1.63  
2.1  
V
LPCMPBIASEMxx3 = 3, 1.8 V tar-  
get output, IDCDC_LOAD ≤ 10 mA  
Steady-state output ripple  
VR  
Radio disabled  
3
mVpp  
mV  
CCM Mode (LNFORCECCM3 =  
1), Load changes between 0 mA  
and 100 mA  
Output voltage under/over-  
shoot  
VOV  
25  
60  
DCM Mode (LNFORCECCM3 =  
0), Load changes between 0 mA  
and 10 mA  
45  
90  
mV  
Overshoot during LP to LN  
CCM/DCM mode transitions com-  
pared to DC level in LN mode  
200  
40  
mV  
mV  
Undershoot during BYP/LP to LN  
CCM (LNFORCECCM3 = 1) mode  
transitions compared to DC level  
in LN mode  
Undershoot during BYP/LP to LN  
100  
mV  
DCM (LNFORCECCM3 = 0) mode  
transitions compared to DC level  
in LN mode  
DC line regulation  
DC load regulation  
VREG  
Input changes between  
VVREGVDD_MAX and 2.4 V  
0.1  
0.1  
%
%
IREG  
Load changes between 0 mA and  
100 mA in CCM mode  
silabs.com | Building a more connected world.  
Rev. 1.1 | 20  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Max load current  
ILOAD_MAX  
Low noise (LN) mode, Medium or  
Heavy Drive4  
80  
mA  
Low noise (LN) mode, Light  
Drive4  
50  
75  
10  
mA  
µA  
Low power (LP) mode,  
LPCMPBIASEMxx3 = 0  
Low power (LP) mode,  
LPCMPBIASEMxx3 = 3  
mA  
Note:  
1. Due to internal dropout, the DC-DC output will never be able to reach its input voltage, VVREGVDD  
.
2. LP mode controller is a hysteretic controller that maintains the output voltage within the specified limits.  
3. LPCMPBIASEMxx refers to either LPCMPBIASEM234H in the EMU_DCDCMISCCTRL register or LPCMPBIASEM01 in the  
EMU_DCDCLOEM01CFG register, depending on the energy mode.  
4. Drive levels are defined by configuration of the PFETCNT and NFETCNT registers. Light Drive: PFETCNT=NFETCNT=3; Medi-  
um Drive: PFETCNT=NFETCNT=7; Heavy Drive: PFETCNT=NFETCNT=15.  
silabs.com | Building a more connected world.  
Rev. 1.1 | 21  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Electrical Specifications  
4.1.4 Current Consumption  
4.1.4.1 Current Consumption 3.3 V using DC-DC Converter  
Unless otherwise indicated, typical conditions are: VBATT = 3.3 V. T = 25 °C. Minimum and maximum values in this table represent the  
worst conditions across process variation at T = 25 °C.  
Table 4.4. Current Consumption 3.3 V using DC-DC Converter  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Current consumption in EM0 IACTIVE_DCM  
mode with all peripherals dis-  
abled, DCDC in Low Noise  
DCM mode1  
38.4 MHz crystal, CPU running  
while loop from flash2  
87  
µA/MHz  
38 MHz HFRCO, CPU running  
Prime from flash  
69  
70  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
38 MHz HFRCO, CPU running  
while loop from flash  
38 MHz HFRCO, CPU running  
CoreMark from flash  
82  
26 MHz HFRCO, CPU running  
while loop from flash  
76  
1 MHz HFRCO, CPU running  
while loop from flash  
615  
97  
Current consumption in EM0 IACTIVE_CCM  
mode with all peripherals dis-  
abled, DCDC in Low Noise  
CCM mode3  
38.4 MHz crystal, CPU running  
while loop from flash2  
38 MHz HFRCO, CPU running  
Prime from flash  
80  
81  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
38 MHz HFRCO, CPU running  
while loop from flash  
38 MHz HFRCO, CPU running  
CoreMark from flash  
92  
26 MHz HFRCO, CPU running  
while loop from flash  
94  
1 MHz HFRCO, CPU running  
while loop from flash  
1145  
101  
1124  
Current consumption in EM0 IACTIVE_CCM_VS 19 MHz HFRCO, CPU running  
mode with all peripherals dis-  
abled and voltage scaling  
enabled, DCDC in Low  
Noise CCM mode3  
while loop from flash  
1 MHz HFRCO, CPU running  
while loop from flash  
38.4 MHz crystal2  
38 MHz HFRCO  
26 MHz HFRCO  
1 MHz HFRCO  
19 MHz HFRCO  
1 MHz HFRCO  
Current consumption in EM1 IEM1_DCM  
mode with all peripherals dis-  
abled, DCDC in Low Noise  
56  
µA/MHz  
39  
46  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
DCM mode1  
588  
50  
Current consumption in EM1 IEM1_DCM_VS  
mode with all peripherals dis-  
abled and voltage scaling  
572  
enabled, DCDC in Low  
Noise DCM mode1  
silabs.com | Building a more connected world.  
Rev. 1.1 | 22  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Current consumption in EM2 IEM2_VS  
mode, with voltage scaling  
enabled, DCDC in LP mode4  
Full 64 kB RAM retention and  
RTCC running from LFXO  
1.4  
µA  
Full 64 kB RAM retention and  
RTCC running from LFRCO  
1.5  
2.0  
1.9  
1.3  
µA  
µA  
µA  
µA  
Full 64 kB RAM retention and  
PRORTCC running from PLFRCO  
1 bank RAM retention and  
PRORTCC running from PLFRCO  
1 bank RAM retention and RTCC  
running from LFRCO5  
Current consumption in EM3 IEM3_VS  
mode, with voltage scaling  
enabled  
Full 64 kB RAM retention and  
CRYOTIMER running from ULFR-  
CO  
1.14  
µA  
Current consumption in  
EM4H mode, with voltage  
scaling enabled  
IEM4H_VS  
128 byte RAM retention, RTCC  
running from LFXO  
0.75  
0.44  
µA  
µA  
128 byte RAM retention, CRYO-  
TIMER running from ULFRCO  
128 byte RAM retention, no RTCC  
No RAM retention, no RTCC  
0.42  
0.07  
µA  
µA  
Current consumption in  
EM4S mode  
IEM4S  
Note:  
1. DCDC Low Noise DCM Mode = Light Drive (PFETCNT=NFETCNT=3), F=3.0 MHz (RCOBAND=0), ANASW=DVDD.  
2. CMU_HFXOCTRL_LOWPOWER=0.  
3. DCDC Low Noise CCM Mode = Light Drive (PFETCNT=NFETCNT=3), F=6.4 MHz (RCOBAND=4), ANASW=DVDD.  
4. DCDC Low Power Mode = Medium Drive, LPOSCDIV=1, LPCMPBIASEM234H=0, LPCLIMILIMSEL=1, ANASW=DVDD.  
5. CMU_LFRCOCTRL_ENVREF = 1, CMU_LFRCOCTRL_VREFUPDATE = 1  
silabs.com | Building a more connected world.  
Rev. 1.1 | 23  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Electrical Specifications  
4.1.4.2 Current Consumption 1.8 V (DC-DC Converter in Bypass Mode)  
Unless otherwise indicated, typical conditions are: VBATT = 1.8 V. T = 25 °C. Minimum and maximum values in this table represent the  
worst conditions across process variation at T = 25 °C.  
Table 4.5. Current Consumption 1.8 V (DC-DC Converter in Bypass Mode)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Current consumption in EM0 IACTIVE  
mode with all peripherals dis-  
abled  
38.4 MHz crystal, CPU running  
while loop from flash1  
128  
µA/MHz  
38 MHz HFRCO, CPU running  
Prime from flash  
97  
98  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
38 MHz HFRCO, CPU running  
while loop from flash  
38 MHz HFRCO, CPU running  
CoreMark from flash  
119  
100  
243  
86  
26 MHz HFRCO, CPU running  
while loop from flash  
1 MHz HFRCO, CPU running  
while loop from flash  
Current consumption in EM0 IACTIVE_VS  
mode with all peripherals dis-  
abled and voltage scaling  
enabled  
19 MHz HFRCO, CPU running  
while loop from flash  
1 MHz HFRCO, CPU running  
while loop from flash  
206  
76  
38.4 MHz crystal1  
38 MHz HFRCO  
26 MHz HFRCO  
1 MHz HFRCO  
19 MHz HFRCO  
1 MHz HFRCO  
Current consumption in EM1 IEM1  
mode with all peripherals dis-  
abled  
47  
48  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
191  
43  
Current consumption in EM1 IEM1_VS  
mode with all peripherals dis-  
abled and voltage scaling  
enabled  
163  
Current consumption in EM2 IEM2_VS  
mode, with voltage scaling  
enabled  
Full 64 kB RAM retention and  
RTCC running from LFXO  
1.8  
2.0  
2.7  
2.5  
1.6  
µA  
µA  
µA  
µA  
µA  
Full 64 kB RAM retention and  
RTCC running from LFRCO  
Full 64 kB RAM retention and  
PRORTCC running from PLFRCO  
1 bank (16 kB) RAM retention and  
PRORTCC running from PLFRCO  
1 bank (16 kB) RAM retention and  
RTCC running from LFRCO2  
Current consumption in EM3 IEM3_VS  
mode, with voltage scaling  
enabled  
Full 64 kB RAM retention and  
CRYOTIMER running from ULFR-  
CO  
1.43  
µA  
silabs.com | Building a more connected world.  
Rev. 1.1 | 24  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Current consumption in  
EM4H mode, with voltage  
scaling enabled  
IEM4H_VS  
128 byte RAM retention, RTCC  
running from LFXO  
0.83  
µA  
128 byte RAM retention, CRYO-  
TIMER running from ULFRCO  
0.37  
µA  
128 byte RAM retention, no RTCC  
no RAM retention, no RTCC  
0.36  
0.05  
µA  
µA  
Current consumption in  
EM4S mode  
IEM4S  
Note:  
1. CMU_HFXOCTRL_LOWPOWER=0.  
2. CMU_LFRCOCTRL_ENVREF = 1, CMU_LFRCOCTRL_VREFUPDATE = 1  
silabs.com | Building a more connected world.  
Rev. 1.1 | 25  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Electrical Specifications  
4.1.4.3 Current Consumption 3.3 V (DC-DC Converter in Bypass Mode)  
Unless otherwise indicated, typical conditions are: VBATT = 3.3 V. T = 25 °C. Minimum and maximum values in this table represent the  
worst conditions across process variation at T = 25 °C.  
Table 4.6. Current Consumption 3.3 V (DC-DC Converter in Bypass Mode)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Current consumption in EM0 IACTIVE  
mode with all peripherals dis-  
abled  
38.4 MHz crystal, CPU running  
while loop from flash1  
128  
µA/MHz  
38 MHz HFRCO, CPU running  
Prime from flash  
97  
98  
107  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
38 MHz HFRCO, CPU running  
while loop from flash  
38 MHz HFRCO, CPU running  
CoreMark from flash  
119  
100  
246  
86  
26 MHz HFRCO, CPU running  
while loop from flash  
109  
430  
1 MHz HFRCO, CPU running  
while loop from flash  
Current consumption in EM0 IACTIVE_VS  
mode with all peripherals dis-  
abled and voltage scaling  
enabled  
19 MHz HFRCO, CPU running  
while loop from flash  
1 MHz HFRCO, CPU running  
while loop from flash  
209  
76  
38.4 MHz crystal1  
38 MHz HFRCO  
26 MHz HFRCO  
1 MHz HFRCO  
19 MHz HFRCO  
1 MHz HFRCO  
Current consumption in EM1 IEM1  
mode with all peripherals dis-  
abled  
47  
49  
51  
55  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
195  
43  
374  
Current consumption in EM1 IEM1_VS  
mode with all peripherals dis-  
abled and voltage scaling  
enabled  
167  
Current consumption in EM2 IEM2_VS  
mode, with voltage scaling  
enabled  
Full 64 kB RAM retention and  
RTCC running from LFXO  
1.9  
2.2  
2.6  
2.8  
1.9  
µA  
µA  
µA  
µA  
µA  
Full 64 kB RAM retention and  
RTCC running from LFRCO  
1 bank (16 kB) RAM retention and  
PRORTCC running from PLFRCO  
Full 64 kB RAM retention and  
PRORTCC running from PLFRCO  
1 bank (16 kB) RAM retention and  
RTCC running from LFRCO2  
3.3  
Current consumption in EM3 IEM3_VS  
mode, with voltage scaling  
enabled  
Full 64 kB RAM retention and  
CRYOTIMER running from ULFR-  
CO  
1.53  
3.0  
µA  
silabs.com | Building a more connected world.  
Rev. 1.1 | 26  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Current consumption in  
EM4H mode, with voltage  
scaling enabled  
IEM4H_VS  
128 byte RAM retention, RTCC  
running from LFXO  
0.93  
µA  
128 byte RAM retention, CRYO-  
TIMER running from ULFRCO  
0.45  
µA  
128 byte RAM retention, no RTCC  
No RAM retention, no RTCC  
0.44  
0.04  
0.9  
µA  
µA  
Current consumption in  
EM4S mode  
IEM4S  
0.18  
Note:  
1. CMU_HFXOCTRL_LOWPOWER=0.  
2. CMU_LFRCOCTRL_ENVREF = 1, CMU_LFRCOCTRL_VREFUPDATE = 1  
4.1.4.4 Current Consumption Using Radio  
Unless otherwise indicated, typical conditions are: VBATT = 3.3 V. T = 25 °C. DC-DC on. Minimum and maximum values in this table  
represent the worst conditions across process variation at T = 25 °C.  
Table 4.7. Current Consumption Using Radio  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Current consumption in re-  
ceive mode, active packet  
reception (MCU in EM1 @  
38.4 MHz, peripheral clocks  
disabled), T ≤ 85 °C  
IRX_ACTIVE  
125 kbit/s, 2GFSK, F = 2.4 GHz,  
Radio clock prescaled by 4  
9.4  
mA  
500 kbit/s, 2GFSK, F = 2.4 GHz,  
Radio clock prescaled by 4  
9.4  
9.7  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
1 Mbit/s, 2GFSK, F = 2.4 GHz,  
Radio clock prescaled by 4  
2 Mbit/s, 2GFSK, F = 2.4 GHz,  
Radio clock prescaled by 4  
10.5  
10.4  
10.4  
10.7  
11.5  
8.9  
Current consumption in re-  
ceive mode, listening for  
packet (MCU in EM1 @ 38.4  
MHz, peripheral clocks disa-  
bled), T ≤ 85 °C  
IRX_LISTEN  
125 kbit/s, 2GFSK, F = 2.4 GHz,  
No radio clock prescaling  
500 kbit/s, 2GFSK, F = 2.4 GHz,  
No radio clock prescaling  
1 Mbit/s, 2GFSK, F = 2.4 GHz, No  
radio clock prescaling  
2 Mbit/s, 2GFSK, F = 2.4 GHz, No  
radio clock prescaling  
Current consumption in  
transmit mode (MCU in EM1  
@ 38.4 MHz, peripheral  
clocks disabled), T ≤ 85 °C  
ITX  
F = 2.4 GHz, CW, 0 dBm output  
power, Radio clock prescaled by 3  
F = 2.4 GHz, CW, 0 dBm output  
power, Radio clock prescaled by 1  
9.7  
F = 2.4 GHz, CW, 8 dBm output  
power  
27.4  
silabs.com | Building a more connected world.  
Rev. 1.1 | 27  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Electrical Specifications  
4.1.5 Wake Up Times  
Table 4.8. Wake Up Times  
Test Condition  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Wake up time from EM1  
tEM1_WU  
3
AHB  
Clocks  
Wake up from EM2  
Wake up from EM3  
tEM2_WU  
Code execution from flash  
Code execution from RAM  
Code execution from flash  
Code execution from RAM  
Executing from flash  
10.9  
3.8  
µs  
µs  
µs  
µs  
µs  
tEM3_WU  
10.9  
3.8  
Wake up from EM4H1  
Wake up from EM4S1  
tEM4H_WU  
tEM4S_WU  
tRESET  
90  
Executing from flash  
300  
µs  
Time from release of reset  
source to first instruction ex-  
ecution  
Soft Pin Reset released  
Any other reset released  
51  
µs  
µs  
358  
Power mode scaling time  
tSCALE  
VSCALE0 to VSCALE2, HFCLK =  
19 MHz2 3  
31.8  
4.3  
µs  
µs  
VSCALE2 to VSCALE0, HFCLK =  
19 MHz4  
Note:  
1. Time from wake up request until first instruction is executed. Wakeup results in device reset.  
2. Scaling up from VSCALE0 to VSCALE2 requires approximately 30.3 µs + 28 HFCLKs.  
3. VSCALE0 to VSCALE2 voltage change transitions occur at a rate of 10 mV/µs for approximately 20 µs. During this transition,  
peak currents will be dependent on the value of the DECOUPLE output capacitor, from 35 mA (with a 1 µF capacitor) to 70 mA  
(with a 2.7 µF capacitor).  
4. Scaling down from VSCALE2 to VSCALE0 requires approximately 2.8 µs + 29 HFCLKs.  
4.1.6 Brown Out Detector (BOD)  
Table 4.9. Brown Out Detector (BOD)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
1.8  
Unit  
V
AVDD BOD threshold  
VAVDDBOD  
AVDD rising  
AVDD falling (EM0/EM1)  
AVDD falling (EM2/EM3)  
1.62  
1.53  
V
V
AVDD BOD hysteresis  
AVDD BOD response time  
EM4 BOD threshold  
VAVDDBOD_HYST  
20  
2.4  
mV  
µs  
V
tAVDDBOD_DELAY Supply drops at 0.1V/µs rate  
VEM4DBOD  
AVDD rising  
AVDD falling  
1.7  
1.45  
V
EM4 BOD hysteresis  
VEM4BOD_HYST  
25  
300  
mV  
µs  
EM4 BOD response time  
tEM4BOD_DELAY Supply drops at 0.1V/µs rate  
silabs.com | Building a more connected world.  
Rev. 1.1 | 28  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Electrical Specifications  
4.1.7 Frequency Synthesizer  
Table 4.10. Frequency Synthesizer  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
RF synthesizer frequency  
range  
fRANGE  
2400 - 2483.5 MHz  
2400  
2483.5  
MHz  
LO tuning frequency resolu- fRES  
tion with 38.4 MHz crystal  
2400 - 2483.5 MHz  
2400 - 2483.5 MHz  
2400 - 2483.5 MHz  
73  
73  
Hz  
Hz  
Frequency deviation resolu- dfRES  
tion with 38.4 MHz crystal  
Maximum frequency devia-  
tion with 38.4 MHz crystal  
dfMAX  
1677  
kHz  
silabs.com | Building a more connected world.  
Rev. 1.1 | 29  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Electrical Specifications  
4.1.8 2.4 GHz RF Transceiver Characteristics  
4.1.8.1 RF Transmitter General Characteristics for 2.4 GHz Band  
Unless otherwise indicated, typical conditions are: T = 25 °C, VBATT = 3.3 V. DC-DC on. Crystal frequency = 38.4 MHz. RF center  
frequency 2.45 GHz. Conducted measurement from the antenna feedpoint.  
Table 4.11. RF Transmitter General Characteristics for 2.4 GHz Band  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Maximum TX power1  
POUTMAX  
19 dBm-rated part numbers.  
PAVDD connected directly to ex-  
ternal 3.3V supply  
18.9  
dBm  
8 dBm-rated part numbers  
CW  
7.8  
-30  
1
dBm  
dBm  
dB  
Minimum active TX Power  
Output power step size  
POUTMIN  
POUTSTEP  
-5 dBm< Output power < 0 dBm  
0 dBm < output power <  
POUTMAX  
0.5  
dB  
Output power variation vs  
supply at POUTMAX  
POUTVAR_V  
1.8 V < VVREGVDD < 3.3 V,  
PAVDD connected directly to ex-  
ternal supply, for output power >  
10 dBm.  
4.5  
dB  
1.8 V < VVREGVDD < 3.3 V using  
DC-DC converter  
2.1  
1.7  
1.7  
0.3  
dB  
dB  
dB  
dB  
Output power variation vs  
temperature at POUTMAX  
POUTVAR_T  
From -40 to +85 °C, PAVDD con-  
nected to DC-DC output  
From -40 to +85 °C, PAVDD con-  
nected to external supply  
Output power variation vs RF POUTVAR_F  
frequency at POUTMAX  
Over RF tuning frequency range,  
PAVDD connected to external  
supply  
RF tuning frequency range  
FRANGE  
2400  
2483.5  
MHz  
Note:  
1. Supported transmit power levels are determined by the ordering part number (OPN). Transmit power ratings for all devices cov-  
ered in this datasheet can be found in the Max TX Power column of the Ordering Information Table.  
silabs.com | Building a more connected world.  
Rev. 1.1 | 30  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Electrical Specifications  
4.1.8.2 RF Receiver General Characteristics for 2.4 GHz Band  
Unless otherwise indicated, typical conditions are: T = 25 °C, VBATT = 3.3 V. DC-DC on. Crystal frequency = 38.4 MHz. RF center  
frequency 2.45 GHz. Conducted measurement from the antenna feedpoint.  
Table 4.12. RF Receiver General Characteristics for 2.4 GHz Band  
Parameter  
Symbol  
FRANGE  
SPURRX  
Test Condition  
Min  
2400  
Typ  
Max  
2483.5  
Unit  
MHz  
dBm  
dBm  
dBm  
RF tuning frequency range  
Receive mode maximum  
spurious emission  
30 MHz to 1 GHz  
1 GHz to 12 GHz  
-57  
-47  
Max spurious emissions dur- SPURRX_FCC  
ing active receive mode, per  
FCC Part 15.109(a)  
216 MHz to 960 MHz, Conducted  
Measurement  
-55.2  
Above 960 MHz, Conducted  
Measurement  
-47.2  
-24  
dBm  
dBm  
Level above which  
RFSENSE will trigger1  
RFSENSETRIG  
CW at 2.45 GHz  
Level below which  
RFSENSE will not trigger1  
RFSENSETHRES CW at 2.45 GHz  
-50  
dBm  
Note:  
1. RFSENSE performance is only valid from 0 to 85 °C. RFSENSE should be disabled outside this temperature range.  
4.1.8.3 RF Transmitter Characteristics for Bluetooth Low Energy in the 2.4GHz Band, 125 kbps Data Rate  
Unless otherwise indicated, typical conditions are: T = 25 °C, VBATT = 3.3 V. DC-DC on. Crystal frequency = 38.4 MHz. RF center  
frequency 2.45 GHz. Conducted measurement from the antenna feedpoint.  
Table 4.13. RF Transmitter Characteristics for Bluetooth Low Energy in the 2.4GHz Band, 125 kbps Data Rate  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Power spectral density limit  
PSDLIMIT  
Per FCC part 15.247 at 10 dBm  
8
dBm/  
3kHz  
Per FCC part 15.247 at 20 dBm1  
8
dBm/  
3kHz  
Spurious emissions out-of-  
band, excluding harmonics  
captured in SPURHARM,FCC  
Emissions taken at  
SPUROOB_FCC  
Per FCC part 15.205/15.209,  
Above 2.483 GHz or below 2.4  
GHz; continuous transmission of  
CW carrier, Restricted Bands2 3  
-47  
dBm  
.
POUTMAX, PAVDD connec-  
ted to external 3.3 V supply  
Note:  
1. Output power limited to 14 dBm to ensure compliance with FCC specifications.  
2. For 2476 MHz, 1.2 dB of power backoff is used to achieve this value.  
3. For 2478 MHz, 5.8 dB of power backoff is used to achieve this value.  
silabs.com | Building a more connected world.  
Rev. 1.1 | 31  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Electrical Specifications  
4.1.8.4 RF Receiver Characteristics for Bluetooth Low Energy in the 2.4GHz Band, 125 kbps Data Rate  
Unless otherwise indicated, typical conditions are: T = 25 °C, VBATT = 3.3 V. DC-DC on. Crystal frequency = 38.4 MHz. RF center  
frequency 2.45 GHz. Conducted measurement from the antenna feedpoint.  
Table 4.14. RF Receiver Characteristics for Bluetooth Low Energy in the 2.4GHz Band, 125 kbps Data Rate  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Signal is reference signal1. Packet  
length is 20 bytes.  
Max usable receiver input  
level, 0.1% BER  
SAT  
10  
dBm  
Signal is reference signal1. Using  
DC-DC converter.  
Sensitivity, 0.1% BER  
SENS  
-102.1  
-101.8  
dBm  
dBm  
With non-ideal signals as speci-  
fied in RF-PHY.TS.4.2.2, section  
4.6.1.  
N+1 adjacent channel selec- C/I1+  
tivity, 0.1% BER, with allowa-  
ble exceptions. Desired is  
Interferer is reference signal at +1  
MHz offset. Desired frequency  
2402 MHz ≤ Fc ≤ 2480 MHz  
-14.0  
-13.6  
dB  
dB  
reference signal at -79 dBm  
N-1 adjacent channel selec- C/I1-  
tivity, 0.1% BER, with allowa-  
ble exceptions. Desired is  
Interferer is reference signal at -1  
MHz offset. Desired frequency  
2402 MHz ≤ Fc ≤ 2480 MHz  
reference signal at -79 dBm  
Selectivity to image frequen- C/IIM  
cy, 0.1% BER. Desired is ref-  
erence signal at -79 dBm  
Interferer is reference signal at im-  
age frequency with 1 MHz preci-  
sion  
-51.6  
-55.5  
dB  
dB  
Selectivity to image frequen- C/IIM+1  
cy ± 1 MHz, 0.1% BER. De-  
sired is reference signal at  
-79 dBm  
Interferer is reference signal at im-  
age frequency ± 1 MHz with 1  
MHz precision  
Note:  
1. Reference signal is defined 2GFSK at -79 dBm, Modulation index = 0.5, BT = 0.5, Bit rate = 125 kbps, desired data = PRBS9;  
interferer data = PRBS15; frequency accuracy better than 1 ppm.  
silabs.com | Building a more connected world.  
Rev. 1.1 | 32  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Electrical Specifications  
4.1.8.5 RF Transmitter Characteristics for Bluetooth Low Energy in the 2.4GHz Band, 500 kbps Data Rate  
Unless otherwise indicated, typical conditions are: T = 25 °C, VBATT = 3.3 V. DC-DC on. Crystal frequency = 38.4 MHz. RF center  
frequency 2.45 GHz. Conducted measurement from the antenna feedpoint.  
Table 4.15. RF Transmitter Characteristics for Bluetooth Low Energy in the 2.4GHz Band, 500 kbps Data Rate  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Power spectral density limit  
PSDLIMIT  
Per FCC part 15.247 at 10 dBm  
-9.8  
dBm/  
3kHz  
Per FCC part 15.247 at 20 dBm1  
8
dBm/  
3kHz  
Spurious emissions out-of-  
band, excluding harmonics  
captured in SPURHARM,FCC  
Emissions taken at  
SPUROOB_FCC  
Per FCC part 15.205/15.209,  
Above 2.483 GHz or below 2.4  
GHz; continuous transmission of  
CW carrier, Restricted Bands2 3  
-47  
dBm  
.
POUTMAX, PAVDD connec-  
ted to external 3.3 V supply  
Note:  
1. Output power limited to 14 dBm to ensure compliance with FCC specifications.  
2. For 2476 MHz, 1.2 dB of power backoff is used to achieve this value.  
3. For 2478 MHz, 5.8 dB of power backoff is used to achieve this value.  
silabs.com | Building a more connected world.  
Rev. 1.1 | 33  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Electrical Specifications  
4.1.8.6 RF Receiver Characteristics for Bluetooth Low Energy in the 2.4GHz Band, 500 kbps Data Rate  
Unless otherwise indicated, typical conditions are: T = 25 °C, VBATT = 3.3 V. DC-DC on. Crystal frequency = 38.4 MHz. RF center  
frequency 2.45 GHz. Conducted measurement from the antenna feedpoint.  
Table 4.16. RF Receiver Characteristics for Bluetooth Low Energy in the 2.4GHz Band, 500 kbps Data Rate  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Signal is reference signal1. Packet  
length is 20 bytes.  
Max usable receiver input  
level, 0.1% BER  
SAT  
10  
dBm  
Signal is reference signal1. Using  
DC-DC converter.  
Sensitivity, 0.1% BER  
SENS  
-97.9  
-97.0  
dBm  
dBm  
With non-ideal signals as speci-  
fied in RF-PHY.TS.4.2.2, section  
4.6.1.  
N+1 adjacent channel selec- C/I1+  
tivity, 0.1% BER, with allowa-  
ble exceptions. Desired is  
Interferer is reference signal at +1  
MHz offset. Desired frequency  
2402 MHz ≤ Fc ≤ 2480 MHz  
-9.2  
-9.0  
dB  
dB  
dB  
reference signal at -72 dBm  
N-1 adjacent channel selec- C/I1-  
tivity, 0.1% BER, with allowa-  
ble exceptions. Desired is  
Interferer is reference signal at -1  
MHz offset. Desired frequency  
2402 MHz ≤ Fc ≤ 2480 MHz  
reference signal at -72 dBm  
Alternate selectivity, 0.1%  
BER, with allowable excep-  
tions. Desired is reference  
signal at -72 dBm  
C/I2  
Interferer is reference signal at ± 2  
MHz offset. Desired frequency  
2402 MHz ≤ Fc ≤ 2480 MHz  
-46.5  
Selectivity to image frequen- C/IIM  
cy, 0.1% BER. Desired is ref-  
erence signal at -72 dBm  
Interferer is reference signal at im-  
age frequency with 1 MHz preci-  
sion  
-46.5  
-50.7  
dB  
dB  
Selectivity to image frequen- C/IIM+1  
cy ± 1 MHz, 0.1% BER. De-  
sired is reference signal at  
-72 dBm  
Interferer is reference signal at im-  
age frequency ± 1 MHz with 1  
MHz precision  
Note:  
1. Reference signal is defined 2GFSK at -72 dBm, Modulation index = 0.5, BT = 0.5, Bit rate = 500 kbps, desired data = PRBS9;  
interferer data = PRBS15; frequency accuracy better than 1 ppm.  
silabs.com | Building a more connected world.  
Rev. 1.1 | 34  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Electrical Specifications  
4.1.8.7 RF Transmitter Characteristics for Bluetooth Low Energy in the 2.4GHz Band, 1 Mbps Data Rate  
Unless otherwise indicated, typical conditions are: T = 25 °C, VBATT = 3.3 V. DC-DC on. Crystal frequency = 38.4 MHz. RF center  
frequency 2.45 GHz. Conducted measurement from the antenna feedpoint.  
Table 4.17. RF Transmitter Characteristics for Bluetooth Low Energy in the 2.4GHz Band, 1 Mbps Data Rate  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
-39.7  
-43.6  
Max  
Unit  
dBm  
dBm  
dBm  
dBm  
dBm  
In-band spurious emissions, SPURINB  
with allowed exceptions1  
At ± 2 MHz, 10 dBm  
At ± 3 MHz, 10 dBm  
At ± 2 MHz, 20 dBm  
At ± 3 MHz, 20 dBm  
-20  
-30  
Spurious emissions out-of-  
band, excluding harmonics  
captured in SPURHARM,FCC  
Emissions taken at  
SPUROOB_FCC  
Per FCC part 15.205/15.209,  
Above 2.483 GHz or below 2.4  
GHz; continuous transmission of  
CW carrier, Restricted Bands2 3  
-47  
.
POUTMAX, PAVDD connec-  
ted to external 3.3 V supply  
Note:  
1. Per Bluetooth Core_5.0, Vol.6 Part A, Section 3.2.2, exceptions are allowed in up to three bands of 1 MHz width, centered on a  
frequency which is an integer multiple of 1 MHz. These exceptions shall have an absolute value of -20 dBm or less.  
2. For 2476 MHz, 1.5 dB of power backoff is used to achieve this value.  
3. For 2478 MHz, 4.2 dB of power backoff is used to achieve this value.  
silabs.com | Building a more connected world.  
Rev. 1.1 | 35  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Electrical Specifications  
4.1.8.8 RF Receiver Characteristics for Bluetooth Low Energy in the 2.4GHz Band, 1 Mbps Data Rate  
Unless otherwise indicated, typical conditions are: T = 25 °C, VBATT = 3.3 V. DC-DC on. Crystal frequency = 38.4 MHz. RF center  
frequency 2.45 GHz. Conducted measurement from the antenna feedpoint.  
Table 4.18. RF Receiver Characteristics for Bluetooth Low Energy in the 2.4GHz Band, 1 Mbps Data Rate  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Signal is reference signal1. Packet  
length is 20 bytes.  
Max usable receiver input  
level, 0.1% BER  
SAT  
10  
dBm  
Signal is reference signal1. Using  
DC-DC converter.  
Sensitivity, 0.1% BER  
SENS  
-94.1  
-93.8  
dBm  
dBm  
With non-ideal signals as speci-  
fied in RF-PHY.TS.4.2.2, section  
4.6.1.  
Signal to co-channel interfer- C/ICC  
er, 0.1% BER  
Desired signal 3 dB above refer-  
ence sensitivity.  
9.0  
dB  
dB  
N+1 adjacent channel selec- C/I1+  
tivity, 0.1% BER, with allowa-  
ble exceptions. Desired is  
Interferer is reference signal at +1  
MHz offset. Desired frequency  
2402 MHz ≤ Fc ≤ 2480 MHz  
-3.3  
reference signal at -67 dBm  
N-1 adjacent channel selec- C/I1-  
tivity, 0.1% BER, with allowa-  
ble exceptions. Desired is  
Interferer is reference signal at -1  
MHz offset. Desired frequency  
2402 MHz ≤ Fc ≤ 2480 MHz  
-1.6  
-42.0  
-46.4  
dB  
dB  
dB  
reference signal at -67 dBm  
Alternate selectivity, 0.1%  
BER, with allowable excep-  
tions. Desired is reference  
signal at -67 dBm  
C/I2  
Interferer is reference signal at ± 2  
MHz offset. Desired frequency  
2402 MHz ≤ Fc ≤ 2480 MHz  
Alternate selectivity, 0.1%  
BER, with allowable excep-  
tions. Desired is reference  
signal at -67 dBm  
C/I3  
Interferer is reference signal at ± 3  
MHz offset. Desired frequency  
2404 MHz ≤ Fc ≤ 2480 MHz  
Selectivity to image frequen- C/IIM  
cy, 0.1% BER. Desired is ref-  
erence signal at -67 dBm  
Interferer is reference signal at im-  
age frequency with 1 MHz preci-  
sion  
-42.0  
-47.1  
dB  
dB  
Selectivity to image frequen- C/IIM+1  
cy ± 1 MHz, 0.1% BER. De-  
sired is reference signal at  
-67 dBm  
Interferer is reference signal at im-  
age frequency ± 1 MHz with 1  
MHz precision  
Intermodulation performance IM  
Per Core_4.1, Vol 6, Part A, Sec-  
tion 4.4 with n = 3  
-18.4  
dBm  
Note:  
1. Reference signal is defined 2GFSK at -67 dBm, Modulation index = 0.5, BT = 0.5, Bit rate = 1 Mbps, desired data = PRBS9;  
interferer data = PRBS15; frequency accuracy better than 1 ppm.  
silabs.com | Building a more connected world.  
Rev. 1.1 | 36  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Electrical Specifications  
4.1.8.9 RF Transmitter Characteristics for Bluetooth Low Energy in the 2.4GHz Band, 2 Mbps Data Rate  
Unless otherwise indicated, typical conditions are: T = 25 °C, VBATT = 3.3 V. DC-DC on. Crystal frequency = 38.4 MHz. RF center  
frequency 2.45 GHz. Conducted measurement from the antenna feedpoint.  
Table 4.19. RF Transmitter Characteristics for Bluetooth Low Energy in the 2.4GHz Band, 2 Mbps Data Rate  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
-38.2  
-41.1  
-30.1  
-31.4  
-47  
Max  
Unit  
dBm  
dBm  
dBm  
dBm  
dBm  
In-band spurious emissions, SPURINB  
with allowed exceptions1  
At ± 4 MHz, 10 dBm  
At ± 6 MHz, 10 dBm  
At ± 4 MHz, 20 dBm  
At ± 6 MHz, 20 dBm  
Spurious emissions out-of-  
band, excluding harmonics  
captured in SPURHARM,FCC  
Emissions taken at  
SPUROOB_FCC  
Per FCC part 15.205/15.209,  
Above 2.483 GHz or below 2.4  
GHz; continuous transmission of  
CW carrier, Restricted Bands2 3 4  
5
.
POUTMAX, PAVDD connec-  
ted to external 3.3 V supply  
Note:  
1. Per Bluetooth Core_5.0, Vol.6 Part A, Section 3.2.2, exceptions are allowed in up to three bands of 1 MHz width, centered on a  
frequency which is an integer multiple of 1 MHz. These exceptions shall have an absolute value of -20 dBm or less.  
2. For 2472 MHz, 1.3 dB of power backoff is used to achieve this value.  
3. For 2474 MHz, 3.8 dB of power backoff is used to achieve this value.  
4. For 2476 MHz, 7 dB of power backoff is used to achieve this value.  
5. For 2478 MHz, 11.2 dB of power backoff is used to achieve this value.  
silabs.com | Building a more connected world.  
Rev. 1.1 | 37  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Electrical Specifications  
4.1.8.10 RF Receiver Characteristics for Bluetooth Low Energy in the 2.4GHz Band, 2 Mbps Data Rate  
Unless otherwise indicated, typical conditions are: T = 25 °C, VBATT = 3.3 V. DC-DC on. Crystal frequency = 38.4 MHz. RF center  
frequency 2.45 GHz. Conducted measurement from the antenna feedpoint.  
Table 4.20. RF Receiver Characteristics for Bluetooth Low Energy in the 2.4GHz Band, 2 Mbps Data Rate  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Signal is reference signal1. Packet  
length is 20 bytes.  
Max usable receiver input  
level, 0.1% BER  
SAT  
10  
dBm  
Signal is reference signal1. Using  
DC-DC converter.  
Sensitivity, 0.1% BER  
SENS  
-90.2  
-89.9  
dBm  
dBm  
With non-ideal signals as speci-  
fied in RF-PHY.TS.4.2.2, section  
4.6.1.  
Signal to co-channel interfer- C/ICC  
er, 0.1% BER  
Desired signal 3 dB above refer-  
ence sensitivity.  
8.6  
dB  
dB  
N+1 adjacent channel selec- C/I1+  
tivity, 0.1% BER, with allowa-  
ble exceptions. Desired is  
Interferer is reference signal at +2  
MHz offset. Desired frequency  
2402 MHz ≤ Fc ≤ 2480 MHz  
-7.6  
reference signal at -67 dBm  
N-1 adjacent channel selec- C/I1-  
tivity, 0.1% BER, with allowa-  
ble exceptions. Desired is  
Interferer is reference signal at -2  
MHz offset. Desired frequency  
2402 MHz ≤ Fc ≤ 2480 MHz  
-11.4  
-40.3  
-45.1  
dB  
dB  
dB  
reference signal at -67 dBm  
Alternate selectivity, 0.1%  
BER, with allowable excep-  
tions. Desired is reference  
signal at -67 dBm  
C/I2  
Interferer is reference signal at ± 4  
MHz offset. Desired frequency  
2402 MHz ≤ Fc ≤ 2480 MHz  
Alternate selectivity, 0.1%  
BER, with allowable excep-  
tions. Desired is reference  
signal at -67 dBm  
C/I3  
Interferer is reference signal at ± 6  
MHz offset. Desired frequency  
2404 MHz ≤ Fc ≤ 2480 MHz  
Selectivity to image frequen- C/IIM  
cy, 0.1% BER. Desired is ref-  
erence signal at -67 dBm  
Interferer is reference signal at im-  
age frequency with 1 MHz preci-  
sion  
-7.6  
dB  
dB  
Selectivity to image frequen- C/IIM+1  
cy ± 2 MHz, 0.1% BER. De-  
sired is reference signal at  
-67 dBm  
Interferer is reference signal at im-  
age frequency ± 2 MHz with 2  
MHz precision  
-40.30  
Intermodulation performance IM  
Per Core_4.1, Vol 6, Part A, Sec-  
tion 4.4 with n = 3  
-18.4  
dBm  
Note:  
1. Reference signal is defined 2GFSK at -67 dBm, Modulation index = 0.5, BT = 0.5, Bit rate = 2 Mbps, desired data = PRBS9;  
interferer data = PRBS15; frequency accuracy better than 1 ppm.  
silabs.com | Building a more connected world.  
Rev. 1.1 | 38  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Electrical Specifications  
4.1.9 Oscillators  
4.1.9.1 Low-Frequency Crystal Oscillator (LFXO)  
Table 4.21. Low-Frequency Crystal Oscillator (LFXO)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
32.768  
Max  
Unit  
kHz  
kΩ  
Crystal frequency  
fLFXO  
Supported crystal equivalent ESRLFXO  
series resistance (ESR)  
70  
Supported range of crystal  
load capacitance 1  
CLFXO_CL  
6
8
18  
40  
pF  
pF  
On-chip tuning cap range 2  
CLFXO_T  
On each of LFXTAL_N and  
LFXTAL_P pins  
On-chip tuning cap step size SSLFXO  
0.25  
273  
pF  
nA  
Current consumption after  
startup 3  
ILFXO  
ESR = 70 kOhm, CL = 7 pF,  
GAIN4 = 2, AGC4 = 1  
Start- up time  
tLFXO  
ESR = 70 kOhm, CL = 7 pF,  
GAIN4 = 2  
308  
ms  
Note:  
1. Total load capacitance as seen by the crystal.  
2. The effective load capacitance seen by the crystal will be CLFXO_T /2. This is because each XTAL pin has a tuning cap and the  
two caps will be seen in series by the crystal.  
3. Block is supplied by AVDD if ANASW = 0, or DVDD if ANASW=1 in EMU_PWRCTRL register.  
4. In CMU_LFXOCTRL register.  
4.1.9.2 High-Frequency Crystal Oscillator (HFXO)  
Table 4.22. High-Frequency Crystal Oscillator (HFXO)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Crystal frequency  
fHFXO  
38.4 MHz required for radio trans-  
ciever operation  
38.4  
MHz  
Frequency tolerance for the FTHFXO  
crystal  
-40  
40  
ppm  
silabs.com | Building a more connected world.  
Rev. 1.1 | 39  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Electrical Specifications  
4.1.9.3 Low-Frequency RC Oscillator (LFRCO)  
Table 4.23. Low-Frequency RC Oscillator (LFRCO)  
Parameter  
Symbol  
Test Condition  
ENVREF1 = 1  
ENVREF1 = 0  
Min  
Typ  
Max  
Unit  
Oscillation frequency  
fLFRCO  
31.3  
32.768  
33.6  
kHz  
31.3  
32.768  
500  
33.4  
kHz  
µs  
Startup time  
tLFRCO  
ILFRCO  
Current consumption 2  
ENVREF = 1 in  
CMU_LFRCOCTRL  
342  
nA  
ENVREF = 0 in  
494  
nA  
CMU_LFRCOCTRL  
Note:  
1. In CMU_LFRCOCTRL register.  
2. Block is supplied by AVDD if ANASW = 0, or DVDD if ANASW=1 in EMU_PWRCTRL register.  
4.1.9.4 Precision Low-Frequency RC Oscillator (PLFRCO)  
Table 4.24. Precision Low-Frequency RC Oscillator (PLFRCO)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
32.768  
Max  
Unit  
kHz  
ppm  
Oscillation frequency  
fPLFRCO  
Frequency accuracy1 2  
fPLFRCO_ACC  
Across operating temperature  
range  
-500  
500  
Startup time  
tPLFRCO  
64.2  
ms  
Note:  
1. The Frequency accuracy limits, calculated with 3-sigma standard deviation, apply for temperatures -20 °C to 85 °C for G temp-  
grade and -20 °C to 125 °C for I temp-grade.  
2. 99.953% (3.5 sigma) of the overall device population comply to the Max. and Min. limits.  
silabs.com | Building a more connected world.  
Rev. 1.1 | 40  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Electrical Specifications  
4.1.9.5 High-Frequency RC Oscillator (HFRCO)  
Table 4.25. High-Frequency RC Oscillator (HFRCO)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Frequency accuracy  
fHFRCO_ACC  
At production calibrated frequen-  
cies, across supply voltage and  
temperature  
-2.5  
2.5  
%
Start-up time  
tHFRCO  
fHFRCO ≥ 19 MHz  
4 < fHFRCO < 19 MHz  
fHFRCO ≤ 4 MHz  
fHFRCO = 38 MHz  
fHFRCO = 32 MHz  
fHFRCO = 26 MHz  
fHFRCO = 19 MHz  
fHFRCO = 16 MHz  
fHFRCO = 13 MHz  
fHFRCO = 7 MHz  
fHFRCO = 4 MHz  
fHFRCO = 2 MHz  
fHFRCO = 1 MHz  
300  
1
ns  
µs  
2.5  
267  
224  
189  
154  
133  
118  
89  
µs  
Current consumption on all  
supplies  
IHFRCO  
299  
248  
211  
172  
148  
135  
100  
44  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
%
34  
29  
40  
26  
36  
Coarse trim step size (% of  
period)  
SSHFRCO_COARS  
0.8  
E
Fine trim step size (% of pe- SSHFRCO_FINE  
riod)  
0.1  
%
Period jitter  
PJHFRCO  
0.2  
% RMS  
MHz  
Frequency limits  
fHFRCO_BAND  
FREQRANGE = 0, FINETUNIN-  
GEN = 0  
3.47  
6.15  
FREQRANGE = 3, FINETUNIN-  
GEN = 0  
6.24  
11.3  
11.45  
19.8  
22.8  
29.0  
40.63  
48  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
FREQRANGE = 6, FINETUNIN-  
GEN = 0  
FREQRANGE = 7, FINETUNIN-  
GEN = 0  
13.45  
16.5  
FREQRANGE = 8, FINETUNIN-  
GEN = 0  
FREQRANGE = 10, FINETUNIN-  
GEN = 0  
23.11  
27.27  
33.33  
FREQRANGE = 11, FINETUNIN-  
GEN = 0  
FREQRANGE = 12, FINETUNIN-  
GEN = 0  
54  
silabs.com | Building a more connected world.  
Rev. 1.1 | 41  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Electrical Specifications  
4.1.9.6 Ultra-low Frequency RC Oscillator (ULFRCO)  
Table 4.26. Ultra-low Frequency RC Oscillator (ULFRCO)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Oscillation frequency  
fULFRCO  
0.95  
1
1.07  
kHz  
4.1.10 Flash Memory Characteristics1  
Table 4.27. Flash Memory Characteristics1  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Flash erase cycles before  
failure  
ECFLASH  
10000  
cycles  
Flash data retention  
RETFLASH  
tW_PROG  
10  
20  
years  
µs  
Word (32-bit) programming  
time  
Burst write, 128 words, average  
time per word  
26.3  
30  
Single word  
62  
20  
68.9  
29.5  
80  
40  
µs  
Page erase time2  
Mass erase time3  
Device erase time4 5  
Erase current6  
tPERASE  
tMERASE  
tDERASE  
IERASE  
ms  
20  
30  
56.2  
40  
70  
ms  
ms  
mA  
mA  
V
Page Erase  
2.0  
3.5  
3.6  
Write current6  
IWRITE  
Supply voltage during flash  
erase and write  
VFLASH  
1.62  
Note:  
1. Flash data retention information is published in the Quarterly Quality and Reliability Report.  
2. From setting the ERASEPAGE bit in MSC_WRITECMD to 1 until the BUSY bit in MSC_STATUS is cleared to 0. Internal setup  
and hold times for flash control signals are included.  
3. Mass erase is issued by the CPU and erases all flash.  
4. Device erase is issued over the AAP interface and erases all flash, SRAM, the Lock Bit (LB) page, and the User data page Lock  
Word (ULW).  
5. From setting the DEVICEERASE bit in AAP_CMD to 1 until the ERASEBUSY bit in AAP_STATUS is cleared to 0. Internal setup  
and hold times for flash control signals are included.  
6. Measured at 25 °C.  
silabs.com | Building a more connected world.  
Rev. 1.1 | 42  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Electrical Specifications  
4.1.11 General-Purpose I/O (GPIO)  
Table 4.28. General-Purpose I/O (GPIO)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Input low voltage1  
Input high voltage1  
VIL  
VIH  
GPIO pins  
IOVDD*0.3  
V
GPIO pins  
IOVDD*0.7  
IOVDD*0.8  
V
V
Output high voltage relative VOH  
to IOVDD  
Sourcing 3 mA, IOVDD ≥ 3 V,  
DRIVESTRENGTH2 = WEAK  
Sourcing 1.2 mA, IOVDD ≥ 1.62  
V,  
IOVDD*0.6  
V
DRIVESTRENGTH2 = WEAK  
Sourcing 20 mA, IOVDD ≥ 3 V,  
IOVDD*0.8  
0.1  
V
V
DRIVESTRENGTH2 = STRONG  
Sourcing 8 mA, IOVDD ≥ 1.62 V,  
IOVDD*0.6  
DRIVESTRENGTH2 = STRONG  
Sinking 3 mA, IOVDD ≥ 3 V,  
Output low voltage relative to VOL  
IOVDD  
IOVDD*0.2  
IOVDD*0.4  
IOVDD*0.2  
IOVDD*0.4  
30  
V
DRIVESTRENGTH2 = WEAK  
Sinking 1.2 mA, IOVDD ≥ 1.62 V,  
V
DRIVESTRENGTH2 = WEAK  
Sinking 20 mA, IOVDD ≥ 3 V,  
V
DRIVESTRENGTH2 = STRONG  
Sinking 8 mA, IOVDD ≥ 1.62 V,  
V
DRIVESTRENGTH2 = STRONG  
Input leakage current  
IIOLEAK  
All GPIO except LFXO pins, GPIO  
≤ IOVDD  
nA  
LFXO Pins, GPIO ≤ IOVDD  
0.1  
3.3  
50  
15  
nA  
µA  
Input leakage current on  
I5VTOLLEAK  
IOVDD < GPIO ≤ IOVDD + 2 V  
5VTOL pads above IOVDD  
I/O pin pull-up/pull-down re- RPUD  
sistor3  
30  
15  
40  
25  
65  
45  
kΩ  
ns  
Pulse width of pulses re-  
moved by the glitch suppres-  
sion filter  
tIOGLITCH  
silabs.com | Building a more connected world.  
Rev. 1.1 | 43  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Output fall time, From 70%  
to 30% of VIO  
tIOOF  
CL = 50 pF,  
1.8  
ns  
DRIVESTRENGTH2 = STRONG,  
SLEWRATE2 = 0x6  
CL = 50 pF,  
4.5  
2.2  
7.4  
ns  
ns  
ns  
DRIVESTRENGTH2 = WEAK,  
SLEWRATE2 = 0x6  
CL = 50 pF,  
Output rise time, From 30% tIOOR  
to 70% of VIO  
DRIVESTRENGTH2 = STRONG,  
SLEWRATE = 0x62  
CL = 50 pF,  
DRIVESTRENGTH2 = WEAK,  
SLEWRATE2 = 0x6  
Note:  
1. GPIO input threshold are proportional to the IOVDD supply, except for RESETn which is proportional to AVDD.  
2. In GPIO_Pn_CTRL register.  
3. GPIO pull-ups are referenced to the IOVDD supply, except for RESETn, which connects to AVDD.  
silabs.com | Building a more connected world.  
Rev. 1.1 | 44  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Electrical Specifications  
4.1.12 Voltage Monitor (VMON)  
Table 4.29. Voltage Monitor (VMON)  
Parameter  
Symbol  
IVMON  
Test Condition  
Min  
Typ  
6.3  
Max  
8
Unit  
µA  
Supply current (including  
I_SENSE)  
In EM0 or EM1, 1 active channel  
In EM0 or EM1, All channels ac-  
tive  
12.5  
15  
µA  
In EM2, EM3 or EM4, 1 channel  
active and above threshold  
62  
62  
99  
99  
nA  
nA  
nA  
nA  
In EM2, EM3 or EM4, 1 channel  
active and below threshold  
In EM2, EM3 or EM4, All channels  
active and above threshold  
In EM2, EM3 or EM4, All channels  
active and below threshold  
Loading of monitored supply ISENSE  
In EM0 or EM1  
2
2
3.4  
µA  
nA  
V
In EM2, EM3 or EM4  
Threshold range  
VVMON_RANGE  
1.62  
Threshold step size  
NVMON_STESP  
Coarse  
200  
20  
460  
26  
mV  
mV  
ns  
Fine  
Response time  
Hysteresis  
tVMON_RES  
Supply drops at 1V/µs rate  
VVMON_HYST  
mV  
silabs.com | Building a more connected world.  
Rev. 1.1 | 45  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Electrical Specifications  
4.1.13 Analog to Digital Converter (ADC)  
Specified at 1 Msps, ADCCLK = 16 MHz, BIASPROG = 0, GPBIASACC = 0, unless otherwise indicated.  
Table 4.30. Analog to Digital Converter (ADC)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
12  
Unit  
Bits  
V
Resolution  
VRESOLUTION  
VADCIN  
6
Input voltage range1  
Single ended  
Differential  
VFS  
-VFS/2  
1
VFS/2  
VAVDD  
V
Input range of external refer- VADCREFIN_P  
ence voltage, single ended  
and differential  
V
Power supply rejection2  
PSRRADC  
At DC  
At DC  
80  
80  
dB  
dB  
Analog input common mode CMRRADC  
rejection ratio  
Current from all supplies, us- IADC_CONTINU-  
1 Msps / 16 MHz ADCCLK, BIA-  
SPROG = 0, GPBIASACC = 1 4  
270  
125  
80  
290  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
ing internal reference buffer.  
OUS_LP  
Continuous operation. WAR-  
MUPMODE3 = KEEPADC-  
WARM  
250 ksps / 4 MHz ADCCLK, BIA-  
SPROG = 6, GPBIASACC = 1 4  
62.5 ksps / 1 MHz ADCCLK, BIA-  
SPROG = 15, GPBIASACC = 1 4  
Current from all supplies, us- IADC_NORMAL_LP 35 ksps / 16 MHz ADCCLK, BIA-  
45  
SPROG = 0, GPBIASACC = 1 4  
ing internal reference buffer.  
Duty-cycled operation. WAR-  
MUPMODE3 = NORMAL  
5 ksps / 16 MHz ADCCLK BIA-  
SPROG = 0, GPBIASACC = 1 4  
8
Current from all supplies, us- IADC_STAND-  
125 ksps / 16 MHz ADCCLK, BIA-  
SPROG = 0, GPBIASACC = 1 4  
105  
70  
ing internal reference buffer.  
BY_LP  
Duty-cycled operation.  
35 ksps / 16 MHz ADCCLK, BIA-  
SPROG = 0, GPBIASACC = 1 4  
AWARMUPMODE3 = KEEP-  
INSTANDBY or KEEPIN-  
SLOWACC  
Current from all supplies, us- IADC_CONTINU-  
1 Msps / 16 MHz ADCCLK, BIA-  
SPROG = 0, GPBIASACC = 0 4  
325  
175  
125  
85  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
ing internal reference buffer.  
OUS_HP  
Continuous operation. WAR-  
MUPMODE3 = KEEPADC-  
WARM  
250 ksps / 4 MHz ADCCLK, BIA-  
SPROG = 6, GPBIASACC = 0 4  
62.5 ksps / 1 MHz ADCCLK, BIA-  
SPROG = 15, GPBIASACC = 0 4  
Current from all supplies, us- IADC_NORMAL_HP 35 ksps / 16 MHz ADCCLK, BIA-  
SPROG = 0, GPBIASACC = 0 4  
ing internal reference buffer.  
Duty-cycled operation. WAR-  
MUPMODE3 = NORMAL  
5 ksps / 16 MHz ADCCLK BIA-  
SPROG = 0, GPBIASACC = 0 4  
16  
Current from all supplies, us- IADC_STAND-  
125 ksps / 16 MHz ADCCLK, BIA-  
SPROG = 0, GPBIASACC = 0 4  
160  
125  
ing internal reference buffer.  
BY_HP  
Duty-cycled operation.  
35 ksps / 16 MHz ADCCLK, BIA-  
SPROG = 0, GPBIASACC = 0 4  
AWARMUPMODE3 = KEEP-  
INSTANDBY or KEEPIN-  
SLOWACC  
Current from HFPERCLK  
IADC_CLK  
HFPERCLK = 16 MHz  
140  
µA  
silabs.com | Building a more connected world.  
Rev. 1.1 | 46  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
fADCCLK  
Test Condition  
Min  
Typ  
7
Max  
16  
1
Unit  
MHz  
ADC clock frequency  
Throughput rate  
fADCRATE  
tADCCONV  
Msps  
cycles  
cycles  
cycles  
µs  
Conversion time5  
6 bit  
8 bit  
12 bit  
5
9
13  
WARMUPMODE3 = NORMAL  
Startup time of reference  
generator and ADC core  
tADCSTART  
WARMUPMODE3 = KEEPIN-  
STANDBY  
58  
67  
68  
2
µs  
µs  
dB  
dB  
WARMUPMODE3 = KEEPINSLO-  
WACC  
1
Internal reference6, differential  
measurement  
SNDR at 1Msps and fIN  
10kHz  
=
SNDRADC  
External reference7, differential  
measurement  
Spurious-free dynamic range SFDRADC  
(SFDR)  
1 MSamples/s, 10 kHz full-scale  
sine wave  
-1  
-6  
75  
2
dB  
Differential non-linearity  
(DNL)  
DNLADC  
12 bit resolution, No missing co-  
des  
LSB  
LSB  
Integral non-linearity (INL),  
End point method  
INLADC  
12 bit resolution  
6
Offset error  
VADCOFFSETERR  
VADCGAIN  
-3  
0
3
LSB  
%
Gain error in ADC  
Using internal reference  
Using external reference  
-0.2  
-1  
3.5  
%
Temperature sensor slope  
VTS_SLOPE  
-1.84  
mV/°C  
Note:  
1. The absolute voltage allowed at any ADC input is dictated by the power rail supplied to on-chip circuitry, and may be lower than  
the effective full scale voltage. All ADC inputs are limited to the ADC supply (AVDD or DVDD depending on  
EMU_PWRCTRL_ANASW). Any ADC input routed through the APORT will further be limited by the IOVDD supply to the pin.  
2. PSRR is referenced to AVDD when ANASW=0 and to DVDD when ANASW=1 in EMU_PWRCTRL.  
3. In ADCn_CTRL register.  
4. In ADCn_BIASPROG register.  
5. Derived from ADCCLK.  
6. Internal reference option used corresponds to selection 2V5 in the SINGLECTRL_REF or SCANCTRL_REF register field. The  
differential input range with this configuration is ± 1.25 V. Typical value is characterized using full-scale sine wave input. Minimum  
value is production-tested using sine wave input at 1.5 dB lower than full scale.  
7. External reference is 1.25 V applied externally to ADCnEXTREFP, with the selection CONF in the SINGLECTRL_REF or  
SCANCTRL_REF register field and VREFP in the SINGLECTRLX_VREFSEL or SCANCTRLX_VREFSEL field. The differential  
input range with this configuration is ± 1.25 V.  
silabs.com | Building a more connected world.  
Rev. 1.1 | 47  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Electrical Specifications  
4.1.14 Analog Comparator (ACMP)  
Table 4.31. Analog Comparator (ACMP)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Input voltage range  
VACMPIN  
ACMPVDD =  
ACMPn_CTRL_PWRSEL 1  
VACMPVDD  
V
BIASPROG2 ≤ 0x10 or FULL-  
BIAS2 = 0  
Supply voltage  
VACMPVDD  
1.8  
2.1  
VVREGVDD_  
V
V
MAX  
0x10 < BIASPROG2 ≤ 0x20 and  
FULLBIAS2 = 1  
VVREGVDD_  
MAX  
BIASPROG2 = 1, FULLBIAS2 = 0  
Active current not including  
voltage reference3  
IACMP  
50  
nA  
nA  
BIASPROG2 = 0x10, FULLBIAS2  
= 0  
306  
BIASPROG2 = 0x02, FULLBIAS2  
= 1  
6.1  
74  
50  
11  
92  
µA  
µA  
nA  
BIASPROG2 = 0x20, FULLBIAS2  
= 1  
Current consumption of inter- IACMPREF  
nal voltage reference3  
VLP selected as input using 2.5 V  
Reference / 4 (0.625 V)  
VLP selected as input using VDD  
20  
nA  
µA  
VBDIV selected as input using  
1.25 V reference / 1  
4.1  
VADIV selected as input using  
VDD/1  
2.4  
µA  
silabs.com | Building a more connected world.  
Rev. 1.1 | 48  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
HYSTSEL4 = HYST0  
HYSTSEL4 = HYST1  
HYSTSEL4 = HYST2  
HYSTSEL4 = HYST3  
HYSTSEL4 = HYST4  
HYSTSEL4 = HYST5  
HYSTSEL4 = HYST6  
HYSTSEL4 = HYST7  
HYSTSEL4 = HYST8  
HYSTSEL4 = HYST9  
HYSTSEL4 = HYST10  
HYSTSEL4 = HYST11  
HYSTSEL4 = HYST12  
HYSTSEL4 = HYST13  
HYSTSEL4 = HYST14  
HYSTSEL4 = HYST15  
BIASPROG2 = 1, FULLBIAS2 = 0  
Hysteresis (VCM = 1.25 V,  
BIASPROG2 = 0x10, FULL-  
BIAS2 = 1)  
VACMPHYST  
-3  
0
3
mV  
5
12  
18  
33  
27  
50  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
µs  
17  
46  
67  
23  
57  
86  
26  
68  
104  
130  
155  
3
30  
79  
34  
90  
-3  
0
-27  
-50  
-67  
-86  
-104  
-130  
-155  
-18  
-33  
-45  
-57  
-67  
-78  
-88  
30  
-5  
-12  
-17  
-23  
-26  
-30  
-34  
95  
Comparator delay5  
tACMPDELAY  
BIASPROG2 = 0x10, FULLBIAS2  
= 0  
3.7  
10  
µs  
BIASPROG2 = 0x02, FULLBIAS2  
= 1  
360  
35  
1000  
ns  
ns  
BIASPROG2 = 0x20, FULLBIAS2  
= 1  
BIASPROG2 =0x10, FULLBIAS2  
= 1  
Offset voltage  
VACMPOFFSET  
-35  
35  
mV  
Reference voltage  
VACMPREF  
Internal 1.25 V reference  
Internal 2.5 V reference  
1
1.25  
2.5  
1.47  
2.8  
V
V
1.98  
CSRESSEL6 = 0  
CSRESSEL6 = 1  
CSRESSEL6 = 2  
CSRESSEL6 = 3  
CSRESSEL6 = 4  
CSRESSEL6 = 5  
CSRESSEL6 = 6  
CSRESSEL6 = 7  
Capacitive sense internal re- RCSRES  
sistance  
infinite  
kΩ  
15  
27  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
39  
51  
102  
164  
239  
silabs.com | Building a more connected world.  
Rev. 1.1 | 49  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Electrical Specifications  
Parameter  
Note:  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
1. ACMPVDD is a supply chosen by the setting in ACMPn_CTRL_PWRSEL and may be IOVDD, AVDD or DVDD.  
2. In ACMPn_CTRL register.  
3. The total ACMP current is the sum of the contributions from the ACMP and its internal voltage reference. IACMPTOTAL = IACMP  
IACMPREF  
+
.
4. In ACMPn_HYSTERESIS registers.  
5. ± 100 mV differential drive.  
6. In ACMPn_INPUTSEL register.  
silabs.com | Building a more connected world.  
Rev. 1.1 | 50  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Electrical Specifications  
4.1.15 Digital to Analog Converter (VDAC)  
DRIVESTRENGTH = 2 unless otherwise specified. Primary VDAC output.  
Table 4.32. Digital to Analog Converter (VDAC)  
Parameter  
Symbol  
Test Condition  
Single-Ended  
Min  
Typ  
Max  
Unit  
V
Output voltage  
VDACOUT  
0
VVREF  
VVREF  
Differential1  
-VVREF  
V
Current consumption includ- IDAC  
ing references (2 channels)2  
500 ksps, 12-bit, DRIVES-  
TRENGTH = 2, REFSEL = 4  
396  
72  
µA  
µA  
µA  
44.1 ksps, 12-bit, DRIVES-  
TRENGTH = 1, REFSEL = 4  
200 Hz refresh rate, 12-bit Sam-  
ple-Off mode in EM2, DRIVES-  
TRENGTH = 2, REFSEL = 4,  
SETTLETIME = 0x02, WARMUP-  
TIME = 0x0A  
1.2  
Current from HFPERCLK3  
Sample rate  
IDAC_CLK  
2
5.8  
500  
1
µA/MHz  
ksps  
MHz  
µs  
SRDAC  
DAC clock frequency  
Conversion time  
Settling time  
fDAC  
tDACCONV  
tDACSETTLE  
tDACSTARTUP  
fDAC = 1MHz  
50% fs step settling to 5 LSB  
2.5  
µs  
Startup time  
Enable to 90% fs output, settling  
to 10 LSB  
12  
µs  
Output impedance  
ROUT  
DRIVESTRENGTH = 2, 0.4 V ≤  
VOUT ≤ VOPA - 0.4 V, -8 mA <  
IOUT < 8 mA, Full supply range  
2
2
DRIVESTRENGTH = 0 or 1, 0.4 V  
≤ VOUT ≤ VOPA - 0.4 V, -400 µA <  
IOUT < 400 µA, Full supply range  
DRIVESTRENGTH = 2, 0.1 V ≤  
VOUT ≤ VOPA - 0.1 V, -2 mA <  
IOUT < 2 mA, Full supply range  
2
DRIVESTRENGTH = 0 or 1, 0.1 V  
≤ VOUT ≤ VOPA - 0.1 V, -100 µA <  
IOUT < 100 µA, Full supply range  
2
Power supply rejection ratio4  
PSRR  
Vout = 50% fs. DC  
65.5  
dB  
silabs.com | Building a more connected world.  
Rev. 1.1 | 51  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Signal to noise and distortion SNDRDAC  
ratio (1 kHz sine wave),  
Noise band limited to 250  
kHz  
500 ksps, single-ended, internal  
1.25V reference  
60.4  
dB  
500 ksps, single-ended, internal  
2.5V reference  
61.6  
64.0  
63.3  
64.4  
65.8  
65.3  
66.7  
70.0  
67.8  
69.0  
68.5  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
500 ksps, single-ended, 3.3V  
VDD reference  
500 ksps, differential, internal  
1.25V reference  
500 ksps, differential, internal  
2.5V reference  
500 ksps, differential, 3.3V VDD  
reference  
Signal to noise and distortion SNDRDAC_BAND 500 ksps, single-ended, internal  
ratio (1 kHz sine wave),  
Noise band limited to 22 kHz  
1.25V reference  
500 ksps, single-ended, internal  
2.5V reference  
500 ksps, single-ended, 3.3V  
VDD reference  
500 ksps, differential, internal  
1.25V reference  
500 ksps, differential, internal  
2.5V reference  
500 ksps, differential, 3.3V VDD  
reference  
Total harmonic distortion  
THD  
70.2  
1
dB  
Differential non-linearity5  
Intergral non-linearity  
DNLDAC  
-0.99  
LSB  
INLDAC  
-4  
-8  
4
8
LSB  
mV  
mV  
Offset error6  
VOFFSET  
T = 25 °C  
Across operating temperature  
range  
-25  
25  
Gain error6  
VGAIN  
T = 25 °C, Low-noise internal ref-  
erence (REFSEL = 1V25LN or  
2V5LN)  
-2.5  
2.5  
%
T = 25 °C, Internal reference (RE-  
FSEL = 1V25 or 2V5)  
-5  
5
%
%
%
T = 25 °C, External reference  
(REFSEL = VDD or EXT)  
-1.8  
-3.5  
1.8  
3.5  
Across operating temperature  
range, Low-noise internal refer-  
ence (REFSEL = 1V25LN or  
2V5LN)  
Across operating temperature  
range, Internal reference (RE-  
FSEL = 1V25 or 2V5)  
-7.5  
-2.0  
7.5  
2.0  
%
%
Across operating temperature  
range, External reference (RE-  
FSEL = VDD or EXT)  
silabs.com | Building a more connected world.  
Rev. 1.1 | 52  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
External load capactiance,  
OUTSCALE=0  
CLOAD  
75  
pF  
Note:  
1. In differential mode, the output is defined as the difference between two single-ended outputs. Absolute voltage on each output is  
limited to the single-ended range.  
2. Supply current specifications are for VDAC circuitry operating with static output only and do not include current required to drive  
the load.  
3. Current from HFPERCLK is dependent on HFPERCLK frequency. This current contributes to the total supply current used when  
the clock to the DAC peripheral is enabled in the CMU.  
4. PSRR calculated as 20 * log10(ΔVDD / ΔVOUT), VDAC output at 90% of full scale  
5. Entire range is monotonic and has no missing codes.  
6. Gain is calculated by measuring the slope from 10% to 90% of full scale. Offset is calculated by comparing actual VDAC output at  
10% of full scale to ideal VDAC output at 10% of full scale with the measured gain.  
silabs.com | Building a more connected world.  
Rev. 1.1 | 53  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Electrical Specifications  
4.1.16 Current Digital to Analog Converter (IDAC)  
Table 4.33. Current Digital to Analog Converter (IDAC)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
4
Max  
Unit  
ranges  
µA  
Number of ranges  
Output current  
NIDAC_RANGES  
IIDAC_OUT  
RANGESEL1 = RANGE0  
RANGESEL1 = RANGE1  
RANGESEL1 = RANGE2  
RANGESEL1 = RANGE3  
0.05  
1.6  
1.6  
0.5  
2
32  
4.7  
16  
64  
µA  
µA  
µA  
Linear steps within each  
range  
NIDAC_STEPS  
steps  
RANGESEL1 = RANGE0  
RANGESEL1 = RANGE1  
RANGESEL1 = RANGE2  
RANGESEL1 = RANGE3  
Step size  
SSIDAC  
-3  
50  
100  
500  
2
3
nA  
nA  
nA  
µA  
%
Total accuracy, STEPSEL1 =  
0x10  
ACCIDAC  
EM0 or EM1, AVDD=3.3 V, T = 25  
°C  
EM0 or EM1, Across operating  
temperature range  
-18  
-2  
22  
%
%
EM2 or EM3, Source mode, RAN-  
GESEL1 = RANGE0, AVDD=3.3  
V, T = 25 °C  
EM2 or EM3, Source mode, RAN-  
GESEL1 = RANGE1, AVDD=3.3  
V, T = 25 °C  
-1.7  
-0.8  
-0.5  
-0.7  
-0.6  
-0.5  
-0.5  
%
%
%
%
%
%
%
EM2 or EM3, Source mode, RAN-  
GESEL1 = RANGE2, AVDD=3.3  
V, T = 25 °C  
EM2 or EM3, Source mode, RAN-  
GESEL1 = RANGE3, AVDD=3.3  
V, T = 25 °C  
EM2 or EM3, Sink mode, RAN-  
GESEL1 = RANGE0, AVDD=3.3  
V, T = 25 °C  
EM2 or EM3, Sink mode, RAN-  
GESEL1 = RANGE1, AVDD=3.3  
V, T = 25 °C  
EM2 or EM3, Sink mode, RAN-  
GESEL1 = RANGE2, AVDD=3.3  
V, T = 25 °C  
EM2 or EM3, Sink mode, RAN-  
GESEL1 = RANGE3, AVDD=3.3  
V, T = 25 °C  
silabs.com | Building a more connected world.  
Rev. 1.1 | 54  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Start up time  
tIDAC_SU  
Output within 1% of steady state  
value  
5
µs  
Settling time, (output settled tIDAC_SETTLE  
within 1% of steady state val-  
ue),  
Range setting is changed  
Step value is changed  
5
1
µs  
µs  
Current consumption2  
IIDAC  
EM0 or EM1 Source mode, ex-  
cluding output current, Across op-  
erating temperature range  
11  
15  
µA  
EM0 or EM1 Sink mode, exclud-  
ing output current, Across operat-  
ing temperature range  
13  
18  
µA  
EM2 or EM3 Source mode, ex-  
cluding output current, T = 25 °C  
0.023  
0.041  
11  
µA  
µA  
µA  
µA  
%
EM2 or EM3 Sink mode, exclud-  
ing output current, T = 25 °C  
EM2 or EM3 Source mode, ex-  
cluding output current, T ≥ 85 °C  
EM2 or EM3 Sink mode, exclud-  
ing output current, T ≥ 85 °C  
13  
RANGESEL1 = RANGE0, output  
Output voltage compliance in ICOMP_SRC  
source mode, source current  
change relative to current  
sourced at 0 V  
0.11  
voltage = min(VIOVDD  
VAVDD2-100 mV)  
,
RANGESEL1 = RANGE1, output  
0.06  
0.04  
0.03  
%
%
%
voltage = min(VIOVDD  
,
VAVDD2-100 mV)  
RANGESEL1 = RANGE2, output  
voltage = min(VIOVDD  
,
VAVDD2-150 mV)  
RANGESEL1 = RANGE3, output  
voltage = min(VIOVDD  
,
VAVDD2-250 mV)  
RANGESEL1 = RANGE0, output  
voltage = 100 mV  
Output voltage compliance in ICOMP_SINK  
sink mode, sink current  
change relative to current  
sunk at IOVDD  
0.12  
0.05  
0.04  
0.03  
%
%
%
%
RANGESEL1 = RANGE1, output  
voltage = 100 mV  
RANGESEL1 = RANGE2, output  
voltage = 150 mV  
RANGESEL1 = RANGE3, output  
voltage = 250 mV  
Note:  
1. In IDAC_CURPROG register.  
2. The IDAC is supplied by either AVDD, DVDD, or IOVDD based on the setting of ANASW in the EMU_PWRCTRL register and  
PWRSEL in the IDAC_CTRL register. Setting PWRSEL to 1 selects IOVDD. With PWRSEL cleared to 0, ANASW selects be-  
tween AVDD (0) and DVDD (1).  
silabs.com | Building a more connected world.  
Rev. 1.1 | 55  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Electrical Specifications  
4.1.17 Capacitive Sense (CSEN)  
Table 4.34. Capacitive Sense (CSEN)  
Parameter  
Symbol  
tCNV  
Test Condition  
Min  
Typ  
20.2  
26.4  
1.55  
Max  
Unit  
µs  
Single conversion time (1x  
accumulation)  
12-bit SAR Conversions  
16-bit SAR Conversions  
µs  
Delta Modulation Conversion (sin-  
gle comparison)  
µs  
Maximum external capacitive CEXTMAX  
load  
IREFPROG=7 (Gain = 1x), includ-  
ing routing parasitics  
68  
680  
1
pF  
pF  
kΩ  
nA  
IREFPROG=0 (Gain = 10x), in-  
cluding routing parasitics  
Maximum external series im- REXTMAX  
pedance  
Supply current, EM2 bonded ICSEN_BOND  
conversions, WARMUP-  
MODE=NORMAL, WAR-  
MUPCNT=0  
12-bit SAR conversions, 20 ms  
conversion rate, IREFPROG=7  
(Gain = 1x), 10 channels bonded  
(total capacitance of 330 pF)1  
326  
Delta Modulation conversions, 20  
ms conversion rate, IRE-  
226  
nA  
FPROG=7 (Gain = 1x), 10 chan-  
nels bonded (total capacitance of  
330 pF)1  
12-bit SAR conversions, 200 ms  
conversion rate, IREFPROG=7  
(Gain = 1x), 10 channels bonded  
33  
25  
nA  
nA  
(total capacitance of 330 pF)1  
Delta Modulation conversions,  
200 ms conversion rate, IRE-  
FPROG=7 (Gain = 1x), 10 chan-  
nels bonded (total capacitance of  
330 pF)1  
Supply current, EM2 scan  
conversions, WARMUP-  
MODE=NORMAL, WAR-  
MUPCNT=0  
ICSEN_EM2  
12-bit SAR conversions, 20 ms  
scan rate, IREFPROG=0 (Gain =  
690  
515  
nA  
nA  
10x), 8 samples per scan1  
Delta Modulation conversions, 20  
ms scan rate, 8 comparisons per  
sample (DMCR = 1, DMR = 2),  
IREFPROG=0 (Gain = 10x), 8  
samples per scan1  
12-bit SAR conversions, 200 ms  
scan rate, IREFPROG=0 (Gain =  
79  
57  
nA  
nA  
10x), 8 samples per scan1  
Delta Modulation conversions,  
200 ms scan rate, 8 comparisons  
per sample (DMCR = 1, DMR =  
2), IREFPROG=0 (Gain = 10x), 8  
samples per scan1  
silabs.com | Building a more connected world.  
Rev. 1.1 | 56  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Supply current, continuous  
conversions, WARMUP-  
MODE=KEEPCSENWARM  
ICSEN_ACTIVE  
SAR or Delta Modulation conver-  
sions of 33 pF capacitor, IRE-  
FPROG=0 (Gain = 10x), always  
on  
90.5  
µA  
HFPERCLK supply current  
ICSEN_HFPERCLK Current contribution from  
HFPERCLK when clock to CSEN  
block is enabled.  
2.25  
µA/MHz  
Note:  
1. Current is specified with a total external capacitance of 33 pF per channel. Average current is dependent on how long the periph-  
eral is actively sampling channels within the scan period, and scales with the number of samples acquired. Supply current for a  
specific application can be estimated by multiplying the current per sample by the total number of samples per period (total_cur-  
rent = single_sample_current * (number_of_channels * accumulation)).  
silabs.com | Building a more connected world.  
Rev. 1.1 | 57  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Electrical Specifications  
4.1.18 Operational Amplifier (OPAMP)  
Unless otherwise indicated, specified conditions are: Non-inverting input configuration, VDD = 3.3 V, DRIVESTRENGTH = 2, MAIN-  
OUTEN = 1, CLOAD = 75 pF with OUTSCALE = 0, or CLOAD = 37.5 pF with OUTSCALE = 1. Unit gain buffer and 3X-gain connection as  
specified in table footnotes1 2  
.
Table 4.35. Operational Amplifier (OPAMP)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Supply voltage (from AVDD) VOPA  
HCMDIS = 0, Rail-to-rail input  
range  
2
3.8  
V
HCMDIS = 1  
1.62  
3.8  
V
V
Input voltage  
VIN  
HCMDIS = 0, Rail-to-rail input  
range  
VVSS  
VOPA  
HCMDIS = 1  
VVSS  
100  
VVSS  
VOPA-1.2  
V
MΩ  
V
Input impedance  
Output voltage  
RIN  
VOUT  
CLOAD  
VOPA  
75  
Load capacitance3  
OUTSCALE = 0  
OUTSCALE = 1  
pF  
pF  
37.5  
Output impedance  
ROUT  
DRIVESTRENGTH = 2 or 3, 0.4 V  
≤ VOUT ≤ VOPA - 0.4 V, -8 mA <  
IOUT < 8 mA, Buffer connection,  
Full supply range  
0.25  
DRIVESTRENGTH = 0 or 1, 0.4 V  
≤ VOUT ≤ VOPA - 0.4 V, -400 µA <  
IOUT < 400 µA, Buffer connection,  
Full supply range  
0.6  
0.4  
1
DRIVESTRENGTH = 2 or 3, 0.1 V  
≤ VOUT ≤ VOPA - 0.1 V, -2 mA <  
IOUT < 2 mA, Buffer connection,  
Full supply range  
DRIVESTRENGTH = 0 or 1, 0.1 V  
≤ VOUT ≤ VOPA - 0.1 V, -100 µA <  
IOUT < 100 µA, Buffer connection,  
Full supply range  
Internal closed-loop gain  
Active current4  
GCL  
Buffer connection  
3x Gain connection  
16x Gain connection  
0.99  
2.93  
15.07  
1
1.01  
3.05  
16.33  
-
-
2.99  
15.7  
580  
-
IOPA  
DRIVESTRENGTH = 3, OUT-  
SCALE = 0  
µA  
DRIVESTRENGTH = 2, OUT-  
SCALE = 0  
176  
13  
µA  
µA  
µA  
DRIVESTRENGTH = 1, OUT-  
SCALE = 0  
DRIVESTRENGTH = 0, OUT-  
SCALE = 0  
4.7  
silabs.com | Building a more connected world.  
Rev. 1.1 | 58  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
135  
137  
121  
109  
3.38  
Max  
Unit  
dB  
Open-loop gain  
GOL  
DRIVESTRENGTH = 3  
DRIVESTRENGTH = 2  
DRIVESTRENGTH = 1  
DRIVESTRENGTH = 0  
dB  
dB  
dB  
Loop unit-gain frequency5  
UGF  
DRIVESTRENGTH = 3, Buffer  
connection  
MHz  
DRIVESTRENGTH = 2, Buffer  
connection  
0.9  
132  
34  
MHz  
kHz  
DRIVESTRENGTH = 1, Buffer  
connection  
DRIVESTRENGTH = 0, Buffer  
connection  
kHz  
DRIVESTRENGTH = 3, 3x Gain  
connection  
2.57  
0.71  
113  
28  
MHz  
MHz  
kHz  
DRIVESTRENGTH = 2, 3x Gain  
connection  
DRIVESTRENGTH = 1, 3x Gain  
connection  
DRIVESTRENGTH = 0, 3x Gain  
connection  
kHz  
Phase margin  
PM  
DRIVESTRENGTH = 3, Buffer  
connection  
67  
°
DRIVESTRENGTH = 2, Buffer  
connection  
69  
°
DRIVESTRENGTH = 1, Buffer  
connection  
63  
°
DRIVESTRENGTH = 0, Buffer  
connection  
68  
°
Output voltage noise  
NOUT  
DRIVESTRENGTH = 3, Buffer  
connection, 10 Hz - 10 MHz  
146  
163  
170  
176  
313  
271  
247  
245  
µVrms  
µVrms  
µVrms  
µVrms  
µVrms  
µVrms  
µVrms  
µVrms  
DRIVESTRENGTH = 2, Buffer  
connection, 10 Hz - 10 MHz  
DRIVESTRENGTH = 1, Buffer  
connection, 10 Hz - 1 MHz  
DRIVESTRENGTH = 0, Buffer  
connection, 10 Hz - 1 MHz  
DRIVESTRENGTH = 3, 3x Gain  
connection, 10 Hz - 10 MHz  
DRIVESTRENGTH = 2, 3x Gain  
connection, 10 Hz - 10 MHz  
DRIVESTRENGTH = 1, 3x Gain  
connection, 10 Hz - 1 MHz  
DRIVESTRENGTH = 0, 3x Gain  
connection, 10 Hz - 1 MHz  
silabs.com | Building a more connected world.  
Rev. 1.1 | 59  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Slew rate6  
SR  
DRIVESTRENGTH = 3,  
INCBW=17  
4.7  
V/µs  
DRIVESTRENGTH = 3,  
INCBW=0  
1.5  
V/µs  
V/µs  
DRIVESTRENGTH = 2,  
INCBW=17  
1.27  
DRIVESTRENGTH = 2,  
INCBW=0  
0.42  
0.17  
V/µs  
V/µs  
DRIVESTRENGTH = 1,  
INCBW=17  
DRIVESTRENGTH = 1,  
INCBW=0  
0.058  
0.044  
V/µs  
V/µs  
DRIVESTRENGTH = 0,  
INCBW=17  
DRIVESTRENGTH = 0,  
INCBW=0  
0.015  
V/µs  
Startup time8  
TSTART  
VOSI  
DRIVESTRENGTH = 2  
-2  
12  
2
µs  
Input offset voltage  
DRIVESTRENGTH = 2 or 3, T =  
25 °C  
mV  
DRIVESTRENGTH = 1 or 0, T =  
25 °C  
-2  
2
mV  
mV  
DRIVESTRENGTH = 2 or 3,  
across operating temperature  
range  
-12  
12  
DRIVESTRENGTH = 1 or 0,  
across operating temperature  
range  
-30  
30  
mV  
DC power supply rejection  
ratio9  
PSRRDC  
Input referred  
70  
70  
90  
dB  
dB  
dB  
DC common-mode rejection CMRRDC  
ratio9  
Input referred  
Total harmonic distortion  
THDOPA  
DRIVESTRENGTH = 2, 3x Gain  
connection, 1 kHz, VOUT = 0.1 V  
to VOPA - 0.1 V  
DRIVESTRENGTH = 0, 3x Gain  
connection, 0.1 kHz, VOUT = 0.1 V  
to VOPA - 0.1 V  
90  
dB  
silabs.com | Building a more connected world.  
Rev. 1.1 | 60  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Electrical Specifications  
Parameter  
Note:  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
1. Specified configuration for Unit gain buffer configuration is: INCBW = 0, HCMDIS = 0, RESINSEL = DISABLE. VINPUT = 0.5 V,  
VOUTPUT = 0.5 V.  
2. Specified configuration for 3X-Gain configuration is: INCBW = 1, HCMDIS = 1, RESINSEL = VSS, VINPUT = 0.5 V, VOUTPUT = 1.5  
V. Nominal voltage gain is 3.  
3. If the maximum CLOAD is exceeded, an isolation resistor is required for stability. See AN0038 for more information.  
4. Current into the load resistor is excluded. When the OPAMP is connected with closed-loop gain > 1, there will be extra current to  
drive the resistor feedback network. The internal resistor feedback network has total resistance of 143.5 kOhm, which will cause  
another ~10 µA current when the OPAMP drives 1.5 V between output and ground.  
5. In unit gain connection, UGF is the gain-bandwidth product of the OPAMP. In 3x Gain connection, UGF is the gain-bandwidth  
product of the OPAMP and 1/3 attenuation of the feedback network.  
6. Step between 0.2V and VOPA-0.2V, 10%-90% rising/falling range.  
7. When INCBW is set to 1 the OPAMP bandwidth is increased. This is allowed only when the non-inverting close-loop gain is ≥ 3,  
or the OPAMP may not be stable.  
8. From enable to output settled. In sample-and-off mode, RC network after OPAMP will contribute extra delay. Settling error < 1mV.  
9. When HCMDIS=1 and input common mode transitions the region from VOPA-1.4V to VOPA-1V, input offset will change. PSRR  
and CMRR specifications do not apply to this transition region.  
4.1.19 Pulse Counter (PCNT)  
Table 4.36. Pulse Counter (PCNT)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Input frequency  
FIN  
Asynchronous Single and Quad-  
rature Modes  
10  
MHz  
Sampled Modes with Debounce  
filter set to 0.  
8
kHz  
4.1.20 Analog Port (APORT)  
Table 4.37. Analog Port (APORT)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
7
Max  
Unit  
µA  
Supply current1 2  
IAPORT  
Operation in EM0/EM1  
Operation in EM2/EM3  
63  
nA  
Note:  
1. Supply current increase that occurs when an analog peripheral requests access to APORT. This current is not included in repor-  
ted peripheral currents. Additional peripherals requesting access to APORT do not incur further current.  
2. Specified current is for continuous APORT operation. In applications where the APORT is not requested continuously (e.g. peri-  
odic ACMP requests from LESENSE in EM2), the average current requirements can be estimated by mutiplying the duty cycle of  
the requests by the specified continuous current number.  
silabs.com | Building a more connected world.  
Rev. 1.1 | 61  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Electrical Specifications  
4.1.21 I2C  
4.1.21.1 I2C Standard-mode (Sm)1  
Table 4.38. I2C Standard-mode (Sm)1  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
SCL clock frequency2  
SCL clock low time  
SCL clock high time  
SDA set-up time  
fSCL  
0
100  
kHz  
tLOW  
4.7  
4
µs  
µs  
ns  
ns  
µs  
tHIGH  
tSU_DAT  
tHD_DAT  
250  
100  
4.7  
SDA hold time3  
3450  
Repeated START condition tSU_STA  
set-up time  
(Repeated) START condition tHD_STA  
hold time  
4
µs  
STOP condition set-up time tSU_STO  
4
µs  
µs  
Bus free time between a  
tBUF  
4.7  
STOP and START condition  
Note:  
1. For CLHR set to 0 in the I2Cn_CTRL register.  
2. For the minimum HFPERCLK frequency required in Standard-mode, refer to the I2C chapter in the reference manual.  
3. The maximum SDA hold time (tHD_DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW).  
silabs.com | Building a more connected world.  
Rev. 1.1 | 62  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Electrical Specifications  
4.1.21.2 I2C Fast-mode (Fm)1  
Table 4.39. I2C Fast-mode (Fm)1  
Test Condition  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
SCL clock frequency2  
SCL clock low time  
SCL clock high time  
SDA set-up time  
fSCL  
0
400  
kHz  
tLOW  
1.3  
0.6  
µs  
µs  
ns  
ns  
µs  
tHIGH  
tSU_DAT  
tHD_DAT  
100  
100  
0.6  
SDA hold time3  
900  
Repeated START condition tSU_STA  
set-up time  
(Repeated) START condition tHD_STA  
hold time  
0.6  
µs  
STOP condition set-up time tSU_STO  
0.6  
1.3  
µs  
µs  
Bus free time between a  
tBUF  
STOP and START condition  
Note:  
1. For CLHR set to 1 in the I2Cn_CTRL register.  
2. For the minimum HFPERCLK frequency required in Fast-mode, refer to the I2C chapter in the reference manual.  
3. The maximum SDA hold time (tHD,DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW).  
silabs.com | Building a more connected world.  
Rev. 1.1 | 63  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Electrical Specifications  
4.1.21.3 I2C Fast-mode Plus (Fm+)1  
Table 4.40. I2C Fast-mode Plus (Fm+)1  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
SCL clock frequency2  
SCL clock low time  
SCL clock high time  
SDA set-up time  
fSCL  
0
1000  
kHz  
tLOW  
0.5  
0.26  
50  
µs  
µs  
ns  
ns  
µs  
tHIGH  
tSU_DAT  
tHD_DAT  
SDA hold time  
100  
0.26  
Repeated START condition tSU_STA  
set-up time  
(Repeated) START condition tHD_STA  
hold time  
0.26  
µs  
STOP condition set-up time tSU_STO  
0.26  
0.5  
µs  
µs  
Bus free time between a  
tBUF  
STOP and START condition  
Note:  
1. For CLHR set to 0 or 1 in the I2Cn_CTRL register.  
2. For the minimum HFPERCLK frequency required in Fast-mode Plus, refer to the I2C chapter in the reference manual.  
silabs.com | Building a more connected world.  
Rev. 1.1 | 64  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Electrical Specifications  
4.1.22 USART SPI  
SPI Master Timing  
Table 4.41. SPI Master Timing  
Test Condition  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
SCLK period 1 2 3  
tSCLK  
2 *  
tHFPERCLK  
ns  
CS to MOSI 1 2  
tCS_MO  
tSCLK_MO  
tSU_MI  
-12.5  
-8.5  
14  
ns  
ns  
SCLK to MOSI 1 2  
MISO setup time 1 2  
10.5  
IOVDD = 1.62 V  
IOVDD = 3.0 V  
90  
42  
-9  
ns  
ns  
ns  
MISO hold time 1 2  
tH_MI  
Note:  
1. Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0).  
2. Measurement done with 8 pF output loading at 10% and 90% of VDD (figure shows 50% of VDD).  
3. tHFPERCLK is one period of the selected HFPERCLK.  
tCS_MO  
CS  
tSCKL_MO  
SCLK  
CLKPOL = 0  
tSCLK  
SCLK  
CLKPOL = 1  
MOSI  
MISO  
tSU_MI  
tH_MI  
Figure 4.1. SPI Master Timing Diagram  
silabs.com | Building a more connected world.  
Rev. 1.1 | 65  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Electrical Specifications  
SPI Slave Timing  
Table 4.42. SPI Slave Timing  
Test Condition  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
SCLK period 1 2 3  
tSCLK  
6 *  
tHFPERCLK  
ns  
SCLK high time1 2 3  
SCLK low time1 2 3  
tSCLK_HI  
2.5 *  
tHFPERCLK  
ns  
ns  
tSCLK_LO  
2.5 *  
tHFPERCLK  
CS active to MISO 1 2  
CS disable to MISO 1 2  
MOSI setup time 1 2  
MOSI hold time 1 2 3  
SCLK to MISO 1 2 3  
tCS_ACT_MI  
tCS_DIS_MI  
tSU_MO  
4
4
70  
50  
ns  
ns  
ns  
ns  
ns  
12.5  
13  
tH_MO  
tSCLK_MI  
6 + 1.5 *  
tHFPERCLK  
45 + 2.5 *  
tHFPERCLK  
Note:  
1. Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0).  
2. Measurement done with 8 pF output loading at 10% and 90% of VDD (figure shows 50% of VDD).  
3. tHFPERCLK is one period of the selected HFPERCLK.  
tCS_ACT_MI  
CS  
tCS_DIS_MI  
SCLK  
CLKPOL = 0  
tSCLK_HI  
tSCLK_LO  
SCLK  
tSU_MO  
CLKPOL = 1  
tSCLK  
tH_MO  
MOSI  
MISO  
tSCLK_MI  
Figure 4.2. SPI Slave Timing Diagram  
silabs.com | Building a more connected world.  
Rev. 1.1 | 66  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Typical Connection Diagrams  
5. Typical Connection Diagrams  
5.1 Typical BGM13S Connections  
Typical connections for the BGM13S module are shown in Figure 5.1 Typical Connections for BGM13S with UART Network Co-Pro-  
cessor on page 67. This diagram shows connections for:  
• Power supplies  
Note: The 1V8 pin is the 1.8V output of the internal DC-DC converer. This pin should be left unconnected. Do not add external de-  
coupling or power external circuits from this pin.  
• Antenna loop for internal antenna usage or external antenna connection - The RF and ANTENNA pins should be tied together for  
correct operation of the module. An optional 0R resistor can be added between RF and ANTENNA, making it possible to measure  
the signal between these pins.  
• Reset line  
Note:  
It is recommended to connect the RESETn line to an open-drain IO pin on the host CPU when NCP mode is used.  
RESETn includes an internal pull-up to the VBATT supply and input logic levels on RESETn are referenced to VBATT. In systems  
where IOVDD is not equal to VBATT, additional considerations may need to be taken.  
• UART connection to an external host for Network Co-Processor (NCP) usage (optional)  
• 32.768 kHz crystal - Required in applications that must meet 500 ppm Bluetooth Sleep Clock accuracy requirement. More accurate  
crystals can be used to reduce the listening window and thereby reduce overall current consumption. Recommended crystal is KDS  
part number 1TJG125DP1A0012 or equivalent.  
Battery or Regulator  
Battery / Supply Voltage  
Inductor or capacitor  
for antenna fine tuning  
RESETn  
GPIO  
ANTENNA  
RF  
Use 0R to connect the  
antenna to the RF output  
PA0 / UART_TX  
RX  
TX  
Host CPU  
PA1 / UART_RX  
PA2 / UART_CTS  
PA3 / UART_RTS  
RTS  
CTS  
Wireless  
Module  
TCK / SWCLK  
(optional)  
PF0 / TCK / SWCLK  
PF1 / TMS / SWDIO  
PF2 / TDO / SWO  
PF3 / TDI  
PB15 / LFXTAL_P  
PB14 / LFXTAL_N  
TMS / SWDIO  
TDO / SWO  
TDI  
32.768 kHz XTAL  
PTI_FRAME  
PTI_DATA  
PB13 / PTI_FRAME  
PB12 / PTI_DATA  
Figure 5.1. Typical Connections for BGM13S with UART Network Co-Processor  
Note: It is possible to power the IOVDD pin at 1.8 V from the DC-DC output (1V8). However, the 1V8 output is off by default, and  
IOVDD must be powered when programming the device. Any system that powers IOVDD directly from 1V8 must power IOVDD exter-  
nally during initial programming.  
silabs.com | Building a more connected world.  
Rev. 1.1 | 67  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Typical Connection Diagrams  
Two common debug interface options are shown in Figure 5.2 Common Debug Connections on page 68. Refer to AN958 for more  
information and additional options.  
3 V  
1
3
5
7
9
11  
13  
15  
17  
19  
2
4
6
8
10  
12  
14  
16  
18  
20  
TMS / SWDIO / PF1  
TCK / SWCLK / PF0  
TDO / SWO / PF2  
TDI / PF3  
3 V  
RESETn  
1
3
5
7
9
2
4
6
8
RESETn  
UART_TX / PA0  
TMS / SWDIO / PF1  
PTI_FRAME / PB13  
UART_RX / PA1  
TDO / SWO / PF2  
TCK / SWCLK / PF0  
PTI_DATA / PB12  
10  
Standard ARM Cortex Debug Connector  
Mini Simplicity Debug Connector  
Figure 5.2. Common Debug Connections  
silabs.com | Building a more connected world.  
Rev. 1.1 | 68  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Layout Guidelines  
6. Layout Guidelines  
For optimal performance of the BGM13S, please follow the PCB layout guidelines and ground plane recommendations indicated in this  
section.  
6.1 Layout Guidelines  
This section contains generic PCB layout and design guidelines for the BGM13S module. For optimal performance:  
• Place the module at the edge of the PCB, as shown in the figures in this chapter.  
• Do not place any metal (traces, components, etc.) in the antenna clearance area.  
• Connect all ground pads directly to a solid ground plane.  
• Place the ground vias as close to the ground pads as possible.  
Figure 6.1. BGM13S PCB Top Layer Design  
The following rules are recommended for the PCB design:  
• Trace to copper clearance 150um  
• PTH drill size 300um  
• PTH annular ring 150um  
Important:  
The antenna area must align with the pads precisely. Please refer to the recommended PCB land pattern for exact dimensions.  
Figure 6.2. BGM13S PCB Middle and Bottom Layer Design  
Figure 6.3. Practical Installation of BGM13S on Application PCB  
silabs.com | Building a more connected world.  
Rev. 1.1 | 69  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Layout Guidelines  
Figure 6.4. Poor Layout Designs for the BGM13S  
Layout checklist for BGM13S:  
1. Antenna area is aligned relative to the module pads as shown in the recommended PCB land pattern.  
2. Clearance area within the inner layers and bottom layer is covering the whole antenna area as shown in the layout guidelines.  
3. The antenna loop is implemented on the top layer as shown in the layoyt guidelines.  
4. All dimensions within the antenna area are precisely as shown in the recommended PCB land pattern.  
5. The module is placed near the edge of the PCB with max 1mm indentation.  
6. The module is not placed in the corner of the PCB.  
6.2 Effect of PCB Width  
The BGM13S module should be placed at the center of the PCB edge. The width of the board has an impact to the radiated efficiency  
and, more importantly, there should be enough ground plane on both sides of the module for optimal antenna performance. Figure  
6.5 BGM13S PCB Top Layer Design on page 70 gives an indcation of ground plane size vs. maximum achievable range.  
Figure 6.5. BGM13S PCB Top Layer Design  
The impact of the board size to the radiated performance is a generic feature of all PCB and chip antennas and it is not a unique fea-  
ture of the BGM13S. For the BGM13S the depth of the board is not important and does not impact the radiated performance.  
6.3 Effect of Plastic and Metal Materials  
The antenna on the BGM13S is insensitive to the effects of nearby plastic and other materials with low dielectric constant. No separa-  
tion between the BGM13S and plastic or other materials is needed. The board thickness has an impact on the module and the addition-  
al inductor/capacitor will help to tune the antenna to any board thickness.  
In some cases, it may be necessary to fine tune the antenna to optimize for any specific application layout or mechanical design. A  
capacitor or an inductor in parallel with the antenna input can be used for optimizing the antenna for any PCB layouts. A capacitor  
moves the antenna frequency lower and an inductor moves the antenna frequency higher. Capacitor values between 0.1 pF-10 pF and  
inductor values 3.6 nH-10 nH can be used.  
The antenna is extremely robust against any objects in close proximity or in direct contact with the antenna and it is recommended not  
to adjust the dimensions of the antenna area unless it is clear that a metal object, such as a coin cell battery, within the antenna area is  
detuning the antenna.  
silabs.com | Building a more connected world.  
Rev. 1.1 | 70  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Layout Guidelines  
6.4 Effects of Human Body  
Placing the module in contact with or very close to the human body will negatively impact antenna efficiency and reduce range.  
6.5 2D Radiation Pattern Plots  
Figure 6.6. Typical 2D Radiation Pattern – Front View  
Figure 6.7. Typical 2D Radiation Pattern – Side View  
silabs.com | Building a more connected world.  
Rev. 1.1 | 71  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Layout Guidelines  
Figure 6.8. Typical 2D Radiation Pattern – Top View  
silabs.com | Building a more connected world.  
Rev. 1.1 | 72  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Pin Definitions  
7. Pin Definitions  
7.1 BGM13S Device Pinout  
Figure 7.1. BGM13S Device Pinout  
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the sup-  
ported features for each GPIO pin, see 7.2 GPIO Functionality Table or 7.3 Alternate Functionality Overview.  
silabs.com | Building a more connected world.  
Rev. 1.1 | 73  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Pin Definitions  
Table 7.1. BGM13S Device Pinout  
Pin Name  
Pin Name  
Pin(s) Description  
Pin(s) Description  
1
4
5
20  
31  
VSS  
45  
46  
48  
49  
50  
51  
Ground  
ANTENNA  
2
50 Ohm input pin for internal antenna.  
50 Ohm I/O for external antenna con-  
nection.  
RF  
3
PD9  
6
GPIO (5V)  
PD10  
PD12  
PD14  
PA0  
7
GPIO (5V)  
GPIO (5V)  
GPIO  
PD11  
PD13  
PD15  
PA1  
8
GPIO (5V)  
GPIO  
9
10  
12  
14  
16  
18  
21  
11  
13  
15  
17  
19  
GPIO  
GPIO  
GPIO  
PA2  
GPIO  
PA3  
GPIO  
PA4  
GPIO  
PA5  
GPIO (5V)  
GPIO  
PB15  
GPIO  
PB14  
1.8V output of the internal DC-DC con-  
verter. Internally decoupled - do not add  
external decoupling.  
Battery supply voltage input to the inter-  
nal DC-DC and analog supply.  
VBATT  
22  
1V8  
23  
IOVDD  
PC6  
24  
26  
28  
30  
33  
35  
37  
39  
41  
Digital IO power supply.  
GPIO (5V)  
GPIO (5V)  
GPIO (5V)  
GPIO (5V)  
GPIO (5V)  
GPIO  
NC  
PC7  
PF2  
25  
27  
29  
32  
34  
36  
38  
40  
42  
No Connect.  
GPIO (5V)  
GPIO (5V)  
GPIO (5V)  
GPIO (5V)  
GPIO  
PC8  
PC9  
PC10  
PF0  
PC11  
PF1  
PB13  
PB11  
PF4  
PB12  
PF3  
GPIO  
GPIO (5V)  
GPIO (5V)  
GPIO (5V)  
GPIO (5V)  
PF5  
PF6  
Reset input, active low. This pin is inter-  
nally pulled up to AVDD. To apply an  
external reset source to this pin, it is re-  
quired to only drive this pin low during  
reset, and let the internal pull-up ensure  
that reset is released.  
PF7  
43  
47  
GPIO (5V)  
RESETn  
44  
ANT_GND  
Antenna ground.  
Note:  
1. GPIO with 5V tolerance are indicated by (5V).  
silabs.com | Building a more connected world.  
Rev. 1.1 | 74  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Pin Definitions  
7.2 GPIO Functionality Table  
A wide selection of alternate functionality is available for multiplexing to various pins. The following table shows the name of each GPIO  
pin, followed by the functionality available on that pin. Refer to 7.3 Alternate Functionality Overview for a list of GPIO locations available  
for each function.  
Table 7.2. GPIO Functionality Table  
GPIO Name  
Pin Alternate Functionality / Description  
Analog  
Timers  
Communication  
US0_TX #0  
Radio  
Other  
TIM0_CC0 #0  
TIM0_CC1 #31  
TIM0_CC2 #30  
TIM0_CDTI0 #29  
TIM0_CDTI1 #28  
TIM0_CDTI2 #27  
TIM1_CC0 #0  
US0_RX #31  
US0_CLK #30  
US0_CS #29  
US0_CTS #28  
US0_RTS #27  
US1_TX #0  
CMU_CLK1 #0  
PRS_CH6 #0  
PRS_CH7 #10  
PRS_CH8 #9  
PRS_CH9 #8  
ACMP0_O #0  
ACMP1_O #0  
LES_CH8  
FRC_DCLK #0  
FRC_DOUT #31  
BUSDY  
BUSCX  
US1_RX #31  
US1_CLK #30  
US1_CS #29  
US1_CTS #28  
US1_RTS #27  
LEU0_TX #0  
LEU0_RX #31  
I2C0_SDA #0  
I2C0_SCL #31  
FRC_DFRAME #30  
MODEM_DCLK #0  
MODEM_DIN #31  
MODEM_DOUT #30  
PA0  
TIM1_CC1 #31  
TIM1_CC2 #30  
TIM1_CC3 #29  
WTIM0_CC0 #0  
LETIM0_OUT0 #0  
LETIM0_OUT1 #31  
PCNT0_S0IN #0  
PCNT0_S1IN #31  
ADC0_EXTN  
silabs.com | Building a more connected world.  
Rev. 1.1 | 75  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Pin Definitions  
GPIO Name  
Pin Alternate Functionality / Description  
Analog  
Timers  
Communication  
US0_TX #1  
Radio  
Other  
TIM0_CC0 #1  
TIM0_CC1 #0  
US0_RX #0  
US0_CLK #31  
US0_CS #30  
US0_CTS #29  
US0_RTS #28  
US1_TX #1  
TIM0_CC2 #31  
TIM0_CDTI0 #30  
TIM0_CDTI1 #29  
TIM0_CDTI2 #28  
TIM1_CC0 #1  
CMU_CLK0 #0  
PRS_CH6 #1  
PRS_CH7 #0  
PRS_CH8 #10  
PRS_CH9 #9  
ACMP0_O #1  
ACMP1_O #1  
LES_CH9  
FRC_DCLK #1  
FRC_DOUT #0  
BUSCY  
BUSDX  
US1_RX #0  
FRC_DFRAME #31  
MODEM_DCLK #1  
MODEM_DIN #0  
MODEM_DOUT #31  
PA1  
TIM1_CC1 #0  
ADC0_EXTP  
VDAC0_EXT  
US1_CLK #31  
US1_CS #30  
US1_CTS #29  
US1_RTS #28  
LEU0_TX #1  
LEU0_RX #0  
I2C0_SDA #1  
I2C0_SCL #0  
US0_TX #2  
TIM1_CC2 #31  
TIM1_CC3 #30  
WTIM0_CC0 #1  
LETIM0_OUT0 #1  
LETIM0_OUT1 #0  
PCNT0_S0IN #1  
PCNT0_S1IN #0  
TIM0_CC0 #2  
TIM0_CC1 #1  
US0_RX #1  
TIM0_CC2 #0  
US0_CLK #0  
US0_CS #31  
US0_CTS #30  
US0_RTS #29  
US1_TX #2  
TIM0_CDTI0 #31  
TIM0_CDTI1 #30  
TIM0_CDTI2 #29  
TIM1_CC0 #2  
PRS_CH6 #2  
PRS_CH7 #1  
PRS_CH8 #0  
PRS_CH9 #10  
ACMP0_O #2  
ACMP1_O #2  
LES_CH10  
FRC_DCLK #2  
FRC_DOUT #1  
VDAC0_OUT1ALT /  
OPA1_OUTALT #1  
TIM1_CC1 #1  
US1_RX #1  
FRC_DFRAME #0  
MODEM_DCLK #2  
MODEM_DIN #1  
MODEM_DOUT #0  
BUSDY  
BUSCX  
OPA0_P  
PA2  
TIM1_CC2 #0  
US1_CLK #0  
US1_CS #31  
US1_CTS #30  
US1_RTS #29  
LEU0_TX #2  
LEU0_RX #1  
I2C0_SDA #2  
I2C0_SCL #1  
TIM1_CC3 #31  
WTIM0_CC0 #2  
WTIM0_CC1 #0  
LETIM0_OUT0 #2  
LETIM0_OUT1 #1  
PCNT0_S0IN #2  
PCNT0_S1IN #1  
silabs.com | Building a more connected world.  
Rev. 1.1 | 76  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Pin Definitions  
GPIO Name  
Pin Alternate Functionality / Description  
Analog  
Timers  
Communication  
US0_TX #3  
Radio  
Other  
TIM0_CC0 #3  
TIM0_CC1 #2  
US0_RX #2  
TIM0_CC2 #1  
US0_CLK #1  
US0_CS #0  
TIM0_CDTI0 #0  
TIM0_CDTI1 #31  
TIM0_CDTI2 #30  
TIM1_CC0 #3  
US0_CTS #31  
US0_RTS #30  
US1_TX #3  
PRS_CH6 #3  
PRS_CH7 #2  
PRS_CH8 #1  
PRS_CH9 #0  
ACMP0_O #3  
ACMP1_O #3  
LES_CH11  
FRC_DCLK #3  
FRC_DOUT #2  
BUSCY  
BUSDX  
TIM1_CC1 #2  
US1_RX #2  
FRC_DFRAME #1  
MODEM_DCLK #3  
MODEM_DIN #2  
MODEM_DOUT #1  
PA3  
TIM1_CC2 #1  
US1_CLK #1  
US1_CS #0  
VDAC0_OUT0 /  
OPA0_OUT  
TIM1_CC3 #0  
WTIM0_CC0 #3  
WTIM0_CC1 #1  
LETIM0_OUT0 #3  
LETIM0_OUT1 #2  
PCNT0_S0IN #3  
PCNT0_S1IN #2  
TIM0_CC0 #4  
US1_CTS #31  
US1_RTS #30  
LEU0_TX #3  
LEU0_RX #2  
I2C0_SDA #3  
I2C0_SCL #2  
GPIO_EM4WU8  
US0_TX #4  
US0_RX #3  
US0_CLK #2  
US0_CS #1  
US0_CTS #0  
US0_RTS #31  
US1_TX #4  
TIM0_CC1 #3  
TIM0_CC2 #2  
TIM0_CDTI0 #1  
TIM0_CDTI1 #0  
TIM0_CDTI2 #31  
TIM1_CC0 #4  
PRS_CH6 #4  
PRS_CH7 #3  
PRS_CH8 #2  
PRS_CH9 #1  
ACMP0_O #4  
ACMP1_O #4  
LES_CH12  
FRC_DCLK #4  
FRC_DOUT #3  
VDAC0_OUT1ALT /  
OPA1_OUTALT #2  
TIM1_CC1 #3  
US1_RX #3  
US1_CLK #2  
US1_CS #1  
US1_CTS #0  
US1_RTS #31  
LEU0_TX #4  
LEU0_RX #3  
I2C0_SDA #4  
I2C0_SCL #3  
FRC_DFRAME #2  
MODEM_DCLK #4  
MODEM_DIN #3  
MODEM_DOUT #2  
BUSDY  
BUSCX  
OPA0_N  
PA4  
TIM1_CC2 #2  
TIM1_CC3 #1  
WTIM0_CC0 #4  
WTIM0_CC1 #2  
WTIM0_CC2 #0  
LETIM0_OUT0 #4  
LETIM0_OUT1 #3  
PCNT0_S0IN #4  
PCNT0_S1IN #3  
silabs.com | Building a more connected world.  
Rev. 1.1 | 77  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Pin Definitions  
GPIO Name  
Pin Alternate Functionality / Description  
Analog  
Timers  
Communication  
US0_TX #5  
Radio  
Other  
US0_RX #4  
US0_CLK #3  
US0_CS #2  
TIM0_CC0 #5  
TIM0_CC1 #4  
US0_CTS #1  
US0_RTS #0  
US1_TX #5  
TIM0_CC2 #3  
TIM0_CDTI0 #2  
TIM0_CDTI1 #1  
TIM0_CDTI2 #0  
TIM1_CC0 #5  
CMU_CLKI0 #4  
PRS_CH6 #5  
PRS_CH7 #4  
PRS_CH8 #3  
PRS_CH9 #2  
ACMP0_O #5  
ACMP1_O #5  
LES_CH13  
US1_RX #4  
US1_CLK #3  
US1_CS #2  
FRC_DCLK #5  
FRC_DOUT #4  
VDAC0_OUT0ALT /  
OPA0_OUTALT #0  
TIM1_CC1 #4  
US1_CTS #1  
US1_RTS #0  
US2_TX #0  
FRC_DFRAME #3  
MODEM_DCLK #5  
MODEM_DIN #4  
MODEM_DOUT #3  
PA5  
TIM1_CC2 #3  
BUSCY  
BUSDX  
TIM1_CC3 #2  
WTIM0_CC0 #5  
WTIM0_CC1 #3  
WTIM0_CC2 #1  
LETIM0_OUT0 #5  
LETIM0_OUT1 #4  
PCNT0_S0IN #5  
PCNT0_S1IN #4  
US2_RX #31  
US2_CLK #30  
US2_CS #29  
US2_CTS #28  
US2_RTS #27  
LEU0_TX #5  
LEU0_RX #4  
I2C0_SDA #5  
I2C0_SCL #4  
ETM_TCLK #1  
silabs.com | Building a more connected world.  
Rev. 1.1 | 78  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Pin Definitions  
GPIO Name  
Pin Alternate Functionality / Description  
Analog  
Timers  
Communication  
Radio  
Other  
TIM0_CC0 #6  
TIM0_CC1 #5  
TIM0_CC2 #4  
US0_TX #6  
US0_RX #5  
US0_CLK #4  
US0_CS #3  
US0_CTS #2  
US0_RTS #1  
US1_TX #6  
US1_RX #5  
US1_CLK #4  
US1_CS #3  
US1_CTS #2  
US1_RTS #1  
LEU0_TX #6  
LEU0_RX #5  
I2C0_SDA #6  
I2C0_SCL #5  
TIM0_CDTI0 #3  
TIM0_CDTI1 #2  
TIM0_CDTI2 #1  
TIM1_CC0 #6  
TIM1_CC1 #5  
FRC_DCLK #6  
FRC_DOUT #5  
PRS_CH6 #6  
PRS_CH7 #5  
PRS_CH8 #4  
PRS_CH9 #3  
ACMP0_O #6  
ACMP1_O #6  
TIM1_CC2 #4  
BUSCY  
BUSDX  
OPA2_P  
TIM1_CC3 #3  
FRC_DFRAME #4  
MODEM_DCLK #6  
MODEM_DIN #5  
MODEM_DOUT #4  
PB11  
WTIM0_CC0 #15  
WTIM0_CC1 #13  
WTIM0_CC2 #11  
WTIM0_CDTI0 #7  
WTIM0_CDTI1 #5  
WTIM0_CDTI2 #3  
LETIM0_OUT0 #6  
LETIM0_OUT1 #5  
PCNT0_S0IN #6  
PCNT0_S1IN #5  
silabs.com | Building a more connected world.  
Rev. 1.1 | 79  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Pin Definitions  
GPIO Name  
Pin Alternate Functionality / Description  
Analog  
Timers  
Communication  
Radio  
Other  
TIM0_CC0 #7  
TIM0_CC1 #6  
TIM0_CC2 #5  
US0_TX #7  
US0_RX #6  
US0_CLK #5  
US0_CS #4  
US0_CTS #3  
US0_RTS #2  
US1_TX #7  
US1_RX #6  
US1_CLK #5  
US1_CS #4  
US1_CTS #3  
US1_RTS #2  
LEU0_TX #7  
LEU0_RX #6  
I2C0_SDA #7  
I2C0_SCL #6  
TIM0_CDTI0 #4  
TIM0_CDTI1 #3  
TIM0_CDTI2 #2  
TIM1_CC0 #7  
TIM1_CC1 #6  
FRC_DCLK #7  
FRC_DOUT #6  
PRS_CH6 #7  
PRS_CH7 #6  
PRS_CH8 #5  
PRS_CH9 #4  
ACMP0_O #7  
ACMP1_O #7  
TIM1_CC2 #5  
BUSDY  
BUSCX  
TIM1_CC3 #4  
FRC_DFRAME #5  
MODEM_DCLK #7  
MODEM_DIN #6  
MODEM_DOUT #5  
PB12  
WTIM0_CC0 #16  
WTIM0_CC1 #14  
WTIM0_CC2 #12  
WTIM0_CDTI0 #8  
WTIM0_CDTI1 #6  
WTIM0_CDTI2 #4  
LETIM0_OUT0 #7  
LETIM0_OUT1 #6  
PCNT0_S0IN #7  
PCNT0_S1IN #6  
OPA2_OUT  
silabs.com | Building a more connected world.  
Rev. 1.1 | 80  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Pin Definitions  
GPIO Name  
Pin Alternate Functionality / Description  
Analog  
Timers  
Communication  
Radio  
Other  
TIM0_CC0 #8  
TIM0_CC1 #7  
TIM0_CC2 #6  
US0_TX #8  
US0_RX #7  
US0_CLK #6  
US0_CS #5  
US0_CTS #4  
US0_RTS #3  
US1_TX #8  
US1_RX #7  
US1_CLK #6  
US1_CS #5  
US1_CTS #4  
US1_RTS #3  
LEU0_TX #8  
LEU0_RX #7  
I2C0_SDA #8  
I2C0_SCL #7  
TIM0_CDTI0 #5  
TIM0_CDTI1 #4  
TIM0_CDTI2 #3  
TIM1_CC0 #8  
CMU_CLKI0 #0  
PRS_CH6 #8  
PRS_CH7 #7  
PRS_CH8 #6  
PRS_CH9 #5  
ACMP0_O #8  
ACMP1_O #8  
DBG_SWO #1  
GPIO_EM4WU9  
TIM1_CC1 #7  
FRC_DCLK #8  
FRC_DOUT #7  
TIM1_CC2 #6  
BUSCY  
BUSDX  
OPA2_N  
TIM1_CC3 #5  
FRC_DFRAME #6  
MODEM_DCLK #8  
MODEM_DIN #7  
MODEM_DOUT #6  
PB13  
WTIM0_CC0 #17  
WTIM0_CC1 #15  
WTIM0_CC2 #13  
WTIM0_CDTI0 #9  
WTIM0_CDTI1 #7  
WTIM0_CDTI2 #5  
LETIM0_OUT0 #8  
LETIM0_OUT1 #7  
PCNT0_S0IN #8  
PCNT0_S1IN #7  
silabs.com | Building a more connected world.  
Rev. 1.1 | 81  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Pin Definitions  
GPIO Name  
Pin Alternate Functionality / Description  
Analog  
Timers  
Communication  
Radio  
Other  
TIM0_CC0 #9  
TIM0_CC1 #8  
TIM0_CC2 #7  
US0_TX #9  
US0_RX #8  
US0_CLK #7  
US0_CS #6  
US0_CTS #5  
US0_RTS #4  
US1_TX #9  
US1_RX #8  
US1_CLK #7  
US1_CS #6  
US1_CTS #5  
US1_RTS #4  
LEU0_TX #9  
LEU0_RX #8  
I2C0_SDA #9  
I2C0_SCL #8  
TIM0_CDTI0 #6  
TIM0_CDTI1 #5  
TIM0_CDTI2 #4  
TIM1_CC0 #9  
CMU_CLK1 #1  
PRS_CH6 #9  
PRS_CH7 #8  
PRS_CH8 #7  
PRS_CH9 #6  
ACMP0_O #9  
ACMP1_O #9  
TIM1_CC1 #8  
FRC_DCLK #9  
FRC_DOUT #8  
TIM1_CC2 #7  
BUSDY  
BUSCX  
TIM1_CC3 #6  
FRC_DFRAME #7  
MODEM_DCLK #9  
MODEM_DIN #8  
MODEM_DOUT #7  
PB14  
WTIM0_CC0 #18  
WTIM0_CC1 #16  
WTIM0_CC2 #14  
WTIM0_CDTI0 #10  
WTIM0_CDTI1 #8  
WTIM0_CDTI2 #6  
LETIM0_OUT0 #9  
LETIM0_OUT1 #8  
PCNT0_S0IN #9  
PCNT0_S1IN #8  
LFXTAL_N  
silabs.com | Building a more connected world.  
Rev. 1.1 | 82  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Pin Definitions  
GPIO Name  
Pin Alternate Functionality / Description  
Analog  
Timers  
Communication  
Radio  
Other  
TIM0_CC0 #10  
TIM0_CC1 #9  
TIM0_CC2 #8  
US0_TX #10  
US0_RX #9  
TIM0_CDTI0 #7  
TIM0_CDTI1 #6  
TIM0_CDTI2 #5  
TIM1_CC0 #10  
TIM1_CC1 #9  
US0_CLK #8  
US0_CS #7  
US0_CTS #6  
US0_RTS #5  
US1_TX #10  
US1_RX #9  
CMU_CLK0 #1  
PRS_CH6 #10  
PRS_CH7 #9  
PRS_CH8 #8  
PRS_CH9 #7  
ACMP0_O #10  
ACMP1_O #10  
FRC_DCLK #10  
FRC_DOUT #9  
TIM1_CC2 #8  
BUSCY  
BUSDX  
TIM1_CC3 #7  
FRC_DFRAME #8  
MODEM_DCLK #10  
MODEM_DIN #9  
MODEM_DOUT #8  
PB15  
WTIM0_CC0 #19  
WTIM0_CC1 #17  
WTIM0_CC2 #15  
WTIM0_CDTI0 #11  
WTIM0_CDTI1 #9  
WTIM0_CDTI2 #7  
LETIM0_OUT0 #10  
LETIM0_OUT1 #9  
PCNT0_S0IN #10  
PCNT0_S1IN #9  
US1_CLK #8  
US1_CS #7  
LFXTAL_P  
US1_CTS #6  
US1_RTS #5  
LEU0_TX #10  
LEU0_RX #9  
I2C0_SDA #10  
I2C0_SCL #9  
silabs.com | Building a more connected world.  
Rev. 1.1 | 83  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Pin Definitions  
GPIO Name  
Pin Alternate Functionality / Description  
Analog  
Timers  
Communication  
Radio  
Other  
TIM0_CC0 #11  
TIM0_CC1 #10  
TIM0_CC2 #9  
US0_TX #11  
US0_RX #10  
US0_CLK #9  
US0_CS #8  
TIM0_CDTI0 #8  
TIM0_CDTI1 #7  
TIM0_CDTI2 #6  
TIM1_CC0 #11  
TIM1_CC1 #10  
TIM1_CC2 #9  
CMU_CLK0 #2  
CMU_CLKI0 #2  
PRS_CH0 #8  
US0_CTS #7  
US0_RTS #6  
US1_TX #11  
US1_RX #10  
US1_CLK #9  
US1_CS #8  
FRC_DCLK #11  
FRC_DOUT #10  
PRS_CH9 #11  
PRS_CH10 #0  
PRS_CH11 #5  
ACMP0_O #11  
ACMP1_O #11  
ETM_TCLK #3  
BUSBY  
BUSAX  
TIM1_CC3 #8  
FRC_DFRAME #9  
MODEM_DCLK #11  
MODEM_DIN #10  
MODEM_DOUT #9  
PC6  
WTIM0_CC0 #26  
WTIM0_CC1 #24  
WTIM0_CC2 #22  
WTIM0_CDTI0 #18  
WTIM0_CDTI1 #16  
WTIM0_CDTI2 #14  
LETIM0_OUT0 #11  
LETIM0_OUT1 #10  
PCNT0_S0IN #11  
PCNT0_S1IN #10  
US1_CTS #7  
US1_RTS #6  
LEU0_TX #11  
LEU0_RX #10  
I2C0_SDA #11  
I2C0_SCL #10  
silabs.com | Building a more connected world.  
Rev. 1.1 | 84  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Pin Definitions  
GPIO Name  
Pin Alternate Functionality / Description  
Analog  
Timers  
Communication  
Radio  
Other  
TIM0_CC0 #12  
TIM0_CC1 #11  
TIM0_CC2 #10  
TIM0_CDTI0 #9  
TIM0_CDTI1 #8  
TIM0_CDTI2 #7  
TIM1_CC0 #12  
TIM1_CC1 #11  
TIM1_CC2 #10  
TIM1_CC3 #9  
US0_TX #12  
US0_RX #11  
US0_CLK #10  
US0_CS #9  
US0_CTS #8  
US0_RTS #7  
US1_TX #12  
US1_RX #11  
US1_CLK #10  
US1_CS #9  
CMU_CLK1 #2  
PRS_CH0 #9  
PRS_CH9 #12  
PRS_CH10 #1  
PRS_CH11 #0  
ACMP0_O #12  
ACMP1_O #12  
ETM_TD0  
FRC_DCLK #12  
FRC_DOUT #11  
BUSAY  
BUSBX  
FRC_DFRAME #10  
MODEM_DCLK #12  
MODEM_DIN #11  
MODEM_DOUT #10  
PC7  
WTIM0_CC0 #27  
WTIM0_CC1 #25  
WTIM0_CC2 #23  
WTIM0_CDTI0 #19  
WTIM0_CDTI1 #17  
WTIM0_CDTI2 #15  
LETIM0_OUT0 #12  
LETIM0_OUT1 #11  
PCNT0_S0IN #12  
PCNT0_S1IN #11  
US1_CTS #8  
US1_RTS #7  
LEU0_TX #12  
LEU0_RX #11  
I2C0_SDA #12  
I2C0_SCL #11  
silabs.com | Building a more connected world.  
Rev. 1.1 | 85  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Pin Definitions  
GPIO Name  
Pin Alternate Functionality / Description  
Analog  
Timers  
Communication  
Radio  
Other  
TIM0_CC0 #13  
TIM0_CC1 #12  
TIM0_CC2 #11  
US0_TX #13  
US0_RX #12  
US0_CLK #11  
US0_CS #10  
US0_CTS #9  
US0_RTS #8  
US1_TX #13  
US1_RX #12  
US1_CLK #11  
US1_CS #10  
US1_CTS #9  
US1_RTS #8  
LEU0_TX #13  
LEU0_RX #12  
I2C0_SDA #13  
I2C0_SCL #12  
TIM0_CDTI0 #10  
TIM0_CDTI1 #9  
TIM0_CDTI2 #8  
TIM1_CC0 #13  
PRS_CH0 #10  
PRS_CH9 #13  
PRS_CH10 #2  
PRS_CH11 #1  
ACMP0_O #13  
ACMP1_O #13  
ETM_TD1  
TIM1_CC1 #12  
FRC_DCLK #13  
FRC_DOUT #12  
TIM1_CC2 #11  
BUSBY  
BUSAX  
TIM1_CC3 #10  
FRC_DFRAME #11  
MODEM_DCLK #13  
MODEM_DIN #12  
MODEM_DOUT #11  
PC8  
WTIM0_CC0 #28  
WTIM0_CC1 #26  
WTIM0_CC2 #24  
WTIM0_CDTI0 #20  
WTIM0_CDTI1 #18  
WTIM0_CDTI2 #16  
LETIM0_OUT0 #13  
LETIM0_OUT1 #12  
PCNT0_S0IN #13  
PCNT0_S1IN #12  
silabs.com | Building a more connected world.  
Rev. 1.1 | 86  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Pin Definitions  
GPIO Name  
Pin Alternate Functionality / Description  
Analog  
Timers  
Communication  
Radio  
Other  
TIM0_CC0 #14  
TIM0_CC1 #13  
TIM0_CC2 #12  
US0_TX #14  
US0_RX #13  
US0_CLK #12  
US0_CS #11  
US0_CTS #10  
US0_RTS #9  
US1_TX #14  
US1_RX #13  
US1_CLK #12  
US1_CS #11  
US1_CTS #10  
US1_RTS #9  
LEU0_TX #14  
LEU0_RX #13  
I2C0_SDA #14  
I2C0_SCL #13  
TIM0_CDTI0 #11  
TIM0_CDTI1 #10  
TIM0_CDTI2 #9  
TIM1_CC0 #14  
PRS_CH0 #11  
PRS_CH9 #14  
PRS_CH10 #3  
PRS_CH11 #2  
ACMP0_O #14  
ACMP1_O #14  
ETM_TD2  
TIM1_CC1 #13  
FRC_DCLK #14  
FRC_DOUT #13  
TIM1_CC2 #12  
BUSAY  
BUSBX  
TIM1_CC3 #11  
FRC_DFRAME #12  
MODEM_DCLK #14  
MODEM_DIN #13  
MODEM_DOUT #12  
PC9  
WTIM0_CC0 #29  
WTIM0_CC1 #27  
WTIM0_CC2 #25  
WTIM0_CDTI0 #21  
WTIM0_CDTI1 #19  
WTIM0_CDTI2 #17  
LETIM0_OUT0 #14  
LETIM0_OUT1 #13  
PCNT0_S0IN #14  
PCNT0_S1IN #13  
silabs.com | Building a more connected world.  
Rev. 1.1 | 87  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Pin Definitions  
GPIO Name  
Pin Alternate Functionality / Description  
Analog  
Timers  
Communication  
Radio  
Other  
TIM0_CC0 #15  
TIM0_CC1 #14  
US0_TX #15  
US0_RX #14  
US0_CLK #13  
US0_CS #12  
US0_CTS #11  
US0_RTS #10  
US1_TX #15  
US1_RX #14  
US1_CLK #13  
US1_CS #12  
US1_CTS #11  
US1_RTS #10  
LEU0_TX #15  
LEU0_RX #14  
I2C0_SDA #15  
I2C0_SCL #14  
I2C1_SDA #19  
I2C1_SCL #18  
TIM0_CC2 #13  
TIM0_CDTI0 #12  
TIM0_CDTI1 #11  
TIM0_CDTI2 #10  
TIM1_CC0 #15  
CMU_CLK1 #3  
PRS_CH0 #12  
PRS_CH9 #15  
PRS_CH10 #4  
PRS_CH11 #3  
ACMP0_O #15  
ACMP1_O #15  
ETM_TD3  
TIM1_CC1 #14  
FRC_DCLK #15  
FRC_DOUT #14  
TIM1_CC2 #13  
BUSBY  
BUSAX  
TIM1_CC3 #12  
FRC_DFRAME #13  
MODEM_DCLK #15  
MODEM_DIN #14  
MODEM_DOUT #13  
PC10  
WTIM0_CC0 #30  
WTIM0_CC1 #28  
WTIM0_CC2 #26  
WTIM0_CDTI0 #22  
WTIM0_CDTI1 #20  
WTIM0_CDTI2 #18  
LETIM0_OUT0 #15  
LETIM0_OUT1 #14  
PCNT0_S0IN #15  
PCNT0_S1IN #14  
GPIO_EM4WU12  
silabs.com | Building a more connected world.  
Rev. 1.1 | 88  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Pin Definitions  
GPIO Name  
Pin Alternate Functionality / Description  
Analog  
Timers  
Communication  
Radio  
Other  
TIM0_CC0 #16  
TIM0_CC1 #15  
US0_TX #16  
US0_RX #15  
US0_CLK #14  
US0_CS #13  
US0_CTS #12  
US0_RTS #11  
US1_TX #16  
US1_RX #15  
US1_CLK #14  
US1_CS #13  
US1_CTS #12  
US1_RTS #11  
LEU0_TX #16  
LEU0_RX #15  
I2C0_SDA #16  
I2C0_SCL #15  
I2C1_SDA #20  
I2C1_SCL #19  
TIM0_CC2 #14  
TIM0_CDTI0 #13  
TIM0_CDTI1 #12  
TIM0_CDTI2 #11  
TIM1_CC0 #16  
CMU_CLK0 #3  
PRS_CH0 #13  
PRS_CH9 #16  
PRS_CH10 #5  
PRS_CH11 #4  
ACMP0_O #16  
ACMP1_O #16  
DBG_SWO #3  
TIM1_CC1 #15  
FRC_DCLK #16  
FRC_DOUT #15  
TIM1_CC2 #14  
BUSAY  
BUSBX  
TIM1_CC3 #13  
FRC_DFRAME #14  
MODEM_DCLK #16  
MODEM_DIN #15  
MODEM_DOUT #14  
PC11  
WTIM0_CC0 #31  
WTIM0_CC1 #29  
WTIM0_CC2 #27  
WTIM0_CDTI0 #23  
WTIM0_CDTI1 #21  
WTIM0_CDTI2 #19  
LETIM0_OUT0 #16  
LETIM0_OUT1 #15  
PCNT0_S0IN #16  
PCNT0_S1IN #15  
silabs.com | Building a more connected world.  
Rev. 1.1 | 89  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Pin Definitions  
GPIO Name  
Pin Alternate Functionality / Description  
Analog  
Timers  
Communication  
Radio  
Other  
TIM0_CC0 #17  
TIM0_CC1 #16  
US0_TX #17  
US0_RX #16  
US0_CLK #15  
US0_CS #14  
US0_CTS #13  
US0_RTS #12  
US1_TX #17  
US1_RX #16  
US1_CLK #15  
US1_CS #14  
US1_CTS #13  
US1_RTS #12  
LEU0_TX #17  
LEU0_RX #16  
I2C0_SDA #17  
I2C0_SCL #16  
TIM0_CC2 #15  
TIM0_CDTI0 #14  
TIM0_CDTI1 #13  
TIM0_CDTI2 #12  
TIM1_CC0 #17  
CMU_CLK0 #4  
PRS_CH3 #8  
PRS_CH4 #0  
PRS_CH5 #6  
PRS_CH6 #11  
ACMP0_O #17  
ACMP1_O #17  
LES_CH1  
FRC_DCLK #17  
FRC_DOUT #16  
TIM1_CC1 #16  
TIM1_CC2 #15  
BUSCY  
BUSDX  
FRC_DFRAME #15  
MODEM_DCLK #17  
MODEM_DIN #16  
MODEM_DOUT #15  
PD9  
TIM1_CC3 #14  
WTIM0_CC1 #31  
WTIM0_CC2 #29  
WTIM0_CDTI0 #25  
WTIM0_CDTI1 #23  
WTIM0_CDTI2 #21  
LETIM0_OUT0 #17  
LETIM0_OUT1 #16  
PCNT0_S0IN #17  
PCNT0_S1IN #16  
silabs.com | Building a more connected world.  
Rev. 1.1 | 90  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Pin Definitions  
GPIO Name  
Pin Alternate Functionality / Description  
Analog  
Timers  
Communication  
Radio  
Other  
TIM0_CC0 #18  
TIM0_CC1 #17  
US0_TX #18  
US0_RX #17  
US0_CLK #16  
US0_CS #15  
US0_CTS #14  
US0_RTS #13  
US1_TX #18  
US1_RX #17  
US1_CLK #16  
US1_CS #15  
US1_CTS #14  
US1_RTS #13  
LEU0_TX #18  
LEU0_RX #17  
I2C0_SDA #18  
I2C0_SCL #17  
TIM0_CC2 #16  
TIM0_CDTI0 #15  
TIM0_CDTI1 #14  
TIM0_CDTI2 #13  
TIM1_CC0 #18  
CMU_CLK1 #4  
PRS_CH3 #9  
PRS_CH4 #1  
PRS_CH5 #0  
PRS_CH6 #12  
ACMP0_O #18  
ACMP1_O #18  
LES_CH2  
FRC_DCLK #18  
FRC_DOUT #17  
TIM1_CC1 #17  
BUSDY  
BUSCX  
TIM1_CC2 #16  
FRC_DFRAME #16  
MODEM_DCLK #18  
MODEM_DIN #17  
MODEM_DOUT #16  
PD10  
TIM1_CC3 #15  
WTIM0_CC2 #30  
WTIM0_CDTI0 #26  
WTIM0_CDTI1 #24  
WTIM0_CDTI2 #22  
LETIM0_OUT0 #18  
LETIM0_OUT1 #17  
PCNT0_S0IN #18  
PCNT0_S1IN #17  
silabs.com | Building a more connected world.  
Rev. 1.1 | 91  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Pin Definitions  
GPIO Name  
Pin Alternate Functionality / Description  
Analog  
Timers  
Communication  
Radio  
Other  
TIM0_CC0 #19  
TIM0_CC1 #18  
US0_TX #19  
US0_RX #18  
US0_CLK #17  
US0_CS #16  
US0_CTS #15  
US0_RTS #14  
US1_TX #19  
US1_RX #18  
US1_CLK #17  
US1_CS #16  
US1_CTS #15  
US1_RTS #14  
LEU0_TX #19  
LEU0_RX #18  
I2C0_SDA #19  
I2C0_SCL #18  
TIM0_CC2 #17  
TIM0_CDTI0 #16  
TIM0_CDTI1 #15  
TIM0_CDTI2 #14  
TIM1_CC0 #19  
PRS_CH3 #10  
PRS_CH4 #2  
PRS_CH5 #1  
PRS_CH6 #13  
ACMP0_O #19  
ACMP1_O #19  
LES_CH3  
FRC_DCLK #19  
FRC_DOUT #18  
TIM1_CC1 #18  
BUSCY  
BUSDX  
TIM1_CC2 #17  
FRC_DFRAME #17  
MODEM_DCLK #19  
MODEM_DIN #18  
MODEM_DOUT #17  
PD11  
TIM1_CC3 #16  
WTIM0_CC2 #31  
WTIM0_CDTI0 #27  
WTIM0_CDTI1 #25  
WTIM0_CDTI2 #23  
LETIM0_OUT0 #19  
LETIM0_OUT1 #18  
PCNT0_S0IN #19  
PCNT0_S1IN #18  
TIM0_CC0 #20  
US0_TX #20  
US0_RX #19  
US0_CLK #18  
US0_CS #17  
US0_CTS #16  
US0_RTS #15  
US1_TX #20  
US1_RX #19  
US1_CLK #18  
US1_CS #17  
US1_CTS #16  
US1_RTS #15  
LEU0_TX #20  
LEU0_RX #19  
I2C0_SDA #20  
I2C0_SCL #19  
TIM0_CC1 #19  
TIM0_CC2 #18  
TIM0_CDTI0 #17  
TIM0_CDTI1 #16  
TIM0_CDTI2 #15  
TIM1_CC0 #20  
PRS_CH3 #11  
PRS_CH4 #3  
PRS_CH5 #2  
PRS_CH6 #14  
ACMP0_O #20  
ACMP1_O #20  
LES_CH4  
FRC_DCLK #20  
FRC_DOUT #19  
VDAC0_OUT1ALT /  
OPA1_OUTALT #0  
TIM1_CC1 #19  
FRC_DFRAME #18  
MODEM_DCLK #20  
MODEM_DIN #19  
MODEM_DOUT #18  
PD12  
TIM1_CC2 #18  
BUSDY  
BUSCX  
TIM1_CC3 #17  
WTIM0_CDTI0 #28  
WTIM0_CDTI1 #26  
WTIM0_CDTI2 #24  
LETIM0_OUT0 #20  
LETIM0_OUT1 #19  
PCNT0_S0IN #20  
PCNT0_S1IN #19  
silabs.com | Building a more connected world.  
Rev. 1.1 | 92  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Pin Definitions  
GPIO Name  
Pin Alternate Functionality / Description  
Analog  
Timers  
Communication  
Radio  
Other  
TIM0_CC0 #21  
US0_TX #21  
US0_RX #20  
US0_CLK #19  
US0_CS #18  
US0_CTS #17  
US0_RTS #16  
US1_TX #21  
US1_RX #20  
US1_CLK #19  
US1_CS #18  
US1_CTS #17  
US1_RTS #16  
LEU0_TX #21  
LEU0_RX #20  
I2C0_SDA #21  
I2C0_SCL #20  
TIM0_CC1 #20  
TIM0_CC2 #19  
TIM0_CDTI0 #18  
TIM0_CDTI1 #17  
TIM0_CDTI2 #16  
TIM1_CC0 #21  
PRS_CH3 #12  
PRS_CH4 #4  
PRS_CH5 #3  
PRS_CH6 #15  
ACMP0_O #21  
ACMP1_O #21  
LES_CH5  
FRC_DCLK #21  
FRC_DOUT #20  
VDAC0_OUT0ALT /  
OPA0_OUTALT #1  
TIM1_CC1 #20  
FRC_DFRAME #19  
MODEM_DCLK #21  
MODEM_DIN #20  
MODEM_DOUT #19  
BUSCY  
BUSDX  
OPA1_P  
PD13  
TIM1_CC2 #19  
TIM1_CC3 #18  
WTIM0_CDTI0 #29  
WTIM0_CDTI1 #27  
WTIM0_CDTI2 #25  
LETIM0_OUT0 #21  
LETIM0_OUT1 #20  
PCNT0_S0IN #21  
PCNT0_S1IN #20  
TIM0_CC0 #22  
US0_TX #22  
US0_RX #21  
US0_CLK #20  
US0_CS #19  
US0_CTS #18  
US0_RTS #17  
US1_TX #22  
US1_RX #21  
US1_CLK #20  
US1_CS #19  
US1_CTS #18  
US1_RTS #17  
LEU0_TX #22  
LEU0_RX #21  
I2C0_SDA #22  
I2C0_SCL #21  
TIM0_CC1 #21  
TIM0_CC2 #20  
TIM0_CDTI0 #19  
TIM0_CDTI1 #18  
TIM0_CDTI2 #17  
TIM1_CC0 #22  
CMU_CLK0 #5  
PRS_CH3 #13  
PRS_CH4 #5  
PRS_CH5 #4  
PRS_CH6 #16  
ACMP0_O #22  
ACMP1_O #22  
LES_CH6  
FRC_DCLK #22  
FRC_DOUT #21  
BUSDY  
BUSCX  
TIM1_CC1 #21  
FRC_DFRAME #20  
MODEM_DCLK #22  
MODEM_DIN #21  
MODEM_DOUT #20  
PD14  
TIM1_CC2 #20  
VDAC0_OUT1 /  
OPA1_OUT  
TIM1_CC3 #19  
WTIM0_CDTI0 #30  
WTIM0_CDTI1 #28  
WTIM0_CDTI2 #26  
LETIM0_OUT0 #22  
LETIM0_OUT1 #21  
PCNT0_S0IN #22  
PCNT0_S1IN #21  
GPIO_EM4WU4  
silabs.com | Building a more connected world.  
Rev. 1.1 | 93  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Pin Definitions  
GPIO Name  
Pin Alternate Functionality / Description  
Analog  
Timers  
Communication  
Radio  
Other  
TIM0_CC0 #23  
US0_TX #23  
US0_RX #22  
US0_CLK #21  
US0_CS #20  
US0_CTS #19  
US0_RTS #18  
US1_TX #23  
US1_RX #22  
US1_CLK #21  
US1_CS #20  
US1_CTS #19  
US1_RTS #18  
LEU0_TX #23  
LEU0_RX #22  
I2C0_SDA #23  
I2C0_SCL #22  
TIM0_CC1 #22  
TIM0_CC2 #21  
TIM0_CDTI0 #20  
TIM0_CDTI1 #19  
TIM0_CDTI2 #18  
TIM1_CC0 #23  
CMU_CLK1 #5  
PRS_CH3 #14  
PRS_CH4 #6  
PRS_CH5 #5  
PRS_CH6 #17  
ACMP0_O #23  
ACMP1_O #23  
LES_CH7  
FRC_DCLK #23  
FRC_DOUT #22  
VDAC0_OUT0ALT /  
OPA0_OUTALT #2  
TIM1_CC1 #22  
FRC_DFRAME #21  
MODEM_DCLK #23  
MODEM_DIN #22  
MODEM_DOUT #21  
BUSCY  
BUSDX  
OPA1_N  
PD15  
TIM1_CC2 #21  
TIM1_CC3 #20  
WTIM0_CDTI0 #31  
WTIM0_CDTI1 #29  
WTIM0_CDTI2 #27  
LETIM0_OUT0 #23  
LETIM0_OUT1 #22  
PCNT0_S0IN #23  
PCNT0_S1IN #22  
DBG_SWO #2  
silabs.com | Building a more connected world.  
Rev. 1.1 | 94  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Pin Definitions  
GPIO Name  
Pin Alternate Functionality / Description  
Analog  
Timers  
Communication  
US0_TX #24  
US0_RX #23  
US0_CLK #22  
US0_CS #21  
US0_CTS #20  
US0_RTS #19  
US1_TX #24  
US1_RX #23  
US1_CLK #22  
US1_CS #21  
US1_CTS #20  
US1_RTS #19  
US2_TX #14  
US2_RX #13  
US2_CLK #12  
US2_CS #11  
US2_CTS #10  
US2_RTS #9  
LEU0_TX #24  
LEU0_RX #23  
I2C0_SDA #24  
I2C0_SCL #23  
Radio  
Other  
TIM0_CC0 #24  
TIM0_CC1 #23  
TIM0_CC2 #22  
TIM0_CDTI0 #21  
TIM0_CDTI1 #20  
TIM0_CDTI2 #19  
TIM1_CC0 #24  
PRS_CH0 #0  
PRS_CH1 #7  
PRS_CH2 #6  
PRS_CH3 #5  
ACMP0_O #24  
ACMP1_O #24  
DBG_SWCLKTCK  
BOOT_TX  
FRC_DCLK #24  
FRC_DOUT #23  
BUSBY  
BUSAX  
TIM1_CC1 #23  
FRC_DFRAME #22  
MODEM_DCLK #24  
MODEM_DIN #23  
MODEM_DOUT #22  
PF0  
TIM1_CC2 #22  
TIM1_CC3 #21  
WTIM0_CDTI1 #30  
WTIM0_CDTI2 #28  
LETIM0_OUT0 #24  
LETIM0_OUT1 #23  
PCNT0_S0IN #24  
PCNT0_S1IN #23  
silabs.com | Building a more connected world.  
Rev. 1.1 | 95  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Pin Definitions  
GPIO Name  
Pin Alternate Functionality / Description  
Analog  
Timers  
Communication  
US0_TX #25  
US0_RX #24  
US0_CLK #23  
US0_CS #22  
US0_CTS #21  
US0_RTS #20  
US1_TX #25  
US1_RX #24  
US1_CLK #23  
US1_CS #22  
US1_CTS #21  
US1_RTS #20  
US2_TX #15  
US2_RX #14  
US2_CLK #13  
US2_CS #12  
US2_CTS #11  
US2_RTS #10  
LEU0_TX #25  
LEU0_RX #24  
I2C0_SDA #25  
I2C0_SCL #24  
Radio  
Other  
TIM0_CC0 #25  
TIM0_CC1 #24  
TIM0_CC2 #23  
TIM0_CDTI0 #22  
TIM0_CDTI1 #21  
TIM0_CDTI2 #20  
TIM1_CC0 #25  
PRS_CH0 #1  
PRS_CH1 #0  
PRS_CH2 #7  
PRS_CH3 #6  
ACMP0_O #25  
ACMP1_O #25  
DBG_SWDIOTMS  
BOOT_RX  
FRC_DCLK #25  
FRC_DOUT #24  
BUSAY  
BUSBX  
TIM1_CC1 #24  
FRC_DFRAME #23  
MODEM_DCLK #25  
MODEM_DIN #24  
MODEM_DOUT #23  
PF1  
TIM1_CC2 #23  
TIM1_CC3 #22  
WTIM0_CDTI1 #31  
WTIM0_CDTI2 #29  
LETIM0_OUT0 #25  
LETIM0_OUT1 #24  
PCNT0_S0IN #25  
PCNT0_S1IN #24  
silabs.com | Building a more connected world.  
Rev. 1.1 | 96  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Pin Definitions  
GPIO Name  
Pin Alternate Functionality / Description  
Analog  
Timers  
Communication  
US0_TX #26  
US0_RX #25  
US0_CLK #24  
US0_CS #23  
US0_CTS #22  
US0_RTS #21  
US1_TX #26  
US1_RX #25  
US1_CLK #24  
US1_CS #23  
US1_CTS #22  
US1_RTS #21  
LEU0_TX #26  
LEU0_RX #25  
I2C0_SDA #26  
I2C0_SCL #25  
Radio  
Other  
TIM0_CC0 #26  
TIM0_CC1 #25  
TIM0_CC2 #24  
CMU_CLK0 #6  
PRS_CH0 #2  
PRS_CH1 #1  
PRS_CH2 #0  
PRS_CH3 #7  
ACMP0_O #26  
ACMP1_O #26  
DBG_TDO  
TIM0_CDTI0 #23  
TIM0_CDTI1 #22  
TIM0_CDTI2 #21  
TIM1_CC0 #26  
FRC_DCLK #26  
FRC_DOUT #25  
BUSBY  
BUSAX  
FRC_DFRAME #24  
MODEM_DCLK #26  
MODEM_DIN #25  
MODEM_DOUT #24  
PF2  
TIM1_CC1 #25  
TIM1_CC2 #24  
TIM1_CC3 #23  
WTIM0_CDTI2 #30  
LETIM0_OUT0 #26  
LETIM0_OUT1 #25  
PCNT0_S0IN #26  
PCNT0_S1IN #25  
DBG_SWO #0  
GPIO_EM4WU0  
silabs.com | Building a more connected world.  
Rev. 1.1 | 97  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Pin Definitions  
GPIO Name  
Pin Alternate Functionality / Description  
Analog  
Timers  
Communication  
US0_TX #27  
US0_RX #26  
US0_CLK #25  
US0_CS #24  
US0_CTS #23  
US0_RTS #22  
US1_TX #27  
US1_RX #26  
US1_CLK #25  
US1_CS #24  
US1_CTS #23  
US1_RTS #22  
US2_TX #16  
US2_RX #15  
US2_CLK #14  
US2_CS #13  
US2_CTS #12  
US2_RTS #11  
LEU0_TX #27  
LEU0_RX #26  
I2C0_SDA #27  
I2C0_SCL #26  
Radio  
Other  
TIM0_CC0 #27  
TIM0_CC1 #26  
TIM0_CC2 #25  
TIM0_CDTI0 #24  
TIM0_CDTI1 #23  
TIM0_CDTI2 #22  
TIM1_CC0 #27  
CMU_CLK1 #6  
PRS_CH0 #3  
PRS_CH1 #2  
PRS_CH2 #1  
PRS_CH3 #0  
ACMP0_O #27  
ACMP1_O #27  
DBG_TDI  
FRC_DCLK #27  
FRC_DOUT #26  
BUSAY  
BUSBX  
FRC_DFRAME #25  
MODEM_DCLK #27  
MODEM_DIN #26  
MODEM_DOUT #25  
PF3  
TIM1_CC1 #26  
TIM1_CC2 #25  
TIM1_CC3 #24  
WTIM0_CDTI2 #31  
LETIM0_OUT0 #27  
LETIM0_OUT1 #26  
PCNT0_S0IN #27  
PCNT0_S1IN #26  
silabs.com | Building a more connected world.  
Rev. 1.1 | 98  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Pin Definitions  
GPIO Name  
Pin Alternate Functionality / Description  
Analog  
Timers  
Communication  
US0_TX #28  
US0_RX #27  
US0_CLK #26  
US0_CS #25  
US0_CTS #24  
US0_RTS #23  
US1_TX #28  
US1_RX #27  
US1_CLK #26  
US1_CS #25  
US1_CTS #24  
US1_RTS #23  
US2_TX #17  
US2_RX #16  
US2_CLK #15  
US2_CS #14  
US2_CTS #13  
US2_RTS #12  
LEU0_TX #28  
LEU0_RX #27  
I2C0_SDA #28  
I2C0_SCL #27  
Radio  
Other  
TIM0_CC0 #28  
TIM0_CC1 #27  
TIM0_CC2 #26  
TIM0_CDTI0 #25  
TIM0_CDTI1 #24  
TIM0_CDTI2 #23  
TIM1_CC0 #28  
FRC_DCLK #28  
FRC_DOUT #27  
PRS_CH0 #4  
PRS_CH1 #3  
PRS_CH2 #2  
PRS_CH3 #1  
ACMP0_O #28  
ACMP1_O #28  
BUSBY  
BUSAX  
FRC_DFRAME #26  
MODEM_DCLK #28  
MODEM_DIN #27  
MODEM_DOUT #26  
PF4  
TIM1_CC1 #27  
TIM1_CC2 #26  
TIM1_CC3 #25  
LETIM0_OUT0 #28  
LETIM0_OUT1 #27  
PCNT0_S0IN #28  
PCNT0_S1IN #27  
silabs.com | Building a more connected world.  
Rev. 1.1 | 99  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Pin Definitions  
GPIO Name  
Pin Alternate Functionality / Description  
Analog  
Timers  
Communication  
US0_TX #29  
US0_RX #28  
US0_CLK #27  
US0_CS #26  
US0_CTS #25  
US0_RTS #24  
US1_TX #29  
US1_RX #28  
US1_CLK #27  
US1_CS #26  
US1_CTS #25  
US1_RTS #24  
US2_TX #18  
US2_RX #17  
US2_CLK #16  
US2_CS #15  
US2_CTS #14  
US2_RTS #13  
LEU0_TX #29  
LEU0_RX #28  
I2C0_SDA #29  
I2C0_SCL #28  
Radio  
Other  
TIM0_CC0 #29  
TIM0_CC1 #28  
TIM0_CC2 #27  
TIM0_CDTI0 #26  
TIM0_CDTI1 #25  
TIM0_CDTI2 #24  
TIM1_CC0 #29  
FRC_DCLK #29  
FRC_DOUT #28  
PRS_CH0 #5  
PRS_CH1 #4  
PRS_CH2 #3  
PRS_CH3 #2  
ACMP0_O #29  
ACMP1_O #29  
BUSAY  
BUSBX  
FRC_DFRAME #27  
MODEM_DCLK #29  
MODEM_DIN #28  
MODEM_DOUT #27  
PF5  
TIM1_CC1 #28  
TIM1_CC2 #27  
TIM1_CC3 #26  
LETIM0_OUT0 #29  
LETIM0_OUT1 #28  
PCNT0_S0IN #29  
PCNT0_S1IN #28  
silabs.com | Building a more connected world.  
Rev. 1.1 | 100  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Pin Definitions  
GPIO Name  
Pin Alternate Functionality / Description  
Analog  
Timers  
Communication  
US0_TX #30  
US0_RX #29  
US0_CLK #28  
US0_CS #27  
US0_CTS #26  
US0_RTS #25  
US1_TX #30  
US1_RX #29  
US1_CLK #28  
US1_CS #27  
US1_CTS #26  
US1_RTS #25  
US2_TX #19  
US2_RX #18  
US2_CLK #17  
US2_CS #16  
US2_CTS #15  
US2_RTS #14  
LEU0_TX #30  
LEU0_RX #29  
I2C0_SDA #30  
I2C0_SCL #29  
Radio  
Other  
TIM0_CC0 #30  
TIM0_CC1 #29  
TIM0_CC2 #28  
TIM0_CDTI0 #27  
TIM0_CDTI1 #26  
TIM0_CDTI2 #25  
TIM1_CC0 #30  
CMU_CLK1 #7  
PRS_CH0 #6  
PRS_CH1 #5  
PRS_CH2 #4  
PRS_CH3 #3  
ACMP0_O #30  
ACMP1_O #30  
FRC_DCLK #30  
FRC_DOUT #29  
BUSBY  
BUSAX  
FRC_DFRAME #28  
MODEM_DCLK #30  
MODEM_DIN #29  
MODEM_DOUT #28  
PF6  
TIM1_CC1 #29  
TIM1_CC2 #28  
TIM1_CC3 #27  
LETIM0_OUT0 #30  
LETIM0_OUT1 #29  
PCNT0_S0IN #30  
PCNT0_S1IN #29  
silabs.com | Building a more connected world.  
Rev. 1.1 | 101  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Pin Definitions  
GPIO Name  
Pin Alternate Functionality / Description  
Analog  
Timers  
Communication  
US0_TX #31  
US0_RX #30  
US0_CLK #29  
US0_CS #28  
US0_CTS #27  
US0_RTS #26  
US1_TX #31  
US1_RX #30  
US1_CLK #29  
US1_CS #28  
US1_CTS #27  
US1_RTS #26  
US2_TX #20  
US2_RX #19  
US2_CLK #18  
US2_CS #17  
US2_CTS #16  
US2_RTS #15  
LEU0_TX #31  
LEU0_RX #30  
I2C0_SDA #31  
I2C0_SCL #30  
Radio  
Other  
TIM0_CC0 #31  
TIM0_CC1 #30  
TIM0_CC2 #29  
CMU_CLKI0 #1  
CMU_CLK0 #7  
PRS_CH0 #7  
PRS_CH1 #6  
PRS_CH2 #5  
PRS_CH3 #4  
ACMP0_O #31  
ACMP1_O #31  
GPIO_EM4WU1  
TIM0_CDTI0 #28  
TIM0_CDTI1 #27  
TIM0_CDTI2 #26  
TIM1_CC0 #31  
FRC_DCLK #31  
FRC_DOUT #30  
BUSAY  
BUSBX  
FRC_DFRAME #29  
MODEM_DCLK #31  
MODEM_DIN #30  
MODEM_DOUT #29  
PF7  
TIM1_CC1 #30  
TIM1_CC2 #29  
TIM1_CC3 #28  
LETIM0_OUT0 #31  
LETIM0_OUT1 #30  
PCNT0_S0IN #31  
PCNT0_S1IN #30  
silabs.com | Building a more connected world.  
Rev. 1.1 | 102  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Pin Definitions  
7.3 Alternate Functionality Overview  
A wide selection of alternate functionality is available for multiplexing to various pins. The following table shows the name of the alter-  
nate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings and the associated GPIO  
pin. Refer to 7.2 GPIO Functionality Table for a list of functions available on each GPIO pin.  
Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout  
is shown in the column corresponding to LOCATION 0.  
Table 7.3. Alternate Functionality Overview  
Alternate  
LOCATION  
12 - 15 16 - 19  
16: PC11 20: PD12 24: PF0  
17: PD9 21: PD13 25: PF1  
18: PD10 22: PD14 26: PF2  
15: PC10 19: PD11 23: PD15 27: PF3  
Functionality  
0 - 3  
0: PA0  
1: PA1  
2: PA2  
3: PA3  
0: PA0  
1: PA1  
2: PA2  
3: PA3  
0: PA0  
4 - 7  
4: PA4  
5: PA5  
6: PB11  
7: PB12  
4: PA4  
5: PA5  
6: PB11  
7: PB12  
8 - 11  
8: PB13  
9: PB14  
20 - 23  
24 - 27  
28 - 31  
28: PF4  
29: PF5  
30: PF6  
31: PF7  
28: PF4  
29: PF5  
30: PF6  
31: PF7  
Description  
12: PC7  
13: PC8  
Analog comparator  
ACMP0, digital out-  
put.  
ACMP0_O  
ACMP1_O  
10: PB15 14: PC9  
11: PC6  
8: PB13  
9: PB14  
12: PC7  
16: PC11 20: PD12 24: PF0  
17: PD9 21: PD13 25: PF1  
18: PD10 22: PD14 26: PF2  
15: PC10 19: PD11 23: PD15 27: PF3  
Analog comparator  
ACMP1, digital out-  
put.  
13: PC8  
10: PB15 14: PC9  
11: PC6  
Analog to digital  
converter ADC0 ex-  
ternal reference in-  
put negative pin.  
ADC0_EXTN  
ADC0_EXTP  
0: PA1  
Analog to digital  
converter ADC0 ex-  
ternal reference in-  
put positive pin.  
BOOT_RX  
BOOT_TX  
0: PF1  
0: PF0  
0: PA1  
1: PB15  
2: PC6  
3: PC11  
0: PA0  
1: PB14  
2: PC7  
3: PC10  
0: PB13  
1: PF7  
2: PC6  
Bootloader RX.  
Bootloader TX.  
4: PD9  
5: PD14  
6: PF2  
7: PF7  
4: PD10  
5: PD15  
6: PF3  
7: PF6  
4: PA5  
Clock Management  
Unit, clock output  
number 0.  
CMU_CLK0  
Clock Management  
Unit, clock output  
number 1.  
CMU_CLK1  
CMU_CLKI0  
Clock Management  
Unit, clock input  
number 0.  
silabs.com | Building a more connected world.  
Rev. 1.1 | 103  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Pin Definitions  
Alternate  
LOCATION  
12 - 15 16 - 19  
Functionality  
0 - 3  
4 - 7  
8 - 11  
20 - 23  
24 - 27  
28 - 31  
Description  
0: PF0  
Debug-interface  
Serial Wire clock  
input and JTAG  
Test Clock.  
DBG_SWCLKTCK  
DBG_SWDIOTMS  
DBG_SWO  
Note that this func-  
tion is enabled to  
the pin out of reset,  
and has a built-in  
pull down.  
0: PF1  
Debug-interface  
Serial Wire data in-  
put / output and  
JTAG Test Mode  
Select.  
Note that this func-  
tion is enabled to  
the pin out of reset,  
and has a built-in  
pull up.  
0: PF2  
Debug-interface  
Serial Wire viewer  
Output.  
1: PB13  
2: PD15  
3: PC11  
Note that this func-  
tion is not enabled  
after reset, and  
must be enabled by  
software to be  
used.  
0: PF3  
Debug-interface  
JTAG Test Data In.  
Note that this func-  
tion becomes avail-  
able after the first  
valid JTAG com-  
mand is received,  
and has a built-in  
pull up when JTAG  
is active.  
DBG_TDI  
0: PF2  
Debug-interface  
JTAG Test Data  
Out.  
Note that this func-  
tion becomes avail-  
able after the first  
valid JTAG com-  
mand is received.  
DBG_TDO  
1: PA5  
3: PC6  
3: PC7  
Embedded Trace  
Module ETM clock .  
ETM_TCLK  
ETM_TD0  
Embedded Trace  
Module ETM data  
0.  
silabs.com | Building a more connected world.  
Rev. 1.1 | 104  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Pin Definitions  
Alternate  
LOCATION  
12 - 15 16 - 19  
Functionality  
0 - 3  
4 - 7  
8 - 11  
20 - 23  
24 - 27  
28 - 31  
Description  
3: PC8  
Embedded Trace  
Module ETM data  
1.  
ETM_TD1  
ETM_TD2  
ETM_TD3  
3: PC9  
Embedded Trace  
Module ETM data  
2.  
3: PC10  
Embedded Trace  
Module ETM data  
3.  
0: PA0  
1: PA1  
2: PA2  
3: PA3  
0: PA2  
1: PA3  
2: PA4  
3: PA5  
0: PA1  
1: PA2  
2: PA3  
3: PA4  
0: PF2  
4: PA4  
8: PB13  
9: PB14  
12: PC7  
16: PC11 20: PD12 24: PF0  
17: PD9 21: PD13 25: PF1  
18: PD10 22: PD14 26: PF2  
15: PC10 19: PD11 23: PD15 27: PF3  
12: PC9 16: PD10 20: PD14 24: PF2  
13: PC10 17: PD11 21: PD15 25: PF3  
28: PF4  
29: PF5  
30: PF6  
31: PF7  
28: PF6  
29: PF7  
30: PA0  
31: PA1  
28: PF5  
29: PF6  
30: PF7  
31: PA0  
5: PA5  
13: PC8  
Frame Controller,  
Data Sniffer Clock.  
FRC_DCLK  
6: PB11  
7: PB12  
4: PB11  
5: PB12  
6: PB13  
7: PB14  
4: PA5  
10: PB15 14: PC9  
11: PC6  
8: PB15  
9: PC6  
Frame Controller,  
Data Sniffer Frame  
active  
FRC_DFRAME  
FRC_DOUT  
10: PC7  
11: PC8  
8: PB14  
9: PB15  
10: PC6  
11: PC7  
14: PC11 18: PD12 22: PF0  
26: PF4  
27: PF5  
15: PD9  
12: PC8  
13: PC9  
19: PD13 23: PF1  
16: PD9  
17: PD10 21: PD14 25: PF2  
20: PD13 24: PF1  
Frame Controller,  
Data Sniffer Out-  
put.  
5: PB11  
6: PB12  
7: PB13  
14: PC10 18: PD11 22: PD15 26: PF3  
15: PC11 19: PD12 23: PF0 27: PF4  
Pin can be used to  
wake the system  
up from EM4  
GPIO_EM4WU0  
GPIO_EM4WU1  
GPIO_EM4WU4  
GPIO_EM4WU8  
GPIO_EM4WU9  
GPIO_EM4WU12  
0: PF7  
Pin can be used to  
wake the system  
up from EM4  
0: PD14  
0: PA3  
Pin can be used to  
wake the system  
up from EM4  
Pin can be used to  
wake the system  
up from EM4  
0: PB13  
0: PC10  
Pin can be used to  
wake the system  
up from EM4  
Pin can be used to  
wake the system  
up from EM4  
0: PA1  
1: PA2  
2: PA3  
3: PA4  
4: PA5  
8: PB14  
9: PB15  
10: PC6  
11: PC7  
12: PC8  
13: PC9  
16: PD9  
20: PD13 24: PF1  
28: PF5  
29: PF6  
30: PF7  
31: PA0  
5: PB11  
6: PB12  
7: PB13  
17: PD10 21: PD14 25: PF2  
I2C0 Serial Clock  
Line input / output.  
I2C0_SCL  
14: PC10 18: PD11 22: PD15 26: PF3  
15: PC11 19: PD12 23: PF0 27: PF4  
silabs.com | Building a more connected world.  
Rev. 1.1 | 105  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Pin Definitions  
Alternate  
LOCATION  
12 - 15 16 - 19  
16: PC11 20: PD12 24: PF0  
17: PD9 21: PD13 25: PF1  
18: PD10 22: PD14 26: PF2  
Functionality  
0 - 3  
0: PA0  
1: PA1  
2: PA2  
3: PA3  
4 - 7  
4: PA4  
5: PA5  
6: PB11  
7: PB12  
8 - 11  
8: PB13  
9: PB14  
20 - 23  
24 - 27  
28 - 31  
28: PF4  
29: PF5  
30: PF6  
31: PF7  
Description  
12: PC7  
13: PC8  
I2C0 Serial Data in-  
put / output.  
I2C0_SDA  
I2C1_SCL  
10: PB15 14: PC9  
11: PC6  
15: PC10 19: PD11 23: PD15 27: PF3  
18: PC10  
I2C1 Serial Clock  
Line input / output.  
19: PC11  
19: PC10 20: PC11  
I2C1 Serial Data in-  
put / output.  
I2C1_SDA  
LES_CH1  
LES_CH2  
LES_CH3  
LES_CH4  
LES_CH5  
LES_CH6  
LES_CH7  
LES_CH8  
LES_CH9  
LES_CH10  
LES_CH11  
LES_CH12  
LES_CH13  
0: PD9  
0: PD10  
0: PD11  
0: PD12  
0: PD13  
0: PD14  
0: PD15  
0: PA0  
0: PA1  
0: PA2  
0: PA3  
0: PA4  
0: PA5  
LESENSE channel  
1.  
LESENSE channel  
2.  
LESENSE channel  
3.  
LESENSE channel  
4.  
LESENSE channel  
5.  
LESENSE channel  
6.  
LESENSE channel  
7.  
LESENSE channel  
8.  
LESENSE channel  
9.  
LESENSE channel  
10.  
LESENSE channel  
11.  
LESENSE channel  
12.  
LESENSE channel  
13.  
0: PA0  
1: PA1  
2: PA2  
3: PA3  
0: PA1  
1: PA2  
2: PA3  
3: PA4  
4: PA4  
8: PB13  
9: PB14  
12: PC7  
16: PC11 20: PD12 24: PF0  
17: PD9 21: PD13 25: PF1  
18: PD10 22: PD14 26: PF2  
15: PC10 19: PD11 23: PD15 27: PF3  
28: PF4  
29: PF5  
30: PF6  
31: PF7  
28: PF5  
29: PF6  
30: PF7  
31: PA0  
Low Energy Timer  
LETIM0, output  
channel 0.  
5: PA5  
13: PC8  
LETIM0_OUT0  
LETIM0_OUT1  
6: PB11  
7: PB12  
4: PA5  
10: PB15 14: PC9  
11: PC6  
8: PB14  
9: PB15  
10: PC6  
11: PC7  
12: PC8  
13: PC9  
16: PD9  
20: PD13 24: PF1  
Low Energy Timer  
LETIM0, output  
channel 1.  
5: PB11  
6: PB12  
7: PB13  
17: PD10 21: PD14 25: PF2  
14: PC10 18: PD11 22: PD15 26: PF3  
15: PC11 19: PD12 23: PF0 27: PF4  
silabs.com | Building a more connected world.  
Rev. 1.1 | 106  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Pin Definitions  
Alternate  
LOCATION  
Functionality  
0 - 3  
0: PA1  
1: PA2  
2: PA3  
3: PA4  
0: PA0  
1: PA1  
2: PA2  
3: PA3  
0: PB14  
4 - 7  
4: PA5  
8 - 11  
8: PB14  
9: PB15  
10: PC6  
11: PC7  
8: PB13  
9: PB14  
12 - 15  
16 - 19  
20 - 23  
24 - 27  
28 - 31  
28: PF5  
29: PF6  
30: PF7  
31: PA0  
28: PF4  
29: PF5  
30: PF6  
31: PF7  
Description  
12: PC8  
13: PC9  
16: PD9  
20: PD13 24: PF1  
5: PB11  
6: PB12  
7: PB13  
4: PA4  
17: PD10 21: PD14 25: PF2  
LEUART0 Receive  
input.  
LEU0_RX  
LEU0_TX  
14: PC10 18: PD11 22: PD15 26: PF3  
15: PC11 19: PD12 23: PF0 27: PF4  
16: PC11 20: PD12 24: PF0  
17: PD9 21: PD13 25: PF1  
18: PD10 22: PD14 26: PF2  
15: PC10 19: PD11 23: PD15 27: PF3  
12: PC7  
13: PC8  
LEUART0 Transmit  
output. Also used  
as receive input in  
half duplex commu-  
nication.  
5: PA5  
6: PB11  
7: PB12  
10: PB15 14: PC9  
11: PC6  
Low Frequency  
Crystal (typically  
32.768 kHz) nega-  
tive pin. Also used  
as an optional ex-  
ternal clock input  
pin.  
LFXTAL_N  
0: PB15  
Low Frequency  
Crystal (typically  
32.768 kHz) posi-  
tive pin.  
LFXTAL_P  
0: PA0  
1: PA1  
2: PA2  
3: PA3  
0: PA1  
1: PA2  
2: PA3  
3: PA4  
0: PA2  
1: PA3  
2: PA4  
3: PA5  
0: PA4  
4: PA4  
8: PB13  
9: PB14  
12: PC7  
16: PC11 20: PD12 24: PF0  
17: PD9 21: PD13 25: PF1  
18: PD10 22: PD14 26: PF2  
15: PC10 19: PD11 23: PD15 27: PF3  
28: PF4  
29: PF5  
30: PF6  
31: PF7  
28: PF5  
29: PF6  
30: PF7  
31: PA0  
28: PF6  
29: PF7  
30: PA0  
31: PA1  
5: PA5  
13: PC8  
MODEM data clock  
out.  
MODEM_DCLK  
6: PB11  
7: PB12  
4: PA5  
10: PB15 14: PC9  
11: PC6  
8: PB14  
9: PB15  
10: PC6  
11: PC7  
8: PB15  
9: PC6  
12: PC8  
13: PC9  
16: PD9  
20: PD13 24: PF1  
5: PB11  
6: PB12  
7: PB13  
4: PB11  
5: PB12  
6: PB13  
7: PB14  
17: PD10 21: PD14 25: PF2  
MODEM_DIN  
MODEM data in.  
MODEM data out.  
14: PC10 18: PD11 22: PD15 26: PF3  
15: PC11 19: PD12 23: PF0 27: PF4  
12: PC9 16: PD10 20: PD14 24: PF2  
13: PC10 17: PD11 21: PD15 25: PF3  
MODEM_DOUT  
10: PC7  
11: PC8  
14: PC11 18: PD12 22: PF0  
15: PD9 19: PD13 23: PF1  
26: PF4  
27: PF5  
Operational Amplifi-  
er 0 external nega-  
tive input.  
OPA0_N  
OPA0_P  
OPA1_N  
OPA1_P  
0: PA2  
Operational Amplifi-  
er 0 external posi-  
tive input.  
0: PD15  
0: PD13  
Operational Amplifi-  
er 1 external nega-  
tive input.  
Operational Amplifi-  
er 1 external posi-  
tive input.  
silabs.com | Building a more connected world.  
Rev. 1.1 | 107  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Pin Definitions  
Alternate  
LOCATION  
12 - 15 16 - 19  
Functionality  
0 - 3  
4 - 7  
8 - 11  
20 - 23  
24 - 27  
28 - 31  
Description  
0: PB13  
Operational Amplifi-  
er 2 external nega-  
tive input.  
OPA2_N  
0: PB12  
0: PB11  
Operational Amplifi-  
er 2 output.  
OPA2_OUT  
OPA2_P  
Operational Amplifi-  
er 2 external posi-  
tive input.  
0: PA0  
1: PA1  
2: PA2  
3: PA3  
0: PA1  
1: PA2  
2: PA3  
3: PA4  
0: PF0  
1: PF1  
2: PF2  
3: PF3  
0: PF1  
1: PF2  
2: PF3  
3: PF4  
0: PF2  
1: PF3  
2: PF4  
3: PF5  
0: PF3  
1: PF4  
2: PF5  
3: PF6  
0: PD9  
1: PD10  
2: PD11  
3: PD12  
4: PA4  
5: PA5  
6: PB11  
7: PB12  
4: PA5  
5: PB11  
6: PB12  
7: PB13  
4: PF4  
5: PF5  
6: PF6  
7: PF7  
4: PF5  
5: PF6  
6: PF7  
7: PF0  
4: PF6  
5: PF7  
6: PF0  
7: PF1  
4: PF7  
5: PF0  
6: PF1  
7: PF2  
4: PD13  
5: PD14  
6: PD15  
8: PB13  
9: PB14  
12: PC7  
16: PC11 20: PD12 24: PF0  
17: PD9 21: PD13 25: PF1  
18: PD10 22: PD14 26: PF2  
15: PC10 19: PD11 23: PD15 27: PF3  
28: PF4  
29: PF5  
30: PF6  
31: PF7  
28: PF5  
29: PF6  
30: PF7  
31: PA0  
Pulse Counter  
PCNT0 input num-  
ber 0.  
13: PC8  
PCNT0_S0IN  
PCNT0_S1IN  
PRS_CH0  
PRS_CH1  
PRS_CH2  
PRS_CH3  
PRS_CH4  
10: PB15 14: PC9  
11: PC6  
8: PB14  
9: PB15  
10: PC6  
11: PC7  
8: PC6  
12: PC8  
13: PC9  
16: PD9  
20: PD13 24: PF1  
Pulse Counter  
PCNT0 input num-  
ber 1.  
17: PD10 21: PD14 25: PF2  
14: PC10 18: PD11 22: PD15 26: PF3  
15: PC11 19: PD12 23: PF0  
12: PC10  
27: PF4  
Peripheral Reflex  
System PRS, chan-  
nel 0.  
9: PC7  
13: PC11  
10: PC8  
11: PC9  
Peripheral Reflex  
System PRS, chan-  
nel 1.  
Peripheral Reflex  
System PRS, chan-  
nel 2.  
8: PD9  
12: PD13  
13: PD14  
Peripheral Reflex  
System PRS, chan-  
nel 3.  
9: PD10  
10: PD11 14: PD15  
11: PD12  
Peripheral Reflex  
System PRS, chan-  
nel 4.  
silabs.com | Building a more connected world.  
Rev. 1.1 | 108  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Pin Definitions  
Alternate  
LOCATION  
12 - 15 16 - 19  
Functionality  
0 - 3  
0: PD10  
1: PD11  
2: PD12  
3: PD13  
0: PA0  
1: PA1  
2: PA2  
3: PA3  
0: PA1  
1: PA2  
2: PA3  
3: PA4  
0: PA2  
1: PA3  
2: PA4  
3: PA5  
0: PA3  
1: PA4  
2: PA5  
3: PB11  
0: PC6  
1: PC7  
2: PC8  
3: PC9  
0: PC7  
1: PC8  
2: PC9  
3: PC10  
0: PA0  
1: PA1  
2: PA2  
3: PA3  
0: PA1  
1: PA2  
2: PA3  
3: PA4  
4 - 7  
4: PD14  
5: PD15  
6: PD9  
8 - 11  
20 - 23  
24 - 27  
28 - 31  
Description  
Peripheral Reflex  
System PRS, chan-  
nel 5.  
PRS_CH5  
PRS_CH6  
PRS_CH7  
PRS_CH8  
PRS_CH9  
PRS_CH10  
PRS_CH11  
TIM0_CC0  
TIM0_CC1  
4: PA4  
8: PB13  
9: PB14  
12: PD10 16: PD14  
13: PD11 17: PD15  
Peripheral Reflex  
System PRS, chan-  
nel 6.  
5: PA5  
6: PB11  
7: PB12  
4: PA5  
10: PB15 14: PD12  
11: PD9  
8: PB14  
9: PB15  
10: PA0  
15: PD13  
Peripheral Reflex  
System PRS, chan-  
nel 7.  
5: PB11  
6: PB12  
7: PB13  
4: PB11  
5: PB12  
6: PB13  
7: PB14  
4: PB12  
5: PB13  
6: PB14  
7: PB15  
4: PC10  
5: PC11  
8: PB15  
9: PA0  
Peripheral Reflex  
System PRS, chan-  
nel 8.  
10: PA1  
8: PA0  
9: PA1  
10: PA2  
11: PC6  
12: PC7  
13: PC8  
14: PC9  
15: PC10  
16: PC11  
Peripheral Reflex  
System PRS, chan-  
nel 9.  
Peripheral Reflex  
System PRS, chan-  
nel 10.  
4: PC11  
5: PC6  
Peripheral Reflex  
System PRS, chan-  
nel 11.  
4: PA4  
8: PB13  
9: PB14  
12: PC7  
16: PC11 20: PD12 24: PF0  
17: PD9 21: PD13 25: PF1  
18: PD10 22: PD14 26: PF2  
15: PC10 19: PD11 23: PD15 27: PF3  
28: PF4  
29: PF5  
30: PF6  
31: PF7  
28: PF5  
29: PF6  
30: PF7  
31: PA0  
Timer 0 Capture  
Compare input /  
output channel 0.  
5: PA5  
13: PC8  
6: PB11  
7: PB12  
4: PA5  
10: PB15 14: PC9  
11: PC6  
8: PB14  
9: PB15  
10: PC6  
11: PC7  
12: PC8  
13: PC9  
16: PD9  
20: PD13 24: PF1  
Timer 0 Capture  
Compare input /  
output channel 1.  
5: PB11  
6: PB12  
7: PB13  
17: PD10 21: PD14 25: PF2  
14: PC10 18: PD11 22: PD15 26: PF3  
15: PC11 19: PD12 23: PF0 27: PF4  
silabs.com | Building a more connected world.  
Rev. 1.1 | 109  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Pin Definitions  
Alternate  
LOCATION  
12 - 15 16 - 19  
12: PC9 16: PD10 20: PD14 24: PF2  
13: PC10 17: PD11 21: PD15 25: PF3  
Functionality  
0 - 3  
0: PA2  
1: PA3  
2: PA4  
3: PA5  
0: PA3  
1: PA4  
2: PA5  
3: PB11  
0: PA4  
1: PA5  
2: PB11  
3: PB12  
0: PA5  
1: PB11  
2: PB12  
3: PB13  
0: PA0  
1: PA1  
2: PA2  
3: PA3  
0: PA1  
1: PA2  
2: PA3  
3: PA4  
0: PA2  
1: PA3  
2: PA4  
3: PA5  
0: PA3  
1: PA4  
2: PA5  
3: PB11  
0: PA2  
1: PA3  
2: PA4  
3: PA5  
4 - 7  
4: PB11  
5: PB12  
6: PB13  
7: PB14  
4: PB12  
5: PB13  
6: PB14  
7: PB15  
4: PB13  
5: PB14  
6: PB15  
7: PC6  
8 - 11  
8: PB15  
9: PC6  
20 - 23  
24 - 27  
28 - 31  
28: PF6  
29: PF7  
30: PA0  
31: PA1  
28: PF7  
29: PA0  
30: PA1  
31: PA2  
28: PA0  
29: PA1  
30: PA2  
31: PA3  
28: PA1  
29: PA2  
30: PA3  
31: PA4  
28: PF4  
29: PF5  
30: PF6  
31: PF7  
28: PF5  
29: PF6  
30: PF7  
31: PA0  
28: PF6  
29: PF7  
30: PA0  
31: PA1  
28: PF7  
29: PA0  
30: PA1  
31: PA2  
28: PF6  
29: PF7  
30: PA0  
31: PA1  
Description  
Timer 0 Capture  
Compare input /  
output channel 2.  
TIM0_CC2  
TIM0_CDTI0  
TIM0_CDTI1  
TIM0_CDTI2  
TIM1_CC0  
TIM1_CC1  
TIM1_CC2  
TIM1_CC3  
US0_CLK  
10: PC7  
11: PC8  
8: PC6  
14: PC11 18: PD12 22: PF0  
15: PD9 19: PD13 23: PF1  
26: PF4  
27: PF5  
12: PC10 16: PD11 20: PD15 24: PF3  
Timer 0 Compli-  
mentary Dead Time  
Insertion channel 0.  
9: PC7  
13: PC11 17: PD12 21: PF0  
14: PD9 18: PD13 22: PF1  
25: PF4  
26: PF5  
27: PF6  
24: PF4  
25: PF5  
26: PF6  
27: PF7  
24: PF5  
25: PF6  
26: PF7  
27: PA0  
10: PC8  
11: PC9  
8: PC7  
15: PD10 19: PD14 23: PF2  
12: PC11 16: PD12 20: PF0  
Timer 0 Compli-  
mentary Dead Time  
Insertion channel 1.  
9: PC8  
13: PD9  
17: PD13 21: PF1  
10: PC9  
14: PD10 18: PD14 22: PF2  
11: PC10 15: PD11 19: PD15 23: PF3  
4: PB14  
5: PB15  
6: PC6  
8: PC8  
9: PC9  
12: PD9  
16: PD13 20: PF1  
Timer 0 Compli-  
mentary Dead Time  
Insertion channel 2.  
13: PD10 17: PD14 21: PF2  
10: PC10 14: PD11 18: PD15 22: PF3  
11: PC11 15: PD12 19: PF0 23: PF4  
7: PC7  
4: PA4  
8: PB13  
9: PB14  
12: PC7  
16: PC11 20: PD12 24: PF0  
17: PD9 21: PD13 25: PF1  
18: PD10 22: PD14 26: PF2  
15: PC10 19: PD11 23: PD15 27: PF3  
Timer 1 Capture  
Compare input /  
output channel 0.  
5: PA5  
13: PC8  
6: PB11  
7: PB12  
4: PA5  
10: PB15 14: PC9  
11: PC6  
8: PB14  
9: PB15  
10: PC6  
11: PC7  
8: PB15  
9: PC6  
12: PC8  
13: PC9  
16: PD9  
20: PD13 24: PF1  
Timer 1 Capture  
Compare input /  
output channel 1.  
5: PB11  
6: PB12  
7: PB13  
4: PB11  
5: PB12  
6: PB13  
7: PB14  
4: PB12  
5: PB13  
6: PB14  
7: PB15  
4: PB11  
5: PB12  
6: PB13  
7: PB14  
17: PD10 21: PD14 25: PF2  
14: PC10 18: PD11 22: PD15 26: PF3  
15: PC11 19: PD12 23: PF0 27: PF4  
12: PC9 16: PD10 20: PD14 24: PF2  
13: PC10 17: PD11 21: PD15 25: PF3  
Timer 1 Capture  
Compare input /  
output channel 2.  
10: PC7  
11: PC8  
8: PC6  
14: PC11 18: PD12 22: PF0  
15: PD9 19: PD13 23: PF1  
26: PF4  
27: PF5  
12: PC10 16: PD11 20: PD15 24: PF3  
Timer 1 Capture  
Compare input /  
output channel 3.  
9: PC7  
13: PC11 17: PD12 21: PF0  
14: PD9 18: PD13 22: PF1  
15: PD10 19: PD14 23: PF2  
12: PC9  
13: PC10 17: PD11 21: PD15 25: PF3  
25: PF4  
26: PF5  
27: PF6  
10: PC8  
11: PC9  
8: PB15  
9: PC6  
16: PD10 20: PD14 24: PF2  
USART0 clock in-  
put / output.  
10: PC7  
11: PC8  
14: PC11 18: PD12 22: PF0  
15: PD9 19: PD13 23: PF1  
26: PF4  
27: PF5  
silabs.com | Building a more connected world.  
Rev. 1.1 | 110  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Pin Definitions  
Alternate  
LOCATION  
12 - 15 16 - 19  
12: PC10 16: PD11 20: PD15 24: PF3  
Functionality  
0 - 3  
0: PA3  
1: PA4  
2: PA5  
3: PB11  
0: PA4  
1: PA5  
2: PB11  
3: PB12  
0: PA5  
1: PB11  
2: PB12  
3: PB13  
0: PA1  
1: PA2  
2: PA3  
3: PA4  
4 - 7  
4: PB12  
5: PB13  
6: PB14  
7: PB15  
4: PB13  
5: PB14  
6: PB15  
7: PC6  
8 - 11  
8: PC6  
9: PC7  
10: PC8  
11: PC9  
8: PC7  
9: PC8  
10: PC9  
20 - 23  
24 - 27  
28 - 31  
28: PF7  
29: PA0  
30: PA1  
31: PA2  
28: PA0  
29: PA1  
30: PA2  
31: PA3  
28: PA1  
29: PA2  
30: PA3  
31: PA4  
28: PF5  
29: PF6  
30: PF7  
31: PA0  
Description  
13: PC11 17: PD12 21: PF0  
14: PD9 18: PD13 22: PF1  
25: PF4  
26: PF5  
27: PF6  
24: PF4  
25: PF5  
26: PF6  
27: PF7  
24: PF5  
25: PF6  
26: PF7  
27: PA0  
USART0 chip se-  
lect input / output.  
US0_CS  
15: PD10 19: PD14 23: PF2  
12: PC11 16: PD12 20: PF0  
USART0 Clear To  
Send hardware  
flow control input.  
13: PD9  
17: PD13 21: PF1  
US0_CTS  
US0_RTS  
14: PD10 18: PD14 22: PF2  
11: PC10 15: PD11 19: PD15 23: PF3  
4: PB14  
5: PB15  
6: PC6  
8: PC8  
9: PC9  
12: PD9  
16: PD13 20: PF1  
USART0 Request  
To Send hardware  
flow control output.  
13: PD10 17: PD14 21: PF2  
10: PC10 14: PD11 18: PD15 22: PF3  
11: PC11 15: PD12 19: PF0 23: PF4  
7: PC7  
4: PA5  
8: PB14  
9: PB15  
10: PC6  
11: PC7  
12: PC8  
13: PC9  
16: PD9  
17: PD10 21: PD14 25: PF2  
20: PD13 24: PF1  
USART0 Asynchro-  
nous Receive.  
5: PB11  
6: PB12  
7: PB13  
USART0 Synchro-  
nous mode Master  
Input / Slave Out-  
put (MISO).  
US0_RX  
14: PC10 18: PD11 22: PD15 26: PF3  
15: PC11 19: PD12 23: PF0 27: PF4  
0: PA0  
1: PA1  
2: PA2  
3: PA3  
4: PA4  
5: PA5  
6: PB11  
7: PB12  
8: PB13  
9: PB14  
12: PC7  
16: PC11 20: PD12 24: PF0  
17: PD9 21: PD13 25: PF1  
18: PD10 22: PD14 26: PF2  
15: PC10 19: PD11 23: PD15 27: PF3  
28: PF4  
29: PF5  
30: PF6  
31: PF7  
USART0 Asynchro-  
nous Transmit. Al-  
so used as receive  
input in half duplex  
communication.  
13: PC8  
10: PB15 14: PC9  
US0_TX  
11: PC6  
USART0 Synchro-  
nous mode Master  
Output / Slave In-  
put (MOSI).  
0: PA2  
1: PA3  
2: PA4  
3: PA5  
0: PA3  
1: PA4  
2: PA5  
3: PB11  
0: PA4  
1: PA5  
2: PB11  
3: PB12  
4: PB11  
5: PB12  
6: PB13  
7: PB14  
4: PB12  
5: PB13  
6: PB14  
7: PB15  
4: PB13  
5: PB14  
6: PB15  
7: PC6  
8: PB15  
9: PC6  
10: PC7  
11: PC8  
8: PC6  
9: PC7  
10: PC8  
11: PC9  
8: PC7  
9: PC8  
10: PC9  
12: PC9  
16: PD10 20: PD14 24: PF2  
28: PF6  
29: PF7  
30: PA0  
31: PA1  
28: PF7  
29: PA0  
30: PA1  
31: PA2  
28: PA0  
29: PA1  
30: PA2  
31: PA3  
13: PC10 17: PD11 21: PD15 25: PF3  
USART1 clock in-  
put / output.  
US1_CLK  
US1_CS  
14: PC11 18: PD12 22: PF0  
15: PD9 19: PD13 23: PF1  
26: PF4  
27: PF5  
12: PC10 16: PD11 20: PD15 24: PF3  
13: PC11 17: PD12 21: PF0  
14: PD9 18: PD13 22: PF1  
25: PF4  
26: PF5  
27: PF6  
24: PF4  
25: PF5  
26: PF6  
27: PF7  
USART1 chip se-  
lect input / output.  
15: PD10 19: PD14 23: PF2  
12: PC11 16: PD12 20: PF0  
USART1 Clear To  
Send hardware  
flow control input.  
13: PD9  
17: PD13 21: PF1  
US1_CTS  
14: PD10 18: PD14 22: PF2  
11: PC10 15: PD11 19: PD15 23: PF3  
silabs.com | Building a more connected world.  
Rev. 1.1 | 111  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Pin Definitions  
Alternate  
LOCATION  
12 - 15 16 - 19  
12: PD9 16: PD13 20: PF1  
13: PD10 17: PD14 21: PF2  
Functionality  
0 - 3  
0: PA5  
1: PB11  
2: PB12  
3: PB13  
0: PA1  
1: PA2  
2: PA3  
3: PA4  
4 - 7  
4: PB14  
5: PB15  
6: PC6  
7: PC7  
4: PA5  
8 - 11  
8: PC8  
9: PC9  
20 - 23  
24 - 27  
24: PF5  
25: PF6  
26: PF7  
27: PA0  
28 - 31  
28: PA1  
29: PA2  
30: PA3  
31: PA4  
28: PF5  
29: PF6  
30: PF7  
31: PA0  
Description  
USART1 Request  
To Send hardware  
flow control output.  
US1_RTS  
US1_RX  
10: PC10 14: PD11 18: PD15 22: PF3  
11: PC11 15: PD12 19: PF0 23: PF4  
8: PB14  
9: PB15  
10: PC6  
11: PC7  
12: PC8  
13: PC9  
16: PD9  
17: PD10 21: PD14 25: PF2  
20: PD13 24: PF1  
USART1 Asynchro-  
nous Receive.  
5: PB11  
6: PB12  
7: PB13  
USART1 Synchro-  
nous mode Master  
Input / Slave Out-  
put (MISO).  
14: PC10 18: PD11 22: PD15 26: PF3  
15: PC11 19: PD12 23: PF0 27: PF4  
0: PA0  
1: PA1  
2: PA2  
3: PA3  
4: PA4  
5: PA5  
6: PB11  
7: PB12  
8: PB13  
9: PB14  
12: PC7  
16: PC11 20: PD12 24: PF0  
17: PD9 21: PD13 25: PF1  
18: PD10 22: PD14 26: PF2  
15: PC10 19: PD11 23: PD15 27: PF3  
28: PF4  
29: PF5  
30: PF6  
31: PF7  
USART1 Asynchro-  
nous Transmit. Al-  
so used as receive  
input in half duplex  
communication.  
13: PC8  
10: PB15 14: PC9  
11: PC6  
US1_TX  
USART1 Synchro-  
nous mode Master  
Output / Slave In-  
put (MOSI).  
12: PF0  
13: PF1  
14: PF3  
15: PF4  
12: PF1  
13: PF3  
14: PF4  
15: PF5  
12: PF3  
13: PF4  
14: PF5  
15: PF6  
12: PF4  
13: PF5  
14: PF6  
15: PF7  
13: PF0  
14: PF1  
15: PF3  
16: PF5  
17: PF6  
18: PF7  
30: PA5  
29: PA5  
28: PA5  
USART2 clock in-  
put / output.  
US2_CLK  
US2_CS  
11: PF0  
16: PF6  
17: PF7  
USART2 chip se-  
lect input / output.  
10: PF0  
11: PF1  
16: PF7  
USART2 Clear To  
Send hardware  
flow control input.  
US2_CTS  
US2_RTS  
9: PF0  
27: PA5  
USART2 Request  
To Send hardware  
flow control output.  
10: PF1  
11: PF3  
16: PF4  
17: PF5  
18: PF6  
19: PF7  
31: PA5  
USART2 Asynchro-  
nous Receive.  
USART2 Synchro-  
nous mode Master  
Input / Slave Out-  
put (MISO).  
US2_RX  
silabs.com | Building a more connected world.  
Rev. 1.1 | 112  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Pin Definitions  
Alternate  
LOCATION  
Functionality  
0 - 3  
4 - 7  
8 - 11  
12 - 15  
16 - 19  
16: PF3  
17: PF4  
18: PF5  
19: PF6  
20 - 23  
24 - 27  
28 - 31  
Description  
0: PA5  
14: PF0  
15: PF1  
20: PF7  
USART2 Asynchro-  
nous Transmit. Al-  
so used as receive  
input in half duplex  
communication.  
US2_TX  
USART2 Synchro-  
nous mode Master  
Output / Slave In-  
put (MOSI).  
0: PA1  
0: PA3  
Digital to analog  
converter VDAC0  
external reference  
input pin.  
VDAC0_EXT  
Digital to Analog  
Converter DAC0  
output channel  
number 0.  
VDAC0_OUT0 /  
OPA0_OUT  
0: PA5  
Digital to Analog  
Converter DAC0 al-  
ternative output for  
channel 0.  
VDAC0_OUT0AL  
T / OPA0_OUT-  
ALT  
1: PD13  
2: PD15  
0: PD14  
Digital to Analog  
Converter DAC0  
output channel  
number 1.  
VDAC0_OUT1 /  
OPA1_OUT  
0: PD12  
1: PA2  
2: PA4  
0: PA0  
1: PA1  
2: PA2  
3: PA3  
0: PA2  
1: PA3  
2: PA4  
3: PA5  
0: PA4  
1: PA5  
Digital to Analog  
Converter DAC0 al-  
ternative output for  
channel 1.  
VDAC0_OUT1AL  
T / OPA1_OUT-  
ALT  
4: PA4  
5: PA5  
15: PB11 16: PB12  
17: PB13  
26: PC6  
27: PC7  
28: PC8  
29: PC9  
30: PC10  
31: PC11  
28: PC10  
29: PC11  
31: PD9  
Wide timer 0 Cap-  
ture Compare in-  
put / output channel  
0.  
WTIM0_CC0  
WTIM0_CC1  
WTIM0_CC2  
18: PB14  
19: PB15  
13: PB11 16: PB14  
14: PB12 17: PB15  
15: PB13  
24: PC6  
25: PC7  
26: PC8  
27: PC9  
24: PC8  
25: PC9  
Wide timer 0 Cap-  
ture Compare in-  
put / output channel  
1.  
11: PB11 12: PB12  
13: PB13  
22: PC6  
23: PC7  
29: PD9  
Wide timer 0 Cap-  
ture Compare in-  
put / output channel  
2.  
30: PD10  
14: PB14  
26: PC10 31: PD11  
27: PC11  
15: PB15  
silabs.com | Building a more connected world.  
Rev. 1.1 | 113  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Pin Definitions  
Alternate  
LOCATION  
Functionality  
0 - 3  
4 - 7  
8 - 11  
8: PB12  
9: PB13  
10: PB14  
11: PB15  
8: PB14  
9: PB15  
12 - 15  
16 - 19  
20 - 23  
20: PC8  
21: PC9  
24 - 27  
28 - 31  
Description  
7: PB11  
18: PC6  
19: PC7  
25: PD9  
28: PD12  
Wide timer 0 Com-  
plimentary Dead  
Time Insertion  
channel 0.  
26: PD10 29: PD13  
WTIM0_CDTI0  
WTIM0_CDTI1  
WTIM0_CDTI2  
22: PC10 27: PD11 30: PD14  
23: PC11 31: PD15  
5: PB11  
6: PB12  
7: PB13  
16: PC6  
17: PC7  
18: PC8  
19: PC9  
16: PC8  
17: PC9  
20: PC10 24: PD10 28: PD14  
21: PC11 25: PD11 29: PD15  
Wide timer 0 Com-  
plimentary Dead  
Time Insertion  
channel 1.  
23: PD9  
26: PD12 30: PF0  
27: PD13 31: PF1  
24: PD12 28: PF0  
3: PB11  
4: PB12  
5: PB13  
6: PB14  
7: PB15  
14: PC6  
15: PC7  
21: PD9  
Wide timer 0 Com-  
plimentary Dead  
Time Insertion  
channel 2.  
22: PD10 25: PD13 29: PF1  
18: PC10 23: PD11 26: PD14 30: PF2  
19: PC11 27: PD15 31: PF3  
silabs.com | Building a more connected world.  
Rev. 1.1 | 114  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Pin Definitions  
7.4 Analog Port (APORT) Client Maps  
The Analog Port (APORT) is an infrastructure used to connect chip pins with on-chip analog clients such as analog comparators, ADCs,  
DACs, etc. The APORT consists of a set of shared buses, switches, and control logic needed to configurably implement the signal rout-  
ing. Figure 7.2 APORT Connection Diagram on page 115 shows the APORT routing for this device family (note that available features  
may vary by part number). A complete description of APORT functionality can be found in the Reference Manual.  
1X  
2X  
3X  
4X  
NEXT1  
NEXT0  
1X  
2X  
3X  
4X  
NEXT1  
NEXT0  
POS  
NEG  
POS  
NEG  
PB15  
PF0  
ACMP1  
PB14  
PB13  
PF1  
PF2  
1Y  
2Y  
3Y  
4Y  
NEXT1  
NEXT0  
ACMP0  
1Y  
2Y  
3Y  
4Y  
NEXT1  
NEXT0  
OPA2_N  
OUT2  
PF3  
PF4  
1X  
2X  
3X  
4X  
NEXT0  
NEXT2  
PB12  
PB11  
PF5  
PF6  
PF7  
POS  
NEG  
OPA2_P  
1Y  
2Y  
3Y  
4Y  
ADC0  
1X  
1Y  
IDAC0  
NEXT1  
EXTP  
EXTN  
OPA1_P  
1X  
PA5  
PA4  
VDAC0_OUT0ALT  
VDAC0_OUT1ALT  
POS  
NEG  
OPA0_P  
1X  
2X  
3X  
4X  
2X  
3X  
4X  
OUT0ALT  
OPA0_N  
POS  
NEG  
OPA1_N  
1Y  
OUT1ALT  
OUT0  
OPA0_N  
1Y  
2Y  
3Y  
4Y  
2Y  
3Y  
4Y  
OPA1  
PA3  
PA2  
OPA0  
OPA0_P  
OUT1  
OUT1ALT  
OUT1  
VDAC0_OUT1ALT  
OUT0  
OUT0ALT  
OUT1  
OUT2  
OUT3  
OUT1ALT  
ADC_EXTP  
OUT  
OUT2  
OUT3  
OUT4  
OUT  
PA1  
PA0  
NEXT1  
ADC_EXTN  
OUT4  
NEXT0  
OPA2_P  
1X  
2X  
3X  
4X  
OPA1_N  
PD15  
POS  
NEG  
VDAC0_OUT0ALT  
OUT0ALT  
OPA2_N  
1Y  
2Y  
OPA2  
3Y  
4Y  
OUT2  
OUT2ALT  
OUT1  
OUT2  
OUT  
OUT3  
OUT4  
NEXT2  
1X  
1Y  
3X  
3Y  
CEXT  
CSEN  
2X  
2Y  
CEXT_SENSE  
4X  
4Y  
nX, nY  
APORTnX, APORTnY  
AX, BY, …  
BUSAX, BUSBY, ...  
Figure 7.2. APORT Connection Diagram  
Client maps for each analog circuit using the APORT are shown in the following tables. The maps are organized by bus, and show the  
peripheral's port connection, the shared bus, and the connection from specific bus channel numbers to GPIO pins.  
silabs.com | Building a more connected world.  
Rev. 1.1 | 115  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Pin Definitions  
In general, enumerations for the pin selection field in an analog peripheral's register can be determined by finding the desired pin con-  
nection in the table and then combining the value in the Port column (APORT__), and the channel identifier (CH__). For example, if pin  
PF7 is available on port APORT2X as CH23, the register field enumeration to connect to PF7 would be APORT2XCH23. The shared  
bus used by this connection is indicated in the Bus column.  
Table 7.4. ACMP0 Bus and Pin Mapping  
silabs.com | Building a more connected world.  
Rev. 1.1 | 116  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Pin Definitions  
Table 7.5. ACMP1 Bus and Pin Mapping  
silabs.com | Building a more connected world.  
Rev. 1.1 | 117  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Pin Definitions  
Table 7.6. ADC0 Bus and Pin Mapping  
silabs.com | Building a more connected world.  
Rev. 1.1 | 118  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Pin Definitions  
Table 7.7. CSEN Bus and Pin Mapping  
CEXT  
CEXT_SENSE  
Table 7.8. IDAC0 Bus and Pin Mapping  
silabs.com | Building a more connected world.  
Rev. 1.1 | 119  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Pin Definitions  
Table 7.9. VDAC0 / OPA Bus and Pin Mapping  
OPA0_N  
OPA0_P  
silabs.com | Building a more connected world.  
Rev. 1.1 | 120  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Pin Definitions  
OPA1_N  
OPA1_P  
OPA2_N  
silabs.com | Building a more connected world.  
Rev. 1.1 | 121  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Pin Definitions  
OPA2_OUT  
OPA2_P  
VDAC0_OUT0 / OPA0_OUT  
silabs.com | Building a more connected world.  
Rev. 1.1 | 122  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Pin Definitions  
VDAC0_OUT1 / OPA1_OUT  
silabs.com | Building a more connected world.  
Rev. 1.1 | 123  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Package Specifications  
8. Package Specifications  
8.1 BGM13S Package Dimensions  
Figure 8.1. BGM13S Package Dimensions  
Dimension  
MIN  
1.20  
0.26  
0.95  
0.27  
NOM  
1.30  
0.30  
1.00  
0.32  
MAX  
1.40  
0.34  
1.05  
0.37  
A
A1  
A2  
b
silabs.com | Building a more connected world.  
Rev. 1.1 | 124  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Package Specifications  
Dimension  
D
MIN  
NOM  
MAX  
6.50 BSC  
2.92 BSC  
4.50 BSC  
0.68 BSC  
0.60 BSC  
0.50 BSC  
6.50 BSC  
1.00 BSC  
5.50 BSC  
4.00 BSC  
0.60 BSC  
0.48  
D2  
D3  
D4  
D5  
e
E
E2  
E3  
E4  
E5  
L
0.43  
0.11  
0.34  
0.24  
0.14  
0.62  
0.53  
0.21  
0.44  
0.34  
0.24  
0.72  
L1  
0.16  
L2  
0.39  
L3  
0.29  
L4  
0.19  
L5  
0.67  
eD1  
eD2  
eD3  
eD4  
eE1  
eE2  
eE3  
eE4  
eE5  
aaa  
bbb  
ccc  
ddd  
eee  
1.20 BSC  
2.40 BSC  
0.07 BSC  
1.50 BSC  
0.30 BSC  
0.20 BSC  
1.60 BSC  
1.65 BSC  
0.80 BSC  
0.10  
0.10  
0.10  
0.10  
0.10  
silabs.com | Building a more connected world.  
Rev. 1.1 | 125  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Package Specifications  
Dimension  
MIN  
NOM  
MAX  
Note:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Tolerances are:  
a. Decimal:  
X.X = ±0.1  
X.XX = ±0.05  
X.XXX = ±0.03  
b. Angular:  
±0.1 Degrees  
3. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
4. This drawing conforms to the JEDEC Solid State Outline MO-220.  
5. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
6. Hatching lines means package shielding area.  
7. Solid pattern (3.1x3.1mm) shows non-shielding area including its side walls. For side wall, borderline between shielding area and  
not-shielding area could not be defined clearly like top side.  
silabs.com | Building a more connected world.  
Rev. 1.1 | 126  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Package Specifications  
8.2 BGM13S Recommeded PCB Land Pattern  
This section describes the recommended PCB land pattern for the BGM13S. The antenna copper clearance area is shown in Figure  
8.2 BGM13S Recommended Antenna Clearance on page 127, while the X-Y cordinates of pads relative to the origin are shown in  
Table 8.1 BGM13S Pad Coordinates and Sizing on page 128. The origin is the center point of pin number 47. It is very important to  
align the antenna area relative to the module pads precisely.  
Figure 8.2. BGM13S Recommended Antenna Clearance  
silabs.com | Building a more connected world.  
Rev. 1.1 | 127  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Package Specifications  
Table 8.1. BGM13S Pad Coordinates and Sizing  
Pad No.  
47  
1
Pad coordinates (X,Y)  
Pad Center, Origin (0,0)  
(0,-1.60)  
Pad size (mm)  
0.32 x 0.48  
2
(0,-2.10)  
9
(0,-5.60)  
10  
19  
20  
31  
32  
36  
45  
49  
46  
50  
51  
(0.60,-5.75)  
(5.10,-5.75)  
(5.70,-5.60)  
(5.70,-0.10)  
(5.10,-0.05)  
(5.10,-1.65)  
(0.60,-1.65)  
(0,-1.00)  
(2.92,0)  
1.65,-3.70)  
0.67 x 0.67  
4.05,-3.70)  
silabs.com | Building a more connected world.  
Rev. 1.1 | 128  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Package Specifications  
Figure 8.3. BGM13S Recommended PCB Land Pattern  
Table 8.2. BGM13S Recommended PCB Land Pattern  
Symbol  
b
NOM (mm)  
0.32 BSC  
5.50 BSC  
3.70 BSC  
4.00 BSC  
0.05 BSC  
1.65 BSC  
1.00 BSC  
0.60 BSC  
0.15 BSC  
0.50 BSC  
5.70 BSC  
5.10 BSC  
3.60 BSC  
2.92 BSC  
1.65 BSC  
4.50 BSC  
4.50 BSC  
0.48 BSC  
D1  
D2  
D3  
D4  
D5  
eD1  
eD2  
eD3  
e
E1  
E2  
E3  
E4  
E5  
E6  
E7  
L
silabs.com | Building a more connected world.  
Rev. 1.1 | 129  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Package Specifications  
Symbol  
L1  
NOM (mm)  
0.67 BSC  
0.60 BSC  
0.60 BSC  
2.40 BSC  
eE1  
eE2  
eE3  
Notes:  
1. All feature sizes shown are at Maximum Material Condition (MMC) and a card fabrication tolerance of 0.05mm is assumed.  
2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.  
3. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.  
4. The stencil thickness should be 0.100mm (4 mils).  
5. The stencil aperture to land pad size recommendation is 70% paste coverage.  
6. Above notes and stencil design are shared as recommendations only. A customer or user may find it necessary to use different  
parameters and fine tune their SMT process as required for their application and tooling.  
silabs.com | Building a more connected world.  
Rev. 1.1 | 130  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Package Specifications  
8.3 BGM13S Package Marking  
The figure below shows the package markings printed on the module.  
Figure 8.4. BGM13S Package Marking  
Explanations:  
Marking  
Explanation  
BGM13Sxxx  
FCCIDQOQ13  
IC5123A-13  
Model Number  
FCC Certification ID  
IC5123A-13  
R-CRM-BGT-13  
YWWTTTT  
KC (Korea) Certification ID  
1. Y = Manufacturing Year  
2. WW = Manufacturing Work Week  
3. TTTT = Trace Code  
silabs.com | Building a more connected world.  
Rev. 1.1 | 131  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Tape and Reel Specifications  
9. Tape and Reel Specifications  
9.1 Tape and Reel Packaging  
This section contains information regarding the tape and reel packaging for the BGM13S Blue Gecko Module.  
9.2 Reel and Tape Specifications  
• Reel material: Polystyrene (PS)  
• Reel diameter: 13 inches (330 mm)  
• Number of modules per reel: 1000 pcs  
• Disk deformation, folding whitening and mold imperfections: Not allowed  
• Disk set: consists of two 13 inch (330 mm) rotary round disks and one central axis (100 mm)  
• Antistatic treatment: Required  
Surface resistivity: 104 - 109 Ω/sq.  
Figure 9.1. Reel Dimensions - Side View  
Symbol  
W0  
Dimensions [mm]  
32.5 ± 0.3  
W1  
37.1 ± 1.0  
Figure 9.2. Cover tape information  
Symbol  
Thickness (T)  
Width (W)  
Dimensions [mm]  
0.061  
25.5 + 0.2  
silabs.com | Building a more connected world.  
Rev. 1.1 | 132  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Tape and Reel Specifications  
Figure 9.3. Tape information  
9.3 Orientation and Tape Feed  
The user direction of feed, start and end of tape on reel and orientation of the modules on the tape are shown in the figure below.  
Figure 9.4. Module Orientation and Feed Direction  
silabs.com | Building a more connected world.  
Rev. 1.1 | 133  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Tape and Reel Specifications  
9.4 Tape and Reel Box Dimensions  
Figure 9.5. Tape and Reel Box Dimensions  
Symbol  
W2  
Dimensions [mm]  
368  
338  
72  
W3  
W4  
9.5 Moisture Sensitivity Level  
Reels are delivered in packing which conforms to MSL3 (Moisture Sensitivity Level 3) requirements.  
silabs.com | Building a more connected world.  
Rev. 1.1 | 134  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Soldering Recommendations  
10. Soldering Recommendations  
10.1 Soldering Recommendations  
The BGM13S is compatible with industrial standard reflow profile for Pb-free solders. The reflow profile used is dependent on the ther-  
mal mass of the entire populated PCB, heat transfer efficiency of the oven, and particular type of solder paste used.  
• Refer to technical documentations of particular solder paste for profile configurations.  
• Avoid using more than two reflow cycles.  
• A no-clean, type-3 solder paste is recommended.  
• A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.  
• Recommended stencil thickness is 0.100mm (4 mils).  
• Refer to the recommended PCB land pattern for an example stencil aperture size.  
• For further recommendation, please refer to the JEDEC/IPC J-STD-020, IPC-SM-782 and IPC 7351 guidelines.  
• Above notes and stencil design are shared as recommendations only. A customer or user may find it necessary to use different  
parameters and fine tune their SMT process as required for their application and tooling.  
silabs.com | Building a more connected world.  
Rev. 1.1 | 135  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Certifications  
11. Certifications  
11.1 Qualified Antenna Types  
The BGM13S variants supporting an external antenna have been designed to operate with a standard 2.14 dBi dipole antenna. Any  
antenna of a different type or with a gain higher than 2.14 dBi is strictly prohibited for use with this device. Using an antenna of a differ-  
ent type or gain more than 2.14 dBi will require additional testing for FCC, CE and IC. The required antenna impedance is 50 Ω.  
Table 11.1. Qualified Antennas for BGM13S  
Antenna Type  
Maximum Gain  
Dipole  
2.14 dBi  
11.2 Bluetooth  
The BGM13S is pre-qualified as a Low Energy RF-PHY tested component, having Declaration ID of D039577 and QDID of 119769. For  
the qualification of an end product embedding the BGM13S, the above should be combined with the most up to date Wireless Gecko  
Link Layer and Host components.  
11.3 CE  
The BGM13S22 module is in conformity with the essential requirements and other relevant requirements of the Radio Equipment Direc-  
tive (RED) (2014/53/EU). Please note that every application using the BGM13S22 will need to perform the radio EMC tests on the end  
product, according to EN 301 489-17. It is ultimately the responsibility of the manufacturer to ensure the compliance of the end-product.  
The specific product assembly may have an impact to RF radiated characteristics, and manufacturers should carefully consider RF  
radiated testing with the end-product assembly. A formal DoC is available via www.silabs.com  
The BGM13S32 module is in conformity with the essential requirements and other relevant requirements of the Radio Equipment Direc-  
tive(RED) at up to 10 dBm RF transmit power when not using Adaptive Frequency Hopping (AFH). With early module firmware versions  
that do not support AFH and that do not have built-in functionality to limit the max RF transmit power to 10 dBm automatically, it is  
responsibility of the end-product's manufacturer to limit output power accordingly. With newer firmware versions supporting AFH, the  
end-product’s manufacturer has the option to enable AFH and transmit at full output power while the module remains compliant or, al-  
ternatively, to disable AFH in which case the max RF transmit power will be automatically limited to 10 dBm, making the module compli-  
ant in all cases. Please refer to the firmware change log to verify which version introduced AFH.  
silabs.com | Building a more connected world.  
Rev. 1.1 | 136  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Certifications  
11.4 FCC  
This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:  
1. This device may not cause harmful interference, and  
2. This device must accept any interference received, including interference that may cause undesirable operation.  
Any changes or modifications not expressly approved by Silicon Labs could void the user’s authority to operate the equipment.  
FCC RF Radiation Exposure Statement:  
This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. End users must follow the specif-  
ic operating instructions for satisfying RF exposure compliance. This transmitter meets both portable and mobile limits as demonstrated  
in the RF Exposure Analysis. This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter  
except in accordance with FCC multi-transmitter product procedures.  
OEM Responsibilities to comply with FCC Regulations:  
OEM integrator is responsible for testing their end-product for any additional compliance requirements required with this module instal-  
led (for example, digital device emissions, PC peripheral requirements, etc.).  
• With BGM13S32 the antenna(s) must be installed such that a minimum separation distance of 50.5 mm is maintained between the  
radiator (antenna) and all persons at all times.  
• With BGM13S22 the antenna(s) must be installed such that a minimum separation distance of 0 mm is maintained between the radi-  
ator (antenna) and all persons at all times.  
• The transmitter module must not be co-located or operating in conjunction with any other antenna or transmitter except in accord-  
ance with FCC multi-transmitter product procedures.  
Important Note:  
In the event that the above conditions cannot be met (for certain configurations or co-location with another transmitter), then the FCC  
authorization is no longer considered valid and the FCC ID cannot be used on the final product. In these circumstances, the OEM inte-  
grator will be responsible for re-evaluating the end product (including the transmitter) and obtaining a separate FCC authorization.  
End Product Labeling  
The variants of BGM13S Modules are labeled with their own FCC ID. If the FCC ID is not visible when the module is installed inside  
another device, then the outside of the device into which the module is installed must also display a label referring to the enclosed  
module. In that case, the final end product must be labeled in a visible area with the following:  
"Contains Transmitter Module FCC ID: QOQ13"  
Or  
"Contains FCC ID: QOQ13"  
The OEM integrator has to be aware not to provide information to the end user regarding how to install or remove this RF module or  
change RF related parameters in the user manual of the end product.  
silabs.com | Building a more connected world.  
Rev. 1.1 | 137  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Certifications  
11.5 ISED Canada  
ISEDC  
This radio transmitter (IC: 5123A-13) has been approved by Industry Canada to operate with the antenna types listed above, with the  
maximum permissible gain indicared. Antenna types not included in this list, having a gain greater than the maximum gain indicated for  
that type, are strictly prohibited for use with this device.  
This device complies with Industry Canada’s license-exempt RSS standards. Operation is subject to the following two conditions:  
1. This device may not cause interference; and  
2. This device must accept any interference, including interference that may cause undesired operation of the device  
RF Exposure Statement  
Exception from routine SAR evaluation limits are given in RSS-102 Issue 5.  
The models BGM13S32A and BGM13S32N meet the given requirements when the minimum separation distance to human body is 40  
mm.  
The models BGM13S22A and BGM13S22N meet the given requirements when the minimum separation distance to human body is 15  
mm.  
RF exposure or SAR evaluation is not required when the separation distance is same or more than stated above. If the separation dis-  
tance is less than stated above the OEM integrator is responsible for evaluating the SAR.  
OEM Responsibilities to comply with IC Regulations  
The BGM13S modules have been certified for integration into products only by OEM integrators under the following conditions:  
• The antenna(s) must be installed such that a minimum separation distance as stated above is maintained between the radiator (an-  
tenna) and all persons at all times.  
• The transmitter module must not be co-located or operating in conjunction with any other antenna or transmitter.  
As long as the two conditions above are met, further transmitter testing will not be required. However, the OEM integrator is still respon-  
sible for testing their end-product for any additional compliance requirements required with this module installed (for example, digital  
device emissions, PC peripheral requirements, etc.).  
IMPORTANT NOTE  
In the event that these conditions cannot be met (for certain configurations or co-location with another transmitter), then the ISEDC  
authorization is no longer considered valid and the IC ID cannot be used on the final product. In these circumstances, the OEM integra-  
tor will be responsible for re-evaluating the end product (including the transmitter) and obtaining a separate ISEDC authorization.  
End Product Labeling  
The BGM13S module is labeled with its own IC ID. If the IC ID is not visible when the module is installed inside another device, then the  
outside of the device into which the module is installed must also display a label referring to the enclosed module. In that case, the final  
end product must be labeled in a visible area with the following:  
Contains Transmitter Module IC: 5123A-13 ”  
or  
Contains IC: 5123A-13”  
The OEM integrator has to be aware not to provide information to the end user regarding how to install or remove this RF module or  
change RF related parameters in the user manual of the end product.  
silabs.com | Building a more connected world.  
Rev. 1.1 | 138  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Certifications  
ISEDC (Français)  
Industrie Canada a approuvé l’utilisation de cet émetteur radio (IC: 5123A-13) en conjonction avec des antennes de type dipolaire à  
2.14dBi ou des antennes embarquées, intégrée au produit. L’utilisation de tout autre type d’antenne avec ce composant est proscrite.  
Ce composant est conforme aux normes RSS, exonérées de licence d'Industrie Canada. Son mode de fonctionnement est soumis aux  
deux conditions suivantes:  
1. Ce composant ne doit pas générer d’interférences.  
2. Ce composant doit pouvoir est soumis à tout type de perturbation y compris celle pouvant nuire à son bon fonctionnement.  
Déclaration d'exposition RF  
L'exception tirée des limites courantes d'évaluation SAR est donnée dans le document RSS-102 Issue 5.  
Les modules BGM13S32A and BGM13S32N répondent aux exigences requises lorsque la distance minimale de séparation avec le  
corps humain est de 40 mm.  
Les modules BGM13S22A and BGM13S22N répondent aux exigences requises lorsque la distance minimale de séparation avec le  
corps humain est de 15 mm.  
La déclaration d’exposition RF ou l'évaluation SAR n'est pas nécessaire lorsque la distance de séparation est identique ou supérieure à  
celle indiquée ci-dessus. Si la distance de séparation est inférieure à celle mentionnées plus haut, il incombe à l'intégrateur OEM de  
procédé à une évaluation SAR.  
Responsabilités des OEM pour une mise en conformité avec le Règlement du Circuit Intégré  
Le module BGM13S a été approuvé pour l'intégration dans des produits finaux exclusivement réalisés par des OEM sous les conditions  
suivantes:  
• L'antenne (s) doit être installée de sorte qu'une distance de séparation minimale indiquée ci-dessus soit maintenue entre le radiateur  
(antenne) et toutes les personnes avoisinante, ce à tout moment.  
• Le module émetteur ne doit pas être localisé ou fonctionner avec une autre antenne ou un autre transmetteur que celle indiquée  
plus haut.  
Tant que les deux conditions ci-dessus sont respectées, il n’est pas nécessaire de tester ce transmetteur de façon plus poussée. Ce-  
pendant, il incombe à l’intégrateur OEM de s’assurer de la bonne conformité du produit fini avec les autres normes auxquelles il pour-  
rait être soumis de fait de l’utilisation de ce module (par exemple, les émissions des périphériques numériques, les exigences de pé-  
riphériques PC, etc.).  
REMARQUE IMPORTANTE  
ans le cas où ces conditions ne peuvent être satisfaites (pour certaines configurations ou co-implantation avec un autre émetteur), l'au-  
torisation ISEDC n'est plus considérée comme valide et le numéro d’identification ID IC ne peut pas être apposé sur le produit final.  
Dans ces circonstances, l'intégrateur OEM sera responsable de la réévaluation du produit final (y compris le transmetteur) et de l'ob-  
tention d'une autorisation ISEDC distincte.  
Étiquetage des produits finis  
Les modules BGM13S sont étiquetés avec leur propre ID IC. Si l'ID IC n'est pas visible lorsque le module est intégré au sein d'un autre  
produit, cet autre produit dans lequel le module est installé devra porter une étiquette faisant apparaitre les référence du module inté-  
gré. Dans un tel cas, sur le produit final doit se trouver une étiquette aisément lisible sur laquelle figurent les informations suivantes:  
Contient le module transmetteur: 5123A-13 ”  
or  
Contient le circuit: 5123A-13”  
L'intégrateur OEM doit être conscient qu’il ne doit pas fournir, dans le manuel d’utilisation, d'informations relatives à la façon d'installer  
ou de d’enlever ce module RF ainsi que sur la procédure à suivre pour modifier les paramètres liés à la radio.  
silabs.com | Building a more connected world.  
Rev. 1.1 | 139  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Certifications  
11.6 Japan  
The BGM13S22A and BGM13S22N are certified in Japan with certification number 209-J00306.  
Since September 1, 2014 it is allowed (and highly recommended) that a manufacturer who integrates a radio module in their host  
equipment can place the certification mark and certification number (the same marking/number as depicted on the label of the radio  
module) on the outside of the host equipment. The certification mark and certification number must be placed close to the text in the  
Japanese language which is provided below. This change in the Radio Law has been made in order to enable users of the combination  
of host and radio module to verify if they are actually using a radio device which is approved for use in Japan.  
Certification Text to be Placed on the Outside Surface of the Host Equipment:  
Translation of the text:  
“This equipment contains specified radio equipment that has been certified to the Technical Regulation Conformity Certification under  
the Radio Law.”  
The "Giteki" marking shown in the figures below must be affixed to an easily noticeable section of the specified radio equipment. Note  
that additional information may be required if the device is also subject to a telecom approval.  
Figure 11.1. GITEKI Mark and ID  
Figure 11.2. GITEKI Mark  
11.7 KC South Korea  
The BGM13S22A and BGM13S22N have certification in South-Korea.  
Certification number: R-C-BGT-13  
silabs.com | Building a more connected world.  
Rev. 1.1 | 140  
®
BGM13S Blue Gecko Bluetooth SiP Module Data Sheet  
Revision History  
12. Revision History  
Revision 1.1  
August 2019  
• Updated OPNs in 2. Ordering Information.  
• Added 11.7 KC South Korea with updated certification ID number.  
• Updated certification ID number in 11.6 Japan.  
• Updated RF Exposure Statement to 15 mm distance for BGM13S22A and BGM13S22N in 11.5 ISED Canada.  
• Added PLFRCO block and associated specifications.  
• Added PLFRCO block in Figure 3.1 BGM13S Block Diagram on page 7.  
• Added PLFRCO current consumption value in Table 4.4 Current Consumption 3.3 V using DC-DC Converter on page 22, Table  
4.5 Current Consumption 1.8 V (DC-DC Converter in Bypass Mode) on page 24, and Table 4.6 Current Consumption 3.3 V (DC-DC  
Converter in Bypass Mode) on page 26.  
• Added 4.1.9.4 Precision Low-Frequency RC Oscillator (PLFRCO) section.  
• Added 9. Tape and Reel Specifications.  
• Updated Figure 5.1 Typical Connections for BGM13S with UART Network Co-Processor on page 67 with the new layout guidelines.  
• Updated 6.3 Effect of Plastic and Metal Materials with the new layout guidelines.  
• Removed the Antenna Tuning image from 6.3 Effect of Plastic and Metal Materials.  
• Updated Figure 8.2 BGM13S Recommended Antenna Clearance on page 127 in 8.2 BGM13S Recommeded PCB Land Pattern.  
• Updated Figure 6.1 BGM13S PCB Top Layer Design on page 69 and Figure 6.2 BGM13S PCB Middle and Bottom Layer Design on  
page 69.  
• Added Figure 6.3 Practical Installation of BGM13S on Application PCB on page 69.  
• Changed "BLE" to "Bluetooth Low Energy" throughout.  
• Changed "Bluetooth 5.0 LE" to "Bluetooth 5" throughout.  
Revision 1.0  
October 2018  
• Added Electrical Specifications Tables for VDAC, CSEN, OPAMP, PCNT and APORT.  
5.1 Typical BGM13S Connections: Updated diagram to show IOVDD connection to Host CPU supply.  
Table 7.2 GPIO Functionality Table on page 75: Sorted by GPIO name.  
• Removed unbonded I/O from APORT mapping tables.  
• Packaging figures updated with latest annotations.  
• Removed tape and reel specifications section.  
• Added package marking specifications in 8.3 BGM13S Package Marking.  
• Added certification chapter .  
Revision 0.5  
April 2018  
• Removed PLFRCO content.  
• Added V2 part numbers to Table 2.1 Ordering Information on page 3.  
• Updated 4.1 Electrical Characteristics with latest characterization data and test limits.  
• : Added optional 32.768 kHz crystal connection.  
• : Corrected RTS/CTS naming on Host CPU for UART connection.  
• : Corrected TCK/TMS order on standard ARM Cortex debug connector.  
7.1 BGM13S Device Pinout: Changed pin 47 name from VSS to ANT_GND.  
7.1 BGM13S Device Pinout: Corrected numbering of pins 50 and 51.  
• Updated 8.2 BGM13S Recommeded PCB Land Pattern with latest drawings and dimension recommendations.  
Revision 0.1  
July 10, 2017  
• Initial Release.  
silabs.com | Building a more connected world.  
Rev. 1.1 | 141  
Simplicity Studio  
One-click access to MCU and  
wireless tools, documentation,  
software, source code libraries &  
more. Available for Windows,  
Mac and Linux!  
IoT Portfolio  
www.silabs.com/IoT  
SW/HW  
www.silabs.com/simplicity  
Quality  
www.silabs.com/quality  
Support and Community  
community.silabs.com  
Disclaimer  
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or  
intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical"  
parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes  
without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information.  
Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or reliability reasons. Such changes will not alter the specifications or the  
performance of the product. Silicon Labs shall have no liability for the consequences of use of the information supplied in this document. This document does not imply or expressly grant  
any license to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any FDA Class III devices, applications for which FDA premarket  
approval is required or Life Support Systems without the specific written consent of Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or  
health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon  
Labs products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering  
such weapons. Silicon Labs disclaims all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such  
unauthorized applications.  
Trademark Information  
Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, ClockBuilder®, CMEMS®, DSPLL®, EFM®,  
EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®,  
Gecko®, Gecko OS, Gecko OS Studio, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® , Zentri, the Zentri logo and Zentri  
DMS, Z-Wave®, and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings.  
Keil is a registered trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective  
holders.  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
USA  
http://www.silabs.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY